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The renormalization group flow of an integrable two di-
mensional quantum field theory which contains unstable par-
ticles is investigated. The analysis is carried out for the Vira-
soro central charge and the conformal dimensions as a func-
tion of the renormalization group flow parameter. This allows
to identify the corresponding conformal field theories together
with their operator content when the unstable particles van-
ish from the particle spectrum. The specific model considered
is the SU(3)2-homogeneous Sine-Gordon model.

PACS numbers: 11.10Hi, 11.10Kk, 11.30Er, 05.70.Jk

The study of two-dimensional quantum field theories
(2D-QFT) has turned out to be a fruitful venture since
almost three decades. In particular when exploiting inte-
grability many non-perturbative methods have been de-
veloped over the years. Besides the challenge to under-
stand the underlying mathematical structures and the
intriguing physical applications in two dimensions itself,
e.g. to describe measurable quantities of carbon nan-
otubes [1], the ultimate goal is to extrapolate ones find-
ings to higher dimensions. In particular for the cele-
brated c-theorem of Zamolodchikov [2], which originally
describes the renormalization group trajectory of a func-
tion which at the renormalization group fixed point cor-
responds to the Virasoro central charge, various coun-
terparts have been developed in higher dimensions, e.g.
[3].

Fairly recently a class of massive integrable quan-
tum field theories, the homogeneous Sine-Gordon models
(HSG) [4], has been proposed introducing the feature of
possessing unstable particles inside its particle spectrum.
Despite the fact that theories containing resonances have
been treated before in the context of two-dimensional
massive quantum field theories, e.g. [5], the HSG-models
are somewhat special since they constitute the first ex-
amples of theories which admit a well-defined Lagrangian
description. In general the HSG models are associated to
integrable perturbations of G-parafermions of level k [6],
i.e. WZNW-coset theories of the form Gk/U(1)ℓ with ℓ
being the rank of a compact Lie group G. As free param-
eters the model contains ℓ different mass scales and ℓ− 1
different scales for the resonance parameter σ which en-
ter the Breit-Wigner formula [7]. In general an unstable
particle of type c̃ is described by complexifying the phys-
ical mass of a stable particle by adding a decay width Γc̃,
such that it corresponds to a pole in the S-matrix as a
function Mandelstam s at s = M2

R = (Mc̃ − iΓc̃/2)2 (for

a more detailed discussion see e.g. [8]). As mentioned in
[8] whenever Mc̃ ≫ Γc̃, the quantity Mc̃ admits a clear
cut interpretation as the physical mass. However, since
this assumption is only required for interpretational rea-
sons we will not rely on it. Transforming as usual in
this context from s to the rapidity plane and describ-
ing the scattering of two stable particles of type a and b
with masses ma and mb by an S-matrix Sab(θ) as func-
tion of the rapidity θ, the resonance pole is situated at
θR = σ − iσ̄. Identifying the real and imaginary parts of
the pole then yields

M2
c̃ − Γ2

c̃

4
= m2

a + m2
b + 2mamb coshσ cos σ̄ (1)

Mc̃Γc̃ = 2mamb sinh |σ| sin σ̄ . (2)

Eliminating the decay width from (1) and (2), we can ex-
press the mass of the unstable particles Mc̃ in the model
as a function of the masses of the stable particles ma, mb

and the resonance parameter σ. Assuming σ to be large
this gives

M2
c̃ ∼ 1

2
mamb(1 + cos σ̄) e|σ| . (3)

One recognizes the occurrence of the variable me|σ|/2,
which was introduced originally in [9] in order to describe
massless particles, i.e. one may perform safely the limit
m → 0, σ → ∞ and one might therefore be tempted to
describe flows related to (3) as massless flows. In [10]
the relative mass scales between the unstable and stable
particles and the stable particles themselves were investi-
gated by computing the finite size scaling function from
the thermodynamic Bethe ansatz (TBA). A consistent
physical picture was obtained for the overall identifica-
tion of the flow between different coset models. It re-
mained, however, an open question how to identify the
operator content. In general this question is left unan-
swered in the context of the TBA. For theories with cer-
tain properties, it is sometimes possible to determine at
least the dimension of the perturbing operators by in-
vestigating periodicities in the so-called Y-systems [11].
Resorting to a different method, namely by appealing to
sum rules which are expressible in terms of correlation
functions, the major part of the operator content was
successfully identified for some of the HSG models [12].
The purpose of this manuscript is on one hand to confirm
and refine the TBA results by the latter method, i.e. by
investigating the renormalization group flow described by
the Zamolodchikov c-function [2]. We will precisely study
the onset of the mass scale of the unstable particles and
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investigate how a particular coset flows to another one.
On the other hand, we study in addition the flow of the
operator content of one conformal field theory to another
one by exploiting the flow provided by the ∆-sum rule of
Delfino, Simonetti and Cardy [13].

