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a b s t r a c t

We compared psychophysical thresholds for biological and non-biological motion detection in adults
with autism spectrum conditions (ASCs) and controls. Participants watched animations of a biological
stimulus (a moving hand) or a non-biological stimulus (a falling tennis ball). The velocity profile of the
movement was varied between 100% natural motion (minimum-jerk (MJ) for the hand; gravitational (G)
for the ball) and 100% constant velocity (CV). Participants were asked to judge which animation was
‘less natural’ in a two-interval forced-choice paradigm and thresholds were estimated adaptively. There
Autism spectrum conditions
Social neuroscience
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was a significant interaction between group and condition. Thresholds in the MJ condition were lower
than in the G condition for the NC group whereas there was no difference between the thresholds in the
two conditions for the ASC group. Thus, unlike the controls, the ASC group did not show an increased
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. Introduction

For many decades, researchers have used point light displays
PLDs), which consist of a few moving points and yet evoke a
lear percept of a body in motion (Johansson, 1973), to study the
isual perception of biological motion (see Blake & Shiffrar, 2007
or a review). The perception of biological motion is linked to the
ction perception network in the brain (Pelphrey & Carter, 2008;
aygin, 2007; Saygin, Wilson, Hagler, Bates, & Sereno, 2004). Autism
pectrum condition (ASC) is a pervasive developmental disorder
haracterised by difficulties with reciprocal social interactions in
ddition to unusual patterns of repetitive behaviour and verbal and
on-verbal communication problems (APA, 1994). Abnormalities
ithin the action perception system have been suggested to under-

ie the problems with social interaction observed in ASC (Iacoboni
Dapretto, 2006; Oberman & Ramachandran, 2007; Williams,
hiten, Suddendorf, & Perrett, 2001), and it has been suggested

hat the perception of biological motion may be abnormal in ASC.
A number of studies have found abnormal processing of biolog-

cal motion in children with ASC (Blake, Turner, Smoski, Pozdol, &

tone, 2003; Klin, Lin, Gorrindo, Ramsay, & Jones, 2009). However,
ince these studies have used PLDs, which require integrating the
otion of multiple (typically around a dozen) points across space,

t is not clear that a deficit in perceiving biological motion from
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biological over non-biological velocity profiles.
© 2009 Elsevier Ltd. All rights reserved.

PLDs is distinct from the global motion processing deficit that has
also been observed in ASC (Bertone & Faubert, 2006; Milne et al.,
2002; Spencer & O’Brien, 2006). Furthermore, Hubert et al. (2007)
have shown that adolescents and adults with ASC showed worse
performance than controls at identifying emotions from PLDs, but
performance was comparable between groups when participants
had to identify the portrayed action or subjective state (such as
tired or bored); this finding also generalises to children (Parron
et al., 2008). Hubert and colleagues suggest that biological motion
processing deficits in ASC may be specific to emotional state attri-
bution.

The current study investigated whether a biological motion pro-
cessing deficit is found in ASC when the stimuli do not require
global motion integration and have no emotional content. Biological
motion has a characteristic velocity profile that is mathemati-
cally described by the ‘minimum-jerk model’, which is a cost
function that minimises jerkiness over a specified movement tra-
jectory (Flash & Hogan, 1985). We employed stimuli in which this
minimum-jerk (MJ) velocity profile was manipulated, and a novel
paradigm in which participants watched pairs of animations that
showed a biological stimulus (a moving hand) or a non-biological
stimulus (a falling tennis ball) moving across the screen. On each
trial, the velocity profile with which each animation moved was

either 100% natural motion (MJ in the biological condition; gravi-
tational in the non-biological condition), or 100% constant velocity
(CV), or some linear combination of the two extremes. In each trial,
participants were shown a ‘reference’ animation, which was always
a combination of 85% natural motion and 15% constant velocity, and

http://www.sciencedirect.com/science/journal/00283932
http://www.elsevier.com/locate/neuropsychologia
mailto:s.blakemore@ucl.ac.uk
dx.doi.org/10.1016/j.neuropsychologia.2009.07.010
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Table 1
Participant details. Mean (±SD) scores for age, IQ and ADOS are provided. Note that
IQ scores were available for only 10 out of 16 NC participants.

