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CHAPTER 1

HAR MODELING FOR REALIZED
VOLATILITY FORECASTING

Fulvio Corsi (University of St. Gallen), Francesco Audrino(University of St. Gallen),1

Roberto Reǹo (University of Siena)2

3

1.1 INTRODUCTION4

The importance of financial market volatility has generateda very large literature5

in which volatility dynamics has been modelled in order to take into account its6

most salient features: clustering, slowly decaying auto-correlation, and non-linear7

responses to previous market information of a different type.8

In the literature, these phenomena have typically given rise to models in which9

volatility is generated by a long memory process, characterized by fractional inte-10

gration and an hyperbolic decay of the autocorrelation function. However, in this11

chapter we follow an alternative direction which generatesvery similar stylized facts12

for volatility series using the superposition of short memory frequencies. This frame-13

work turns out to be easier to handle, with a straightforwardeconomic interpretation14

and an excellent fit to the data.15

Volatility Models and Their Applications.By Bauwens, Hafner, Laurent
Copyright c© 2011 John Wiley & Sons, Inc.
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2 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

Originally, this framework was inspired by the work of [66] and [41]. We view1

volatility persistence as the result of the aggregationof the heterogeneouscomponents2

present in the financial market (the so called HeterogeneousMarket Hypothesis). Het-3

erogeneity among participants in the financial market may beof a different nature:4

differences in the endowments, institutional constraints, risk profiles, information,5

geographical locations, and so on. The proposed model concentrates on the het-6

erogeneity that originates from (or materializes in) the difference in time horizons.7

Typically, a financial market is composed of participants having a large spectrum8

of trading frequencies. At one end of the spectrum are dealers, market makers,9

and intraday speculators with an intraday trading horizon.At the other end, there10

are institutional investors, such as insurance companies and pension funds trading11

much less frequently and possibly for larger amounts. The key idea is that agents12

with different time horizons perceive, react to, and cause different types of volatility13

components.14

In addition, it has been recently observed that volatility over longer time intervals15

has stronger influence on volatility over shorter time intervals than conversely.1 This16

can be economically explained by noticing that for short-term traders the level of17

long-term volatility matters because it determines the expected future size of trends18

and risk. The overall pattern that emerges can be statistically described by a cascade of19

heterogeneous volatility components (generated by the action of market participants20

of different natures) from low frequencies to high frequencies.21

This idea has been pursued in [34], who proposed an additive cascade model22

of realized volatility aggregated at different time horizons. This cascade of het-23

erogeneous volatility components leads to a simple AR-typemodel in the realized24

volatility that considers volatilities realized over different time horizons and is thus25

calledHeterogeneous Auto-Regressive(HAR). In spite of its simplicity and the fact26

that it does not formally belong to the class of long-memory models, the HAR model27

for realized volatility is able to reproduce the volatilitypersistence revealed by the28

empirical analysis on financial markets. The combination ofease of implementation29

with a very accurate fit of financial volatility time series has made the HAR models30

very popular in the financial econometrics community.31

In this chapter we survey the HAR model for realized volatility forecasting and32

its extensions. After reviewing some stylized facts of realized volatility we present33

the derivation and possible interpretations of the heterogeneous structure of the HAR34

model. We then discuss different extensions of the univariate HAR model aiming at35

modeling the forecasting power of jumps, leverage effect and structural breaks.36

In particular, we provide evidence for the contention that jumps have signifi-37

cant impact on future realized volatility and that the impact of negative returns (the38

so-calledleverage effect) is highly persistent and also presents a HAR structure,39

confirming the view of the existence of an heterogeneous structure in the financial40

market. Moreover, we also provide empirical evidence of theexistence of other non-41

linear effects of past market information on volatility on the top of the leverage effect42

1See [66], [4] and [61].



STYLIZED FACTS 3

by introducing a flexible HAR-type model able to explicitly take into account struc-1

tural breaks and regime-switches. Finally, we provide a brief review of multivariate2

models for realized variance-covariance matrix dynamics.3

1.2 STYLIZED FACTS ON REALIZED VOLATILITY4

Summarized from the vast literature on the empirical analysis of financial markets,5

the main characteristics of financial markets volatility are:6

1. Long range dependence: (hourly, daily, weekly and monthly) realized volatility7

displays significant autocorrelations even at very long lags. This property is8

often ascribed to a long memory data generating process. In this chapter, we9

take another approach by using a superposition of autoregressive processes10

with different time scales.11

2. Leverage effect: it is empirically observed that returnsare negatively corre-12

lated with (realized) volatility. In particular, volatility bursts are more likely13

associated with negative past returns.14

3. Jumps: financial prices are subject to abrupt variations.Jumps are not very15

frequent and practically unpredictable, but they have a strong positive impact16

on future volatility.17

To illustrate these stylized facts of realized volatility (RVt), let us now consider18

historical data on the S&P 500 stock index over the period 1982-2009. Figure 1.1 plots19

Corr(RVt , Zt−h), i.e. the correlation betweenRVt andZt−h, forh = 1, . . . , 50. Zt20

corresponds either toRVt, negative daily returns (r−t = min(rt, 0), wherert is the21

return on dayt),positive returns (r+t = max(rt, 0)) or jumps (Jt). More details on the22

data and the estimation ofRVt andJt are given in Section 1.3.Corr(RVt, RVt−h)23

is the AutoCorrelation Function (ACF) ofRVt. Figure 1.1 clearly suggests the24

presence of long-memory in the realized volatility. This figure also suggests that25

while past positive daily returns (r+t−h) are not significantly correlated withRVt, past26

negative returns (r−t−h) have a significant impact on futures volatilities, and negative27

shocks take a long time to die out (which might also be viewed as long-memory).28

