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Chapter 8 

Testing the Research Models 

8.0 Introduction 

We concluded chapter seven with the formation of the main 
theoretical models of aggregate item demand in terms of demand 
occasions and demand quantities. Through these models itwas postulated 
that it is effectively the summation of the short term Log Series 
distribution of aggregate demand that leads to a discrete lognormal 
distribution as the stable long run model. Furthermore these aggregate 
LSD distributions themselves arise out of the Afwedson process, that 
operates in short time intervals across the family of parts. In this section 
we now turn to the'issue of verifying these models against the empirical 
data. This is the process of retroduction as put forward by Simon. To test 
the theoretical models we have to demonstrate that the conditions for the 
Afwedson process can be shown to exist. That is the short term aggregate 
demand occasion is distributed as a Poisson distribution and that the short 
term aggregate demand quantity is distributed as the combined LSD - 
NBD distribution. Secondly we must show that these conditions can be 

seen in every successive time period and the summation of the outcomes 
lead to a lognormal form of demand volumes in the longer term. 

8.1 Verification of the LSD 'distribution. 

We showed in chapter six that the single period aggregate demand 

volume distribution for the first period 1979 was highly skewed, reverse 
T shaped and it fitted the LSD distribution extremely well. We win now 
show that any subsequent single period following or preceding period one 
of 1979 also gives an empirical distribution of demand volume that is LSD 
distributed. And that a summation of any series of these single period 
distributions converges to 4 lognormal form. In the next chapter we will 
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show by simulation that the summation of simulated LSD distributions 

also leads to the same integer lognormal distribution. In the table below is 

shown the aggregate distribution of - demand for the first four periods 
1979. The first period 1979 was shown in the previous chapter and we 
give the next four periods to show the close similarity and to verify that 
successive monthly aggregate demands are indeed LSD distributed. 

Table 8.1 

Single period demand frequencies 1979 

demand 
quantity 

first 
period 

second 
period 

third 
period 

fourth 
period 

fifth 

1-10 110 126 108 110 140 
11-20 35 25 36 29 26 
21-30 16 10 22 20 10 
31-40 10 10 8 10 5 
41-50 7 8 7 9 4 
51-60 3 4 2 9 2 
61-70 4 5 1 2 1 
71-80 3 2 3 4 2 
81-90 2 0 1 3 3 
91+ 0 3 0 1 2 

The very close correspondence between the empirical distribution 

of the first period 1979 and the cor'respondin g theoretical LSD 

distribution was shown in chapter six (tables 6.5 and 6.6 and figure 6.7). 

The Log Series distribution has the probability density function as 

previously shown namely- 

P(r) = -elxln(l-q) 

The parameter 'q' is best estimated as discussed in chapter seven by 
Ehrenberg's method using the mean of the empirical distribution'w' ie- 
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where q= 
(w 1.4) 
(w - 1.15) 

In the tables 8.2 and 8.3 below we show a more rigorous 
comparison of these single period empirical distributions with the LSD 

using periods two and five of 1979 as an example periods. The test used is 
the Kolmogorov Smimov test discussed previously. 

Table 8.2 
LSD test for period two 1979 

Actual 
frequency 

theoretical 
frequency 

actual 
cum. prop. * 

theoretical 
* cum. prop. 

difference 

126 118 0.6631 0.6178 0.0452** 
25 32 0.7947 0.7853 '0.0094 
10 16 0.8474 0.8691 -0.0217 
10 9 0.9000 0.9162 -0.0162 
8 6 0.9421 0.9476 -0.0055 
4 4 0.9631 0.9686 -0.0055 
5 3 0.9895 0.9842 0.0053 
2 2 1.0000 0.9948 0.0052 
0 1 1.0000 1.0000 0.0000 

*These values were the cumulative frequencies of actual and 
theoretical calculated as proportions. 

Ibis was the largest absolute value difference between the 

actual and theoretical cumulative proportions. 

The theoretical maximum Dn values for the Kolomogorov- 
Smirnov test (with 'n 190) at the 1% and 5% levels are 0.0986 and 
0.1182 respectively, compared to the actual maximum difference of 

Page 261 



Chapter 8 

0.0452. Hence the result was highly significant and we can confidently 
accept the empirical distribution of period two as most likely a LSD 
distribution. 

Applying the same procedure to period five 1979 we obtained the 
following results - 

Table 8.3 
LSD test for period five 1979 

Actual 
frequency 

theoretical 
frequency 

actual 
cum. prop. * 

theoretical 
cum. prop. * 

difference 

140 139 0.7239 0.7239 0.0000 
26 24 0.8573 0.8489 0.0084 
10 11 0.9086 0.9062 0.0024 
5 6 0.9342 0.9375 -0.0033 
4 4 0.9547 0.9583 -0.0036 
2 3 0.9650 0.9739 -0.0089 
1 2 0.9701 0.9843 -0.0142** 
2 1 0.9804 0.9896 -0.0092 
3 1 0.9957 0.9948 0.0009 
2 1 1.0000 1.0000 0.0000 

* These values were the cumulative frequencies of actual and 
theoretical calculated as proportions. 

* *Ibis was the largest absolute value difference between the actual 
and theoretical cumulative proportions. 

The maximum difference between the two cumulative distributions 

was again highly significant at both the 1% and 5% levels. Hence we can 
confidently conclude that in all probability the distribution of volumes in 

period five of 1979 is also LSD. Indeed all the single period aggregate 
demand volume distributions throughout 1979 gave similar highly 

significant results by the same test. 
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Now, as seen previously, it is the summation of these empirical 
distributions of 1979 that converge to an integer lognormal distribution 
of demand volumes. Therefore we now have very strong evidence that 
the summation of a series of similar, but independent, LSD distributions 
converge to an integer from of the lognormal distribution as the stable 
long run equilibrium distribution. 

8.2 Verification of the NBD distribution. 

The previous section verified that the aggregate demand quantities 
for all parts with a positive demand equal to or greater than unity in a 
single demand period is distributed as the LSD. Hence one of the 
three main conditions of the Afwedson model has been 

satisfied. We must now show that the distribution of demand volumes 
for all parts, whether there was a demand in the period or not for a 
particular spare, can be represented by the NBD model. 

As shown previously through Poisson mixing the Negative 
Binomial distribution has the following 'gamma" form - 

P(r) = (1 + 
M)-k r(k + r) (M )r 
k r(r + 1)r(k) m+k 

for the probability of 't' occurrences in fixed intervals of time. It exists 
for all positive integers 0,1,2, etc. and in general to Y. The two 

parameters of the distribution, mean W and the exponent T, must be 

estimated when fitting empirical data. As shown before a parameter'a' is 

sometimes used where 'a' = m1k. The best estimate of W is the sample 
mean, which is unbiased and consistent, but the parameter T must be 

estimated indirectly. The best and most efficient method is that given'by 
Ehrenberg (1959, page 58) by equating the proportion of zero outcomes 
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to the expected outcome, that is - 

P(o) = (I + m1k)-k 

This equation cannot be solved directly for T, but values for the 
parameter can be readily obtained by iteration. This author developed 
simple iteration routines on a programmable calculator for this purpose. 
Thus to estimate T and P(o) we must now take into account, in any 
appropriate sample, a representative proportion of spares parts with a 
zero demand in the period considered, but which are nevertheless still live 
demand spare parts. That is there must be a finite probability of demand 
in a reasonable period in the future. This raises a methodological- problem 
of deciding what is and what is not still a live demand spare part. Some 

spares have such low demand probabilities that for all practical purposes 
they are dead items. To get over this problem this author arbitrarily 
decided that any spare part selected in a sample should have shown a 
demand of at least one unit in a following 12 month period, or a previous 
12 month period. 'Ibis then at least coincides with the period over which 
the overall model is ultimately being tested, ie annual period demand. For 
those parts with a demand probability that is substantially less than one per 
year it is difficult to determine if they are still effectively live or if the 
demand has really completely died away. It was considered that the 
criterion cut-off point used here was a rational standard to set. In theory 

any part on the parts listing could be demanded at some time, maybe just 

once in ten years, but this level of demand would for all practical 
purposes be regarded as a dead stock item. 

There was also a sampling problem to resolve here because in 

general where sampling was used in data analysis 200 items were always 
sampled. If a 200 item sample was selected, including those live demand 
items, but with zero demand in that period taken into account, then only 
about 20% of items would show an actual demand value. The rest would 
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be zero demands simply because the majority of the spares have very low 
demand volumes and most have a zero demand in any one single period 
chosen at random. Hence we could have ended up with a sample without 
much real value data in it. To get over this problem the samples used 
previously to test the LSD distribution were used giving about 200 

positive values. Then, as shown below, the proportion of zero demands 
for live demand spares for the same period was determined so that the 
200 positive values could have the correct proportion of zero demands 

added to them. The method of estimation of the parameters for the first 

period 1979 and the calculation of the proportion of zero demands are 
shown following as example- 

From the ABC listing of 1979 the total number of live demand 
I 

parts during the whole year was 9100 ( i. e. those with a demand equal to 
or greater than 1 for the year). By counting, page by page, from a 
'demand history' computer print out the number of parts with a live 
demand in period one of 1979 was 3,477 (from approximately 15,000 
listed parts). Hence the total number of live demand parts, but showing 
zero demand in period one, was 5,623 (ie 9100 - 3,477); ie a proportion 
of 62% of the complete parts range. We also obtained a similar result by 
taking the total of parts known to have a live demand sometime in the 
year, ie 9,100, and expressing it as a proportion to the total listed parts, ie 
15,000. This was a proportion of 0.61. From the empirical distribution 

of period one 1979, given previously, the total volume demanded was 
3,180 for 193 different spare parts. But we knew from above that 62% of 
'live'demands in period one were zero. Hence the 193 represented 38% 

of demands equal to or greater than one in the period. So 62% was 
equivalent to 315 zero demand parts in that period. Therefore we took 

our sample size for the first period to be 193 + 315 = 508. We then 

computed the mean for the period taking into account the zero demands. 

Hence the mean = 3180/508 = 6.26. 
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Then P(o) = 0.62, the proportion of zero demands. Hence the parameter 
Wwas given by- 

P(O) *= (1 + m1k) -k i. e. P(o) = (1 + 6.26/k)- k 

from which it was calculated by iteration that k=0.12. [One should note 
the small value of 'k ' which is one of the required conditions for the 
combined LSD/NBD modell Also the parameter'a'was therefore given 
as 6.26/0.12 = 52.16. Our next problem was to test the distribution of 
period one 1979 (including zero values) against a corresponding Negative 
Binomial distribution with the same parameter values. Developing NBD 

probabilities direct from the probability density function is very difficult. 
Fortunately a recurrence formula exists that can be used to generate the 

probability of 1,2,3, etc. from an NBD distribution if a value for P(o) is 

available (see Ehrenberg 1972 page 59). The form of the recurrence 
formula is as shown below- 

Pr a ][, 
_(a-m) + a) ar 

Hence we started with the calculated value of P(o) = 0.62 it was 

possible to determine any other value of Pr mi succession. To achieve this a 

small programme was developed on a programmable calculator. (for later 

work an Excel spreadsheet was used) The calculated theoretical 

probabilities (using the recurrence formula) and associated theoretical 
frequencies are shown in the table following together with the empirical 
distribution for period one 1979- 
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Table 8.4 
Empirical & theoretical distribution period 1 1979 

Demand 
quantity 

I st period 
1979 actual 

theoretical 
probability 

theoretical 
frequency difference 

0 315 0.6546 332 17 
1-10 110 0.2226 113 3 

11-20 35 0.0505 26 -9 
21-30 16 0.0262 13 -3 
31-40 10 0.0159 8 -2 
41-50 7 0.0105 5 -2 
51-60 3 0.0073 4 1 
61-70 4 0.0052 3 -1 
71-80 3 0.0040 2 -1 81-90 2 0.0023 2 0 
91-100 3 0.0012 1 -2 

The close correspondence between the empirical distribution and 
the theoretical NBD can be readily seen from the above table. A 
Kolmogorov - Smimov test between the theoretical and, empirical 
distributions gave theoretical Dn values at 1% and 5% levels of 
significance of 0.0723 and 0.0603 respectively compared to an actual 
maximum Dn value of 9.0406, which is well within the acceptable range. 
Hence based on this test we can confidently regard the empirical 
distribution as being most likely NBD distributed. As with testing the LSD 
distribution the Chi Squared test was not used because it is just not suitable 
for such highly skewed distributions. 