Denoting by r the radial distance and by t = ln r2 the
renormalization group parameter, the functions c(t) and
∆(t) were defined in [2] and [13], respectively, obeying
the differential equations

dc(t)

dt
= −3

4
e2t 〈Θ(t)Θ(0)〉 (4)

d∆(t)

dt
=

1

〈O(0)〉e
t 〈Θ(t)O(0)〉 . (5)

The r.h.s. of these equations involve the two-point cor-
relation functions of the trace of the energy-momentum
tensor Θ and an operator O, which is a primary field
in the sense of [14]. In general these equations are in-
tegrated from t = −∞ to t = ∞ and one consequently
compares the difference between the ultraviolet and the
infrared fixed points. In order to exhibit the quantitative
onset of the mass scale of the unstable particles we inte-
grate these equations instead from some finite value t0 to
infinity. Restricting our attention to purely massive the-
ories we use the fact that for those theories the infrared
central charges are zero, such that

c(r0) =
3

2

∞
∫

r0

dr r3 〈Θ(r)Θ(0)〉 . (6)

Instead of the integral representation (6), the c-function
is equivalently expressible in terms of a sum of correla-
tors involving also other components of the energy mo-
mentum tensor [2]. In deriving (4) these terms have been
eliminate by means of the conservation law of the energy
momentum tensor. We find (6) most convenient. The
flow of c(r0) will surpass various steps: Starting with
r0 = 0 the theory will leave its ultraviolet fixed point and
at a certain definite value, say r0 = ru, the unstable par-
ticle will become massive such that c(r0 > ru) can be as-
sociated to a different conformal field theory. It appears
natural to identify the mass Mc̃ as the point at which
c(r0) is half the difference between the two coset values
of c. As a consequence of (3) we may relate the masses of
the unstable particles at different values of the resonance
parameter σ, σ′ and expect Mc̃(ru, σ) = Mc̃(r

′
u, σ′). We

will employ the latter equality evaluated in the form (3)
not only as a consistency requirement, but also as a con-
firmation of the fact that the renormalization group flow
is indeed achieved by m → r0 m. Increasing r0 further,
the energy scale of the stable particles will eventually be
reached at, say at r0 = ra, rb, . . . , rn. Depending on the
relative mass scales between the stable particles these
points may coincide. Finally the flow will reach its in-
frared fixed point c(r0 = rir) = 0.

Likewise we can integrate equation (5)

∆(r0) = − 1

2 〈O(0)〉

∞
∫

r0

dr r 〈Θ(r)O(0)〉 , (7)

which allows to keep track of the manner the opera-
tor contents of the various conformal field theories are
mapped into each other. We used that all conformal
dimensions vanish in the infrared limit. Fortunately, we
have 〈Θ(r)O(0)〉 ∼ 〈O(0)〉 in many applications such that
the vacuum expectation value 〈O(0)〉 cancels often. One
should note, however, that (7) is only applicable to those
operators for which its two-point correlator with the trace
of the energy momentum tensor is non-vanishing, such
that one may not be in the position to investigate the
flow of the entire operator content by means of (7).

In order to evaluate (6) and (7) we have to compute
the two-point correlation functions in some way. In 2D-
QFT this is probably most efficiently achieved, by ex-
panding them in terms of n-particle form factors, i.e. the
matrix elements of some local operator O(~x) located at
the origin between a multiparticle in-state and the vac-
uum denoted by 〈0|O(0)|Vµ1

(θ1)Vµ2
(θ2) . . . Vµn

(θn)〉in =:

F
O|µ1...µn
n (θ1, . . . , θn). Here the Vµ(θ) are some ver-

tex operators representing a particle of species µ. Ab-
breviating the sum of the on-shell energies as E =
∑n

i=1 mµi
cosh θi, one may write

〈O(r)O′(0)〉 =

∞
∑

n=1

∑

µ1...µn

∞
∫

−∞

dθ1 . . . dθn

n!(2π)n
e−r E (8)

× FO|µ1...µn

n (θ1, . . . , θn)
(

FO′|µ1...µn

n (θ1, . . . , θn)
)∗

.

