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Abstract. We review recent progress in understanding similarity judg-
ments in cognition by means of quantum probability theory (QP) mod-
els. We begin by outlining some features of similarity judgments that
have proven difficult to model by traditional approaches. We then briefly
present a model of similarity judgments based on QP, and show how it
can solve many of the problems faced by traditional approaches. Finally
we look at some areas where the quantum model is currently less satis-
factory, and discuss some open questions and areas for further work.

1 Introduction

1.1 Background

The study of similarity judgments is central to many branches of psychology (e.g.
Goldstone 1994; Pothos 2005), and this is one reason why the various attempts
to formalize similarity judgments have received much attention and debate (see
e.g. Goodman 1972). Another reason is that similarity is often assumed to cor-
respond to some kind of measure of the ‘distance’ between concepts in psycho-
logical space. Any proposed similarity measure based on this concept must obey
various restrictions arising from the fact that (dis-)similarity functions as a met-
ric on psychological space. For this reason models of similarity lend themselves
particularly well to empirical refutation, and this feature alone may explain some
of the popularity of this subject.

The classic demonstration of the failure of similarity judgments to respect the
restrictions one would expect of a metric is due to Tversky (1977). Two of the
empirical features of similarity judgments that Tversky reported are particularly
striking: The first is a lack of symmetry in certain similarity judgments, whilst
the second, dubbed the diagnosticity effect, is a particular type of contextuality.
We outline both effects below.

1.2 Asymmetry

A similarity judgment is often a directional comparison of one stimulus with
another; for example, how similar is A to B? Directionality can arise from the
c© Springer International Publishing Switzerland 2015
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2 J.M. Yearsley et al.

syntax of the similarity comparison, when it is linguistically framed, but it is
often a simple consequence of the fact that the relevant stimuli cannot be simul-
taneously presented. In the latter case, the temporal ordering of the stimuli
imposes directionality structure in the similarity comparison. Whenever there is
directionality in a similarity comparison, there is a potential for asymmetry.

Tversky (1977) asked participants to indicate their preference for one of two
statements, e.g., ‘(North) Korea is similar to (Red) China’ vs. ‘China is similar
to Korea’. Most participants preferred the former to the latter statement (this
demonstration involved several other pairs of counties and was generalized to
other kinds of stimuli). An important insight into why such asymmetries arise
relates to an understanding of the similarity process as an interpretative one.
Tversky’s (1977) participants would know far less about Korea than China.
Therefore, asserting that Korea is similar to China is like a process of attempting
to understand the more limited representation of Korea in terms of the more
extensive representation for China. China is like a cognitive reference point (cf.
Rosch 1975) and the statement ‘Korea is similar to China’ can be considered
as more informative or providing more potential for new inferences regarding
Korea, on the basis of the more extensive knowledge about China (cf. Bowdle and
Medin 2001). An important objective in providing a formal model of similarity
asymmetries is exactly to understand how ideas like cognitive reference points
or information flow may be modelled.

Most researchers accept Tversky’s (1977) claim that the asymmetry in sim-
ilarity judgments in the Korea, China example arises because of differences in
the extent of knowledge between the two stimuli. But, asymmetries in similarity
judgments can also arise in other ways. For example, Polk et al. (2002) identi-
fied asymmetries based on just differences in the frequency of occurrence of one
of the compared stimuli (the highest similarity was observed when comparing
the low frequency stimulus with the higher frequency one). Also, Rosch (1975)
discussed asymmetries arising when comparing a less prototypical stimulus with
a more prototypical one (similarity in this direction higher, than in the reverse
direction). It is possible that some such asymmetries can be explained in the
same way as asymmetries arising from differences in the amount of knowledge,
since we may have more knowledge (in the form of a greater number of associa-
tions) for more prototypical stimuli. However, there may be other asymmetries
which arise from purely perceptual properties and, in such cases, an approach
based on extent of knowledge is inadequate.

