

City, University of London Institutional Repository

Citation: Mohanty, V., Moliya, D., Hota, C. and Rajarajan, M. (2010). Secure Anonymous
Routing for MANETs Using Distributed Dynamic Random Path Selection. Intelligence and
Security Informatics, 6122, pp. 65-72. doi: 10.1007/978-3-642-13601-6_8

This is the unspecified version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: http://openaccess.city.ac.uk/628/

Link to published version: http://dx.doi.org/10.1007/978-3-642-13601-6_8

Copyright and reuse: City Research Online aims to make research
outputs of City, University of London available to a wider audience.
Copyright and Moral Rights remain with the author(s) and/or copyright
holders. URLs from City Research Online may be freely distributed and
linked to.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Secure Anonymous Routing for MANETs Using

Distributed Dynamic Random Path Selection

Vakul Mohanty1, Dhaval Moliya1, Chittaranjan Hota1 and Muttukrishnan Rajarajan2

1 Computer Sc. & Info Systems Group, Birla Institute of Technology and

Science,PilaniHyderabad Campus, Hyderabad, Andhra Pradesh, INDIA
2School of Engineering & Mathematical Sciences, City University, LONDON

{vakul.mohanty, moliyadhaval}@gmail.com, hota@bits-hyderabad.ac.in, r.muttukrishnan@city.ac.uk

Abstract. Most of the MANET security research has so far focused on

providing routing security and confidentiality to the data packets, but less has

been done to ensure privacy and anonymity of the communicating entities. In

this paper, we propose a routing protocol which ensures anonymity, privacy of
the user. This is achieved by randomly selecting next hop at each intermediate.
This protocol also provides data security using public key ciphers. The protocol

is simulated using in-house simulator written in C with OpenSSL crypto APIs.
The robustness of our protocol is evaluated against known security attacks.

Keywords: Anonymity, routing, ad hoc networks, mobile, public key

1 Introduction

Mobile Ad Hoc Networks (MANETs) are autonomous collection of mobile nodes

without any fixed infrastructure that communicate over relatively bandwidth

constrained wireless links, establishing dynamic communication. The nodes in a

MANET may change its’ position, adjust transmission and reception parameters

causing links to be broken and re-established. A malicious node or an attacker can

easily eavesdrop into the wireless channels and infer communication. A malicious

node may even drop packets it had otherwise agreed to forward earlier. It may even

go the extent of creating denial of service, exploited by injecting large number of

unwanted packets into the network. So far, researchers in MANETs have generally

studied the routing problem in a non-adversarial network setting, assuming a trusted

environment; relatively little research has been done in a more realistic setting in

which an adversary may attempt to disrupt the communication.

In this paper we present an anonymous routing protocol for a MANET. The

protocol seeks to achieve anonymity with the minimal use of encryption and nullify

the requirement of padding of data packet to prevent traffic analysis. In the protocol

the next hop is dynamically selected by the router. This makes traffic analysis for a

malicious router difficult as the traffic flow is erratic and confuses the adversary.
The rest of this paper is organized as follows: we present related work in Section 2;

in Section 3, we present system model of our approach; and using this model, in

Section 4, we present our Anonymous routing algorithm; in Section 5 & 6, we present

the simulation results and analysis of our protocol respectively; finally, in Section 7,

we summarize our work and point out several future research directions.

2. Related Work

Due to the nature of wireless environment and unavailability of fixed

infrastructure, achieving security in MANET routing is a complex task. Onion routing
[1,6] uses multiple layers of encryptions wrapped around the message. Each router in

the path of the onion receives a message, performs a set of cryptographic operations

on the message and then forwards it. Each router uncovers a layer of encryption using

its private key, this allows it to access routing instructions for the next router. This

process continues until the message reaches the last router. Papadimitriou and Haas

[2] proposed a secure routing protocol for MANETs using a security association

between source and destination to validate the integrity of a discovered route. Sanzgiri

et al. [3] have proposed cryptographic ways to secure routing in MANETs wherein

every intermediate node verifies the integrity of the message and then forwards it to

the next node. Certificates are used by source and destination nodes to get the public

key of each other. ASR [4] uses anonymous virtual circuit in routing and data

forwarding where each node does not know its immediate upstream nodes and

immediate downstream nodes. Using a special anonymous signaling procedure, the

node only knows the physical presence of neighboring ad hoc nodes. The session key

of the route between every pair of the intermediate nodes is determined when a node

forwards reply packet to its upstream nodes. Although the above mentioned

anonymous routing techniques can provide a certain level of anonymity, an external

adversary can still monitor the transmitted packets to identify the communication

peers [5].

