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Abstract
This article presents a comprehensive analysis of the relative ability of

three information sets � daily trading volume, intraday returns and overnight
returns � to predict equity volatility. We investigate the extent to which
statistical accuracy of one-day-ahead forecasts translates into economic gains
for technical traders. Various pro�tability criteria and utility-based switching
fees indicate that the largest gains stem from combining historical daily re-
turns with volume information. Using common statistical loss functions, the
largest degree of predictive power is found instead in intraday returns. Our
analysis thus reinforces the view that statistical signi�cance does not have
a direct mapping onto economic value. As a byproduct, we show that buy-
ing the stock when the forecasted volatility is extremely high appears largely
pro�table, suggesting a strong return-risk relationship in turbulent conditions.
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1 Introduction

Nonparametric estimators of asset price variability based on intraday data known as

�realized volatilities�have the appealing feature of yielding precise measures of ex

post daily volatility without requiring any modeling assumptions. It has been shown

that realized volatilities can improve the statistical accuracy of daily forecasts from

historical volatility models (Blair et al., 2001; Fuertes et al., 2009). There is also

evidence based on statistical criteria that the overnight information �ow triggered

by interactions across stock exchanges in di¤erent time zones, cross-listed stocks and

news released outside regular trading hours has predictive content for the subsequent

daytime volatility (Gallo, 2001; Tsiakas, 2008). On the other hand, the evidence

on the ability of trading volume to improve the statistical accuracy of volatility

forecasts is rather weak (Brooks, 1998; Donaldson and Kamstra, 2005).

Many volatility forecast competitions are available in the literature but most of

them rely solely on statistical loss functions as evaluation method. A new branch

of forecasting studies has emerged that utilizes economic loss functions motivated

not only but their practical relevance but also by the notion that, as �rst noted by

Satchell and Timmermann (1995), superior forecast accuracy does not necessarily

imply trading pro�tability. For instance, Fleming et al. (2003) show that dynamic

mean-variance asset allocation based on realized and overnight covariance forecasts

brings performance gains. Brownlees and Gallo (2010) and Fuertes and Olmo (2012)

support the use of realized volatilities to obtain more adequate economic capital

measures. However, relatively less is known about whether there is any incentive for

investors to complement historical daily return models with additional information

such as intraday price variation, overnight price variation or daily trading volume.

A well-known fact is that it is easier to predict the second moment than the
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�rst moment of the daily return distribution because volatility is a highly persis-

tent process. Practitioners commonly deploy simple market timing strategies that

exploit volatility forecasts as trading signals; see e.g., Northington (2009), Larsen

(2004), Rattray and Balasubramanian (2003) and Lasky (2001). In contrast, serial

dependence in returns remains a controversial empirical issue strongly refuted by

�nancial economics theory (Fama, 1970). Christo¤ersen and Diebold (2006) show a

direct connection between asset return volatility and the direction of price changes

which has important implications for investors pursuing market timing strategies.

Volatility predictability can lead to return sign predictability vindicating technical

trading rules that seek to anticipate changes in the direction of market moves.

This paper seeks to contribute to a novel but still sparse literature which utilizes

economic measures such as pro�tability criteria to rank volatility forecasting mod-

els. It is, to the best of our knowledge, the �rst study that investigates the relative

information content in intraday price variation, overnight price variation and daily

volume for volatility-based technical trading.1 Our framework focuses on simple in-

tuitive technical trading rules which o¤er a feasible �laboratory�for ranking volatil-

ity forecasts. A common aspect across the trading rules deployed is that they build

upon the positive nexus between stock returns and volatility dictated by asset pricing

theory. Using panel data models, we begin by con�rming empirically a signi�cantly

positive contemporanous relation between daily stock returns and realized variance

which appears stronger at extreme volatility levels. Baseline volatility forecasts are

obtained from a standard GARCH model based on individual (and portfolio) equity

1The expression �volatility-based technical trading� is used here to denote trading strategies

that are based on buy/sell signals implied from volatility forecasts. This di¤ers from what is

called �volatility trading�in the literature, namely, trading strategies that treat volatility, i.e. the

VIX index and, more recently, VIX futures, as an asset class (see Hafner and Wallmeier, 2007,

and Konstantinidi et al., 2008 ). It also di¤ers from �volatility timing�which refers to the use of

(co)variance forecasts in dynamic optimal portfolio construction (see Fleming et al, 2003).
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prices sampled at daily frequency. Then we augment the daily GARCH model with

realized volatility, overnight return or trading volume information. We investigate

the relative e¤ectiveness of these three information sets in generating incremental

pro�tability de�ned as positive risk- and cost-adjusted returns over and above those

extracted from the standard GARCH forecasts. To accommodate non-Gaussianity

in the technical trading returns, we gauge relative pro�tability through the Sortino

ratio, Leland�s alpha and a quadratic utility-matching performance fee for various

degrees of relative risk aversion. Transaction costs are also factored in. Among the

battery of purely statistical criteria considered for forecast evaluation, we include

the de facto Mean Square Error and R2 of Mincer-Zarnowitz regressions.

Our empirical analysis based on a 1761-day observation window for 14 large

S&P500 stocks and the S&P500 index produces various key �ndings. The statisti-

cal criteria indicate that augmenting the GARCH model with realized volatilities

(constructed from squared intraday returns) leads to the largest forecast accuracy

gains. Volatility-based technical trading simulations con�rm, �rst, that exploiting

additional information over and above daily returns a¤ords incremental pro�tabil-

ity. For instance, conditioning the standard daily return-based GARCH forecasts

additionally on daily volumes, squared overnight returns or realized volatilities leads

to attractive gains in net annualized Sortino ratios from 0.003 to 6.28 points, Le-

land�s alphas from 0.02% to 22.07% and net annualized switching fees from 0.02% to

22.63%. Second, trading volume is shown to be the most e¤ective volatility predictor

from the viewpoint of economic value, followed by overnight returns, while realized

volatility is the least e¤ective. Kendall�s tau rank correlations based on the notion of

concordance and discordance con�rm a low association between pro�tability criteria

and statistical criteria, indicating that de facto forecast accuracy measures such as

the Mean Square Error and Mean Absolute Error may be of little use to traders. As
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a byproduct, we show that simple technical trading rules perform reasonably well

vis-à-vis the Buy-and-Hold; the leading rule buys the stock at day t+ 1 open if the

predicted volatility exceeds the top 20th percentile of historical realized volatilities.

The rest of the paper unfolds as follows. Section 2 provides some relevant back-

ground literature. Section 3 presents the data, volatility forecasting models and

statistical evaluation measures. Section 4 outlines the technical trading rules. Sec-

tion 5 discusses the empirical �ndings before concluding in a �nal section.

2 Background Literature

A burgeoning empirical literature seeking improvements in volatility forecasting has

been naturally encouraged by two stylized properties of daily asset returns, namely,

pervasive memory in volatility and very little autocorrelation in levels. A signi�cant

link between volatility and trading volume, possibly re�ecting information about

changes and disagreement in investors�expectations, has also been documented in

many studies (Karpo¤, 1987; Najand and Yung, 1991; Jacobs and Onochie, 1998;

Rahman et al., 2002). In fact, several of those studies show that adding contempo-

raneous volume as regressor in GARCH models yields in-sample �t improvements.

However, lagged volume has failed to produce gains in volatility forecast accuracy

(Brooks, 1998; Donaldson and Kamstra, 2005; Fuertes et al., 2009).

The increasing availability of high-frequency (intraday) data in the last decade

has permitted many empirical �nance studies to employ realized volatilities. Thus,

for various asset classes (including FX, equities, bonds and commodities) it has been

shown that the use of intraday price information can improve the forecast accuracy

of models based on daily prices; see, e.g. Taylor and Xu (1997), Koopman et al.

(2005), Pong et al. (2004), Liu and Maheu (2009) and Fuertes and Olmo (2012).
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On the other hand, the evidence thus far on the predictive content of overnight

returns is less conclusive. Gallo (2001) shows for various large-cap stocks that

augmenting GARCH models with overnight returns improves Mean Absolute Errors

but the evidence from Mean Square Errors is more mixed. Using data on various

global stock market indices to estimate stochastic volatility models and a Bayesian

evaluation framework, Tsiakas (2008) establishes that there is substantial predictive

ability in �nancial information accumulated during overnight hours.

Our paper relates to a recent branch of the literature that utilizes decision-based

loss functions in order to judge forecasts through the lens of their economic value

to the user rather than just relying on statistical signi�cance; see, e.g. Fleming

et al. (2003), Abhyankar et al. (2005), della Corte et al. (2010). Satchell and

Timmermann (1995) were the �rst to discuss theoretically the �disconnect�between

statistical accuracy and pro�tability, illustrating it through a simple trading rule

that holds the local currency if it is predicted to appreciate against the US$.