It should hardly need mentioned that asymmetries are extremely difficult
to reconcile with the idea of similarity-as-distance. Indeed symmetry is one of
the basic assumptions of any metric function. It is however possible to modify
the similarity measure to explicitly include terms that break the symmetry of
similarity judgments, but these modifications have to be included by hand and
are thus rather unsatisfactory. What would be preferable is some mechanism
that can produce asymmetries in some circumstances in in a more natural way.
We will see below that the QP approach provides such a mechanism.
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Towards a QP Theory of Similarity 3

1.3 Diagnosticity

Another of Tversky’s (1977) seminal proposals is that of the diagnosticity effect.
In a typical trial, participants were asked to identify the country most similar to
Austria, from a set of alternatives including Hungary, Poland, and Sweden. Par-
ticipants typically selected Sweden. However, when the alternatives were Hun-
gary, Sweden, Norway, participants typically selected Hungary. Thus, the same
similarity relation (e.g., the similarity between Sweden and Austria vs. Hungary
and Austria) appears to depend on which other stimuli are immediately relevant,
showing that the process of establishing a similarity judgment may depend on
the presence of other stimuli, not directly involved in the judgment.

Analogous context effects also appear in decision making. Consider a choice
between two options. According to the so-called similarity effect, introducing an
option which is equally attractive to one of the existing ones leads to an increase
in the probability of the dissimilar option (e.g., Trueblood et al., in press). The
diagnosticity effect has been harder to replicate, even though Tversky (1977)
did report alternative demonstrations, based on variations of the stimuli. His
explanation was that the diagnosticity effect arises from the grouping of some
of the options. For example, when Hungary and Poland are both included, their
high similarity makes participants spontaneously code them with their obvious
common feature (Eastern Europe), which, in turn, increases the similarity of
the other two options, through the absence of this common feature (Austria
and Sweden would become similar because they are neither in Eastern Europe,
rather they are in Western Europe).

As with the case of asymmetries, the diagnosticity effect is difficult to square
with the notion of similarity as a distance measure on psychological space. Note
however that unlike asymmetries, the diagnosticity effect has proven hard to
replicate. This may indicate either that the effect is fragile, or perhaps even that
it is not a genuine effect but rather an artefact of the particular set up used by
Tversky. We will return to this issue below.

1.4 Discussion

We have discussed two specific empirical challenges to the idea the similarity
judgments can be thought of as measuring distance in some psychological space.
Of course, there is nothing particularly surprising about this. It is highly improb-
able that information about concepts is stored and processed in the brain in a
way that can be faithfully mapped onto a Euclidean ‘concept space.’ Thus by the
same token it should hardly be surprising if similarity judgments between some
concepts resist embedding in such a concept space. Nevertheless such models
have proven surprisingly popular, perhaps in part because they provide a lucid
account of the cognitive process that leads to a particular similarity judgment.
That is, although the work of Tversky (1977) casts doubt on the adequacy of the
concept of similarity-as-distance to provide an empirical description of similarity
judgments, at least some of the reason for the popularity of the idea is due to the
fact it provides a very compelling description of the process of these judgments.
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4 J.M. Yearsley et al.

One of the challenges for any alternative theory of similarity judgments is
to provide a similarly compelling account of how these judgments arise from
simple computations in some appropriate psychological space. We will see that
the QP approach, although possessing some attractive features, still has room
for improvement.

2 The Quantum Model of Similarity Judgments

In this section we will present an alternative model for similarity judgments based
on Quantum Probability theory (QP). The use of QP for modelling these types
of judgments follows on from a number of recent attempts to describe various
phenomena in psychology, and the social sciences more generally, using non-
classical models of probability. In brief, there is some consensus that certain types
of probabilistic reasoning, in situations where there is not just uncertainty but
also a form of incompatibility between the available options (see e.g. Busemeyer
et al. 2011), may be better modelled using QP than by classical probabilities
theories such as Bayseian models. For examples and a more detailed justification
of the use of QP in this context see e.g. Aerts and Gabora (2005), Atmanspacher
et al. (2006), Busemeyer and Bruza (2011), Khrennikov (2010).