3. System Model

We explain here the notations, assumptions and the system model. An example of our

approach is shown in fig. 1.As depicted in fig. 1, every node in the network maintains

ART and ARC. Destination maintains PIT and IRT as well. Source node starts with

the route discovery message (routeRequest) by flooding it to all neighbors.Request, id

is embedded in it.

 Notations used:

S :Sender R : Receiver

M :Message D : Data

X :Intermediate node E : Encrypt function

ccCount :Criss-cross count ccTimer: Criss-cross timer
PUN :Public key of N PRR : Private Key of N

D :Decrypt function ccTable : Criss cross Timer Table

ART :Anonymous Routing Table

IRT :Intermediate Routing Table<pathID, path_of_message>

PIT :Path Info Table <pathID, nodeID, nextHop>

� :Set inclusion, modeled as appending at the end of set (array)

ARC :Anonymous Routing Cache <reqID, ccCount>

exists(x,z) :returns true if table z has record mapped to x, otherwise false.

getCnt(x) : returns ccCount value from the record <x, ccCount> of ARC, if no such record

found then return false.
setCnt(x, y) : sets ccCount value from the record <x, ccCount> of ARC to y.

expired(x) :returns true if timer mapped to x is expired else false.

Fig.1. An Example of Secure Anonymous Routing Protocol.

Data portion D of the message contains pathID, Source(S), Destination (D) and

Nonces which is encrypted using the public key of destination (PUD). Message also

contains I, set of all nodes traversed by routeRequest message to reach destination,

and PUD.Every entry in I is encrypted using PUD.

ccCnt indicates the number of more routeRequest messages with same request id

that can be flooded by the same node. Initially assigned value to ccCnt is a parameter
set by network administrator, subject to tuning. Upon receiving routeRequest message

with given reqID first time, node makes an entry in ARC(as shown in fig 1, at node

3), inserting reqID and ccCnt. For subsequent receipts of routeRequest message with

same reqID, node checks whether value of ccCnt is zero or not. If zero then ccCnt

limit is reached and packet is discarded there itself. If not zero then ccCnt is

decremented by 1 and message is forwarded to neighbors by appending its

id(encrypted with PUD) in I field of the message.

Upon receiving the route request message, destination node takes action as

explained in previous paragraph with following additional steps: it sets ccTimer for

given reqID. ccTimer also acts as a threshold like ccCnt, but it is used to filter optimal

paths. It is also subject to tuning by network administrator. Destination decrypts D

and I part of message using its private key(PRD) to extract NONCES, pathID and all

en-route nodes which are entered into IRT (i.e. <P1, <0,1,4,6>> of IRT at node 6 in
fig. 1). There is one to one mapping between pathID and reqID. Whenever ccCnt

becomes zero or ccTimer expires for a given reqID, node creates PIT from IRT to be

used for updating routing tables of en-route nodes. As depicted in fig. 1, for IRT entry

<P1, < 0, 1, 4, 6>>, it updates PIT entries as <P1, 0, <1>>, <P1, 1, <4>>, <P1, 4,

<6>>, <P1, 6, <>>. For <P1, < 0, 3, 4, 6>>, it updates PIT as <P1, 0, <1, 3>>, <P1, 3,
<4>>, <P1, 4, <6>>, <P1, 6, <>>. This is used to construct routeReply messages,

composed of routing table updates of en-route nodes. Destination node encrypts these

PIT entries with the public keys of en-route nodes, in the sequence marked in the

routeRequest message and onion routing [1, 6] is used to forward these updates to en-

route nodes. NONCER, F(NONCES) are also added to message encrypted using public

key of Source.

Upon receiving the routeReply message, the intermediate node removes outermost

layer from the onion, does appropriate cryptographic operations on it, updates its

ART from the update received, and forwards the message to the next hop. Upon
receiving the routeReply message, the source node updates it’s ART as explained for

en-route nodes. It receives NONCER and F(NONCES), which are used for

authentication and preventing the replay attack. For regular data transfer, source uses

the pathID, and selects the next hop randomly from its ART. Every en-route node also

does the same for selection of the next hop.

Here we assume that any node leaving the network does not cause the partition in

the MANET. Every node(X) sends a beacon to its neighbor, and updates the status of

neighbors depending upon the reply. If any node NLdiscovers change in the topology

of network then it searches <pathID, Z> in ART such that NL Z. If such entry is

found then it sends the update message to all nodes in Z and removes NL from Z.

After removing the entry, if Z is empty then node floods the route invalidate message

with corresponding pathID. Upon receiving the update message, node updates its
ART. In case the node receiving the invalidate message is the one that started the

communication with the corresponding pathID, it re-initiates route discovery.