The same procedure as above was used to determine the number of 
zero demands in period five from which the actual NBD was then 
developed. 'Ibis was then compared with the corresponding theoretical 
NBD with the same parameter values. 
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The mean for this distribution was calculated as - 

3150/526 = 5.99 

Thus with 0.62 as the proportion of zero demands the NBD parameter 'k' 
is given as before by iteration from- 

P(o) = (1 + m1k)-k i. e. P(o) = (1 + 5.991k)-k 

from which it turned out that W was 0.122 and therefore the parameter 
6a1 was given as :- 

5.99/0.122 49.098 

Thus using the recurrence formula as before and starting with P(O) = 0.62 
the theoretical NBD frequencies were calculated as shown in the 
following table. 

Table 8.5 
Empirical & theoretical NBD frequencies for period 5 1979 

Demand 
quantity 

5th period 
1979 actual 

theoretical 
probability 

theoretical 
frequency difference 

0 326 0.6380 332 -6 
1-10 140 0.2370 123 17 

11-20 26 0.0052 27 -1 
21-30 10 0.0270 14 -4 
31-40 5 0.0150 8 -3 
41-50 4 0.0100 5 -1 
51-60 2 0.0080 4 -2 
61-70 1 0.0060 3 -2 
71-80 2 0.0040 2 0 
81-90 3 0.0020 1 2 
91-100 2 0.0020 1 1 
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A Kolmogorov Smimov test gave an actual Dn value of 0.019 

against the 1% and 5% significance level Dn values of 0.0723 and 0.0603 

respectively. Hence the result is, as in the previous case, highly significant 
and we must therefore conclude that the empirical distribution is most 
consistent with the Negative Binomial distribution. The closeness of fit 

was as good as shown in table 8.4, but the randomness of fit was more 
systematic due to the consecutive negative values in the last column. 

These two example goodness, of fit tests show us that aggregate 
demand distributions for four week periods in 1979 are very consistent 
with an NBD when the zero demands are taken into account. All the 
single demand periods for 1979 gave very similar results to those we 
have shown above. Furthermore we must recognise that each of these 
distributions also gave very close 
we can conclude that a 

fits to LSD distributions. Therefore 
second main condition of the 

AfWedson process model is now confirmed. 

8.4 Verification of the Poisson Occasions 

In the following two subsections'we principally address the 
question of testing the demand occasions model. The Afwedson 

compound model of demand quantity required that the underlying process 
of demand occasions should be Poisson. So also does the Poisson Gamma 

model with the additional requirement that the'long run average of 
demand occasions be gamma distributed. 

8.4 (a) single period demand occasions 

The third condition that single period demand data must satisfy 
for the Afwedson model is that of Toisson demand occasion. That is in 

any single demand period the occurrence of demand across all items in 

the inventory range must be simple Poisson. Now we can regard this as 
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Poisson distributed in space whereas most Poisson distributions occur 
through time. In the latter situation it is time intervals that are chosen 
within which to capture events that will be tested for Poisson 

characteristics. The problem with determining Poisson events in space is 
to choose appropriate criteria for dividing the test area in suitable space 
segments within which to measure the occurrence of events. In observing 
a Poisson process taking place in time the time interval chosen must be 

small in relation to the total time being examined. Hence, if it were 
required to test if the arrival of customers to a supermarket was a Poisson 

process one would set a time interval of the order of minutes to study the 
arrival process over several hours. The botanist wishing to study if the 
distribution of certain wild plant species were Poisson distributed over a 
particular waste land he would divide the area up into many cells each of a 
few square feet in size to study a plot several hundred times larger. 

Hence given some 9000 spare parts, each with the potential for an 
actual demand in any one period, the task was to decide on an appropriate 
method for selecting groups of parts upon which measurements could be 
taken to test for Poisson occurrence in any set period. It was arbitrarily 
decided to randomly select parts from the demand history report in 

groups of ten. This group size was considered to be very small in relation 
to the approximate number of live demand parts in the population ( ie 
9000). 'Me only criteria used in'this selection process for an individual 

part was to check that for any selected part number that there had been a 
demand for that part sometime in thefollowing twelve periods to ensure 
that it was a spare part with a positive demand. This was considered 
sufficient to ensure that dead demand items were not selected. 

Some 450 parts were randomly selected in this way from period 

one 1979 in groups of ten and the'results are summarised below in table 
8.6. The number 450 was arbitrarily chosen as a number large enough to 
be statistically significant, if the expected regularity existed, and to 
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minimise the effects of random noise. From each member of each group 
of ten it was determined if there was a demand in that period or not. If 
there had been a demand it was regarded as a positive reading and given 
the value 1, (the actual value of the demand, eg 1,2,3, etc. was ignored). 
If there was no demand then it was given a zero value. The results are as 
shown in table 8.6 which follows. 

Table 8.6 
Number of Positive demand occasions 

Value 0 1 2 3 4 
Actual frequency 
Theoretical frequenc 

5 
14 

9 
10 

12 
12 

9 
9 

4 
3 

difference 
I -II 1 0 0 11 

Value 5 6 7 -8 9 
Actual frequency 
Theoretical frequenc 

3 
13 

2 
1 

0 
0 

0 
0 

0 
0 

difference 1 0 -I1 0 0 0 

The data in the above table then shows, for example, that from 45 
groups of ten items sampled, three of the groups each showed five items 
with a positive demand, and two groups showed six items with a positive 
demand and so on. The very close correspondence between the actual 
frequencies and theoretical frequencies from a Poisson distribution with 
the same mean and variance is clearly evident. The mean of the actual 
distribution was 2.38 and the variance was also 2.38. Hence one of the 
main criteria for a Poisson distribution was satisfied ie the mean of the 
distribution is equal to its variance. The actual distribution also gave a 
highly significant Chi Squared test at the 1% lev-e'l'of* significance. Hence 

one must conclu , de that demand occasions in a single time period are very 
definitely Poisson in nature. I note: although the distribution is skewed it 
is not markedly so and the Chi Square test can be validly used in this 

situation 1. 
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The same process of checking for the Poisson occasion of demand 
was repeated for period five of 1979 with the results shown in table 8.7 
which follows. 

Table 8.7 
Number of demand occasions 

Value 0 1 2 3 4 
Actual frequency 
Theoretical frequenc 

10 
17 

12 
13 

7 
12 

10 
8 

3 
4 

difference 
1 3 -1 -5 2 1 

Value 5 6 7 8 9 
Actual frequency 
Theoretical frequenc 

2 
1 

1 
0 

0 
0 

0 
0 

0 
0' 

difference 1 1 0 0 0 

The actual data gave a mean value of 1.87 with a variance of 1.94. 
(The mean was used to calculate the theoretical frequencies). Even 
though the variance is somewhat higher than the mean in this case the 
result is still significant at both the 1% and 5% levels as determined by a 
Chi Squared test against the corresponding theoretical Poisson 
distribution. 'Me actual Chi Squared value was 5.24 against theoretical 
Chi Squared values of 13.28 and 9.49 respectively. 

From the foregoing results we can be confident that the distribution 

of demand occasion across all parts in the DAF range during 1979 was 
simple Poisson. Thus the third main condition of the AfWedson 
process has been. satisfied. 

From the foregoing analysis for the first and fifth periods of 1979 

we have highly significant test results for the Afwedson process, namely 
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Poisson occurrence across all 'live' demand items, LSD distribution of 
demand quantities and an overall NBD distribution of all quantities 
including the zero demands for the period. Clearly a process entirely 
equivalent to the Afwedson process was operating in the first and fifth 

periods of 1979. Although not directly tested by all three tests, we can be 
totally confident that any single period in 1979 will yield the same results. 
(The Poisson demand occasion test was not repeated for all periods in 
1979, but we were confident that the same results would have been 

obtained, especially as each single period in 1979 produced positive 
results for the LSD /NBD 

8.4 (b) multiperiod demand occasions. 

Our model of aggregate demand occasions implies that the long 

run average of demand occasions across all parts should be Gamma 
distributed. To verify this we initially took groups of ten parts in clusters 
as above, but this time we determined the number of demand occasions 
that appeared in 15 consecutive demand periods instead of a single period. 
The mean and variance was measured for each cluster and in all cases the 
variance was found to be substantially larger than the mean. 'Mus for the 
single period case we found a simple Poisson process of demand occasion 
to be operating, but in the 15 period case clearly the simple Poisson was 
no longer appropriate. The observed increase in the variance of demand 

could only have come about as a result of mixing in the process, as we 
were observing demand occurrences in this analysis and not demand 

quantities. Hence there could not have been any increase in the variance 
due to compounding of demand quantities. Furthermore, the model we 
have developed in chapter seven shown in' figure 7.5, predicts that the 
long run average mixing equation in'the process should-be a gamma 
variate. 

In view of the increased variance results above we needed to test the 
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proposition that long run Poisson mixing was occurring by a gamma 
variate. Hence 200 parts were selected at random and the average 
demand occurrence was measured for each over a 15 period duration. 
These averages were analysed as a data set and tabulated against a 
theoretical gamma distribution as follows- 

Table 8.8 
Gamma mixing test 

demand 
occasion 

Gamma 
distribution 

empirical 
distribution difference 

1 21 28 -7 
2 28 30 -2 
3 29 26 3 
4 26 23 5 
5 22 17 -3 
6 18 15 3 
7 14 14 0 
8 11 8 3 
9 9 10 -1 

10 7 6 1 
11 5 7 -2 
12 4 6 -2 
13 3 4 -1 
14 2 3 -1 
15 1 4 -3 
16 11 1 0. 1 1 -- FF, - -2 

1 

(In the above table all the empirical averages were multiplied by a 
constant 15 for convenience of data presentation). 'I'he empirical data in 

the above table gave a mean value of 5.2134 with a variance of 13.6006 
The values of the corresponding gamma variate ( integer values only 
were determined from the gamma function as shown below: 
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(x)'-'[exp(-xlb) 
b br(c) 

] 

The parameters 'c' and 'b' of this function were determined from the 

mean (x) and variance (a 2) of the empirical data by the matching moment 
functions- 

(ýý)2 a2 
and b= 

x 

from which we obtained V=1.994 and W=2.6088. These matching 
moments functions are those recommended by Hasting and Peacock 
(1974) as the most efficient estimators of V and W. Because we were 
only interested in integer values of the gamma variate and because the 
value of V was so close to unity we made use of the relationship shown : 

F(C) = (c - 1)! when c is integer 

A graphical comparison between the empirical and theoretical gamma 
distribution is shown below in figure 8.1. 
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Figure 8.1 

40 
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Comparison of Empirical and gamma distribution 
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19 10 11 12 13 14 15 16 
variate x 

Goodness of fit tests were not performed on the empirical data 

against the gamma variate because we used only integer values of the 
gamma function, which is essentially a continuous distribution. 'Ibis did 
not invalidate the use of the function in this case, and the close 
correspondence between the aggregate means of demand occasions and a 
gamma function is readily seen from figure 8.1. The randomness of fit 
between the two distributions, as shown in table 8.8 was rather poor as can 
be judged by the -successive positive -and negative differences. 'I'lle 

closeness of fit was quite good as given by the sum of differences at -2. 
However, perhaps the most important aspect is the fact that the empirical 
distribution is of the right general form (ie gamma) that the theory 

predicts should be seen, if gamma mixing is taking place in the aggregate 
demand occasions. And this is what all the empirical evidence has so far 

shown. Hence we should conclude that in all probability the long run 
average values of demand occasions aggregated across all parts are 
gamma distributed. 
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From all the foregoing analysis we can be sure that the combined 
Poisson Gamma process and the Afwedson process explain fully the 

regularity seen in demand volumes for any single (four week) period 
throughout 1979. We have shown that the combined LSD/NBD explains 
aggregate demand quantity in short time periods (four weeks in the DAF 
data), furthermore we have now also shown that when we consider 
demand occasion then the simple Poisson model explains the single 
period aggregate demand. In longer time periods (15) the gamma 
distribution is a strong candidate for the demand occasion. All these 
findings are consistent with and are predicted by the 
theoretical models that we developed in chapter seven. Our 

attention now turns to examining subsequent years to verify that 1979 was 
not a year in isolation. 

