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Abstract

A distortion-type risk measure is constructed, which evaluates the

risk of any uncertain position in the context of a portfolio that contains

that position and a fixed background risk. The risk measure can also

be used to assess the performance of individual risks within a portfo-

lio, allowing for the portfolio’s re-balancing, an area where standard

capital allocation methods fail. It is shown that the properties of the

risk measure depart from those of coherent distortion measures. In

particular, it is shown that the presence of background risk makes risk

measurement sensitive to the scale and aggregation of risk. The case

of risks following elliptical distributions is examined in more detail and

precise characterisations of the risk measure’s aggregation properties

are obtained.
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1 Introduction

Risk measures are used in order to determine the risk capital that the holder

of a portfolio of assets and liabilities has to hold, that is, to invest with low

risk. Risk measures are closely related to insurance premium calculation

principles, which are studied extensively by Goovaerts et al. (1984). Recent

approaches to risk measures include the one by Artzner et al. (1999) who

introduced a set of axioms on risk measures and introduced the term coherent

measures of risk for risk measures that satisfy those axioms. Distortion risk

measures which satisfy these axioms have been introduced in an insurance

pricing context by Denneberg (1990) and Wang (1996), and in a finance

setting by Acerbi (2002). These are often called distortion risk measures

and are calculated as the expected loss of a portfolio, under an non-linear

transformation of its cumulative probability distribution.

Given the aggregate risk capital of a portfolio, a separate problem that

emerges is the allocation of the total amount of risk capital to the instru-

ments (or sub-portfolios) that the portfolio consists of. The term capital al-

location does generally not imply that actual amounts of capital are moved

between portfolios; it rather signifies a notional exercise used primarily to

evaluate the performance of risks within a portfolio. Capital allocation meth-

ods drawing on cooperative game theory were proposed by Denault (2001),

based on the premise that no disincentives for the pooling of portfolios should

be created by the allocation.

When a distortion risk measure is used for determining the aggregate

capital corresponding to the portfolio, explicit capital allocation formulas

have been obtained by Tsanakas and Barnett (2003) and Tsanakas (2004).

The capital allocation mechanism obtained in the above papers can be

viewed as an internal system of prices defined on the set of risks that form

the aggregate portfolio. The capital allocated to a particular risk, or its

price, is influenced on the dependency between that risk and the aggregate
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portfolio.

If the aggregate portfolio is fixed this approach presents a consistent

method for the allocation of risk capital. However, if the portfolio is not

fixed, and capital allocation is viewed as a decision tool for its re-balancing,

then an inconsistency arises. Allocated capital reflects the dependence be-

tween a risk and the portfolio which contains that risk. Hence when the

weight of that risk in the portfolio changes, the portfolio as a whole is

affected. Therefore, the system of internal prices derived for the static port-

folio changes and is no more valid for assessing the performance of each

individual risk in the re-balanced portfolio.

A related situation arises when the portfolio holder is also exposed to an

element of background risk. This means that besides the specific portfolio

obtained in the financial and insurance markets, the holder is also exposed

to a risk that he cannot (or will not) trade, control or mitigate. Examples

of background risk are the risk to human capital for a firm, unhedgeable

portfolios in an incomplete financial market and insurance risk for which

no reinsurance is typically available e.g. infinite layers. Hence, the risk

measurement of any other risk in the portfolio has always to be evaluated

with reference to the background risk that the holder is exposed to.

While the effect of background risk on risk measurement is not well de-

veloped in the literature, its effect on risk aversion and asset allocation has

been extensively studied in the economics literature. For example, Heaton

and Lucas (2000) deal with portfolio choice in the presence of background

risk, while Gollier and Pratt (1996) seek to characterise utility functions

such that the exposure to an independent background risk increases risk

aversion with respect to any other independent risk. In this paper a dif-

ferent approach is taken. It is proposed that the risk corresponding to a

particular position or instrument is quantified via its risk contribution to a

portfolio that contains itself and the background risk. That risk contribu-
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tion can be determined using standard capital allocation methods. The risk

contribution’s sensitivity to the exposure to background risk can then be

used to characterise the change in preferences that background risk induces.

No assumptions on independence of risks are made.

Following that reasoning, a new distortion risk measure is defined, which

provides a measure of risk for any position X, with reference to a fixed

risk Y that is in the same portfolio as X. This can be interpreted either

as capturing the dynamics of capital allocation under changing portfolio

weights or as quantifying risk X in the presence of a background risk Y .

This is akin to the portfolio holder’s having a system of reference were the

origin has been moved from 0 to Y . This ‘new origin’ is now of course a

random quantity and the risk measure of X relative to Y proposed here

reflects this change.