Using this expansion we replace the correlation functions
in the expression of the c-function c(r0) and the scaled
conformal dimension ∆(r0) and perform the r integra-
tions thereafter. Thus we obtain

c(r0) = 3

∞
∑

n=1

∑

µ1...µn

∞
∫

−∞

dθ1 . . . dθn

n!(2π)n
e−r0 E (9)

×
∣

∣

∣
FΘ|µ1...µn

n (θ1, . . . , θn)
∣

∣

∣

2 (6 + 6r0E + 3r2
0E

2 + r3
0E

3)

2E4

and

∆(r0) = −
∞
∑

n=1

∑

µ1...µn

∞
∫

−∞

dθ1 . . . dθn

n!(2π)n

(1 + r0E)e−r0 E

2E2
(10)

×FΘ|µ1...µn

n (θ1, . . . , θn)
(

FO|µ1...µn

n (θ1, . . . , θn)
)∗

.

We will now analyze (9), (10) and (3) for the SU(3)2-
HSG model. This model contains only two self-conjugate
solitons which we denote by “+”, “−” and one unsta-
ble particle, which call ũ. The corresponding scatter-
ing matrix was found [16] to be S±± = −1, S±∓(θ) =
± tanh (θ ± σ − iπ/2) /2, which means the resonance
pole is situated at θR = ∓σ − iπ/2. Stable bound states
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may not be formed. Note that for the corresponding
value of σ̄ = π/2 and arbitrary σ the condition Mũ ≫ Γũ

is not fulfilled. However, as indicated above this condi-
tion only helps for a clearer identification of the mass
parameter. For the HSG-models this condition starts
to hold when the level is large, which indicates that in
these type of models this interpretation is in fact a semi-
classical one.

A huge class of form factors corresponding to vari-
ous operators related to this model were constructed in
[15,12]. Labelling an operator by four quantum numbers
µ, ν, τ, τ ′ the general n-particle solution reads

F
Oµ,ν

τ,τ′
|M+M−

2s+τ,2t+τ ′ (θ1, . . . , θn) = H
Oµ,ν

τ,τ′
|M+M−

2s+τ,2t+τ ′ detAµ,ν
2s+τ,2t+τ ′

(

σ+
2s+τ

)s−t+ τ−1−ν

2
(

σ−
2t+τ ′

)

1+τ−τ′
−µ

2
−t ∏

i<j

F̂µiµj (θij) . (11)

We used here a particular ordering by starting with 2s+τ
particles of the type µ = + followed by 2s+τ ′ particles of
the type µ = −, collected in the sets M± = {±, . . . ,±}.
Once these expressions are known, all other form factors
related to it by permutations of the particles may be con-
structed trivially by exploiting Watson’s equations [17],
see [15,12] for details concerning the HSG-models. The

functions F̂µiµj for all combinations of the µ’s are

F̂±±(θ) = −i/2 tanh
θ

2
exp(∓θ/2) (12)

F̂±∓(θ) = 2
1
4 e

iπ(1∓1)±θ
4 −

G
π −

∫

∞

0

dt
t

sin2((iπ−θ∓σ) t
2π )

sinh t cosh t/2 , (13)

with G = 0.91597 . . . being the Catalan constant. The
(t + s)×(t + s)-matrix

(

Aµ,ν
2s+τ,2t+τ ′

)

ij
=

{

σ+
2(j−i)+µ, 1 ≤ i ≤ t

σ̂−
2(j−i)+2t+ν , t < i ≤ s + t

(14)

has as its entries elementary symmetric polynomials (see
e.g. [18] for properties) depending on different sets of vari-
ables. We use the notation σ± when they depend on the
variable x = exp θ associated to the sets M± and σ̂ to
indicate that all variables are multiplied by a factor ie−σ.
The overall constant was computed to

H
Oµ,ν

τ,τ′
|M+M−

2s+τ,2t+τ ′ = is(2τ+τ ′+ν+2)2s(2s−2t−τ ′−1+2τ)

×esσ(2t+τ ′)/2H
Oµ,ν

τ,τ′

τ,2t+τ ′ , (15)

where the value of H
Oµ,ν

τ,τ′

τ,2t+τ ′ is fixed by the lowest non-
vanishing form factor. In particular we need

FΘ
2s,2t = σ1(x1, . . . , xn)σ1(x

−1
1 , . . . , x−1

n )F
O1,1

2,2

2s,2t . (16)

Having assembled all the ingredients we can evaluate the
expressions (9) and (10). We carry out the integrals by
means of a Monte Carlo computation. For c(r0) we take
contributions up to the 4-particle form factor into ac-
count and display our results in figure 1.

