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ABSTRACT. This paper shows to which extent metalevel priorities, in the sense of Nute’s
superiority relation, can be encoded into single hidden layer neural networks.

1. INTRODUCTION

Recently there has been increasing interest in logic programming-based default reasoning
approaches which are not using negation as failure in their object language. Instead, default
reasoning is modelled by rules with explicit negation [7] and a metalevel priority relation be-
tween rules [2, 10].

In this paper, we extend the Connectionist Inductive Learning and Logic Programming ( C-
Ir? P) System [5] to deal with metalevel priorities in the sense of Nute’s superiority relation
[11]. Throughout, we use r; > r; to indicate that rule r; has higher priority than rule r;.

We show that if = is a linear order, single hidden layer networks can encode such a superiority
relation. When = is a partial order, the representation in the network is not straightforward,
although some special cases can be dealt with.

In section 2, we recall C-IL?P’s algorithm for inserting background knowledge into neural
networks. In section 3, we show how linearly ordered theories can be encoded into a neural
network. We also investigate to which extent partially ordered theories can be encoded. In

section 4, we conclude and discuss directions for future work.

2. THE C-IL2P SYSTEM

C-IL?P’s is a massively parallel computational model based on a feedforward artificial neural
network that integrates inductive learning from examples and background knowledge with de-
ductive learning from logic programming [5]. Following [8] (see also [9]), a Translation Algorithm
maps an extended logic program' P into a single hidden layer neural network A such that A
computes the least fixpoint of P. This provides a massively parallel model for computing the
answer set semantics of P [7]. In addition, A can be trained with examples, using for instance
backpropagation [13], having P as background knowledge. The knowledge acquired by training
can then be extracted [4], closing the learning cycle (as in [14]). In what follows, we recall
C-IL?P’s Translation Algorithm by presenting an example of the insertion of knowledge into

the network.

1An extended program is a general logic program extended with explicit negation. Throughout, we use ~ for
default negation and — for explicit (classical) negation.



Each rule () of P is mapped from the input layer to the output layer of A/ through one
neuron (V;) in the single hidden layer of N. Intuitively, the Translation Algorithm from P to
N has to implement the following conditions: (1) The input potential of a hidden neuron (V;)
can only exceed IV;’s threshold (,), activating NN;, when all the positive antecedents of r; are
assigned the truth-value true while all the negative antecedents of r; are assigned false; and
(2) The input potential of an output neuron (A) can only exceed A’s threshold (8 4), activating

A, when at least one hidden neuron IV, that is connected to A is activated.

Example 2.1. Consider the logic program P = {BC ~ D — A;EF — A;— B}. The
Translation Algorithm derives the network N of Figure 1, setting weights (W's) and thresholds
(0's) in such a way that conditions (1) and (2) above are satisfied. Note that, if N ought to be

fully-connected, any other link (not shown in Figure 1) should receive weight zero initially.
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Interpretations
F1GURE 1. Sketch of a neural network for the above logic program P.

Note that, in Example 2.1, each input and output neuron of A is associated with an atom of
P. As a result, each input and output vector of A/ can be associated with an interpretation for
P.2 Note also that each hidden neuron N; corresponds to a rule r; of P. In order to compute
the answer set of P, output neuron B should feed input neuron B such that A is used to iterate
Tp, the fixpoint operator of P. N will eventually converge to a stable state which is identical
to the answer set of P (see [5]). Let us now recall C-IL? P’s Translation Algorithm from P to
N.

Notation: : Given a general logic program P, let ¢ denote the number of rules r; (1 <1 < gq)
occurring in P; 7, the number of literals occurring in P; A, the minimum activation
for a neuron to be considered “active” (or true), Amin € (0,1); Amaz, the maximum
activation for a neuron to be considered “not active” (or false), Ao € (—1,0); h(z) =
14—%500 — 1, the bipolar semi-linear activation function?; g(x) = z, the standard linear

activation function; W (resp. -W), the weight of connections associated with positive

(resp. negative) literals; 6;, the threshold of hidden neuron NN; associated with rule 7;

0 4, the threshold of output neuron A, where A is the head of rule 7;; &;, the number of

literals in the body of rule r;; p;, the number of positive literals in the body of rule r;; ny,

2An interpretation is a function from propositional variables to {true, false}. A model for P is an interpretation
that maps P to true.