4. Proposed Algorithm

4.1 Path Discovery Phase

Source initiates with routeRequest message<reqID, E(PUR,D), I> ;D=, <pathID, sourceID,

destinationID, NONCES>, I={E(PUR, S)} by sending to all neighbors.

X (≠R), an intermediate node receives routeRequest<reqID, E(PUR,D), I>message:

if (exists(reqID, ARC) � getCnt(reqID) ≠ 0)then

setCnt(reqID, getCnt(reqID) - 1) /* decrement the ccCount */

I�I∪{ E(PUR, X)} /* Append ID to the message*/
forward <reqID, E(PUR, D), I> to neighbors except the one from it received.

elif(exists(reqID, ARC) � getCnt(reqID) = 0)then

Discard routeRequest message as ccCnt limit reached.
else

ARC �ARC� {<reqID, ccCntUL>} /* Make entry in ARC */

I�I∪{ E(PUR, X)} /* append ID in message */
forward<reqID, E(PUR, D), I> to neighbors.

endif

Send acknowledgement to the node (sourceID) from which message is received.

R receives routeRequest message MRQ<reqID, sourceID, destinationID, E(PUR, D), I>:

Decrypt each entry of I private key, store decrypted values in I.

if (exists(reqID, ARC) � expired(ccTimerreqID))then

 Discard routeRequest message. /* Timer Expired */

elif (exists(reqID, ARC) � ¬expired(ccTimerreqID) � getCnt(reqID) = 0))then

4.2 Construction of Routing Table entries for intermediate nodes

4.3 Updating ART of intermediate nodes

Discard routeRequest message. /* Criss-cross count limit reached */
elif (exists(reqID, ARC) � ¬expired(ccTimerreqID) � getCnt(reqID) ≠ 0))then

setCnt (reqID, getCnt(reqID) - 1)

pathID� D(PRR, E(PUR, D))

IRT �IRT∪ {<pathID, I ∪ {R} >}

else (¬exists(reqID, ARC), ARC) /* No entry found in ARC for reqID */

ccTable�ccTable∪ {<pathID, ccTimerMrq>} /* Set ccTimer*/

ARC �ARC∪ {<reqID, 5>}

pathID� D(PRR, E(PUR, D)

IRT �IRT∪ {<pathID, I ∪ {R} >}
endif

/*Process entries in IRT with reqID for with ccCnt is zero or ccTimer is expired*/

for each <reqID, I> in IRT do
for each xi in I;xi≠R,do

 if exists(<pathID, xi, Z>, PIT)then

Update Z�Z∪{ xi+1} in PIT
else

PIT �PIT∪ {<pathID,xi, { xi+1}> }

endif

end for

end for

Constructing and sending Reply Message:

for each <pathID, I>in IRT do

 I’= � /* initialize I’ as Null*/
for each xi in I, i=n…1 do /* Reverse the path for reply message */

 I’=I’ ∪ {xi}

endfor

temp=< NONCER , F(NONCES)>

for each xi in I’, xi≠R do

 Search <pathID, xi , Z> in PIT

if i=1 then /* for source node’s case */

 msg = msg + <S , E(PUxi, <<pathID, xi , Z>, temp>) >

else msg = msg + <xi-1 , E(PUxi, <pathID, xi , Z>) >

endif

end for
Send routeReply message MRP <R, xn-1, msg> to xn-1 /*<source, to, msg_data> */

end for

X receives the routeReply message MRP <Y, X, msg>:

/* extract the routing info sent by the destination and update ART */

<<pathID, X , Z >, nextHop, E(PUnextHop , msg) > = D(PRx, msg)

ART = ART ∪ {<pathID, Z>} /*Update routing table*/

if X=S then
 <pathID, NONCER , F(NONCES)> = D(PRS, msg)

 Send F(NONCER) to the destination.

else
forwardMRP <X, nextHop, msg>

endif

4.4 Data Communication Phase

Source-destination pair exchanges session key for regular data transfer. Source sends

message with pathID prepended to the message. Every intermediate node will choose

the next hop dynamically from its ART corresponding to the pathID in the message.

We have employed acknowledgement mechanism for detection of passive nodes.

5. Simulation Results

We have written our simulator using C in UNIX. All cryptographic operations are

performed using OpenSSL Crypto API. MANET is constructed using 50 nodes,

initially uniformly distributed. Source destination pairs are chosen randomly. Mobility

of nodes is random, with constant speed. Once node becomes immobile, it waits there

for fixed time. Maximum number of communicating pairs in MANET at a given time

is assumed to be 20, chosen randomly. We use cc_cnt, and cc_timer metrics as global
tunable parameters which are set by network administrator. As depicted from the

cc_cnt vs delay graph in fig. 2, by increasing the value of ccCnt, the number of paths

discovered is more. However few of these paths might be longer ones. So the delay

incurred on an average to reach the destination also increases.

