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Abstract 
 
It is well known that, in one form or another, the variational 
Principle of Least Action (PLA) governs Nature. Although 
traditionally referred to explain physical phenomena, PLA 
has also been used to account for biological phenomena and 
even natural selection. However, its value in studying 
psychological processes has not been fully explored. In this 
paper we present a computational model, value-gradient 
learning, based on Pontryagin’s Minimum Principle (a 
version of PLA used in optimal theory), that applies to both 
classical and operant conditioning.  

 
Keywords: Value-gradient learning; conditioning; behavior 
systems; bliss point; optimality; principle of least action. 

 
The Principle of Least Action  

Of all the possible trajectories a ball thrown into the air 
can follow why does it follow one in particular, a 
parabola? Why doesn't it go up, stay a while at its highest 
point and then fall down? On the one hand, the ball wants 
to spend a lot much time near the top of its trajectory since 
this is where the kinetic energy is least and the potential 
energy is greater. On the other hand, if it spends too much 
time near the top, it will really need to rush to get up there 
and get back down and this will take a lot of action. The 
perfect compromise is a parabolic path. In physical 
parlance, the true dynamical trajectory of the ball is the 
one that makes the action “least” (actually stationary).  

Formally, the action to be minimized is the integral of a 
function, the Lagrangian, over time. The Lagrangian itself 
describes completely the dynamics of the system under 
consideration as the difference between its kinetic energy 
(the energy due to the motion, how much is “happening”) 
and its potential energy (the energy due to its position or 
configuration, how much “could happen”). In short, 
Nature is as lazy as possible: the ball follows a particular 
trajectory not because of the effect of gravitation per se, 
but because it “minimizes” action. In fact, this condition is 
equivalent to the Euler-Lagrange equation of motion that 
encapsulates the Principle of Least Action and that, when 
transformed into its Hamiltonian form, reflects the 
symmetries of Nature. These are fundamental concepts 
upon which modern Physics is based. 

 The question is, can we export this variational analysis 
to the study of learning and behaviour? 

Optimization in Classical Conditioning  
Let’s consider acquisition of an eye-blink conditioned 
response when a light is paired with a mild shock: at first 
the likelihood of a response to the light is low because of 
the absence of prior light-shock pairings. There is then a 
rapid increase in magnitude of the response, which 
diminishes gradually as training progresses until there are 
no further increases in the measure of the conditioned 
response. The shape of the learning curve is typical of that 
found in many studies of conditioning. How is this pattern 
of behaviour explained? Why don’t animals learn “all” in 
a single trial? Or learn rapidly at the beginning, then stop 
and then learn again? In a way, we are facing the same 
questions as we did when considering ball trajectories. 
And it is paramount that we answer them since 
conditioning is at the basis of most learning phenomena 
and thus of animal cognition.  

More generally, classical conditioning refers to the type 
of learning that occurs when pairing two stimuli, typically 
an originally neutral stimulus (say a tone or a light) and an 
unconditioned stimulus (US), that is, a stimulus that is 
biologically relevant to the animal (for instance, food) that 
elicits an automatic or unconditioned response (UR, for 
example, salivation). If this pairing is repeated over time, 
the animal will learn to anticipate the US and start 
responding to the signal, the neutral stimulus. The neutral 
stimulus will become a conditioned stimulus (CS) and 
trigger a response (CR, typically the UR itself). 

In order to explain this type of phenomena, Rescorla 
and Wagner’s model of classical conditioning (Rescorla & 
Wagner 1972) assumes that learning occurs on a 
conditioning trial only if the US is surprising. “Surprise” 
is defined in terms of growth of “associative strength”, the 
strength of the CS’s association with the US over trials 
(V, traditionally measured in terms of number of URs). 
With each trial there is an increase or jump in associative 
strength. On early conditioning trials the jumps are large; 
that is, each trial causes a relatively large increase in 
associative strength. But the jumps decrease in size as 
learning progresses until the learning curve approaches its 
upper limit or asymptote. Once the CS predicts the US, 
the US is not surprising, and no further learning occurs. 