Interestingly, jumps seem also to have a positive impact on future values ofRVt,29

although their effect decays at a faster rate thanRVt andr−t−h. This motivates the30

analysis in the following sections.31

1.3 HETEROGENEITY AND VOLATILITY PERSISTENCE32

The appearance of long range dependence might be due to a genuine long-memory33

data generating process or, alternatively, it can be explained as a combination of34

different short memory processes (as discussed further below). Although a true long35

memory process requires the aggregation of an infinite number of short memory36

processes (as shown by [52]), an approximated long memory process (practically37
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Correlation between realized volatility and past realized
volatility, negative/positive returns and jumps.
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Figure 1.1 Corr(RVt, Zt−h) (h = 1, . . . , 50) for the S&P 500 series for the period
January 1990 to February 2009.Zt corresponds either toRVt, negative daily returns (r−t =
min(rt, 0), wherert is the return on dayt), positive returns (r+t = max(rt, 0)) or jumps
(Jt). The displayed95% confidence bands (dashed lines) are computed with the generalized
Bartlett’s formula of [46].

indistinguishable from a true one) can be obtained by aggregating only few hetero-1

geneous time scales ([58]).2

The need for multiple components in the volatility process has been advocated3

by (among others) [66], [43], [21], [14], and [26] and has been reconsidered by4

making use of the concept of an additive cascade of realized volatility aggregated5

over different time horizons in [34]. In what follows, we briefly review this latter6

approach.7

We assume that the state variableX (typically the log price) is driven by the
stochastic process:

dXt = µtdt+ σtdWt + ctdNt, (1.1)

whereµt is predictable,σt is cádĺag andNt is a doubly stochastic Poisson process2

whose intensity is an adapted stochastic processλt, the random times of the corre-
sponding jumps are(τj)j=1,...,NT

andcj are iid adapted random variables measuring
the size of the jump at timeτj . In practice, e.g. for risk management purposes, we

2We could also consider a wider class of jumps, such as Lévy, in the case in which they have a finite
quadratic variation process.
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are interested in forecasting the quadratic variation defined as:

σ̃2
t =

∫ t+1

t

σ2
sds+

∑

t≤τj≤t+1

c2τj ,

where the time unit is one day.1

This quantity is not directly observable and therefore has to be estimated. Let us
denote byV̂t a consistent estimator of̃σ2

t , that is:

log σ̃2
t = log V̂t + ωt,

whereωt is iid noise.3 In the ideal case of no microstructure noise,RVt is the most2

natural choice for̂Vt. In the presence of microstructure noise, other estimatorsare3

preferable such as the two-scale estimator proposed by [74], the realized kernels4

method of [13], the pre-average approach of [55], or the multi-scales Discrete Sine5

Transform estimator (DST) of [40]. In our empirical analysis in Section 1.6, we use6

theDST estimator.7

Consider the aggregated values oflog V̂t, defined as:

log V̂
(n)

t =
1

n

n∑

j=1

log V̂t−j+1 (1.2)

and assume two different time scales, of lengthn1 andn2, withn1 > n2 (e.g. weekly
and daily). For the largest time scale, assume thatσ̃2

t , once aggregated as in (1.2), is
determined by:

log σ̃
2,(n1)
t+n1

= c(n1) + β(n1) log V̂
(n1)

t +ε
(n1)
t+n1

(1.3)

whereε(n1)
t is an iid random variable with mean zero and unit variance which is8

independent on the estimation errorωt, andc(n1) andβ(n1) are unknown parameters.9

This can be explained by assuming that the level of short-term volatility does not
affect the trading strategies of long-term traders.4 On the other hand, for short-term
traders the level of long-term volatility matters because it determines the expected
future size of trends and risk. Hence, the shorter time scale(n2) is assumed to be
influenced by the expected future value of the largest time scale(n1), so that:

log σ̃
2,(n2)
t+n2

= c(n2) + β(n2) log V̂
(n2)

t +δ(n2)Et

[
log σ̃

2,(n1)
t+n1

]
+ ε

(n2)
t+n2

, (1.4)

whereε(n2)
t is an iid random variable with mean zero and unit variance, independent

on ε
(n1)
t andωt andδ(n2) is a constant. The economic interpretation of this mech-

anism is that each volatility component corresponds to a market component whose

3The model can also be specified in terms ofV̂t and for
√

V̂t, as in [34] [3] and [38]. However, the
log specification has the double advantage of avoiding imposing positivity constraints and making the
distribution closer to normality, see e.g. [51].
4The HAR model would hold even if we allow the short-term volatility to affect the long-term volatility.
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expectation on next period volatility is formed looking at,beyond the current realized
volatility value, the forecast on the longer time horizon. The basic idea is that agents
with different time horizons perceive, react to, and cause different types of volatility
components. By substitution, this gives:

log V̂
(n2)

t+n2
= c+ β(n2) log V̂

(n2)

t +β(n1) log V̂
(n1)

t +εt; (1.5)

whereεt is iid noise depending onε(n1)
t , ε

(n2)
t , ωt. The model (1.5) can be easily1

extended tod horizons of lengthn1 > n2 > . . . > nd. Typically, three components2

are used with lengthn1 = 22 (monthly),n2 = 5 (weekly),n3 = 1 (daily).3

The HAR model is then a parsimonious AR model reparameterized by imposing4

different sets of restrictions (one for each volatility component) on the autoregressive5

coefficients of the AR model. Each set of restrictions takes the form of equality6

constraints among the autoregressive coefficients constituting a given time horizon,7

so that once combined they lead to a step function for the autoregressive weights.8

In this sense, the HAR can be related to the MIDAS regression of [47], [48], and9

[45], although the standard MIDAS with the estimated Beta function lag polynomial10

cannot reproduce the HAR step function weights.11

In practice, the HAR model provides a simple and flexible method to fit the12

partial autocorrelation function of the empirical data with a step function which has13

predefined tread depth and estimated (by simple OLS) rise height. More generally,14

however, nothing prevents the use of different types of kernel in the aggregation of15

V̂t instead of the rectangular one used in the simple moving average; in this case we16

would no longer have a step function for the coefficients but amore general function17

given by a mixture of kernels (e.g. mixture of exponentials for exponentially weighted18

moving averages) which can still be easily estimated by simple OLS.19

Even if the HAR model does not formally belong to the class of long memory20

processes, it fits the persistence properties of financial data as well as (and potentially21

better than) true long memory models, such as the fractionally integrated one, which,22

however, are much more complicated to estimate and to deal with (see the review of23

