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Abstract

A feature selectionmethodology basedon a novel Bhattacharyya Spaceis preseried
and illustrated with a texture segmermation problem. The Bhattacharyya Spaceis
constructed from the Bhattacharyya distancesof di erent measuremets extracted
with sub-band Iters from training samples.The marginal distributions of the Bhat-
tacharyya Spacepresert a sequenceof the most discriminant sub-bandsthat can
be usedasa path for a wrapper algorithm. When this feature selectionis usedwith
a multiresolution classi cation algorithm on a standard set of texture mosaics, it
producesthe lowest misclassi cation errors reported.

Key words: Feature Selection, Bhattacharyya distance/space, Texture
Segmeiration

1 Intro duction

The problemsof feature selectionand texture segmemation have beenstudied
by pattern recognition,imageprocessingand computervision researbersfor a
number of yearsand they cortinue to be of interest due to the wealth of appli-
cationsand alsothe desireto produceaccurateresultsat a low computational
cost.
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Feature selectionis a fundamenal pre-processingstep in any classicalpat-
tern recognition problem, and the growth of computer storageand power has
enabledmore complexmeasuremets on larger input data which resultin cor-
respondingly large numbers of high dimensional features[21,15]. Therefore,
methods that can selectappropriate and compactsubsetsof featuresare vital
to the accuracyand e ciency of any subsequen classi cation step.

The feature selectionand extraction problem considerghe mathematicaltools
for reducing the dimensionality of a Measuremeh Space[16], which is some-
times called Pattern Represetation [23]or Feature Space.The problem faced
is that of selectinga feature subsetwhich will reducethe complexity at the
classi er without a ecting its performance.The reduced subsetcan be ob-
tained in two di erent ways: feature seletion or feature extraction. In feature
selection,a set of the original measuremets is discardedand the onesthat

are selected,which will be the most useful ones,will constitute the Feature
Smce. In cortrast, the conmbination of a seriesof measuremets in a linear or
non-linear mapping to a new reduceddimensionalit is called feature extrac-
tion. Feature construction [29,26]relies on additional information, which will

not be assumedn the presem work, to add new featuresin order to simplify
hypothesisseara.

Ideally, the bestway to obtain a reducedfeature setis to test every conmbina-
tion of measuremets through the classi er. For N; measuremets, there will
be O(2V1) di erent solutions, which yield computations impractical even for
small number of measuremets. Branching techniques [23] can obtain opti-
mal solutionsbut they are still computationally intensive. It is necessarythen
to settle for sub-optimal solutions that will not analysethe whole spaceof
combinations exhaustiely. The simplestof thesesolutions can be placedinto
two groupscalledforward seletion, and backwad elimination (which are both
particular casesof the plus| - take away r algorithm). In forward selection,
a seart beginswith an empty set of features,and elemeits are sequetially
included at a classi er, the selectionwill depend of an individual best mea-
suremer. In badkward elimination the starting state is the full set of features,
and measuremets are discardedoneby one.The processof selectionor elimi-
nation cortinuesup to a certain state wherean evaluation criterion is satis ed
and a nal subsetis reated. The selectionimpliesthat if eat of the elemeits
of the subsetis forwarded sequetially to a classi er, then we expect to im-
prove the classi cation, but if we wereto cortinue with any other elemen not
in the subset,then there would be a degradationof the results.

Feature extraction will useall the dimensionsof the measuremen spaceand
map it to a lower dimensionalspace,wherethe new featureswill cortain the
usefulinformation through a projection that will ignore redundart and irrel-
evant information. Perhapsthe most common feature extraction method is
Principal Components Analysis (PCA) where the new features are uncorre-



lated and theseare the projections onto axesthat maximise the variancesof
the data. As well asmaking ead featurelinearly independen, PCA allowsthe

ranking of featuresaccordingto the sizeof the global covariancein ead prin-

cipal axis from which a "subspacebf featurescan be preserted to a classi er.

Howeer, while this eigenspacemethod is e ective in many cases,t requires
the computation of all the featuresfor given data. In someof the applications
presened in this work, the measuremenspaceneedonly be generatedfor a set
of training samples.Thesewill be usedto determinea feature spaceand then

only the required features are obtained for the whole data set considerably
reducing the computational e ort.