Formally, for a CS 𝑠 the change in learning on trial 𝑛 is 
defined as 
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∆𝑉! 𝑠 = 𝛼𝛽 𝜆 − 𝑉!!! 𝑡𝑜𝑡𝑎𝑙  (1) 

where 𝛼  and 𝛽 represent the salience of the CS and of 
the US respectively (0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛽 ≤ 1), 𝜆 is the 
maximum amount of learning that can occur in that 
situation at that given trial, and 𝑉!!! 𝑡𝑜𝑡𝑎𝑙  the 
cumulative amount of learning up to the previous trial, 
that is, the sum of associative strengths of all CSs that are 
present at trial 𝑛; in turn, the associative strength of each 
of the CSs that are present is determined on the last trial 
on which each CS occurred, ordinarily trial 𝑛 − 1. This 
delta rule is also known as the error correction rule: it 
calculates the prediction error, that is, the difference 
between the prediction and the actual reward. The result is 
then used to calculate the new associative strength of the 
CS as 𝑉! = 𝑉!!! + ∆𝑉!, the update rule. Obviously, as the 
prediction improves the difference in delta is reduced until 
there is nothing left to be learned.  

This deceptively simple theory is nevertheless 
considered as the most influential model of conditioning. 
Interestingly, Rescorla and Wagner’s rule works pretty 
much as the Lagrangians in mechanics: during learning 
we balance what we have learned against what is to be 
learned so that the total associative strength is at each trial 
1 (i.e., it is conserved) and the differences between trials, 
0. In terms of optimization, Rescorla and Wagner’s model 
uses equation (1) as a way of minimizing the prediction 
error between the expected reward and the actual reward –
in other words, we apply an optimization principle that 
maximizes the reward.  

Nonetheless, like most models of conditioning (see 
(Alonso & Schmajuk 2012) for a recent review) Rescorla 
and Wagner’s is limited to classical conditioning: 
responses are only considered as a way of measuring how 
animals learn to associate two stimuli but do not form part 
of conditioning per se.  

What happens when we study operant (aka 
instrumental) conditioning and goal-directed behaviour? 
In other words, what happens when the occurrence of a 
reinforcer depends on the choices the animal makes? 
Classical conditioning focuses on how “mental” 
representations of stimuli are linked whereas operant 
conditioning deals (mainly) with response-outcome 
associations. It is agreed though that, at the most general 
level, their associative structures are the same: in both 
procedures, changes in behavior are considered the result 
of an association between two concurrent events and 
explained in terms of operations of a (conceptual) system 
that consists of nodes among which links can be formed. 
Notwithstanding the correctness of such analysis, we are 
showing in the next section that a mere translation of 
classical conditioning into instrumental terms (for 
instance, by assuming that instrumental responses take the 
place of CSs) would impose a series of conditions on 
optimization that are impossible to meet. To see this point 
and understand our proposal to “recover” variational 
principles in the study of learning and behaviour we need 
to briefly introduce temporal difference, a model that 
comprises both classical and operant conditioning.  

 
 

Temporal Difference  
Temporal difference (TD) was originally presented as an 
extension of the Rescorla and Wagner’s model in real 
time (Sutton & Barto 1987). It was argued that time scale 
invariance over trials should not prevent a model of 
conditioning from investigating temporal phenomena. 
Indeed, Rescorla and Wagner's model refers to learning 
through trials, and thus a number of interesting 
phenomena are left unexplained (such as second order 
conditioning). TD adopts Rescorla and Wagner's main 
psychological premises, namely, cue competition and 
error correction, but instead of comparing the rewards 
predicted on consecutive trials, we calculate the change in 
reward prediction error on every time step 𝑡. TD makes 
predictions over predictions and uses the error to update 
the old reward prediction and bring it more in line with 
the animal’s moment-to-moment experiences –what is 
called bootstrapping. 