3We use the bipolar semi-linear activation function for convenience. Any monotonically crescent activation
function could have been used here.



the number of negative literals in the body of rule r;; y;, the number of rules in P with
the same atom in the head, for each rule r;; MAX,, (ki, 1), the greater element among
k; and g, for rule r;; and MAXp(kq, ..., kq, t4q, ...,uq), the greatest element among all &’s
and p’s of P. We use % as a short for (K1, ..y kq), and 70 as a short for (u, ooy Hg)-

For instance, for the program P of Example 2.1, ¢ = 3, n = 6, ky = 3, ke = 2, k3 = 0,

pr=2,p2=2,p3=0,21=1,120=0,123=0, g =2, piy =2, pig =1, MAX,, (k1,44;) = 3,
MAX,, (ks 1) = 2, MAX,, (K3, pt3) = 1, and MAXp (ky, kz., ks, fy, fg, ft3) = 3.

In the Translation Algorithm below, we define A, W, 0;, and 8 4 such that conditions (7)
and (2) above are satisfied (the proof is provided in [5]).

¢ Translation Algorithm:

Given a general logic program P, consider that the literals of P are numbered from 1 to

such that the input and output layers of N are vectors of maximum length 7, where the i-th

neuron represents the i-th literal of P. We assume, for mathematical convenience and without

loss of generality, that A,,,. = —Amin-

1.
2.

Calculate MAX7>(E>7 ) of P;
Calculate the values of A, and W such that the following is satisfied:

MAXp (k) — 1
a

Amin >
MAXp (%, 77) + 1

nd

T8 MAXp(E ) (Amin — 1) + Amin + 1

. For each rule r; of P of the form Lq,...,L; — A (k > 0):

(a) Add a neuron N; to the hidden layer of N;

(b) Connect each neuron ; (1 < ¢ < k) in the input layer to the neuron N in the hidden
layer. If L; is a positive literal then set the connection weight to W; otherwise, set
the connection weight to —W;

(¢) Connect the neuron N, in the hidden layer to the neuron A in the output layer and
set the connection weight to W;

(d) Define the threshold (6;) of the neuron NV; in the hidden layer as:

(1+ Amin) (b — 1)

2
(e) Define the threshold (f4) of the neuron A in the output layer as:

= O ) (1= )y

Set g(x) as the activation function of the neurons in the input layer of A. In this way,

0, = w

the activation of the neurons in the input layer of A, given by each input vector i, will
represent an interpretation for P.

Set h(z) as the activation function of the neurons in the hidden and output layers of
N. In this way, a gradient descent learning algorithm, such as backpropagation, can be

applied on N efficiently.

. If /' ought to be fully-connected, set all other connections to zero.

3. ADDING METALEVEL PRIORITIES

In [5], we have seen that a single hidden layer network can represent either a general or an

extended logic program. In both cases, the network does not contain negative connections from



the hidden layer to the output. What would then be the meaning of negative weights from the
hidden to the output layer of the network? In this paper, we are interested in answering this

question. We start with an example.

Example 3.1. Let P = {ry : fingertips, ro : alibi, r3 : fingertips — guilty, rq : alibi —
—guilty} and r3 = r4 (stating that fingertips — guilty is a stronger evidence than alibi —
—guilty ). A neural network that encodes P but not rg = ry will compute the inconsistent
answer set { fingertips, alibi, guilty, ~guilty}. Alternatively, r3 = r4 could be incorporated in
the object-level by changing the rule “alibi — —guilty” to “alibi,~ fingertips — —gquilty”.
The new program would compute the answer set { fingertips, alibi, guilty}, which contains the
intended answers for P complemented by r3 = r4.

Notwithstanding, how could we represent the above priority explicitly in the neural network?
In the same way that negative weights from input to hidden neurons are interpreted as negation
by default because they contribute to block the activation of the hidden neurons, negative weights
from hidden to output neurons could be seen as the implementation of metalevel priorities.
Figure 2 illustrates the idea. A negative weight from hidden neuron rs to outpul neuron —gutlty
could implement r3 = rq, provided that whenever rg is activated, it blocks (or inhibits) the

activation of —guilty, which is the conclusion of ry.

fingertips alibi guilty —Quilty

i

fingertips alibi
F1GURE 2. Adding Metalevel Priorities.

