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CHAPTER 1

HAR MODELING FOR REALIZED
VOLATILITY FORECASTING

Fulvio Corsi (University of St. Gallen), Francesco Audr{lumiversity of St. Gallen),
Roberto Ren (University of Siena)

1.1 INTRODUCTION

The importance of financial market volatility has generadeery large literature
in which volatility dynamics has been modelled in order tketénto account its
most salient features: clustering, slowly decaying awtwetation, and non-linear
responses to previous market information of a differenétyp

In the literature, these phenomena have typically gives tagsmodels in which
volatility is generated by a long memory process, charedrby fractional inte-
gration and an hyperbolic decay of the autocorrelationtionc However, in this
chapter we follow an alternative direction which generaggy similar stylized facts
for volatility series using the superposition of short meyfoequencies. This frame-
work turns out to be easier to handle, with a straightforvesx@homic interpretation
and an excellent fit to the data.

Volatility Models and Their Application®y Bauwens, Hafner, Laurent 1
Copyright(© 2011 John Wiley & Sons, Inc.
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2 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

Originally, this framework was inspired by the work of [66jdi[41]. We view
volatility persistence as the result of the aggregatiohefieterogeneous components
presentin the financial market (the so called Heterogendauset Hypothesis). Het-
erogeneity among participants in the financial market magfteedifferent nature:
differences in the endowments, institutional constrairigk profiles, information,
geographical locations, and so on. The proposed model ntnates on the het-
erogeneity that originates from (or materializes in) thifedence in time horizons.
Typically, a financial market is composed of participantsih@ a large spectrum
of trading frequencies. At one end of the spectrum are dgatearket makers,
and intraday speculators with an intraday trading horizAhthe other end, there
are institutional investors, such as insurance compameésansion funds trading
much less frequently and possibly for larger amounts. Theidkea is that agents
with different time horizons perceive, react to, and catierént types of volatility
components.

In addition, it has been recently observed that volatilitgidonger time intervals
has stronger influence on volatility over shorter time inés than conversefyThis
can be economically explained by noticing that for shomrtéraders the level of
long-term volatility matters because it determines theeexgd future size of trends
andrisk. The overall pattern that emerges can be statlgtitescribed by a cascade of
heterogeneous volatility components (generated by theraof market participants
of different natures) from low frequencies to high frequiesc

This idea has been pursued in [34], who proposed an addisiseacle model
of realized volatility aggregated at different time homngo This cascade of het-
erogeneous volatility components leads to a simple AR-typedel in the realized
volatility that considers volatilities realized over @ifent time horizons and is thus
calledHeterogeneous Auto-Regress{tAR). In spite of its simplicity and the fact
that it does not formally belong to the class of long-memoogeis, the HAR model
for realized volatility is able to reproduce the volatilipersistence revealed by the
empirical analysis on financial markets. The combinatioease of implementation
with a very accurate fit of financial volatility time seriesshmade the HAR models
very popular in the financial econometrics community.

In this chapter we survey the HAR model for realized volgtiforecasting and
its extensions. After reviewing some stylized facts of il volatility we present
the derivation and possible interpretations of the hetemegus structure of the HAR
model. We then discuss different extensions of the unit@klsAR model aiming at
modeling the forecasting power of jumps, leverage effedtstructural breaks.

In particular, we provide evidence for the contention thahps have signifi-
cant impact on future realized volatility and that the impafcnegative returns (the
so-calledleverage effegtis highly persistent and also presents a HAR structure,
confirming the view of the existence of an heterogeneoustsiral in the financial
market. Moreover, we also provide empirical evidence oftkistence of other non-
linear effects of past market information on volatility drettop of the leverage effect

1see [66], [4] and [61].
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STYLIZED FACTS 3

by introducing a flexible HAR-type model able to explicitBke into account struc-
tural breaks and regime-switches. Finally, we provide aflseview of multivariate
models for realized variance-covariance matrix dynamics.

1.2 STYLIZED FACTS ON REALIZED VOLATILITY

Summarized from the vast literature on the empirical anslgtfinancial markets,
the main characteristics of financial markets volatilitg:ar

1. Longrange dependence: (hourly, daily, weekly and mghtbhlized volatility
displays significant autocorrelations even at very long.laghis property is
often ascribed to a long memory data generating processidrchapter, we
take another approach by using a superposition of autsgigeeprocesses
with different time scales.

2. Leverage effect: it is empirically observed that retuans negatively corre-
lated with (realized) volatility. In particular, volatiyi bursts are more likely
associated with negative past returns.

3. Jumps: financial prices are subject to abrupt variatidhsnps are not very
frequent and practically unpredictable, but they have @sgtpositive impact
on future volatility.

To illustrate these stylized facts of realized volatilitg1(;), let us now consider
historical data onthe S&P 500 stock index over the perio@18®89. Figure 1.1 plots
Corr(RVy, Z—_y), i.e. the correlation betwedRV; andZ;_;,forh = 1,...,50. Z;
corresponds either tBV;, negative daily returns-{ = min(r, 0), wherer; is the
return on day), positive returnsi;” = mazx(r;, 0)) or jumps (J;). More details on the
data and the estimation &V; and.J; are given in Section 1.3Corr(RV;, RVi_p)
is the AutoCorrelation Function (ACF) aRV;. Figure 1.1 clearly suggests the
presence of long-memory in the realized volatility. Thisufig also suggests that
while past positive daily returnﬁjc ,) are not significantly correlated witRV;, past
negative returns+{_, ) have a significant impact on futures volatilities, and rizga
shocks take a long time to die out (which might also be viewetbag-memory).
Interestingly, jumps seem also to have a positive impactubaré values ofRV,
although their effect decays at a faster rate thdn andr,_,. This motivates the
analysis in the following sections.