8.5 Model testing in Years 1983 and 1985. 

8.5 (a) tests for the Log Series distribution 

We first consider single period empirical distributions for periods 
five through to seven of 1983, as example periods for that year. (In fact 

the periods were chosen quite arbitrarily). These are shown in the table 
below together with the theoretical LSD with a 'q' parameter value of 
0.986. - 
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Table 8.9 

Empirical and theoretical LSD for 1983 

demand 
quantity 

5th period 6th period 7th period theoretical 
distribution 

1-10 121 122 123 124 
11-20 24 30 28 24 
21-30 12 4 8 12 
31-40 5 7 4 7 
41-50 5 7 5 5 
51-60 2 2 3 3 
61-70 2 1 2 3 
71-80 3 3 3 2 
81-90 2 4 2 1 
91-100 2 2 1 1 
101-110 2 1 1 1 
111-120 1 1 1 1 
121-130 1 0 1 1 
131-140 2 0 0 0 
141-150 0 1 1 0 
151-160 1 0 0 0 

distribution mean 19.84 18.56 18.64 1 
empirical 'q' value 0.987 

1 
0.987 

1 
0.986 

By comparing the fifth period empirical LSD against 
-the theoretical LSD we obtained a maximum Kolmogorov Smirnov value 

Dn actual at 0.0280 compared to theoretical values of DnO. 01 and DnO. 05 
of 0.120 and 0.100 respectively. Periods six and seven were so close in 

parameter values to period five it was considered not necessary to test 
them directly against the same theoretical LSD. 

Table 8.10 which follows shows the same analysis for 1985. [The 

periods one, four and nine of 1985 were arbitrarily chosen]. 
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Table 8.10 
Empirical and theoretical LSD for 1985 

demand 
quantity 

I st period 4th period 9th period theoretical 
distribution 

1-10 120 128 121 129 
11-20 25 29 27 25 
21-30 18 12 12 13 
31-40 6 9 9 8 
41-50 5 4 6, 5 
51-60 5 6 6 4 
61-70 4 1 4 3 
71-80 2 3 2 2 
81-90 2 0 2 2 
91-100 3 2 

ý3 
2 

101-110 2 2 1 1 
111-120 1 1 2 1 
121-130 1 1 2 1 
131-140 1 0 0 1 
141-150 1 1 1 1 
151+ 1 2 2 2 

distribution mean 19.031 16.457 19.293 
empirical 'q' 0.986 0.983 0.986 0.986 

An examination- of the empirical distributions in the, table above 
against the corresponding theoretical LSD distribution reveals a very 
close fit that is consistent with the same analysis for earlier years. These 

empirical distributions in table 8.10 are also very close in form to the 
empirical distributions of 1983 in table 8.9. We can deduce from this 
that over the two year period the from 1983 to 1985 there has been very 
little change in the profile of the aggregate distribution of demand 

volumes. Intuitively we would expect to see this if the inventory range is 

stable. 
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8.5 (b) testing for the Negative Binomial distribution. 

Using the methods described previously in section 8.1 we first 

made an estimate of the total number of individual parts demanded in 
1983 from a print out of the demand history file for all parts (by scanning 
row by row page by page). The number was 10,627 different part 
numbers were demanded in the year, hence for any individual period we 
assumed that the number of live demands was this same value. Next-we 
had to estimate how many actual demands there were in the target period 
(p5), by counting down the column for period five, and then subtract this 
number from the total demands to get an estimate of the proportion of 
zero BUT live demands in the period. Ibis gave us P(o) the probability 
of zero demands in the period. The value, surprisingly came out at 0.62, 
the same proportion as for 1979 ! Using this value we were then able to 
calculate the empirical NBD frequencies for period five 1983 as shown in 
the table 8.10, below together with the corresponding theoretical NBD 
frequencies. The latter were calculated form the recurrence formula 

given previously starting with P(o) = 0.620 

Table 8.11 
Empirical & theoretical NBD for period 5 1983 

demand 
quantity 

5th period 
actual 

theoretical 
distribution 

difference 

0 298 332 17 
1-10 121 113 3 

11-20 24 26 -9 
21-30 12 13 -3 
31-40 5 8 -2 
41-50 5 5 -2 
51-60 2 4 1 
61-70 2 3 -1 
71-80 3 2 -1 
81-90 2 2 0 
91-100 2 1 2 

1=481 F, -481 
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The maximum Kolmogorov Smirnov Dn value obtained from a 
comparison of the empirical and theoretical distributions was 0.0287 

compared to DnO. 01 and DnO. 05 of 0.0743 and 0.0620 respectively. Hence 
the result is highly significant and we have no grounds to reject the null 
hypothesis. In all probability the overall distribution of period five 1983 
is Negative Binomial. We have not tested other periods in the same year, 
but based on the consistency of the data over periods five, six and seven 
and the very close similarity with 1979 we can be confident that the NBD 

would be obtained for any period throughout 1983. 

'Ibis same process of testing for the NBD was repeated using period 
four of 1985 as the target single period, chosen at random from the three 
periods in table 8.10. Because of the stability of the LSD over several 
years we used the value of 0.62 for the proportion of zero demands in any 
given four week period in 1985, ie P(o) =0.62. (If this had turned out to 
be a poor judgement then it would have led to a worse fit of the NBD 

rather than better). On this basis we were able to calculate the mean 
demand volume for 1985 period four and subsequently the parameter 'k' 

of the NBD. Then using the recursive relationship used previously as 
shown in section 8.2 the theoretical values for the NBD were readily 
determined. These are shown in table 8.12 below with the empirical 
frequencies. We can readily see from this tabulation the very close fit 
between the empirical and theoretical distributions. 'Me match is very 
good on both the basis of randomness of fit and closeness - of fit. A 
Kolmogorov Smimov test was not performed, because on visual evidence 
alone it was quite clear that a very significant result would have been 

obtained. 
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Table 8.12 
Empirical & theoretical NBD for period 4 1985 

demand 
quantity 

empirical 
distribution 

theoretical 
distribution difference 

0 325 338 -13 1-10 128 115 13 
11-20 29 27 2 
21-30 12 13 
31-40 9 8 
41-50 4 5 
51-60 6 4 2 
61-70 1 3 -2 
71-80 3 2 1 
81-90 0 2 -2 91-100 2 1 1 
101-110 2 1 1 
111-120 1 1 0 
121-130 0 1 -1 131-140 1 1 0 
141-150 0 0 0 

Y. =523 1=522 Y, - I 

8.6 Verification of the Law of Proportionate 
_Effect. 

Having established that the Afwedson process clearly operates in 

short time intervals we now show that the mechanism that governs 
growth and convergence to lognormality is the Law of Proportionate 

effect. We have seen empirically that by a simple summation of short 
period aggregate demands the empirical data did converge to 
lognormality as the stable long run distribution. We now look to the above 
law to explain the growth process. We - first reconsider - some of the 
important theoretical elements. 

Page 282 



Chapter 8 

If the Law of Proportionate Effect governs the growth of a variate 
such as inventory usage values then, as previously seen, this can be shown 
in the fonn as shown - 

(xt 
- XI-1) = (X, -, )ýij 

Where xt is the size of the variate at T, xt-, is the size in the 

previous period and 4j,, is the set of randomising elements. 

The above form of the law lends itself to a number of testable 
hypotheses so that empirical data can be tested for evidence that the law is 

governing the growth processes seen. Firstly the change in the size of a 
variate subject to this law should be a random proportion of the variate's 
size in the previous period. Secondly Singh and Whittington (1974) have 

shown that there should be no serial correlation in growth rates from one 
time period to the next. This also follows from the form of the law given 
earlier in chapter four, namely that- 

Xn = XO (1 + el)(1 + £2) ---------- 
(1 + £n) 

'Merefore the size of the variate after 'n' stages is independent of 
the initial size and each step is a random independent increment. 
Furthermore Ijiri and Simon( 1974, page 145) and others, have shown 
that if the Law is valid there should exist a relationship between the 
logarithms of the initial and final size such that- 

n=j 
109, Xn =ß log, XO +Z en 

n=O 

this follows from the form below as previously given in chapter four. 
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loge Xn --'2 
loge XO +'EI + '02 - ------- en 

Hence a regression of the log size attained at time T should 

correlate strongly with the size attained in an earlier period say 't-l', with 
a regression coefficient of 1 and the residuals should be homoscedastic, 
that is to say the dispersion of the residuals about the regression line 

should be the same throughout the range of the data and they should have a 
zero mean. 

8.6 (a) LPE growth test 

The regression to test the first condition -that there should be 

random growth was conducted on 100 randomly selected parts from the 
DAF data of 1979 and 1985. The cumulative demand after six months was 
taken for each part and then the additional growth over the next six 
months was expressed as a percentage of the growth at the six month 
point. This percentage growth rate was'then regressed against the six 
month cumulative demand. The results from these regressions are shown 
below from which it can be seen that there was clearly no discernible 

relationship between growth and starting size in either year. 

I "I 
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Figure 8.2 
1979 LPE Growth Test 
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The analytical results of these regressions are as shown- 

1979 
0.134 

R2 = 0.018 

Standard error = 19.019 

1985 

r=0.172 
R2 = 0.030 
Standard error = 65.13 

In both cases we can see from the above results that there is clearly 
no relationship between cumulative demand volume at six periods with 
the percentage demand growth over the next six periods. From this we 
can conclude that demand growth is truly random from period to period. 
Furthermore this being the situation then we should expect to see a 
regression relationship when the logarithms of volume growth at one 
period are related to the logarithm of additional or attained growth in a 
subsequent period. 'Ibis is tested in the following section. 

8.6 (b) regression of logarithms 

To test the proposition that the logarithm of the size at time t is 

proportional to the logarithm of size at an earlier time say t-1 was tested 
by r, egressing the cumulative demand at 13 months with the cumulative 
demand at 6 months for the same two sets of 100 randomly selected parts 
as in the previous test. The results were as shown in the following figures : 
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4-) 

Figure 8.3 

Regression of the logarithms of Demand 
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Figure 8.4 

1985 Regression of the logarithms of Demand 
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It can be clearly seen from the above graphs that in both cases (1979 

and 1985) the regression of the loge of the cumulative demand at 13 

periods is strongly related to the loge of cumulative demand at 6 
.0 
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periods. The values of the correlation coefficient and coefficient of 
determination are highly significant as shown below. The regression 
residuals in both cases can also be seen to be randomly scattered around a 
zero mean and both sets visually pass as homoscedastic, (evenly scattered 
and distributed around a zero mean). 

1979 

r 0.966 
R2 0.932 
Standard error = 0.407 
Durbin Watson statistic = 2.018 

1985 

r=0.983 
R2 0.965 
SE 0.295 
DW = 1.511 

The regression equations produced by this analysis were as follows- 

1979- lOge SIt = 0.698 + 1.026109eS!, t-1 

1985- log, Si� = 0.591 + 1.042 log, S�, 
-, 

Where Si, t is the size of element i in period t and Sj, t-j is the size in 

the previous period. 

The regression coefficient W in both cases was not significantly 
different from unity as measured by the T ratio test. Both correlation 
coefficients were also highly significant. Hence we can conclude from 

this analysis that the relationship between the two log sizes is highly 

significant and that the regression lines have a slope of unity as predicted 
by the Law of Proportionate Effect 
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8.6 (c) test for serial correlation 

This test was conducted by regressing the demand in a randomly 
chosen, four week period with the demand in the following four week 
period for 100 randomly selected parts. These results are shown - 

figure 8.5 
Test for Serial Correlation 

E 

1ý 

I)ernand in Period 12 

This regression gave the following results 

r 0.713 
R2 0.503 
Standard error =64.01 

These values are statistically significant, although the explainable 
variation is only 50%. Hence there is a degree of serial correlation in the 
data. The strongest form of the Law of Proportionate Effect requires 
there should be no serial correlation in successive time periods. In view of 
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the strength of the two previous tests we could not use this serial 
correlation test to reject the proposition that the law is valid and is 

operating in our DAF demand volume systems. We can conclude that 
based on prior theory, and the strong outcome of the growth correlation 
between theý logarithms of demand volumes, that the Law of 
Proportionate effect is clearly applicable to the system, but not possibly in 
its most stringent form. 

8.7 Conclusions. 

We have demonstrated in this chapter that the Afwedson model 
clearly applies to aggregate item--deman& This has, been verified by 
showing that single period demand occasions'are clearly Poisson, and 
when the 'actual quantity demanded is taken into account the distribution is 
LSD. Additionally when we take into account the zero demands in any 
period, but which are nevertheless still live demand items, then the overall 
distribution of short period demand quantities is that of the NBD. 
Additional evidence for the demand occasions model is given from the 
fact that mixing is shown to exist in the process, because the average 
values of the long run demand occasions are distributed in a form very 
close to a gamma distribution. Because the short period distribution of 
demand occasions was simple Poisson the increased variance which 
appears in the long run must have come about by mixing. 

From the foregoing we can now confidently accept the 
hypotheses of chapter seven (a) through to (d) as correct 
and proven. 