Our discussion of the QP model follows closely the account given in Pothos
et al. (2013). We will begin with a concise account of the main features of the
quantum similarity model. We will then consider some of the details of the model
in more depth.

2.1 Outline of the Model

The basic ingredient in our quantum model is a complex vector space H (strictly
a Hilbert space), representing the space of possible thoughts, which may be parti-
tioned into (vector) subspaces, Hi, each of which represents a particular concept.
The subspace corresponding to concept A may be associated with a projection
operator PA. The set of subspaces relevant to a particular set of similarity judg-
ments need not be disjoint or complete, so that a particular thought may be
associated with more than one concept. Although a realistic psychological space
may have very high dimensionality, the important features can often be captured
by a model with a much smaller effective concept space.

The knowledge state is given by a density operator, ρ on H. It corresponds,
broadly speaking, to whatever a person is thinking at a particular time. For
example, the knowledge state could be determined by the experimental instruc-
tions, or alternatively it could represent the expected degree of knowledge of
näıve participants. Note that in in some cases it may be more appropriate to
model the knowledge state as a pure state |ψ〉, but this is not the most general
possibility and is unlikely to be appropriate for describing an inhomogeneous
group of participants.

Finally the similarity between two concepts A and B is computed as

Sim(A,B) = Tr(PBPAρPA), (1)
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Towards a QP Theory of Similarity 5

which, if the knowledge state is pure, reduces to

Sim(A,B) = |PBPA|ψ〉|2. (2)

2.2 Comments

Initial State. We will discuss how this model can reproduce asymmetries in
similarity judgments below, but for now note that this effect does not follow by
itself from the non-commutation of the operators PA, PB etc. Suppose we were
to choose as an initial knowledge state the maximally mixed state corresponding
to an equal prior probability for any thought, ρ ∼ 1H . Whether this a reasonable
choice depends of course on the model, but it is easily seen that such a state leads
to symmetric judgments of similarity whatever PA and PB . We see therefore that
the specification of the initial knowledge state is an important part of this model
and must be done in a reasonably principled way.

Subspaces. Subspaces of the knowledge space represent different concepts, like
China. A subspace could be a ray spanned by a single vector, or a plane spanned
by a pair of vectors, or a three dimensional space spanned by three vectors,
etc. Suppose that the China subspace is spanned by two orthonormal vectors,
|v1〉 and |v2〉 (that is, the China subspace is two-dimensional; we will shortly
consider how meaning may be ascribed to |v1〉, |v2〉). That is, |v1〉 and |v2〉 are
basis vectors for the China subspace. Then, the concept of China is basically all
the vectors of the form a|v1〉+b|v2〉, where |a|2+|b|2 = 1 (as is required for a state
vector in quantum theory). Note that this statement is different from, though
obviously related to, the statement that a category corresponds to a region of
psychological space (Ashby and Perrin 1998; Nosofsky 1984). So, to represent
China with a subspace is to assume that the concept China is the collection of
all thoughts, a|v1〉 + b|v2〉, which are consistent with this concept. For example,
our knowledge of China would include information about culture, food, language
etc. The representation of China as a subspace implies that all these properties
have to be contained in the China subspace. Therefore, the greater the range of
thoughts we can have about a concept (e.g., properties or statements), the greater
the dimensionality of the subspace. If we represent China as a two dimensional
subspace and Korea as a one dimensional subspace, this means that we can have
a greater range of thoughts for China, than for Korea, which is equivalent to
assuming that we have greater knowledge for China than for Korea.

Note that a thought of the form |ψ〉 = a|v1〉 + b|v2〉 is neither about |v1〉 nor
|v2〉, but rather reflects the potentiality that the person will end up definitely
thinking about |v1〉 or |v2〉1. For example, if |a| > |b|, then this means that the
person has a greater potential to think of |v1〉 than |v2〉. In QP theory, states
like a|v1〉 + b|v2〉 are called superposition states and the fact that we cannot

1 It is often asserted that a superposition state such as |ψ〉 represents thinking about
|v1〉 and |v2〉 at the same time. This is incorrect. The correct interpretation of such
a state is that it represents thinking about neither |v1〉 nor |v2〉 (Griffiths 2002).
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6 J.M. Yearsley et al.

ascribe definite meaning to such states is the result of a famous theorem (the
Kochen-Specker theorem).