We employ a volatility-based technical trading framework as laboratory to as-

sess the relative merit of intraday return, overnight return and volume information.

Several studies provide the background motivation for this choice. Larsen (2004)

demonstrates that the implied volatility index VIX can be used as oscillator to

identify equity market turning points since historical data suggests that, when VIX

reaches low levels, markets tend to be at the top and reversal follows, and when VIX

reaches high levels markets are at a trough and ready to move upward. Christof-

fersen and Diebold (2006) argue in favour of volatility-based strategies built upon

the link between volatility and market direction: the stylized volatility clustering

renders volatility highly forecastable and induces return sign persistence which can

be exploited for market timing. Northington (2009) proposes volatility indicators

for enhancing technical trading rules and providing pro�table exit signals. Harvey
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and Whaley (1992) test the pro�tability of implied volatility for trading S&P100

options and conclude that there are no net gains. By contrast, Noh et al. (1994)

�nd that trading straddles on the S&P500 index using daily GARCH forecasts can

reap signi�cant pro�ts after transaction costs. Konstantinidi et al. (2008) show that

while statistical accuracy measures and the mean correct directional-change predic-

tion suggest successful predictability of various implied volatility indices, trading

strategies are unable to yield abnormal pro�ts.

3 Data and Forecasting Methodology

The analysis is based on high-frequency transaction prices from Tick Data for in-

dividual stocks and an equity index spanning the period 02/01/97 to 31/12/03

(T = 1761 days). We focus on 14 large-cap S&P500 stocks which are chosen to

ensure wide sector representation: American Express (AXP), AT&T (ATT), Boe-

ing (BA), Caterpillar (CAT), DELL, General Electric (GE), General Motors (GM),

IBM, J.P. Morgan (JPM), Coca-Cola (KO), McDonald (MCD), Microsoft (MSFT),

Procter & Gamble (PG) and WAL-MART (WMT).2 Among these, AXP and JPM

are �nancials; BA, CAT, GE, GM are industrials; MSFT, DELL, IBM are technol-

ogy; PG, WMT, KO, MCD pertain to the consumer goods sector, and AT&T is

telecommunication. The volatility forecasting competition is also conducted using

the S&P500 index as proxy for diversi�ed portfolio trading.

3.1 Daily GARCH Models and Augmentation Variables

In order to measure realized volatility, the trading day [9:30am-4:00pm] is divided

into M intervals of 5-minute length. The 5-minute sampling interval has been

2Two stocks are listed on Nasdaq (DELL and MSFT) while the remaining are NYSE listed.
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shown to be short enough for the daily volatility dynamics to be captured with

reasonable accuracy, and long enough for the adverse e¤ects of market microstruc-

ture frictions not to be excessive. The price at the start of the jth intraday in-

terval is computed as the average of the closing and opening prices of intervals

j � 1 and j; respectively. Thus the jth intraday return on day t is computed

as rt;j =
�
log(pct;j)+log(p

o
t;j+1)

2
� log(pct;j�1)+log(p

o
t;j)

2

�
; j = 2; :::;M � 1; where pct;j (pot;j)

is the closing (opening) price of the jth intraday interval: The �rst-interval re-

turn is rt;1 =
�
log(pct;1)+log(p

o
t;2)

2
� log(pot;1)

�
and the last-interval return is rt;M =�

log(pct;M)�
log(pct;M�1)+log(p

o
t;M )

2

�
. Aggregation of the M = 78 intraday returns gives

the daily return de�ned as the open-to-close log price di¤erence, rt =
PM

j=1 rt;j =

log(
pct;M
pot;1
) = log(

pct
pot
). The inter-daily (close-to-close) return comprises the overnight

return and the daily return, i.e. log( pct
pct�1

) = log(
pot
pct�1

) + log(
pct
pot
).

The GARCH(r; s) model treats volatility as latent and can be formalized as3

rt = �+ "t; "t = zt
p
ht; zt � iid(0; 1) (1a)

ht = ! +
rX
i=1

�i"
2
t�i +

sX
j=1

�jht�j + �vt�1 (1b)

where rt are daily daily open-to-close returns as de�ned above, and zt are the de-

meaned standardized returns. The lag orders (r; s) are chosen so as to remove serial

dependence in squared daily returns. The parameters are estimated by Quasi Max-

imum Likelihood. The conditional variance equation (1b) has a straightforward

�nancial interpretation. In the simplest GARCH(1; 1) with � = 0; a trader predicts

the asset return volatility as a weighted sum of a long term average variance (embed-

3We deploy the Ljung-Box statistic to test the null hypothesis of no residual autocorrelation.

For 9 stocks the conditional mean equation in (1a) is appropriate. For the remaining 6 stocks

(ATT, DELL, GM, IBM, PG and WMT) we employ instead an ARMA(p; q) equation rt = � +Pp
i=1 �irt�i +

Pq
j=1 �j"t�j with appropriate orders p and q so as to whiten the residual sequence.

The GARCH equation (2b) for CAT, JPM, KO and MCD has lags r = 2 and s = 1 whereas for

all other stocks a GARCH(1,1) su¢ ces to absorb the autocorrelation in squared daily returns.
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ded in the constant !), the previous period volatility news ("2t�1) and the previous

variance forecast (ht�1). As additional predictor (vt�1) we consider either realized

volatility, trading volume or squared overnight returns; henceforth, augmentation

variables. Next, we discuss each of the three candidate augmentation variables in

turn. Hereafter, equation (1b) with � = 0 is referred to as standard GARCH.

A large number of realized volatility measures have been developed in recent

years since Andersen et al. (1998) originally proposed the realized variance, or

aggregation of intraday squared returns, as ex post non-parametric measure of daily

volatility. We opt for the realized power variation (RPV) measure introduced by

Barndo¤-Nielsen and Shephard (2004) which is de�ned as

RPVt(�) = �
�1
� �

1��=2
MX
j=1

jrt;jj� ; 0 < � < 2; t = 1; 2; :::; T (2)

where M is the number of equal-length intraday intervals, � = 1=M , and �� =

E j�j� = 2�=2 �(
1
2
(�+1))

�( 1
2
)

with � s N(0; 1): RPV becomes realized absolute variation for

power order � = 1; and realized variance for � = 2:Our motivation for employing the

RPV measure (with � = 1:5) is both theoretical and empirical. Barndor¤-Nielsen

and Shephard (2004) show analytically and via simulations that RPV is robust to

jumps which can be regarded as large outliers inducing biases in model estimates

and forecasts. The empirical literature has shown that despite the predominant use

of squared returns, absolute returns raised to the power 1 � � � 1:5 are extremely

good forecasters of future volatility as they are more persistent; see, e.g. Ghysels et

al. (2006), Forsberg and Ghysels (2007), and Liu and Maheu (2009).

Our other two candidates for the augmentation term vt�1 in equation (1b) are

daily trading volume (V OL), de�ned as the total number of shares traded on day

t� 1, and the squared overnight return (OV N) de�ned as [log( pot
pct�1

)]2.

The sample is divided into an estimation period of 1261 days (T0) and a holdout
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period of 500 days (T1) so that (T = T0+ T1).4 The initial 1261-day length window

is sequentially rolled and the model parameter estimation is repeated to obtain

500 out-of-sample 1-day-ahead volatility forecasts. This rolling estimation approach

o¤ers some �shield�against structural breaks (shifts) in the volatility process.

3.2 Statistical Analysis

We begin by discussing the main distributional properties of daily returns, daily

squared returns as an unbiased volatility proxy and the three candidates we are

considering as predictors of future volatility � realized power variation, trading

volume and squared overnight returns.5 The sample autocorrelation function of

daily and squared daily returns alongside the Ljung-Box Q test and ARCH LM

test con�rm that there is far more predictability in the second than in the �rst

moment of the return process. Both daily volatility measures (r2t and RPV) exhibit

large positive skewness and kurtosis. By using mean volume as proxy for trading

activity, stocks can be ranked from more to less liquid as technology, �nancials,

consumer goods and industrials. Average trading volume of the index is several times

that of individual stocks. Among all three predictors of future daily volatility �

RPV, volume and squared overnight returns � volume generally exhibits the lowest

dispersion relative to its mean (coe¢ cient of variation) which, in turn, indicates that

it is the least noisy while the squared overnight return lies at the other extreme. The

unreported Ljung-Box Q test for squared overnight returns corroborates that the

volatility clustering typical of daily returns is not a distinctive feature of overnight

returns, in line with the evidence in Gallo (2001). This might be due to the overnight

4Thus the out-of-sample period comprises about 1/4 of the total sample as in Koopman et al.

(2005), Liu and Maheu (2009), Ghysels et al. (2006) and Fuertes et al. (2009).
5For space constraints, we do not report the detailed statistics here but they are tabulated in

Appendices A1 and A2 of the longer working paper version of this article (see Fuertes et al., 2013).
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return noisiness that renders the autocorrelation signal di¢ cult to pick up.