[10]). For these reasons, the HAR model has been employed in several applications24

in the literature, of which an incomplete list is: [47] and [45] compare this model25

with the MIDAS model; [3] use an extension of this model to forecast the volatility26

of stock prices, foreign exchange rates and bond prices; [31] implement it for risk27

management with VaR measures; [20] use it to analyze the risk-return tradeoff; [18]28

use it to study the relation between intraday serial correlation and volatility.29

In the literature dealing with HAR models, it is commonly assumed that the
innovations of the log realized volatility are identicallyand independently distributed.
However, volatility clustering in the residuals of the HAR model (as well as in other
realized volatility models) are often observed in practical applications. The presence
of time-varying conditional distributions in realized volatility models can distort risk
assessment and, thus, impair risk management analysis. To account for the observed
volatility clustering in realized volatility [37] extend the HAR model by explicitly
modelling the volatility of realized volatility. The proposed model adds GARCH
type innovations to the standard HAR model, giving rise to anHAR-GARCH(p, q)
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model which, with the three commonly used frequencies, reads:

log V̂
(1)

t+1 = c+ β(1) log V̂
(1)

t +β(5) log V̂
(5)

t +β(22) log V̂
(22)

t +
√
htεt (1.6)

ht = ω +

q∑

j=1

aju
2
t−j +

p∑

j=1

bjht−j (1.7)

εt|Ωt−1 ∼ iid(0, 1), (1.8)

whereΩt−1 denotes theσ-field generated by all the information available up to time1

t− 1 andut =
√
htεt.2

1.3.1 Genuine long memory or superposition of factors?3

Assessing whether volatility persistence is generated by adata-generating process4

with genuine long memory or from a superposition of factors as illustrated above may5

appear an impossible task. Clearly, the two possibilities might generate very similar6

empirical features which would make them indistinguishable. In this case, analytical7

tractability becomes the most important feature to take into account. However, as we8

discuss here, some specific data generating processes can beruled out on the basis of9

the statistical features of the realized volatility time series.10

Such an investigation is carried out in [39]. They propose two competing
continuous-time models for the volatility dynamics which belong to the class (1.1).
The first one is a genuine long-memory model with constant volatility-of-volatility:

d log σt = k(ω − log σt)dt+ ηdW
(d)
t , (1.9)

wheredW (d)
t is a fractional Brownian motionwith memory parameterd ∈ [0, 0.5],11

see [33]. The valued = 0 corresponds to the standard Brownian motion, while12

higherd correspond to higher memory in the time series. Model (1.9) (or its discrete13

counterpart) is usually advocated as the source of long memory in volatility, even14

if it is very difficult to deal with mathematically and econometrically. It is impor-15

tant to note that in this model persistence comes both from the mean-reverting term16

k(ω− log σt) and from the fractional Brownian motiondW (d)
t . [39] estimate model17

(1.9) via indirect inference, using the HAR model as auxiliary model. The advantage18

of indirect inference is that, beyond providing an estimateof the parametersk, ω, η,19

andd, it provides overall statistics of the goodness-of-fit of the model. They find un-20

ambiguously that the model (1.9) is unable to reproduce the time series of volatilities21

in the S&P500 index.22

The second model they test is an affine two-factor model:

σ2
t = V 1

t + V 2
t

dV 1
t = κ1(ω1 − V 1

t ) + η1
√
V 1
t dW

1
t

dV 2
t = κ2(ω2 − V 2

t ) + η2
√
V 2
t dW

2
t ,

(1.10)
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whereW 1 andW 2 are two independent Brownian motions. In this case, even1

imposing the restrictionω1 = ω2 to identify the model5, the two-factor model is2

perfectly able to reproduce the statistical features of thevolatility of the S&P5003

index. The obtained estimates ofκ̂1 = 2.138 andκ̂2 = 0.006 imply the presence4

of a fast mean-reverting factor and a slowly mean-revertingfactor with a half-life of5

nearly166 days, which is usually suggested in the empirical literature on stochastic6

volatility and option pricing.7

Clearly, a more complicated long-memory model (e.g. with two factors) might8

also reproduce the volatility time series, so it would be wrong to conclude that these9

results rule out the presence of genuine long memory in the volatility series. However,10

these results show that the superposition of volatility factors is able to reproduce the11

long range dependence displayed by realized volatility, for which a genuine long12

memory data generating process is unnecessary (and certainly not mathematically13

convenient).14

These results can also help explaining the good performanceof multi-factor model15

in the option pricing, see e.g. [16]. They also suggest that two factors might be16

unnecessary if the volatility dynamics is specified directly with a model similar to17

HAR: an attempt in this direction is the study proposed by [36] where a realized18

volatility option-pricing model is developed based on the HAR structure. Such a19

model is found to provide good pricing performances.20

1.4 HAR EXTENSIONS21

1.4.1 Jumps measures and their volatility impact22

The importance of jumps in financial econometrics is rapidlygrowing. Recent
research focusing on jump detection and volatility measuring in presence of jumps
includes [12], [62], [59], [56], [2], [1], [29], [63] and [24]. [3] suggested that the
continuous volatility and jump component have different dynamics and should thus
be modelled separately. In this section, we closely follow [38] using theC-Tz test6

for jumps detection, andTBPVt, i.e. the threshold bipower variation, to estimate the

5The structural model (1.10) has6 free parameters while, the auxiliary three components HAR model has
5 (including the parameter of the variance of the innovations).
6TheC-Tz statistics is defined as:

C-Tzt = δ−
1
2

(RVt −C-TBPVt) · RV
−1
t√(

π2

4
+ π − 5

)
max

{
1, C-TTriPVt

(TBPVt)
2

} , (1.11)

whereδ is the time between high-frequency observations,C-TBPVt is a correction of (1.12) devised to
be unbiased under the null andC-TTriPV is a similar estimator of integrated quarticity

∫ t+1
t

σ4
sds; see

[38] for details.



