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ABSTRACT

The analysis of sequences is important for extracting in-

formation from music owing to its fundamentally temporal

nature. In this paper, we present a distributed model based

on the Restricted Boltzmann Machine (RBM) for melodic

sequences. The model is similar to a previous successful

neural network model for natural language [2]. It is first

trained to predict the next pitch in a given pitch sequence,

and then extended to also make use of information in se-

quences of note-durations in monophonic melodies on the

same task. In doing so, we also propose an efficient way

of representing this additional information that takes ad-

vantage of the RBM’s structure. Results show that this

RBM-based prediction model performs better than previ-

ously evaluated n-gram models in many cases. It is able to

make use of information present in longer contexts more

effectively than n-gram models, while scaling linearly in

the number of free parameters required.

1. INTRODUCTION

Sequential structure in music influences our notions of mu-

sical style, similarity and the emotions we associate with

it. The analysis of sequences in musical scores and equiv-

alent symbolic representations of music is an integral part

of Music Information Retrieval, with applications such as

music classification [6], computational musicology [26],

music creation [19], and music source separation [10]. In

the past, this analysis has often been carried out using mu-

sic generation systems [1, 4, 8, 13, 18].

The present research is based around previous work that

adopted ideas proposed in information theory to music [7].

There, Multiple-viewpoint Systems for Music Prediction

were introduced as a detailed re-interpretation of the key

ideas of information theory [22] in music, through an anal-

ogy between language and musical style. In that work and

what followed [21], Markov models were employed for
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learning melodic subsequences. While this is a reason-

able choice, Markov models are often faced with a prob-

lem related to data sparsity known as the curse of dimen-

sionality. This refers to the exponential rise in the number

of model parameters with the length of the modelled sub-

sequences. Recent research in Language Modelling has

demonstrated that neural networks can be a suitable al-

ternative to more widely used n-gram and variable-order

Markov models [2, 5, 17]. There have been some initial

results on the success of such models in music [3, 24].

In this paper, we present a model for melody predic-

tion based on one such neural network — the Restricted

Boltzmann Machine (RBM) [23]. The choice is motivated

by the following. Firstly, the inherent non-linearity of the

RBM makes it a suitable candidate for learning complex

structures in data, such as those occurring in musical se-

quences. There exist efficient algorithms for training this

model [11, 25]. The RBM, with its straightforward exten-

sibility to deep networks [12], has become a vital building

block for creating models that are capable of learning fea-

tures from the data at multiple levels of abstraction.

We describe here a model for fixed-length subsequences

of musical pitch, which compares favourably to n-gram

models that were previously evaluated with a prediction

task on a corpus of monophonic MIDI melodies [21]. This

pitch-only version of the model is then adapted to also

make use of note-durations in the melodies, on the same

pitch-prediction task. In doing so, we also propose an effi-

cient way to represent this additional information, which

takes advantage of the RBM’s structure and thus limits

model complexity. The structure of the proposed model

ensures that it scales only linearly with the length of sub-

sequences to be learned and with the number of symbols

in the data. We demonstrate an improvement of results by

combining the two models in a manner similar to [7] us-

ing the arithmetic mean of their individual probability es-

timates. An implementation of the model in Python, along

with scripts used to generate the results in this paper, are

available upon request.

The remainder of this paper is organized as follows.

The next section introduces music prediction and multiple

viewpoint systems as a framework for music prediction.

Section 3 explains the RBM and its discriminative inter-

pretation which make up the basis for the model proposed



in this paper. This is followed by a description of the model

itself in Section 4. An evaluation of the the model and its

comparison with previously evaluated n-gram models is

presented in Section 5, followed by discussion on possible

directions for future research in Section 6.