Fig. 2. cc_timer vs Randomness_index Fig. 3. cc_cnt vs Delay

Fig. 4. Traffic Load vs Control Packets Fig. 5. Mobility vs Control Packets

Fig. 3 shows the cc_timer vs randomness_index, the average number of nodes in

each intermediate node’s ART, for a given pathID. The linear increase in this

randomness_index guarantees higher anonymity because of the fact that more number

of paths is now available to make traffic analysis increasingly difficult in the

MANET. Fig. 4 shows the mobility vs control packet and fig. 5 shows traffic load vs

control packets. Both the figures show that increase in mobility increases number of

the control packets. This is because of flooding many packets that include path

invalidation, path update and route rediscovery messages.

6. Simulation Analysis

6.1 Anonymity Analysis

Identity Privacy: In our protocol, the identities of source and destination are known

to only two communicating parties, as we are using them only in the route request

message and with encryption, thereby not revealing them to intermediate nodes.

Hence identity privacy is ensured.

Route Anonymity: In our protocol, no adversary can trace a flow of packet because

of random selection of next hop and thereby leading to dynamic path selection. Any

adversary on the route has no information about the path other than the next hop. As
we have employed fixed size padding, we can introduce several dummy packets and

reshuffling of actual packets in the buffer to eliminate the possibility of temporal

analysis as defined in [12]. Thus all the requirements of route anonymity are satisfied.

6.2 Possible attacks

Route Rediscovery Attack: One possible attack is that adversaries send fake route
update or route invalidate packets to fool the intermediate nodes or source to begin

route rediscovery process. In our protocol, only the nodes whose routing table has

entry for the node leaving the network, can send the route invalidate, route

rediscovery or route update messages whichever applicable as explained in the

algorithm. So our proposed protocol is less vulnerable to the route rediscovery attack.

Selfish Nodes or Byzantine nodes: Byzantine nodes can intercept packets, create
routing loops, selectively drop packets, or purposefully delay packets. Our protocol

uses the acknowledgement mechanism. If any node is dropping the packet then

acknowledgement will not be sent to sender. Even in presence of live communication

link, if node is dropping packets then it can be detected as selfish node. And as we are

choosing next hope dynamically at any intermediate node for routing, we can exclude

this selfish node from the ART.

6.3 Cryptographic Overhead

In our protocol, we use cryptosystem of the form onion only for path discovery.

For data communication, data is encrypted by source with the destinations’ public

key, i.e. end to end encryption; onion routing is not used here. So there is not much

cryptographic overhead involved for normal data communication phase that leads to

computational advantage.

7. Conclusions

This has paper has proposed a new routing protocol in mobile ad hoc networks

with anonymity and provable security. We have stressed upon the anonymity, which

is becoming one of the most important aspect in securing the next generation mobile
ad hoc networks. The developed protocol has been evaluated with respect to

anonymity and known security threats. Simulation results give the performance of our

protocol. Our future work will aim at overcoming Distributed Denial of Service

(DDoS) attack, and estimating the cryptographic computation overhead in this type of

environment. We will also focus on improving security by adopting strong peer to

peer authentication in the route discovery phase using extensive simulations.

References

1. Reed, M., Syverson, P., and Goldschlag, D. Anonymous connections and Onion Routing.

IEEE J. Selected Areas in Commun. 16, 4 (May 1998), 482-494.
2. Papadimitratos and Haas: Secure Routing for Mobile Ad hoc Networks. SCS

Communication Networks and Distributed Systems Modeling and Simulation Conference
(CNDS 2002), San Antonio, TX, January 27-31, 2002.

3. K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer: A Secure Routing
Protocol for Ad Hoc Networks, In Proceedings of 2002 IEEE International Conference on
Network Protocols (ICNP). November 2002.

4. B. Zhu, Z. Van et al. anonymious secure routing in mobile ad hoc networks in 29th IEEE
International conference on local computer networks LCN’04, 2004 pp 102-108.

5. D. Huang. Traffic analysis-based unlinkability measure for ieee 802.11b-based

communication systems. In Proceedings of ACM Workshop on Wireless Security (WiSe),
2006.

6. Jian Ren, Jie Wu. Survey On Anonymous Communications In Computer Networks. Comput.
Commun. (2010), Vol. 33, No. 4 pp. 420-431.

