

City, University of London Institutional Repository

Citation: Pino, L., Spanoudakis, G., Fuchs, A. & Gürgens, S. (2014). Discovering secure

service compositions. CLOSER 2014 - Proceedings of the 4th International Conference on
Cloud Computing and Services Science, pp. 242-253. doi: 10.5220/0004855702420253

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/4064/

Link to published version: https://doi.org/10.5220/0004855702420253

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

CLOSER 2014
Discovering Secure Service Compositions

Luca Pino1, George Spanoudakis1, Andreas Fuchs2, and Sigrid Gürgens2
1 School of Informatics, City University London, London, United Kingdom

2 Fraunhofer Institute for Secure Information Technology, Darmstadt, Germany
{luca.pino.1 | g.e.spanoudakis}@city.ac.uk, {andreas.fuchs | sigrid.guergens}@sit.fraunhofer.de

Keywords: Software services, secure service compositions, security certificates.

Abstract: Security is an important concern for service based systems, i.e., systems that are composed of autonomous
and distributed software services. This is because the overall security of such systems depends on the
security of the individual services they deploy and, hence, it is difficult to assess especially in cases where
the latter services must be discovered and composed dynamically. This paper presents a novel approach for
discovering secure compositions of software services. This approach is based on secure service
orchestration patterns, which have been proven to provide certain security properties and can, therefore, be
used to generate service compositions that are guaranteed to satisfy these properties by construction. The
paper lays the foundations of the secure service orchestration patterns, and presents an algorithm that uses
the patterns to generate secure service compositions and a tool realising our entire approach.

1 INTRODUCTION

The security of service based systems (SBS), i.e.,
systems that make use of distributed and possibly
dynamically assembled software services, has been a
critical concern for both the users and providers of
such systems (Raman et al., 2002; Majithia et al.,
2004; Anisetti et al., 2013). This is because the
security of an SBS depends on the security of the
individual services that it deploys, in complex ways
that depend not only on the particular security
properties of concern but also on the exact way in
which these services are composed to form the SBS.

Consider, for example, the case where the
property required of an SBS is that the integrity of
any data D, which are passed to it by an external
client, will not be compromised by any of its
constituent services that receive D. The assessment
of this property requires knowledge of the exact
services that constitute the SBS, the exact form of
the composition of these services and the data flows
between them, and a guarantee that each of the
constituent services of SBS that receives D will

preserve its integrity. Such assessments of security
are required both during the design of an SBS and at
runtime in cases where one of its constituent
services S needs to be replaced and, due to the
absence of any individual service matching it, a
composition of services must be built to replace S.
Whilst the construction of service compositions that
satisfy functional and quality properties has received
considerable attention in the literature (e.g.,
Aggarwal et al., 2004; Dustdar et al., 2005; Tan et
al. 2009; Alrifai et al., 2012)., the construction of
secure service compositions is not adequately
supported by existing research.

In this paper, we present an approach for
discovering compositions of services, which are
guaranteed to satisfy certain security properties. Our
approach is based on the application of SEcure
Service Orchestration patterns (SESO patterns).
SESO patterns specify primitive service
orchestrations, which are proven to have particular
security properties, if the constituent services of the
orchestration satisfy other security properties. A
SESO pattern specifies the order of the execution of

CLOSER 2014

its constituent services (e.g., sequential, parallel
execution) and the data flows between them. It also
specifies rules, which dictate the security properties
that the constituent services of the orchestration
must have for the orchestration to satisfy another
security property as a whole. These rules express
security property relations of the form IF P THEN
∧i=1,…,nPi where P is a security property that is
required of the service orchestration as a whole and
Pi are security properties of the constituent services,
which must be satisfied for P to be guaranteed. The
security property relations expressed by the rules are
formally proven. The constituent services of a SESO
pattern are abstract “placeholder” services that need
to be instantiated by concrete services when the
pattern is instantiated.

When a constituent service S of an SBS needs to
be replaced at runtime and no single alternative
service S’ satisfying exactly the same security
properties as S can be found, SESO patterns can be
applied to discover compositions of other services
that have exactly the same security properties as S
and could replace it within SBS. SESO patterns
determine the criteria (security, interface and
functional) that should be satisfied by the services
that could instantiate the orchestration specified by
them. These criteria are used to drive a discovery
process whose goal is to instantiate the pattern. If
this discovery/pattern instantiation process is
successful, i.e., different combinations of services
that satisfy the required criteria and fit with the
orchestration structure of the pattern can be
discovered, any composition of services which is
built from the pattern is guaranteed to have the
required overall security property by-construction.

An earlier account of our approach has been
given in (Pino and Spanoudakis 2012a; Pino and
Spanoudakis 2012b). In this paper, we present the
method that underpins the proof of security
properties in SESO patterns, show examples of
concrete proofs of security properties for specific
SESO patterns, and present an amended version of
the original composition algorithm that makes use of
coarse-grained service workflows in the composition
process in order to find service compositions that are
not only secure but also functionally relevant to the
service that is needed. In addition, we describe a tool
that implements our approach.

The rest of this paper is organized as follows.
Section 2 presents an overview of our approach.
Section 3 discusses the validation of the security of
primitive service orchestration patterns and provides
examples of proofs of security properties for some
of these patterns. Section 4 discusses the encoding of

secure service orchestration patterns. Section 5
presents the new pattern driven secure service
composition algorithm. Section 6 provides an
overview of the tool that we have developed to
implement our approach. Finally, Section 7
overviews related work and Section 8 provides
conclusions and directions for future work.