We have also demonstrated that the growth process which in 

stochastic terms accounts for the convergence to lognormality is by the 
Law of Proportionate Effect, although this may not be operating in its 

strongest form. The existence of a degree of serial correlation in the 
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data for demand quantity in successive time periods does suggest the 

application of the law in a somewhat less stringent form. Ibis does not 
however invalidate the Law of Proportionate Effect as the mechanism 
which still provides us with the most likely candidate to explain the 
growth to lognormality. 

Hence we can now also accept that hypothesis (e) in 

chapter seven.. that convergence to lognormality is by the 
Law of Proportionate Effect is most likely correct, but not in 
the most stringent form of the law. 

At this stage if we reconsider our research model scheme given by 
figure 2.2 in chapter two, page 56, we can see that we have now 
satisfactorily utilised all three comparison points shown in the model to 
validate the various models and processes. In the next chapter we turn to 
simulation as a means of generating simulated data from our developed 

stochastic model. 

Page 292 



Chapter 8 

Page 293 



Chapter 9 

Simulation Studies 

9.0 Introduction 

The primary purpose of the simulation work described in this 

chapter was to validate the results obtained from the empirical analysis of 
chapter six and the model building and testing of chapters seven and eight. 
A secondary aim was to see what changes, if any , might be seen in the 
final distributions obtained by variations in the parameters of the system. 
It was not intended to explore all possible simulation combinations, this 
would have been potentially very large and not productive in the light of 
our purpose. Our objective in this chapter was to use just limited 

simulation studies as a validation and a check against previous results. It 

was also the intention to explore for insights to limiting conditions in the 
convergence processes to lognormality. Using this approach we were able 
to show that usage volume data almost identical with the empirical data 

seen in the DAF systems could be achieved. The distributions obtained 
had parameter values very close to those of the empirical distributions. 

Replication and validation by simulation was considered an 
essential part of the methodology in this research. In particular this author 
was anxious to test the proposition that a sequence of Log Series 
distributions of aggregate demands will sum to a discrete form of the 
lognormal distribution using an appropriate model for the individual 
demand streams. The results so obtained were compared with the 

empirical data and appropriate theoretical models to see if the simulated 
models gave results close to those obtained from the empirical analysis. 
Two main thrusts were explored, firstly to see how the form of the 
distributions obtained varied with a change in LSD parameter 'q', and 
secondly to examine the effect of variations in the distribution of 
individual demand streams, principally the variance of demand. 
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The outline model of this part of the research, as presented and 
discussed in chapter two, is given again here to show schematically our 
aim - 

Figure 9.1 
Scheme for Testing Empirical Data 

Theoretical 
System model 

Simulated data comparison 

comparison 

Empirical data 

System studied 

Theoretical 
model 

comparison 

The process of the simulation is shown in the following table- 
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Figure 9.2 

Simulation table layout 

Items 
Time Periods 

123456 
1 
2 
3 horizontal demand streams 
4 
5 

0 6 
7 
8 
9 
etc 

to 
m 

Clearly from the work of chapters seven and eight the vertical 
distribution model of aggregate demand in the above table had to be the 
LSD. rMe problem to resolve was which distribution to use to model 
individual the horizontal demand streams. From empirical analysis of 
the DAF spares it was noted that the variance of demand was always 
greater than the mean, hence a simple Poisson stream would not be 

appropriate to replicate the empirical process. The literature previously 
reviewed on lumpy demand items, including spare parts, strongly 
supports the use of compound Poisson models to represent demand in unit 
time periods. As we are only concerned with demands in fixed interval 

of times we do not have the problem of considering demand volumes in 

any variable lead times. Hence, to use Bagchis' terminology (1987) we 
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need only consider two main variables, namely the order intensity (01) - 
the number of customers ordering in the period, and the order size (OS) - 
the amount ordered on each occasion. From our consideration in chapter 
five of the extensive literature on the modelling of independent demand 
processes, particularly that concerned with slow moving and lumpy 
demand items (two particular characteristics of spare parts demand) it is 
clear that compound distributions are the appropriate ones to use. In 
particular the 'Stuttering Poisson' by compounding the Poisson order 
intensity with geometric order size and the 'Negative Binomial' by 

compounding with a Log Series order size. 

From work and research reported in the operational inventory 
literature the Stuttering Poisson has been a favoured compound Poisson 

model; whereas from reported work in the consumer purchase 
literature it is the NBD model which predominates. (But formulated by 
Poisson-gamma mixing to yield the gamma form). In appendix one of 
this work we report some limited analysis on period demands for selected 
DAF demand data and the results from this indicate that either the 
Negative Binomial or the Stuttering Poisson could be used. Both 
distributions gave extremely close and successful results in modelling 
DAF demand data. In chapter ten we consider the individual demands for 

a variety of spare parts from a retail car dealer DMC Ltd. These studies 
showed how close the geometric and log series distributions are as 
compounding distributions for automotive spare parts. As we discussed in 

chapter five, Sherbrooke (1968) has shown that the Stuttering Poisson 

and the NBD (produced by compounding) give very close results for a 
wide range of variance to mean ratios (q). Specifically it was reported 
that for values of 'q' up to three the two distributions give identical 

results, and the frequencies gradually diverge as 'q' exceeds three. In was 
not easy to test directly which compounding distribution might be 

appropriate in the DAF system, because all the DAF dealers are 
computerised and to gain sufficient data on individual order sizes, to 
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measure compounding quantities, would have required working back 

through literally hundreds of invoices to obtain the required data. Our 

analysis in appendix one indicated that either the NBD or the Stuttering 
Poisson could be used and for a value of 'q' as high as seven the two 
distributions gave very close results. We eventually chose to use the 
integer form of the NBD for the simulation work in view of the closeness 
of the outcome from the two distributions and because the NBD is much 
easier to work with in practice, especially for larger values of the variate 
Y. The Stuttering Poisson requires the use of an awkward recursive 
formula, which becomes computationally very laborious to use for even 
modest sized demand values, because the number of calculations at each 
step increases in proportion to the value of Y. (For large demands, say 
Y approaching 100 per period on average, the Stuttering Poisson 
becomes prohibitive in calculation requirements). This is an area which 
requires a great deal more research and we refer to this issue again in 

chapter 13. 

9.1 Simulation model 

The initial stage of the first simulation attempted was to 
replicate the attainment of, the Log series distribution of the first period 
1979 by the simulation of the demands of 200 individual items in such a 
way that their single period aggregated distribution was LSD. Then NBD 
demand streams were generated, using an appropriate software package, 
for the 200 items. In the first stage the demand series was simulated'over 
15 operating periods. (Actually 60 periods were simulated, but only the 
first 15 were examined in detail). The NBD's were chosen such that the 

mean value for each demand stream when considered in aggregate were in 

the same proportion As the frequencies of the LSD distribution to be 

simulated. r1be empirical LSD of the first period 1979 had a mean value 

of 18.26 and a distribution parameter 'q' = 0.985. For 200 items this 
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would give a LSD with the following frequencies- 

Table 9.1 
LSD simulation base data 

Variate 
value 

LSD 
probability 

frequency 
for n =200 

1 0.2346 47 
2 0.1155 23 
3 0.7590 15 
4 0.0560 11 
5 0.0442 9 
6 0.0362 8 
7 0.0306 7 
8 0.0264 6 
9 0.0231 5 

10 0.0205 4 

11-20 0.1271 25 
21-30 0.0650 12 
31-40 0.0364 8 
41-50 0.0285 6 
51-60 0.0228 5 
61-70 0.0170 4 
71-80 0.0114 2 
81-90 0.0100 2 
91-100 0.0057 1 I I 

total 200 

Thus it can be seen from the table above that 47 demand streams 
were simulated from Negative Binomial distributions with a mean 
demand of between zero and one, 23 were simulated from NBD's with 
mean demand of two, 15 were simulated from NBDs with mean value of 
three etc. With the lower frequencies such has 51-60,5 demand streams 
were simulated with NBD mean values randomly scattered in the range 
51-60. This process was continued until the needed 200 such streams were 

produced. The method of generating Negative Binomial demands was 

through a standard computer routine for generating NBD distributions of 
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specified parameters, from which individual demand values were drawn 
by a simple Monte Carlo random number selection technique. 

The simulated aggregate distribution of the first period is 

shown below together with its natural log form of the same distribution. 
Because of problems with zero demands being produced by the sampling 
technique from the many runs at the low mean values, only 176 effective 
positive demands were ultimately simulated for the first period. These are 
shown in table 9.2 - 

Table 9.2 
First period simulation 

Value 
band 

simulated 
frequencies 

1979 
1st perid 

Theoretical 
LSD 

0-9 116 100 102 
10-19 24 32 29 
20-29 11 14 15 
30-39 7, 9 9 
40-49 5 6 6 
50-59 4 3 5 
60-69 3 4 4 
70-79 2 3 3 
80-89 2 2 2 
90-99 1 3 1 
100-109 0 0 0 

-1=176 Y, - 17 6. 1=1 

This tabulation shows the close correspondence to both 'the 

actual frequency of the first period 1979 and the corresponding 
theoretical LSD with the same mean value. (all frequencies adjusted to a 
total of 176 for direct comparison). The simulated distribution shows 
perhaps too many values in the first cell and not enough in the second, 
however it was considered to be close enough to a LSD to be a valid 

starting point. 
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The histogram of the simulated first period of aggregate 
demand is shown below in figure 9.3 and the loge forrn of the histogram 
is shown in figure 9.4. 

Figure 9.3 
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Demand streams were then simulated from a variety of NBD 
distributions for each simulated spare part using an NBD generation 
routine on a statistical package called 'statpack' to produce the required 
distributions. (In later simulation work an Excel spreadsheet model was 
used). A simple random number technique was used to generate 
individual demand values from the cumulative form of each NBD that was 

used. The next stage was to sum these individual simulated demand 

streams over 15 simulated operating periods to see what convergence 

was obtained at the aggregate level. The results of this are shown 

graphically in the following diagrams by reference to the natural log 

form of the aggregate distribution obtained at each successive three 

periods of the sununation. 
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Figures 9.4 - 9.7 
Loge Simulated Demand Volume Histograms 
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Cr 

Loge x values 

Clearly the convergence to lognormality is evident from the 
foregoing graphs as the log distribution shows the marked convergence to 
the symmetrical non-nal distribution forrn. As a comparison the simulated 
13 period distribution is shown below with the 13 period empirical loge 
distribution of volumes of 1979 in tabulated and histogram forms. A 

close similarity between the two distributions can be seen from a visual 
inspection alone. 
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Table 9.3 
Simulated distribution compared 

to 1979 empirical results 

loge range 
upper bound 

simulated 
distribution 

1979 (scaled 
distribution 

i 
i erence 

I I 1 0 
2 4 4 0 
3 10 7 3 
4 31 19 12 
5 39 34 5 
6 37 40 -3 
7 32 35 -3 
8 16 20 -4 
9 3 11 -8 

10 0 4 -4 
11 0 1 -1 
12 0 0 0 

I= 173 E-- 176 1 

Figure 9.8 
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The mean and standard deviation values between the actual and 
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simulated data were as shown- 

Actual 13 period 
data simulated data 

Mean 5.585 5.043 
Standard deviation 1.789 1.574 

A standard significance test on the difference between the 
above two means showed a significant difference between the two at both 

the 1% and 5% levels. A Chi Squared test gave an actual X2 value for the 
difference between the two distributions of 21.70, compared to 
theoretical values of X20.05 at 12.59, and X20.01 at 16.82. Hence, on 
statistical grounds, we must conclude that the two distributions are from 

significantly different populations. 

However, when we compared the 15 period simulated data with 
actual data, as shown below in figure 9.9, a much closer fit was obtained. 

Actual 15 period 
data simulated data 

Mean 5.585 5.238 
Standard deviation 1.789 1.602 

A difference between two means test showed no significance 
difference between the two, although an F test on the two variances was 
marginally significant. A Chi squared test comparing the 15 period 
simulation with the 1979 distribution gave an actual X2 value of 13.3 

which passes the Chi squared test at the 1% level, but fails at the 5% level. 
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Hence there is strong but not wholly conclusive evidence to show that the 

two distributions could be regarded as drawn from normal populations 
with very similar characteristics. However, whilst these results are not 
conclusive they are sufficiently close for us to be very confident that our 

cumulated aggregate Poisson-LSD/NBD demand model can reproduce 

the form of the empirical data. From the above results it can be seen that 
the simulated data appears to lag behind the actual data by some two to 
three periods; a phenomena that was observed in most of the simulations 

conducted in this research. 