Image texture, aswell as feature selection,has beenwell studied in the past
decadesand becauseof its application in many areassud as of Crystallogra-
phy [46], Stratigraphy, [6,36], Medical Imaging, (Magnetic Resonancdmaging
(MRI) [27,41,25]Ultrasound [53] or Computed Tomograply (CT) [19,43]),or
cortent-basedimageretrieval [28] cortinuesto be of interestand many papers
on texture extraction, segmeiation and classi cation are still publishedewery
year. In somecases,texture has beenanalysednot only in 2D but alsoin
3D [2,38,39].

Many di erent approatesfor 2D texture measuremengeneration,classi ca-
tion and segmemation have beenreported, for example:[33,37,47,50]One of
the most common approades of 2D image texture description is the use of
Haralick's co-accurrenceanalysis, rst publishedin the 1970s[18,17]and still

widely usedtoday. Crossand Jain [9] and Chellapaand Jain [7] reported with

somesucceson statistical approadiesusing Markov Random Fields for the
modelling of texture. Jain and Farrokhnia [20] obsened the spectral energy
of textures with Gabor lters. Sincetexture canbe scaledependen, wavelets
and other multiresolution techniqueshave beenwidely usedby Unser[48]and
others [3,51,49,42]In a recen and thorough study, Randenand Husy [35]
have compareddi erent Iter-based approatesagainst a set of natural tex-
tures from the classicalBrodatz Album [4] and other databases[44,32]. The
composite imagescortain di erent natural textures that were captured un-
der di erent illumination conditions and with di erent equipmen, but were
selectedto be visually stationary. Eadh texture has beenglobally histogram
equalisedand they have the samemean value so that they spreadthe same
range of grey levels. Someof the masksthat were usedto form theseim-

agescortain triangular and circular shapeswhich are harder to segmen than

squaresor rectangles.Randen'simages,which are fairly hard to classifyevwen
by eye, are becominga bendimark for assessingli erent segmetation algo-
rithms, [30,31,33].

The nine texture imagessegmeted in this work correspndto gure 11in [35]
andarepresened in gure 1.Figures(a) to (e) consistof 5di erent texturesin
imageswith size256 256pixels, (f) and(g) have 16texturesandare512 512



pixels, (h) and (i) have 10 textures and 640 256 pixels. In their study, Ran-
denand Hus y shaw that ltering methods outperform co-accurrencetexture
measuresbut vary in their computational cost, number, type and decomp-
sition of features used and easeof implemertation with best overall results
being obtained by multiresolution wavelet and quadrature-mirror lters.

The rest of the paper is organisedas follows. In section 2 the measuremen
spaceis generatedby sub-band Itering with and an Orientation Pyramid
(OP). Two classi cation strategiesare then presened. First, a single resolu-
tion to comparethe quality of the measuremenspacewith thosepresened by
Randen,and then a multiresolution algorithm that can easily outperform the
single resolution. Section 3 introducesthe Bhattacharyya distancesand the
preseits the novel Bhattacharyya spaceas the basisof a feature selectional-
gorithm and further improvemers are demonstrated.Section4 preseis com-
parative results on 9 multitextured images.Finally conclusionsare preserted.

2 Metho dology

2.1 Feature Extraction: Sub-land Itering usingan Orientation Pyramid (OP)

Certain characteristics of signalsin the spatial domain sud as periodicity
are quite distinctive in the frequencyor Fourier domain. If the data cortain
textures that vary in orientation and frequency then certain Iter sub-bands
will contain more energythan others.

Wilson and Spann [52] proposeda set of operations that subdivide the fre-

guency domain of an imageinto smaller regionsby the use of two operators
guadiant and centre-surround By conmbining theseoperators, it is possibleto

construct di erent tessellationsof the space,one of which is the Orientation

Pyramid (OP) (Figure 2). A band-limited Iter basedon truncated Gaussians
is usedto appraximate the nite prolate spheroidalsequencesisedin [52]. The

Iters are real functions which cover the Fourier half-plane. Sincethe Fourier

transform of a real signalis symmetric, it is only necessaryo usea half-plane
or a half-volumeto measuresub-bandenergies A description of the sub-band
Itering with the OP method follows.