2 OVERVIEW

The service composition approach that we present in
this paper is part of a general framework developed
at City University to support runtime service
discovery (Zisman et al., 2013). This framework
supports service discovery driven by queries
expressed in an XML based query language, called
SerDiQueL, which supports the specification of
interface, behavioural and quality discovery criteria.
The execution of queries can be reactive or
proactive. In reactive execution, the SBS submits a
query to the framework and gets back any services
matching the query that the latter can find. In
proactive execution, the SBS submits to the
framework queries that are executed in parallel, to
find potential replacement services that could be
used if needed, without the need to initiate and wait
for the results of the discovery process at this point
(Zisman et al., 2013).

To take into account service security
requirements as part of the service discovery
process, we have extended the above framework in
two ways: (i) we have extended SerDiQueL to
enable the specification of the security properties
that are required of individual services, as querying
conditions, and (ii) we have developed a
composition module supporting the construction of
possible compositions of services that could replace
a given service in an SBS in cases where a query
cannot find any single replacement service, based on
the approach that we present in this paper. A
detailed description of the extended version of
SerDiQueL (called A-SerDiQueL) that is used for (i)
and (ii) is beyond the scope of this paper and can be
found in (Spanoudakis et al., 2011). In this paper, we
focus on the process of searching for and
constructing secure service compositions. The key
problems during the composition process are to
ensure that the constructed composition of services:
(a) provides the functionality of the service that it
should replace, and (b) satisfies the security
properties required of this service.

To address (a), our approach uses abstract
service workflows. These workflows express service

CLOSER 2014

coordination processes that realize known business
processes through the use of software services with
fixed interfaces. Such workflows are available for
specific application domains such as telecom
services (IBM BPM Industry Packs), logistics
(RosettaNet), and are often available as part of SOA
architecting and realization platforms (e.g., IBM
WebSphere). Service workflows are encoded in an
XML based language that represents the interfaces,
and the control and data flow between the
workflow's composing activities.
To address (b), we are using the SESO patterns.
These patterns are based on primitive service
orchestrations that have been proposed in the
literature (e.g., sequential and parallel service
execution) but augment them by specifying concrete
security properties P1, ..., Pn that must be provided
by the individual services that instantiate the pattern
for the overall orchestration to satisfy a required
security property P0. The derivation of these security
properties is based on rules that encode formally
proven relations between the security properties of
the individual placeholder services of the pattern and
the security property required of the entire service
orchestration represented by the pattern. Once
derived through the application of rules, the security
properties required of the individual partner services
of the orchestration are expressed as queries in A-
SerDiQueL. These queries are then executed to
identify concrete services with the required security
properties, which could instantiate the placeholder
services of the pattern. If such services are found the
pattern is instantiated. The pattern instantiation
process is gradual and, if it is completed
successfully, a new concrete and executable service
composition that satisfies the overall security
property guaranteed by the pattern is generated.

A key element of our approach is the formal
validation of the relations between the security
properties of the individual placeholder services of a
SESO pattern and the security property of the entire
composition expressed by the pattern. The validation
of such relations is discussed in the next section.

3 VALIDATING SECURE
SERVICE COMPOSITIONS

The task of formally validating the security of a
service composition requires a three-step approach.
It starts with a formal model of the service to be
replaced and the formal models of the services to be
composed. Firstly, the service composition is

represented in terms of a formal model derived from
the models of the individual services by applying a
set of formal construction rules. These rules project
the respective security properties of each of the
composed services as well as the targeted property
of the service to be replaced into the composed
system. Secondly, additional properties are added to
the composed system regarding the behaviour of the
orchestration engine, i.e., the primitive service
orchestration pattern. Finally, the desired property is
verified using the properties of the composed
services and the orchestrator.

For the formal system representation and
validation of security properties we utilize the
Security Modeling Framework SeMF developed by
Fraunhofer SIT (Gürgens et al., 2005b). In SeMF, a
system specification is composed of a set ℙ of
agents and a set ∑ of actions, ∑/P denoting the
actions of agent P, and other system specifics that
are not needed in this paper and are thus omitted.
The behaviour B of a discrete system Sys can then
be formally described by the set of its possible
sequences of actions. Security properties are defined
in terms of such a system specification. Relations
between different formal models of systems are
partially ordered with respect to different levels of
abstraction. Formally, abstractions are described by
so called alphabetic language homomorphisms that
map action sequences of a finer abstraction level to
action sequences of a more abstract level while
respecting concatenation of actions. Language
homomorphisms satisfying specific conditions are
proven to preserve specific security properties, the
conditions depending on the respective security
property. A detailed account of SeMF is beyond the
scope of this paper can be found in (Fuchs and
Gürgens, 2011; Fuchs et al., 2011; Gürgens et al.,
2005a; Gürgens et al., 2002) for.

Based on the representations of each of the
service systems in the composition, we present a
general construction rule using homomorphisms that
map the service composition onto the individual
services by preserving the individual services'
security properties. This allows us to deduce the
respective security properties to be satisfied by the
composition. The different SESO patterns are
translated into behaviour of the orchestrator
regarding the invocation of the respective services.
This includes functional and security related
property statements. Based on this information it is
possible to deduce the overall security properties of
the composition system and validate whether they
meet the expected results. In the next three sections,
we illustrate our approach by exemplarily proving a

CLOSER 2014

specific data integrity property. The formal
representation of services, composition and security
properties is given in terms of generic agents and
actions that are later used by the SESO patterns for
instantiation towards concrete services and security
properties. While our example is a very simple one,
our approach can handle more complex service
models, e.g. involving global agents (unique to all
services), or service specific agents (e.g. backend
storage) as well as various different orchestrations
patterns, proving different instantiations of various
security properties regarding integrity and
confidentiality (Pino et al., 2012).

3.1 Formal Representation of Generic
Service Composition

In the following, we denote the system model of the
service S0 to be replaced by a composition by Sys0,
the system models of the services S1 and S2 to be
composed by Sys1 and Sys2, respectively, and the
composition system by Sysc. The sets of agents and
actions are denoted analogously (i.e. by ℙ!, ∑i, for
i=0, 1, 2). We then view the systems Sys0, Sys1 and
Sys2 as homomorphic images of the composed
system Sysc.