In the above example, r3 = 74 means that, whenever the conclusion of r3 holds, the conclu-
sion of r4 does not hold. Hence, r; > 7; defines priorities among rules that can override the
conclusions one of another. It is, thus, similar to the superiority relation defined by Nute in
[11] and later investigated in [1].

In the sequel, we recall some of the basic definitions of Nute’s superiority relation. A su-
periority (binary) relation > is a strict partial order, i.e., an irreflexive and transitive relation
on a set. Rule r; is said to be superior to rule ro if 71 = r2. When the antecedents of two
rules are derivable, the superiority relation is used to adjudicate the conflict. If either rule is
superior to the other, then the superior rule is applied. In other words, = provides information
about the relative strength of the rules. Following [1], we will define superiority relations over
rules with contradictory conclusions only. More precisely, for all 7;,7;, if 7; > r; then r; and
r; have complementary literals (x and —x) as consequents. A cycle in the superiority relation
(e.g., 1 = r2 and rg > r1) is counter-intuitive from the knowledge representation perspective,
and thus > is also required to be an acyclic relation, i.e., we assume that the transitive closure

of = is irreflexive.



It has been proved in [1] that the above superiority relation does not add to the expressive
power of Defeasible Logic [11]. In fact, (object level) default negation and (metalevel) supe-
riority relations are interchangeable (see [10]). The superiority relation adds, however, to the
epistemic power of Defeasible Logic because it obviously allows one to represent information in
a more natural way. For example, the Nixon diamond problem is more easily expressed as fol-
lows: 71 : quaker(Nizon) ~ pacifist(Nizon), ra : republican(Nizon) ~ —pacifist(Nizon),
where ~» should be read as normally implies. The definition of an adequate priority relation
between 71 and 72 would solve the inconsistency regarding the pacifism of Nixon, when both
quaker(Nizon) and republican(Nizon) are true. Also for epistemological reasons, in many
cases it is useful to have both default negation and metalevel priorities. This facilitates the
expression of (object-level) priorities in the sense of default reasoning and (metalevel) priorities
in the sense that a given conclusion should be overridden by another with higher priority.*

Hence, the superiority relation we discuss here essentially makes explicit the priorities en-
coded in the object level. As a result, a network N, encoding a program P. with explicit
priorities is expected to behave exactly as the network N that encodes the equivalent extended
program P without priorities. The following definition clarifies what we mean by the equiva-

lence between P,. and P in terms of Tp.

Definition 3.1. Let P, = {ri,ra,...,rq} be an extended program with an explicit superiorily
relation > . Let P be the same extended program P, without the superiority relation . For
any two rules ri,r; in P, such that r; = r;, let P' =P —ry, i.e., P is the program P without
rule ;. We define Tp, = Tp: if v fires, and Tp, = T'p otherwise.

3.1. Linearly Ordered Theories. Firstly, let us consider the case of linearly ordered sets.
This includes the case of exceptions of exceptions, i.e., when a conclusion derived based on a
given preference relation is overridden by another preference relation. Take, for instance, the
following example: Let P = {ry : birds — fly, re : penguins — bird, r3 : penguins — —fly,
ry : superpenguins — fly} and r4 = r3 = ry. In this example, 73 should block 7, and
74 should block r3. Intuitively, we should have Wy, .., Wy, > 0 and Wy, ., < 0, where
Wiy, denotes the weight from hidden neuron r; to output neuron fly. In fact, Wyy, ,, =
1.94, Wiy ry = —1.93, Wy », = 3.97 and 051y = —1.93 implements 74 > 73 > 7;. These values
were obtained by actually training a network and using fixed weights from the input to the
hidden layer (given by C-IL? P’s Translation Algorithm).

Following [6], we will consider the case of finite linearly ordered sets. Assume P = {ry,...,74}
and ry > ... > 73 > r1. Asaresult, any subset of P is also linearly ordered. We are interested in
the subset of P with complementary conclusions x and ~x. We represent it as a list (11,72, ...,7;)
where r; > ... > 72 > r1. Assume 7; has consequent . We need to assign values to weights
Warys Wargs Wargs ooy War, 00 and We gy, Wogpy s oo, Wog 0, such that 7 = ... = 12 =1y
holds. Let:

Wer, =W,

Wery = =W+,

War, = Wap, 3 — Wap, , +e,ilne{3,5,7..} or
W, = Wap s — War,_, —e, ifn € {4,6,8...}.