HAR EXTENSIONS 9

continuous part of integrated volatility, defined as:

TBPVt =
π

2

n−2∑

j=0

|∆t,jX | · |∆t,j+1X |I{|∆t,jX|2≤ϑj−1}I{|∆t,j+1X|2≤ϑj}, (1.12)

whereI{·} is the indicator function andϑt is a threshold function which we estimate

as in [38]. It can be proved that, under model (1.1),TBPVt →
∫ t+1

t
σ2
sds as the

interval between observations goes to zero. This continuous volatility estimator has
much better finite sample properties than standard bipower variation and provides
more accurate jump tests, which allows for a corrected separation of continuous and
jump components. For this purpose, we set a confidence levelα and estimate the
jump component as:

Jt = I{C-Tz>Φα} ·
(
V̂t −TBPVt

)+

, (1.13)

whereΦα is the value of the standard Normal distribution corresponding to the
confidence levelα, andx+ = max(x, 0). The corresponding continuous component
is defined as:

Ct = V̂t − Jt, (1.14)

which is equal tôVt if there are no jumps in the trajectory, while it is equal toTBPVt1

if a jump is detected by theC-Tz statistics.2

As for log V̂t we define aggregated values oflogCt as

logC
(n)
t =

1

n

n∑

j=1

logCt−j+1 .

For the aggregation of jumps, given the presence of a large number of zeros in the
series, we prefer to simply take the sum of the jumps over the windowh instead of
the average, i.e.:

J
(n)
t =

n∑

j=1

Jt−j+1 .

Consistent with the above section, in the volatility cascade we assume thatCt and3

Jt enter separately at each level of the cascade, that is:4

log σ̃
2,(n1)
t+n1

= c(n1) + α(n1) log(1 + J
(n1)
t ) + β(n1) logC

(n1)
t +ε

(n1)
t+n1

log σ̃
2,(n2)
t+n2

= c(n2) + α(n2) log(1 + J
(n2)
t ) + β(n2) logC

(n2)
t

+ δ(n2)Et

[
log σ̃

2,(n1)
t+1

]
+ ε

(n2)
t+n2

originating the model:5

log V̂
(n2)

t+n2
= c + α(n1) log(1 + J

(n1)
t ) + α(n2) log(1 + J

(n2)
t ) (1.15)

+ β(n2) logC
(n2)
t +β(n1) logC

(n1)
t +εt.

Note that we uselog(1 + Jt) instead oflog Jt sinceJt can be zero. This model has6

been introduced as the HAR-CJ model by [3].7
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1.4.2 Leverage effects1

It is well known that volatility tends to increase more aftera negative shock than2

after a positive shock of the same magnitude: this is the so-called leverage effect (see3

[30, 27, 50] and more recently [19]).4

Given the stylized facts presented in Section 1.2, it is thennatural to extend the5

Heterogeneous Market Hypothesis approach to leverage effects. We assume that6

realized volatility reacts asymmetrically not only to previous daily returns but also7

to past weekly and monthly returns. We model such heterogeneous leverage effects8

by introducing asymmetric return-volatility dependence at each level of the cascade9

considered in the above section. Define daily returnsrt = Xt−Xt−1 and aggregated10

returns as:11

r
(n)
t =

1

n

n∑

j=1

rt−j+1.

To model the leverage effect at different frequencies, we definer(n)−t = min(r
(n)
t , 0).12

We assume that integrated volatility is determined by the following cascade:13

log σ̃
2,(n1)
t+n1

= c(n1) + β(n1) log V̂
(n1)

t +γ(n1)r
(n1)−
t + ε

(n1)
t+n1

log σ̃
2,(n2)
t+n2

= c(n2) + β(n2) log V̂
(n1)

t +γ(n2)r
(n2)−
t + δ(n2)Et

[
log σ̃

2,(n1)
t+n1

]
+ ε

(n2)
t+n2

,

whereγ(n1,2) are constants. This now gives:

log V̂
(n2)

t+n2
= c+β(n2) log V̂

(n2)

t +β(n1) log V̂
(n1)

t +γ(n2)r
(n2)−
t +γ(n1)r

(n1)−
t + ε̃t.

(1.16)
We then postulate that leverage effects influence each market component sepa-14

rately, and that they appear aggregated at different horizons in the volatility dynamics.15

Combining heterogeneity in realized volatility, leverage, and jumps, we construct16

theLeverage Heterogeneous Auto-Regressive with Continuous volatility and Jumps17

(LHAR-CJ) model. As is common in practice, we use three components for the18

volatility cascade: daily, weekly and monthly. Hence, the proposed model reads:19

log V̂
(h)

t+h = c + β(d) logCt + β(w) logC
(5)
t + β(m) logC

(22)
t

+ α(d) log(1 + Jt) + α(w) log(1 + J
(5)
t ) + α(m) log(1 + J

(22)
t )

+ γ(d)r−t + γ(w)r
(5)−
t + γ(m)r

(22)−
t + ε

(h)
t . (1.17)

Model (1.17) nests the other models introduced in the chapter. Whenα(d,w,m) =20

γ(d,w,m) = 0 andCt = V̂t, the model reduces to the HAR model (1.5). When21

γ(d,w,m) = 0, we get the HAR-CJ model (1.15).22

Model (1.17) can be estimated by OLS with the Newey-West covariance correction23

for serial correlation. In order to make multiperiod predictions, we will estimate the24

model considering the aggregated dependent variablelog V̂
(h)

t+h with h ranging from25

1 to 22, i.e. from one day to one month.26
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1.4.3 General non-linear effects in volatility1

Another question of interest is to investigate whether the leverage effects introduced2

in the previous section are the only relevant non-linear (inthat case asymmetric)3

behaviors present in the realized volatility dynamics in response to past shocks in the4

market and, more in general, in the whole (macro)economy. Infact, in the last five5

years several empirical studies published in the literature applied different (parametric6

and non-parametric) methodologies to the problem of estimating and forecasting7

realized volatilities, covariances, and correlations dynamics. These showed that they8

are subject to structural breaks and regime-switches driven by shocks of a different9

nature: see, among others, [65], [69], and [7].10

To investigate this, we generalize the LHAR-CJ model introduced in (1.17) to
estimate leverage effects. We propose a tree-structured local HAR-CJ model (Tree
HAR-CJ) which is able to take into account both long-memory and possible general
non-linear effects in the (log-) realized volatility dynamics. Tree-structured models
belong to the class of threshold regime models, where regimes are characterized
by some threshold for the relevant predictor variables. Theclass of tree-structured
GARCH models was introduced by [5] in the financial volatility literature, and was
generalized recently to capture simultaneous regime shifts in the first and second
conditional moment dynamics of returns series (see, for example, [8]). The proposed
model reads:

log V̂
(h)

t+h = Et[log V̂
(h)

t+h] + ε
(h)
t , (1.18)

whereEt[·] denotes (as usual) the conditional expectation given the information up11

to timet. The conditional dynamics of the realized (log-) volatilities are given by:12

