
              

City, University of London Institutional Repository

Citation: Turkay, C., Lex, A., Streit, M., Pfister, H. & Hauser, H. (2014). Characterizing 

Cancer Subtypes Using Dual Analysis in Caleydo StratomeX. IEEE Computer Graphics and 
Applications, 34(2), pp. 38-47. doi: 10.1109/mcg.2014.1 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/3642/

Link to published version: https://doi.org/10.1109/mcg.2014.1

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


IEEE COMPUTER GRAPHICS AND APPLICATIONS 1

Characterizing Cancer Subtypes using the
Dual Analysis Approach in Caleydo

Cagatay Turkay, Alexander Lex, Marc Streit, Hanspeter Pfister, and Helwig Hauser

Abstract—The comprehensive analysis and characterization of cancer subtypes is an important problem to which significant
resources have been devoted in recent years. In this paper we integrate the dual analysis method, which uses statistics to
describe both the dimensions and the rows of a high dimensional dataset, into StratomeX, a Caleydo view tailored to cancer
subtype analysis. We introduce signi�cant difference plots for showing the elements of a candidate cancer subtype that differ
significantly from other subtypes, thus enabling analysts to characterize cancer subtypes. We also enable analysts to investigate
how samples relate to the subtype they are assigned and to the other groups. Our approach gives analysts the ability to create
well-defined candidate subtypes based on statistical properties. We demonstrate the utility of our approach in three case studies,
where we show that we are able to reproduce findings from a published cancer subtype characterization.

Index Terms—Cancer Subtypes, Biological Data Visualization.
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1 INTRODUCTION

Cancer is one of the most-common causes of death
and virtually everyone is or will be either directly
or indirectly affected by it. While there has been
significant progress in the diagnosis, prevention, and
treatment of cancer, there are still many open ques-
tions to be answered, methods to be improved, and
drugs to be developed. While cancer is a multi-
factorial disease, involving environmental factors and
lifestyle choices, it has a strong genetic component.
In the post-genomic age research on cancer is largely
conducted using methods of molecular biology to
record and analyze the genetic alterations responsible
for cancer. One important field in cancer research is
the analysis and characterization of cancer subtypes.
While cancers are colloquially referred to by the tissue
they originate from (e.g., lung cancer because it occurs
in the lung), there are in fact significant differences
between cancers from the same tissue, which are char-
acterized by various biomolecular properties. These
different forms of cancer are called subtypes. Large
scale research projects such as The Cancer Genome Atlas
(TCGA)1 elicit comprehensive genomic and clinical
datasets with the goal of characterizing the molecular
alterations responsible for cancer; and of identifying
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and characterizing cancer subtypes.
Due to next-generation sequencing and micro-array

technology, these projects can utilize large and het-
erogeneous datasets capturing more aspects of the
complex process from the genomic information to the
functional consequences than ever before. However,
deriving insight from these complex datasets remains
a challenging task. Current analysis largely relies on
custom scripts to find interesting genes or clusters
of patients in these datasets. To remedy this, we
have developed Caleydo StratomeX [1], an interactive
visualization method to analyze and discover relation-
ships within large and heterogeneous biomolecular
datasets. StratomeX can be used to evaluate overlaps
and relationships of patient stratifications, i.e., group-
ings or clusterings of patients.

However, StratomeX does not enable analysts to
identify the characteristic genes of candidate sub-
types, nor does it communicate how patients relate
to a given subtype. The former is important since
the characteristic genes are also potentially causally
involved in a subtype and thus may be a target
for a therapeutic or diagnostic approach. The latter,
investigating how samples relate to a subtype, can be
used to estimate the quality of candidate subtypes and
to build a deeper characterization of a subtype.