1.3 HETEROGENEITY AND VOLATILITY PERSISTENCE

The appearance of long range dependence might be due to engdong-memory
data generating process or, alternatively, it can be expthas a combination of
different short memory processes (as discussed furthewpeRlthough a true long
memory process requires the aggregation of an infinite nurmbshort memory
processes (as shown by [52]), an approximated long memageps (practically
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4 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

Correlation between realized volatility and past realized
volatility, negative/positive returns and jumps.
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Figure 1.1 Corr(RVy, Zi—n) (b = 1,...,50) for the S&P 500 series for the period
January 1990 to February 2004, corresponds either t&V;, negative daily returng-{ =
min(r¢,0), wherer; is the return on day), positive returnss” = mazx(r¢,0)) or jumps
(J:). The displayed5% confidence bands (dashed lines) are computed with the dizedra
Bartlett's formula of [46].

indistinguishable from a true one) can be obtained by aggimg only few hetero-
geneous time scales ([58]).

The need for multiple components in the volatility proceas been advocated
by (among others) [66], [43], [21], [14], and [26] and has eeconsidered by
making use of the concept of an additive cascade of realinéatibty aggregated
over different time horizons in [34]. In what follows, we éfiy review this latter
approach.

We assume that the state variable(typically the log price) is driven by the
stochastic process:

dXt = /,Ltdt + Utth + Ctht, (11)

wherey, is predictableg; is cadlag andN; is a doubly stochastic Poisson process
whose intensity is an adapted stochastic progesthe random times of the corre-
sponding jumps arér;);=1,....n, ande; are iid adapted random variables measuring
the size of the jump at time;. In practice, e.g. for risk management purposes, we

2We could also consider a wider class of jumps, such @gylin the case in which they have a finite
guadratic variation process.
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are interested in forecasting the quadratic variation eefars:

41
~2 2 2
o; —/ o ds + E Cro

t

t<r; <t+1

where the time unit is one day.
This quantity is not directly observable and therefore lodset estimated. Let us
denote byV; a consistent estimator 6, that is:

log 57 = log Vi + w;,

wherew; is iid noise® In the ideal case of no microstructure noi&d/; is the most
natural choice foi;. In the presence of microstructure noise, other estimaties
preferable such as the two-scale estimator proposed by f{lid]realized kernels
method of [13], the pre-average approach of [55], or the irsgliles Discrete Sine
Transform estimatoST) of [40]. In our empirical analysis in Section 1.6, we use
theDST estimator. R

Consider the aggregated valued®f V;, defined as:

logV == Zlogvt it (1.2)

and assume two different time scales, of lengtlandn,, withn; > ns (e.g. weekly
and daily). For the largest time scale, assumedtiabnce aggregated as in (1.2), is
determined by:

log 02 (m) () 4 glm) log V( ) (Tn?l (1.3)
wheregi”l) is an iid random variable with mean zero and unit variancectviis
independent on the estimation eregr andc(™) ands(™1) are unknown parameters.

This can be explained by assuming that the level of shomt-teratility does not
affect the trading strategies of long-term trade®@n the other hand, for short-term
traders the level of long-term volatility matters becausgeiermines the expected
future size of trends and risk. Hence, the shorter time sgalgis assumed to be
influenced by the expected future value of the largest tim&se, ), so that:

log ) = ) 4+ 80 10g U, +50E, [log 7| + (), (14)

wheres("2) is an iid random variable with mean zero and unit varianagejpendent

on g§"1> andw; andé(™2) is a constant. The economic interpretation of this mech-
anism is that each volatility component corresponds to &etaromponent whose

3The model can also be specified in termsVafand for\/7 as in [34] [3] and [38]. However, the
log specification has the double advantage of avoiding ifngogositivity constraints and making the
distribution closer to normality, see e.g. [51].

4The HAR model would hold even if we allow the short-term vitilstto affect the long-term volatility.
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6 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

expectation on next period volatility is formed lookingla¢yond the current realized
volatility value, the forecast on the longer time horizomelbasic idea is that agents
with different time horizons perceive, react to, and catierént types of volatility
components. By substitution, this gives:

log \A/iizn)2 =c+ B log \A/inz) +81) 1og \A/inl) +€4; (1.5)

wheree, is iid noise depending oaﬁ"l), sﬁ”z), w¢. The model (1.5) can be easily
extended tal horizons of lengtn; > ne > ... > ny. Typically, three components
are used with length; = 22 (monthly),n, = 5 (weekly),n3 = 1 (daily).

The HAR model is then a parsimonious AR model reparametbyamposing
different sets of restrictions (one for each volatility quoment) on the autoregressive
coefficients of the AR model. Each set of restrictions takesform of equality
constraints among the autoregressive coefficients catisgita given time horizon,
so that once combined they lead to a step function for theregrtessive weights.
In this sense, the HAR can be related to the MIDAS regressida A, [48], and
[45], although the standard MIDAS with the estimated Betafion lag polynomial
cannot reproduce the HAR step function weights.

In practice, the HAR model provides a simple and flexible rodtho fit the
partial autocorrelation function of the empirical datatwat step function which has
predefined tread depth and estimated (by simple OLS) rigghheMore generally,
however, nothing prevents the use of different types of éeimthe aggregation of
\A/t instead of the rectangular one used in the simple movingageegin this case we
would no longer have a step function for the coefficients bubae general function
given by a mixture of kernels (e.g. mixture of exponentiatsfkponentially weighted
moving averages) which can still be easily estimated by Er@hLS.