Formally, in the general case the value of a CS at a 
particular time 𝑡  is defined as 

 
𝑉! 𝑠! = 𝑟!!! + 𝛾  𝑟!!! + 𝛾!𝑟!!! + 𝛾!𝑟!!! +  … (2) 

 
where the γ parameter takes values between 0 and 1 and 

acts as a discount factor that causes distant CSs to matter 
less than immediate ones and r   represents the US. If we 
compare the values at successive steps an interesting 
relationship emerges, namely, 

 
𝑉! 𝑠! = 𝑟!!! + 𝛾  𝑉! 𝑠!!!  (3) 

 
This makes sense because 𝛾  𝑉! 𝑠!!!  takes the place of 

the remaining terms 𝛾  𝑟!!! + 𝛾!𝑟!!! +   …   +  𝛾!!!!!𝑟!, 
where 𝑇 refers to the terminal state, i.e., to the end of the 
trial. This relation describes the simplest TD case, when 
predictions are carried out one-step ahead. We can 
generalize it to any number of steps and calculate the delta 
rule as  

 
∆𝑉! 𝑠! = 𝛼 𝑅!

(!) −   𝑉! 𝑠!  (4) 

 
where  
 
𝑅!
(!) = 𝑟!!! + 𝛾  𝑟!!! + 𝛾!𝑟!!! +⋯   +  𝛾!!!𝑟!!! +

𝛾!  𝑉! 𝑠!!!   

(5) 

 
If we take a number of steps into the calculation we 

would need to know how much each step contributes 
towards the return. TD proposes to average the 𝑛-steps 
with a trace 𝜆 (not to be mistaken for the US asymptotic 
value) so that the return is defined by 
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𝑅!! = 1 − 𝜆 𝜆!!!
!!!!!

!!!

𝑅!
(!) + 𝜆!!!!!𝑅! 

(6) 

 
And the new delta rule is  
 

∆𝑉! 𝑠! = 𝛼 𝑅!! −   𝑉! 𝑠!  (7) 

 
It is easy to see that if 𝜆 is set to 0, TD(0), we only use 

the one-step backup; on the other hand, if 𝜆 is set to 1, 
TD(1), we only learn from the final return like in Rescorla 
and Wagner’s model. 

Temporal difference has gained notoriety because there 
is a strong correlation between its error term and the 
behaviour of dopamine cells in the brain (Montague, 
Dayan & Sejnowski 1996, Schultz 2002). Besides, TD 
focuses unashamedly on optimization and it is unique in 
that it aims at explaining both classical and instrumental 
conditioning. In fact TD has become the most successful 
Reinforcement Learning algorithm, bringing gaps between 
psychology, neuroscience, machine learning and control, 
and the new area of neuroeconomics (Glimcher, Camerer, 
Fehr & Poldrack 2009). 

 
Temporal Difference and Operant Conditioning  
Unlike Rescorla and Wagner’s model, TD does provide a 
way (indirect as it might be) of learning how to select 
actions. The most common idea is to learn a separate 
value for each action leading out of a state, that is, 
executed in the presence of a stimulus, rather than for the 
state (stimulus) itself. An animal is assumed to exist in an 
environment described by some set of possible states 𝑆, 
where it can perform any actions 𝐴. Each time it performs 
an action 𝑎! in some state 𝑠!, the world enters into a new 
state 𝑠!!! = 𝑓 𝑠! , 𝑎!  and the animal receives a real-
valued reward 𝑟! = 𝑟 𝑠! , 𝑎! . With this information, the 
animal calculates the TD error, typically using the so-
called Q-learning rule (Watkins 1989), ∆𝑉! 𝑠! , 𝑎! =
𝑟!!! + 𝛾  𝑚𝑎𝑥!!!!𝑉! 𝑠!!!, 𝑎!!! − 𝑉! 𝑠! , 𝑎! , and updates 
the value of the state-action pair as 𝑉!!! 𝑠! , 𝑎! =
𝑉! 𝑠! , 𝑎! + 𝛼  ∆𝑉! 𝑠! , 𝑎! . The animal’s task is to learn a 
control policy 𝜋, which maximizes the expected sum of 
rewards.  