Let �2t denote the latent daytime volatility process that we are seeking to forecast.

Following the recent literature, an appropriate target (~�2t ) for forecast evaluation is

the sum of open-to-close intraday squared returns. The accuracy of the mth model

forecasts, fht;mgT1t=1, is �rst gauged through a battery of statistical criteria based on

the out-of-sample forecast errors {~�2t � ht;mgT1t=1. More precisely, we employ mean

error measures based either on symmetric loss functions such as the Mean Ab-

solute Error (MAE), Mean Square Error (MSE), heteroskedasticity-adjusted MSE

(HMSE), and adjusted mean absolute percentage error (AMAPE), or asymmetric

loss functions such as the Mean Mixed Error (MME) that assigns di¤erent penalty

to under(U)- and over(O)- predictions, the Gaussian Maximum Likelihood Error

(GMLE) and the loss function implicit in the Mincer-Zarnowitz regressions.6

Table 1 reports the above statistical forecast accuracy criteria alongside the

equal predictive ability test of Diebold and Mariano (1995; DM) and the forecast

encompassing t-test of Harvey et al. (1998; ENC-T) for three stocks � �nancial

(AXP), industrial (CAT) and technology (MSFT) � and the S&P500 index.7

[Table 1 around here]

A pervasive �nding across statistical loss functions is that the GARCH-VOL and

GARCH-OVN forecasts have inferior accuracy than those from the GARCH-RPV

model that exploits intraday data. The superior forecast accuracy of the intraday-

augmented GARCH models versus the volume- or overnight-augmented models is

statistically signi�cant as suggested by the DM test at the 5% signi�cance level

6A description of these statistical metrics can be found in Fuertes et al. (2009). The R2 of

the Mincer-Zarnowitz levels regression (MZ-R2 henceforth), ~�2t = a + bht;m + et; t = 1; :::; 500;

measures the information content of the forecasts; ht;m is unbiased for ~�2t if a = 0 and b = 1:
7Results for the remaining 11 stocks are qualitatively similar and not reported to preserve space.
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or better. The statistical signi�cance of the forecast accuracy gains of augmented

GARCH models (versus the standard GARCH) is gauged by means of the ENC-T

test.8 We �nd that realized volatility, unlike volume, adds signi�cant information to

the historical GARCH forecasts. Albeit with notably smaller ENC-T statistics, con-

ditioning the GARCH forecasts on squared overnight returns also a¤ords signi�cant

forecast accuracy improvements. The win counts across the 14 individual stocks and

S&P500 portfolio are clearcut: unanimously across all 15 assets, the lowest mean

forecast error and the largest MZ-R2 correspond to the GARCH-RPV forecasts.

The last column of Table 1 summarizes the outcome of the non-parametric mar-

ket timing t-test of Pesaran and Timmermann (1992; PT-T). This test is aimed

at comparing the proportion of correctly predicted directional changes in volatility

with the probability of correct predictions under the null of independence between

directional forecasts and realizations. The PT-T statistics reported in Table 1 un-

ambiguously indicate that all of the GARCH models considered (i.e., standard or

augmented) can correctly predict the sign of the volatility change since the null

hypothesis of no market timing ability is strongly refuted at the 1% level.

In the next section we present a trading framework to evaluate the compet-

ing volatility forecasts. Building on the theoretical positive risk-return nexus that

represents one of the cornerstones of Merton�s (1973) dynamic asset pricing theory,

various trading strategies are designed to exploit the volatility forecasts. The return-

risk tradeo¤ remains a matter of controversy in the empirical literature and is not

the main focus of this paper. Nevertheless, in order to set the stage for the trading

simulations, we explore the intertemporal risk-return relation in a high-frequency

framework following Bali and Peng (2006). Accordingly, we run a pooled regression

8For nested models the DM test statistic is non-Gaussian, resulting in undersized tests with low

power, so the results are interpreted with caution. The ENC-T test null is that model A encom-

passes model B and the alternative is that model B contains additional predictive information.
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across stocks of daily returns, rt, on daily realized variances, ~�2t ; over the estimation

window (T0 = 1261 days).9 Next, the return-variance observations f(rt; ~�2t )g1261t=1 are

arranged according to the ordered realized variance ~�2t to create �ve equal-sized sub-

samples using as boundaries the 80th, 60th, 40th and 20th percentile. Thus the top

quintile Q1 contains the extremely high volatility days above the 80th percentile,

and the bottom quintile Q5 contains the extremely low volatility days below the

20th percentile. We estimate a return-risk regression per quintile. Two panel esti-

mation approaches are employed: pooled OLS (POLS) that assumes homogeneity

across stocks and Random E¤ects (RE) that allows for stock return heterogeneity

induced by unobserved random factors which are uncorrelated with the stock real-

ized variance. The reported t-statistics are based on panel corrected standard error

(PCSE) covariances that account for cross-section contemporaneous correlation as

well as di¤erent error variances in each cross-section.10 Table 2 sets out the results.

[Table 2 around here]

The correlation between returns and realized variances over the whole sampling dis-

tribution is signi�cantly positive at 3.34%. However, the correlation is notably larger

in the top and bottom volatility quintiles, at 8.59% and 5.82%, respectively, than

in the intermediate quintiles. Both the POLS and RE estimators yield signi�cantly

positive slope coe¢ cients in the top quintile Q1 and in the bottom quintiles Q4 and

Q5: Overall the evidence suggests that the daily return-risk relation is positive and

stronger at the tails of the volatility distribution, particularly, the right tail.

9Bali and Peng (2006) are the �rst to use daily realized variances to examine the risk-return

link for the aggregate stock market. In addition, they use risk measures obtained from GARCH

models estimated with 5-minute returns and daily implied volatilities. All three risk measures

suggest that the intertemporal risk-return relation is positive and statistically signi�cant.
10For details on the PCSE methodology see Beck and Katz (1995). Wooldridge�s panel test sta-

tistic for zero autocorrelation in the residuals of the quintile regressions is insigni�cant throughout.
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4 Volatility-Based Technical Trading Strategies

The out-of-sample volatility forecasts obtained from standard and augmented GARCH

models are translated into trading signals using the strategies that we outline next.

On days when the strategy at hand suggests no position in the stock (or index) the

investor earns the risk-free rate proxied by the 3-month US Treasury bill.

4.1 Directional-Change Strategies

Let hmt+1 denote the volatility forecast for day t + 1 obtained from model m using

information up to day t:Motivated by the signi�cant results from the market timing

PT-T test reported in Table 1, we employ two long-only strategies which exploit the

directional-change predictive ability of the models. In the �rst long-only strategy,

called Directional, the stock (or index) is bought at the opening of day t + 1 if the

forecast for t + 1 represents an increase in volatility with respect to the �observed�

or realized volatility on day t (i.e., hmt+1 � ~�2t > 0).11 The asset will be held for s

days, namely, until a sell or decrease-in-volatility signal is obtained for day t+ s+1

(i.e., hmt+s+1 � ~�2t+s < 0) when the asset is sold at the opening.

A potential problem with the Directional strategy is very frequent trading and

hence, large transaction costs. Short-term moving averages deployed as heuristic

trading rules have been shown to enhance market timing strategies; see e.g., Lee et

al. (2003) and Corrado and Lee (1992). We overlay a 5-day Simple Moving Average

(SMA) and a 5-day/20-day Double Crossover Moving Average (DCMA) stop-loss

rule to the Directional strategy in order to: i) reduce the number of trades (achieved

by the SMA), and ii) limit the potential losses caused by large price falls (achieved

11For the GARCH model augmented with the squared overnight return, all trading strategies

are deployed using the 10:00am price (instead of the opening 9:30am price) as the buy or sell price.

This is because it is not feasible for an investor to trade on day t+1 at the open price if that price

is precisely required for the GARCH-OVN model to generate the day t+ 1 volatility forecast.
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by the DCMA).12 Thus the Directional-SMA-DCMA strategy buys the asset at the

opening of day t+1 if three conditions are met: 1) the day t+1 variance forecast is

greater than the realized variance on day t, 2) the opening price on day t+1 is greater

than the SMAt+1 signal, and 3) no stop-loss signal arises from the DCMAt+1.

4.2 Level-Driven Strategies

We want to consider volatility level-driven strategies for two reasons. A �rst moti-

vation is provided by our empirical �nding that the positive daily return-volatility

link appears stronger at the tails of the volatility distribution. A second motivation

comes from the stylized fact that at extremely high (low) volatility levels equity

markets tend to bottom out (top up) and reversal occurs (Larsen, 2004).