Figure 1: Renormalization group flow for the Virasoro central

charge c(r0) for various values of the resonance parameter σ.

Following the renormalization group flow from the ul-
traviolet to the infrared, figure 1 illustrates the flow from
the SU(3)2/U(1)2- to the SU(2)2/U(1) ⊗ SU(2)2/U(1)-
coset when the unstable particle becomes massive. This
confirms qualitatively the previous observation of the
TBA analysis [10]. Here we also want to compare the
value of the mass of the unstable particle at different
points of the resonance parameter σ and t0. Taking
now the mass scales of the stable particles to be the
same, i.e. m+ = m− = m, we compute the mass of
the unstable particle according to (3), i.e. Mũ(tu, σ) ∼
m/

√
2 exp((|σ| + tu)/2). This means for different values

of the resonance parameter we may still have the same
value for the mass of the unstable particle when changing
tu, indeed we find

Mũ(−30.8, 30) = Mũ(−20.8, 20) = Mũ(−10.8, 10). (17)

Since the flow between the two cosets is smooth and takes
place over some range of t0, we had to select one par-
ticular point tu. As already indicated in general, it is
convenient to identify Mũ as the point at which c(t0)
is half the difference between the two coset values of c.
It is clear from figure 1, that since the overall shape of
the curves between two values of c is identical for dif-
ferent values of σ, any other value in the interval would
lead to the same results in comparative considerations.
This also means that when evaluating (17) the resulting
value 0.47m, which apparently violates the energetically
necessary condition Mũ > ma + mb, should not be taken
too literally since the point tu is only chosen because it is
easy to fix. Equations (17) confirm our general assertions
outlined above.

For the evaluation of the scaled conformal dimension
(10) we proceed similarly. For the solutions correspond-

ing to the operators O0,0
0,0, O0,1

0,2 and O1,0
2,0, whose confor-

mal dimension in the ultraviolet limit was identified [12]
to be 1/10, we take up to the 6-particle form factors into
account. For the former two operators our results are
presented in figures 2 and 3.
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Figure 2: Renormalization group flow for the conformal di-

mension ∆(r0) of the operator O0,0
0,0 for various values of the

resonance parameter σ.

We observe that the conformal dimension of the op-
erator O0,0

0,0 flows to the value 1/8, which is twice the
conformal dimension of the disorder operator µ in the
Ising model. The factor 2 is expected from the mentioned
coset structure, i.e. we find two copies of SU(2)2/U(1).
The nature of the operator is also anticipated, since by

construction F
O0,0

0,0
|M+M−

n of the SU(3)2-HSG model co-
incides precisely with Fµ

n of the thermally perturbed Ising
model when one of the sets M± is empty. It is also clear
that we could alternatively obtain (17) from the analysis
of ∆(r0).

Figure 3: Renormalization group flow for the conformal di-

mension ∆(r0) of the operator O0,1
0,2 for various values of the

resonance parameter σ.

Despite the fact that the explicit expressions for the
form factors of O0,1

0,2 and O1,0
2,0 differ the values of ∆(r0)

are hardly distinguishable and we therefore omit the plots
for the latter case. We also note the previously observed
fact [12], that the higher particle contributions for the

latter operators are more important than for O0,0
0,0 , which

explains the fact that the starting point at the ultraviolet
fixed point is not quite 0.1. The operators also flow to the
value 1/8, such that the degeneracy of the SU(3)2-HSG
model disappears surjectively when the unstable particles
become massive.

In comparison with other methods it would be ex-
tremely desirable to elaborate on the precise relation-
ship between c(r0) and the finite size scaling function
of the thermodynamic Bethe ansatz. Also the relation
to the intriguing proposal in [19] of a renormalization
group flow between Virasoro characters remains unclar-
ified. The analogue of ∆(r0) still needs to be identified
in the TBA as well as in the context of [19]. In addition
one may pose the question whether there exist higher di-
mensional counterparts of the function ∆(r0) in analogy
to the results obtained in [3] for c(r0). Concerning the
specific status of the HSG-models it remains a challenge
to extend the results to other Lie groups [20].
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