Et[log V̂
(h)

t+h] =

∑k

j=1

[
cj +β

(d)
j logCt + β

(w)
j logC

(5)
t + β

(m)
j logC

(22)
t

+α
(d)
j log(1 + Jt) + α

(w)
j log(1 + J

(5)
t ) + α

(m)
j log(1 + J

(22)
t )

+γ
(d)
j rt + γ

(w)
j r

(5)
t + γ

(m)
j r

(22)
t

]
I[Xpred

t ∈Rj ]
, (1.19)

whereθ = (cj , α
(d,w,m)
j , β

(d,w,m)
j , γ

(d,w,m)
j , j = 1, . . . , k) is a parameter vector13

which parameterizes the local HAR-CJ dynamics in the different regimes,k is the14

number of regimes (endogenously estimated from the data), and I[·] is the identity15

function that defines regime-shifts.7
16

The regimes are characterized by partition cellsRj of the relevant predictor space
G of Xpred

t :

G =
k⋃

j=1

Rj , Ri ∩Rj = ∅ (i 6= j).

7The drastic 0-1 rule to define regime-switches can be relaxedto allow for more smooth regime transitions
using, for example, a logistic function instead of the identity function; see [65].
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For modeling (log-)realized volatilities, the relevant predictor variables inXpred
t1

are past-lagged realized volatilities (considering the estimated ones, as well as the2

continuous and the jump parts alone), and past-lagged returns of the underlying3

instrument under investigation to allow explicitly for leverage effects. In taking4

volatility cascades into account, all such predictor variables are considered at three5

different time horizons: daily, weekly, and monthly. We also consider time as an6

additional predictor variable to investigate the relevance of structural breaks in time.8
7

To completely specify the conditional dynamics given in (1.19) of the realized8

volatilities, we determine the shape of the partition cellsRj , which are admissible in9

the Tree HAR-CJ model. Similar to the standard classification and regression trees10

(CART) procedure (see [25]), the only restriction we imposeis that regimes must be11

characterized by (possibly high-dimensional) rectangular cells of the predictor space,12

with edges determined by thresholds on the predictor variables. Such partition cells13

are practically constructed using the idea of binary trees.Introducing this restriction14

has two major advantages: it allows a clear interpretation of the regimes in terms15

of relevant predictor variables, and it also allows an estimation of the model using16

large-dimensional predictor spacesG.17

The Tree HAR-CJ model introducedabove can be estimated for any fixed sequence18

of partition cells using quasi-maximum likelihood (QML). The choice of the best19

partition cells (that is, splitting variables and threshold values) involves a model20

choice procedure for non-nested hypotheses. Similar to CART, the model selection21

of the splitting variables and threshold values can be performed using the idea of22

binary trees (for all details, see [8], Section 2.3 and Appendix A). Within any data-23

determined tree structure, the best model is selected usinginformation criteria or a24

more formal sequence of statistical tests to circumvent identification problems (see25

[65]).26

1.5 MULTIVARIATE MODELS27

We now turn to a multivariate setting, in which aRN -valued stochastic processXt

evolves over time according to the dynamics:

dXt = µtdt+ΣtdWt + dJt

whereµt is anRN -valued predictable process,Σt anRN×N -valued ćadĺag process,28

W1, . . . ,WN is anN−dimensional Brownian motion anddJt is aRN valued jump29

process. Modeling and forecasting asset returns (conditional) covariance matrix30

Σt is pivotal to many prominent financial problems such as assetallocation, risk31

management and option pricing. However, the multivariate extensions of the realized32

volatility approach pose a series of difficult challenges that are still the subject of33

active research.34

8The predictor set can be easily expanded to incorporate information included in any other relevant
(endogenous or exogenous) explanatory variable.
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First, in addition to the common microstructure effect biasing realized volatility1

measures (i.e. bid-ask spread, price discreteness, etc.),the so called non-synchronous2

trading effect ([60]) strongly affects the estimation of the realized covariance and3

correlation measures. In fact, since the sampling from the underlying stochastic4

process is different for different assets, assuming that two time series are sampled5

simultaneously when, indeed, the sampling is non-synchronous gives rise to the6

non-synchronous trading effect. As a result, standard covariance and correlation7

measures constructed by imposing an artificially regularlyspaced time series of8

high frequency data will possess a bias toward zero which increases as the sam-9

pling frequency increases.9 This effect of a consistent drop of the absolute value of10

correlations when increasing the sampling frequency was first reported by [44] and11

hence called the Epps effect. To solve this problem, variousapproaches have been12

proposed in the literature: incorporate lead and lag cross returns in the estimator13

([70], [32],[22], [9]), avoid any synchronization by directly using tick-by-tick data14

([42],[54],[53],[67],[71],[72],[35]), multivariate realized kernel ([11]), and the mul-15

tivariate Fourier method ([68, 64]). Given the high level ofpersistence presents in16

both realized covariances and correlations, the HAR model has also been employed17

to model the univariate time series dynamics of realized correlations as in [7].18

Second, when realized volatility and covariance measures apply any kind of cor-19

rection for microstructure effects, the resulting variance-covariance matrix is not20

guaranteed to be positive semi-definite (psd). Exceptions are the multivariate real-21

ized kernel with refresh time of [11] and the multivariate Fourier method of [64].22

In both cases, however, the frequency at which all the realized variance-covariance23

estimates are computed are dictated by the asset having the lowest liquidity, hence24

discarding, in practice, a considerable amount of information especially for the most25

liquid assets.26

Third, in order to have a valid multivariate forecasting model, it is necessary to27

construct a dynamic specification for the stochastic process of the realized covariance28

matrix which produces symmetric and psd covariance matrix predictions. In the29

still relatively scarce but growing literature on multivariate modeling of realized30

volatilities, three types of approaches have been proposedthus far: modeling the31