Under certain conditions Q-learning can be proved to 
converge to the value function that will yield the optimal 
policy. Tragically, Q-learning diverges when the state 
space is too large as it is the case in most biologically 
relevant problems.  

A standard approach to tackle this problem is to 
introduce a scalar function approximator, 𝑉 𝑠,𝑤  (e.g., a 
neural network with single output and weight vector). 
This is called the approximate value function, or the critic. 
The objective of learning is to make this function 
accurately estimate 𝑉! for all 𝑆. We can then define a 
greedy policy on 𝑉 as a policy that always considers all 
possible actions available to it and chooses the one that 
leads to the state with the highest 𝑉 value, whilst also 
taking into account the immediate short terms reward in 

getting there. The idea is to maximize the cumulative 
reward by minimizing the error as given by 

 

∆𝑤 = 𝛼
𝜕𝑉! 𝑠! , 𝑎!

𝜕𝑤
𝑅! − 𝑉! 𝑠! , 𝑎!  

(8) 

 
TD(𝜆) and Q-learning can then be used to update 𝑉 by 

sampling one trajectory at a time. Variants of these 
methods have produced some successes in control 
problems (Tesauro 1994), yet TD algorithms have not 
been proved to converge in the general case. Why is that? 

TD is based on Bellman’s Optimality Condition 
(Bellman 1957): if 𝑉 ≡ 𝑉! for all 𝑠 in the state space 𝑆, 
where the policy is greedy on 𝑉, then that greedy policy is 
globally optimal. The problem is that for the Bellman’s 
condition to be met we need to explore the entire estate 
space. Even if Bellman’s condition is perfectly satisfied 
along a single trajectory, performance can be extremely 
far from optimal if Bellman’s condition is not satisfied 
over the neighbouring trajectories too. That is, if the 
animal tries to avoid Bellman’s condition by only 
exploring a sub-space of the state space there is no 
guarantee the resulting policy will be locally optimal. This 
is the curse of dimensionality that applies to some degree 
to all value-based learning algorithms. 

Translated into behavioural terms Bellman’s condition 
means that for an animal to find an optimal policy it 
would need to explore all possible actions at every 
possible state. Clearly, this is not the way things happen in 
the natural world. To picture this, imagine Thorndike’s cat 
trying to escape from the puzzle box. Bellman’s condition 
would require that at every single step the cat would have 
to execute all the actions in its behavioural repertoire 
(including, for instance, banging its head against the wall). 
Hence, it is not just that Bellman’s condition is 
computationally intractable. It is psychologically 
implausible too. Notice that in classical conditioning this 
problem does not arise since behaviours are reduced to 
reflexes. It is assumed that animals use a model (their 
evolutionary history) to “select” actions. In instrumental 
conditioning, however, any action can occur –at least in 
principle.  

 
Value-Gradient Learning  

In what follows we present a modification of TD, Value-
Gradient Learning (VGL), that under certain conditions 
guarantees optimality. Importantly, VGL is equivalent to a 
variational principle, Pontryagin’s Mimimum Principle 
(PMP) (Pontryagin, Boltyanskii, Gamkrelidze & 
Mishchenko 1962) which, in turn, is a version of 
Hamilton’s Principle of Least Action. The main difference 
between TD and VGL lies on what is learned: VGL learns 
gradients of values as opposed to TD algorithms that learn 
values. Besides, with regards to how learning occurs, 
VGL follows the gradient ascent on the total reward rather 
than the gradient descent on the expected reward.  