In this paper, we address these limitations by
integrating the dual analysis approach [2], a general
high-dimensional data analysis methodology, into
StratomeX. Our primary contribution is the embed-
ded use of dual analysis views and significant differ-
ence plots, a novel visual representation of the differ-
ences between data subsets, within StratomeX. This
approach enables domain scientists to (1) discover
genes that are distinctive for specific subtypes, and
(2) observe the properties of the member samples of
a cluster and compare how they behave in different
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datasets and clusters. With these, we provide a deeper
understanding of the stratifications of heterogeneous
genomics datasets. As a secondary contribution, we
investigate the potential of the dual analysis ap-
proach to interactively generate patient stratifications
in StratomeX.

We demonstrate our application in three case stud-
ies with data from TCGA and validate our findings
against those published by the TCGA consortium.

2 BIOLOGICAL BACKGROUND AND ANALY-
SIS TASKS

Modern cancer subtype analysis is based on a variety
of biomolecular datasets that capture different aspects
of the process of life, starting with the information
stored in the genome to the functional products that
trigger biochemical reactions in the cells. Projects such
as TCGA capture information on gene activity, on
factors influencing the process of expression, and on
the actual structure and sequence of the genome.
An example for gene activity data is mRNA data
(“gene expression”), which measures the abundance
of mRNA in the cell. mRNA is translated into pro-
teins, which are the functional products. Methylation
and miRNAs influence the process of gene expression
in various ways and thus are an important factor in
many processes and diseases.

All these processes play a role in the development
of certain cancers, and consequently, a comprehensive
analysis solution needs to take all these datasets, in
addition to meta-data, such as clinical data about
patients, into account. In this paper, we demonstrate
our method by investigating mRNA, miRNA, and
methylation data. However, in a comprehensive anal-
ysis one would also incorporate other datasets, for
instance, related to structural variations occurring on
various scales in the genome.

In previous work, we have elicited analysis tasks for
cancer subtype analysis [1]. These tasks are concerned
with finding and evaluating stratifications of patients
based on multiple datasets. We recently revisited these
requirements in collaboration with domain scientists
and found the need to supplement them with the fol-
lowing tasks to characterize the stratifications further:
T1 Find Distinctive Elements

Identifying distinctive elements of clusters in a
stratification provides a deeper understanding of
why a particular cluster exists and how it relates
to other clusters within the analysis. Distinctive
elements are also good candidates to investigate
as diagnostic markers or may even be causally
involved in the disease.

T2 Compare Samples
Investigating the characteristics of the samples
over several datasets and in comparison to other
stratifications is important in building a more
complete picture of the properties of a group

of samples. One can observe how strongly the
members of a cluster are related and explore
whether they show similar properties in a dataset
that is different than the one used for clustering.

T3 Create Clusters
Analysts should be able to create clusters in an
exploratory manner and interactively compare
the intermediate results to meta-data such as
clinical data. Moreover, this manual clustering
process should enable analysts to merge observa-
tions made in different datasets. The thus created
clusters are well defined in terms of statistical
properties and richer in terms of the sources of
information included in the construction phase.

Combined with the previously elicited ones, these
tasks make it possible to analyze, create, and charac-
terize cancer subtypes based on multiple datasets.

3 METHODOLOGICAL BUILDING BLOCKS

Our solution that enables the aforementioned tasks
is based on an integration of two visual analysis
methodologies, Caleydo StratomeX and the Dual Anal-
ysis Approach. Before introducing the details of how
we improve these methodologies by joining their
strengths, we provide brief descriptions of them.

3.1 Caleydo and StratomeX
Caleydo2 is an open-source visualization framework
focused on biomolecular data analysis. Caleydo pro-
vides rich functionality for loading and handling mul-
tiple heterogeneous datasets as well as stratifications
defined on the data. A core strength of Caleydo is the
ability to slice datasets into meaningful subsets and
to flexibly combine multiple small visualizations of
these subsets, using views such as histograms or heat
maps, to a fully integrated composite visualization [3].
Caleydo is one of examples of a visual method that
improve the analysis of genomics data, other well-
known tools are the Hierarchical Cluster Explorer [4]
and Mayday [5].