2. MUSIC PREDICTION WITH

MULTIPLE-VIEWPOINT SYSTEMS

In order to explain music prediction with multiple view-

points, the analogy to natural language is used here. In

statistical language modelling, the goal is to build a model

that can estimate the joint probability distribution of subse-

quences of words occurring in a language L. A statistical

language model (SLM) can be represented by the condi-

tional probability of the next word wT given all the previ-

ous ones [w1, . . . , w(T−1)] (written here as w
(T−1)
1 ), as

P (wT
1 ) =

T∏

t=1

P (wt|w
(t−1)
1 ) . (1)

The most commonly used SLMs are n-gram models, which

rely on the simplifying assumption that the probability of a

word in a sequence depends only on the immediately pre-

ceding (n − 1) words [16]. This is known as the Markov

assumption, and reduces (1) to

P (wT
1 ) =

T∏

t=1

P (wt|w
(t−1)
(t−n+1)) . (2)

Following this approach, musical styles can be inter-

preted as vast and complex languages [7]. In music pre-

diction, one is interested in learning the joint distribution

of musical event sequences sT1 in a musical language S.

Much in the same way as an SLM, a system for music pre-

diction models the conditional distribution p(st|s
(t−1)
1 ), or

under the Markov assumption p(st|s
(t−1)
(t−n+1)). For each

prediction, context information is obtained from the events

s
(t−1)
(t−n+1) immediately preceding st. Musical events have a

rich internal structure and can be expressed in terms of di-

rectly observable or derived musical features such as pitch,

note duration, inter-onset interval, or a combination of two

or more such features. The framework of multiple-view-

point systems for music prediction [7] was proposed in or-

der to efficiently handle this rich internal structure of mu-

sic by exploiting information contained in these different

musical feature sequences, while at the same time limiting

the dimensionality of the models using these features. In

the interest of brevity, we limit ourselves to an informal

discussion of multiple-viewpoint systems for monophonic

music prediction and refer the reader to [7] for the under-

lying mathematical formulation.

A musical event s refers to the occurrence of a note in

a melody. A viewpoint type (henceforth written as type)

τ refers to any of a set of musical features that describe

an event. The domain of a type, denoted by |τ | is the set

of possible values of that type. A basic type is a directly

observable or given feature such as pitch, note duration,

h1 h2 h

v1 v2 v3 v4 v

W

Figure 1. A simple Restricted Boltzmann Machine with

four visible, two hidden, and no bias units.

key-signature or time-signature. A derived type can be de-

rived from any of the basic types or other derived types.

A linked viewpoint type is created by taking the Cartesian

product over two or more types, thus “linking” them.

A multiple-viewpoint system (MVS) is a set of mod-

els, each of which is trained on subsequences of one type,

whose individual predictions are combined in some way

to influence the prediction of the next event in a given

event sequence. Given a context s
(t−1)
(t−n+1) and an event st,

each viewpoint τ in an MVS must compute the probabil-

ity pτ (st|s
(t−1)
(t−n+1)). While originally n-gram models were

proposed to be used with the multiple viewpoints frame-

work, we demonstrate how a distributed model such as the

RBM used here can serve as a scalable alternative.

3. RESTRICTED BOLTZMANN MACHINE

The Restricted Boltzmann Machine (RBM) is an undirected

graphical model consisting of a set of r visible units v and

a set of q hidden units h. These make up the visible and

hidden layers of the RBM respectively. The two layers

are fully inter-connected but there exist no connections be-

tween any two hidden units, or any two visible units. In its

original form, the RBM has binary, logistic units in both

layers. Additionally, the units of each layer are connected

to a bias unit whose value is always 1.

The edge between the ith visible node and the jth hid-

den node is associated with a weight wji. All these weights

are together represented in a weight matrix W of size q×r.

The weights of connections between visible units and the

bias unit are contained in an r-dimensional visible bias

vector b. Likewise, for the hidden units there is a q-dimen-

sional hidden bias vector c. The RBM is fully character-

ized by the parameters W, b and c. Figure 1 shows a sim-

ple RBM with four visible and two hidden units, without

the bias unit to better illustrate its bipartite structure.