We define the value gradient as 
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𝐺 𝑠 =
𝜕𝑉 𝑠, 𝑎
𝜕𝑠

 
(9) 

 
and the approximate value gradient as  
 

𝐺 𝑠,𝑤 =
𝜕𝑉 𝑠, 𝑎
𝜕𝑠

 
(10) 

 
Our algorithm is defined by a weight update of the form 
 

∆𝑤 = 𝛼  
𝜕𝐺
𝜕𝑤

!!

𝐺!! − 𝐺!  
(11) 

 
where 𝐺!! is the target value gradient defined recursively 

by 
 

𝐺!! =
𝐷𝑟
𝐷𝑠 !

+ 𝛾
𝐷𝑓
𝐷𝑠 !

𝜆𝐺!!!! + 1 − 𝜆 𝐺!!!  
(12) 

 
with 𝐺!! = 0 at any terminal state and where !

!"
 is 

shorthand for 
 

𝐷
𝐷𝑠

=
𝜕
𝜕𝑠
+
𝜕𝑎
𝜕𝑠

𝜕
𝜕𝑎

 
(13) 

 
It has been proved that any greedy trajectory satisfying 

𝐺! = 𝐺!! for all 𝑡 must be locally extremal, and often 
optimal (Fairbank, Prokhorov & Alonso 2012). This local 
optimality condition needs satisfying only over a single 
trajectory, whereas for TD the corresponding optimal 
condition (Bellman’s) needs satisfying over the whole 
state space. It is easy to see that our demonstration is 
based on PMP. Unlike Bellman’s condition, PMP states 
the necessary conditions for a trajectory to be (locally) 
optimal and thus it can be considered as a version of 
Bellman's Optimality Principle, if localized down to 
considering the current trajectory only.  As a consequence, 
VGL can lead to increased efficiency. Moreover, it must 
be noticed that if we apply PMP to all the trajectories we 
“recover” global optimality. 

 
Value-Gradient Learning and Temporal 
Difference  
If we compare equation (11) against its TD equivalent (8), 
we see that they are analogous except for the introduction 
of the model in equation (12). More specifically, the 
definition of the target gradient 𝐺! is the full derivative 
with respect to 𝑠 of the “𝜆-Return” which is the target 
used in the TD(𝜆) weight update. This may give the wrong 
impression that VGL(𝜆) is just a differentiated form of 
TD(𝜆). Contrarily, they differ in a fundamental way: in 
VGL, if the weight update is at a fixed point at every time 
step along a  trajectory generated by a greedy policy, for 
any lambda, (i.e., if the  learning objective 𝐺! = 𝐺!! is met 

for all 𝑡 along the trajectory), then  that trajectory is 
locally extremal, and often locally optimal (Fairbank et al. 
2012). This contrasts to TD methods in that it is  possible 
for the TD weight update to be at a fixed point at every 
 time step along a trajectory generated by a greedy policy, 
without the  trajectory being optimal.  This is because for 
Bellman's condition to  apply, the TD weight updates' 
objective needs satisfying over all of  weight space, and 
hence lots of stochastic exploration is needed. Contrarily, 
VGL methods have a much lesser requirement for  
exploration.  What we mean by this is  that provided the 
VGL learning algorithm makes progress towards  
achieving 𝐺! = 𝐺!! all along a greedy trajectory, then  
provided the trajectory remains greedy, it will make 
progress in bending  itself towards a locally optimal 
shape, and this will happen without the  need for any 
stochastic exploration.  In comparison to VGL, the failure 
of TD without any  exploration in a deterministic 
environment is dramatic and common, even  when the 
value function is perfectly learned along a single 
 trajectory.  