Since the China concept is represented by a subspace spanned by vectors
|v1〉 and |v2〉, the mathematical expression for China is a projector denoted as
PChina = |v1〉〈v1 | + |v2〉〈v2 | (although this decomposition is not unique.) Thus,
following from the example above, if we think about the Chinese language, then
|ψ〉 = |Chinese〉, and PChina|Chinese〉 = |Chinese〉, showing that this is a thought
included in the China concept (but, the China concept would include many other
thoughts). More generally the range of thoughts |ψ〉 such that PChina|ψ〉 = |ψ〉
is the range of thoughts consistent with the concept of China or, equivalently,
the thoughts which are part of the concept of China.

Finally we consider the meaning of vectors |v1〉 and |v2〉, in the claim that
they span the China subspace. We could consider each such vector as a separate,
distinct property of China. However, in general, different subsets of properties
of a particular concept are likely to correlate with each other. For example, the
properties relating to Chinese food are likely to correlate with properties relating
to the general health of the average Chinese person. We so interpret |v1〉 and
|v2〉 linearly independent combinations of all the thoughts that make up the
concept of China. How to determine the set of appropriate vectors, properties,
or dimensions is an issue common to all geometric approaches to similarity.
Recent work, especially by Storms and collaborators (e.g., De Deyne et al. 2008),
shows that this challenge can be overcome, for example, through the collection
of similarity information across several concepts or feature elicitation. Then, the
relatedness of the properties will determine the overall dimensionality of the
concept.

Similarity. Given a particular subspace and an appropriate knowledge state
vector, we can examine the degree to which the state vector is consistent with
the subspace. In quantum theory, this operation is achieved by a projector.
A projector can be represented by a matrix, which takes a vector and projects it
(lays it down) onto a particular subspace. For example, if PChina is the projector
onto the China subspace, then the projection PChina|ψ〉 represents the match
between the current knowledge state and China, in other words, it computes the
part of the vector |ψ〉 which is restricted or contained in the China subspace.

It is now easy to measure the consistency between a subspace and a state
vector, from the projected vector. The length of the projection squared can be
shown to be the probability that the state vector is consistent with the corre-
sponding subspace. For example, the probability that a thought |ψ〉 is consistent
with the China concept equals |PChina|ψ〉|2 = 〈ψ |PChina|ψ〉. If the state vector is
orthogonal to a subspace, then the probability is 0. In the more general language
of density matricies this can be written as,

p(China) = 〈PChina〉ρ = Tr(PChinaρ) (3)

Thus the probability that the initial knowledge state is consistent with the
concept China is given by the expectation value of PChina, computed in the
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Towards a QP Theory of Similarity 7

initial knowledge state. We propose that the similarity between two concepts
is determined by the sequential projection from the subspace corresponding to
the first concept to the one for the second concept. Roughly, this corresponds to
the idea that the similarity comparison is a process of thinking about the first
of the compared concepts, followed by the second. Similarity in the quantum
model is about how easy it is to think about one concept, from the perspective
of another. The similarity between, e.g., Korea and China may therefore be
written as,

Sim(Korea,China) = Tr(PChinaPKoreaρPKorea), (4)

or
Sim(Korea,China) = |PChinaPKorea|ψ〉|2, (5)

in the special case that the initial knowledge state is pure.