Figure 9.9 
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To verify that the simulated distribution can be regarded as a 
4normal' distribution the frequencies obtained after 15 periods of 
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simulation were compared with those of a theoretical normal distribution 

with the same mean and standard deviation, ie m=5.238 and s=1.602. 

Table 9.4 
Normality test for simulated results 

loge range 
upper bound 

simulated 
distributed 

theoretic 
. 
al 

distribution difference 
1 0 1 -1 2 4 3 1 
3 10 10 0 
4 26 24 2 
5 35 38 -3 6 39 40 -1 
7 33 31 2 
8 21 16 5 
9 3 6 -3 

10 1 1 0 
172 170 2 

The differences gave a Chi Squared value of 3.95' compared to 
theoretical Chi Squared values of 12.95 at the 5% level of significance. 
Also a linear regression test on the simulated values gave a correlation 
coefficient Y of 0.9981 and coefficient of determination R2 of 99.62%. 
Therefore we can be very sure that the simulation has indeed produced a 
normal distribution Of loge demand volumes and hence a lognormal 
distribution of actual demands. 

To verify that we obtained a series of LSD distributions during 
the simulation, and that it was these that summed to lognormality, three 
separate single periods of the simulated data were compared with their 
corresponding theoretical LSD as shown in the following table: 
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Table 9.5 
Simulated single period volumes 

Frequency lst Period 6th period 9th Period 
band Sim. Th. Sim. Th. Sim. Th. 
1-10 116 121 86 96 87 95 
11-20 24 22 24 18 25 18 
21-30 11 11 11 9 6 9 
31-40 7 6 4 5 5 5 
41-50 5 4 4 3 4 4 
51-60 4 3 4 2 4 3 
61-70 3 2 3 2 2 2 
71-80 2 2 3 1 2 2 
81-90 2 1 0 1 3 1 

91-100 1 1 1 1 1 1 
101-110 1 1 1 1 1 1 

176 174 141 139 140 141 
mean 14.371 15.234 16.34 
Dn max 0.036 0.07 0.056 

The critical values of the Kolmogorov Smimov test for 141 

observations are DnO. 05 = 0.1145 and Dno. 01=0.1372, whilst the 
critical values for 175 observations are DnO. 05 = 0.1031 and DnO. 01 
0.1232. 

Hence from the above Dnmax values for periods 1,6 and 9 we 
can see that all three distributions are clearly well within the accepted 
limits at both the 1% and 5% levels of significance. We have no grounds 
for rejecting the null hypothesis and therefore we can confidently accept 
that the simulated distributions are most likely LSD. 

To see what the long term effects would be of continuing the 
simulation, a further 45 periods were simulated using the same NBD 
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demand streams to give a total of 60 simulated periods. The loge 
histogram obtained after this period is shown below in figure 9.10 

Figure 9.10 

> 
C. ) 

V 

loge demand volumes 

It can be readily seen from the above that in the long run the 
distribution retains the characteristic shape of a normal distribution. 

9.2 Simulation variations 

From the foregoing we have shown that by using simulation 
and the models developed in chapter seven that almost identical results to 
the empirical data of 1979 can be obtained but with a lag of some two or 
three periods. This strongly supports the validity of the aggregate 
Afwedson model (Poisson-LSD/NBD) to explain the attainment of 
lognormality in demand volumes. Our attention now turns to a 
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consideration of the parameters of the distributions used in the model 
and how variations in these affected the overall results obtained. A 

secondary purpose of the considerations, here was to gain insight into any 
limiting conditions in the process at work. 

Our process model starts with the LSD, but by changing the 
single parameter 'q' a variety of forms of the LSD distribution can be 

achieved ranging from hyper-exponential to exponential in general 

shape, but it is always true reverse T shaped for all positive variates equal 
to and greater than unity. As a first consideration in this section we show 
the effect that varying 'q' has on the attainment of lognormality. Our 

second consideration focuses on the nature and form of demands for the 
individual item demand streams. In the case of the NBD model of 
demands we were concerned with changing the parameters of the 
distribution" to see what effect the variance of individual demand streams 

would have on the lognon-nal distribution. 

9.2 (a) variations in the LSD distribution. 

In the simulation above we used an LSD distribution with 

parameter 6q9 = 0.985 simply because the LSD that was fitted to the'first 

period distribution of 1979 had that parameter value. In the following 

simulations we varied the value of 'q' but kept the demand streams 

constant in the sense that the same NBD distributions I were I used to 

generate individual demand streams. In this way the various outcomes 
were due to 'q' and not any variations in individual period demands. 

The variations in 'q' used were as shown in the following table 
together with the parameters of the final normal distribution Of loge 
demands that was achieved : 
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Table 9.6 
Variation in parameter 

Parameter 'q' 0.750 0.800 0.850 0.900 
mean of distribution 
standard deviation 

3.834 
1.157 

3.920 
1.162 

3.142 
1.248 

3.430 
1.288 

Parameter 'q' 0.950 0.980 0.990 
mean of distribution 
standard deviation 

4.628 
1.438 

4.238 
1.606 

4.409 
1.595 

For simulation variations 'q' = 0.75 through to 'q' = 0.985 the 
process was consistently convergent to normality from period one to 
periods 15 with a form consistent with a normal distribution being 

obtained by around period 10 to 12. However, when 'q' was set at 0.99 the 
process appeared to start to become chaotic in behaviour. Interestingly 
the final form obtained gave a distribution that passed the Kolmogorov 
Smirnov test for normality at both the 1% level and 5% levels of 
significance, but the convergence to normality was erratic and the form 

at 15 periods did not have the convincing symmetry of the the other 
simulation runs. 

The rather irregular fonn of the distribution obtained after 15 

periods when 'q' was set at 0.995 is shown in figure 9.11 below - 
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figure 9.11 

U 

I. -. 

loge demand volumes 

When one examines the parameters of the normal distribution 

obtained after each simulation the means do not appear to follow any 
discernible pattern, but there does appear to be a strong systematic 
variation in the variance of each distribution as shown in the following 

graphs : 
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Figure 9.12 
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9.2 (b) variations in the demand streams. 

We consider two main approaches here -firstly a simulation 
with the variance of the demand streams equal to the mean, and in the 

second the variance is set very high in relation to the mean demand. 

Given the overwhelming evidence for an underlying Poisson 

process of demand it seemed logical that the simple Poisson model should 
be used as a generating model for the first case. It was reasoned that this 

would also give the advantage of trying an alternative model of demand 

quantity whilst preserving the underlying Poisson behaviour and 

simultaneously reducing the variance to mean ratio of each demand 

stream to unity. In this simulation the LSD parameter was fixed at 0.985 

so that the results would be directly comparable with previous empirical 
results and the simulation with the NBD model of demand. The 
. C--- 

frequencies used were as foHows- 

Table 9.7 
Frequencies for simulation variations 

Value frequency value 
_ 

frequencY 
1 47 11-20 25 
2 23 21-30 12 
3 15 31-40 8 
4 11 41-50 6 
5 9 51-60 5 
6 8 61-70 4 
7 7 71-80 2 
8 6 81-90 2 
9 5 91-100 1 

4 100+ 0 
Total frequency = 200 

Using the above table of theoretical frequencies 47 Poisson 
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streams were generated with a mean in the range 0.2 to 1,23 streams 

were generated with a mean of 2 etc. The convergence process is seen in 

the following diagrams by reference to the log forms in each case. The 

I st period LSD generated by the process is also shown. 

Figures 9.14 - 9.17 

> 
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The mean and standard deviation of this distribution was 4.157 

and 1.5 10 respectively compared to the 1979 actual values of 5.505 and 
1.789, so the simulated distribution parameter values fall short by some 
long way, although symmetry seems to be attained faster than with the 
NBD simulation of demand streams. Of particular significance however, 
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is the fact that the Poisson distribution does produce a similar 
convergence to a nonnal fonn. 

9.2 (c) high variance simulations. 

In this section we report the results of high variance simulation. 
As discussed earlier in this chapter, the NBD was used as the generating 
equation because of its computational convenience. In order to be 

systematic with respect to the variance of the demand streams in this 
simulation run it was decided arbitrarily to fix the variance to mean ratio 
4q' at a value of 10 for all demand streams. This value was considered 
large enough to represent a high variance demand simulation. In our 
first simulation NBD distributions were generated using the Statpack 

package. In this section NBD distributions were generated directly by 

the method described as follows. It was found that this approach gave 
more control over the choice of NBD parameters. 

NBD distributions of Predetermined means, and variance to 

mean ratios, were easily generated using the methods suggested by 
Ehrenberg (1959) and Sherbrooke (1968), using convenient recursive 
NBD formula as shown- 

P(X) a 
a) 

][1 

ax 
P(x - 1) 

We first determine P(x=O) from the relationship given by Ehrenberg ie - 

p(x=o) = (1 +m Ik )-k 

Where k is the Negative Binomial exponent. 
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'Men subsequent probabilities for values x=1,2,3, etc., for given 
means 6W and variance to mean ratios 'q' were calculated by the above 
recursion formula. The values of 'k' and'a' were calculated from the 
formula shown - 

MI(q- 1) 

a= Ilk 

For example, when m= 16 and q= 10, we obtain k= 1.7778 and a=9. 

Then P(x=O) = 0.016681 1 

Using an Excel spreadsheet all subsequent probabilities were easily 
generated to yield the appropriate NBD probability density functions and 
their respective cumulative functions. Figure 9.18 shows a typical NBD 

generated t is way- 
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0.04-- 

0.031, 

P(X) 
0.02 

0.01 

01911 bT3 579 11 15 19 23 27 31 35 39 43 47 51 54 
variate x 

Random numbers were generated and then used to select 
values of Y randomly from the cumulative distributions. This process 
was repeated until 200 individual demand streams had been generated 
with their means in proportion to an aggregate LSD distribution with 
LSD parameter. 'q' = 0.985, so that the results here would be directly 

comparable with previous simulations. The results are shown in the 
foHowing histograms. 

figure 9.18 

Negative Binomial distribution 

with mean m= 19 and parameter q= 1 

Jill 

Negative Binomial distribution 

with mean m= 19 and parameter q= 10 
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Figures 9.19 - 9.22 
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Interestingly it can be seen from this high variance simulation 
that we obtained a convergence process very similar to that using the 

simple Poisson model for demand streams. The mean and standard 
deviation obtained after 13 periods was 4.269 and 1.444 respectively, and 

Page 322 

0123456789 10 

loge demand volume 

0123456789 10 

loge demand volume 



Chapter 9 

after 21 periods of simulation the mean had growa to 4.890, but the 

standard deviation remained almost unchanged at 1.438. Ibus even after 
21 periods the parameter values fell somewhat short of the values of the 

actual data from 1979. As in the simple Poisson simulation the most 
important observation here was the fact that the convergence to symmetry 
was obtained and the stable form of the loge distribution was normal. 

9.3 Conclusions 

We have shown in this chapter that by using the Log Series 
distribution as the starting point for our simulation and then using the 
Negative Binomial distribution to simulate individual demand streams we 
can achieve almost identical results to the DAF empirical data sets shown 
in chapter six. 'Ibis strongly supports our developed model of aggregate 
demand volumes - the aggregate form of the Afwedson process, namely 
A- - 

the combined Poisson /LSD/NBD model. 

The simulation variations clearly showed that the parameter 'q' 

of Ithe starting LSD distribution does seem to markedly effect the final 

value of the shape parameter of lognormal distribution. As the value of 
4q' increases so does the value of the shape parameter 'Cr '. In turn this 

will also affect the value of 'a' for the final lognormal distribution of the 

associated usage values which indicates that as 'q' increases a greater 
proportion of the total inventory value will be accounted for by a smaller 
proportion of inventory items, ie the inventory range becomes more 
concentrated. In general the only way that the starting value of 'q' can be 
increased for an actual inventory is for there to be a larger proportion of 
low volume items. These are most likely to be the important larger value 
items and these will have a large effect on the overall concentration of 
usage values in the total inventory. 
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The simulation variations also showed that the variance of 
individual item demand streams does not appear to affect the overall shape 
parameter 'cr ' of the final lognormal form obtained. Both the simple 
Poisson demand streams and the high variance NBD streams gave very 
similar results. This was a surprising finding because intuitively it seemed 
a fair bet that the demand stream variance would have a strong affect on 
the final lognormal distribution in some way. This would further suggest 
that the actual nature of the demand streams does not have a marked affect 
on the long run stable form of the system. Hence the demands could 
simple Poisson, NBD, Stuttering Poisson, or other modified Poisson 
forms. 