4In a trained neural network, both representations might be encoded simultaneously, so that the network is
more robust.



where W > 0 and ¢ is a small positive number such that W >> ¢ (typically ¢ = 0.01). Similarly,
let Wogr, =W W pp, =—We,and Wy, =W_ . . —W_ 4. | +eforn=5,79.., while
Wegr, = Wegp, s —Wogn  —e forn=4,6,8..5

e Metalevel Priorities Algorithm 1 (Linear Ordering)®

1. Consider a Logic Program P = {ry,...,r,} and its equivalent neural network \/, obtained
by applying the Translation Algorithm of C-IL” P. For each subset (r1,72,...,7;) of rules
in P with consequents x and —x such that r; > ... > 2 > 71, do:

(a) Calculate 6 such that:

J Jj—1
(1 - Amin)W + gAmin - Amin( Z erk erk 1(_Amin) < 01
k=3,5... k=4,6
j—1 J
01 < AminW - Amin( W;rrk Z W;rrk 1(AAmin)
k=24... k=3,5.
(b) Calculate 3 such that:
j—1 J
(1 - Amin)W + gAmin - Amin( Wﬁmrk Z Wﬁmrk 71(_Amin) < 02
k=4,6... k=5,7...
J j—1
02 < AminW - Amin( Z Wﬁmrk - Wﬁmrk 71(Amin)
k=3,5... k=4 6..

(¢) Add a connection from each hidden neuron 7; (1 < ¢ < j) to the output neuron z,
and set the connection weight to W, ;
(d) Add a connection from each hidden neuron r; (2 < ¢ < j) to the output neuron —z,
and set the connection weight to W_ ;. ;
(e) If j is an odd number:
(i) Set the threshold 6, of output neuron x to 6y,
(ii) Set the threshold 8-, of output neuron =z to 6.
(f) If j is an even number:
(i) Set the threshold 6, of output neuron x to g,
(ii) Set the threshold 8-, of output neuron =z to 6.

Theorem 3.1. Let P = {ry,rs,...,7q} and rq = ... = ro = r1. Let N be the network obtained
by using the Translation Algorithm over P. If N is modified by using the Metalevel Priorities
Algorithm 1 then N computes Tp, , where P, is the program P together with the preference

relation vy > ... = T3 = 11.

Proof. By induction.

5Note that Wy, = Wy,_9 — Wy, _1 & ¢ is responsible for assigning the weights such that: if j is an even number,
T/VQCTI,VVQCTS,...,T/I/g”].71 > 0 and WZTQ,WZM,...,WQCTJ. < 0; if 5 is an odd number, WZTI,WZTS,...,WMJ. >0
and Wgry, Wery ...,T/ij71 < 0.

6The values of 0z and 60—z are obtained from the proof of Theorem 3.1.



We consider the subset R = (71,79,...,7;) of P containing the rules with conclusions x and
—x. Let r; (1 <7 < j) be the last neuron from left to right in (rq,72,...,7;) to be activated in
N for a given input vector i. Assume r; has consequent x.

We distinguish several cases:

1. If j is an odd number and 7 is an odd number, show that z is activated:

Basis: “If i« = 1 then x is activated”. In the worst case, r3,75,...,7; = —1 and
79,74, s Tj—1 = —Amin, while 71 = Apin. We need to satisfy:
Jj—1 J
(1) AminW - Amin Z erk - Z W;rrk - 9;1: > hil(Amin)
E=2,4... E=35...

which yields:

Jj—1 J
(2) Or < AmisW = Amin Y Warg = > W — b H(Amin)
k=2,4... k=3,5...

and, from the Metalevel Priorities Algorithm 1 (steps 1(a) and 1(e)), Equation 2 is clearly
satisfied.