2.3 Asymmetry

Suppose we are interested in how similar Korea is to China. When there is
no particular directionality implied in the judgment we can either average the
result from both directionalities or determine the directionality in another way
(Busemeyer et al. 2011). However, similarity judgments are often formulated in a
directional way (Tversky 1977). When this is the case, we suggest that the direc-
tionality of the similarity judgment determines the directionality of the sequen-
tial projection, i.e., the syntax of the similarity judgment matches the syntax of
the quantum computation. For example, the similarity of Korea to China would
involve a process of thinking about Korea (subject, mentioned first) and then
China (object, mentioned second), which corresponds to

Sim(Korea,China) = |PChinaPKorea|ψ〉|2 (6)

Let us consider the justification for this formula in more detail. Suppose
the initial state is |ψ〉. From this initial state, the probability to think about
Korea is |PKorea|ψ〉|2. If the person thinks that the current state matches the
Korea subspace, then the new state is revised to become the normalized pro-
jection of the previous state onto the Korean subspace, so that |ψKorea〉 =
PKorea|ψ〉/|PKorea|ψ〉|. Finally, the probability that this conditional state is con-
sistent with China equals |PChina|ψKorea〉|2. Thus, |PChina|ψKorea〉|2|PKorea|ψ〉|2
exactly computes the sequence of probabilities for whether |ψ〉 is consistent with
the Korea subspace and whether the (normalized) projection of |ψ〉 onto Korea
is consistent with the China subspace. The product rule then follows from,

|PChina|ψKorea〉|2|PKorea|ψ〉|2 = |PChina(PKorea|ψ〉)/(|PKorea|ψ〉|)|2|PKorea|ψ〉|2

= |PChinaPKorea|ψ〉|2 (7)

(Busemeyer et al. 2011).
As we noted above in order to generate asymmetries in similarity judgments

we need some principle for fixing the initial state. Usually we will (partly) fix
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8 J.M. Yearsley et al.

the initial knowledge state by demanding that it is unbiased, that is, that there
is equal prior probability that the initial state is consistent with either, say,
Korea or China. Such an assumption is analogous to that of a uniform prior in a
Bayesian model. Then, it is straightforward to show that Sim(Korea,China) ∼
|PChina|ψKorea〉|2, whereby the vector |ψKorea〉 is a normalized vector contained
in the Korea subspace. Therefore, the quantity |PChina|ψKorea〉|2 depends on only
two factors, the geometric relation between the China and the Korea subspaces
and the relative dimensionality of the subspaces.

Although there is not space here for a full discussion, we note briefly that it
is possible to argue against Eq.(6) as a viable measure of the similarity between
A and B in the following way. Equation(6) is basically the joint probability to
think about A and then B. A more natural notion of the ‘distance’ between
A and B would rather be the conditional probability to think about B given we
are initially thinking about A. In this case it follows that we should divide Eq.(6)
by the probability of thinking about Korea, given the initial state. However
this gives a result that is symmetric with respect to A and B when these are
represented by rays.

The counterargument to this is that these similarities are not best thought of
as ‘objective’ distances (even in a psychological space), but rather as subjective
or perceived ones. This is already apparent in the fact that the representation of
the stimuli depends on the extent of knowledge of these stimuli (high vs low sub-
space dimensionality in the case of China-Korea), and it is reasonable that the
perceived similarity should also depend on the extent to which a subject may be
thinking about a stimuli prior to the comparison. That A is similar to B is much
less likely to occur to a subject not initially thinking about A. This line of argu-
ment is similar to that discussed in Aerts et al. (2011), where asymmetric judg-
ments arise from the existence of a ‘point of view’ vector. Unfortunately space
does not allow us to discuss the relationship between these approaches. Likewise,
the connections between the emergence of similarity in the QP model and other
models which directly include asymmetric similarity metrics (e.g. Jones et al.
(2011) and Michelbacher (2011)) must await discussion elsewhere. Both of these
issues will be taken up in Yearsley et al. (in preparation).

2.4 Diagnosticity

A modification of the basic similarity calculation to take into account context is
motivated by Tversky’s (1977) diagnosticity effect, one of the most compelling
demonstrations in the similarity literature. In his experiment, participants had to
identify the country most similar to a particular target, from a set of alternatives,
and the empirical results showed that pairwise comparisons were influenced by
the available alternatives. Such an influence can be accommodated within the
quantum similarity model.