We start by deploying a long-only trading strategy, called Top20, as follows. The

daily realized variance sequence over the estimation window, f~�2tg1261t=1 is ordered to

identify the 80th percentile (top quintile) volatility �80;t. In line with the notion

of time-varying risk, we roll the window forward to generate a sequence of high-

volatility thresholds, f�80;tg500t=1; one per out-of-sample day. If the volatility forecasted

for day t + 1 is high (hmt+1 > �80;t); the asset is bought at the t + 1 opening price

and held until a sell signal is generated on day t+ s (hmt+s < �80;t+s�1).

Next we deploy the short-only strategy called Bottom20 where the asset is

shorted at the opening price if the forecasted volatility falls below a recursively

updated low-volatility threshold given by the historical bottom quintile (hmt+1 <

�20;t). We unwind the trade at the opening price of day t + s when a buy signal

is generated, hmt+s > �20;t+s�1: T op20 and Bottom20 are less noisy and hence, less

12The 5-day SMA is created as the simple moving average of day t � 1 to t � 5 closing prices,
SMAt =

Pt�5+Pt�4+:::+Pt�1
5 . The 5-day/20-day DCMA, often suggested to identify short term

trends in prices (see Pring, 2002) combines a weekly and a monthly trend: if the weekly SMA falls

below the monthly SMA then a stop-loss (i.e., sell) signal is generated.
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trading-intensive strategies than the Directional strategy and so SMA �lter rules

are not warranted. Finally, we deploy a long-short strategy which combines Top20

and Bottom20. The above short-only and long-short strategies are mainly feasible

for hedge funds that are not subject to regulatory short-selling constrains.

4.3 Assessing Trading Pro�tability

We now describe our framework to asses the economic value of volatility forecasts.

For each trading strategy, the e¤ectiveness of three conditioning information sets

(intraday returns, overnight returns and trading volume) is gauged by means of

incremental pro�tability; henceforth, the term �incremental�refers to the economic

value of augmented-GARCH forecasts over and above that of standard daily return-

based GARCH forecasts. In order to account for risk in a way that is robust to non-

normality of the strategies�returns, we focus on two metrics: Sortino ratio (SoR)

and Leland�s alpha (�). The incremental Sortino ratio (denoted �SoR) ranks the

competing forecasts on the basis of annualized returns in excess of the risk-free rate

per unit of downside risk relative to a 0% target return. Leland (1999) proposes an

adjustment to the standard Jensen�s (CAPM) alpha to account for nonlinearity of

returns relative to the market. It is based on the modi�ed beta estimator

B̂i =
cov(rt;i;�(1 + rt;M)�b̂)
cov(rt;M ;�(1 + rt;M)�b̂)

(3)

where rt;i are the daily returns of a trading strategy, rt;M are the market returns

(S&P500 proxy) and b represents the exponent of the marginal utility function of

the average investor estimated by b̂ = ln(1+rt;M )�ln(1+rt;F ))
var(ln(1+rt;M ))

: Leland�s alpha follows

from the conventional expression Âi = rt;i � rt;F � B̂i(rt;M � rt;F ):

We also assess the economic value of predictability by determining the maximum

performance fee that a risk-averse investor would be willing to pay to switch between
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forecasts; see e.g. Fleming et al. (2003), and Della Corte et al. (2010). More

speci�cally, it is assumed that the investor has a quadratic utility function given by

U(rt;i) =W0(1 + rt;i �


2(1 + )
(1 + rt;i)

2) (4)

where W0 is initial wealth, and  is the investor�s degree of relative risk aversion.

We compute the maximum amount (�) that the representative investor is willing

to pay to switch from the standard or baseline GARCH forecasts (denoted base) to

each of the augmented-GARCH forecasts (denoted i) by solving the equation

500X
t=1

U(rt;base) =
500X
t=1

U(rt;i � �;i): (5)

for low and high risk aversion levels  = f1; 10g as in Fleming et al. (2003).

Lastly, the economic value of forecasts is assessed in terms of net pro�tability.

The average transaction costs on large stocks for a U.S. institutional investor are

estimated to range between 25-31 basis points (bp) per trade by Peterson and Sirri

(2003) and Bessembinder (2003); for our individual stock trading simulations a �at

� = 28bp cost per trade is adopted to compute net SoR, Leland�s � and switching

fees. Portfolio trading using the S&P500 index can be easily replicated with ETFs

(e.g., SPDR) for which the costs per trade on the US market are estimated much

lower at 8-11bp.13 A �at � = 10bp is adopted for our index trading simulations.

5 Empirical Findings

5.1 Individual Stock Trading

By deploying the trading strategies on the sample of stocks, a total of 70 stock-

strategy settings (or competitions) among volatility forecasting models are on hand.

13Elkins-McSherry Report, Vol.II (2), May 2005, available at www.elkinsmcsherry.com.
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Table 3 reports the incremental Sortino ratio (�SoR) and incremental Leland�s

alpha (��) of each augmented-GARCH model vis-à-vis the standard GARCH.

[Table 3 around here]

A pervasive �nding across stock-strategy settings (in 58 out of 70) is that incremen-

tal risk-adjusted pro�tability can be extracted from augmenting the standard daily

GARCH model with additional information. Overall, the predictive ability of trad-

ing volume stands out with 43% of wins (in those 58 competitions) as suggested by

the largest incremental gains in either �SoR or ��; followed by overnight returns

with 31% of wins; the remaining 26% of wins pertain to intraday returns.14 For any

given strategy, the information content in trading volume for short-term volatility

prediction appears at least as bene�cial as that in intraday or overnight returns. To

illustrate, for the Directional SMA-DCMA strategy the most substantial improve-

ments (i.e., largest �SoR > 0 or �� > 0) are associated with volume for 4 stocks,

with overnight returns for another 4 stocks and with intraday returns (RPV) for 3

stocks; for the Long-Short strategy the largest gains are associated with volume in

7 stocks, RPV in 3 stocks and overnight returns in 2 stocks.15

The number of trading signals over the 500-day simulation window (on average

across stocks) are plotted in Figure 1 for each forecasting model-strategy pair.

14Out of 70 settings, only a handful of them show a discrepancy between the SoR and � metrics.

In those few exceptions, we proceed by following the metric with the largest incremental gain. For

instance, for IBM stock and the Directional -SMA-DCMA strategy, GARCH-VOL is best according

to � and GARCH-RPV according to SoR but the incremental gain (vis-à-vis the standard daily-

based GARCH model) in � exceeds that in SoR; hence, we count GARCH-VOL as winner.
15For completeness, we computed incremental end-of-period values, incremental annualized re-

turns and standard deviation of returns generated by actively investing $100 over the holdout

period on the basis of augmented GARCH model forecasts. The di¤erent information sets a¤ord

positive incremental returns that range from 0.2% to 24.1% per annum; trading volume remains

in the lead. See Appendix A3 in the working paper version of this article (Fuertes et al., 2013).
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[Figure 1 around here]

Directional strategies are the most trade intensive with up to 78 roundtrip buy-sell

trades on average, whereas Top20 and Bottom20 which impose a volatility threshold

trading rule are the least trade intensive with 28 trades maximum. Trading intensity

is also in�uenced by the volatility forecasting models; e.g., for the Top20 strategy

where trades are triggered by large forecasted volatilities, the most intense trading

corresponds to GARCH-VOL and the least intense to GARCH. This is in line with

extant evidence that GARCH-VOL forecasts tend to be biased upwards and GARCH

forecasts downwards (Fuertes et al., 2009).

SoR and Leland�s � decrease when transaction costs are included but their incre-

mental values vis-à-vis the standard GARCHmodel can increase or decrease because

the di¤erent models entail di¤erent frequency-of-trading patterns. The incremental

Sortino ratio and Leland�s � net of trading costs are set out in Table 4.

[Table 4 around here]

The net pro�tability measures suggest in most of the competitions (i.e., 56 of 70

stock-strategy pairs) that the use of intraday, overnight or volume information is

warranted. The ranking of information through win counts (i.e., largest�NSoR > 0

or �N� > 0) indicates that VOL with 44.6% of wins remains in the lead followed

by OVN with 42.9% while the remaining 12.5% pertains to RPV. The gains from

conditioning the volatility forecasts on additional information (beyond daily histor-

ical returns) can be substantial. With the Top20 strategy, for instance, the positive

incremental net Leland�s � ranges between 0.02% and 15.13%, averaging 3.32%, and

the incremental net Sortino ranges between 0.003 and 2.74, averaging 0.78.