Figure 1: Service Composition.

The principal idea of substituting a service by a
service composition is depicted in Figure 1: we
assume services S1 and S2 to act independently of
(i.e., not to invoke) each other. Thus we utilize an
orchestration engine O for their composition that
takes the role of both the clients C1 and C2 of Sys1
and Sys2 respectively, as well as the role of the
service S0 in Sys0 to be replaced. We formalize this
by using a generic renaming function !!→!: ∑ →
∑!!→! that replaces all occurrences of agent P in an
action by Q. Based on this function, we define
functions ri : ∑i → ∑c (i = 0, 1, 2) as follows:

!!(!) ∶= !!!→!(!) if ! ∈ ∑/!!

! ∪ ∑/!!
!

!!(!) ∶= !!!→!(!) if ! ∈ ∑/!!
! ∪ ∑/!!

!

(j = 1, 2). The resulting set ∑c of actions of the
composed system is then as follows:

∑! = !!(∑/!!

! ∪ ∑/!!
!) ∪ !!(∑!) ∪ !!(∑!) ∪ ∑/!!

∑/!! represents additional actions taken by the

orchestration engine beyond the communication
with client and services. These actions depend on
the specific orchestration pattern used and will be
discussed in the next section. Since the functions ri
are injective we can now use their inverse image in
order to define the homomorphisms that map the
composition system onto the abstract systems: each
homomorphism hi abstracts ∑c to ∑i. Regarding the
actions corresponding to those in ∑i, hi is simply the
inverse of ri, and all other actions are mapped onto
the empty word. Hence for i = 0, 1, 2, we define hi :
∑c → ∑i as follows:

ℎ!(!) = !′ if ∃!′ ∈ ∑!: !!(!′) = !
! else

These homomorphisms serve as a means to relate

not only the models of the individual systems to the
composition model but also to relate - under certain
conditions - their security properties. A
homomorphism that fulfils certain conditions
“transports” a security property from an abstract
system to the concrete one, i.e. if the conditions are
satisfied and the property holds in the abstract
system, the corresponding property will also hold in
the concrete system. Thus, the homomorphism
preserves the property. The conditions that must be
satisfied depend on the property in question; see
(Gürgens et al., 2005a; Gürgens et al., 2002) for
example. We use this approach to prove specific
security properties for a composition of services
based on the security properties of these services.

3.2 Formally Representing Sequential
Composition

The actions of the systems are constructed from the
service operations op0, op1, and op2 as prefix,
followed by one of the suffixes IS, IR, OS, OR to
represent InputSend, InputReceive, OutputSend,
OutputReceive, respectively. This results in the
following agent and action sets:

S0

C0

⇔

S1 S2

O

C0

CLOSER 2014

ℙ! ⊇ {!! , !!},∑! ⊇

!"!– !" !! , !! ,!"#"! ,
!"!– !" !! ,!! ,!"#"! ,

!"!–!"(!! ,!! , !!(!"#"!)),
!"!–!"(!! , !! , !!(!"#"!))

In our simple example of a sequential

composition pattern, the orchestrator forwards data0
received from C0 to S1 which returns f1(data0). These
data are then forwarded by the orchestrator to S2
who returns f2(f1(data0)) which the orchestrator
finally returns to the client. In a more complex
scenario the orchestrator can for example alter (e.g.,
split) the client data and combine the output of S1
with some data resulting from the client's input and
send this to S2. A proof for this more complex
construction is achievable analogously to the one
presented below.

The agent and action sets of the composition are
constructed as specified in the previous section,
using the functions r0, r1 and r2. Function r0 for
example maps action op0-IS(C0, S0, data0) onto op0-
IS(C0, O, data0), hence h0(op0-IS(C0, O, data0)) =
op0-IS(C0, S0, data0), while h0(op2-OR(O, S2,
f2(data2))) = h0(r2(op2-OR(C2, S2, f2(data2)))) = !.,
with data1 := data0 and data2 := f1(data1).

3.3 Validation of Integrity Preserving
Compositions

Exemplarily, we will now prove that a specific data
integrity property of S0 is provided by the
orchestration specified above. The definition of
(data) integrity that we assume in our example is
taken from RFC4949: “The property that data has
not been changed, destroyed, or lost in an
unauthorized or accidental manner.” (Shirey, 2007).
In SeMF, this property is expressed by the concept
of precedence: pre(a,b) holds if all sequences of
actions ω ∈ B that contain action b also contain
action a. Obviously, precedence is transitive (we
omit the trivial proof). Further, precedence is
preserved by any homomorphism (Fuchs and
Gürgens, 2011).

 Let us now assume that service S0 provides the
integrity property that whenever the client receives
f0(data0) from the service, the client has sent data0 to
this service before:

P1’ pre(op0-IS(C0, S0, data0), op0-OR(C0, S0,
f0(data0)))

As explained above, precedence is preserved by
h0 (as constructed in Section 3.1). Hence the

corresponding property of the composition is
(assuming f0 = f2°f1):

P1 pre(op0-IS(C0, O, data0), op0-OR(C0, O,
f2(f1(data0))))

For our proof, we assume that the services Sys1
and Sys2 provide the properties:

P2’ pre(op1-IS(C1, S1, data1), op1-OR(C1, S1,
f1(data1)))
P3’ pre(op2-IS(C2, S2, data2), op2-OR(C2, S2,
f2(data2)))

The homomorphisms h1 and h2 as constructed in
Section 3.1 preserve these precedence properties.
Accordingly, the corresponding properties in Sysc
are:

P2 pre(op1-IS(O, S1, data0), op1-OR(O, S1,
f1(data0)))
P3 pre(op2-IS(O, S2, f1(data0)), op2-OR(O, S2,
f2(f1(data0))))

In addition, the orchestrator must act according
to the pattern (as specified in Section 3.2), i.e.,
satisfy the following properties:

P4 pre(op0-IS(C0, O, data), op1-IS(O, S1, data))
P5 pre(op1-OR(O, S1, data), op2-IS(O, S2, data))
P6 pre(op2-OS(O, C0, f2(f1(data0))), op2-OR(C0,
O, f2(f1(data0))))

Proof. By transitivity of precedence, from properties
P2 to P6 we can conclude that property P1 holds.