Even if the HAR model does not formally belong to the classoofgl memory
processes, it fits the persistence properties of finandialatawell as (and potentially
better than) true long memory models, such as the fractioimaégrated one, which,
however, are much more complicated to estimate and to ddalgee the review of
[10]). For these reasons, the HAR model has been employexvéra applications
in the literature, of which an incomplete list is: [47] andb][4ompare this model
with the MIDAS model; [3] use an extension of this model todfoast the volatility
of stock prices, foreign exchange rates and bond price$;if@ilement it for risk
management with VaR measures; [20] use it to analyze theeiskn tradeoff; [18]
use it to study the relation between intraday serial cotiteiaand volatility.

In the literature dealing with HAR models, it is commonly @s®d that the
innovations of the log realized volatility are identicadliygd independently distributed.
However, volatility clustering in the residuals of the HARde! (as well as in other
realized volatility models) are often observed in pradtégaplications. The presence
of time-varying conditional distributions in realized watility models can distort risk
assessment and, thus, impair risk management analysiscdarat for the observed
volatility clustering in realized volatility [37] extendhé HAR model by explicitly
modelling the volatility of realized volatility. The proged model adds GARCH
type innovations to the standard HAR model, giving rise tdH&R-GARCH(p, q)
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HETEROGENEITY AND VOLATILITY PERSISTENCE 7
model which, with the three commonly used frequencies,sead

~(1 ~(1 ~(5 ~(22
log V) = ¢+ W 10g Vi 4580 10g V) 15D 106U 1\ /e, (1.6)

q p
he=w+ Y ajui ;+ Y bihi (1.7)
j=1 j=1

Et|Qt_1 ~ zzd(O, 1), (18)

where(2; _; denotes the-field generated by all the information available up to time
t — 1 andu; = v/hees.

1.3.1 Genuine long memory or superposition of factors?

Assessing whether volatility persistence is generated gta-generating process
with genuine long memory or from a superposition of factardlastrated above may
appear an impossible task. Clearly, the two possibilitigghtgenerate very similar
empirical features which would make them indistinguiskalr this case, analytical
tractability becomes the most important feature to takeatcount. However, as we
discuss here, some specific data generating processes rdadeut on the basis of
the statistical features of the realized volatility timeiss.

Such an investigation is carried out in [39]. They propose mompeting
continuous-time models for the volatility dynamics whiakldng to the class (1.1).
The first one is a genuine long-memory model with constardtilidy/-of-volatility:

dlog oy = k(w — log oy)dt + ndW?, (1.9)

Whereth(d) is afractional Brownian motiorwith memory parametet € [0, 0.5],
see [33]. The valu@ = 0 corresponds to the standard Brownian motion, while
higherd correspond to higher memory in the time series. Model (h®it$ discrete
counterpart) is usually advocated as the source of long memovolatility, even
if it is very difficult to deal with mathematically and econetrically. It is impor-
tant to note that in this model persistence comes both framtban-reverting term
k(w — log o) and from the fractional Brownian moticht(d). [39] estimate model
(1.9) viaiindirect inference, using the HAR model as aurjlimodel. The advantage
of indirect inference is that, beyond providing an estinadtthe parameters, w, 7,
andd, it provides overall statistics of the goodness-of-fit & thodel. They find un-
ambiguously that the model (1.9) is unable to reproducethe series of volatilities
in the S&P500 index.

The second model they test is an affine two-factor model:

op = V' + V2
dV,! = k(w1 — V) +m/Viidw)} (1.10)
dV? = ka(wz = V) + m2/ VAW,
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8 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

where W' and W?2 are two independent Brownian motions. In this case, even
imposing the restriction, = w- to identify the modé), the two-factor model is
perfectly able to reproduce the statistical features ofuiiiatility of the S&P500
index. The obtained estimates &f = 2.138 andi, = 0.006 imply the presence

of a fast mean-reverting factor and a slowly mean-reveftctpr with a half-life of
nearly166 days, which is usually suggested in the empirical literatur stochastic
volatility and option pricing.

Clearly, a more complicated long-memory model (e.g. witb factors) might
also reproduce the volatility time series, so it would bengr¢o conclude that these
results rule out the presence of genuine long memory in ttaility series. However,
these results show that the superposition of volatilitydesis able to reproduce the
long range dependence displayed by realized volatility,which a genuine long
memory data generating process is unnecessary (and ¢erainmathematically
convenient).

These results can also help explaining the good perfornafmoalti-factor model
in the option pricing, see e.g. [16]. They also suggest tatfactors might be
unnecessary if the volatility dynamics is specified dinggtith a model similar to
HAR: an attempt in this direction is the study proposed by] [BGere a realized
volatility option-pricing model is developed based on th&Rdstructure. Such a
model is found to provide good pricing performances.

1.4 HAR EXTENSIONS

1.4.1 Jumps measures and their volatility impact

The importance of jumps in financial econometrics is rapigiigwing. Recent
research focusing on jump detection and volatility measpim presence of jumps
includes [12], [62], [59], [56], [2], [1], [29], [63] and [Z4 [3] suggested that the
continuous volatility and jump component have differemhamyics and should thus
be modelled separately. In this section, we closely folld®] using theC-Tz tesf

for jumps detection, an@iBPV,, i.e. the threshold bipower variation, to estimate the

5The structural model (1.10) haésree parameters while, the auxiliary three components HAfdehhas
5 (including the parameter of the variance of the innovalions
6The C-Tz statistics is defined as:

(RV¢ — C-TBPV:) - RV; !