Cholesky factorization ofΣ ([28]), its matrix log transformation ([17]), and directly32

modeling the dynamics ofΣ as a Wishart Autoregressive model (WAR) ([23] and33

[57]).34

Fourth, as with all other types of multivariate models, the multivariate modeling of35

realized volatilities is prone to the curse of dimensionality in the number of parameters36

of the model. This problem is made particularly severe by thehigh persistence of37

the variance-covariance processes, which requires consideration of a large number38

of variance-covariance elements in the conditioning set. To precisely deal with this39

9This is because, in addition to the problem of zero returns, any difference in the time stamps between
the last ticks for the two assets in each regularly spaced interval will correspond to a portion of the cross
product returns that will not be accounted for in the computation of the covariance. This is itself due to the
fact that the returns corresponding to this time differencewill be ascribed to two different time intervals
and hence no longer matched in the cross product summation.
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problem, the HAR modelling approach has been also adopted inthe multivariate1

framework and, because of its simplicity, is often preferred to multivariate long2

memory models.3

For instance, after decomposing the realized covariance matrix into Cholesky
factorsPt, where

P
′

tPt = Σt,

[28] apply both a vector fractionally integrated model (where the same fractional4

difference parameter is imposed) and an HAR specification with scalar coefficients to5

the vector of the lower triangular elements of the Cholesky factorization (i.e. toUt =6

vech(Pt)). In their HAR specification, they also include the biweeklyfrequency, in7

addition to the commonly used daily, weekly, and monthly frequencies. The authors8

find that, in comparison with the more involved vector fractionally integrated model,9

“the HAR specification shows very good forecasting ability".10
10

ForΣt, [17] chose the bi-power covariance of [15], but the same principle can be11

applied to any other covariance estimators. Then they applya multivariate extension12

of the HAR-RV model to the principal components oflogm(Σt). 11 They also include13

negative past returns to model asymmetric responses and other prediction variables14

that have been shown to forecast stock returns (such as interest rates, dividend yields,15

and credit spreads). In their empirical application they find that “lagged principal16

components of realized weekly and monthly bi-power covariation have a strong17

predictive power" on the covariance matrix dynamics of size-sorted stock returns.18

[23] propose capturing the persistence properties in the realized variances and co-19

variances with a Wishart-based generalization of the HAR model. The HAR structure20

is then obtained by direct temporal aggregation of the dailycovariance matrices over21

different window lengths. The authors propose a restrictedparametrization of their22

Wishart HAR-type model that is able to deal with large asset cross-section dimen-23

sions. In a four dimensional application using two US treasury bills and two exchange24

rates they show that the restricted specification of the model provides results similar25

to the fully parameterized model for variance forecasting and risk evaluation.26

In the same direction, [57] propose a Wishart specification having HAR type com-27

ponents (i.e. defined as sample averages of past realized covariance matrices). Two28

types of time-varying Wishart models are considered by the authors: one in which29

the components affect the scale matrix of the Wishart distribution in a multiplicative30

way and the second with the components entering in an additive way. Both models31

are estimated using standard Bayesian techniques with Markov Chain Monte Carlo32

(MCMC) methods for posterior simulation given that the posterior distribution is33

unknown. In their empirical analysis on five assets stock prices, the additive spec-34

10The authors find a slightly superior performance of the fractionally integrated model at a longer horizon.
However, this result could be due to the authors’ choice to neglect, in the long horizon direct forecast, the
forecasting contribution coming from the higher frequencyvolatility components.
11If Σt is a (N × N) psd matrix, we have by the spectral decomposition theorem that Σt = EtΛtE

′

t,
where the columns of the(N ×N) orthonormal matrixEt correspond to the eigenvectors ofΣt andΛt

is a(N ×N) diagonal matrix whose diagonal elements are equal to theN eigenvalues ofΣt. Then the
matrix logarithm ofΣt, denotedlogm(Σt), is defined bylogm(Σt) = Et log(Λt)E′

t. Recall that the
logarithm of a diagonal matrix is a diagonal matrix whose diagonal elements are taken inlog.



APPLICATIONS 15

ification showed better performance in terms of density forecasts of returns up to 31

months ahead.2

1.6 APPLICATIONS3

The purpose of this section is first to empirically analyze the performance of the4

LHAR-CJ model (1.17) and then investigate the presence of other non-linear effects5

in the dynamics of the S&P500 futures volatilities in addition to the leverage effects.6

Our data set covers a long time span of almost 20 years of high frequency data for7

the S&P 500 futures from January 1990 to February 2009, for a total of 4,766 daily8

observations. In order to reduce the impact of microstructure effects, the estimator for9

the daily volatilityV̂t is computed with the multi-scales DST estimator of [40]. The10

multi-scales DST estimator combines the DST orthogonalization of the volatility11

signal from the microstructure noise with a multi-scales estimator similar to that12

proposed by [73]12 but constructed with a simple regression based approach.13

The (significant) jump componentJt in (1.13) and the continuous volatilityCt in14

(1.14) are computed at the 5-minute sampling frequency (corresponding to84 returns15

per day). The confidence levelα in (1.13) is set to99.9%. All the quantities of16

interest are computed on an annualized base.17

The results of the estimation of the LHAR-CJ on the S&P500 sample from January18

1990 to February 2009, withh = 1, 5, 10, 22 are reported in Table 1.1, together with19

their statistical significance, evaluated with the Newey-West robust t-statistic with4420

lags.21

As usual, all the coefficients of the three continuous volatility components are22

positive and highly significant. We observe that the coefficient measuring the impact23

of monthly volatility on future daily volatility (i.e. 0.203) is more than twice as big24

as the one of daily volatility on future monthly volatility (i.e. 0.105). This finding25

is consistent with the hierarchical asymmetric propagation of the volatility cascade26

formalized in Section 1.3.27

A similar hierarchical structure, although less pronounced, is present in the im-28

pact of jumps on future volatility. The daily and weekly jumpcomponents remain29

highly significant and positive especially when modelling realized volatility at short30

horizons. In addition, their impact declines when the frequency at which RV is31

modelled declines. The jumps aggregated at the monthly level, however, turn out to32

be insignificant on the considered data set.33

Interestingly, estimation results for model (1.17) revealthe strong significance34