The above proof is almost trivial but shows the
principle of our approach. In (Pino et al., 2012) we
have proven more complex integrity properties
involving actions of global agents being invoked by
either S1 or S2, as well as several confidentiality
properties. All proofs use the approach presented in
this paper: (i) deriving the formal model of the
service composition from the formal models of the
individual services, (ii) relating these models by
using property preserving homomorphisms and thus
representing the individual services' security
properties in terms of the composition model, and
(iii) using appropriate security properties to be
satisfied by the orchestrator. Whilst we assume the
orchestrator to behave correctly and hence to satisfy
these additional properties, the security properties
we assume for the individual services of the
composition are translated into inference rules,
which are then used in order to construct a service
composition. It should also be noted that the proofs
of security properties for specific SESO patterns
need to be constructed offline and encoded in the
patterns as rules, as we discuss in Sect. 4 below. At
runtime, the rules encoded in specific pattern are

CLOSER 2014

used to deduce the security properties that need to be
satisfied by the candidate services that can
instantiate the pattern.

4 SECURE SERVICE
ORCHESTRATION PATTERNS

Proofs of security properties, like the one that we
discussed in Section 3, form the basis of SESO
patterns in our approach. More specifically, an
SESO pattern encodes: (a) a primitive orchestration
describing the order of the execution and the data
flow between placeholder services, and (b) the
implications between the security properties of these
services and the security property of the whole
orchestration. The placeholder services within a
primitive orchestration can be atomic activities (i.e.,
abstract partner services) or other patterns. The
implications in (b) are of the form:

“IF P is a primitive orchestration with
placeholders S1, …, Sn and ρP is a
security property required for P THEN ρP
can be guaranteed if each Si in P
satisfies a set of security properties

ρj (j =1, …, mi)”.
These implications reflect proofs of security

properties, developed based on the approach
discussed in Sect. 3. They are encoded as inference
rules and used during the composition process to
infer the security properties that would be required
of the placeholders of a pattern P for it to satisfy ρP.
The benefit of encoding proven implications as
inference rules is that there is no need to reason from
first-principles when attempting to construct
compositions of services, based on SESO patterns.

To be more specific, SESO patterns and
implications of the above form are encoded as
Drools production rules (Drools). Drools is a rule-
based reasoning system supporting reasoning driven
by production rules. Production rules in Drools are
used to derive information from data facts stored in a

Knowledge Base (KB). A production rule in Drools
has the general form: when <conditions> then
<actions>. When a rule is applied, the rule engine
of Drools checks, through pattern matching, whether
the conditions of the rule match with the facts in the
KB and, if they do, it executes actions of the rule.
This execution can update the contents of the KB by
adding or deleting facts in it. The reasoning process
of Drools is based on the Rete algorithm a pattern-
matching algorithm that is known to scale well for
large sets of data facts and rules (Forgy, 1982);. The
latter property of Drools is the main reason for
selecting it to represent and reason with SESO
patterns in our approach.

Table 1 shows the encoding of integrity in the
sequential orchestration pattern that was presented in
Section 3.3 as a Drools rule. In particular our rule
uses the following definition of integrity:

Definition 2. Integrity(S, x, y) = pre(op0-IS(C0, S, x),
op0-OR(00, S, y))

Using such more abstract security properties in
the rules avoids the need to encode in the rule the
formalism that the proof is based on. This makes it
also possible to use SESO patterns proven through
different formalisms in our approach.

Returning to the rule in Table 1, Lines 3-5
describe the primitive orchestration that the security
property refers to. More specifically, the rule can be
applied when a sequential pattern ($P) with two
placeholders, i.e., activity $S1 followed by activity
$S2, is encountered. The rule defines the parameters
of these activities: $S1 has an input parameter $d
and an output parameter $f1d, and $S2 has an
input parameter $f1d and an output parameter
$f2f1d, as shown in Table 1. Line 6 describes the
original security requirement requested on the
composition pattern $rhoP, i.e. integrity on the
pattern $P of its data $d and $f2f1d. This
requirement is equivalent to the precedence property
P1 presented in Section 3.3. Lines 8-9 (i.e., the

Table 1: Integrity Rule for Sequential SESO Pattern.

1: rule "Integrity - Sequential Orchestration"
2: when
3: $S1 := Activity($d := inputs, $f1d := outputs)
4: $S2 := Activity($f1d := inputs, $f2f1d := outputs)
5: $P := Sequential($S1 := activ1, $S2 := activ2)

6: $rhoP : Integrity($P := subject, $d := inputs, $f2f1d := outputs)
7: then
8: insert(new Integrity($S1, $d, $f1d));
9: insert(new Integrity($S2, $f1d, $f2f1d));
10: retract($rhoP);
11: end

CLOSER 2014

then part of the rule) specify the security properties
that are required of the activities of the pattern in
order to guarantee $rhoP, namely: (i) integrity on
the input ($d) and output ($f1d) of $S1, as stated
by the precedence property P2, and (ii) integrity on
the input ($f1d) and output ($f2f1d) of $S2, as
required from P3. Additionally, we assume the
framework executing the orchestration to satisfy
properties P4–P6, hence these need not be
mentioned in the rule. Finally, according to the rule,
once the original requirement $rhoP is guaranteed
by the new ones, it can be removed from the KB.