The activation probabilities of the units in the hidden

layer given the visible layer (and vice versa) are given by

the logistic sigmoid function as p(hj = 1|v) = σ(cj +
Wj·v), and p(vi = 1|h) = σ(bi+W ′

i·h) respectively. Due

to the RBM’s bipartite structure, the activation probabili-

ties of the nodes within one of the layers are independent,

if the activation of the other layer is given, i.e.

p(h|v) =

q∏

j=1

p(hj |v) (3)

p(v|h) =

r∏

i=1

p(vi|h) . (4)



The RBM is a special case of the Boltzmann Machine,

which is an energy-based model for representing probabil-

ity distributions [15]. In such energy-based models, prob-

ability is expressed in terms of an energy function. In the

case of the RBM, this function is expressed as

Energy(v,h) = −b⊤v − c⊤h− h⊤Wv . (5)

Learning in energy-based models can be carried out in a

generative fashion, by updating the weights and biases in

order to minimize the overall energy of the system with re-

spect to the training data. This amounts to maximizing the

log-likelihood function of the joint probability distribution

p(v), which is given by

p(v) =
e−FreeEnergy(v)

Z
, (6)

with Z =
∑

v
e−FreeEnergy(v), where

FreeEnergy(v) = − log
∑

h

e−Energy(v,h) . (7)

While computing the exact gradient of the log-likeli-

hood function for p(v) is not tractable, an approximation

of this gradient called the Contrastive Divergence (CD)

gradient has been found to be a successful update rule for

training RBMs [11]. With the CD update, the RBM can be

trained efficiently.

The RBM described above models the joint probability

p(v) of the set of visible units v. However, as described in

Section 2, we are interested in a conditional distribution of

the form p(y|x). It has been demonstrated in [14] how an

RBM can be used for a discriminative task such as classifi-

cation. The posterior class probability distribution of such

an RBM has the form

p(y = ec|x) =
∑

h

p(y = ec,h|x) (8)

=
e−FreeEnergy(x,ec)

∑
c′=1...C e−FreeEnergy(x,e

c
′ )

(9)

where x is the input vector, and y is a vector that is a 1-of-

C representation of the class (also known as one-hot en-

coding), with C being the number of classes. If x belongs

to a class c, then y = ec, where ec is a vector with all val-

ues set to 0 except at position c. With respect to the RBM,

x and y together make up the visible layer v.

Assuming a training set Dtrain = {(xi, yi)} where xi

and yi ∈ {1, . . . , C} are the i-th input vector and target

class respectively, training the RBM generatively involves

minimizing the negative log-likelihood

Lgen(Dtrain) = −

|Dtrain|∑

i=1

log p(xi,yi) . (10)

The RBM thus used in a discriminative manner, forms

the basis of the prediction model described in the next sec-

tion.

4. A DISTRIBUTED MODEL FOR USE WITH

MULTIPLE VIEWPOINTS

The prediction model we present in this paper models the

conditional distribution p(st|s
(t−1)
(t−n+1)). It places no re-

strictions on the types associated with events in the con-

text s
(n−1)
(t−n+1) (input type), or the predicted event st (target

type). In the simplest case, both are the same. In the case

where they are different, the performance of the model de-

pends on how informative the input types are of the target

type. In the present work, we demonstrate this model with

two cases where (1) both the input and target viewpoint

types are musical pitch, and (2) the input types are pitch

and duration, and the target type pitch. The choice of the

additional input type in the second case was motivated by

simplicity and to lay emphasis on the representation.

For each monophonic melody (in MIDI format) in a

given dataset, sequences of the relevant input and target

types are first extracted using the MIDI Toolbox [9]. These

values are encoded as binary 1-of-|τ | vectors, where |τ | is

the size of the domain of type τ . In the case where more

than one input type exists, their corresponding vectors are

simply concatenated. Such an idea is similar to that of the

linked viewpoint type proposed in [7]. There are however,

two important distinctions between the two. Firstly, the

input and target types must be identical in the case of the

n-gram models originally proposed for use with multiple-

viewpoint systems, whereas this is not a requirement for

the RBM model. Secondly, a linked viewpoint between

two arbitrary types τ1 and τ2 of domain sizes |τ1| and |τ2|
respectively, would have a domain of size |τ1| × |τ2| in

the case of the n-gram models. Thus, for subsequences of

length n, the number of free parameters to be estimated

are (|τ1|× |τ2|)
n in the worst case. In contrast, the number

to be estimated in case of the RBM model, with q hid-

den units and r visible units, is (q × r) + q + r, where

r = (n−1)× [(|τ1|+1)+(|τ2|+1)]+ |τ3|, and τ3 the tar-

get type. The additional visible unit added to those of each

of the types in the context (τ1 and τ2) is 1 when the cor-

responding context event is absent at the start of a melody.