ASC NC Group comparison

N 16 16
Gender (M:F) 14:2 12:4
Age in years 34.1 (12.4) 33.3 (12.2) t(30) = 1.72; p = 0.86
Verbal IQ 117 (16.5) 118 (11.64; N = 10) t(24) = 0.43; p = 0.87
Performance IQ 109 (12.9) 113 (11.55; N = 10) t(24) = 0.60; p = 0.44
F
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ull scale IQ 114.8 (15.56) 113 (15.06; N = 10) t(30) = 0.34; p = 0.74
DOS total score 7.06 (3.47) NA
DOS RSI 5.06 (2.35) NA

‘target’ animation, in which the ratio of constant velocity to natu-
al motion varied according to performance. The task was to judge
hich animation was ‘less natural’. A two-interval forced-choice

daptive staircase paradigm was employed to generate separate
hresholds for the biological motion (MJ) condition and the non-
iological (gravitational) condition.

. Methods

.1. Participants

25 participants with ASC (18 males) and 23 control participants (18 males) took
art. 16 participants (14 males) from the ASC group and 16 participants (12 males)

rom the NC group generated adequate data required for robust perceptual thresh-
ld estimation (see below). The groups were matched for age, gender and verbal,
erformance and full scale IQ, as measured by the Wechsler Abbreviated Scale of

ntelligence (WASI) (see Table 1).
All participants had normal or corrected-to-normal vision and were screened

or exclusion criteria (dyslexia, epilepsy, and any other neurological or psychiatric
onditions) prior to taking part. All participants in the ASC group had a diagnosis of
utism, Asperger syndrome or ASC from a GP or psychiatrist. The Autism Diagnostic
bservation Schedule (ADOS: Lord et al., 1989) was administered by a researcher

rained and experienced in the use of this interview (see Table 1). We were unable
o distinguish between participants with Asperger syndrome and autism, as we did
ot have information about early development of language and other skills in our
articipants. All participants gave informed consent to take part in the study, which
as approved by the local ethics committee.

.2. Design

Participants watched a series of visual stimuli constituting two conditions: bio-
ogical (minimum-jerk; MJ) motion and non-biological (gravitational; G) motion.

.3. Minimum-jerk (MJ) condition
An image of a human hand (see Fig. 1) was programmed to make a vertical sinu-
oidal movement of amplitude 110 mm and frequency 0.5 Hz. The velocity profile of
he stimulus was generated by motion-morphing between two movement proto-
ypes. The velocity profile of Prototype 1 was described by a constrained MJ model
Todorov & Jordan, 1998). The model assumes that if r(s) = [x(s), y(s), z(s)] is a 3D
urve describing the path of the hand during a particular trial, where s is the dis-

ig. 1. Participants watched pairs of animations that showed a biological stimulus (a ha
rial, the velocity profile of the movement was either 100% natural motion (minimum-jer
onstant velocity or some linear combination of the two extremes. In each trial, particip
atural motion and 15% constant velocity, and a ‘target’ animation, in which the ratio of
o judge which was less natural.
a 47 (2009) 3275–3278

tance along the path, and tangential speed is s•(t) (s• is a time derivative, r′ is the
derivative with respect to s, and boldface signifies vector quantities) the temporal
profile of the movement will minimise the scalar function:

J =
∫ T

0

∥∥∥ d3

dt3
r[s(t)]

∥∥∥2

dt

The velocity profile of Prototype 2 was described by a constant velocity (CV)
vector.

2.4. Gravitational (G) condition

An image of a tennis ball (see Fig. 1) was programmed to make a vertical down-
ward movement of amplitude 215 mm and frequency 1 Hz. Thus, the tennis ball
appeared from the top of the screen and finished off the bottom of the screen. As
in the MJ condition, the velocity profile of the stimulus was generated by motion-
morphing between two prototypes of movements. The velocity profile of Prototype
1 in this condition was described by the standard equation of motion:

h(t) = h0 − 0.5gt2

where h is the height, h0 is the initial height, t is the time and g is the gravitational
force (9.8 m/s2). The velocity profile of Prototype 2 was described by a CV vector.