Even though we only used limited simulations runs for each of 
the variations chosen the results were consistent and corresponded very 
closely to the forms of the empirical distributions of chapter six. Given 

the high degree of consistency we obtained the associated sampling error 
was not therefore a cause for concern. Hence we feel that given the 

purpose of simulation in this work, ie validation, then the considerable 
time investment required for more extensive simulation runs to achieve 
statistically significant results would not have been productive. 
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Supplementary Empirical Studies 

10.0 'Introduction 

In-this chapter we present some empirical studies on a variety of 
spare parts systems from' different product markets and operating 
environments. The purpose of these limited investigations was to test the 

validity, or otherwise, of the features of the models developed in previous 
chapters. In particular because the previous empirical work and derived 

theory was based primarily on one company it was necessary to show 

empirically that the theory would transfer to other systems, even though 

the simulation studies showed that theoretically this should be so. The 
investigations are based on systems representing aircraft, lift gear, car, 

and bicycle spare parts. The general criteria set for the selection and use of 

any additional company data was it should be from a spare parts inventory, 

and the ultimate consumer demand for such items should be randomly 

generated from many independent sources; thus generally satisfying the 
broad conditions of a Poisson process. 

10.1 Dan Air Spares Systems. 

In 1984 Dan Air, the UK based airline company, were operating a 
fleet of approximately 50 aircraft to support its scheduled airline business. 
The majority of its fleet was Boeing aircraft comprising 707,727 and 737 

stock. Engineering services, including all spare support, was based at 
Lasharn in Hampshire. The author visited the site in the summer of that 

year and collected data on spare parts usage for the current and previous 
four years: all data being held on stock cards. ['Ibe stock cards covered a 
five year period, so whilst data was being collected for the current year 
the demand for the previous four was also noted down. This proved to be 

of particular value as will be appreciated in the following sections]. The 
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spares kept at Lasharn were divided into two main groups -rotatable repair 
parts (approximately 15,000) and consumable spare parts (approximately 
78,000). Because of the rather special nature of rotatable sp'ares and the 
highly regularised aircraft maintenance schedules it was decided to 
concentrate on the consumable spares. It was felt that the nature of demand 
for rotatable parts would not be true Poisson in character, because most 
are withdrawn from service at preset intervals, and then serviced, long 
before failure is likely occur. Hence in the main they are not true failures 
in Poisson terms. 

It was reasoned that consumable spares are more likely to reflect a 
random demand situation. In general they are replaced as needed9 
although the demand for many such items will correlate with rotatable 
spare replacements. Because of the vast number of stock cards involved a 
simple random number process was used to select a card from the many 

rows of cards in the card bins on the basis of location, ie by bin number 
and then position in the bin. This was a very laborious and time consuming 
process, but eventually some 165 usable parts data were selected and the 
demand values logged down. 'Ibe parts price data was as given on each 
card and in theory was supposed to be the latest known price. If any card 
looked suspicious in this respect, ie. it looked like an old price not updated, 
then it was rejected. However, the consistency of the price data (ie all 
current prices) could not be guaranteed over all selections. Many cards 
also had to be rejected because there had been no demand movement for 

several years. 

10.1 (a) testing for the log series distribution 

In the initial analysis we tested the annual aggregate demand 

volumes for years 1980 to 1983 for lognormality. The histograms and 
frequency tables for all values > or =1 for each year are shown in table 
10.1 below: 
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Table 10.1 
DAN Air annual demands 

Value 
range 

1980 1981 1982 1983 

1-10 89 93 98 112 
11-20 14 16 16 8 
21-30 7 5 5 8 
31-40 3 3 5 3 
41-50 1 2 4 3 
51-60 2 2 2 3 
61-70 1 2 1 2 
71-80 1 1 0 2 
81-90 3 1 1 0 
91-100 0 0 2 1 
100+ 8 6 4 7 

These four yearly data sets were not lognormal in form as the 
natural logarithmic values did not give anything like a normal 
distribution. This can be seen by examining figure 10.1 for 1980 which 
was typical of each year through to 1984. This was at first a disappointing 

and unexpected result. However, the yearly data did look very much like 
the single period DAF demand volume data, that was LSD distributed; so 
tests were conducted on years 1980 and 1981 against theoretical LSD, and 
thesegave significant results at both 1% and 5% levels of significance by 
the Kolmogorov Smirnov test. The empirical and theoretical LSD 
frequencies for 1980 and 1981 are shown in table 10.2 
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Table 10.2 
DAN Air testing-'for the LSD 

Value 
range 

1980 LSD 1981 LSD 

1-10 89 88 93 92 
11-20 14 15 16 15 
21-30 7 7 5 7 
31-40-- 3 4 3 4 
41-50 1 3 2 3 
51-60 2 2 2 2 
61-70 1 1 2 2 
71-80 1 1 1 1 
81-90 3 1 1 1 
91-100 0 0 0 1 

The very close correspondence between each empirical 
distribution in table 10.2 above and the LSD is clearly evident. Given the 

strong goodness of fit evidence for LSDs it was decided to progressively 

cumulate the aggregate demand volumes over the years 1980 to 1984 

examining the aggregate loge distribution obtained at each step. The 
histogram forms that were obtained are shown in the following diagrams- 

figures 10.1 -10.4 

0 
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It was very evident from the above histograms that the annual LSD 
demand volume distributions gradually converged to a lognormal 
distribution as shown by the normal form of the logarithms. When all the 
data was considered for the complete period 1980 to 1984 the loge 
distribution showed a remarkable symmetry. This was tested for 

normality : 

Table 10.3 
Testing DAN Air data for normality 

Loge demand 
upper cell value 

1980-84 
data 

normal 
distribution difference 

0 0 1 -1 
1 3 4 -1 
2 24 17 7 
3 42 38 4 
4 47 46 1 
5 22 33 -11 
6 12 14 -2 
7 6 3 3 
8 1 1 0 
9 1 0 1 

158 157 1 

11 
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The theoretical frequency values were calculated from a normal 
distribution with mean 3.335 and standard deviation 1.4404. The actual 
Kolmogorov Smirnov statistic was Dn max = 0.071 against the theoretical 
KS test statistics of DnO. 01 =0.127 and DnO. 05 =0.108. The actual Chi 
Squared value was 11.11 against the test values X20.01 of 18.475 and 

X 20.05 of 14.067. Hence we can be very confident that the empirical 
distribution of aggregate demand volumes is most likely lognormal in 
form. Furthermore this distribution was obtained by a summation of 
independent LSD distributions. This outcome is completely consistent 
with our aggregate Afwedson process model that was developed 

previously. This aggregate model clearly applies to the Dan Air 
demand volume data, but over a longer period of time than was seen in the 
DAF systems. The question here of course is why did the process take 

place over such a long period of time. Ibe initial conclusion to this is that 
the average aggregate demand volumes are small compared to the DAF 

case, so that the rate of cumulation of demands over successive time 

periods is much slower. 

10.1 (b) examination of DAN Air price data 

The purchase price data for all parts from the data set were also 
examined for lognormality. The results are tabulated below which show 
the frequency tabulation of the loge price values together with the 
theoretical frequencies of the normal distribution with the same mean 
and standard deviation (ie mean = 1.7422 and standard deviation 2.657) - 
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Table 10.4 
Testing DAN Air prices for normality 

Loge price 
upper cell value 

observed 
frequency 

normal 
distribution 

difference 

-4 0 1 -1 
-3 7 3 4 
-2 13 7 6 
-1 16 11 5 
0 7 16 -9 
1 10 '212 -12 
2 24 23 1 
3 21 23 -2 
4 29 19 10 
5 22 14 8 
6 8 9 1 
7 3 5 -2 
8 2 2 0 
9 0 1 11 

Figure 10.5 

0 

I- 

The actual Chi Squared value for this distribution was 33-407 
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compared to the X20.01 and X20.05 values of 20.091 and 15.507 

respectively. The actual Kolmogorov Smirnov value was 0.0825 against 
theoretical test values Dno. 01 and Dno. 05 Of 0.1261 and 0.1072 

respectively. Hence on the basis of the Chi Squared test we should clearly 
reject the possibility of the distribution as being normal, although the 
Kolmogorov Smimov test does not reject the null hypothesis. In view of 
the shape of the distribution, as seen from the histogram, and the high Chi 
Squared value we would wisely accept that the sample distribution is in all 
probability not normal. Hence consumable spare prices would therefore 
not be lognormally distributed. The bi-model nature of the price 
distribution suggests the sample may comprise readings from more than 
one underlying parent population. 

From a usage value distribution point of view we could not use the 
lognormal distribution and theory to set aggregate inventory standards, 
especially as the annual demand volumes are not lognormal. The 
inventory estimates so produced by this process would have large errors. 

10.1 W Testing DAN Air data against the 
Law of Proportionate Effect 

We tested the demand volumes over the period 1980 to 1983 against 
the proposition that the Law of Proportionate Effect was the underlying 
mechanism driving demand volumes to lognormality. The method 
employed was exactly the same process as shown in chapter eight, section 
8.6, where we tested DAF data against the law. This was also consistent 

with the theory concerning the Law of Proportionate Effect discussed in 

chapter four. 146 data pairs from the DAN Air cumulative demand 

volume of the period'1980+1981 were regressed against the percentage of 

additional demand growth over the period 1982+1983. The regression 

results which follow clearly show that no relation exists between the size 
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of demand at a period t to the growth in demand after period t+l. Hence 

growth is a random proportion of demand at any point as the law predicts. 

correlation coefficient r 0.183 

coefficient of detennination R2 = 0.033 

The plot is shown in figure 10.16 : 

figure 10.6 
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We next regressed the logarithm of cumulative demand for 
(1980+1981) against the logarithm of cumulative demand for 

(1982+1983). The regression results gave the following positive results. 
z 

correlation coefficient r=0.731 

coefficient of determination R2 

Durbin Watson test DW = 1.848 

Standard error SE = 0.978 

The regression plot is shown in figure 10.17 that follows :- 
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figure 10.7 
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The positive regression equation produced from this was as 
fonows: 

109eS!, t = --0.553 + 0.714109eSi, t-1 

where Si, t is the size of demand of element i at period. 

The, regression coefficient 'b' at 0.714 was significantly greater 
than 0 but was also significantly smaller than unity. This equation should 
be compared with those obtained for the DAF data on page 289 in chapter 
eight. We can conclude that we have obtained broadly similar results here 
to the DAF case, although the correlation is not as strong. We can 
however conclude that the evidence for the Law of Proportionate Effect 
driving demand volumes to lognormality in this case is also good and it 

certainly cannot be rejected on the basis of the evidence presented here. 

1 1, 
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10.2 Moore and Large Wholesalers 

Moore and Large are a wholesaler of cycles and cycles spares and 
consurnables supplying the cycle retail industry. In 1981 they were based 

at Luton in Bedfordshire supplying around 60 retails outlets. The range 
of cycle spares stocked at the time amounted to some 2,000 individual 

parts items. This was however, a very fluid number due to the quick 
obsolescence of some items and the company's policy of taking on new 
'fashion' items fairly quickly. The spares ranged from consumable items 

such as tyres, tubes and brake blocks, replacement components such as 
gear mechanisms, wheels and fork sets, to impulse purchased items such 
as frame transfer sets, drinking bottles and horns. This latter group of 
items were not spare parts in the generally accepted sense of wear and 
repair items. However, they only constituted about 5% of the item range. 

This author was given the opportunity to take a data sample from a 

computer. print out listing the annual parts sales and purchased parts prices 
for the entire range of parts sold during 1981. The inventory range type 
and demand characteristics fitted the general criteria set for data selection, 
so a sample of 200 items were randomly selected for data analysis. This 

was a one off data sample and no further data was obtained from the 
company. In view of this annual demand volume, parts prices and annual 
parts usage values (sales turnover) were subjected to analysis for 
lognormality. The results of this are summarised below in both graphic 
and tabular forms. 

10.2 (a) cycle spare prices distribution. 

The fonn of the loge distribution for cycles spares prices is shown 
in figure 10.8 which follows and table 10.5 from which the form of the 

normal distribution is evident. 
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figure 10.8 

0 

loge price values 

Table 10.5 
Normality test on Cycle Parts prices 

Loge price 
upper cell value 

observed 
frequency 

normal 
distribution 

difference 

-4 0 0 0 
-3 1 0 1 
-2 4 2 2 
-1 17 22 -5 
0 43 38 5 
1 61 62 -1 
2 48 52 -4 
3 62-1 18 3 
4 5 5 0 
5 1 1 0 
6 0 0 0 

This distribution gave an actual 

X 2() 
(), _ comnared to % of 9.488, and 

Chi Square value of 4.767 

D-nj of 13.277. This highly t2( 

significant result together with the high degree of symmetry of the log 
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histogram would strongly support the view that the parts prices are most 
likely to be lognormally distributed. 