By studying the properties of that risk measure, it is possible to capture

the impact of background risk on preferences, given that these preferences

are captured by a distortion risk measure. It is shown that background

risk increases agents’ sensitivity to the aggregation of risk; while a coherent

distortion risk measure is positive homogenous and subadditive, background

risk potentially induces superlinearity and superadditivity. This is a notable

departure from the properties of coherent risk measures, which have been

criticised by some authors (e.g. Dhaene et al., 2003) for their insensitivity

to the aggregation of risk. Increased sensitivity to risk aggregation in the

context of the paper makes practical and intuitive sense; in an illiquid envi-

ronment, such as an insurance market, a risk taker will generally require a

higher price at the margin for risk that he is already highly exposed to.

In the case of general probability distributions and dependence struc-

tures, the aggregation properties of risk measurement in the presence of

background risk are difficult to characterise exactly. Therefore, the special

case of joint-elliptically distributed risks is examined. Elliptical distributions
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have become an important tool in financial risk management, because they

combine heavy tails and tail-dependence with tractable aggregation proper-

ties (Embrechts et al, 2002). It is shown that in the presence of background

risk, the risk measure introduced here satisfies a super-linearity property

which manifests sensitivity to the exposure to ‘large’ risks. Moreover, it is

shown that the risk measure is superadditive for comonotonic risks, which

means that the pooling of perfectly correlated positions is penalised. Fi-

nally it is shown that, under some conditions (ensuring that the background

risk does not operate as a hedge) the risk measure penalises increases in

the variability of liabilities, as well as increases in the correlation between

instruments within a portfolio.

The structure of the paper is as follows. In Section 2 capital allocation

with distortion risk measures is introduced. In Section 3 distortion risk

measures with reference to a background risk are introduced and their basic

properties discussed. Section 4 discusses elliptical distributions and proceeds

with the characterisation of the risk measure’s aggregation properties in an

elliptical environment. Conclusions are summarised in Section 5.

2 Capital allocation with distortion risk measures

Consider a set of random variables X representing insurance and financial

risks, defined on a probability space (Ω,F ,P). When X ∈ X assumes a

positive value it is considered a loss. A risk measure ρ is defined as a

real-valued functional on the set of risks, ρ : X 7→ R. The quantity ρ(X)

represents the amount of capital that the holder of risk X has to safely

invest, in order to satisfy a regulator. Risk measures have been extensively

studied in actuarial science in the guise of insurance pricing functionals, see

Goovaerts et al. (1984). A more recent influential approach in the financial

field has been the axiomatic definition of ‘coherent measures of risk’ by

Artzner et al. (1999).

5



The following distortion risk measure has been proposed by Denneberg

(1990) and Wang (1996):

ρ(X) =

∫ 0

−∞

(

g
(

F̄X(x)
)

− 1
)

dx+

∫ ∞

0
g
(

F̄X(x)
)

dx, (1)

where F̄X(x) = P(X > x) is the decumulative probability distribution of

X under the real-world probability measure P, while g : [0, 1] 7→ [0, 1] is an

increasing and concave distortion function such that g(0) = 0 and g(1) = 1.

The distortion risk measure can be interpreted as an expected loss under

a non-linear transformation of the probability distribution; observe that if

g(t) = t, then ρ(X) = E[X]. The distortion risk measure (1) satisfies

the coherence axioms of Artzner et al. (1999), while allowing an economic

interpretation as a certainty equivalent under Yaari’s (1987) dual theory of

choice under risk. It is noted that distortion risk measures are essentially

the same the ‘spectral risk measures’ of Acerbi (2002).

Consider the case where g is differentiable on [0, 1] with bounded first

derivative, an assumption that is made throughout the paper. Moreover we

assume that F̄X is continuous. Then integration by parts yields the following

re-writing of the distortion risk measure

ρ(X) = E
[

Xg′
(

F̄X(X)
)]

. (2)

It is noted that (2) can be easily generalised for the case of a finite number

of discontinuities of F̄X , but this is not pursued here. The factor g′
(

F̄X(X)
)

in the expectation effects a re-weighting of the probability distribution of

X, placing a higher weight on adverse outcomes of X (adverse in the sense

of having a high rank in the set of possible outcomes).

Suppose an economic agent (insurer, bank) holds a portfolio Z ∈ X ,

consisting of a number of instruments X1, X2, . . . , Xn ∈ X such that

Z = X1 +X2 + · · ·+Xn. (3)

Then the aggregate capital that the agent has to hold is ρ(Z) = E[Z ·
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g′(F̄Z(Z))]. The capital allocation problem consists or determining capi-

tal amounts Ki, i = 1, 2, . . . , n, corresponding to each instrument Xi, i =

1, 2, . . . , n respectively, such that the allocated amounts add up to the ag-

gregate required capital
∑

j

Kj = ρ(Z). (4)

To determine the capital allocation additional criteria to (4) are of course

needed. A criterion originating in cooperative game theory (Aumann and

Shapley (1974), Denault (2002)) is that the allocation should produce no

incentive for any instrument to leave the portfolio. This is formalised by

requiring that the capital allocated to each instrument is lower than its risk

measure

Ki ≤ ρ(Xi), i = 1, 2, . . . , n (5)

We note that this requirement is consistent with the subadditivity property

of coherent measures of risk, which postulates that ρ(X1 +X2) ≤ ρ(X1) +

ρ(X2), that is, there is always a benefit in pooling portfolios. If subadditivity

is accepted as a valid premise for risk management, then ensuring by (5) that

portfolios are not fragmented is also desirable.