2.5. Motion-morphing

In both conditions, a series of new velocity profiles was created by linear com-
binations of the prototype velocity profiles using the following equation:

Motion morph = p1(Prototype 1) + p2(Prototype 2)

where the weights pi determine the proportion of the morph described by the indi-
vidual prototype. Therefore, in each condition, stimuli were either 100% Prototype 1
(MJ or G) or 100% Prototype 2 (CV), or some linear combination of the two in which
pi was determined by each participant’s performance on the task.

2.6. Procedure

In each trial participants watched a target and a reference animation, for which
order was counter-balanced across trials. The reference animation was always a
combination of 85% natural motion and 15% CV, but for the target animation the
ratio of CV to natural motion varied according to performance. The task was to
pick the less natural. Prior to testing, each participant was read instructions by the
experimenter and performed at least 5 practice trials of each condition. Participants
completed 6 blocks (3 of each condition) and there were 17 trials within each block.
Block order was counter-balanced between participants, and participants were given
breaks between blocks. The duration of the entire experiment was approximately
12 min.

2.7. Threshold calculation

The psychophysical threshold was determined using a two-interval forced-

choice adaptive staircase procedure. The velocity profile of the reference animation
was the same throughout the experiment. The velocity profile of the target anima-
tion was initially a combination of 5% natural motion (MJ or G) and 95% CV. This
ratio varied according to performance. Hence, at the start of the experiment the
pair of animations (reference and target) was perceptually very different in terms of
their velocity profile. The proportions of each prototype in the target morph were

nd) or a non-biological stimulus (a tennis ball) moving across the screen. On each
k in the biological condition; gravitational in the non-biological condition), or 100%
ants were shown a ‘reference’ animation, which was always a combination of 85%
constant velocity to natural motion varied according to performance. The task was
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djusted on a trial-by-trial basis using a weighted three-down, one-up, adaptive
taircase technique. The three-down, one-up transformation targets the 79.4% cor-
ect point on the psychometric function. The probability of downward movement
f the adaptive track must equal the probability of an upward movement; there-
ore if p is the probability of a positive response on a given trial, then p × p × p must
qual 0.5 hence the target probability is 3

√
0.5 = 0.794 (Jennings, 2005). Three cor-

ect responses in a row incurred a 0.2 (large step-size) increase in the proportion
f Prototype 1 and one incorrect response led to a 0.2 decrease in the proportion
f Prototype 1. Therefore, the difference between the velocity profiles of the anima-
ions converged if the participant performed well and diverged if the participant’s
erformance declined. After the first four reversals (defined as the point at which the
nimations stop converging and start to diverge or vice versa), step sizes changed
o 0.025 to facilitate the calculation of a fine-grained threshold. The staircase pro-
edure was terminated after 51 trials. If the number of reversals achieved within 51
rials was greater than 12 (the potential maximum was 15) the threshold was the

ean of the last 8 small-step reversals values. If the number of reversals was less
han 12 but greater than 3, the threshold was the mean of all available small-step
eversals.

.8. Data analysis

Threshold data were analysed using a 2 × 2 mixed-model repeated-measures
NOVA with between subjects factor group (ASC vs NC) and within subjects factor
ondition (MJ vs G), and Bonferroni-corrected t-tests were used to examine simple
ffect differences between conditions.

. Results

Data were filtered such that only thresholds based on more than
hree small-step reversals were included in the analysis. For the
SC group (N = 16), thresholds in the MJ condition were estimated

rom (mean) 5.19 (±2.61 SD) small-step reversals and from 4.69
±1.92) small-step reversals in the G condition. For the NC group
N = 16), thresholds were estimated from 5.88 (±1.59) reversals in
he MJ condition and 5.56 (±1.86) in the G condition. There was no
ignificant difference between groups in the number of reversals
sed for threshold calculation in either condition (MJ condition:
(30) = −0.9, p = 0.38; G condition: t(30) = −1.31, p = 0.2). In addition,
he number of reversals did not differ between conditions for each
roup (ASC: t(15) = 0.6, p = 0.56; NC: t(15) = 0.42, p = 0.68).