The economic value of forecasts is gauged next through utility-matching annu-

alized performance fees �. Table 5 sets out the results.
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[Table 5 around here]

Out of the 70 stock-strategy competitions, in a majority of 58 there are positive

switching fees for several of the augmented models. Once again, historical daily

volume is the best information set leading to the highest performance fees in 40% of

the 58 competitions followed by overnight returns with 36% of wins; the remaining

24% corresponds to intraday price information.16 The predictive value of additional

information over and above historical daily returns can be substantial: for the Top20

strategy the positive switching fees for low (high) relative risk aversion levels vary

from 0.01% (0.03%) to 16.81% (10.72%) per annum, averaging 3.46% (3.09%) across

stocks. In terms of the size of switching fees and robustness of �ndings across trading

strategies, lagged volume emerges as an excellent GARCH augmentation covariate

for trading purposes. The same conclusions are reached when transaction costs

are factored in; detailed net performance fees can be found in Appendix A4 of the

working paper version of this article (see Fuertes et al., 2013).

While the main goal of the paper is not to propose a �best� trading rule but

instead to assess the 1-day-ahead volatility forecasting ability of three information

sets in the context of various intuitive trading rules, as a byproduct we comment on

the relative performance of the latter. Untabulated results reveal that among the 70

stock-strategy competitions the net SoR exceeds that of the Buy-and-Hold (B&H)

in about half of them (i.e., 31 out of 70). Moreover, in 63 out of 70 stock-strategy

competitions a risk-averse investor would be willing to pay a relatively high fee

after transaction costs to switch from the B&H strategy to an active strategy. The

unreported Sortino ratio of the B&H hovers between -0.73 and 1.39 across stocks

averaging 0.23. The largest gains in net SoR; Leland�s � and �=10 versus the B&H

16In each stock-strategy competition reported in Table 5 the best information set is de�ned as

the one leading to the highest switching fees for risk aversion parameter  = 1 or  = 10:
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pertain to the Top20 strategy; the net SoR of Top20 hovers between -0.56 to 8.97

across stocks and volatility forecasting models, averaging 0.38. The average net

SoR of all other trading rules is below that of the B&H. Top20 yields average net

positive switching fees vis-à-vis the B&H of 9.04% and 91.15% for high ( = 1) and

low ( = 10) risk aversion levels, respectively, the largest across all �ve strategies.

Top20 is able to outperform B&H in 11 out of 14 stocks based on net SoR, in 8 out

of 14 stocks based on net �; and in 9 out of 14 stocks based on switching fees.17

5.2 Portfolio Trading

Next we generate volatility forecasts for a well-diversi�ed equity portfolio by �tting

model (2) to S&P500 index data. Table 6 sets out the trading results.

[Table 6 around here]

The results suggest that GARCH-VOL forecasts are the most e¤ective index-trading

signals. Consistently across the �ve trading strategies and according to all prof-

itability criteria, both before (Panel A) and after (Panel B) transaction costs, the

empirical evidence endorses the common practice by traders of employing volume

information as signal for making buy/sell decisions (Pring, 2002).

Across all trading strategies, the annualized utility-based net performance fees

shown in Table 6 suggest that volume information (VOL) is very useful for short-

term volatility prediction; investors are willing to pay sizeable net fees to switch

from standard GARCH to GARCH-VOL forecasts, ranging from 1.49% to 8.36%

(�=1) and from 1.27% to 6.87% (�=10). Some gains are a¤orded by intraday return

(RPV) and overnight return (OVN) information, however, they are smaller than

those associated to VOL and con�ned to the least pro�table Directional strategy.
17More detailed results on the comparison of the strategies with the B&H can be found in

Appendix A4 of the working paper version of this article (Fuertes et al., 2013).
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5.3 Statistical versus Economic Value of Volatility Forecasts

On the one hand, our analysis of economic value of volatility forecasts, summarized

in Tables 3 to 6, essentially has suggested that augmenting a standard GARCH

model with lagged trading volume as regressor can rather e¤ectively enhance the

risk- and cost-adjusted trading performance of technical trading strategies. On the

other hand, the statistical loss functions summarized in Table 1 advocate instead the

intraday return-based RPV as the most useful augmentation variable since it leads to

the largest improvement in statistical forecast accuracy.18 Hence, the analysis reveals

a disconnect between statistical signi�cance and economic value of predictability.

In order to shed further light on this disconnect we gauge the degree of associa-

tion between the model rankings arising from common statistical forecast accuracy

metrics (e.g., MSE) and pro�tability metrics (e.g., alpha). Figure 2 shows scatter-

plots and rank correlations.19 We report results only for the Top20 strategy, to save

space, given the qualitatively similar outcomes from the other strategies.

[Figure 2 around here]

On the top-right corner of each graph we report the Kendall�s tau, a rank-

correlation measure of (non)linear association between variables.20 The graphs il-

lustrate strong rank correlations between di¤erent pro�tability measures: Leland�s

18We computed the statistical criteria reported in Table 1 separately over high volatility (top

quintile) and low volatility (bottom quintile) out-of-sample days. RPV remains in the lead from

the point of view of statistical accuracy for extremely low and high volatility days. Conversely,

trading volume incurs poor statistical forecast accuracy especially for extreme volatility days.
19Each graph contains 60 = 4�15 observations corresponding to four models (standard GARCH

and three augmented versions) and �fteen assets (14 individual stocks and S&P500 portfolio).
20Kendall�s tau is based on the number of concordances and discordances between the variables.

If the number of concordances and discordances are roughly the same for all observations, there

is no association between the variables. Relatively large numbers of concordances (discordances)

suggest a positive (negative) relationship between the variables.
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� versus the SoR (0.767; p-value = 0.000) and performance fees �=10 versus Le-

land�s � (0.415; p-value = 0.001). The graphs corroborate that the MSE may not

capture well the economic value of predictability to investors. The correlations be-

tween forecast rankings from pro�tability measures and MSE are very small. For

instance, Kendall�s tau between MSE and Sortino ratio is insigni�cant at -0.002

(p-value 0.985), and likewise between MSE and Leland�s � (0.034; p-value 0.707).21

The disconnect between statistical accuracy and pro�tability of volatility forecasts

here illustrated highlights the importance of using appropriate metrics that re�ect

the purpose for which the volatility forecasts are intended.22

6 Conclusions

Forecasting stock market volatility has been the subject of extensive empirical re-

search. Recent studies have advocated the use of realized volatility measures con-

structed from intraday prices as a way to enhance the statistical accuracy of standard

daily return-based GARCH predictions. Volume information has proven, in contrast,

rather unsuccessful for volatility prediction. There is mixed evidence regarding the

predictive content in overnight returns for the subsequent daytime volatility. Most

extant research on these issues has solely relied on statistical loss functions such

as those implicit in Mean Square Error or Mean Absolute Error criteria while the

economic relevance of predictability has received relatively scant attention. In the

present paper we deploy various volatility-based technical trading rules in order to

21Similar �ndings emerge from rank correlation measures and scatterplots using the remaining

statistical loss functions reported in Table 1 instead of the MSE. Details available upon request.
22This disconnect has been documented in other contexts. Abhyankar et al. (2005) show that a

utility-based value approach reverses the previous empirical consensus that monetary-fundamental

models cannot beat the random walk. Hall and Sirichand (2010) compare the forecast performance

of an atheoretic and a theory-informed model of bond returns for portfolio decision making and

illustrate the sensitivity of the ranking to the evaluation criteria.
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assess the economic signi�cance of augmenting the standard GARCH model with

realized volatilities, trading volume or overnight returns. The trading strategies are

deployed separately for 14 individual large-cap US stocks and for the S&P500 index.

One �nding that permeates through both statistical and economic loss functions

is the relevance of exploiting additional information, over and above historical daily

returns, for daily volatility forecasting. Another important �nding is the lack of

correlation between statistical signi�cance and economic value of forecasts, namely,

our analysis suggests that de facto statistical metrics such as the Mean Square Error

and Mean Absolute Error may be of little value to practitioners. Realized volatilities

stand out as the most e¢ cient predictor from the point of view of statistical loss

functions. The merit of volume as predictor of future volatility is not apparent in the

statistical framework but pro�tability criteria such as the Sortino ratio and Leland�s

alpha, before and after trading costs, endorse investors�common practice of using

volume as trading indicator. As a byproduct, our research reveals a stronger daily

return-volatility nexus in turbulent periods. Echoing this �nding the best trading

rule buys the asset when its volatility forecast exceeds the historical top quintile.

In future research, it would be interesting to assess if these conclusions hold in

di¤erent volatility-based trading settings such as variance swaps or options trading.