StratomeX is a comparative visualization technique
that makes use of the slicing concept. It enables ana-
lysts to investigate the relationships between multiple
stratifications (patient groupings) which are repre-
sented as columns. Each column consists of multiple
stacked “blocks”, where each brick corresponds to
a group of patients in the column’s stratification.
Ribbons with varying width visualize the overlap be-
tween groups of neighboring stratifications, resulting
in an overall appearance similar to Parallel Sets [6] or
Sankey Diagrams [7]. Wide ribbons indicate a strong
overlap between two groups and thin or absent rib-
bons correspond to only a few or no shared patients.
Each brick contains a visualization showing the data
of the patients in that group. Analysts can switch

2. http://www.caleydo.org
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Fig. 1. Setting up dual analysis views where the data is
depicted as a 2D heatmap for illustration. Samples and
genes are visualized in separate views over statistical
measures. In order to construct a view that depicts
samples (yellow background), statistics for each sam-
ple (µ and σ in this case) are computed using a row
of the data. A visualization for the genes (light-green
background), on the other hand, is constructed with
statistics computed over a column of the data.

between different types of visualizations on-demand.
For numerical data we use clustered heat maps as de-
fault views within the blocks in StratomeX, since they
are very effective for communicating global trends
and patterns in the data.

3.2 The Dual Analysis Approach

The dual analysis approach [2] was shown to be
effective in the analysis of high dimensional data.
In this method, the visual analysis is carried out in
parallel on both the data items and the dimensions.
This duality is achieved by using statistics computed
both over the rows and the columns of a dataset.

As an example, consider an mRNA gene expression
dataset given as a 2D data table with n rows and
p columns, where each row corresponds to a single
sample (patient) and each column to a single gene.
The expression values are contained in the cells of
the matrix.

After appropriate normalization is applied to the
data, we calculate the central tendency (µ or median)
and the spread (standard deviation σ or inter-quartile
range IQR) using each one of the n samples and p
genes separately. Notice that we calculate the robust
counterparts of statistical moments to increase the
resistance of the statistics to outlier values. Since
experts are often accustomed to using non-robust
versions of the statistics (e.g., µ or σ), we incorporate
such measures in our system. This helps users to
quickly familiarize themselves with the information
communicated in the views and at any point during
an analysis, the experts have the flexibility to modify

the set of statistics used. Figure 1 illustrates how the
dual analysis views are constructed. Notice that visu-
alizations of samples have a yellow background with
each point representing a sample, and visualizations
of genes have a light-green background with each
point depicting a gene. The location of a single point
in a scatterplot is determined by the computed statis-
tics. The analysis process can be elaborated through
the use of statistics other than the first two statistical
moments. For the analyses carried out in this paper,
we also compute the skewness (skew) that indicates
how asymmetric a distribution of values is (and also
in which direction) and the kurtosis (kurt) that char-
acterize the “peakedness”. How these measures are
utilized is demonstrated in the case studies.

4 CHARACTERIZING CANCER SUBTYPES
THROUGH VISUAL ANALYSIS
To facilitate the characterization of cancer subtypes
in heterogeneous genomic and clinical datasets, we
introduce a visual analysis methodology that makes
use of the dual analysis approach to construct spe-
cialized views that represent clusters in Caleydo. We
achieve this by incorporating two different visualiza-
tions as blocks in StratomeX: (1) dual analysis based
scatterplots depicting either the genes or the samples,
and (2) significant difference plots. In addition, we also
use these visualizations as separate linked views to
enhance the interactive visual exploration process and
achieve tasks such as manual creation of clusters (Task
T3 in Section 2).

4.1 Embedded dual analysis views
In this work, we extend the visualization options
for blocks in StratomeX with scatterplots of either
the genes or the samples constructed using the dual
analysis approach. The embedded dual analysis views
in StratomeX can be seen in Figure 2. If the embedded
scatterplot is a visualization of the samples (having
a yellow background), it only displays those sam-
ples that are members of the represented cluster (see
Columns 1 and 2 in Figure 2). On the other hand, if
a scatterplot of genes is preferred, the brick displays
the statistics for all the genes computed using only
the members of the cluster being represented.