Previously, we have assumed that the initial state is unbiased between the
stimuli, since we have no reason to assume participants are more likely to be
thinking about any particular stimulus. However sometimes what a person is
thinking just prior to a comparison cannot be assumed to be irrelevant to the
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Towards a QP Theory of Similarity 9

comparison. Suppose that the similarity of A and B is computed in a way that
has to take into account the influence of some contextual information, C, which
is represented by a particular subspace. This information C could correspond to
the alternatives in Tversky’s (1977) diagnosticity task. The similarity between
A and B should then be computed as,

Sim(A,B) = |PBPA|ψ′〉|2 = |PB |ψ′
A〉|2|PA|ψ′〉|2, (8)

where |ψ′〉 = |ψC〉 = PC |ψ〉/|PC |ψ〉| is no longer a state vector neutral between
A and B, but rather one which reflects the influence of information C. If we
minimally assume that the nature of this contextual influence is to think of C,
prior to comparing A and B, then

Sim(A,B) = |PBPA|ψ′〉|2 = |PBPA(PC |ψ〉)/(|PC |ψ〉|)|2
= |PBPAPC |ψ〉|2/|PC |ψ〉|2. (9)

In other words, if the similarity comparison between A and B involves first
thinking about A and then about B, then the same similarity comparison, in
the context of some other information, C should involve an additional first step
of first thinking about C. Additional contextual elements correspond to further
prior projections, though note that eventually this process must break down
(there must be a limit to how many proximal items can impact on a decision).

As before, the link with probability justifies the choice of |PBPAPC |ψ〉|2,
since

|PBPAPC |ψ〉|2 = |PBPA|ψC〉|2|PC |ψ〉|2 = |PB |ψAC〉|2|PA|ψC〉|2|PC |ψ〉|2, (10)

where |ψC〉 = (PC |ψ〉)/(|PC |ψ〉|) and |ψAC〉 = (PA|ψC〉)/(|PA|ψC〉|). Therefore,
the similarity comparison between A and B is now computed in relation to a
vector which is no longer neutral, but contained within the C subspace. Depend-
ing on the relation between subspace C and subspaces A and B, contextual
information can have a profound impact on a similarity judgment. Also, the
term |PC |ψ〉|2 affects the overall magnitude of the similarity comparison, but we
assume that a computation like |PBPAPC |ψ〉|2 can lead to a sense of similarity
in relation to other, matched computations. Such an assumption follows from
discussions on the flexibility of similarity response scales, e.g., depending on the
range of available stimuli (Parducci 1965).

Compared to the case of asymmetries, the account of the diagnosticity effect
in the QP model is more heuristic. One needs to accept a very particular model
of the influence of the context items on the similarity judgment, and it is hard
to see how this could be convincingly motivated (we take up this challenge
in Yearsley et al. (in preparation).). A more reasonable place to include such
effects would be in the choice of initial knowledge state. Nevertheless the main
empirical findings are reproduced well in this model, and the approach also
gives some qualitative predictions about when the effect is likely to be present or
absent, based on the geometric relationships between the stimuli in psychological
space. Any attempt to go beyond this model will therefore have to meet a stern
challenge of both matching or bettering the predictions of this model while also
being more convincingly motivated.
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10 J.M. Yearsley et al.

3 Open Questions and Areas for Further Work

Below we give a (incomplete) list of problems with the current quantum model
and open questions for further research. Some of these are issues which have
been raised already, but it is useful to collect them in one place.

3.1 How Do We Fix the Initial State?

One obvious problem with the quantum model as presented is that it relies on a
particular choice of initial state in order to reproduce the asymmetry/diagnosticity
effects, but it gives little by way of explanation for this choice. Even in set ups
where one can partially fix the initial state by demanding it be unbiased, as out-
lined above, this typically leaves many degrees of freedom unfixed. Furthermore
even this partial fixing is somewhat unsatisfactory since it has a very classical feel
to it, one is essentially fixing prior probabilities rather than prior amplitudes.