Similar encodings of other SESO patterns have
been expressed using this approach but cannot be
discussed due to space limitations. SESO pattern
encoding rules, like the one presented above, are
used during the composition process to infer the
security properties that are required of the concrete
services that may instantiate the placeholder services
in a workflow. This process is discussed next.

5 SESO PATTERN DRIVEN
SERVICE COMPOSITION

The service composition process is carried out
according to the algorithm shown in Table 2. This
algorithm is invoked when an SBS service needs to

be replaced but the service discovery query specified
for it cannot identify any single service matching its
conditions.

In such cases, the structural part of the query,
which defines the operations that a service should
have and the data types of the parameters of these
operations, is used to retrieve from the repository of
the discovery framework abstract workflows that
can provide the required service functionality. An
abstract workflow represents a coarse grained
orchestration of activities, which collectively offer a
specific functionality, and is exposed as a composite
service. Such workflows are fairly common
(Carminati et al., 2006; Medjahed et al., 2003) and
result from the generation of reference process
models in specific domains as in (RosettaNet; IBM
BPM Industry Packs). The activities of an abstract
workflow are orchestrated through a process
consisting of the primitive orchestrations that
underpin the security patterns, as discussed in
Section 4. If such workflows are found the
generation of a service composition is attempted by
trying to instantiate each abstract workflow.

As shown in Table 2, initially, the algorithm
identifies the abstract workflows that could be
potentially used to generate a composition that can
provide the operations of the required service (see
STRUCTURALMATCH function in line 3). This is based
on the execution of the query associated with the

Table 2: Service Composition Algorithm.

Require: QS - query for the required service
Ensure: ResultSet - set of instantiated workflows
1: procedure SERVICECOMPOSITION(QS)
2: for all abstract workflows AW in the repository do
3: if STRUCTURALMATCH(QS, AW) == true then
4: Put a copy of AW in WStack
5: end if
6: end for
7: while there are more workflows in WStack do
8: Get the first workflow W in the WStack
9: Pop the first unassigned activity A from W
10: Extract the structural query QA for A from W
11: SecCond := SECURITYCONDITIONS(QS, W)
12: Add to QA the security conditions SecCond
13: Res := SERVICEDISCOVERY(QA)
14: for all services S* in Res do
15: WS* := W[A/S*] //i.e. substitute S* for A in W
16: if exists an unassigned activity in WS* then
17: Push WS* in WStack
18: else
19: Add WS* to ResultSet
20: end if
21: end for
22: end while
23: return ResultSet
24: end procedure

CLOSER 2014

service to be replaced (QS). If such workflows are
found, the algorithm continues by starting a process
of instantiating the activities of each of the found
workflows with services.

The activities of the workflows are instantiated
progressively, by investigating each workflow W in a
depth-first manner. More specifically, the algorithm
takes the first unassigned activity A in W (in the
control flow order) and builds a query QA based on
the workflow specification and the discovery query
QS. In particular, the structural part of QA is taken
from the description of A in the abstract workflow.
The security conditions in QA are generated through
the procedure SECURITYCONDITIONS(QS,W). This
procedure infers the security conditions for A based
on the Drools rules that encode the SESO patterns
detected within the current workflow. More
specifically, all the information about the workflow,
its patterns, activities, security properties and
requirements are put into the KB. Then the rules that
represent the detected SESO patterns are fired (i.e.
applied), propagating the requirements through the
workflow. The generated requirements for the
unassigned activity are then retrieved and converted
to query conditions. The propagation of security
requirements is possible thanks to the fact that each
workflow can be seen as a recursive application of
primitive orchestrations.

Figure 2 shows the order of propagation through
the use of the rules, on a workflow shown in (c). A
security requirement ρS is initially given for a service
S (Figure 2 (a)). The first rule that will be fired by
Drools is the one for the outermost pattern of the
workflow: a choice pattern (i.e., the if-then-else
primitive orchestration in Figure 2 (b)). The security
requirement is then propagated by the relevant rule
(if such a rule exists) to the placeholders A and B
returning the requirements ρA1, …, ρAn and ρB1, …,
ρBm (with n, m ≥ 0 and n+m ≥ 1). For each security
requirement ρAi (with i=1, …, n), a rule is fired to
propagate the requirement to the sequential pattern
that instantiates A (Figure 2 (c)). This process
generates the security requirements for placeholders
C and D.

If a security requirement cannot be propagated to
the atomic activity level (e.g., no rules are defined
for the given pattern or security property) then
Drools returns an error state to point out that a
security requirement cannot be guaranteed by the
existing set of rules. This ensures that no security
requirements are ignored.

After constructing QA, the query is executed by
the runtime discovery framework in (Zisman et al.,

2012) to identify a list of candidate services for QA.
The candidate services in this list (if any) are then
used to instantiate the activity A in W. Note that the
composition algorithm implements a depth-first
search in the composition process in order to explore
fully the instantiation of a particular activity within a
pattern before considering other activities, as this is
expected to spot dead-ends sooner than a breadth-
first search.

Figure 2: Recursive application of secure service
orchestration patterns.

5.1 Example

As an example of applying the algorithm in Table 2,
consider a Stock Broker SBS that uses an operation
GetStockQuote from a service StockQuote to obtain
price quotations for given stocks. GetStockQuote
takes as input a string Symbol identifying a stock and
returns the current value of that stock in USD.