We enhance the interactive exploration functionali-
ties by enabling a selection mechanism that is linked
with all the views in StratomeX. It is possible to select
both samples (selection in the second cluster in the
second column of Figure 2) and genes (selection in
the second cluster in the third column in Figure 2) at
the same time. Also note that the ribbons in StratomeX
highlight the selection of the samples in Figure 2.

4.2 Significant difference plots
Since the comparison of subsets is one of the funda-
mental tasks in tumor subtype analysis, we facilitate
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Fig. 2. Embedded dual analysis views in StratomeX. The first column shows a 4-cluster stratification for a
microRNA dataset. The scatterplots show median versus inter-quartile-range for the samples in the cluster. The
second column shows a 3-cluster stratification for a mRNA dataset, again showing samples. The third column
uses the same 3-cluster stratification for the same dataset, but shows genes instead of samples. The scatterplots
of samples (yellow background) depict the statistical characteristics of the members of each cluster and the
scatterplots of genes (light-green background) depict statistics computed for the genes using only the samples
from the cluster represented by the brick. The selection of samples is highlighted in the first two columns and
also in the ribbons. The selection of the genes makes it possible to investigate the distribution of expression
values for the genes for different clusters in a stratification.

the visual comparison of subsets with a novel visu-
alization called significant difference plot. In previous
work, we used similar plots to effectively display
the changes in statistical computations in response to
a selection made by the user [8]. In this paper, we

Sample selection

Δμ vs. Δσ

Differences for 
a single gene

σσ

μR

σR

μB

σB

μ vs. σ

Fig. 3. Significant difference plot. A set of samples is
selected. The differences of the selected samples (B)
compared to the not-selected samples (R) is plotted for
the genes. Genes that show significant differences are
depicted in red and all others in blue.

extend this approach with the determination and the
communication of the significance of the differences
being visualized.

Figure 3 illustrates how significant difference plots
(or, shortly difference plots) are constructed. The user
first selects (brushes) a subset of samples (we denote
the set of selected samples as B and the rest as R).
In response, the system automatically calculates the
µ and σ values for each gene using only the set
of selected samples B (µB and σB) and the rest of
samples R (µR and σR) separately. We then compute
the differences between the values with:

∆µ = µR − µB , ∆σ = σR − σB (1)

Note that ∆µ and ∆σ are both data vectors of
size p, the number of genes. The difference plot then
visualizes these values for all the p genes. When there
is no difference for the expression values of a gene for
subsets S and R, it is placed at the origin (0, 0).

The difference plot in Figure 3 (right) displays
the distribution of the differences in the statistic
computations in response to the (sample) selection
in the scatterplot (Figure 3 left). Notice that in this
example most genes have lower µ values for the
selected items, i.e., are placed to the left of the y-axis.
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Communicating signi�cance – One very important
consideration when differences between two subsets
are analyzed is the notion of statistical significance, i.e.,
whether the difference is likely to occur by chance
or not. As in many other domains, statistical hypoth-
esis tests are employed to test for significance in the
analysis of genomic data [9]. In this work we enhance
difference plots with the integrated use of statistical
hypothesis testing.

In order to compute the significance, we utilize the
two-sample Welch’s t-test as the integrated hypothesis
testing procedure [10]. We choose this test since it does
not assume that the two subsets have equal variance,
which makes it more suitable for our application. We
perform the statistical test on the two subsets B and
R (as introduced above), and test against the (null)
hypothesis that these two subsets have equal central
tendencies. We compute the t statistic and the degrees
of freedom d.f. with:

t =
µB � µR√
s2
B

NB
+

s2
R

NR

(2)

d.f. =
(s2B/NB + s2R/NR)2

(s2B/NB)2/(NB � 1) + (s2R/NR)2/(NR � 1)
(3)

where µi is the sample mean, s2i is the sample
variance and Ni is the sample size of subsets B and
R.