10.2 (b) demand volume distribution. 

The distribution of demand volumes for a one year period are 
shown below in table 10.6 and in figure 10.9 

figure 10.9 

r. 
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Table 10.6 
Testing M&L demand volumes for normality 

Loge volume 
up er cell value 

observed 
frequency 

normal 
distribution 

difference 

0 0 1 -1 
1 0 2 -2 
2 3 5 -2 
3 17 13 4 
4 34 26 8 
5 42 39 3 
6 39 43 -4 
7 25 35 -10 
8 23 21 2 
9 12 10 2 

10 6 3 3 
11 0 1 -1 

201 199 2 

This distribution gave an actual Chi squared value of 11.028 

compared to X2 0.05 of 16.919, and X20.01 of 21.667. The mean value 

was 5.326 with a standard error of 0.128 and standard deviation at 1.814. 

A Kolmogorov Smimov 'non-nality' test produced a significance level of 
0.166, which was well within the 0.01 and 0.05 levels. Thus we have 

strong evidence to support the view that demand volumes are 'normal' in 
form. 

10.2 (c) usage value distribution 

Given the fact that the above evidence strongly supports 
lognon-nality for both prices and demand volumes then it follows that 

usage values should also be lognormal. However, this was put to the test as 
shown below to verify the theoretical prediction. 
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figure 10.10 

0 

l) 

Table 10.7 
Normality test on M&L Usage values 

Loge usage value 
upper cell value 

observed 
frequency 

normal 
distribution difference 

1 0 1 -1 
2 1 3 -2 
3 13 8 5 
4 18 19 -1 
5 36 32 4 
6 38 41 -3 
7 36 40 -4 
8 29 30 -1 
9 17 16 1 

10 9 7 2 
11 3 2 1 

0 1 -1 
200 200 0 
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This distribution gave an actual Chi squared of 2.001 compared to 
X20 

. 05 Of 11.070 and X20.01 of 15.086. The mean of the distribution was 
5.910 with a standard error of 0.133, and the standard deviation at 1.874. 
A Kolmogorov Smirnov 'normality' test gave a highly significant test 
level of 0.290. Hence the grounds for accepting this distribution as 
'normal' are very strong. ' 

10.3 John Cheng Lift Gear. 

J. Cheng is a company based in Singapore. They produce small 
stacker trucks and various small industrial lift gear and hoists for sales 
mainly in the ASEAN market. The company has some 25 different 

products in its full range and these are supported by a spare parts range of 
around 2000 items for the service and repair requirements of 
previously sold products. The data analysed here was provided to the 
author by one of his students, who conducted a study of the company's 
stock control policy in the summer of 1984, for his MSc thesis (Tan 
1984). The inventory range and demand character satisfied our general 
criteria for data selection and analysis. 200 parts were selected at random 
from the spare parts range covering a demand period for the previous 12 

months. r1be analysis of aggregate demand volumes, parts prices and usage 
values are shown below. In each case the data is shown in histogram form 

then tabulated against the corresponding normal distribution with the 
same mean and standard deviation. Chi Squared and Kolmogorov 
Smimov 'nonnality' tests were carried out in each case. 

10.3 (a) demand volume data. 

The histogram for the demand volume data is shown in figure 10.11 : 
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Figure 10.11 

I) 

loge demand volumes 

Table 10.8 
Normality test on Cheng demand volumes 

Loge demand vol. 
upper cell value 

observed 
frequency 

normal 
distribution 

difference 

-1 0 1 -1 
0 0 2 -1 
1 13 8 5 
2 -)0 23 -3 
3 39 39 0 
4 51 48 3 
5 47 49 -2 
6 20 26 -6 
7 16 10 6 
8 2 3 -1 
9 0 1 -1 

10 0 0 0 
208 210 -1 
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This data gave a mean of 3.615 with standard error of 0.109, a 
standard deviation of 1.569. The actual Chi Squared value was very small 

at 4.868 compared to the theoretical values of X2 0.05 and X2 0.01 Of 
9.488 and 13.277 respectively. The Kolmogorov Smirnov non-nality test 

was also very significance level at 0.273. 

10.3 (b) Cheng parts prices 

Cheng prices were also checked for lognormality as shown in the 
following figure and table 10.9. 

figure 10.12 

I. ) 
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Table 10.9 
Normality test on Cheng parts prices 

Loge prices 
upper cell value 

observed 
frequency 

normal 
distribution 

0 difference 

-2 2 2 0 
-1 14 8 -1 
0 14 19 -5 
1 34 35 -1 
2 40 44 -4 
3 52 43 9 
4 32 31 1 
5 13 17 -4 
6 2 7 -5 
7 5 2 3 
8 0 0 0 

208 208 

The 208 parts prices sampled gave a mean and standard deviation 

of 1.916 and 1.822 respectively. The actual Chi Squared value was 9.942 

compared to the theoretical values of X2 0.05 and X20.01 hence we can 
confidently expect that prices are lognormal 

I 

10.3 (c) Cheng usage value distribution 

The frequency histogram of the usage value data was as shown 
below. This distribution has a mean and standard deviation of 5.531 and 
1.809 respectively. The theoretical frequencies used in table 10.10 were 
calculated using these same mean and standard deviation values. 
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figure 10.13 

Table 10.10 
Normality test on Cheng Usage value data 

Loge prices 
upper cell value 

observed 
frequency 

normal 
distribution 

difference 

0 0 0 0 
1 2 1 -1 
2 7 4 3 
3 13 12 1 
4 19 24 -5 
5 36 37 -1 
6 38 48 -10 
7 52 39 13 
8 31 25 6 
9 5 12 -7 

10 3 4 -1 
11 1 1 0 
12 0 0 0 

207 207 -2 
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The actual Chi Squared value was 15.497 compared to the 

theoretical values of X20 
. 05 and X20.01 of 12.592 and 16.812 respectively. 

From the above tabulations and Chi Squared values we can see that the 
both the loge distributions of prices and demand volumes are very 
significant at both the 1% and 5% levels. The distribution of usage values 
does fail the Chi Squared value at the 5% level, although it is acceptable at 
the 1% level. If this distribution were being considered in isolation it 

would possibly be rejected as a normal distribution, or at best accepted 
with caution and other evidence would be sought to support the normality 
hypothesis. However, in the case here there is strong evidence in favour of 
lognormality for both the component parts of demand volume and prices 
and we have the stochastic evidence of the previous chapters to support the 

expectation of lognormality in such a system. [Although in truth we cannot 
really admit this-as strong support, because it is this very theoretical model 
we are seeking additional support for by this analysis]. So we must be 

content here to say that the product of two lognormal distributions must 
itself also be lognormal; then we can accept that in all probability the 
distribution of usage values in the case of the J. Cheng data is also 
lognonnal. 

10.4 DMC Limited. 

In 1982 DMC Ltd. was a small Cyprus based dealer selling Lancia 

and Honda cars. They also provided full spares and service support for 

all models previously sold in the Cyprus market. The company 
maintained a stock level of some 6,000 different parts for the Honda cars 

and in addition some 8,000 parts lines for the Lancia models. This 

company and its inventory data was particularly valuable to the present 

study because it operated such crude stock control methods and records. 
Very rudimentary stock control was essentially all done manually using 

stock record cards giving access to individual parts usage data over 
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several years of operation. This is quite unusual in the motor industry in 

the 80's as some form of computer control is now almost universal in a 
spare parts environment. The access to data on stock cards gave the 
valuable opportunity'to study demand rates and particularly times between 
demands for selected parts, and hence an opportunity to test for Poisson 

occurrence of demand and compounding of demand. 

Given the crude methods of controlling stock not surprisingly the 
company was very overstocked on spares holding. Annual sales of all parts 
in 1981 was E110,000 and the value of the parts stock at year end was 
E135,000 giving a stock turnover ratio less than one. 

A 200 item sample of annual sales data was extracted from annual 
sales records for the purpose of examining the annual usage distribution. 
The rest of the analysis was confined to examining individual item demand 

rates. 

10.4 (a) usage value distribution 

Table 10.11 

, 
Normality test on DMC Usage value data 

Loge usage values 
up er cell value 

observed 
frequency 

normal 
distribution 

0 difference 

-2 2 1 1 
-1 7 5 -1 
0 14 14 0 
1 25 27 -2 
2 35 38 -3 
3 42 42 0 
4 32 35 -3 
5 28 22 6 
6 12 10 2 
7 2 4 -2 
8 0 1 -1 

199 199 -3 
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The theoretical frequencies were calculated from a normal 
distribution with the same mean and standard deviation as the empirical 
distribution (ie x=2.310 and s=1.861). The actual Chi Squared value 

was 5.145 compared to theoretical values of 12.592 and 16.812 at 5% and 
1% levels of significance respectively. The distribution also passed the 
Kolmogorov Smirnov test at the 1% and 5% levels of significance. Given 

these test results and the high degree of symmetry of the loge histogram as 

shown below, then we can be confident in accepting these usage values as 

most likely lognormal. 

figure 10.14 

C. ) 

V 

V 

10.4(b) demand analysis. 

This analysis was carried out to examine the occurrence of demand 

by measuring the time between demands, and the distribution of the 

quantity of demands. We were anxious to see if the Poisson distribution 

was appropriate for motor component spares and to see what 
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compounding, distribution might be affecting demand quantities. To 

achieve thiS analysis care had to be taken when selecting appropriate spare 
parts items. A sufficiently long demand period was required with very 
little trend evident in the sales, as far as could be ascertained from the 
stock cards. Also, it was necessary to remove the effects of multiple 
customer purchases on any one day; so in general it was the slow moving 
parts that met the necessary requirements due to the very low demand 

rates that could be measured from the cards. 

(i) part no. 2280053 Clutch unit (expensive low volume wear part) 

The stock cards over a four year period were examined for the 
above part and the time between consecutive demand occurrences ( in 
days) were determined by counting days between dates on the stock cards. 
The frequencies are summarised in the table below together with the 
theoretical frequencies for a negative exponential distribution with the 
same mean value. The last four complete year demands were 35,38,18, 

and 29 from which we deduce that the overall demand trend was 
reasonably constant, at least sufficiently so for our present purpose. 

Table 10.12 
Negative exponential distribution test on DMC data 
Time between 

demands ( 
observed 

distribution 
theoretical 
distribution difference 

1-5 70 64 6 
6-10 28 30 -1 

11-15 14 14 0 
16-20 1 7 -6 
21-25 3 3 0 
26-30 1 1 0 
30+ 0 2 1 -2 

117 121 11 
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The very close correspondence between the theoretical 
distribution, and the empirical distribution is very evident from the above 
tabulation. This was a most re-assuring finding after counting through 
four years worth of stock card data. Using a Kolmogorov Smirnov test we 
obtained significant test results at both 1% and 5% levels of significance. 
The mean of the distribution was as shown at 6.632 from which we can 
derive the mean of the associated Poisson mean of demand occurrences. 
The mean of a negative exponential, interevent distribution is the 

reciprocal of the Poisson occurrence mean (basic theory of Poisson 

processes, see chapter five). Hence the mean occurrence of demand is 

therefore 1/6.632 =0-151 occurrences per day. 

Next we considered the distribution of the number of demands on 
each demand occasion for this same part number. This was as follows in 

table 10.13 : 

Table 10.13 
Testing for demand compounding 

Number of frequency 
demands 

1 122 
2 6 
3 3 
4 1 

As would be expected for demands at the retail level the amount of 
compounding is very small, most of the demands are for a single unit. 
From the theoretical discussion of chapter five we saw that the favoured 

models for compounding, in the lumpy demand environment, were the 

geometric distribution (leading to the Stuttering Poisson distribution) and 
the Log Series distribution (leading to the integer NBD model). The data 

in the table was tested against both distributions to see if either could 

explain compounding. The fitted theoretical and empirical frequencies 
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are shown below in table 10.14 for a LSD parameter value 'q' of 0.15 and 
a distribution mean of 1.11. 'Me geometric parameter 'P' was calculated 
from the empirical mean from P= I/mean as shown chapter six. 