Suppose that the Stock Broker SBS has a
security requirement regarding integrity of the input
and output data of this operation, and would
consider replacement services that can offer the
same operation only if they have certificates
confirming the satisfaction of this particular security
requirement by the service. To deal with potential
problems with StockQuote at runtime (e.g.,
unavailability), Stock Broker can subscribe a service
discovery query QSQ for replacing StockQuote to the
discovery framework and request its execution of
proactive mode. QSQ should specify the functional
and security properties that the potential replacement
services of StockQuote must have. If the execution
of QSQ results in discovering no single service
matching it (i.e., when single service discovery
fails), the service composition process is carried out.
At this stage, according to the algorithm of Table 2,
the framework will query the abstract workflow
repository to locate workflows matching QSQ.

CLOSER 2014

Suppose that this identifies an abstract workflow
WSQ shown in Figure 3 that matches the query. WSQ
contains three activities connected by two sequential
patterns (see two dashed areas of workflow). The
first placeholder of the outer sequence contains the
activity GetISIN, which converts the Symbol
identifying the Stock into the ISIN (another unique
stock identifier). The second placeholder
corresponds to the inner sequence. Within this inner
sequence, the first placeholder is the activity
GetEURQuote that returns the current stock value in
EUR given the Stock ISIN. The second placeholder
is the activity EURtoUSD, which converts a given
amount from EUR to USD.

Figure 3: Abstract Workflow WSQ.

The framework then infers the security properties
required for each of the services that could
instantiate the activities and uses them to query for
such services. Initially, the rule shown in Table 1 is
fired given the property required for the external
sequential pattern, i.e. integrity on inputs and
outputs of the workflow (i.e. Symbol and USD
value). From the required security property, the rule
derives two more properties: (1) integrity on inputs
and outputs of GetISIN (i.e. Symbol and ISIN), and
(2) integrity on inputs and outputs of the sequential
inner pattern representing the second activity (i.e.
ISIN and USD value). The second property fires
again the rule and this propagates the requirement
for integrity of the ISIN and USD value, resulting in
the two properties: integrity on GetEURQuote of
ISIN and EUR value, and integrity on EURtoUSD of
EUR value and USD value.

After the application of the rules, we derive the
required property for the first unassigned activity
GetISIN, namely integrity of the input Symbol and
the output ISIN. A query consisting of the interface
and the security property required for GetISIN is
then executed and the discovered services are used
to instantiate the workflow. Note that in the
discovery process, services are considered to satisfy
the required security properties only if they have
appropriate certificates asserting these properties. In
a similar way, a query specifying the required
interface and security property of integrity is created
for the second (GetEURQuote) and the last activity
(EURtoUSD). Each query is executed, and the
workflow gets instantiated by the results. After the
replacement service is fully composed, the service

composition is published in a BPEL execution
engine and its WSDL is sent to the Stock Broker
SBS in order to update its bindings.

6 TOOL SUPPORT &
EXPERIMENTS

To implement and test our approach, we have
developed a prototype realizing the composition
process and integrated it with the runtime service
discovery tool described in Section 2. The prototype
gives the possibility to select a service discovery
query and execute it to find potential candidate
services and service compositions. If alternative
service compositions can be built, the alternatives
are presented to the user who can select and explore
the services in each of them. Figure 4 shows the
results of an execution in the case of the example in
Section 5.1. These include two alternative service
compositions; see GetUSDStockQuote-Wf1-0 and
GetUSDStockQuote-Wf1-1 in the Ranking-1 panel
(the appearance of the two compositions in the same
line in the panel indicates that there is no ranking
between these two compositions). If one of these
compositions is selected, details about the service
operations that have instantiated the abstract
workflow activities are shown in the Composition
Details panel. In this case, the abstract workflow
with the two nested sequences of activities has been
instantiated by sequential(GetISIN,
sequential(GetEURQuote, EURtoUSD)).

Figure 4: Screenshot of Composition tool.

CLOSER 2014

Then, by selecting an activity in the workflow,
the details of the service instantiating the selected
activity are shown. These can be the WSDL
description, the required security properties that the
patterns generated for the query that was used to
identify the service, and the certificates that
demonstrated the satisfaction of these properties
during the composition process. The bottom part of
Figure 4 shows the required security properties that
were used in the query for the service
GetEURQuote.

Early performance tests of our approach have
been carried out using service registries of different
sizes. Table 3 shows average execution times for
single service and service composition discovery
obtained from using our tool on an Intel Core i3
CPU (3.06 GHz) with 4 GB RAM. The reported
times are average times taken over 30 executions of
a discovery query. In the experiments, we used
service registries of four sizes (150, 300, 600 and
1200), 25 abstract workflows and 3 patterns.

Table 3: Execution times (in milliseconds) w.r.t. service
registry size and number of generated compositions.

Registry size 150 300 600 1200
Single Service
Discovery Time

194 275 355 642

Composition
Discovery Time

777 2214 4943 12660

No. of generated
Compositions

4 12 24 40

As shown in the table, the time required for

building service compositions is considerably higher
than the time required for single service discovery.
The main part of this cost comes from the process of
discovering the individual services to instantiate the
partner links of the composition.

Although the overall composition time is high,
its impact is not as significant, since as we discussed
in Sect. 2 our framework can apply discovery and
service composition in a proactive manner, i.e.,
discover possible service compositions in parallel
with the operation of an SBS and use them when a
service needs to be replaced. Furthermore, the cost
of compositions can be reduced or kept under a
given threshold by controlling the number of
alternative compositions that the algorithm in Table
2 builds.

Whilst the benefits of the proactive approach
have been shown in (Zisman et al., 2013) for the
case of single service discovery, further
experimentation is required to explore the same for

the composition and assess the effect on
performance of controls over the number of
generated compositions.

7 RELATED WORK

The main focus of existing work in service
composition is to address the problem of creating
compositions that have certain functional and quality
of service (QoS) property (Raman et al., 2002;
Ponnekanti et al., 2002; Fujii et al., 2004; Majithia et
al., 2004; Jaeger et al., 2004; Aggarwal et al., 2004;
Dustdar et al., 2005; Tan et al. 2009; Alrifai et al.,
2012). This work provides a foundation for
functional and QoS properties but provides only
basic support for addressing security properties in
service composition, which is the main focus of our
approach.