We then use these values together with the t-
distribution and test the null hypothesis with a sig-
nificance level of 0.05 and using a two-tail strategy.
This test is performed for all the p genes in the data.
For each gene, we store whether it shows a significant
difference between the two subsets B and R. We
communicate this significant difference information
by modifying the color of each gene in the differ-
ence plot. Genes that have significant differences are
colored red, while the others are shown in blue, as
can be seen in Figure 3 (right). This enhancement to
the difference plot enables analysts to get immediate
feedback on the significance of differences. Based
on this initial assessment, analysts can employ more
advanced routines to confirm the significance of the
changes between the two subsets.
Difference plots as blocks – Similar to scatter-
plots, we also embed difference plots as blocks in
StratomeX. While constructing the difference plots as
blocks, we again compute the ∆µ and ∆σ values for
each of the genes using Equation 1. Here, however,
B corresponds to the samples that are members of
the cluster being represented while R corresponds to
the rest of the samples in the dataset. In addition,
we also compute the significance of the differences
and color the visualization accordingly. The result-
ing difference plot blocks communicate which genes
are more distinctive for each cluster. Moreover, the
selection mechanism enables the analyst to compare

these distinctive genes between different clusters. For
an example of this feature, refer to the first part of
Section 5.

5 CASE STUDIES

We demonstrate the effectiveness of our approach
through an analysis of a comprehensive breast in-
vasive carcinoma (BRCA) dataset collected by the
TCGA consortium. We use the mRNA expression
data, miRNA sequencing data, and DNA methyla-
tion data from over 800 breast cancer patients. The
goal of the case studies is to demonstrate how the
proposed visual analysis approach enables analysts to
execute the three tasks described in Section 2. To begin
with, we load the BRCA data which is available pre-
packaged for Caleydo. In addition to the raw data, we
load a recently published stratification of samples [11]
that will serve as a basis for comparisons.

5.1 T1 Case Study: Find Distinctive Elements
We start our analysis by comparing the significantly
distinctive genes that are suggested by our compu-
tations and those that have been identified in the
aforementioned article. The 4 subtypes that are re-
ported in the reference study are: Luminal-A, Basal-
like, Luminal-B, and HER2-enriched, as shown in Fig-
ure 4-a). The reference study identified a list of genes
that are differentially expressed for the HER2-enriched
subtype by using unsupervised clustering (refer to
supplementary Table 7 of the BRCA study [11]). We
select the 7 most significantly under-expressed genes3

and 10 most significantly over-expressed genes4 as
marked in Figure 4-a. 7 out of the 7 under-expressed
and 6 out of 10 over-expressed genes are identical
to the ones found in the reference study. This match
demonstrates that our interactive visual analysis ap-
proach quickly yields relevant results in determining
descriptive genes.

We continue our analysis with the investigation
of distinctive genes between particular subtypes (see
task T1). We focus our attention on the Luminal-
A subtype and explore the expression characteristics
of distinctive genes for Luminal-A in comparison to
the other subtypes. We first select the significantly
under-expressed genes5 for the Luminal-A subtype in
Figure 4-b. We observe that the significantly under-
expressed genes for Luminal-A are often over-expressed
for the Basal-like subtype. This leads to the conclusion
that these genes are good markers to distinguish the
Luminal-A from the Basal-like subtype. Similarly, when
the over-expressed genes are selected for the Luminal-
A subtype (Figure 4-c), we observe that these genes

3. AGR3, ESR1, GFRA1, NPY1R, PGR, SERPINA3, SUSD3
4. ABCA12, CALML5, CLCA2, CRYM, DCD, GLYATL2, MUCL1,

NXPH1, PNMT, SOX11
5. AQP9, FAM83D, GGH, MCM10, and MMP1 being some of the

lowest
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a) b) c)

Fig. 4. Using embedded difference plots to find de-
scriptive genes. (a) Descriptive genes are marked
for the HER2-enriched subtype. A comparison to the
reference study shows the relevance of the marked
genes. (b) Under-expressed genes for the Luminal-A
subtype are selected and we observe that they show
over-expression for the Basal-like subtype, i.e., consti-
tute good features to discriminate these two subtypes.
(c) The over-expressed genes for Luminal-A could also
be considered good discriminators for this subtype
but show similar expression profiles for Basal-like and
HER2-enriched subtypes.

are under-expressed for Basal-like subtype. However
unlike the previous set, these genes also show simi-
lar expression profiles for the HER2-enriched subtype.
Consequently, these genes carry less distinctive char-
acteristics compared to the previous set.