(with the economically expected negative sign) of the negative returns at (almost) all35

frequencies, which unveils the presence of a heterogeneousstructure in the leverage36

effect as well. In fact, the daily volatility is significantly affected, not only by the37

daily negative return of the day before (the well know leverage effect) but also of38

the week and of the month before. This result suggests that the market aggregates39

12A generalization of the two-scales estimator of [74] to manyrealized volatilities computed at different
frequencies.
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S&P500 LHAR in-sample regression

Variable One day One week Two weeks One month

c 0.765* 0.847* 0.954* 1.096*
(11.416) (7.888) (6.327) (4.941)

C 0.248* 0.172* 0.132* 0.105*
(13.169) (11.720) (10.182) (8.215)

C
(5) 0.317* 0.299* 0.285* 0.243*

(11.210) (8.516) (7.027) (5.110)

C
(22) 0.230* 0.315* 0.361* 0.398*

(8.577) (7.951) (6.720) (5.497)
J 0.016* 0.012* 0.012* 0.010*

(3.135) (2.914) (3.606) (2.654)

J
(5) 0.058* 0.055* 0.047* 0.027

(4.573) (3.330) (2.282) (1.171)

J
(22) 0.010 0.011 0.008 0.028

(0.544) (0.413) (0.222) (0.522)
r− -0.736* -0.526* -0.411* -0.337*

(-8.620) (-10.154) (-8.226) (-5.436)

r(5)− -1.070* -0.685* -0.739* -0.644*
(-4.602) (-3.054) (-3.491) (-2.685)

r(22)− -0.899* -1.111 -0.985 -0.668
(-2.116) (-1.809) (-1.411) (-0.778)

Table 1.1 OLS estimates of the LHAR-CJ model (1.17), for S&P500 futures from
January 1990 to February 2009, (4, 766 observations). The LHAR-CJ model is
estimated withh = 1 (one day),h = 5 (one week),h = 10 (two weeks) andh = 22
(one month). The significant jumps are computed using a critical value ofα = 99.9%.
Reported in parenthesis aret-statistics based on Newey-West correction.
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information at the daily, weekly and monthly levels and reacts to shocks happening1

at these three levels/frequencies. These findings thus further confirm the views of the2

Heterogeneous Market Hypothesis.3

To evaluate the performance of the LHAR-CJ model, we compareit with the4

standard HAR (with only heterogeneous volatility) and the HAR-CJ model (with5

heterogeneous jumps) on the basis of a genuine out-of-sample analysis. For the6

out-of-sample forecast of̂Vt on the[t, t+ h] interval we keep the same forecasting7

horizons (one day, one week, two weeks and one month) and re-estimate the model8

at each dayt on a moving window of length2500 days. Table 1.2 reports the9

out-of-sample forecasts of the different models evaluatedon the basis of theR2
10

of Mincer-Zarnowitz forecasting regressions and the Diebold-Mariano test for the11

out-of-sample Root Mean Square Error (RMSE).13
12

The superiority of the HAR-CJ model over the HAR model is mild, since it has13

to be ascribed preeminently to days which follow a jump, and thus on a very small14

sample; conditioning on days following the occurrence of a jump would show a15

sharper improvement (as shown in [38]). However, the superiority of the LHAR-CJ16

model at all horizons, with respect to the HAR (and the HAR-CJmodel) is much17

stronger, validating the importance of including both the heterogeneous leverage18

effects and jumps in the forecasting model.19

In the second part of our empirical analysis, we estimate theTree HAR-CJ model20

introduced in (1.19) to investigate whether additional non-linear effects are present21

in the dynamics of the S&P500 futures volatilities on the topof the leverage effect22

and whether the explicit modeling of structural breaks and regime-shifts is able to23

improve the accuracy of the estimates and forecasts. To simplify the interpretations24

and reduce the number of parameters in the model, we assume that the cascade is25

present only in the volatility continuous componentCt (i.e. we set the parameters26

α
(w,m)
j andγ(w,m)

j , j = 1, . . . , k, to zero). Estimated coefficients, as well as the27

estimated regimes, are reported in Table 1.3 forh = 1. Classical model-based28

bootstrapped standard errors are given in parentheses.29

Table 1.3 shows that almost all coefficients in the local dynamics of realized30

volatilities are highly significant, with a couple of interesting exceptions. As dis-31

cussed previously, the leverage effect is found to be the most important asymmetry32

and yields the first binary split in the procedure. The optimal threshold is found33

to be around zero, highlighting the different reaction of realized volatilities to past34

positive and negative S&P 500 returns. A second relevant non-linear behavior of35

realized volatility dynamics is found in response to past low and moderate vs. high36

(continuous part) volatilities when past S&P 500 returns are negative. In fact, the37

threshold valued2 = 5.34 corresponds to the70% quantile of the estimatedlogCt38

series.39

In these three regimes, local volatility dynamics show significant differences. In40

particular, it is worth mentioning the following two results: First, past lagged S&P41

13Diebold-Mariano test should be applied with care when competing models are nested, however, [49]
showed that if the window size is bounded (e.g., computed over a fixed moving window as in our setting)
the test is still valid.
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S&P500 out-of-sample performances

Variable One day One week Two weeks One month

HAR 0.8073 0.8351 0.8162 0.7573

HAR-CJ 0.8107 0.8397 0.8188 0.7597
(1.994) (1.808) (0.835) (0.115)

LHAR-CJ 0.8238 0.8487 0.8279 0.7651
(4.663) (2.854) (2.023) (1.169)

Table 1.2 R2 of Mincer-Zarnowitz regressions for out-of-sample forecasts for
horizonsh = 1 (one day),h = 5 (one week),h = 10 (two weeks) andh = 22 (one
month) of the S&P500 from January 1990 to February 2009 (4,766 observations, the
first 2500 observations are used to initialize the models). The forecasting models are the
standard HAR, the HAR-CJ and the LHAR-CJ model. In parentheses is reported the
Diebold-Mariano test for the out-of-sample RMSE with respect to the standard HAR
model.