=2 C-TTrPV
\/(T T 5) max {1’ (TBPv o }
whered is the time between high-frequency observatiabsT BPV; is a correction of (1.12) devised to

be unbiased under the null addTTriPV is a similar estimator of integrated quarticiffr1 olds; see
[38] for details.

CTze =62 , (1.11)
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continuous part of integrated volatility, defined as:
. n—2
TBPVt = 5 Z |At]X| . |Atvj+1X|I{‘At.jX|2S19j—1}I{lAt,j+1X|2S19j}’ (112)
§=0
wherel[ ., is the indicator function and; is a threshold function which we estimate
as in [38]. It can be proved that, under model (1TBPV; — ff“ o2ds as the
interval between observations goes to zero. This contiswuolatility estimator has
much better finite sample properties than standard bipoasation and provides
more accurate jump tests, which allows for a corrected s¢iparof continuous and
jump components. For this purpose, we set a confidence deagld estimate the
jump component as:

~ +
S =Icreany - (Vi TBPV,) (1.13)

where @, is the value of the standard Normal distribution corresjrogndo the
confidence levek, andz™ = max(z,0). The corresponding continuous component
is defined as: R

Ci =V — Uy, (1.14)

which is equal t07t if there are no jumps in the trajectory, while it is equal®PV;
if a jump is detected by thé-Tz statistics.
As forlog V; we define aggregated valueslog C; as

w_ LIy
log C]E ) = - Zlog Ci—jt1-
j=1

For the aggregation of jumps, given the presence of a largebeuof zeros in the
series, we prefer to simply take the sum of the jumps over thdaow / instead of

the average, i.e.:
Jgn) = Z Jt7j+1 .
j=1

Consistent with the above section, in the volatility cagcae assume th&t;, and
J; enter separately at each level of the cascade, that is:

log 53}5311) =cm) 4 oM log(1 + J,Enl)) + A1) Jog C,Em) +5§11,21
log 5%:;;) =cn2) 4 gn2) log(1 + J,E”Q)) + B2) 1og C,E”Q)
+ oIE, [log Chty 1)} + e,
originating the model:

~(n2)

logVi\,, = ¢ + o) log(1 + ng)) + a™) log(1 + JE”Z)) (1.15)
+ B2 g C§n2) +8) 1og Cﬁ"l) +e4.

Note that we uséog(1 + J;) instead oflog J; sincelJ; can be zero. This model has
been introduced as the HAR-CJ model by [3].
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10 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

1.4.2 Leverage effects

It is well known that volatility tends to increase more aftenegative shock than
after a positive shock of the same magnitude: this is theafleetleverage effect (see
[30, 27, 50] and more recently [19]).

Given the stylized facts presented in Section 1.2, it is thetural to extend the
Heterogeneous Market Hypothesis approach to leverageteffaVe assume that
realized volatility reacts asymmetrically not only to pimys daily returns but also
to past weekly and monthly returns. We model such heteragenieverage effects
by introducing asymmetric return-volatility dependenteach level of the cascade
considered in the above section. Define daily retufns X; — X;_; and aggregated
returns as:

n
=Ly,
== t—j+1-
t n 4 Jj+
j=1

To modelthe leverage effect at different frequencies, Wiaeleff”)’ = min(r,gn), 0).
We assume that integrated volatility is determined by ttieviong cascade:

loga) = e 4 B log V" 4 mlrmT )
log 53_&25) = ") 4 5(”2) log \A/Enl) +7(”2)r§"2)_ + 5 E, [log 5?;8}11)] + EETn)w

wherev("1.2) are constants. This now gives:

log \A/Efn)2 = c+p4"2) log \A/,EM) +8™) log \A/,Enl) (M7 () pm)
(1.16)
We then postulate that leverage effects influence each meokeponent sepa-
rately, and that they appear aggregated at different hosizothe volatility dynamics.
Combining heterogeneity in realized volatility, leveraged jumps, we construct
the Leverage Heterogeneous Auto-Regressive with Continugaslity and Jumps
(LHAR-CJ) model. As is common in practice, we use three camepts for the
volatility cascade: daily, weekly and monthly. Hence, thegmsed model reads:

-~ h |4
log VEJr)h =c + BDlogC,+ ™ log C,(j’) + 8™ log ngz)
+ a@log(1 + J;) + ™) log(1 + J§5)) + o™ log(1 + 1)
+ A Dry DT 2 R, (1.17)

Model (1.17) nests the other models introduced in the chapthena(dw:™) =
y(dwm) — 0 andC, = V,, the model reduces to the HAR model (1.5). When
yldw.m) — (), we get the HAR-CJ model (1.15).

Model (1.17) can be estimated by OLS with the Newey-Westicamae correction
for serial correlation. In order to make multiperiod preitins, we will estimate the

model considering the aggregated dependent var]a@@ii)h with h ranging from
1to 22, i.e. from one day to one month.
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1.4.3 General non-linear effects in volatility

Another question of interest is to investigate whether ¢évelage effects introduced
in the previous section are the only relevant non-lineartiigt case asymmetric)
behaviors present in the realized volatility dynamics spense to past shocks in the
market and, more in general, in the whole (macro)economsadt in the last five
years several empirical studies published in the liteesipplied different (parametric
and non-parametric) methodologies to the problem of esitigaand forecasting
realized volatilities, covariances, and correlationsatyits. These showed that they
are subject to structural breaks and regime-switchesmbyeshocks of a different
nature: see, among others, [65], [69], and [7].