A capital allocation method for distortion risk measures, which satis-

fies (4) and (5) has been developed by Tsanakas and Barnett (2003) and

Tsanakas (2004), who obtained the following allocation formula

Ki = E
[

Xig
′
(

F̄Z(Z)
)]

(6)

If we consider the linear functional

π(X) = E
[

Xg′
(

F̄Z(Z)
)]

, X ∈ X , (7)

it obviously is Ki = π(Xi). The allocated capital calculated by (6) equals

the expected loss of the instrument Xi, subject to a re-weighting of its prob-

ability distribution (change of probability measure) by g′
(

F̄Z(Z)
)

. Thus

outcomes of Xi which occur when the aggregate portfolio Z performs badly
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are given more weight. In this way the dependence between Xi and Z is

reflected in the capital allocation, as discussed by Tsanakas (2004).

3 Risk measurement and background risk

3.1 Definition

This representation (7) gives a means of evaluating the risk of every instru-

ment X in relation to the portfolio Z. By viewing π as a linear functional

one implicitly assumes that the random variable Z, that is, the composition

of the aggregate portfolio is fixed. However, this assumption does not take

into account the fact that when we seek to evaluate the risk of an instrument

X relative to a portfolio Z, this instrument actually forms part of the portfo-

lio itself. In this context, when one modifies X, Z is being modified as well.

This is not a problem if the issue at hand is to measure the performance of

the constituent parts of a fixed portfolio. However, if the capital allocation

method is used to evaluate the performance of different instruments relative

to a portfolio, in order to take investment decisions, then the effect on the

total portfolio of changing investment in any instrument X has to be taken

explicitly into account.

Alternatively, consider the situation that Y is a risk that its holder can-

not (or will not) insure or replicate in the insurance and financial markets.

Thus the holder of Y cannot receive protection against this risk – so to

speak, he is stuck with it. We then call Y a background risk for the par-

ticular agent holding it. From the point of view of an agent exposed to

background risk Y , each risk X must be evaluated in relation to Y as it can

only be contemplated in a portfolio that already contains Y . Hence, a risk

measure would have to be defined which depends on a fixed Y but varies in

X. In the context of the previous discussion, this means that the aggregate

portfolio Z = X + Y , with respect to which the risk of X is evaluated, will
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again not be fixed.

The above arguments motivate the following definition:

Definition 1. The distortion measure ρ(X;Y ) of risk X with respect to

background risk Y is defined by:

ρ(X;Y ) = E
[

Xg′
(

F̄X+Y (X + Y )
)]

, (8)

where g : [0, 1] 7→ [0, 1] with g(0) = 0 and g(1) = 1 is increasing, concave,

and differentiable with bounded first derivative.

In the above definition the probability weighting g′
(

F̄X+Y (X + Y )
)

ex-

plicitly depends on X and therefore ρ(X;Y ), unlike π(X), is not a lin-

ear functional in X. We note that the risk measure ρ(X;Y ) can also

be expressed as the sensitivity of portfolio X + Y to changes in X. Let

r(a) = ρ(aX + Y ). Then

ρ(X;Y ) =
dr(a)

da

∣

∣

∣

∣

a=1

(9)

Remark: The argumentation presented here also applies to other risk

measures that produce capital allocation mechanisms which are represented

as linear functionals. For example, the exponential tilting capital allocation

method proposed by Wang (2002) is defined by

Ki =
E[Xi exp(aZ)]

E[exp(aZ)]
, a > 0. (10)

Similar arguments as above could be used to define a risk measure by

ρ(X;Y ) =
E[X exp(a(X + Y ))]

E[exp(a(X + Y ))]
, a > 0. (11)

The study of such risk measures is outside the scope of this investigation.

3.2 Elements of stochastic orders

Before proceeding to the discussion of the properties of the risk measure

ρ(X;Y ), some results on the stochastic ordering of two-dimensional random
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vectors are presented here, drawing from Dhaene and Goovaerts (1996) and

Müller and Stoyan (2002).

The stop-loss order on elements of the set of risks X is a natural way

of comparing the riskiness of probability distributions, by comparing the

stop-loss premiums of risks for any given retention:

Definition 2. For random variables X,Y ∈ X , we say that X is smaller

than Y in stop-loss order and write X ≤sl Y , whenever

E[(X − d)+] ≤ E[(Y − d)+], ∀d ∈ (−∞,∞) (12)

Let
d
= signify equality in distribution. Consider risks X1

d
= Y1 and

X2
d
= Y2 with probability distributions F1, F2 respectively. The random

vectors (X1, X2) and (Y1, Y2) are then different only in the way that their

elements depend on each other. The Frechet Space R2(F1, F2) is defined as

the space of two-dimensional random vectors with fixed marginals F1 and

F2. Elements of R2(F1, F2) can be compared in terms of their dependence

structure via the partial concordance order :

Definition 3. Consider the random vectors (X1, X2), (Y1, Y2) ∈ R2(F1, F2),

with joint cumulative distribution functions FX, FY respectively. We say

that (X1, X2) is smaller than (Y1, Y2) in concordance order and write (X1, X2) ≤c

(Y1, Y2), whenever either of the following equivalent conditions holds:

i) FX(x1, x2) ≤ FY(x1, x2) for all x1, x2.

ii) Cov(h1(X1), h2(X2)) ≤ Cov(h1(Y1), h2(Y2)) for all increasing func-

tions h1, h2 such that the covariances exist.