Throughout this work, we will consideranimage,| , represeted asa function
that assignsa grey tone to ead pair of co-ordinates[18]:

L, Ll :Ly L¢! G (1)

whereN, N, arethe dimensionsofrowsandcolumns,L, = f1;2;:::;r;:::;N;qg,
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Fig. 1. Composite texture imagesarranged by Randenand Husy [35].

L.=1f1;2;:::;c;:::; N.g arethe spatial domainsof ead dimension,L, L.is
the domain of image,and G = f1;2;:::;0;:::Ngg is the setof Ny grey levels;
the co-domainof the image.



The certred Fourier transform of I , I, = F [l ], can be subdivided into a set
of i non-overlapping regionsL! LI of dimensionsN!;N!. The OP tessella-
tion involvesa setof 7 Iters, onefor the low passregionand six for the high
pass(Figure 2 (a)). The i-th lter F/ in the Fourier domain (F/ = F [F']) is
related to the i-th subdivision of the frequencydomain as:

8
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whereG, descritesa Gaussianfunction, with parameters ' the certre of the
regioni, and ' is the co-variancematrix that will provide a cut-o of 0.5 at
the limit of the band. The measuremenspaces in its frequencyand spatial
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Fig. 2. Orientation Pyramid (OP) tessellation:(a) order 1, (b) order 2. Band-limited
2D Gaussian Iter: (c) FrequencydomainjF| j, (d) Magnitude of spatial domain jF'j.

domainsis then de ned as:

SvGi )=RG )G )
S'=jF s (2)

where(; ) arethe co-ordinatesin the Fourierdomain. The OP canbefurther
subdivided, at the next level the coordinates (L1(1) L2(1)) will become
(Lr(2)  Lg(2) with dimensionsN,(2) = M®&;Ng2) = Ne: (Figure 2
(b)). More levels can be obtained provided that the image has the required
dimensions.It is assumedthat N, (1) = 2%;N¢(1) = 2° sothat the results of
the divisions are always integer values. To illustrate the OP on a textured
image,one of Randen'simagesis Itered and presernied in Figure 3.

2.2 Classi cation of the Measurement Space

Partitioning of the measuremen spacecan be consideredas a mapping oper-
ator :S! f1;2;:::;Nyg, wherethe clustersor classesare (1), 1(2),
etc., and theseareunknown. Then, for every element x 2 S, , will be an esti-
mator for where,for ewvery class,thereis a point fa;; az;:::g2 S sud that
thesepoints de ne hyperplanesperpendicular to the chords connectingthem,
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Fig. 3. A graphical example of sub-band Itering. The top row correspondsto the
spatial domain and the bottom row the Fourier domain. A 16-texture (gure 1
(f)) is Itered with a sub-band Iter with a particular frequency and orientation
by a product in the Fourier domain, which is equivalernt to a convolution in the
spatial domain. The ltered image becomesone measuremen of the space,S? in
this example.

and split the spaceinto regionsf Ry; R»;:::g. Theseregionsde ne the mapping
function ,:S! f1,2:::;;Nygby a(xX) = K if x 2 Rc;K = 1;2;::5; Nk .
This partitioning should minimise the Euclidean distance from the elemens
of the spaceto the points a, expressediy [11]:

X - .e .e
(ag;ap;::1) = ,min 1S(x)  ajj: (3)
x2(Ly Lg) =} Tk

The measureof closenes®f the estimator , to de nes a misclassi cation
errorby [ a]= P( a(X) 6 (x)), for an arbitrary point x 2 S in the space.

If the valuesof the points a, are known, or there is a way of estimating these
from training data, the classi cation procedureis supervisel, otherwiseit is
unsugervisel. For this work, the points in the measuremen spacea, were ob-
tained by ltering separatetraining data with the OP. Oncethe measuremen
spacesS is calculatedfor ewery training image, the averagecan be usedas an
estimate of the mean of the class:4.

Table 1 comparesthe results of the sub-band Itering with 35 measuremets
(order 5 of the OP) anda 13 13 Gaussianlocal energyfunction (LEF) (for
more details of the e ect of the LEF, see[38]) with di erent measuremen
extraction techniques. Theseresults con rm that sub-band ltering with an
OP canextract textural measuremets that are asgood asthosepreserted by
Randen.