To investigate this, we generalize the LHAR-CJ model inticeetd in (1.17) to
estimate leverage effects. We propose a tree-structucadl HHAR-CJ model (Tree
HAR-CJ) which is able to take into account both long-memary possible general
non-linear effects in the (log-) realized volatility dynems. Tree-structured models
belong to the class of threshold regime models, where regjane characterized
by some threshold for the relevant predictor variables. dlass of tree-structured
GARCH models was introduced by [5] in the financial volagiliterature, and was
generalized recently to capture simultaneous regimessinfthe first and second
conditional moment dynamics of returns series (see, fongka, [8]). The proposed
model reads: o o

log Vs i, = Eqllog V] + e, (1.18)

whereE;[-] denotes (as usual) the conditional expectation given thoeriration up
to timet. The conditional dynamics of the realized (log-) volai# are given by:

o)
E, [10gvt+h] =

Shole #8108 Co+ B 10g €Y + 8™ log C*Y

0l log(1 + ) + ™ log(1 + J) + al™ log(1 + &)

(@, ), (6 ) (2]

Ay Dy + 4D (1.19)

(X{eRr;)
wherefd = (cj, gdw m),ﬁ (dyw,m) v(dw ™ j =1,...,k) is a parameter vector
which parameterizes the Iocal HAR CJ dynamlcs in the difieregimesk is the
number of regimes (endogenously estimated from the datd)/;a is the identity
function that defines regime-shifts.

The regimes are characterized by partition cRllsof the relevant predictor space

G of X

k
G=JR; RinR; =0 (i # ).
j=1

"The drastic 0-1 rule to define regime-switches can be relaxatiow for more smooth regime transitions
using, for example, a logistic function instead of the idgrfunction; see [65].
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12 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

For modeling (log-)realized volatilities, the relevaniegictor variables inXtper
are past-lagged realized volatilities (considering thereged ones, as well as the
continuous and the jump parts alone), and past-laggedneetfr the underlying
instrument under investigation to allow explicitly for Enage effects. In taking
volatility cascades into account, all such predictor Jalga are considered at three
different time horizons: daily, weekly, and monthly. Wealsonsider time as an
additional predictor variable to investigate the relewaofstructural breaks in tinfe.

To completely specify the conditional dynamics given inl@).of the realized
volatilities, we determine the shape of the partition cRlls which are admissible in
the Tree HAR-CJ model. Similar to the standard classificasind regression trees
(CART) procedure (see [25]), the only restriction we impizsiat regimes must be
characterized by (possibly high-dimensional) rectangiélis of the predictor space,
with edges determined by thresholds on the predictor vimsatsuch partition cells
are practically constructed using the idea of binary tréesoducing this restriction
has two major advantages: it allows a clear interpretatioh@ regimes in terms
of relevant predictor variables, and it also allows an estiom of the model using
large-dimensional predictor spag@s

The Tree HAR-CJ modelintroduced above can be estimatedydneed sequence
of partition cells using quasi-maximum likelihood (QML)h& choice of the best
partition cells (that is, splitting variables and threshwhlues) involves a model
choice procedure for non-nested hypotheses. Similar toTCAR model selection
of the splitting variables and threshold values can be perd using the idea of
binary trees (for all details, see [8], Section 2.3 and Aglpe). Within any data-
determined tree structure, the best model is selected udinignation criteria or a
more formal sequence of statistical tests to circumventtifieation problems (see
[65]).

1.5 MULTIVARIATE MODELS

We now turn to a multivariate setting, in whichRdY -valued stochastic proces§
evolves over time according to the dynamics:

dXt = /,Ltdt + thWt + de

wherey; is anR” -valued predictable process; anR™ > -valued @dlag process,
Wi,...,Wx is anN —dimensional Brownian motion antl/, is aR" valued jump
process. Modeling and forecasting asset returns (condilicovariance matrix
¥; is pivotal to many prominent financial problems such as aasietation, risk
management and option pricing. However, the multivariateresions of the realized
volatility approach pose a series of difficult challengest thre still the subject of
active research.

8The predictor set can be easily expanded to incorporateniraiion included in any other relevant
(endogenous or exogenous) explanatory variable.
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MULTIVARIATE MODELS 13

First, in addition to the common microstructure effect iggealized volatility
measures (i.e. bid-ask spread, price discretenesstb&sp called non-synchronous
trading effect ([60]) strongly affects the estimation oétrealized covariance and
correlation measures. In fact, since the sampling from thaetlying stochastic
process is different for different assets, assuming thattime series are sampled
simultaneously when, indeed, the sampling is non-synausrgives rise to the
non-synchronous trading effect. As a result, standardrevee and correlation
measures constructed by imposing an artificially regulaggced time series of
high frequency data will possess a bias toward zero whicteases as the sam-
pling frequency increasésThis effect of a consistent drop of the absolute value of
correlations when increasing the sampling frequency wasrfported by [44] and
hence called the Epps effect. To solve this problem, varappsoaches have been
proposed in the literature: incorporate lead and lag cresgns in the estimator
([70], [32],[22], [9]), avoid any synchronization by ditde using tick-by-tick data
([42],[54],[53],[67],[71],[72],[35]), multivariate ralized kernel ([11]), and the mul-
tivariate Fourier method ([68, 64]). Given the high levelpafrsistence presents in
both realized covariances and correlations, the HAR moaekldiso been employed
to model the univariate time series dynamics of realizedetations as in [7].