3.3 Properties of the risk measure ρ(·;Y )

It is apparent that the properties of the functional ρ(·;Y ) are going to be

different to the ones of the distortion risk measure ρ(·). One could actually

regard ρ(·;Y ) as a separate class of risk measures ‘parameterised’ by the
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random variable Y . Then, it is of interest to study the properties of the risk

measure ρ(·;Y ) and the ways in which they differ from those of the standard

distortion risk measure. The change in the risk measures’ properties will

represent the impact of background risk on risk preferences.

Some elementary properties are given by the following result.

Proposition 1. The distortion risk measure in the presence of background

risk defined by (8), where g is differentiable with bounded first derivative and

the random variables referred to have continuous cumulative distributions

function, satisfies the following properties:

i)

ρ(X;Y ) + ρ(Y ;X) = ρ(X + Y ) (13)

ii) If X and Y are comonotonic

ρ(X;Y ) = ρ(X) (14)

iii) If X1, X2 and Y are comonotonic

ρ(X1 +X2;Y ) = ρ(X1;Y ) + ρ(X2;Y ) (15)

iv)

ρ(X;Y ) ≥ 0 ⇐⇒ Cov
(

X, g′
(

F̄X+Y (X + Y )
))

≥ −E[X] (16)

v)

ρ(X;Y ) ≤ ρ(X) (17)

vi) If X1
d
= X2 and (X1, Y ) ≤c (X2, Y ), then

ρ(X1;Y ) ≤ ρ(X2;Y ) (18)

Proof. Parts i) and iv) are straightforward. For ii) note that for a comono-

tonic pair (X,Y ), it is known that the sum X + Y is also comonotonic to
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X, which implies that we have that F̄X(X) = F̄X+Y (X + Y )(Dheane et al,

2002). This yields

ρ(X;Y ) = E[Xg′(F̄X+Y (X + Y ))] = E[Xg′(F̄X(X))] = ρ(X). (19)

Part iii) is a direct result of ii). Proof of v) and vi) follows directly from

Proposition 5 in Tsanakas (2004).

Part i) of the result above just states that the risk of portfolio X + Y

can be broken down to the risk assessments of X relative to Y and of Y

relative to X. Part ii) shows that the risk of an instrument X relative to a

background risk Y that is comonotonic to, is equal to the risk of X with no

background risk. This is because pooling comonotonic portfolios produces

no diversification. Part iii) is a special case of ii) concerning the sum of risks

comonotonic to the portfolio Y .

Part iv) gives a condition for the positivity of the risk measure. Roughly

speaking, ρ(X;Y ) is positive given that X has a high enough positive depen-

dence on (an increasing function of) the aggregate X + Y . This means that

ρ(X;Y ) can be negative, even if X ≥ 0. This could happen if X is highly

negatively correlated to X + Y , because then the presence of X actually

reduces the risk, as it reduces the variability of X + Y . This situation can

occur in practice, especially in the trading of derivative portfolios, where

often both increasing and decreasing contracts on underlying securities are

sold.

Part v) reflects the origin of the risk measure in cooperative game theory,

as the risk of X relative to Y is always dominated by the stand-alone risk

of X. This means that the background risk Y always produces sufficient

diversification benefit so as to reduce the risk of X. This is consistent

with the subadditivity property of distortion risk measures; hence potential

criticisms of subadditive risk measures, such as the ones expressed in Dhaene

et al. (2003) also extend to ρ(·;Y ). Finally, vi) shows that if the pair (X2, Y )
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is more concordant than the pair (X1, Y ), then the risk of X2 relative to Y

is higher that the one of X1. The reason is that a high correlation to the

portfolio Y implies less diversification.

Proposition 1 does not address the aggregation properties of the portfolio-

relative risk measures. For coherent distortion risk measures, one has that

the risk measure is insensitive to the size of portfolios, that is the positive

homogeneity property ρ(aX) = aρ(X), a ∈ R+. Furthermore, by the subad-

ditivity property ρ(X + Y ) ≤ ρ(X) + ρ(Y ) it is implied that the pooling of

portfolios, regardless of their dependence structure always produces diversi-

fication benefits. These properties do not necessarily carry over to the case

of portfolio-relative distortion risk measures.

This divergence in aggregation behaviour can be observed heuristically.