Inductive Step: “if x is activated for i = n then z is activated for i = n+2”. For i = n,
in the worst case, 71,73, ...,"n—2 = —1 and ro,74, ..., 7n—1 = 1, 7y = Apin and rp41, ..., 75
are not activated, i.e., 71, 7n43,...,7_1 = —Apin and 740,71, ...,7; = —1. If 2 is

activated then

n—2 n—1 j—1
- § erk + § erk +Aminern - Amin § W;rrk -
k=1,3... k=24... k=n+1,n-+3...
J
—1
(3) E War, > B (Amin) + 02
k=n+2n+4...

holds.

For ¢ = n+ 2 we have rq,73,...,7, = —1 and 7o, 7y, ...,y = 1, 7o = Apyn and
Tn43,...,7; not activated, i.e., 7p13,7p15,...,7j_1 = —Amin and 74y, 7n46,...,7j = —L.

We need to show that

n n+1 j—1
- Z W;rrk + Z erk +Amianrn+2 - Amin Z erk -
k=1,3... k=24... k=n+3,n+5...
J
(4) Z W;rrk > hil(Amin) + 9;1:
k=n+4,n+6...
also holds.
It is sufficient to show that:
n n+1 j—1
- Z W;rrk + Z erk +Amianrn+2 - Amin Z erk -
k=1,3... k=24... k=n+3,n+5...
ki n—2
S W 3 W
k=n+4,n+6... k=1,3...
n—1 j—1 ki
(5) Z erk +Aminern - Amin Z W;rrk - Z erk

k=24... k=n+1n+3... k=n+2n+4...



Simplifying Equation 5, we obtain:
(6) (1 + Amin)ern+2 + (1 + Amin)ern+1 > (1 + Amin)ern
Thus, if W, ., + W,
Wer, — W,

Trpi

> Wy, then x is activated for ¢ = n 4 2. Since Wy, ., =
= Wy, +& > Wy, . This

Trtl

+ ¢ and € > 0, we have I/an+2 + W,

completes the proof of the inductive step.

Trn41

The remaining cases are:
If j is an odd number and 7 is an even number, show that z is not activated,
If j is an even number and ¢ is an odd number, show that z is activated,

If j is an even number and ¢ is an even number, show that x is not activated,

AN N

If no neuron in R is activated, show that x is not activated.

The proofs for Cases 2,3,4 and 5 are analogous to Case 1.

Example 3.2. Let r5 = ... = ro = r1. Taking Amin = 0.9, W = 20 and ¢ = 0.1, we calculate
—61.06 < 6y < —53.13 and 29.03 < 0y < 46.97. W,,., = W_,,., =20, Wy, = W_,,.. = —19.9,
Wars = Wogr, =40, Wy, = Wy, = —60, and W, = 100.1. Taking 0, = —55 and 0, = 45,
the network of Figure 3 will implement r5 = ... = 19 = r1. Note that, if a smaller value for
Anin 18 desired, a larger value for W may be necessary in order to satisfy the constraints on
0, and 0_,.

FIGURE 3. Linear ordering on {r,...,75}. Dotted lines indicate negative
weights. r; activates x, ro activates —x and blocks z, r3 activates x and
blocks —z, and so on.

3.2. Partially Ordered Theories. Let us now consider the case of partially ordered sets. We

start with an example.

Example 3.3. LetP = {7“1,7“2,7“3},7“1 = 13,72 = 13. Let the consequents of r1 and ro be x and
the consequent of r3 be —x. We want to add negative weights —b61 from ry to —x, and —b2 from
ro to —x such that (1) the activation of —x is greater than A, when rg is activated, provided
r1 and ro are not aclivated, and (2) the activation of —x is smaller than — A, when either
r1 or ro are activated, regardless of the activation of r3. Assume that the weight from r3 to
—x is W, the threshold of —~x, 0_, = §'W, where §' € R, and take, for the sake of simplicity,
by =0 =W.