Table 1
Comparative misclassi cation results (%) of the natural textures (Table 3 in [35])
and OP sub-band Itering. Best results are in bold .

| Misclassic ation (%) | Figures | |
Measurement a b c d e f g h i | Average
Laws 97 | 257 | 324 | 273 | 257 | 483 | 543 | 419 | 37.8 33.68
Ring/W edge 146 | 355 | 289 | 355 | 224 | 438 | 67.8 | 445 | 483 37.92
Dyadic Gabor 10.7 | 348 | 226 | 252 | 246 | 60.1 | 582 | 323 | 47.9 35.16
Gabor Banks 8.2 340 | 258 | 369 | 284 | 548 | 715 | 39.7 | 54.8 39.34
DCT 132 | 270 | 255 | 378 | 226 | 409 | 49.0 | 38.2 | 33.0 31.91
Daub echies 4 87 | 228 | 25.0 | 234 | 218 | 382 | 452 | 409 | 30.1 28.46
f16b 8.7 | 18.9 233 | 184 | 17.2 36.4 | 41.7 39.8 | 285 25.88
Co-occurrence 9.9 27.0 26.1 51.1 35.7 49.6 55.4 35.3 49.1 37.69
AR 196 | 194 | 230 | 239 | 340 | 58.0 | 46.4 | 56.7 | 28.7 34.41
Av erage 115 | 272 | 259 | 31.1 | 247 | 478 | 54.4 | 410 | 39.8 33.71

| OoP | 9.0 | 31.7 | 20.6 | 20.7 | 17.2 | 32.7 | 49.5 | 27.9 | 39.5 | 27.6 |

2.3 Multir esolution Classi cation

A multiresolution classi cation strategy can exploit the inherert multiscale
nature of texture and better results can be achieved. The multiresolution pro-
cedureconsistsof three main stages:climb, decide and desend

The climbing stagerepresets the decreasen resolution of the data by means
of averaginga setof neighbours on onelevel (children elemens or nodes)up to
a parent elemen on the upper level. Two commonclimbing methods are the
GaussianPyramid [5] and the Quad tree QT ([14,40,45]).In our implemen-
tation we usedthe QT structure. The decreasan resolution correspndingly
reducesthe uncertainty in the elemens' valuessincethey tend toward their
mean.In cortrast, the positional uncertainty increasesat ead level [52].

At the highestlevel, the newreducedspacecan be classi ed either in a super-
vised or unsupervisedsdemeasit was descriled before.

To regain full spatial resolution at the lowest level of the tree, the classi ca-
tion at the highest level has to be propagated downward. The propagation
implies that ewvery parernt bequeaths:(a) its classvalue to 4 children and; (b)
the attribute of beingor not beingin a boundary. As the classi cation is prop-
agated,a spatial restoration processcan be performedat ewery level to reduce
the uncertainty in the spatial position. This typically implies an interaction
of an elemen with its neighbours to eliminate isolated pixels and a selectiwe
smaothing can be performedwith buttery Iters. Buttery Iters (BF) [42]
are orientation-adaptive lters, that consistof two separatesetsor wingswith
a pivot elemen betweenthem. It is the pivot elemen x = (r;c) which is
modi ed as a result of the Itering. Ead of the wings will have a roughly
triangular shape, which resenblesa butter y and they canbe regardedastwo
separatesets of anisotropic cliques arrangedin a steerableorientation. The
elements covered by eat of the wings are included in the Itering process
while the valuesof the elemens along the boundary (which are presumedto



have greateruncertainty) and the pivot, x, are not includedin the smoothing
process.The use of BF outperforms other multiresolution schemessud as
Markov Random Fields and they can be extendedto 3D [38].

3 Feature Selection using the Bhattac haryy a space

In the previoussection,a measuremen spacewas generatedby sub-band I-

tering the textured images. This spacewill consistof a number of dimen-
sions, which could equally be generatedby Gabor Iters, featuresof the co-
occurrencematrix or wavelets, and not all the dimensionswill cortribute to
the discrimination of the di erent textures that composethe original data.
Besidesthe discrimination power that somefeatureshave, there is alsoa com-
plexity issuerelated to the number of featuresselected Another advantage of
selectinga subsetof featuresis that they can provide a better understanding
of the underlying processthat generatedthe data [15].