Observe that for a positive homogenous risk measure the quantity ρ(aX)
a

is

constant. For the portfolio-relative risk measures, it is:

ρ(aX;Y )

a
= E[X] + Cov

(

X, g′
(

F̄aX+Y (aX + Y )
))

(20)

The above expression obviously varies in a, therefore ρ(aX;Y ) is not posi-

tively homogenous. Furthermore, as the weight a becomes higher, portfolio

aX + Y tends to aX. On the other hand varying a does not change the

marginal distribution of g′(F̄aX+Y (aX + Y )). Hence one would expect the

covariance between X and g′(F̄aX+Y (aX+Y )), which is an increasing func-

tion of aX + Y , to grow. This means that distortion risk measures with

respect to background risk will generally be super-linear, in the sense that

increases in the scale of X will tend to also increase ρ(aX;Y )
a

.

Regarding the issue of pooling portfolios, we can write

ρ(X1 +X2;Y ) = E
[

X1g
′
(

F̄X1+X2+Y (X1 +X2 + Y )
)]

+E
[

X2g
′
(

F̄X1+X2+Y (X1 +X2 + Y )
)]

(21)

Now ρ(X1 +X2;Y ) would be subadditive if it held true that

E
[

X1g
′
(

F̄X1+X2+Y (X1 +X2 + Y )
)]

≤ E
[

X1g
′
(

F̄X1+Y (X1 + Y )
)]
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and

E
[

X2g
′
(

F̄X1+X2+Y (X1 +X2 + Y )
)]

≤ E
[

X2g
′
(

F̄X2+Y (X2 + Y )
)]

.

However the above do not necessarily hold true. Specifically, if X1, X2 are

highly correlated it is conceivable that the pair (X1, g
′◦F̄X1+X2+Y (X1+X2+

Y )) is more concordant than the pair (X1, g
′ ◦ F̄X1+Y (X1 + Y )). Therefore,

the possibility arises that the portfolio-relative risk measure becomes super-

additive for certain dependence structures between risks.

For risks with general joint distributions, it is difficult to cast heuristic

arguments, such as the above, in a formal setting. However, for the case

of elliptical probability distributions, which have well known aggregation

properties, a more precise characterisation of the risk measure’s ρ(X;Y )

aggregation properties is possible. Such an investigation is undertaken in

Section 4. First, however, the aggregation and diversification properties of

ρ(X;Y ) are demonstrated via a simple numerical example.

Consider independent standard normal variables X and Y . To illus-

trate sensitivity to scale, we can evaluate the quantity ρ(aX;Y )
a

for differ-

ent values of the portfolio weight a. An exponential distortion function

g(s) = 1−exp(−hs)
1−exp(−h) with parameter h = 10 is used. As seen in figure 1, the

quantity ρ(aX;Y )
a

is increasing, which implies a superlinearity that renders

ρ(X;Y ) sensitive to the scale of X. Moreover, as a gets large this effect

is reduced, since the effect of the background risk Y becomes smaller and

ρ(X;Y ) becomes close to the positive homogenous ρ(X).

To examine the sensitivity to risk aggregation of ρ(X1+X2;Y ), consider

a multivariate standard normal risk profile.
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The reduction in risk from pooling X1 and X2, with respect to background

risk Y , is given by the diversification benefit 1− ρ(X1+X2;Y )
ρ(X1;Y )+ρ(X2;Y ) . In figure 2,
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the diversification benefit is plotted as a function of the correlation r between

X1, X2. It is seen that the diversification benefit reduces in the correlation.

Moreover, for high enough correlation it actually becomes negative. This

implies that for high levels of correlation between X1, X2, the background

risk Y causes the risk measure ρ(X1 + X2;Y ) to become superadditive,

that is, to display a sensitivity to the aggregation of risks. This is again a

departure from the properties of the coherent distortion risk measure ρ(X).

4 The case of elliptically distributed risks

4.1 Definition and properties of elliptical distributions

Here we briefly introduce the class of elliptical distributions (Kelker (1970),

Fang et al. (1987)). Elliptical distributions can be viewed as generalisa-

tions of the multivariate normal family, which allow for heavier tails and

asymptotic tail dependence. Furthermore, elliptically distributed vectors

are characterised by a covariance structure similar to the one of the multi-

variate normal, thus creating a convenient tool for modelling symmetric risks

and their aggregation properties. The importance of elliptical distributions

in risk management has been highlighted by Embrechts et al. (2002) and

Landsman and Valdez (2003), where an extensive list of elliptical families is

also given.

Let Ψn be a class of functions ψ(t) : [0,∞) 7→ R such that the function

ψ(
∑n

i=1 t
2
i ) is an n−dimensional characteristic function (Fang et al., 1987).

It then follows that Ψn ⊂ Ψn−1 · ·· ⊂ Ψ1.

Definition 4. Consider an n−dimensional random vectorX = (X1, X2, ..., Xn)
T .