Second, when realized volatility and covariance measyply any kind of cor-
rection for microstructure effects, the resulting varieoovariance matrix is not
guaranteed to be positive semi-definite (psd). Exceptiomshee multivariate real-
ized kernel with refresh time of [11] and the multivariateuFier method of [64].
In both cases, however, the frequency at which all the readlimriance-covariance
estimates are computed are dictated by the asset havingwistlliquidity, hence
discarding, in practice, a considerable amount of infoiomegspecially for the most
liquid assets.

Third, in order to have a valid multivariate forecasting rabdt is necessary to
construct a dynamic specification for the stochastic prootthe realized covariance
matrix which produces symmetric and psd covariance matrdiptions. In the
still relatively scarce but growing literature on multii@e modeling of realized
volatilities, three types of approaches have been proptisedifar: modeling the
Cholesky factorization of ([28]), its matrix log transformation ([17]), and directly
modeling the dynamics of as a Wishart Autoregressive model (WAR) ([23] and
[57]).

Fourth, as with all other types of multivariate models, thétivariate modeling of
realized volatilities is prone to the curse of dimensidyaifi the number of parameters
of the model. This problem is made particularly severe byhiigh persistence of
the variance-covariance processes, which requires cenagion of a large number
of variance-covariance elements in the conditioning setprecisely deal with this

9This is because, in addition to the problem of zero returng,difference in the time stamps between
the last ticks for the two assets in each regularly spaceavait will correspond to a portion of the cross
product returns that will not be accounted for in the comtiarteof the covariance. This is itself due to the
fact that the returns corresponding to this time differewdebe ascribed to two different time intervals

and hence no longer matched in the cross product summation.
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14 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

problem, the HAR modelling approach has been also adoptddeimultivariate
framework and, because of its simplicity, is often prefdrte multivariate long
memory models.
For instance, after decomposing the realized covariandeixriato Cholesky
factorsP;, where
PP =%y,

[28] apply both a vector fractionally integrated model (wdé¢he same fractional
difference parameter is imposed) and an HAR specificatitmsgialar coefficients to
the vector of the lower triangular elements of the Choleskydrization (i.e. td/, =
vech(P;)). In their HAR specification, they also include the biweekiguency, in
addition to the commonly used daily, weekly, and monthlygérencies. The authors
find that, in comparison with the more involved vector frantilly integrated model,
“the HAR specification shows very good forecasting ability"

ForX;, [17] chose the bi-power covariance of [15], but the sameqgipie can be
applied to any other covariance estimators. Then they appiultivariate extension
of the HAR-RV model to the principal componentdafm(X;). 1! They also include
negative past returns to model asymmetric responses aed prédiction variables
that have been shown to forecast stock returns (such asshtates, dividend yields,
and credit spreads). In their empirical application they finat “lagged principal
components of realized weekly and monthly bi-power coviahave a strong
predictive power" on the covariance matrix dynamics of-si@aged stock returns.

[23] propose capturing the persistence properties in thiezesl variances and co-
variances with a Wishart-based generalization of the HAR@hoT he HAR structure
is then obtained by direct temporal aggregation of the dailyariance matrices over
different window lengths. The authors propose a restrip@@metrization of their
Wishart HAR-type model that is able to deal with large assesssection dimen-
sions. In afour dimensional application using two US treabills and two exchange
rates they show that the restricted specification of the tqudeides results similar
to the fully parameterized model for variance forecasting ask evaluation.

In the same direction, [57] propose a Wishart specificatanrig HAR type com-
ponents (i.e. defined as sample averages of past realizadaose matrices). Two
types of time-varying Wishart models are considered by titbas: one in which
the components affect the scale matrix of the Wishart #istion in a multiplicative
way and the second with the components entering in an addiiy. Both models
are estimated using standard Bayesian techniques withdM&hkain Monte Carlo
(MCMC) methods for posterior simulation given that the postr distribution is
unknown. In their empirical analysis on five assets stockgs;i the additive spec-

19The authors find a slightly superior performance of the foaetlly integrated model at a longer horizon.
However, this result could be due to the authors’ choice gbawt, in the long horizon direct forecast, the
forecasting contribution coming from the higher frequewolatility components.

W 3, is a(IN x N) psd matrix, we have by the spectral decomposition theoratrsth = EiAEY,
where the columns of th@V x N') orthonormal matrix®; correspond to the eigenvectors®f andA¢
isa(N x N) diagonal matrix whose diagonal elements are equal to\tteegenvalues oE;. Then the
matrix logarithm of%;, denotedogm(%;), is defined bylogm(32;) = E: log(A¢)E;. Recall that the
logarithm of a diagonal matrix is a diagonal matrix whoseydizal elements are takenling.
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APPLICATIONS 15

ification showed better performance in terms of densitydasts of returns up to 3
months ahead.

1.6 APPLICATIONS

The purpose of this section is first to empirically analyze gerformance of the
LHAR-CJ model (1.17) and then investigate the presenceharaton-linear effects
in the dynamics of the S&P500 futures volatilities in addfitio the leverage effects.

Our data set covers a long time span of almost 20 years of reglaéncy data for
the S&P 500 futures from January 1990 to February 2009, foted of 4,766 daily
observations. In order to reduce the impact of microstmeattfects, the estimator for
the daily voIatiIity\7t is computed with the multi-scales DST estimator of [40]. The
multi-scales DST estimator combines the DST orthogontdizeof the volatility
signal from the microstructure noise with a multi-scalesnestor similar to that
proposed by [73F but constructed with a simple regression based approach.