Such a model only scales linearly with the length of the

learned subsequences as well as the domain size of each of

the involved viewpoint types (assuming q is constant). Its

structure is depicted in Figure 2. Here we considered only

those cases with a single target type.

. . . h

. . . . . . . . . . . . . . . v

s(t−n+1) s(t−n+2) . . . s(t−1) s(t)

W

Figure 2. The structure of the prediction model. The set

of nodes in the visible layer grouped together on the left

make up the context s
(t−1)
(t−n+1) of the input type(s). The set

of nodes s(t) to the far right corresponds to the target type.



To train the model generatively, a subsequence st(t−n+1)

is clamped to all the nodes in the visible layer. Training

is done using the first instantiation of the Contrastive Di-

vergence learning algorithm (CD-1). This simply means

that the model parameters are updated after a single step

of Gibbs sampling [11]. During prediction, the probabil-

ity of each of the possible pitches in the prediction space

is determined using (9). The distribution generated in this

way does not require any kind of smoothing operation for

unseen subsequences unlike n-gram models, where in [21]

an empirical evaluation of different smoothing techniques

was found necessary to establish the most reliable one.

5. EVALUATION

In order to evaluate the proposed prediction model, we

make a comparison to a previous study of n-gram models

for music prediction in [21]. There, cross-entropy was used

to measure the information content of the models. This

quantity is related to entropy, which is defined as

H(p) = −
∑

s∈S

p(s) log2 p(s) . (11)

where p(s ∈ S) = p(χ = s) is the probability mass func-

tion of a random variable χ distributed over a discrete al-

phabet S = {s1, . . . , sk} such that the individual proba-

bilities are independent and sum to 1. The value of en-

tropy, with reference to a prediction model, is a measure of

the uncertainty of its predictions. A higher value reflects

greater uncertainty. In practice, one rarely knows the true

probability distribution of the stochastic process and uses

a model to approximate the probabilities in (11). An es-

timate of the goodness of this approximation can be mea-

sured using cross-entropy (Hc) which represents the diver-

gence between the entropy calculated from the estimated

probabilities and the source model. This quantity can be

computed over all the subsequences of length n in the test

data Dtest, as

Hc(pmod,Dtest) =
−
∑

sn
1
∈Dtest

log2 pmod(sn|s
(n−1)
1 )

|Dtest|
(12)

where pmod is the probability assigned by the model to the

last pitch in the subsequence given its preceding context.

Cross-entropy approaches the true entropy as the number

of test samples (|Dtest|) increases.

Evaluation was carried out on a corpus of monophonic

MIDI melodies that cover a range of musical styles. The

corpus is a collection of 8 datasets containing a total of

54, 308 musical events and was also used to evaluate n-

gram models for music prediction in [21]. There, two dif-

ferent models were evaluated both individually and in com-

bination. The first of these was a Long-Term Model (LTM),

that was governed by structure and statistics induced from

a large corpus of sequences from the same musical style.

And the other was a Short-Term Model (STM) which re-

lied on structure and statistics particular to the melody be-

ing predicted. The prediction model presented here deals

only with long-term effects that are induced from a cor-

pus, and is thus compared with the two best performing

LTMs in [21] of unbounded order (labelled there as C*I)

and order bound 2 respectively. To facilitate a direct com-

parison between the two approaches, the melodies are not

transposed to a default key.

For the RBM model, different hyperparameters were

evaluated through a grid search over the learning rate λ =
{0.01, 0.05}, the number of hidden units nhid = {100,
200, 400}, and the weight-cost wcost = {0.0001, 0.0005}.

Each model was trained using mini-batch gradient descent

over 500 epochs with a batch size of 100 samples. The

momentum µ, was set to 0.5 during the first five epochs

and then increased to 0.9 for the rest of the training. Each

model was evaluated with 10-fold cross-validation.

We carry out three types of evaluation. The first mea-

sures the information content of the pitch-only version of

the proposed model using cross-entropy, and compares it

to the n-gram models of [21]. It was observed that the

RBM model compares favourably with the best of the n-

gram models by making better use of information in longer

contexts. In the second evaluation, we compare a variant

of the model with input types pitch and duration and tar-

get type pitch to its pitch-only counterpart. And lastly, we

combine these two models using mixture-of-experts and

demonstrate how this can further improve the model per-

formance in comparison to the individual models.