The random vector X has a multivariate elliptical distribution, denoted by

X ∼ En(µ,Σ,ψ), if its characteristic function can be expressed as

ϕX (t) = exp(itTµ)ψ

(

1

2
tTΣt

)

(22)
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for some column-vector µ, n × n positive-definite matrix Σ, and for some

function ψ(t) ∈ Ψn, which is called the characteristic generator.

Besides the multivariate normal family, obtained by ψ(t) = e−t, ex-

amples of elliptical distributions are the multivariate t, logistic, symmetric

stable, and exponential power families.

A vector X ∼ En(µ,Σ,ψ) does not necessarily have a density. If the

density exists (Fang et al., 1987), it takes form

fX(x) =
cn
√

|Σ|
dn

[

1

2
(x− µ)TΣ−1(x− µ)

]

, (23)

where dn(·) is a function called the density generator and cn is a constant.

Then the notation X ∼ En(µ,Σ,dn) can also be used.

The mean vector and covariance matrix of X do not necessarily exist. It

is can be shown (Landsman and Valdez, 2003) that the conditions
∫ ∞

0
d1(x)dx <∞ and |ψ′(0)| ≤ ∞ (24)

(where d1(x) is the density generator of the univariate marginal) are suffi-

cient for their respective existence. If the mean and covariance exist, then

they are given by

E (X) = µ, Cov (X) = Σ, (25)

subject to suitable normalisation.

An important property of elliptical distributions is that linear trans-

formations of elliptically distributed vectors are also elliptical, with the

same characteristic generator. Specifically, from (22) it follows that if X ∼
En (µ,Σ, ψ), A is a m × n dimensional matrix of rank m ≤ n, and b is an

m dimensional vector, then

AX+ b ∼ Em

(

Aµ+ b,AΣAT , ψ
)

. (26)

A direct consequence of (26) is that any marginal distribution of X is also

elliptical with the same characteristic generator, that is, if the diagonal ele-

ments of Σ are σ2
1, σ

2
2, ..., σ

2
n, then for k = 1, 2, ..., n it is Xk ∼ E1

(

µk,σ
2
k, ψ

)

.
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4.2 Distortion risk measures for elliptically distributed risks

In this section we present some result that will prove useful in the sequel,

relating to representations of distortion risk measures and related functionals

in the case of elliptically distributed risks. Consider X ∼ En(µ,Σ,dn) and

function

D(x) = c1

∫ x

0
d1(u)du. (27)

Assuming that the mean vector and covariance matrix ofX are finite, denote

D̄(x) = D(∞)−D(x).Consider now the function

fZ∗(z) = D̄

(

1

2
z2

)

. (28)

It is then shown in Landsman and Valdez (2003) that fZ∗(z) is the density

of some standardised (i.e. with zero mean and unit variance) elliptical ran-

dom variable, which does not necessarily come from the same family as X.

Furthermore denote X∗
i = µi + σiZ

∗, σi =
√
σii, i = 1, . . . , n. Then the

following result is proved by Landsman (2006).

Theorem 1. Consider X ∼ En(µ,Σ,dn) with finite mean vector and co-

variance matrix and an increasing, differentiable almost everywhere function

h(x) such that E[h′(X∗
i )] <∞, i = 1, . . . , n. Then

E[(Xi − µi)h(Xj)] = Cov(Xi, Xj)E[h′(X∗
j )]. (29)

The theorem allows the explicit calculation of the expectation of an

elliptical random variable, weighted by an increasing function of another

elliptical variable in the same family. This makes the result particularly

useful for the explicit calculation of risk measures and capital allocations

which allow such representations, as shown in the result below.

For a more general version of Theorem 1 not requiring finiteness of co-

variances we refer to Landsman (2006). We note that the results obtained

in this and the next section do not necessarily require that the covariance

matrix is finite; the assumption is made to simplify the exposition.
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Theorem 2. Consider X ∼ E2(µ,Σ,d2) with finite mean vector and covari-

ance matrix and function g : [0, 1] 7→ [0, 1], which increasing, concave and

differentiable on [0, 1] with bounded first derivative. Then

E[X1g
′(F̄X2

(X2))] = E[X1] +
Cov(X1, X2)
√

V ar(X2)
· λg = µ1 +

σ12

σ2
· λd, (30)

where λg is a positive constant specific to the elliptical family with density

generator d and the function g.