What is needed is firstly a reliable way to determine the knowledge state of a
group of participants, and secondly a reliable way to manipulate this knowledge
state, i.e. to be able to prime participants to have reasonably arbitrary knowledge
states. We noted above that a more convincing way to model the diagnosticity
effect would be by direct manipulation of the initial knowledge state to reflect
the set of available choices, and this will be one test of any theory that fixes the
initial state.

3.2 Can We Model Asymmetries Due to Frequency/Prototypicality?

An important gap in the current quantum model concerns how to deal with
asymmetries arising from differences in the frequency of presentation of stim-
uli, or from their differing prototypicality. This failure is particularly striking
when we note that there appears to be an obvious way to include such effects.
Presumably what distinguishes a prototypical stimulus from a non-prototypical
one, or a stimulus presented many times from one presented only infrequently
is the increased potentiality for a participant to think about this stimulus. In
other words, suppose |A〉 corresponds to a more prototypical/frequently pre-
sented stimulus and |B〉 to a less prototypical/frequently presented one. Then
one obvious way to encode this difference is to set the initial knowledge state
to be |ψ〉 = N(a|A〉 + b|B〉), with N some suitable normalization factor and
|a| > |b|. Unfortunately it is easy to show that whilst this approach does lead
to asymmetries in predicted similarity judgments, it predicts the opposite effect
from that empirically observed, i.e. this model predicts Sim(A,B) > Sim(B,A).

We would therefore like an account of how differences in frequency/
prototypicality can lead to asymmetries in the quantum model, or at the very
least a good explanation of why a simple manipulation of the initial state, as
suggested above, is not the right way to proceed.
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Towards a QP Theory of Similarity 11

3.3 Is There Genuine Contextuality in Similarity Judgments?

One of the reasons why the treatment of the diagnosticity effect is currently
unsatisfactory in this model is that quantum theory naturally includes a certain
amount of contextuality, but this is not what is responsible for diagnosticity in
the QP model. As it stands this represents a lost opportunity, since a context
effect in similarity judgments that followed from the contextuality of QP would
be a very powerful, admittedly a posteriori, prediction. It would be interesting to
see if a new explanation for the diagnosticity effect can be devised which makes
better use of the properties of QP, or alternatively if the genuine contextuality
of QP leads to additional predictions. Of course, it may also turn out that the
current approach to context in the diagnosticity model (with its sensitivity to
grouping) is the optimal way to proceed.

3.4 Are There Novel Quantum Predictions?

Following on from the previous point, it is important to understand whether
the QP model makes any novel predictions about similarity judgments in par-
ticular cases. These could either take the form of new qualitative effects, or of
quantitatively accurate predictions for similarity judgments between some simple
artificial stimuli.

3.5 Can the Quantum Similarity Model Be Extended?

As well as extracting new predictions from the current QP model, it is interesting
to ask whether the model may be extended in some way to cope with new types
of judgment. Many of the possible extensions are not tied particularly to sim-
ilarity judgments, but may be incorporated into QP models of many different
types of judgments. There is not space here to discuss all the possible extensions
of the QP model, but we will instead focus on a single possibility, the role of
memory effects in the QP model.

A model of memory could be included in the QP scheme in at least three
ways; firstly one might consider a process of forgetting whereby information
about the stimuli is gradually lost. This may have the effect of reducing the
effective dimension of the knowledge subspace spanned by each stimuli, and so
could potentially change the size or even direction of any asymmetry effects.
A second possibility is to include memory recall as a constructive process in
these models, so that comparing a present stimulus with a past one may depend
on whether one is asked to recall the presence or absence of certain features of
the stimuli. A final radical possibility is that holding a stimulus in ones short
term memory may allow thoughts about that stimulus to interact with other
thoughts and memories, potentially resolving ambiguities and collapsing any
superpositions of distinct possibilities. Thus it may be that quantum effects are
less likely to occur the longer participants have to process the stimuli.