The (significant) jump componen in (1.13) and the continuous volatility; in
(1.14) are computed at the 5-minute sampling frequencydsponding t®4 returns
per day). The confidence levelin (1.13) is set t®9.9%. All the quantities of
interest are computed on an annualized base.

The results of the estimation of the LHAR-CJ on the S&P500darinom January
1990 to February 2009, with = 1, 5, 10, 22 are reported in Table 1.1, together with
their statistical significance, evaluated with the NewegstWobust t-statistic with4
lags.

As usual, all the coefficients of the three continuous viiiattcomponents are
positive and highly significant. We observe that the coeffitmeasuring the impact
of monthly volatility on future daily volatility (i.e. 0.2B) is more than twice as big
as the one of daily volatility on future monthly volatility.€. 0.105). This finding
is consistent with the hierarchical asymmetric propageatibthe volatility cascade
formalized in Section 1.3.

A similar hierarchical structure, although less pronouhdg present in the im-
pact of jumps on future volatility. The daily and weekly jurapmponents remain
highly significant and positive especially when modellieglized volatility at short
horizons. In addition, their impact declines when the fitry at which RV is
modelled declines. The jumps aggregated at the monthly, leeeever, turn out to
be insignificant on the considered data set.

Interestingly, estimation results for model (1.17) reviied strong significance
(with the economically expected negative sign) of the negaéturns at (almost) all
frequencies, which unveils the presence of a heterogersdausure in the leverage
effect as well. In fact, the daily volatility is significagthffected, not only by the
daily negative return of the day before (the well know legeraffect) but also of
the week and of the month before. This result suggests teantirket aggregates

127 generalization of the two-scales estimator of [74] to meesfized volatilities computed at different
frequencies.
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S&P500 LHAR in-sample regression

Variable Oneday Oneweek Twoweeks One month

c 0.765* 0.847* 0.954* 1.096*
(11.416) (7.888) (6.327) (4.941)
C 0.248* 0.172* 0.132* 0.105*
(13.169) (11.720) (10.182) (8.215)
c® 0.317* 0.299* 0.285* 0.243*
(11.210) (8.516) (7.027) (5.110)
c® 0.230* 0.315* 0.361* 0.398*
(8.577) (7.951) (6.720) (5.497)
J 0.016* 0.012* 0.012* 0.010*
(3.135) (2.914) (3.606) (2.654)
J© 0.058* 0.055* 0.047* 0.027
(4.573) (3.330) (2.282) (1.172)
J@2 0.010 0.011 0.008 0.028
(0.544) (0.413) (0.222) (0.522)
r -0.736*  -0.526* -0.411* -0.337*
(-8.620) (-10.154) (-8.226) (-5.436)
r®- -1.070*  -0.685* -0.739* -0.644*
(-4.602) (-3.054) (-3.491) (-2.685)
r(22)- -0.899* -1.111 -0.985 -0.668
(-2.116) (-1.809) (-1.411) (-0.778)

Tablel.l OLS estimates of the LHAR-CJ model (1.17), for S&P500 fusufrem
January 1990 to February 2009, {66 observations). The LHAR-CJ model is
estimated witth = 1 (one day), = 5 (one week)h = 10 (two weeks) andv = 22
(one month). The significant jumps are computed using aatitialue ofoc = 99.9%.
Reported in parenthesis aretatistics based on Newey-West correction.
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APPLICATIONS 17

information at the daily, weekly and monthly levels and tedo shocks happening
at these three levels/frequencies. These findings thusiuronfirm the views of the
Heterogeneous Market Hypothesis.

To evaluate the performance of the LHAR-CJ model, we comjiangth the
standard HAR (with only heterogeneous volatility) and th&R4CJ model (with
heterogeneous jumps) on the basis of a genuine out-of-saamallysis. For the
out-of-sample forecast dAlt on thelt, t + h] interval we keep the same forecasting
horizons (one day, one week, two weeks and one month) anstireate the model
at each dayt on a moving window of lengtl2500 days. Table 1.2 reports the
out-of-sample forecasts of the different models evaluatedhe basis of thek?
of Mincer-Zarnowitz forecasting regressions and the Digddariano test for the
out-of-sample Root Mean Square Error (RMSE).

The superiority of the HAR-CJ model over the HAR model is mduahce it has
to be ascribed preeminently to days which follow a jump, dndton a very small
sample; conditioning on days following the occurrence ofimp would show a
sharper improvement (as shown in [38]). However, the sopéyiof the LHAR-CJ
model at all horizons, with respect to the HAR (and the HARn@del) is much
stronger, validating the importance of including both thetelnogeneous leverage
effects and jumps in the forecasting model.

In the second part of our empirical analysis, we estimatdtke HAR-CJ model
introduced in (1.19) to investigate whether additional-fiorar effects are present
in the dynamics of the S&P500 futures volatilities on the ¢dphe leverage effect
and whether the explicit modeling of structural breaks aegime-shifts is able to
improve the accuracy of the estimates and forecasts. Tdi§jrtige interpretations
and reduce the number of parameters in the model, we assanthéhcascade is
present only in the volatility continuous componént (i.e. we set the parameters
a§“"”’L> andyg“”m),j =1,...,k, to zero). Estimated coefficients, as well as the
estimated regimes, are reported in Table 1.3/o= 1. Classical model-based
bootstrapped standard errors are given in parentheses.