The main insight is that it is not enough to use the 
derivatives of the values. This is what the Jacobi-
Hamiltonian-Bellman equations do in extending the 
Bellman condition to continuous state spaces. 
Unfortunately, such derivation does not exploit fully the 
information contained in gradient values. We can't just 
consider the change in 𝑉 over the particular step 𝑠 along 
the trajectory.  This is like “dotting” !"

!"
 with ∆𝑠, which is 

approximately equal to the TD error in equation (4), once 
you add in 𝑟 and include a discount factor. 

In VGL, it is the sideways components of !"
!"

 that are 
important, those that are not parallel to ∆𝑠. Such 
components are used in the calculation of 𝐺!, in the terms 
!"
!"

 and !"
!"

 in particular. That is, you have to know these 
terms, that constitute the model function, in order to 
calculate a target value gradient, and you need a target in 
order to do a weight update. 

In addition, the model function is relevant to the greedy 
policy. Using a first order expansion of the greedy policy 
gives 

 
𝜋 𝑠,𝑤 = argmax

!
𝑟 𝑠, 𝑎 + 𝑉 𝑓 𝑠, 𝑎 ,𝑤  (14) 

 

≈ argmax
!

𝑟 𝑠, 𝑎 + 𝑉 𝑠,𝑤 +
𝜕𝑉 𝑠,𝑤

𝜕𝑠

!

𝑓 𝑠, 𝑎 − 𝑠  

 

≈ argmax
!

𝑟 𝑠, 𝑎 +
𝜕𝑉 𝑠,𝑤

𝜕𝑠

!

𝑓 𝑠, 𝑎 − 𝑠  

  
 

Hence the greedy policy depends on the value gradient 
but not on the values themselves. This is critical since 
changing !!

!"
 will immediately affect the greedy policy; by 
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moving it towards its correct target we will steer the 
trajectory in the correct (locally optimal) direction: TD’s 
paradigm “exploration vs. exploitation” becomes 
“exploration and exploitation” or, in other words, 
exploration comes for free when we combine “greedy” 
and “gradient” in VGL. 

VGL is an extension of well-known methods in adaptive 
dynamic programming, Dual Heuristic Programming and 
Generalized Dual Heuristic Programming in particular, 
that have been proved to be successful in solving complex 
tasks such as autopilot landing, power system control, 
simple control benchmark problems such as “pole 
balancing”, and many others (Wang, Zhang & Liu 2009). 
From a psychological point of view, VGL(1) is equivalent 
to Rescorla and Wagner’s model. However, where as 
Rescorla and Wagner’s model only considers classical 
conditioning VGL works for instrumental tasks –VGL, so 
to speak, is Rescorla and Wagner’s model applied to 
operant conditioning. 

 
Value-Gradient Learning and Pontryagin’s 
Minimum Principle  
In the next section we state how Hamilton’s principle (aka 
the Principle of Least Action) and VGL apply to learning 
and behaviour. But first we need to be more precise about 
the relationship between VGL and Pontryagin’s Minimum 
Principle.  

As defined by Pontryagin, the Hamiltonian of a control 
system is a function of four variables: ℋ 𝑠, 𝑝, 𝑎, 𝑡 =
ℒ 𝑠, 𝑎, 𝑡 + 𝑝!!𝑓 𝑠, 𝑎, 𝑡  where 𝑝! = − !ℋ

!"
 is a costate 

interpreted as a Lagrange multiplier: If the state given by 
the function represents constraints in the minimization 
problem, the costate represents the cost of violating those 
constraints. In other words, 𝑝 is the rate of change of the 
Hamiltonian as a function of the constraint. For example, 
in Lagrangian mechanics, the force on a particle 𝐹 = −∇𝑉 
can be interpreted as 𝑝 determining the change in action 
(transfer of potential to kinetic) following a variation in 
the particle’s constrained trajectory. In economics, the 
optimal profit is calculated according to a constrained 
space of actions, where 𝑝 is the increase in the value of 
the objective function due to the relaxation of a given 
constraint –the marginal cost of a constraint, called the 
shadow price. 