5.2 T2 Case Study: Compare Samples

In the second case study we investigate how certain
properties of samples from a particular subtype, for
instance outliers or trends, are shared among different
datasets (T2).

We start with an investigation of the characteristics
of samples from the Basal-like subtype by consider-
ing the mRNA, microRNA, and DNA methylation
datasets. We bring up a StratomeX view with the
subtypes from the reference study as the first column
and unstratified versions of the datasets mRNA, mi-
croRNA, and methylation from left to right, as shown
in Figure 5-a. When all samples from the Basal-like
subtype are selected, we observe the following that
further characterizes this subtype: samples from the
Basal-like subtype have lower expression values with

a high variance in mRNA and have higher expression
values in the microRNA dataset. When looking at their
DNA methylation values, however, we do not observe any
dominant characteristics.

We use the same approach to determine the char-
acteristics of a cluster that is computed as a result of
an unsupervised clustering of the mRNA dataset (first
column in Figure 5-b). We select the “core members”
of the second cluster, i.e., those that have similar
expression values and variance. We observe that these
samples do not show any dominant characteristics in
an unsupervised clustering of microRNA data (second
column in Figure 5-b). However, when considering
the reference subtypes from the BRCA study (third
column in Figure 5-b), we observe that the selected
samples constitute a subgroup of the Luminal-A sub-
type. We can also see that these samples are the over-
expressed Luminal-A members with a lower variance.
Based on this observation, we can claim that cluster-
2 from the mRNA stratification can be utilized to
determine a subgroup of Luminal-A.

5.3 T3 Case Study: Create Clusters

In certain cases in tumor subtype analysis, the strati-
fication information is not readily available. In these
cases, we make use of the dual analysis methodology
to manually create stratifications as an alternative to
automated methods (T3). This mechanism enables the
analyst to discover structures through different views
of multiple datasets and represent these structures as
a stratification.

For demonstrate such a manual clustering process
on the BRCA data. In this process, we use dual
analysis views as separate linked views rather than
embedded in StratomeX, i.e., the selections in any of
the views are highlighted in the others. We bring up
two linked views of the mRNA dataset: skew vs. kurt
visualization of the genes (Figure 6-a) and a difference
plot for the samples for ∆µ vs. ∆σ (Figure 6-b). Also,
we add two other views of the mRNA-seq dataset:
median vs. IQR visualization of the genes (Figure 6-
c,e) and a difference plot for the samples for ∆µ vs.
∆σ (Figure 6-d,f).

We start by marking an unstratified mRNA dataset
as the target for the manual clustering (through a user
interface not shown in the images) and the clustering
process is then as follows:

Step-1: Here, we make use of the skewness of the
distribution of the values for the genes. High skew-
ness indicates that a gene has non-uniform expression
levels over the samples and thus is a good candidate
to be a discriminator between subtypes. Therefore in
this example, we select the genes that are left-skewed
(negative skew values) (Figure 6-a) and select a group
of samples that are visually separated from the rest
(left of the difference plot Figure 6-b). At this point, we
mark this subset of samples as a stratification of the
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a) b)

Fig. 5. (a) Investigating the sample profiles for Basal-like subtype (column 1) over three different datasets (left-
to-right: mRNA, microRNA, and methylation). The subtype contains samples with lower values and high variance
for mRNA data and usually higher values in the microRNA data. In the methylation data, however, no dominant
characteristic is observed. (b) “Core” members of a cluster from an unsupervised stratification of mRNA data are
selected (marked, left) and visualized with a microRNA stratification (column 2) and the subtypes. We observe
that the selected members correspond to a subgroup in the Luminal-A subtype (marked, right).

mRNA dataset (the first cluster in the first column of
StratomeX in Figure 6-g). This operation is performed
through the UI which is not shown in the image.