Further, following Wu and Xu (2000) who document that trades on NYSE are more

informative than those on other exchanges such as NASDAQ, it might be interesting

to reassess their evidence using the methodology employed in the present paper.
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Figure 1. Average number of trading signals. The bar chart provides, for each volatility 
forecasting model and trading strategy pair, the number of roundtrip buy-sell trading signals 
triggered during the 500-day out-of-sample period on average across stocks. 
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Figure 2. Ranking of volatility forecasts by profitability of Top20 trading strategy vis-à-vis statistical accuracy. The scatterplots show 
the degree of association between Mean Squared Error (MSE) and the profitability measures: Leland’s alpha, Sortino ratio (SoR), performance fees (%) 
that an investor with quadratic utility and constant relative risk aversion of ={1,10} would be willing to pay to switch from using only daily return data 
(baseline GARCH forecasts) to using additional information (augmented GARCH forecasts). Each graph has 60 points corresponding to four models 
(standard GARCH and augmented versions) and fifteen assets (14 individual stocks and S&P500 portfolio). In the top-right corner of each graph we 
report the Kendall’s tau rank correlation measure. 
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Table 1. Statistical forecast evaluation of volatility forecasts. 

                                                          Statistical Criteria

Model

GARCH 16.406* 2.082* 1.939** 0.257*** 49.342* 7.715 2.211** 29.044* — 4.621***
GARCH-RPV 10.321 1.666 0.828 0.211 29.614 5.615 2.129 56.967 4.158*** 3.451***
GARCH-VOL 18.239*** 2.305*** 38.958*** 0.271*** 49.766*** 10.330*** 2.255*** 22.240** -1.613 4.717***
GARCH-OVN 16.222*** 2.067*** 1.914*** 0.255** 49.199*** 7.510 2.207*** 29.802* 2.119** 5.507***

GARCH 6.141*** 1.780*** 1.833*** 0.281*** 16.810** 5.751*** 2.068*** 13.986* — 4.097***
GARCH-RPV 3.806 1.288 0.845 0.217 12.008 3.681 1.985 43.640 7.719*** 4.355***
GARCH-VOL 8.984*** 2.215*** 4.688*** 0.312*** 19.946** 9.264*** 2.129*** 4.986*** -3.923 4.441***
GARCH-OVN 5.825*** 1.539** 1.515*** 0.247*** 11.882* 6.121*** 2.030* 23.554* 3.121*** 5.006***

GARCH 8.611** 1.952*** 1.282*** 0.252** 19.606* 8.488*** 2.224*** 35.520* — 5.724***
GARCH-RPV 5.132 1.515 0.689 0.205 10.316 5.464 2.169 58.156 5.087*** 4.472***
GARCH-VOL 18.688*** 3.425*** 5.187*** 0.349*** 22.864** 21.144*** 2.356*** 16.830** -1.338 3.220***
GARCH-OVN 8.373*** 1.942*** 1.322*** 0.252*** 17.493* 8.307*** 2.226*** 34.614* 2.475*** 6.082***

GARCH 0.954*** 0.672 2.088 0.259 3.300* 1.517 1.101 53.804 — 4.618***
GARCH-RPV 0.775 0.607 0.945 0.225 1.953 1.255 1.062 63.577 4.608*** 5.334***
GARCH-VOL 1.525** 0.887** 6.905*** 0.311** 4.597** 2.160*** 1.255** 30.613** -3.299 4.173***
GARCH-OVN 1.024* 0.693** 1.566* 0.254*** 3.236* 1.637* 1.086** 53.571 -0.309 4.265***

Tests

MSE MAE HMSE AMAPE MME(U) MME(O) GMLE MZ-R 2 ENC-T PT-T
Financial stock: American Express (AXP)

Industrial stock: Caterpillar (CAT)

Technology stock: Microsoft (MSFT)

Index: Standard & Poor's 500 (S&P500)

 
 
The table reports the estimated expected forecast error losses for the standard daily GARCH 
model and extensions using lagged realized power variation (RPV), trading volume (VOL) or 
squared overnight returns (OVN) as augmentation variable t-1 in Eq. (2). Bold indicates the top 
performer. *, **, *** denote significantly larger losses than those of the top performer (Diebold-
Mariano test) at the 10%, 5% or 1% level.  The last two columns report the encompassing test of 
Harvey et al. (1998; ENC-T) developed for the MSE loss function, and the non-parametric market 
timing test of Pesaran and Timmermann (1992; PT-T). Asterisks for the ENC-T test indicate that 
the forecasts from the corresponding augmented-GARCH model add significant information to 
those from the standard GARCH model. Asterisks for the PT-T test indicate that there is 
significant dependence between the directional change forecasts and realizations.  
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Table 2. Contemporaneous return-volatility relationship. 

Hausman
test

overall sample 17654 3.343% 0.015 3.671 0.110% 0.015 3.648 0.858

Q1 (high volatility) 3528 8.588% 0.038 4.103 0.738% 0.038 4.103 0.070

Q2 3528 -4.751% -0.056 -2.267 0.128% -0.054 -1.714 0.612

Q3 3528 0.989% 0.015 0.424 0.001% -0.005 -0.106 0.024

Q4 3528 3.730% 0.070 2.592 0.057% 0.060 2.027 0.236
Q5 (low volatility) 3528 5.818% 0.111 2.740 0.141% 0.093 1.826 0.310

t -statisticSlopeCorrel(r t ,σ t
2)N  0 SlopeR 2t -statistic

sample size A. Pooled OLS model B. Random Effects model

 
The dependent variable is the daily return and the regressor is the daily realized variance over the 
in-sample period pooled across the 14 stocks. Q1 to Q5 are the sample quintiles of the realized 
variance. Exhibit A reports POLS estimation results where the correlation between daily returns 
and daily realized variance is given by the (R2)1/2 of the panel regression. Exhibit B reports the 
Random Effects estimation results and p-value of the Hausman test to confront Random Effects 
and Fixed Effects specifications; p-values below 0.05 indicate that a Fixed Effects specification is 
more appropriate. Bold denotes a significantly positive relationship at the 10%, 5% or 1% level. 
Reported t-statistics are based on a covariance estimator that is robust to contemporaneous 
correlation across stocks as well as different error variances. 
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Table 3. Risk-adjusted performance evaluation: stock trading.  

 
Stock
ATT RPV -0.16 -8.71 -0.55 -6.39 -1.06 -16.62 -0.16 -0.50 -1.10 -17.22

VOL -0.17 -8.94 -0.17 -18.40 -0.62 -1.52 17.21 2.58 -0.48 2.01
OVN -0.05 -2.30 -0.08 -0.77 -0.90 -13.40 -0.58 -2.01 -0.25 -2.28

AXP RPV -0.12 -2.37 0.01 -0.38 0.24 4.37 -0.61 -4.89 -0.23 -1.96
VOL 0.13 2.37 -0.11 -1.18 0.65 5.06 0.67 3.14 0.88 8.64
OVN 0.06 1.01 -0.26 -2.54 0.63 7.10 -0.47 -2.62 0.26 3.26

BA RPV 0.09 1.61 0.21 2.07 -0.84 -11.92 -0.56 -2.09 -0.90 -13.59
VOL 0.79 11.57 0.36 3.15 0.76 6.04 N/A 2.36 1.02 8.44
OVN 1.41 17.72 0.84 6.95 0.42 3.33 0.07 0.59 0.42 3.89

CAT RPV -0.15 -2.11 -0.37 -4.08 0.58 4.17 -0.16 -3.69 0.25 0.15
VOL 1.41 23.74 0.49 5.28 2.60 17.68 N/A 3.85 3.54 21.68
OVN -0.12 -2.07 -0.25 -2.90 1.64 11.83 N/A 3.24 2.47 15.10

DELL RPV 0.19 6.08 -0.31 -3.01 -3.00 -13.63 -0.76 -6.89 -2.00 -20.43
VOL -0.44 -7.68 -0.32 -3.08 -4.10 -33.42 -0.84 -7.59 -2.74 -39.01
OVN -0.29 -6.21 -0.31 -2.99 -3.46 -17.31 -0.24 -2.58 -2.15 -19.49

GE RPV 0.00 -0.10 -0.25 -1.86 -1.34 -12.76 0.63 2.26 -0.98 -9.88
VOL 0.04 1.02 0.10 0.79 -0.01 7.06 -0.21 -1.14 0.01 5.36
OVN 1.06 19.21 1.07 6.79 -1.44 -13.90 0.07 2.12 -1.06 -11.16

GM RPV -0.15 -2.19 0.43 2.56 -0.01 -0.08 -0.09 -1.46 -0.09 -1.46
VOL -0.98 -18.54 -0.84 -7.99 0.13 2.25 -0.87 -11.78 -0.51 -9.33
OVN 0.02 0.57 -0.17 -1.34 0.15 2.55 0.17 0.52 0.17 2.96

IBM RPV 0.60 12.95 0.14 1.18 -2.32 -7.34 -0.49 -4.07 -1.89 -11.72
VOL 0.34 6.18 0.10 1.34 -4.74 -40.85 0.90 3.54 -3.25 -36.72
OVN 0.06 1.32 0.00 0.00 -1.51 3.19 0.24 1.11 -0.48 4.47