Intuitively, the constraint 𝑓 can be thought of as 
competing with the desired function to pull the system to 
its minimum or maximum (or to a steady state). And the 
Lagrange multiplier 𝑝 can be thought of as measure of 
how hard 𝑓 has to pull in order to make those forces 
balance out in the constraint surface.  

Pontryagin’s Minimum Principle (PMP) states that 
ℋ 𝑠!∗, 𝑎!∗, 𝑝!∗, 𝑡 ≤   ℋ 𝑠!∗, 𝑎! , 𝑝!∗, 𝑡  with the associated 
conditions for a maximum, namely, 𝑝! = − !ℋ

!"
, 𝑠! =

!ℋ
!"

, 

and !ℋ
!"
= 0. How is this related to VGL? Taking 

ℋ = ℒ + 𝑝𝑓, we can make it correspond to VGL as 
follows: ℒ is the quantity to be maximized (or minimized), 
that is, the cummulative reward; the constraints are 
defined following the model of the world, 𝑓 and 𝑟 
(henceforth, 𝑓 for short); and 𝑝 is 𝐺! (obviously 𝐺 if the 

trajectory is optimal, that, is if 𝐺! =   𝐺). Hence we can 
express VGL in Hamiltonian form as ℋ = 𝑟 + 𝐺!𝑓. In 
fact, our re-formulation of PMP is somehow simpler, 
since PMP’s conditions are reduced to two, namely, the 
costate and the max function that defines the greedy 
policy. At the end of the day, PMP can be described as 
𝑎∗ 𝑠, 𝑝 = argmin!ℋ 𝑠, 𝑝, 𝑎 , which is a form of the 
greedy policy, and the adjoint equation 𝑝! ≅

!"
!"

𝑠! , 𝑡 ! ∈
ℜ!, our gradient.  

Let’s recapitulate and see what happens with traditional 
value-based approaches: if there is no model, the 
Hamiltonian will not be constrained, thus it will be left to 
try all possible actions, not just those which “follow” the 
constraints. Indeed: without 𝑓, ℋ = 𝑟 + 𝑉′𝑓 reduces to 
ℋ = 𝑟 + 𝑉′ –the old 𝑉 formula.  

 
Value-Gradient Learning and Behaviour 

Systems  
To summarize, we have restored optimality. If we learn 
the gradient of the value function by choosing greedy 
actions that follow the full model of the system, 
Pontryagin’s Minimum Principle applies and the 
trajectory so built is guaranteed to be locally optimal, that 
is, to minimize the error and to maximize the reward. This 
analysis begs the question: How does VGL apply to the 
study of behaviour? 

At the end of the day, animals are behaviour systems –
sets of behaviours that are organized around biological 
functions and goals like feeding (Timberlake 1983), 
defence (Fanselow 1994) or sex (Domjan 1994). When 
such systems are free to act as they please, their preferred 
or optimal distribution of activities defines a behavioural 
bliss point (BBP) or baseline level of activity. In dynamic 
terms the BBP is a natural, steady and stable, attractor.  

This view encapsulates the behavioural regulation 
theory and generalizes the concept of homeostasis and 
negative feedback from physiology to psychology. 
Physiological homeostasis keeps parameters such as body 
temperature close to an optimal or ideal level. This level is 
“defended” in that deviations from the target temperature 
trigger compensatory physiological mechanisms that 
return the system to its homeostatic levels. In behavioural 
systems, what is defended is the organism’s BBP against 
instrumental contingencies that create disturbances to 
which the system adapts. Other metaphors are possible: At 
the end of the day, the bliss point represents an 
equilibrium in a population of behaviours –pretty much as 
the equilibrium observed in the number of different types 
of ants in a colony or between competing (prey-predator) 
species in an environment.  