In Case (1), the minimum activation of rg is A, while, in the worst case, the activations

of r1 and ro are both —Apin. Thus, we have:
(7) AminW + AminW + AminW —§'W > hil(Amm)

In Case (2), either r1 presents activation A, while, in the worst case, ro is at —1 and r3

is at 1; or ro presents activation Anin while, again in the worst case, 1 is at —1 and r3 is at



1. Since we have taken —6; = —8s = —W, both cases yield the same inequality, and we have:
(8) W AW — ApinW — 8W < h™H—=Anin)

From FEquations 7 and 8 above we obtain, respectively, W > %A%g,l and the constraint
3Amin — 6 >0, and W > % and the constraint 2 — Amin — 8 < 0. Therefore, we
need to satisfy 2 — Amin < 8 < 3Amin 07 Amin > 1/2. Taking Apin = 0.6 and §' = 1.5, if
W = 15, and therefore 0_, = 22.5, a network N that encodes P will also encode r1 = r3 and
ro > 13. Note that, one might need to change the original value of W in N, obtained from the

. . . . B (Amia A (= Anu
Translation Algorithm (step 2), in order to satisfy W > fwm) and W > ﬁml,
The following algorithm is used for partially ordered theories.

e Metalevel Priorities Algorithm 2 (Partial Ordering)”

1. Consider a Logic Program P = {ry,...,r,} and its equivalent neural network \/, obtained
by applying the Translation Algorithm of C-IL?P. Let ry,...,r, be the rules in P with
consequent z, and 7,11, ...,7, be the rules in P with consequent —z. Let m = o — n. If

ri>=7jfor 1l <j<nandn+1<¢ <o, do:
(a) Calculate:

MAXp(&, )~ 1 n(m+1)—1
Amin > MAX L ,
MAXp(k, ) +1 Mm+1)+1
where MAX(fy,..., [s) returns the greatest number among f1,..., fs;
(b) Add a connection ¢; from each hidden neuron 7; to the output neuron z;
(¢) Calculate:
1—2n+ A, l—n+n+1DAnn
< o<
m—1-— (m + 1)Amin m(l - Amin)
MAX (n+68(m—1— Apnw), —ndnm +m8) < 8 <1—n+ Apin +mAniné;

and

(d) Calculate:
hil(_Amin) hil(Amin)
n+6(m—1—Ann) =68 1—n+ Apin +mARin 6 — 8"
h ( Amln) . w ’
—nApi, +mbé—96

wo> MAX<

(e) Set the weights of connections ¢; from each hidden neuron r; to the output neuron
xas W';

(f) Set the weights of connections ¢; from each hidden neuron r; to the output neuron z
as —6W';

(g) Set the threshold 6, of output neuron x as §'W'.

Theorem 3.2. Let 7q,...,70, i1, 7o €E P andr; =75 for 1 <j<mandn+1<i<o. Let
m=o—n. Let N be the network obtained by using the Translation Algorithm over P. If N is
modified by using the Metalevel Priorities Algorithm 2 then N computes Tp, , where P,. is the

program P together with the preference relation r; > r;.

Proof. We need to show that when any hidden neuron r; is activated in A/, the consequent of

rules 7; () is not activated in A (Case 1). We also need to guarantee, since we are changing

"The values of Aymin, W, § and &' result from the proof of Theorem 3.2 below.



the threshold of z, that when any hidden neuron r; is activated in N, provided no hidden
neuron 7; is activated, x is also activated in N (Case 2i), and that when no hidden neuron r; is
activated in AV, provided no hidden neuron r; is activated, z is not activated in N (Case 2ii).

Case 1: In the worst case, n neurons 7; present activation 1, one neuron r; is at Anr and
m—1 neurons r; are at —1. Let W > 0 be the weight from neurons r; to . Let —6W (6 € RT)
be the weight from neurons r; to z, and §'W (§' € i) the threshold of z. Thus, Equation 9 has
to be satisfied.

(9) AW — Apin W 4+ (m — D)W — §W < h™ (= Anin)
Solving Equation 9 for the connection weight W yields Equations 10 and 11.

hil(_Amin)
n+8(m—1—Apn) — &

(10) w >

(11) n+8(m—1—Anm)—8§ <0

Case 2i: Again in the worst case scenario, when one neuron r; presents activation Ay, and
n — 1 neurons 7; are at —1, provided the m neurons 7; are at —Amin, © should be activated.
Equation 12 has to be satisfied.