JPM RPV 0.52 11.39 0.66 6.16 -1.24 -18.22 -0.45 -6.67 -1.32 -24.30
VOL 0.41 9.60 0.21 2.55 0.09 5.30 -0.20 0.15 0.16 5.33
OVN 0.72 16.66 0.52 6.29 -1.35 -20.69 0.62 2.77 -1.07 -17.36

KO RPV -0.05 -0.12 -0.73 -4.44 0.19 1.28 0.47 2.38 0.55 3.60
VOL -0.15 -1.33 -0.61 -3.54 -0.01 -0.28 -0.56 -3.10 -0.16 -3.34
OVN 0.39 3.79 -0.04 -0.15 0.19 1.13 0.34 1.95 0.42 3.02

MCD RPV -0.26 -5.25 0.09 0.82 -1.34 -10.15 -0.97 -7.65 -1.64 -17.55
VOL 0.98 12.91 0.85 6.63 -0.25 -1.74 0.86 4.15 0.26 2.69
OVN -0.36 -3.47 -0.50 -4.76 -0.68 -2.16 N/A 1.00 -0.38 -1.07

MSF RPV -0.20 -4.46 -0.15 -1.61 0.15 3.03 1.60 4.58 0.54 7.97
VOL -0.09 -3.00 -0.18 -3.28 -0.84 -10.07 0.27 1.64 -0.58 -8.13
OVN 0.35 6.78 0.06 0.92 0.05 0.32 -0.15 -0.98 -0.07 -0.75

PG RPV -0.65 -6.22 0.00 0.56 -4.54 -3.36 0.56 3.39 -0.26 -0.15
VOL -0.15 1.33 -0.44 -3.19 -6.24 -0.85 -0.89 -1.72 -0.78 -3.13
OVN -0.03 -0.23 -0.40 -2.12 3.94 -0.01 -0.74 -3.49 -0.67 -4.24

WMT RPV -1.04 -15.93 0.03 0.54 0.78 5.55 -0.64 -3.94 -0.09 1.78

VOL -0.66 -8.58 0.33 3.77 0.12 0.40 -0.97 -6.71 -0.84 -6.37

OVN -0.22 -3.27 -0.06 -0.63 0.01 0.02 0.11 0.72 0.10 0.75

ΔSoR ΔΔSoR Δ ΔSoR Δ

Trading strategy

Directional
Directional

Top20 Bottom20 Long-ShortSMA-DCMA

ΔΔSoR ΔSoR Δ1tv 

 
The table reports the incremental annualized Sortino ratio (ΔSoR) and Leland’s alpha (Δ%) of 
augmented-GARCH forecasts relative to standard GARCH forecasts. The augmentation variable, t-1 in 
Eq. (1b), is realized power variation (RPV), trading volume (VOL) or the squared overnight return 
(OVN). Bold indicates that the augmented-GARCH forecast entails a gain relative to the GARCH 
forecast. For each stock-strategy pair, italics font denotes the forecasting model that provides the largest 
gain. N/A indicates that SoR cannot be computed because there are very few trades and the investor 
holds instead the risk free rate over most of the out-of-sample period so all the returns are positive. 
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Table 4. Net risk-adjusted performance evaluation: stock trading. 

Stock ΔNSoR ΔN ΔNSoR ΔN ΔNSoR ΔN ΔNSoR ΔN ΔNSoR ΔN
ATT RPV -0.15 -8.66 -0.57 -7.87 -1.10 -18.80 -0.76 -2.72 -1.25 -21.82

VOL -0.12 -6.55 0.47 -15.92 -0.80 -9.16 6.28 2.01 -0.69 -6.39
OVN -0.07 -3.28 -0.05 -0.46 -1.00 -43.01 -0.70 -2.57 -0.47 -7.10

AXP RPV -0.34 -2.24 -0.02 -1.21 0.003 1.23 -0.64 -5.85 -0.44 -5.40
VOL -0.19 1.77 -0.10 -1.46 0.36 2.53 0.33 1.71 0.57 5.82
OVN -0.34 -0.54 -0.23 -2.86 0.63 7.15 -0.56 -3.37 0.22 2.86

BA RPV 0.27 3.13 0.35 3.37 -0.80 -13.26 -0.82 -3.42 -0.90 -15.76
VOL 1.16 17.55 0.54 5.66 -0.16 -0.29 4.18 2.91 0.07 2.47
OVN 1.06 16.31 0.76 7.99 -0.05 0.73 -0.01 0.58 -0.05 1.27

CAT RPV -0.16 -3.15 -0.40 -4.97 1.40 6.19 -0.41 -5.22 0.73 0.66
VOL 1.27 22.07 0.40 5.15 1.88 9.94 3.06 4.11 2.45 13.89
OVN -0.25 -4.43 -0.21 -3.25 2.71 15.13 N/A 3.78 3.24 18.73

DELL RPV 0.75 16.80 -0.24 -3.35 -2.83 -14.55 -0.82 -8.38 -1.82 -22.15
VOL -0.18 -4.64 -0.31 -3.54 -4.02 -38.44 -1.01 -10.00 -2.46 -42.24
OVN -0.33 -6.53 -0.30 -3.21 -3.22 -15.91 -0.22 -3.01 -1.92 -18.03

GE RPV -0.17 -2.86 -0.11 -1.17 -1.29 -13.58 0.50 1.42 -0.98 -11.56
VOL 0.39 5.96 0.05 0.19 -0.27 2.06 -0.19 -1.13 -0.22 0.62
OVN 1.00 17.36 0.82 6.95 -1.46 -16.12 -0.11 1.83 -1.11 -13.62

GM RPV -0.05 -1.27 0.23 2.22 -0.08 -1.12 -0.21 -2.23 -0.19 -3.11
VOL -0.74 -14.73 -0.61 -6.40 -0.01 0.07 -0.87 -12.82 -0.60 -11.22
OVN 0.10 1.82 -0.04 -0.31 -0.07 -0.95 0.21 0.79 -0.03 -0.17

IBM RPV 0.42 9.21 -0.06 -0.57 -1.78 -5.86 -0.84 -6.84 -1.74 -13.21
VOL 0.47 9.09 0.12 0.94 -4.34 -46.97 0.02 2.53 -2.94 -42.04
OVN 0.06 1.37 0.00 0.00 -2.07 -6.64 0.12 0.56 -1.05 -5.16

JPM RPV -0.04 -0.60 0.11 3.80 -0.91 -15.03 -0.56 -8.81 -1.04 -22.82
VOL 0.44 10.01 0.04 2.54 -0.11 0.20 -0.32 -0.12 -0.05 0.21
OVN 0.72 16.83 0.25 5.31 -1.02 -17.42 0.42 1.90 -0.76 -14.86

KO RPV -0.19 -3.21 -0.46 -5.15 0.26 0.69 -0.08 -1.32 0.27 -0.65
VOL 0.20 2.16 -0.43 -3.88 0.10 -0.55 -0.86 -5.47 -0.26 -5.78
OVN 0.37 5.26 0.13 0.77 0.36 1.93 0.27 1.63 0.47 3.38

MCD RPV -0.47 -7.04 -0.04 0.96 -0.94 -10.97 -1.05 -10.43 -1.26 -19.93
VOL 0.65 10.53 0.61 6.77 -0.37 -2.73 0.29 0.70 -0.19 -1.95
OVN 0.06 0.47 -0.20 -3.19 -0.21 -2.28 N/A 3.49 0.21 1.22

MSFT RPV -0.08 -2.93 -0.11 -1.42 0.09 1.73 1.08 1.20 0.23 2.92
VOL 0.18 1.43 -0.12 -3.53 -1.16 -19.00 0.38 2.17 -0.85 -16.35
OVN 0.27 5.67 0.02 0.81 0.06 0.60 -0.15 -1.24 -0.07 -0.72

PG RPV -1.65 -15.41 -0.36 -0.23 -4.34 -3.94 0.26 -0.48 -0.51 -4.51
VOL 1.54 16.05 -0.30 -3.96 -5.60 -1.15 0.00 4.12 0.33 3.10
OVN 0.24 2.50 -0.29 -2.10 2.74 -0.61 -0.57 -2.27 -0.63 -3.42

WMT RPV -0.92 -16.22 0.04 0.91 0.85 5.50 -0.62 -4.66 -0.05 5.91
VOL -0.66 -8.14 0.20 3.55 0.19 0.68 -0.95 -7.86 -0.80 -2.11
OVN -0.12 -1.98 -0.04 -0.55 0.004 0.02 0.10 0.70 0.09 5.81

Trading strategy
Directional

Long-shortDirectional SMA-DCMA Top20 Bottom20

1tv 

 
The table reports for each augmented-GARCH model the incremental annualized cost-adjusted Sortino 
Ratio (ΔNSoR) and Leland’s alpha (ΔN%) relative to the standard GARCH model. The augmentation 
variable, t-1 in Eq. (1b), is realized power variation (RPV), trading volume (VOL) or the squared 
overnight return (OVN). Bold indicates that the augmented-GARCH forecasts entail a gain relative to 
the GARCH forecasts. For each stock-strategy pair, italics indicates the forecasting model that attains 
the largest gain. N/A means that NSoR cannot be computed because too few trades are triggered and the 
investor holds the risk free rate over most of the out-of-sample period; hence, all the returns are positive. 
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Table 5. Utility-based performance evaluation: stock trading. 