One of the most common methods [10] of forward selectionis the wrapper
approach [24]. This approad usesthe error rate of a classi er itself as the
criterion to ewaluate the featuresselected,it proposesgreedyselection,either
ashill climbing, or best rst asseart algorithms and treats the measuremets
as a seart spaceorganisation, a represetation where ead state represets
a measuremen subset.For N; measuremets, there are N; bits in ead state
indicating the presence(l) or absence(0) of the measuremen The state
f0;0;:::;0g, the empty setwill be the initial state for forward selection,and
f1,1;:::; 1g will descrike the whole measuremenspace(initial state for badk-
ward elimination). Figure 4 shavs a 4-measuremeinstate spacewhereforward
and badkward selectionprocessedave beenidenti ed. Ead of the links will
represen a single measuremen added (corntinuous line) or deleted (dashed
line).

The processof wrapper selectionwith a hill climbing seard follows the se-
guence:

(1) Start with an empty setof featuresv  f0;0;:::;0g.

(2) Expand v: generatenew states by adding a single feature from v. In
the exampleof Figure 4 (a) the children of v are f1;0;0; Og, fO0; 1, 0; Og,
f0;0;1;0g, f0;0;0; 1g.

(3) Apply the ewaluation function (that is, the classier) to ead child w
of v.

(4) Let v°= the child with the highestewaluation (w).

G) If (v) > (v)thenv v°and goto 2, else nish with v asa nal
subset.



The previous algorithm is the basic presertation and it can easily be varied;
for example,di erent ways of expandingv rather than just consideringevery
child can be used.lIt is important to bearin mind two issues:.oneis that hill
climbing can lead to local optima, and the other is that the strength of the
algorithm, the use of the classi er in the selection processinstead of other
ewvaluation functions, is at the sametime its weaknessgsincethe classi cation
processcan be slow.

o
=
@@Q}@ @ 1

s

(a) (b)

Fig. 4. State Spacefor sequetial selection. Each node is connectedto nodesthat
have one measuremeh added or deleted (a) Forward selection(b) Badkward selec-
tion.

Oneway to avoid the evaluation of ead child of the currert state will be pro-
posedbelon. The BhattacharyyaSpace is preseted asa method that provides
a ranking for the measuremets basedon the discrimination of a training set.
This ranking processprovides a single route to evaluate and therefore, the
number of classi cations, which will still be done for ewvery feature addedto
the classi er, is signi cantly reduced.Sincethis method a pre-processingstep,
and is calculated over training data (of small size comparedto the whole
data set), a heuristic solution to avoid being trapped by local optima is also
proposed.

3.1 The Bhattacharyyadistance

In order to obtain a quartitativ e measureof how sefrableare two classesa
distancemeasureis required. With the assumptionof underlying distributions
a promabilistic distance a distance can be easily extracted from someparame-
ters of the data. Kailath [22] comparedthe Bhattacharyya Distance and the
Divergence(Kullback-Leibler), and obsened that Bhattacharyya yields bet-
ter resultsin somecaseswhile in other casesthey are equivalert. In a recen
study [1], a number of measuresBhattacharyya, Euclidean, Kullback-Leibler,
Fisher, have beenstudied for imagediscrimination and it was concludedthat
the Bhattacharyyadistance [13]is the most e ective texture discrimination
for sub-band Itering sdemes.
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In its simplest formulation, the Bhattacharyya distance betweentwo classes
can be calculated from the variance and mean of ead classin the following
way [8]:

(. 2 2 ) 2)
I dday deygy 42 (o o) 4)

Dg (K1; ko) =
4 4° Ky 4 El"' Ez

where:Dg (ky; ky) is the Bhattacharyya distancebetweenk; th andk, th
classes, , is the varianceof the k;  th class, , is the meanof the k; th
class,and ky; k, are two di erent training classes.

For the multidimensional distance, the variancesare replacedby co-variance
matrices and the meansbecomevectors|[13]:

2 3

1 40730t wig, 1
DB(kl;kz) = §|n412\11(1k1fk1)15+z( k1 kz)T[ k1+ kz] 1( k1 kz) (5)
ko k1

The Mahalanobisdistanceusedin Fisher LDA is a particular caseof the Bhat-

tacharyya, whenthe variancesof the two classesre equal, this would eliminate
the rst term of the distance.This term dependssolely of the variancesof the

distribution. If the variancesare equalthis term will be zero,and it will grow

asthe variancesare di erent. The secondterm, on the other hand will be zero
if the meansare equaland is inverselyproportional to the variances.Figure 5
represets thesetwo cases.The assumptionof normality canbe a critical issue
if there is no knowledgeof the distributions. Newertheless,the discrimination

power can still be exploited.