These are just some of the many options for extensions to the QP model. We
believe these present exciting possibilities for future research directions.
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3.6 Can We Frame Quantum Similarity as a Process Theory?

Perhaps the most serious concern with the quantum model is that it is not
currently clear how to extract from the mathematics of the theory a picture of
what similarity judgments are really about. Partly this is an inherent difficulty
with quantum theory as a model for anything. Indeed, the history of attempts
to decipher what quantum theory as applied to physics is really about is long,
tortuous and largely unproductive. However there are some difficulties with this
model that go beyond the usual problems with the interpretation of QP.

At first glance it seems like an interpretation of similarity judgments in QP
in terms of the thought process involved should be obvious, indeed we explicitly
motivated the order of the projection operations above by regarding the simi-
larity judgment Sim(A,B) as a process of thinking about A followed by thinking
about B. However in actual fact things are slightly more complicated than this.
The first complication is that it is not the order of the projection operators that
is important so much as their positions relative to the knowledge state ρ. In
the above we jumped the gun somewhat by calling this the initial knowledge
state, but really its role is confined to ensuring judgments are not biased. There
is nothing in principle to stop us computing similarity by starting from a com-
pletely mixed state, thinking about A followed by B and then demanding that
our final knowledge state be unbiased in the sense above. This leads an identical
expression for Sim(A,B) but with the opposite ordering of the projection oper-
ators. One could also imagine demanding including both an initial and a final
knowledge state.

Another difficulty with interpreting the current model is the problem, already
mentioned, of establishing the correct initial states and subspaces for particular
similarity judgments. However it is possible to argue that this problem is no
more severe than that encountered by other approaches to representing stimuli
in psychological space.

A final difficulty with QP as a process theory of similarity judgments concerns
what happens when we make sequential judgments, of the kind involved in the
forced choice tasks of Tvesrky (1977). The difficulty here is that, according to
QP, after judging the similarity between A and B, our knowledge state is no
longer ρ, but rather

ρ′ = (PBPAρPAPB)/Tr(PBPAρPAPB) (11)

That is, performing the similarity judgment between A and B collapses the
initial state ρ into the new state ρ′. Such a collapse is not currently included in
the quantum model.

Thus we can see that although attractive in many ways, the ‘narrative’ given
by the QP theory relating to what happens during a similarity judgment is far
from complete. This presents us with a problem but also with an opportunity. It
is possible that by focusing on making the QP model a better description of the
process of making similarity judgments, we may simultaneously clear up some
of the technical problems, such as how to account for other types of asymmetry.
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4 Conclusions

So what are we to conclude about the current status of the QP approach to sim-
ilarity judgments? In this contribution we have been particularly harsh on the
approach, and we haven’t shirked from pointing out some of the flaws. However
it is worth remembering that this approach does deal very well with asymme-
tries due to differences in the level of knowledge, providing a good qualitative
account of the observed similarity judgments as well as the outline of an account
of the process by which these judgments are made. In the case of diagnosticity
although the details of the model are less well motivated it does provide a good
fit to the current data. It is also worth pointing out that the alternatives to the
QP model largely involve putting in asymmetry factors by hand. Still, the QP
model could not be said to be convincing in its current form. Technical problems
aside, the challenge is to convert some of the obvious parallels between simi-
larity judgments and QP (order effects, contextuality etc.), into both a broad
range of accurate empirical predictions/explanations and a convincing narra-
tive of the cognitive processes behind similarity judgments. However it would
be wrong to be overly pessimistic. The QP approach to similarity judgments
is more than just an alternative to a particular classical theory of similarity-
as-distance. Instead it is better seen as just one possible application of an entirely
new way of thinking about cognition that may also be applied to constructive
judgments, belief updating, moral dynamics and many other areas of research
in cognition. The QP approach to similarity may be still in its infancy, but one
should be prepared to accept such teething troubles when the reward is the
possibility of a revolution in our understanding of cognition.
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