(12) ApinW — (n = DOW +mApin W — W > h™ (Anin)
Solving Equation 12 for the connection weight W yields Equations 13 and 14.

hil(Amin)
1—n+ AL, +mALind — 5

(13) w >

(14) 1—n+A, —|—mAmin5—5’ >0

Case 2ii: Finally, when all neurons r; are at —Ap,;, and all neurons r; are at —1, the output

neuron x should not be activated.
(15) N Apin W +méW — 8'W < h™H(—Apin)

Solving Equation 15 yields Equations 16 and 17 below.
h™ ! (_Amin)
—nA i, +mb =06

(16) w >

(17) —nApin +mé—§ <0
From Equations 11, 14 and 17, we derive the following constraints on &' :

(18) n+dm—1—-An) <8 <1l—n+ Apn, +mAnib

(19) A, +mé <& <1l—n+ Anin +MALib

From Equations 18 and 19, and assuming m — 1 — (m 4+ 1)Anin < 0, we obtain the following

constraint on 6 :

1—2n+ A0 l—n+n+1)Anm
<b<

(20) m—1—(m+1)Anm m(l — Anin)

From Equation 20 we derive Equation 21, and solving Equation 21 for A,,;,, we obtain Equation

22

(21) (n(m +1)+1) Apin 2 + 2401 —n(m+1)+1>0



nim+1)—1
(22) Amin > nm41) 1

Since we have assumed that m — 1 — (m 4+ 1) Apin < 0 then Api, > Z—J_} must hold. However,

ZJ(Z—E)J_L} > Z—J_}, for m > 1 and n > 1, and thus Equation 22 suffices. Since Metalevel

Priorities Algorithm 2 complies with the above constraints, this completes the proof.

The above theorem shows that single hidden layer networks can encode superiority relations
between rules when > defines a preference between models. This is so because, when r; are
the rules in P with consequent x, and 7; are the rules in P with consequent —x, r; > r;
actually states that any model of P containing —z is preferred over any model of P containing
z. However, the theorem does not show that when > is any partial order, the intended meaning

of P will be computed by A'. The following example illustrates this problem.

Example 3.4. (Partial ordering)

laysEggs(platypus)

hasFur(platypus)

monotreme(platypus)

hasBill(platypus)

r1 : monotreme(x) — mammal(x)

re : hasFur(x) — mammal(z)

rs : layFggs(z) — —mammal(x)

T4 1 hasBill(x) — —mammal(x)

Ty T3, T T4

Intuitively, we should be able to derive mammal(platypus) because for every reason against
mammal (platypus), i.e., r3 and r4, there is a stronger reason for mammal(platypus), respec-
tively, 71 and ro. However, we can not encode ry = r3 into a network N without defining whether
r4 = 11 or vice-versa. Even if we translate the preference relations into object level negation as
failure, N" will not be able to decide whether mammal(platypus) or —mammal(platypus). In
fact, this is also a problem in Logic Programming.

On the other hand, if we explicitly define the relations between (previously incomparable)
conflicting rules, such as vy and ry, then N will compute the intended meaning of P. In this

example, if r1 = r3,r1 = 14 and rg = 3,72 > T4 then mammal(platypus) will be derived.
We now present a final example.

Example 3.5. (No propagation of ambiguity)

quaker(nizon)

republican(nizon)

r1 1 quaker(x) — pacifist(x)

r9 : republican(x) — —pact fist(x)

rs : republican(x) — football fan(x)

T4 : pactfist(x) — antimilitary(x)

rs 1 footballfan(x) — —antimilitary(x)

T5 > T4

Here we can prove ~antimilitary(nizon), despite of the conflict regarding Nizon’s pacifism.
Note that neither propagation of ambiguity nor trivialization of theory occur in this example.
If, however, the superiority relation were emptly, an ambiguity about Nizon’s militarism would

exist.



4. CONCLUSION

In this paper we have seen that negative weights from the hidden layer to the output of a

single hidden layer neural network may be regarded as the implementation of metalevel priori-

ties, which define a superiority relation between conflicting rules of an extended logic program.

In this way, the implementation of such a superiority relation in the network is straightforward,

due to a characteristic of the Translation Algorithm of C-IL? P, namely, the association of each

hidden neuron of A with a rule of P. More complex and elaborated preference relations, such

as in Brewka’s preferred subtheories [3] and Prakken and Sartor’s argumented-based extended

logic programming with defeasible priorities [12], are not representable in the network as easily,

and would require changes in the basic structure of the networks investigated here. Such, more

sophisticated, preference relations are left as future work.
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