The problem of supporting security requirements
(properties) in service composition has been a focus
of work in the area of model based service
composition. In this area, service compositions are
modeled using formal languages and their required
properties are expressed as properties on the model
(Deubler et al., 2004; Dong et al., 2010; Bartoletti et
al., 2005). Our approach to composition is also
model based but uses model based property proofs
to identify how overall security properties of
compositions can be guaranteed through propagation
to properties on the individual components
(services) of the composition. Works in this field,
however, provide proofs of additional security
properties that could be used to extend the patterns
used in our approach, even if they use different
formalisms. An example of such proofs is given in
(Mantel, 2002), which presents compositionality
results related to information flows (e.g. non-
interference) and that can be easily converted into
SESO patterns and inference rules in our framework.

Another strand of work on automatic service
composition focuses on discovering services that can
guarantee given security properties (Carminati et al.,
2006; Medjahed et al., 2003; Lelarge et al., 2006;
Anisetti et al., 2013; Khan et al., 2012). Some of
these approaches focus on specific types of security
properties (Medjahed et al., 2003; Lelarge et al.,
2006), whilst others (Carminati et al., 2006; Anisetti
et al., 2013; Khan et al., 2012) focus on how to
express and check security properties only for single
partner services of a composition. In contrast, our
approach can support arbitrary security properties
and properties of entire service compositions.

CLOSER 2014

The approaches in (Medjahed et al., 2003) and in
(Khan et al., 2012) describe two ontology-based
frameworks for automatic composition. The former
work defines a set of metrics for selecting amongst
different compositions but provides limited support
for security. The latter work introduces hierarchies
of security properties and mentions the possibility of
using rules to reason about them but does not
support the construction of secure service
compositions. Lelarge et al., (2006) use planning
techniques to build sequential compositions that
guarantee the adoption of access control models.
Carminati et al., (2006) introduce an approach to
security aware service composition that matches
security requirements with the external service
properties. The approach presented in (Anisetti et
al., 2013) focuses on the generation of test-based
virtual security certificates for service compositions
derived from the test-based security certificates of
the external services part of the composition. The
service compositions are based on templates that
allow expressing security requirements on the
external services. The ideas underlining this
approach can be used to extend the one presented in
this paper to support the generation of virtual
certificates for compositions.

The secure orchestration patterns that we use in
our framework are similar to the workflow patterns
in (Van Der Aalst et al., 2003), as they specify
elementary workflows used to build compositions.
Our patterns, however, include information not only
about the control flow within the pattern but also
about the data flow. They also extend these patterns
with information regarding security properties to
hold for the individual services in order to guarantee
that their composition satisfies a required security
property.

8 CONCLUSION

In this paper, we have presented an approach
supporting the discovery of secure service
compositions. Our approach is based on secure
service orchestration (SESO) patterns. These
patterns comprise specifications of primitive
orchestrations describing the order of the execution
and the data flow between placeholder services, and
rules reflecting formally proven implications
between the security properties of the individual
placeholders and the security property of the
orchestration as a whole. The formal proofs (and
patterns) achieved so far cover different integrity
and confidentiality properties for various forms of

primitive orchestrations. The extension of our
approach to cover other security properties (e.g.,
availability) is subject of ongoing work. During the
composition process, the proven implications are
used to deduce the actual properties that should be
required of the individual services that may
instantiate an orchestration for the orchestration as a
whole to satisfy specific security properties.

In order to facilitate reasoning, SESO patterns
are encoded as Drools rules. This enables the use of
the Drools rule based system for inferring the
required service security properties when trying to
generate a service composition.

Our approach has been implemented and
integrated with a generic framework supporting
runtime service discovery that has been described in
(Zisman et al., 2012). We are currently investigating
the validity of our approach through a series of focus
group evaluations. We are also conducting further
performance and scalability analysis of our
prototype, focusing on exploring the effect of a
proactive composition generation approach and
setting heuristic controls over the number of
compositions generated by the algorithm.

ACKNOWLEDGEMENTS

The work reported in this paper has been partially
funded by the EU F7 project ASSERT4SOA (grant
no.257351).

REFERENCES

Aggarwal, R., Verma, K., Miller, J., and Milnor, W., 2004.
Constraint driven web service composition in
METEOR-S. In Proc. of the IEEE International
Conference on Services Computing, (SCC 2004), pp.
23-30.

Alrifai, M., Risse, T., and Nejdl, W., 2012. A hybrid
approach for efficient Web service composition with
end-to-end QoS constraints. In ACM Transactions on
the Web (TWEB), vol. 6, no. 2, Article 7.

Anisetti, M., Ardagna, C., and Damiani, E., 2013. Security
Certification of Composite Services: A Test-Based
Approach. In Proc. of the IEEE 20th International
Conference on Web Services (ICWS), pp. 475-482.

Bartoletti, M., Degano, P. and Ferrari, G.L., 2005.
Enforcing secure service composition. In Proc. 18th
Comp. Sec. Found. Workshop (CSFW). IEEE Comp.
Soc., pp. 211-223.

Carminati, B., Ferrari, E. and Hung, P.C.K., 2006.
Security conscious web service composition. In Proc.

CLOSER 2014

of the Int. Conf. on Web Serv. (ICWS). IEEE Comp.
Soc., 489-496.

Deubler, M., Grünbauer, J., Jürjens, J. and Wimmel, G.,
2004. Sound development of secure service-based
systems. In Proc. of 2nd International Conference on
Service Oriented Computing (ICSOC). ACM, pp. 115-
124.

Dong, J., Peng, T. and Zhao, Y., 2010. Automated
verification of security pattern compositions. Inf.
Softw. Technol., vol. 52, no. 3, pp. 274-295.