Proof. From Theorem 1 we have:

E[X1g
′(F̄X2

(X2))] = E[X1] + E[(X1 − E[X1])g
′(F̄X2

(X2))]

= Cov(X1, X2)E[h′(X∗
2 )],

(31)

where h(x) = g′(F̄X2
(x)) is an increasing function since

h′(x) = −g′′(F̄X2
(x))fX2

(x) ≥ 0 (32)

and X∗
2 = µ2 + σ2Z

∗ as in Theorem 1. Now

E[h′(X∗
2 )] = E[h′(µ2 + σ2Z

∗)]

=
∫∞

−∞
−g′′(F̄2(µ2 + σ2z))fX2

(µ2 + σ2z)fZ∗(z)dz.
(33)

Denote by FZ and fZ the standardised cumulative distribution and density

of X2, i.e. the distributions of random variable Z
D
= X1−µ1

σ1

D
= X2−µ2

σ2
. Let

F̄Z(x) = 1− FZ(x). It then is

F̄X2
(µ2 + σ2z) = F̄Z(z), fX2

(µ2 + σ2z) =
1

σ2
fZ(z). (34)

So

E[h′(X∗
2 )] =

∫∞

−∞
−g′′(F̄Z(z)) 1

σ2
fZ(z)fZ∗(z)dz

= 1
σ2
· λg = 1√

V ar(X2)
· λg,

(35)

where λg =
∫∞

−∞
−g′′(F̄Z(z)) 1

σ2
fZ(z)fZ∗(z)dz > 0, which does not depend

on µ,Σ.

The following corollaries directly follow from Theorem 2.
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Corollary 1. For X ∼ E1(µ, σ,d1) the distortion risk measure of equation

(2) becomes

ρ(X) = µ+ λgσ = E[X] + λg
√

V ar(X) (36)

Corollary 2. For (Xi, Z) ∼ E2(µ,Σ,d2) the capital allocation mechanism

of equation (6) becomes

Ki = µi + λg
σXi,Z

σZ
= E[Xi] + λg

Cov(Xi, Z)
√

V ar(Z)
(37)

Corollary 3. For (X,Y ) ∼ E2(µ,Σ,d2) the risk measure with respect to

background risk of equation (8)

ρ(X;Y ) = E[X] + λg
Cov(X,X + Y )
√

V ar(X + Y )
(38)

It was observed by Embrechts et al.(2002) that for elliptically distributed

risks, Markowitz-style portfolio optimisation with a positive homogenous

risk measure reduces to classic mean-variance optimisation. The corollaries

above go slightly further for the specific case of distortion risk measures,

as they show that the risk measure itself reduces to a ‘standard deviation

principle’ (e.g. Goovaerts et al., 1984) and the marginal capital allocation

to a simple covariance based one.

4.3 Properties of ρ(X;Y ) for elliptical distributions

The aggregation properties of portfolio-relative distortion risk measures were

discussed in Section 3.3 in a rather heuristic manner. If however risks fol-

low elliptical distributions, based on the results of the previous section, the

aggregation properties of the risk measure can be characterised in a more

precise way.

Proposition 2. Let (X,Y ) ∼ E2(µ,Σ, ψ). The quantity

1

a
ρ(aX;Y ), a 6= 0 (39)

is increasing in a.
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Proof. By Corollary 3, we have that

η(a) =
1

a
ρ(aX;Y ) = E[X] + λg

Cov(X, aX + Y )
√

V ar(aX + Y )
(40)

Denote by r(X,Y ) the correlation coefficient between X and Y . By differ-

entiating the above expression, it is shown that

η′(a) ≥ 0⇔ 1− r(X,Y )2 ≥ 0, (41)

which always holds true.

Recall that for positive homogenous risk measures the quantity 1
a
ρ(aX)

is constant. Thus, the above proposition reveals a form of super-linearity

for ρ(X;Y ) in that 1
a
ρ(aX;Y ) is actually increasing. This shows that in the

presence of background risk, aggregation of risk is penalised. In the next

result the sensitivity of ρ(X;Y ) to aggregation risk is further characterised,

by proving that it is super-additive for comonotonic risks. This means that

the aggregation of highly dependent risks is being discouraged.

Proposition 3. Let (X,Y, Z) ∼ E3(µ,Σ, ψ) such that X,Y are comono-

tonic. Then

ρ(X + Y ;Z) ≥ ρ(X;Z) + ρ(Y ;Z) (42)

Proof. Since (X,Y ) are comonotonic elliptical variables, they are perfectly

correlated. Therefore we can write Y = aX for a > 0 and X = bY for

b = 1/a > 0. It then is

ρ(X + Y ;Z)

= E
[

Xg′
(

F̄X+aX+Z(X + aX + Z)
)]

+ E
[

Y g′
(

F̄bY+X+Z(bY + Y + Z)
)]

= 1
1+aρ((1 + a)X;Z) + 1

1+bρ((1 + b)Y ;Z).

(43)

Because of Proposition 2 it is

1

1 + a
ρ((1+a)X;Z) ≥ ρ(X;Z) and

1

1 + b
ρ((1+b)Y ;Z) ≥ ρ(Y ;Z), (44)

which yields the required result.

21



The following corollary, characterising the sensitivity of the risk measure

ρ(X;Y ) to increases in the direction of its argument X, is an immediate

consequence of Proposition 3.

Corollary 4. Let (X,Y ) ∼ E2(µ,Σ, ψ) and δ > 0. Then

ρ((1 + δ)X;Y ) ≥ ρ(X;Y ) + ρ(δX;Y ) (45)

The sensitivity of ρ(X;Y ) to the variability of X is identified by the next

result.