My T My My

Fig. 5. Bhattacharyya distance cases(a) di erent meanswith similar variances(b)
Similar means,di erent variances.

3.2 BhattacharyyaSpce

The Bhattacharyya space,B,p (i; p), is de ned as:

11
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where eat classpair, p, betweenclassek;; k, at measuremeni will have a
Bhattacharyya distanceDg (SLl; Sf(z), and will producea Bhattacharyya space
of dimensionsN, = (")) and N; = 70: N, N; whereo is the order of the
OP and Ni the number of classesThe domainsof the Bhattacharyya space
areL; = f1,2;:::7ogand L, = f(1;2);(1;3); 11 (Kes ko) :i i (N 15 Ny)o.

The Bhattacharyya Spaceis a bivariate state from which two marginal distri-
butions can be extracted:

X _ R o _
Bi(i) = Bip(i; p) = De(S,iSk,): 1= 15N 7)
p=1 p=1
Xi _ Ri o
Be(p)= Bir(ip) = Ds(Sy;S,); p= 1Ny (8)
i=1 i=1

The marginal over the classpairs, B, (i) sums the Bhattacharyya distance
of every pair of a certain feature and thus will indicate how discriminant
a certain sub-band OP lter is over the whole conbination of class pairs.
The marginal Bp (p) sumsthe Bhattacharyya distance for a particular pair
of classesover the whole measuremen spaceand reveals the discrimination
potential of particular pairs of classesvhen multiple classesare presen.

To visualisethe previous distribution, the Bhattacharyya Spaceand its two
marginal distributions were obtained for gure 1 (f). Figure 6 shows: (a)
Bip(i; p), (b) B, (i) and (c) Bp(p). Thesegraphsyield useful information to-
ward the selectionof the featuresfor classi cation. The most discriminart
featuresfor the training data presened are S1%181% A certain periodicity is
revealedin the following dimensionsof the measuremenspace;1; 7; 14; 21; 28,
which have the lowest values (this is clearerin the marginal B, (i)). These
measuremets correspnd to low pass lters of the OP. Sincethe textures
that make up this mosaichave beendeliberately histogram equalised the low
passfeaturesprovide the lowest discrimination power.

The marginal Bp(p), where the index of p correspnd to the pairs L, =
f(1;2);(1;3);::: (ks ka); (N 1;Ng)g, can be useful to identify certain
pairs of textures which are di cult to segmen

12



Bhattacharyya distance
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Bhattacharyya distance

(b)

Bhattacharyya distance
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Fig. 6. (a) The Bhattacharyya SpaceB p (i; p) for the Natural Texturesimageand its
corresponding marginals (b) B, (i), (c) Bp(p). The index of Class Pairs correspond
to the pairs Ly = f(1;2);(1;3);::: (ks k2); -2 :(Nk 1, Ny)o.

3.3 Order Statistics for Feature Ranking

If the marginal B, (i) = fB,(1);B,(2);:::B,(70)g; is sorted in increasingor-
der, its order statistic will be:

Ba)(i) = B()(1);B()(2);:::B)(70)g; 9)
B(|)(1) B(|)(2) N B(|)(70):

where ™ (B, (i) = B((70), ™" (B, (i) = B()(1) and B, (i) = By(j). The

domainL; = f:::;j; :::g providesa particular route for the state spaceseart.

13



In other words, a re-orderingof the elemers of Measuremenh spaceS' before
being sequetially provided to the classi er. The dimensionsof the setremain
the sameas of the measuremen space:N; = N;.

Figure 8 exempli es this for a 4-measuremeinstate space.lt is important to
mertion two aspectsof this selectionprocessFirst, the Bhattacharyya spaces
constructedon training data. Secondthe individual Bhattacharyya distances
are calculated betweenpairs of classesAs a result of thesetwo aspects, there
is no guarartee that the feature selectedwill improve the classi cation of the
whole data space,they can be mutually redundart or may only improve the
classi cation for a pair of classedut not the overall classi cation [23].