Tree HAR-CJ estimates and regimes

Regime structure Local parameters

Rj cj α
(d)
j β

(d)
j β

(w)
j β

(m)
j γ

(d)
j

rt ≤ 0.05, 0.6577 0.0574 0.1864 0.4060 0.2578 −0.1987
logCt ≤ 5.34 (0.0411) (0.0115) (0.0345) (0.0428) (0.0373) (0.0253)

rt ≤ 0.05, 0.5627 −0.0095 0.3924 0.4187 0.0783 −0.1330
logCt > 5.34 (0.0299) (0.0133) (0.0382) (0.0420) (0.0387) (0.0136)

rt > 0.05 0.1854 0.0604 0.3260 0.3962 0.2335 −0.0055
(0.0516) (0.0076) (0.0271) (0.0404) (0.0297) (0.0115)

Table 1.3 Tree HAR-CJ estimated parameters and regimes for the S&P 500realized
(log-) volatilities withh = 1. The sample period is from January 1990 to February
2009, for a total of 4,766 daily observations.rt andlogCt denote the past-lagged daily
S&P 500 return and past-lagged daily (log-) continuous components of the realized
volatility, respectively. Model-based bootstrap standard errors computed using 1,000
replications are given in parentheses.
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500 returns are significant only in the regimes where they arenegative, yielding to1

an increase in the realized volatilities. When past lagged S&P 500 returns are posi-2

tive (last regime) their impact in estimating future volatility dynamics is negligible.3

Second, the impact of jumps highly changes depending on the regime in which they4

occur: it is positive and significant in regimes characterized by (somehow) stable5

financial markets (regimes 1 and 3), yielding to an increase of realized volatility.6

By contrast, in times of market turbulence (measured by pastnegative returns and7

high past volatilities), jumps are found to have no particular impact in driving future8

realized volatility dynamics. These interesting results confirm and extend previous9

empirical findings shown in this section.10

Similarly to what has been shown above for the LHAR-CJ model,in a preliminary11

series of forecasting experiments forh equal to one, the Tree HAR-CJ model has12

been found to be able to significantly improve the out-of-sample performance of the13

classical HAR and HAR-CJ models. A more detailed and complete investigation14

of how the introduction of regimes (threshold-based or of a Markovian type) may15

improve predictions in a general HAR setting is left for the future.16

1.7 CONCLUDING REMARKS AND AREAS FOR FUTURE RESEARCH17

By projecting a dynamic process on its own past values aggregated over different time18

horizons, the HAR model is a general and flexible approach to fit the autocorrelation19

function of any persistent process in a very simple and tractable way. In this chapter20

we have briefly surveyed the nature, construction, and properties of the HAR class21

of models for realized volatility estimation and prediction. We discussed some22

of the extensions of the standard HAR model that have been recently proposed to23

explicitly take into account the predictive power of jumps,leverage effects, and other24

non-linearities (i.e. structural breaks and regime switches driven by the different25

sources acting on the financial market) for the time-varyingdynamics of realized26

volatilities. We also reviewed some recent studies generalizing the HAR model27

for predicting univariate realized volatilities to the multivariate setting of realized28

covariance matrices. This is a fast-growing field and the list of references will no29

doubt need updating in the near future.30

In our review of the extant literature on HAR models a number of topics stand31

out as possible avenues for future research. The most obvious, and perhaps difficult,32

is to generalize the univariate flexible HAR model with jumps, leverage effects,33

and other non-linear behaviors due to regime changes to the multivariate context.34

Existing models do not take these effects into account and are not well-designed35

to deal with (possibly) high-dimensional realized covariance matrices. What is36

needed are flexible yet parsimonious multivariate HAR-typeextensions that remain37

computationally feasible in large dimensions. This task may be accomplished using38

recent techniques coming from the computational statistics community, similar to39

what was done ten years ago in [6] for the estimation of a flexible volatility matrix in40

a multivariate GARCH setting.41
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51. S. Gonçalves and N. Meddahi. Box-Cox transforms for realized volatility. Journal of33

Econometrics, 160(1):129–144, 2011.34

52. C. Granger. Long memory relationships and the aggregation of dynamic models.Journal35

of Econometrics, 14:227–238, 1980.36

53. J.E. Griffin and R.C.A. Oomen. Covariance measurement inthe presence of non-37

synchronous trading and market microstructure noise.Journal of Econometrics, 160(1):58–38

68, 2011.39

54. T. Hayashi and N. Yoshida. On covariance estimation of non-synchronously observed40

diffusion processes.Bernoulli, 11(2):359, 2005.41

55. J. Jacod, Y. Li, P.A. Mykland, M. Podolskij, and M. Vetter. Microstructure noise in the42

continuous case: The pre-averaging approach.Stochastic Processes and their Applica-43

tions, 119(7):2249–2276, 2009.44



REFERENCES 23

56. G.J. Jiang and R.C.A. Oomen. Testing for jumps when assetprices are observed with1

noise–a "swap variance" approach.Journal of Econometrics, 144(2):352–370, 2008.2

57. X. Jin and J. Maheu. Modelling realized covariances and returns. Working Papers, 2010.3

58. B. LeBaron. Stochastic volatility as a simple generatorof financial power-laws and long4

memory.Quantitative Finance, 1:62131, 2001.5

59. S.S. Lee and P.A. Mykland. Jumps in financial markets: A new nonparametric test and6

jump dynamics.Review of Financial studies, 21(6):2535, 2008.7

60. A. Lo and W. Andrew. An econometric analysis of nonsynchronous trading.Journal of8

Econometrics, 45(1-2):181–211, 1990.9

61. P. Lynch and G. Zumbach. Market heterogeneities and the causal structure of volatility.10

Quantitative Finance, 3(4):320–331, 2003.11

62. C. Mancini. Non-parametric threshold estimation for models with stochastic diffusion12

coefficient and jumps.Scandinavian Journal of Statistics, 36(2):270–296, 2009.13
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74. L. Zhang, P. A. Mykland, and Y. Äıt-Sahalia. A tale of two time scales: Determining38

integrated volatility with noisy high-frequency data.Journal of the American Statistical39

Association, 100:1394–1411, 2005.40