More specifically, Staddon’s model (Staddon 1979) 
explains operant behaviour in terms of time constraints 
and feedback constraints, the reinforcement schedule to 
which the animal is subjected. Starting from a BBP, the 
animal finds the optimal equilibrium between instrumental 
and contingent responses –the one that minimizes the cost 
involved. Instrumental conditioning procedures are seen 
as response constraints that disrupt the free choice of 
behaviour and prevent the organism from returning to the 
BBP. The organisms achieve a contingent optimization by 
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approaching its bliss point under the constraints of the 
instrumental conditioning procedure. Put it this way, the 
analysis of operant behaviour is an optimal control 
problem and thus we should be able to express it in terms 
of VGL: ℒ, the Lagrangian, is defined as the cost to be 
minimized, 𝑓 are the time and feedback constraints and 𝑝, 
the multiplier or conjugate momentum, is now explicitly 
represented as 𝐺!. Not surprisingly, this formulation 
matches Staddon’s term by term (see Appendix A, 
Staddon 1979). 

Let’s recapitulate, VGL’s 𝐺 value would be the gradient 
of the cost associated with a departure from a given 
distribution of actions. If the cost of a given distribution is 
represented as 𝑉, then 𝐺 𝑠 = !" !,!

!"
 represents the 

change in cost as we change the distribution –where 𝑠 
represents the distribution and 𝑎 represents a given set of 
responses (both instrumental and contingent). 𝐺! re-acts 
against the constraints to minimize the cost.  

What are the advantages of using VGL? Firstly, VGL 
tells us exactly which form the multiplier must have. In 
particular, 𝐺! must be defined according to !"

!"
 and !"

!"
: the 

former tells us how the rate of contingent responses (𝑟) 
changes as the distribution of responses changes and the 
latter how the constraints themselves change. These two 
quantities define the change of cost that we minimize and 
give us the optimal distribution. 

Perhaps more importantly, VGL does not only give a 
solution to an optimization problem –in this case, the 
optimal distribution of responses under certain constraints. 
Of course, it does if we assume that such functions are 
perfectly known; yet, VGL is also a learning algorithm 
and as such serves a mechanistic agenda as well as an 
equilibrium agenda. VGL allows us to calculate how the 
animal is adapting to the optimal distribution when the 
constraints are a moving target, solving the so-called 
“teleological conundrum”: of course, animals do not know 
what the reinforcement schedule would be or the 
corresponding optimal response ratio –and yet they adapt 
to the optimal solution and they do so in an optimal way. 
Perhaps an analogy may clarify this point: Physicists 
found it puzzling that particles behaved as if they knew 
what the future would be. Traditionally, the movement of 
particles was interpreted in terms of global symmetries 
and thus it was difficult to explain how particles abided by 
the Principle of Least Action locally, when constraints 
appeared and disappeared as the system interacted with 
“unexpected” forces. Surely, the symmetries were broken 
in such cases; and yet, Nature seemed to account for them 
so as to comply with global symmetries –“as if nothing 
had happened”, symmetry was restored. We know that the 
answer lies in gauge symmetries: Indeed, at each step, 
deviations are counter-balanced so as to bring the system 
back (or as close as possible) to the original symmetry. In 
terms of cognition, this is precisely what VGL does. 

 
Conclusion  

This paper does not present quantitative predictions or 
new results. It presents a formal model that integrates 
current theories of conditioning with fundamental 
principles of Nature. Our main assumption is that learning 

and behaviour, conditioning more in particular, follow the 
same variational principles as any other natural 
phenomena: they must make a functional of some sort of 
extremal. In that we follow Peter Killeen’s program 
(Killeen 1992). We have shown that Temporal Difference 
is an inadequate model of optimal behaviour and proposed 
a new model, Value-Gradient Learning, equivalent to 
Pontryagin’s Minimum Principle –in turn, a version of 
Hamilton’s Principle of Least Action, that may serve as a 
model of both classical and operant conditioning. 
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