Thus the conjecture to be tested then is whether the classi cation can be
improved in a best- rst, sequetial selectionde ned by the Bhattacharyya
spaceorder statistics. The natural textures image was classi ed with seweral
sequeftial selectionstrategies:

Following the unsorted order of the measuremen space:S?, S?, S® etc.
Following the marginal B(;)(i) in decreasingorder: S*9, S8, S etc.
Following the marginal B(;)(i) in increasingorder: S?8, S?1, S’ etc. (The
converseconjectureis that the reverseorder should provide the worst path
for the classi cation.)

Three random permutations.

1

T
—— No order

=-@- Sorted marginal (best case)
. > Inverse marginal (worst case)
Laant X N -~ Random order

0.9F "\ ae :

0.8

0.7

Misclassification

0.6 —

i i i i
(o] 5 10 5 30 35

i5 20 2
Number of features classified

Fig. 7. Misclassi cation error for the sequetial inclusion of featuresto the classi er
for the gure 1 (f).

The sequetial misclassi cation resultsof the previousstrategiesare presered
in Figure 7 wherethe advantage of the route provided by the B)(i) can be
seen.

Although the Bhattacharyya spaceappearsto be the best result, there are
somefeaturesthat when included increasethe misclassi cation. A heuristic
method is proposedto overcomethis problem. If the whole state spaceis

14



Fig. 8. State Spacefor sequetial selectionfollowing the route determined from the
Bhattacharyya Space.

traversedup to the statef 1; 1;: ::; 1g, amisclassi cationgraphwill shav which
the particular e ect to the misclassi cation (positive/negative) of eat feature
when included in the classi er. From the graph shovn in gure 7 It can be
seenthat most of the featurescortribute positively to the classi cation with
the exceptionof B(;)(14; 30), and the last v e featuresB(;,(31 35) leave the
classi cation unchanged.Thesefeaturescanbe removed from the classi cation
procedure:

S 2vif (S%4S%:::;9)> (8hS%:::S Y (10)

In the previousexample,the setof featuresto be includedin the classi er will
be:Lnm =L; nf1430 35. L, isthe domain of the Feature Space a reduced
and orderedversion of the Measuremeh Space:Sg S, S™ 2 Sg; S™ 2 S,
Nm  Nj: The dimensionsof the Feature SpaceareL, L. Lp.

Another solution that is provided by the order statistic of the Bhattacharyya
Spacemarginal is the option to selecta predeterminednumber of featuresas
the reduced set or sub-spaceusedfor classi cation. This can be use particu-
larly in caseswhereit can be computationally very expensiwe just to obtain
the whole measuremen space.Then, basedon the training data, just a few
measuremets are generatedbasedon the rst n features provided by the
Bhattacharyya space.

4 Results

Table 2 presens characteristics and classi cation details for the 9 images.
The OP sub-band Itering wasusedto generatethe measuremen spaceof 35
dimensions.This was classi ed with a singleresolution algorithm (&). Then,
for eath measuremety a QT of 5 levelswas constructedand the classi cation
was performed at the highest level. Buttery Iters were usedto re ne the
boundarieson the descen of the QT. Finally, feature selectionwas performed
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Table 2
Characteristics of the imagesand their classi cation results for Single and multires-
olution without feature selectionand multiresolution with feature selection.

Figure Size Classes | Source Misclassi cation (%)
No selection, 35 Feats | Feature selection
Single Multi Multi Features

a 256 256 5 Bro datz 9.0 5.2 2.8 23

b 256 256 5 MIT 31.7 14.7 14.7 35

c 256 256 5 MIT 20.6 22.0 8.4 29

d 256 256 5 MIT 20.7 16.1 7.3 14

e 256 256 5 MeasTex 17.2 8.5 4.3 20

f 512 512 16 Bro datz 32.7 20.4 17.9 23

g 512 512 16 MIT 49.5 44.5 32.0 21

h 256 640 10 Bro datz 27.9 25.9 14.7 21

i 256 640 10 MIT 39.5 324 20.2 14

Average 27.6 21.1 13.6

Table 3

Comparative misclassi cation (%) results of Malpica [31], Randen [35], Ojala [34]
and multiresolution with feature selection. Best results are in bold .