ANOVA revealed a significant main effect of condition
F(1,30) = 4.558, p < 0.05) and a significant interaction between con-
ition and group (F(1,30) = 4.37, p < 0.05). There was no significant
ain effect of group (F(1,30) = 0.17, p = 0.68). The interaction was

riven by a significant difference between the groups in the MJ con-
ition (mean MJ thresholds for NC: 0.29 ± 0.02; ASC: 0.40 ± 0.05;
(30) = 2.197, p < 0.05) but not in the G condition (mean G thresholds

or NC: 0.48 ± 0.05; ASC: 0.41 ± 0.05; t(30) = −1, p = 0.32). Thresh-
lds in the MJ condition were significantly lower than in the G
ondition for the NC group (t(15) = −3.127, p < 0.01), whereas there
as no significant difference between conditions for the ASC group

t(15) = −0.03, p = 0.97) (see Fig. 2).

ig. 2. There was a significant interaction between group and condition driven by
ower thresholds in the MJ condition than in the G condition for the NC group but
ot for the ASC group.
a 47 (2009) 3275–3278 3277

4. Discussion

To our knowledge, this is the first study to have measured thresh-
olds for detection of perturbations to biological and non-biological
motion. The thresholds reflect the amount of CV motion necessary
to perturb a natural motion animation such that, if presented with
the perturbed animation and a natural motion exemplar, the par-
ticipant can no longer discriminate the less natural. Low thresholds,
therefore, reflect high sensitivity to CV perturbations whereas high
thresholds reflect low sensitivity to CV perturbations. The NC group
exhibited mean thresholds for MJ motion of 30%, indicating that,
on average, 70% of the velocity profile must be MJ for the target to
be discriminated as ‘less natural’ than the reference (which con-
tained 85% MJ). In contrast, the mean non-biological (G) motion
threshold was 48% for the NCs. Thus, on average for the NCs, 52% of
the velocity profile must be G for the target to be discriminated as
‘less natural’ than the reference (which contained 85% G). This sug-
gests that the NC group was more sensitive to CV perturbations to
the velocity profile of biological (MJ) motion than to perturbations
to non-biological (G) motion. In the ASC group, mean thresholds
were similar for both biological motion and non-biological motion
(approximately 40% in both conditions). This indicates that, whilst
the NC group was particularly sensitive to changes in the velocity
profile of biological relative to non-biological motion, this increased
relative sensitivity to biological motion was not found in the ASC
group.

The difference between the two groups’ perceptual thresholds
appears to be specific to biological motion since there was no dif-
ference between thresholds for non-biological motion. Since both
groups obtained similar thresholds in the G condition, it is unlikely
that the difference between groups in the MJ condition was due to
differences in the interpretation of the task instructions, or atten-
tion. The atypical biological motion processing found here is in line
with previous findings of abnormal biological motion processing in
children with ASC (Blake et al., 2003; Klin et al., 2009). However,
the task used in the current study did not require global motion
integration or processing of emotional content (Bertone & Faubert,
2006; Hubert et al., 2007; Milne et al., 2002; Spencer & O’Brien,
2006). Therefore, our data provide evidence for a biological motion
processing deficit in ASC that cannot be explained by the need to
integrate motion signals across space or the need to process the
emotional content of the stimuli.

Recently, Klin and colleagues found that 2-year olds with ASC
spend less time attending to biological motion than do typically
developing controls (Klin et al., 2009). It may be the case that the
reduced sensitivity to biological motion in an adult sample with
ASC, as found in the current study, is a developmental consequence
of reduced observation of biological motion and hence abnormal
learning about the kinematics of human movement. It would be
interesting to investigate whether young children with ASC show
abnormalities in the perception of MJ motion, using stimuli that do
not require global motion integration similar to those used in the
current study.
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