Table 1.3 shows that almost all coefficients in the local dyica of realized
volatilities are highly significant, with a couple of intsteng exceptions. As dis-
cussed previously, the leverage effect is found to be the mgmrtant asymmetry
and yields the first binary split in the procedure. The optitheeshold is found
to be around zero, highlighting the different reaction dalimed volatilities to past
positive and negative S&P 500 returns. A second relevantlinear behavior of
realized volatility dynamics is found in response to pasat émd moderate vs. high
(continuous part) volatilities when past S&P 500 returres megative. In fact, the
threshold valuels = 5.34 corresponds to the0% quantile of the estimateldg C;
series.

In these three regimes, local volatility dynamics show sigant differences. In
particular, it is worth mentioning the following two ressiltFirst, past lagged S&P

13piebold-Mariano test should be applied with care when cdmgenodels are nested, however, [49]
showed that if the window size is bounded (e.g., computed @¥iged moving window as in our setting)
the test is still valid.
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S&P500 out-of-sample performances

Variable Oneday Oneweek Twoweeks One month
HAR 0.8073 0.8351 0.8162 0.7573
HAR-CJ 0.8107 0.8397 0.8188 0.7597
(1.994) (1.808) (0.835) (0.115)
LHAR-CJ 0.8238 0.8487 0.8279 0.7651
(4.663) (2.854) (2.023) (1.169)

Table1.2 R? of Mincer-Zarnowitz regressions for out-of-sample fostseor
horizonsh = 1 (one day)» = 5 (one week)h = 10 (two weeks) andv = 22 (one
month) of the S&P500 from January 1990 to February 2009 ¢oiervations, the
first 2500 observations are used to initialize the modelbg fbrecasting models are the
standard HAR, the HAR-CJ and the LHAR-CJ model. In paremésreported the
Diebold-Mariano test for the out-of-sample RMSE with regye the standard HAR
model.

Tree HAR-CJ estimates and regimes

Regime structure Local parameters

R, LI
re < 0.05, 0.6577  0.0574 0.1864  0.4060  0.2578  —0.1987
logCy <534 (0.0411)  (0.0115)  (0.0345) (0.0428) (0.0373)  (0.0253)
re < 0.05, 0.5627  —0.0095 03924 04187  0.0783  —0.1330
logCy >5.34  (0.0299)  (0.0133)  (0.0382) (0.0420) (0.0387)  (0.0136)
re > 0.05 0.1854  0.0604 03260  0.3962  0.2335  —0.0055

(0.0516)  (0.0076)  (0.0271) (0.0404) (0.0297)  (0.0115)

Table1.3 Tree HAR-CJ estimated parameters and regimes for the S&Peali@ed
(log-) volatilities withh = 1. The sample period is from January 1990 to February
2009, for a total of 4,766 daily observations.andlog C; denote the past-lagged daily
S&P 500 return and past-lagged daily (log-) continuous camepts of the realized
volatility, respectively. Model-based bootstrap staddamrors computed using 1,000
replications are given in parentheses.
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CONCLUDING REMARKS AND AREAS FOR FUTURE RESEARCH 19

500 returns are significant only in the regimes where theyhagative, yielding to
an increase in the realized volatilities. When past lagged 500 returns are posi-
tive (last regime) their impact in estimating future vdigtidynamics is negligible.
Second, the impact of jumps highly changes depending oretfime in which they
occur: it is positive and significant in regimes characestiby (somehow) stable
financial markets (regimes 1 and 3), yielding to an incredsealized volatility.
By contrast, in times of market turbulence (measured by pegative returns and
high past volatilities), jumps are found to have no particirhpact in driving future
realized volatility dynamics. These interesting resutiafem and extend previous
empirical findings shown in this section.

Similarly to what has been shown above for the LHAR-CJ madel preliminary
series of forecasting experiments ferequal to one, the Tree HAR-CJ model has
been found to be able to significantly improve the out-of-skeperformance of the
classical HAR and HAR-CJ models. A more detailed and coragletestigation
of how the introduction of regimes (threshold-based or of akdvian type) may
improve predictions in a general HAR setting is left for théeufe.

1.7 CONCLUDING REMARKS AND AREAS FOR FUTURE RESEARCH

By projecting a dynamic process on its own past values agégdgver differenttime
horizons, the HAR model is a general and flexible approach todiautocorrelation
function of any persistent process in a very simple andatdetway. In this chapter
we have briefly surveyed the nature, construction, and ptiegeof the HAR class
of models for realized volatility estimation and predictio We discussed some
of the extensions of the standard HAR model that have beamntigcproposed to
explicitly take into account the predictive power of jumieserage effects, and other
non-linearities (i.e. structural breaks and regime svegclriven by the different
sources acting on the financial market) for the time-varydggamics of realized
volatilities. We also reviewed some recent studies geizamgl the HAR model
for predicting univariate realized volatilities to the rivériate setting of realized
covariance matrices. This is a fast-growing field and theofgeferences will no
doubt need updating in the near future.

In our review of the extant literature on HAR models a numbfetopics stand
out as possible avenues for future research. The most aindaad perhaps difficult,
is to generalize the univariate flexible HAR model with jumpsrerage effects,
and other non-linear behaviors due to regime changes to thtvariate context.
Existing models do not take these effects into account aachat well-designed
to deal with (possibly) high-dimensional realized covac@ matrices. What is
needed are flexible yet parsimonious multivariate HAR-tgpensions that remain
computationally feasible in large dimensions. This tasly imaaccomplished using
recent techniques coming from the computational stasistmmmunity, similar to
what was done ten years ago in [6] for the estimation of a flexiblatility matrix in
a multivariate GARCH setting.
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