Metho d Figures

a b [ d e f g h i | Average
Co-occurrence 99 | 270 | 26.1 | 51.1 | 35.7 | 49.6 | 554 | 353 | 491 37.69
Best in Randen 72| 189 | 206 | 168 | 17.2 | 347 | 41.7 | 323 | 278 24.13
ps (Ojala) 74| 128 | 159 | 184 | 166 | 27.7 | 333 | 176 | 18.2 18.66
LBP (Ojala) 6.0 | 180 | 12.1 9.7 | 114 | 170 20.7 | 227 | 194 15.22
Watershed (Malpica) 71| 107 | 124 | 116 | 149 | 200 | 186 | 12.0 | 153 13.62
Prop osed algorithm 2.8 148 | 8.4 7.3 4.3 179 | 320 | 147 | 20.2 13.61

with the Bhattacharyya spaceand the lowest misclassi cation was selected.
The number of featuresvaried from 14 up to one case(b) in which the 35
featuresprovided the best result.

Two important obsenations should be made, rst, multiresolution classi ca-
tion can improve results over single resolution and second,feature selection
can further reducethe misclassi cation.

To ewaluate the performanceof the multiresolution classi cation with feature
selection, a comparisonwas made against the best results of Randen, the
results of Ojala [34] who usedLocal Binary Patterns (LBP) and multidimen-
sionaldistributions of signedgrey-le\el di erences (psg), and thosereported by
Malpica [31]who useda multichannelwatershed-basedlgorithm with wavelet
features.The resultsof Randen'sco-accurrenceare includedin the comparison
sincethey are widely used.

The nal classi cation results are presened in table 3 and the following ob-
senations can be made.

It should be noted that co-occurrencecan easily be outperformed, it is the
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worst classi cation individually and overall.

The best results preserted by Randenwere outperformedby all the other
methods. Again this was to be expected, since the classi cation sdhemes
were far more complexthan thoseusedby Randen.

The methods proposedby Ojala outperform thoseof Randenand have good
results, in somecasesthey are better than Malpica's, but in generalthey
can be outperformed.

The multichannel watershed-basedalgorithm (Malpica [31]) preselts very
good results, in four casest hasthe lowest misclassi cation.

The multiresolution algorithm with feature selection presens very good
results, it is comparablewith Malpica's results and in someof the images
it providesthe best classi cation.

As an indication of the computational complexity of the algorithm presened,

the computation time of the programsrunning with Matlab version6.5 R13
running on a Linux platform basedon a Pertium 4 CPU 2.80 GHz was mea-
sured. The time for the 16-classsegmetation of gure 1 (f), was 2.7sfor
k-meansclassi cation at a singleresolution and 56.3sfor multiresolution with

feature selectionthrough the Bhattacharyya space.No systematicattempt to

make the code moree cien t wasmade.The classi cation resultsare presened

below. Figure 9 shows the boundarieson top of the original images, gure 10
shows the results as classi ed regions,and gure 11 shows the pixelsthat are
correctly classi ed. Theselatter results are consideredby the author to be the
most revealing sinceshowing only the labelled classesor only the boundaries
on top of the original imagescan be misleading.

5 Conclusions

A feature selectionmethodology using a novel Bhattacharyya Space has been
preseed. The Bhattacharyya Spaceis obtained by calculating the Bhat-

tacharyya distanceof pairs of training classesThis method allowsthe selection
of the most discriminarnt featuresof a measuremen spaceS by assessinghe
classpair or feature marginal of the space.This marginal can be usedas a
path to follow with a wrapper algorithm. While the solution provided by the
Bhattacharyya spaceis sub-optimal in variousways, whenit is conmbined with

a multiresolution classi cation it can provide the lowest misclassi cation of
the textured imagespresened by Randen[35].

Another application of the Bhattacharyya spaceis for detecting which pairs
of classesvould be particularly hard to discriminate over all the measuremen
space,and in somecasesthe individual useof one point of the spacecan be
also of interest.
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The useof the Bhattacharyya Spaceimplies that the number of classess pre-
viously known, thusiit is not preseried asa method to determinethe presence
or absenceof a number of clusters(one or more) in a certain space.lf this is
required, other methodslike the Two-point correlation function or the distane
histogram proposedby Fatemi-Ghomi[12] could be used.
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Fig. 9. Classi cation of the imagesin gure 1.
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Fig. 10. Classi cation of the imagesin gure 1. Classesare preserned as di erent
levels of grey.
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Fig. 11. Classi cation of the imagesin gure 1. Pixels that are correctly classi ed
appear in white.
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