The first evaluation is carried out with cross-validation

separately for each of the individual datasets. The con-

text length is varied between 1 and 8. It was found that

the RBM models with context length greater than 2 per-

form better than corresponding n-gram models on aver-

age. This is illustrated in Figure 3. An RBM model of

suitable context length perform marginally better than the

best-performing n-gram model — that of unbounded or-

der. The same is the case with the best bounded-order n-

gram model (of context length 2) and the RBM model of

the same context length. While it was found that the perfor-

mance of bounded order n-gram models tends to worsen

on further increasing the context length, the performance

of RBM models continues to improve until a context length

of 4. The value of n where the RBM model performs better

than the n-gram models of unbounded order is different on

different datasets, and typically occurs between n = 3 and

n = 7. The best average model cross-entropy of 2.819 is

reached for a context length of 4. For models using longer

contexts an increase in training performance was accom-

panied by a slight worsening of test performance, indicat-

ing overfitting. We suspect that the overall performance

of the RBM models can be further improved with an op-

timized grid-search strategy in the hyper-parameter space,

but leave this to be explored in the future. The optimal

number of hidden units in our search was 100 across all

datasets for almost all context lengths, leading to a linear

increase in model size with context length.

In the second evaluation, we compared the cross-entropies

of the single and multiple input type models (pitch and

pitch with duration respectively) using the same target type
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(pitch), on the Bach chorale subset of the corpus. The re-

sults are shown in Table 1. The choice of adding duration

was motivated by simplicity but the results show that it was

not ideal for improving predictions. This conclusion is also

supported by a similar trend observed with n-gram models,

where a small deterioration in performance was observed

on adding duration. The RBM model shows small per-

formance improvements for some context lengths. This

indicates that the representation for multiple input types

proposed in Section 4 as an alternative to the linked view-

points may indeed be effective.

l 1 2 3 4

n-gram (p) 2.737 2.565 2.505 2.473

n-gram (p + d) 2.761 2.562 2.522 2.502

RBM (p) 2.698 2.530 2.490 2.470

RBM(p + d) 2.660 2.512 2.481 2.519

RBM (combined) 2.663 2.486 2.462 2.413

Table 1. Cross-entropies of the single (pitch) and mul-

tiple (pitch, duration) input type RBM models and their

combination over a range of context lengths l on the Bach

chorales dataset. The individual RBM models compare

favourably with corresponding n-gram models.

To illustrate the application of the proposed RBM model

to multiple viewpoints for music prediction, we combine

the pitch-only and the pitch & duration models. We use a

simple mixture-of-experts model, i.e., take the arithmetic

mean of the distributions each of the two models predicts

for pitch. The results of this are listed in the third row of

Table 1 and show an improvement over individual models.

6. CONCLUSIONS & FUTURE WORK

We presented a distributed model based on the Restricted

Boltzmann Machine for multiple-viewpoint music predic-

tion. It was demonstrated how such a model can be a

scalable alternative to n-gram models for simultaneously

modelling sequences of multiple musical features. The

proposed model was evaluated in comparison with n-gram

models and was found to compare favourably with them.

It is able to make better use of information in longer event

contexts than n-gram models, and also scales linearly with

context length.

In the future, we would first like to address some of the

issues left open in the present research. These include ex-

periments with more promising viewpoint-type combina-

tions as reported in [7] and [20], the use of alternative data

fusion techniques like the weighted mixture- and product-

of-experts [20], and further optimization of the existing

model parameters. Previous research suggests that com-

bining the LTM and STM improves prediction performance

[7, 20] and, in fact, the combined n-gram model reported

in [20] (mean cross-entropy: 2.479 for all datasets; 2.342
for the chorale dataset) outperforms the long-term RBMs

examined here. Given the improved performance of these

long-term RBMs, we expect adding a short-term compo-

nent will yield the best prediction performance yet observed

for this corpus. Extensions of the present model to handle

polyphony and higher-level musical structure will also be

explored. We would also like to apply the prediction model

described here to some of the MIR tasks listed in Section

1. The present model can be potentially extended into a

deep network, as demonstrated in [11], which is expected

to improve its performance further.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural

language processing (almost) from scratch. The Jour-

nal of Machine Learning Research, 12:2493–2537,

2011.