Step-2: We now switch to the mRNA-seq dataset
and select those genes that have higher expression
values and higher variety (Figure 6-c). The difference
plot is updated automatically and we select those
samples that have higher expression values and lower
variance (Figure 6-d). Notice that we make use of the
difference plot here and select those in the lower-right
quadrant of the view, i.e., high values and variety.
Also note that the selection here is guided by the axes
of the visualization rather than the observed visual
structures as in the first step – this amounts to another
strategy to make interesting selections. We make this
selection due to the fact that one would expect to see
higher variance and higher values for the samples in
response to the selection of genes in Figure 6-c. We
finish this step by marking the selection of samples
as a second cluster.

Step-3: Without updating the selection of genes,
we move on by selecting the samples that have
higher variety but smaller mRNA-seq values for the
selected genes (Figure 6-f). Notice that the selection
here corresponds to the upper-left quadrant of the
difference plot, i.e., lower values, higher variety. This
last selection of samples is marked as the third cluster
in the data. The rest of the samples are left as an
unclustered set.

In order to evaluate our custom stratification, we
compare it against the classification from the refer-
ence study (Figure 6-g). We observe that the cluster

made in Step-1, characterized with genes that have
negative skewness, has almost a complete overlap
with the Basal-like subtype. The second cluster from
Step-2 largely corresponds to a subgroup of Luminal-
A subtype. Finally, more than half of the samples from
the third cluster belong to the HER2-enriched. This
overlap between the manually created clusters and the
reference subtypes show that the manual clustering
leads to relevant results.

Our interactive approach enables analysts to con-
sider different data sources in the manual clustering
steps (mRNA and mRNA-seq in this case). This makes
it possible to merge interesting structures observed
in several datasets using different perspectives on
the data, i.e., using a skew vs. kurt view for the
mRNA and a median vs. IQR for the mRNA-seq
dataset. This flexibility leads to outcomes that are
not so straightforward to generate through automated
methods. Moreover, the manual clustering process
provides a mechanism to externalize the findings
of the analysis. Manually generated clusters become
parts of the analysis that can be compared with the
automatically computed results, e.g., manually built
clusters vs. hierarchical clustering results.

6 CONCLUSION

In this paper, we integrate dual analysis views and
significant difference plots within Caleydo StratomeX,
a state-of the art cancer subtype visualization tool.
Our approach facilitates the characterization of cancer
subtypes by enabling an investigation of them over
both the samples and the genes. Such a duality in
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Fig. 6. Manual clustering of unstratified mRNA dataset using dual analysis views. Negatively skewed genes are
selected through skew vs. kurt visualization (a) and the difference plot for the samples is updated automatically
(b) where we observe a group of samples with lower values and mark them as our first cluster (b). We then switch
to the mRNA-seq dataset and select genes that are higher-expressed with a large variety within the values (c,e).
We identify two groups and mark them as clusters 2 (d) and 3 (f). For validation, we compare our stratification
with the subtypes from the reference study and observe a significant overlap with the subtypes.

representing stratifications provides deeper insight
on the characteristics of subtypes. Using Caleydo’s
multi-dataset capabilities we are able to generate such
insights based on different datasets, as demonstrated
in T2 in Section 5.

We also demonstrate how the dual analysis ap-
proach can be used to create clusters based on sta-
tistical properties and merge structures from different
datasets, a challenging task to achieve through auto-
mated methods. We show the utility of our approach
in three case studies. In concert with the existing
StratomeX functionality, we have observed that we
have created a powerful tool for experts to analyze
and characterize cancer subtypes.

In the future, we aim to integrate advanced sta-
tistical tests and procedures, such as the analysis
of variance (ANOVA), Bonferroni correction [9] and
dimension reduction methods. We plan to include
these methods through the integration of the statistical
computing environment R [12]. We also consider to

extend the capability of difference plot to depict the
comparison of more than two groups. Furthermore,
instead of comparing one cluster to all the other ele-
ments, we plan to implement mechanisms to compare
clusters with each other.
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