Drools. [Online]. Available: http://www.jboss.org/drools/
Dustdar, S., and Schreiner, W., 2005. A survey on web

services composition. International Journal of Web
and Grid Services, vol. 1, no. 1, pp. 1-30.

Forgy, C., 1982. Rete: A fast algorithm for the many
pattern/many object pattern match problem. Artificial
Intelligences, vol. 19, no. 1, pp. 17-37.

Fuchs, A. and Gürgens, S., 2011. D05.1 Formal Models
and Model Composition. ASSERT4SOA Project,
Tech. Rep. [Online]. Available:
http://assert4soa.eu/public-deliverables/

Fuchs, A., Gürgens, S. and Rudolph, C., 2011. Formal
Notions of Trust and Confidentiality - Enabling
Reasoning about System Security. Journal of
Information Processing, vol. 19, pp. 274-291.

Fujii, K., and Suda, T., 2004. Dynamic service
composition using semantic information. In Proc. of
the 2nd international conference on Service oriented
computing (ICSOC), pp. 39-48. ACM.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2002.
Authenticity and provability - a formal framework. In
Infrastr. Sec. Conf. (InfraSec). LNCS, vol. 2437, SV,
pp. 227–245.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2005a.
Abstractions preserving parameter confidentiality. In
Europ. Symp. On Research in Computer Security
(ESORICS). 418–437.

Gürgens, S., Ochsenschläger, P. and Rudolph, C., 2005b.
On a formal framework for security properties.
International Comp. Standards & Interface Journal
(CSI), Special issue on formal methods, techniques
and tools for secure and reliable app. 27(5) 457–466.

IBM BPM industry packs. [Online]. Available:
http://www-03.ibm.com/software/products/us/en/
business-process-manager-industry-packs/

Jaeger, M. C., Rojec-Goldmann, G., and Muhl, G., 2004.
QoS aggregation for web service composition using
workflow patterns. In Proc. of the 8th IEEE
International Enterprise distributed object computing
conference, (EDOC 2004), pp. 149-159.

Khan, K.M., Erradi, A., Alhazbi, S. and Han, J., 2012.
Security oriented service composition: A framework.
In Proc. of International Conference on Innovations in
Information Technology (IIT), pp. 48-53.

Lelarge, M., Liu, Z. and Riabov, A.V., 2006. Automatic
composition of secure workflows. In Proc. of the
Third international conference on Autonomic and
Trusted Computing, (ATC). Berlin, SV, pp. 322-331.

Majithia, S., Walker, D. W., and Gray, W. A., 2004. A
framework for automated service composition in

service-oriented architectures. In Proc. of the 1st
European Semantic Web Symposium, Lecture Notes in
Computer Science, vol. 3053, pp. 269-283.

Mantel, H., 2002. On the Composition of Secure Systems.
In Proc. of the 2002 IEEE Symposium on Security and
Privacy (SP2002). IEEE Computer Society,
Washington, DC, USA, 88-.

Medjahed, B., Bouguettaya, A. and Elmagarmid, A.K.,
2003. Composing web services on the semantic web.
The VLDB Journal, vol. 12, no. 4, pp. 333-351.

Pino, L. and Spanoudakis, G., 2012a. Constructing secure
service compositions with patterns. In Services
(SERVICES), 2012 IEEE Eighth World Congress on.
IEEE, pp. 184-191.

Pino, L. and Spanoudakis, G., 2012b. Finding secure
compositions of software services: Towards a pattern
based approach. In 5th IFIP International Conference
on New Technologies, Mobility and Security (NTMS).
IEEE, pp. 1-5.

Pino, L., Spanoudakis, G., Gürgens, S., Fuchs, A. and
Mahbub, K., 2012. D02.2 ASSERT aware service
orchestration patterns. ASSERT4SOA Project, Tech.
Rep. [Online]. Available: http://assert4soa.eu/public-
deliverables/

Ponnekanti, S. R., and Fox, A., 2002. Sword: A developer
toolkit for web service composition. In Proc. of the
11th World Wide Web Conference (Web Engineering
Track), pp. 7-11.

Raman, B., Agarwal, S., Chen, Y., Caesar, M., Cui, W.,
Johansson, P., ... and Stoica, I., 2002. The SAHARA
model for service composition across multiple
providers. In Proceedings of the First International
Conference on Pervasive Computing, Lecture Notes in
Computer Science, vol. 2414, pp. 1-14.

RosettaNet. [Online]. Available:
http://www.rosettanet.org/

Shirey, R., 2007. Internet Security Glossary, Version 2.
RFC 4949 (Informational), IETF. [Online]. Available:
http://www.ietf.org/rfc/rfc4949.txt

Spanoudakis, G., Mahbub, K., Pino, L., Foster, H., Maña,
A. and Pujol, G., 2011. D02.1 ASSERTs aware
service query language and discovery engine.
ASSERT4SOA Project, Tech. Rep. [Online].
Available: http://assert4soa.eu/public-deliverables/

Tan, W., Fan, Y., and Zhou, M., 2009. A Petri Net-Based
Method for Compatibility Analysis and Composition
of Web Services in Business Process Execution
Language. In IEEE Transactions on Automation
Science and Engineering, vol.6, no.1, pp.94-106.

Van Der Aalst, W.M.P., Ter Hofstede, A.H.M.,
Kiepuszewski, B. and Barros, A.P., 2003. Workflow
patterns. Distrib. Parallel Databases, vol. 14, no. 1,
pp. 5-51.

Zisman, A., Spanoudakis, G., Dooley, J. and Siveroni, I.,
2013. Proactive and reactive runtime service
discovery: A framework and its evaluation. IEEE
Transactions on Software Engineering,
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.
84, Dec 2012