Proposition 4. Let (X,Y ) ∼ E2(µ,Σ, ψ), such that V ar(X) = σ2
X , V ar(Y ) =

σ2
Y and Cov(X,Y ) = σXσY r. Then ρ(X;Y ) is increasing in σX , if Cov(X,Y ) ≥
−V ar(X).

Proof. It is

∂
∂σX

ρ(X;Y ) = ∂
∂σX

{

E[X] + λg
Cov(X,X+Y )√
V ar(X+Y )

}

= λg
∂

∂σX

{

√

V ar(X)Cov

(

X√
V ar(X)

, X+Y√
V ar(X+Y )

)}

= λgCov

(

X√
V ar(X)

, X+Y√
V ar(X+Y )

)

+

λg
√

V ar(X) ∂
∂σX

Cov

(

X√
V ar(X)

, X+Y√
V ar(X+Y )

)

(46)

It is thus clear that

Cov

(

X
√

V ar(X)
,

X + Y
√

V ar(X + Y )

)

⇔ Cov(X,Y ) ≥ −V ar(X) ≥ 0 (47)

and
∂

∂σX
Cov

(

X
√

V ar(X)
,

X + Y
√

V ar(X + Y )

)

≥ 0 (48)

are sufficient conditions for ρ(X;Y ) to be increasing in σX . Direct calcula-

tion of the derivative in (48) shows that it is always greater than zero.

Thus, the risk measure ρ(X;Y ) is increasing in the variance of X, if

Cov(X,Y ) ≥ −V ar(X) ⇐⇒ Cov(X,X+Y ) ≥ 0. It is intuitively appealing
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that an increase in variability should yield an increase in risk. The condition

shows that this property is only guaranteed to hold when the portfolio X is

positively correlated to the aggregate X + Y . The reason that the property

may not hold for some negative values of the correlation between X and Y is

that, under such a scenario, X operates as a hedge for Y and its variability

might be useful for compensating for that of Y .

It is shown in Landsman and Tsanakas (2006) that for elliptical distribu-

tions an ordering of the diagonal elements of Σ (i.e. variances if they exist)

implies stop-loss ordering of the corresponding random variables. This has

the consequence:

Corollary 5. Let (X,Y ) ∼ E2(µ,Σ, ψ), such that Cov(X,Y ) ≥ −V ar(X).

Then ρ(X;Y ) preserves stop-loss order.

Dhaene and Goovaerts (1996) showed that portfolios of random vari-

ables that are highly dependent in the sense of the concordance order, yield

higher stop-loss premia. As in an elliptical environment concordance order

is equivalent to just ordering the correlation coefficients (e.g. Das Gupta et

al. (1972), Abdous et al (2005), Landsman and Tsanakas (2006)), it follows

that a high correlation between elliptical instruments results in a higher risk

for the portfolio. The way this extends in the presence of background risk

is reflected in the following result. The conditions again ensure that there

are no high negative correlations which introduce hedging effects.

Proposition 5. Let (X,Y, Z) ∼ E3(µ,Σ, ψ) and r be the correlation coef-

ficient of (X,Y ). Then ρ(X + Y ;Z) is increasing in r, if Cov(X,Y +Z) ≥
−V ar(Y + Z) and Cov(Y,X + Z) ≥ −V ar(X + Z).

Proof. It is:

∂

∂r
ρ(X + Y ;Z) = λg

∂

∂r

Cov(X + Y,X + Y + Z)
√

V ar(X + Y + Z)
(49)
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Sufficient conditions for the above expression to be positive are

∂
∂r
Cov

(

X, X+Y+Z√
V ar(X+Y+Z)

)

≥ 0 and

∂
∂r
Cov

(

Y, X+Y+Z√
V ar(X+Y+Z)

)

≥ 0
(50)

Direct differentiation shows that these conditions are equivalent to

Cov(X,Y +Z) ≥ −V ar(Y +Z) and Cov(Y,X +Z) ≥ −V ar(X +Z) (51)

5 Conclusion

A distortion-type risk measure was introduced that addresses two distinct

but related issues:

• The effect of background risk on the measurement of the risk of indi-

vidual positions.

• The dynamics of capital allocation, when re-balancing of the aggregate

portfolio is considered.

It was shown that this new risk measure is more sensitive to the scale and

aggregation of losses than the usual (coherent) distortion risk measures. This

sensitivity was characterised in detail for the case of elliptical distributions.

Penalising large losses and the aggregation of highly dependent posi-

tions within a portfolio corresponds to practical concerns. For example, in

an illiquid environment, such as an insurance market, a risk taker will be

sensitive to aggregation by generally requiring a higher price ‘at the margin’

for a type risk that he is already heavily exposed to. Moreover, it is often

observed that heterogeneity in the scale of risks within a portfolio reduces

diversification benefits, with larger risks producing what one could call an

‘elephant in the boat effect’.
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Future work could include studying the effect of background risk on non-

coherent risk measures, as well as a re-examination of asset allocation and

pricing in the presence of background risk.
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