Stock          

ATT RPV -13.59 -17.78 -6.62 -6.74 -11.99 -11.02 -0.61 -1.54 -12.53 -12.42
VOL -13.41 -12.83 -27.01 -72.14 -3.86 -25.63 2.52 1.92 -1.43 -24.19
OVN -3.17 -0.56 -0.71 0.02 -9.72 -9.33 -2.07 -2.62 -1.59 -0.49

AXP RPV -2.58 -4.09 -0.50 -1.35 3.59 0.91 -5.15 -6.28 -2.19 -5.87
VOL 2.39 1.89 -1.32 -1.45 4.66 6.33 3.26 3.52 8.07 10.09
OVN 1.21 2.62 -2.82 -2.82 6.22 5.73 -2.71 -2.87 2.88 2.22

BA RPV 1.22 -1.69 1.95 1.19 -14.81 -21.82 -2.12 -2.08 -14.47 -19.68
VOL 10.80 7.12 3.06 2.69 3.67 3.75 2.50 3.46 9.00 12.57
OVN 17.38 19.10 6.89 7.23 1.07 1.71 0.64 1.02 4.33 7.75

CAT RPV -2.11 -4.34 -4.11 -3.86 3.66 -0.69 -3.97 -5.34 -0.46 -6.00
VOL 20.74 18.22 5.33 5.00 16.81 10.72 4.01 4.33 21.49 15.52
OVN -1.86 -2.28 -3.01 -3.54 11.09 5.49 3.38 3.73 14.85 9.43

DELL RPV 4.03 -6.51 -3.04 -3.92 -12.39 -18.15 -7.10 -7.60 -18.61 -24.37
VOL -7.81 -17.96 -3.00 -2.95 -30.69 -46.77 -7.82 -8.38 -36.11 -51.19
OVN -5.07 -2.60 -2.90 -2.70 -14.22 -8.15 -2.83 -4.58 -16.65 -12.36

GE RPV -0.14 -0.87 -1.84 -1.92 -11.33 -17.94 2.19 0.88 -9.38 -17.20
VOL 0.34 -5.35 0.66 -0.31 4.66 -5.64 -1.19 -1.30 3.41 -6.88
OVN 17.29 6.96 6.62 6.24 -12.67 -22.57 2.30 3.26 -10.66 -20.00

GM RPV -2.21 -5.24 2.24 2.90 0.08 1.49 -1.56 -1.95 -1.48 -0.49
VOL -15.77 -13.76 -6.65 -5.68 2.40 2.59 -12.54 -14.82 -10.44 -12.60
OVN 0.38 -0.63 -1.16 -1.34 2.71 2.94 0.53 0.44 3.26 3.39

IBM RPV 16.80 11.38 1.12 1.16 -6.55 -10.93 -4.31 -5.34 -10.58 -15.71
VOL 7.39 -0.88 1.15 0.05 -36.25 -54.84 3.85 5.58 -33.79 -52.26
OVN 1.66 0.49 0.00 0.00 1.90 -4.94 1.14 1.07 3.06 -3.91

JPM RPV 11.62 12.48 6.17 9.28 -17.39 -32.84 -7.31 -11.07 -23.44 -40.30
VOL 9.14 4.31 2.38 2.15 3.61 -4.12 0.27 1.23 3.89 -2.93
OVN 16.13 10.44 5.79 4.42 -19.06 -31.00 2.81 2.36 -16.79 -29.34

KO RPV -0.18 -0.88 -4.38 -4.93 0.89 -2.65 2.45 1.73 3.36 -0.96
VOL -1.36 -2.63 -3.49 -3.83 -0.65 -3.97 -3.27 -3.01 -3.90 -6.85
OVN 3.55 5.08 -0.15 -0.10 0.97 -0.31 2.06 2.00 3.05 1.68

MCD RPV -4.00 -1.23 1.03 2.80 -10.02 -15.44 -7.99 -10.25 -17.21 -24.12
VOL 10.80 12.89 6.77 7.46 -1.55 -1.04 4.03 2.57 2.41 1.51
OVN -3.28 -7.11 -4.88 -5.49 -2.65 -8.43 1.20 2.88 -1.48 -5.78

MSFT RPV -5.39 -8.48 -1.83 -1.78 2.36 -2.11 4.50 2.39 6.96 0.25
VOL -4.21 -11.27 -3.85 -4.76 -11.29 -26.94 1.72 1.92 -9.76 -25.51
OVN 7.66 7.61 1.08 1.46 0.34 0.91 -1.03 -1.13 -0.69 -0.24

PG RPV -5.48 -3.98 0.64 1.18 -3.08 -3.12 3.23 0.97 -0.37 -2.58
VOL 0.61 -4.88 -3.38 -3.81 -2.10 -13.67 -1.53 0.65 -4.00 -13.43
OVN -0.21 -0.13 -2.20 -2.11 0.01 0.17 -3.49 -2.59 -3.88 -2.83

WMT RPV -16.84 -16.25 0.65 0.88 4.93 -0.30 -3.85 -5.53 0.89 -5.83
VOL -8.72 -4.93 4.44 4.97 0.41 0.49 -6.46 -8.47 -6.08 -8.02
OVN -3.46 -3.32 -0.73 -0.78 0.02 0.03 0.68 0.72 0.69 0.75

Bottom20

Trading strategy

Directional Long-ShortTop20
Directional

SMA-DCMA

1tv 

 
The reported figures are the average annualized percentage fees (%) that an investor with quadratic 
utility and constant relative risk aversion of ={1,10} would be willing to pay to switch from using 
only daily returns (baseline GARCH forecasts) to using additional information (augmented 
GARCH forecasts) such as intraday-based realized power variation (RPV),  trading volume (VOL) 
or the squared overnight return (OVN) as lagged regressor t-1 in Eq. (1b). For each trading 
strategy-stock combination, bold denotes positive switching fees and italics the largest fees. 
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Table 6. Risk-adjusted and utility-based performance evaluation: S&P500 index trading. 

ΔSoR Δ   ΔSoR Δ   ΔSoR Δ   ΔSoR Δ   ΔSoR Δ  

Panel A: Before transaction costs
RPV 0.26 2.87 2.54 0.11 -0.14 -0.79 -0.74 -0.62 -0.02 -0.20 -0.22 -0.34 -0.25 -0.68 -0.68 -1.25 -0.06 -0.88 -0.91 -1.59
VOL 0.45 5.31 5.74 5.97 0.67 5.71 4.97 2.34 0.59 7.39 7.15 5.91 N/A 1.60 1.60 1.36 0.73 9.09 8.85 7.35
OVN 0.38 4.06 4.44 3.05 -0.51 -2.83 -2.74 -3.10 -0.05 -0.97 -1.07 -3.58 N/A 0.00 0.00 0.00 -0.05 -0.97 -1.07 -3.58

Panel B: Net of transaction costs
RPV 0.19 1.53 1.20 -1.20 -0.26 -1.44 -1.43 -1.29 -0.01 -0.10 -0.12 -0.24 -0.45 -1.18 -1.18 -1.75 -0.09 -1.25 -1.31 -1.98
VOL 0.46 5.69 6.49 6.72 1.00 6.95 6.48 3.95 0.55 6.83 6.71 5.47 23.25 1.49 1.49 1.27 0.68 8.44 8.36 6.87
OVN 0.39 3.94 4.55 3.16 -0.33 -2.38 -2.40 -2.79 0.00 -0.46 -0.57 -3.11 N/A 0.00 0.00 0.00 0.00 -0.46 -0.57 -3.11

Directional
Directional

Trading strategy

Long-shortTop20SMA-DCMA Bottom20

1tv 

 
The table reports for each augmented-GARCH model the incremental annualized Sortino (ΔSoR) and Leland’s alpha (Δ) vis-a-vis the standard 
GARCH model. The augmentation variable, t-1 in Eq. (1b), is realized power variation (RPV), trading volume (VOL) or the squared overnight return 
(OVN). Bold indicates that the augmented-GARCH forecasts entail a positive gain relative to the baseline GARCH forecasts. For each strategy-stock 
pair, italics font denotes the forecasting model that provides the largest incremental gain. N/A indicates that SoR cannot be computed because there are 
very few trades and the investor holds instead the risk free rate over most of the out-of-sample period so all the returns are positive. 
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