[6] Darrell Conklin. Multiple viewpoint systems for mu-

sic classification. Journal of New Music Research,

42(1):19–26, 2013.

[7] Darrell Conklin and Ian H Witten. Multiple viewpoint

systems for music prediction. Journal of New Music

Research, 24(1):51–73, 1995.

[8] David Cope. Experiments in musical intelligence, vol-

ume 12. AR Editions Madison, WI, 1996.

[9] Tuomas Eerola and Petri Toiviainen. MIR in Matlab:

The Midi Toolbox. In Proceedings of the International

Conference on Music Information Retrieval, pages 22–

27. Universitat Pompeu Fabra Barcelona, 2004.

[10] Joachim Ganseman, Paul Scheunders, Gautham J

Mysore, and Jonathan S Abel. Evaluation of a Score-

informed Source Separation System. In International

Society for Music Information Retrieval Conference

(ISMIR), pages 219–224, 2010.

[11] Geoffrey E Hinton. Training products of experts by

minimizing contrastive divergence. Neural computa-

tion, 14(8):1771–1800, 2002.

[12] Geoffrey E Hinton, Simon Osindero, and Yee-Whye

Teh. A Fast Learning Algorithm for Deep Belief Nets.

Neural Computation, 18:1527–1554, 2006.

[13] Robert M Keller and David R Morrison. A Grammat-

ical Approach to Automatic Improvisation. In Sound

and Music Computing Conference, pages 11–13, 2007.

[14] Hugo Larochelle and Yoshua Bengio. Classification

using discriminative restricted Boltzmann machines.

In International Conference on Machine Learning

(ICML), pages 536–543. ACM Press, 2008.

[15] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato,

and F Huang. A tutorial on energy-based learning. Pre-

dicting Structured Data, 2006.

[16] Christopher D Manning and Hinrich Schütze. Founda-

tions of statistical natural language processing. MIT

press, 1999.

[17] Andriy Mnih and Geoffrey E Hinton. A scalable hierar-

chical distributed language model. In Advances in neu-

ral information processing systems, pages 1081–1088,

2008.

[18] Michael C Mozer. Connectionist music composition

based on melodic, stylistic and psychophysical con-

straints. Music and connectionism, pages 195–211,

1991.

[19] Francois Pachet. The continuator: Musical interaction

with style. Journal of New Music Research, 32(3):333–

341, 2003.

[20] Marcus Pearce. The Construction and Evaluation of

Statistical Models of Melodic Structure in Music Per-

ception and Composition. PhD thesis, 2005.

[21] Marcus Pearce and Geraint Wiggins. Improved meth-

ods for statistical modelling of monophonic music.

Journal of New Music Research, 33(4):367–385, 2004.

[22] Claude E. Shannon. A Mathematical Theory of

Communication. The Bell System Techincal Journal,

27(July):379–423, 623–656, 1948. Reprinted in ACM

SIGMOBILE Mobile Computing and Communications

Review, 5(1):3–55, 2001.

[23] Paul Smolensky. Parallel distributed processing: ex-

plorations in the microstructure of cognition, vol. 1.

chapter Information processing in dynamical systems:

foundations of harmony theory, pages 194–281. MIT

Press, Cambridge, MA, USA, 1986.

[24] Athina Spiliopoulou and Amos Storkey. Compar-

ing probabilistic models for melodic sequences. In

Machine Learning and Knowledge Discovery in

Databases, pages 289–304. 2011.

[25] Tijmen Tieleman. Training restricted boltzmann ma-

chines using approximations to the likelihood gradient.

In Proceedings of the 25th international conference on

Machine learning, pages 1064–1071. ACM, 2008.

[26] Raymond Whorley, Christophe Rhodes, Geraint Wig-

gins, and Marcus Pearce. Harmonising melodies: Why

do we add the bass line first? In International Confer-

ence on Computational Creativity, pages 79–86, 2013.