Table 10.14 

Fitting the LSD & Geometric distributions to DMC data 

number of empirical LSD Geometric 
demand frequencies frequencies frequencies 

1 122 122 116 
2 6 8 14 
3 3 1 2 
4 1 0 0 

It can be seen that an almost exact fit was obtained between the 
empirical data and the LSD, whereas the Geometric distribution gave an 
inferior closeness of fit. This is a limited data set so one could not draw 

very strong conclusions regarding the efficiency of one or the other of the 
two distributions, but on the evidence so far the LSD looks the better 

candidate. Hence from the foregoing we have very promising but limited 

evidence that the Afwedson model (Poisson occurrence and LSD 

compounding of demand) is a very good fit to the above demand data over 
the four year period for the clutch unit, where-as the Stuttering Poisson 

might well be a candidate with different compounding parameterValues. 

We next attempted to fit a NBD to all demands in the four year 
period including days of zero demand. We calculated P(O) for the NBD 
first by assuming 1,040 working days in the four year period, then 
knowing that there had been 132 days on which a demand occurred, we 
could deduce that the days of zero demand were 908. 

Hence P(O) = 908/1040 = 0.8731 
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Subsequent probabilities were calculated as shown in chapter eight 
using the recursive NBD f6imula: 

NO a 1- Pr-l 
a)][ ar 

where W is the mean of the distribution. 
The exponent 'k' was calculated from 

MI(q- 1) 

ý. where q =variance /mean ratio and a= Ilk 

Now from the calculated mean of 0.1413 and variance 0.1599 the 
theoretical NBD frequencies were determined and compared with the 
empirical frequencies as shown in table 10.15 : 

Table 10.15 

NBD test of DMC demand data 
Number of 
jemands 

empirical 
distribution 

NBD 
distribution 

0 908 908 
1 122 128 
2 6 17 
3 3 2 
4 1 1 
5 0 0 

The very close correspondence between the distributions is evident. 
We can deduce from this, so far, that certainly for this particular spare 
part demand occasions are Poisson, the individual demand quantities are 
LSD and the overall distribution of demand quantity, including the zero 
demand occasions is NBD. Hence these are all the conditions for the 

Page 353 



Chapter 10 

Poisson LSD -NBD model, ie Afwedson model, but applied to a single 
item. 

(ii) Other parts interevent distributions 

We determined the interval between demands for two other parts- a 
water pump (medium price, high volume), a gasket set (moderate 

volume, low price). In both cases there was almost no compounding of 
demand as each demand occasion observed from the stock cards was for 

single units. The distribution of days between demands was determined as 
before by counting days between demand dates on the stock cards. Both 
distributions are summarised together with the theoretical frequencies 
from the corresponding exponential distributions- 

(a) gasket set 

Table 10.16 

Testing for the exponential distribution 

Time between 
demands (days) 

observed 
distribution 

exponential 
distribution difference 

1-10 28 29 -1 
11-20 21 20 -1 
21-30 16 12 4 
31-40 5 7 -2 
41-50 2 4 -2 
51-60 3 2 1 
60+ 2 3 -1 

77 77 -2- 

(b) water pump - 

The tabulation follows in table 10.17 
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Table 10.17 
Testing for the exponential distribution 

Time between 
demands (days) 

empirical 
distribution 

exponential 
distribution difference 

1-5 70 60 10 
6-10 28 28 0 

11-15 14 14 0 
16-20 1 7 -ý-6 
21-25 3 5 -2 
26-30 1 3 -1 
31+ 4 4 0 

In both cases of the above parts the evidence for a negative 
exponential interevent distribution is good and hence the counting 
distribution of demand occasions in a fixed interval will be simple 
Poisson. 

(c) additional compound distributions 

We consider here two additional parts (an oil seal and a dust cover) 
both of which showed considerable compounding in the units demanded. 
Using the stock cards we determined the quantity demanded at each 
demand occasion for both parts over a four year period. The data was 
then examined to see which of our two theoretical distributions might 
give the superior fit to the empirical observations. 

Table 10.18 

Validating LSD &Geometric distributions 

Number of, 
demands 

observed 
distribution 

Geometric 
distribution difference 

LSD 
distribution difference 

1 249 241 8 249 0 
2 35 50 -15 42 -7 
3 12 10 2 10 2 
4 6 2 4 2 4 
5 2 2 0 0 2 
6 0 0 0 0 0 

304 305 -1 303 1 
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The theoretical distribution parameters for the above tabulation 
were- LSD parameter 'q' = 0.85 and Geometric parameter 'p' 0.7938 = 

Table 10.19 

Validating the LSD and Geometric distributions 
against the dust cover demand data 

Number of 
demands 

observed 
distribution 

LSD 
distribution difference Geometric 

distribution difference 

1 142 143 -1 162 -20 
2 96 61 35 86 10 
3 35 35 0 45 -10 
4 23 22 1 13 10 
5 10 15 -5 6 4 
6' 8 11 -3 3 5 
7 0 8 -8 2 -2 
8 4 6 -2 1 3 
9 0 4 -4 1 -1 

10 1 3 -2 1 0 
11 1 3 -2 0 1 
12 0 2 -2 0 0 
13 0 1 -1 0 0 

320 314 6 320 0 

The theoretical distribution parameters for the above tabulation 
were - LSD parameter 'q' = 0.34 and Geometric parameter 'P' = 0.4692 

In table 10.19 the data fit favours the Geometric distribution over 
the LSD in this particular case on the basis of the randomness of fit and 
the overall closeness of fit. The systematic run of negative differences in 

the case of the LSD fit is not a good sign. This generally indicates a 
wrongly fitted model in the first place. In table 10.18 the data looks a 
marginally better fit to the LSD distribution because the actual magnitude 
of the departures are smaller than with the Geometric fit, although the 
overall closeness of fit is the same in both cases. 
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10.5 Conclusions 

The data sets examined here have enabled us to at least verify a 
number of aspects of the work of previous chapters. In particular the Dan 
Air data has shown all the characteristics of the aggregate Afwedson 

process that was seen in the DAF system, but the empirical demand 

volume data only converged to this model over a several year period. This 

was almost certainly due to the much lower overall level of demand 

volumes in the DAN Air case compared to DAF Trucks. We must also 
take into account that the Dan Air data is from just one operator holding 

spares for their aircraft own fleet consumption. In contrast DAF is the 
distributor level for a system of retailers selling spares on to a vast 
number of operators. The results of the analysis of the Dan Air data show 
that the lognormal distribution could not be used to set aggregate 
inventory standards in a short period, or even annually, because of the 

poor fit of annual demand volume data to the lognormal. The price 
distribution was also a very poor fit to the lognormal. We suspected that 
the price data was very out of date, and comprised values drawn 

effectively spanning'several years. In table 10.20 which follows we give 
an estimates of the lognormal parameters for DAN Air for comparison 
with the other systems described in this chapter. To produce these 
estimates we made a very crude estimation of the likely distribution of 
DAN Air prices if they had all been from the same time period. The 

estimation is based on the normal curve drawn against the DAN Air price 
histogram as shown in figure 10.15 on page 360. 

The Moore and Large and J. Cheng data sets confirmed the 

expectation that usage values in such systems were lognormal. We were in 
fact somewhat surprised to find the cycles spares data to be such a good fit. 
It was assumed prior to the analysis that such a spares environment would 
not behave like traditional replacement parts due to the likelihood of 
major differences in the way and manner that demand for cycle spares 
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tend to be generated. That is by whim or fashion depending often on the 
attitudes of parents and children to cycle repairs and ýupgrading. The 

products are also sold into a traditional consumer market. 

The DMC data sets were very valuable simply because the company 
operated such a crude stock control system. This gave access to rather 
unique data on stock cards, that showed the individual demands day by day 

over a four year period. Hence it enabled the analysis to be undertaken on 
the distribution of individual order quantities and thus to examine the 
form of the compounding distributions. On the basis of this analysis the 
LSD looked a superior fit to the Geometric distribution and this strongly 
supported the use of the NBD as the appropriate cbmpounding model. 
However, because the analysis was limited to just a small number of parts 
we could not draw any strong conclusions regarding which of the two 
distributions would be appropriate in a given situation. We- did draw 

sufficient confidence that either the sP or the NBD would suffice in our 

simulation studies reported in chapter nine. This is an area, that requires 
further research to discern the conditions that favour one or the other 
distributions. The DMC data also gave an opportunity to examine for the 

existence of the negative exponential distribution for the time between 

orders and we were able to show a good fit of the data to this distribution 

hence supporting the existence of a Poisson process and the occurrence of 
Poisson demand in unit time periods. 

In table 10.20 below we summarise some key parameters from the. 

usage value analysis of the five spare part systems we have investigated. 
'I'lie degree of concentration in these systems is measured by the value of 
a but we have also shown the proportion of activity accounted for by the 
top 20% of items. When the equipment is very complex, such as with 
aircraft and trucks, the range of spares to support the service 
requirements are commensurately very large. Typically such ranges 
include a very large number of small value items, usually a few pence, 
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and a small number of very high value items, often thousands of pounds. 
In these circumstances, and due to this effect, the concentration is often 
very high as we have seen with DAF and DAN Air. On this basis we were 
somewhat surprised to see the Moore and Large cycles spares 
concentration to be as high as 1.874, although on reflection we could see 
that it was really the very high volumes of moderately priced items that 

added to the concentration in this case. A further generalisation that one 
can make is that as one moves from the manufacturing level to, the 

wholesale level then the degree of concentration tends to decrease. [Ibis 

was observed by RG Brown way back in 1959]. We have seen this effect in 
DAF Trucks when in 1980 the concentration as measured by a at the 
Distributor level was 2.501 whilst the average dealer level was around 
2.250 at the same time. 

'Me single main conclusion we draw from the additional empirical 
work presented in this chapter is that these datas show DAF parts demand 

are in no way special, in the sense of displaying unique stochastic features 

not seen elsewhere. The features and characteristics we have seen and 
presented from the DAF analysis can be seen in these additional studies in 

varying degrees from system to system. In particular the short period 
demand volume being LSD/NBD distributed. Individual demand volume 
streams appearing either NBD or Stuttering Poisson distributed. Usage 

values, prices and volumes (conditional on the time period) all 
lognormally distributed. We are therefore confident that all our theory 
development and modelling work from the DAF environment is 

applicable to a very wide variety of spare parts environments. 
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Table 10.20 

Summary of parameters for systems studied 

System type of location shape concentration number of 
spares parameter parameter ratio (top 20% spares in range 

items activity) 
DMC ltd Cars 2.310 1.861 82% 14000 

John Cheng Lift Gear 5.531 1.809 80% 2000 
DAN Air Aircraft 5.835 2.305 93% 78000 

M and L ltd Cycles 5.910 1.874 84% 2000 
DAF Trucks l Truck 1 5.203 1 2.313 1 93% 1 12500 

_j 

Year to which the data relates - 

DAF Trucks 1985 
Moore and Large 1981 
John Cheng 1984 
DNIC iJ 1982 
DANAir 1984 

figure 10.15 
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Pareto Concepts, Usage Values and 
Concentration of Econometric Variates 

11.0 Introduction. 

This chapter examines the origin and development of the well 
known Pareto concept and traces the misapplication of this name to 
inventory categorisation procedures. The concept of concentration of 
value in certain econometric variates is also examined together with a 
critical consideration of the so called link of Pareto analysis, as applied to 
inventory systems, with the log-normal distribution of inventory item 

usage values. We then consider the form and occurrence of Lorenz curves 
and show that any skewed data set can form such distributions. This 

chapter has partly been a reflection and development from what has been 

presented so far; it also provides valuable literature reviews and concepts 
that underpin some of the development work of the next chapter. This is 
largely the reason for position of this chapter in the thesis. 

11.1 Concentration and the Pareto concept 

It is now. widely recognised in the field of inventory management 
that the value invested in most inventories will be disproportionately 

spread amongst the range of items. In almost all cases a large proportion 
of the value will-be vested in a small portion of the items. The same 
phenomenon arises when we look at the value turned 9ver during some 
period across an inventory range. That is to say that period usage values 
are frequently disproportional in the sense that a few items account for the 

majority of the value turned over in a given period. Almost every modem 
text on Production or Inventory Management now discusses this 

phenomena and its practical value to inventory management. 'Me process 
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of presenting inventory usage data in the cumulative curve form is 
frequently referred to as ABC analysis, 80/20 analysis, or Pareto analysis. 
A typical ABC plot is shown in figure 11.1 shown below. 

figure 11.1 
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80 
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Cumulative % items 

The use of this methodology for the categorisation of inventory 

ranges into specified value groups -often arbitrarily three named A, B 

and C groups- is now an established part of inventory management 
practice. The term 80/20 analysis stems from the often observed fact that 
20% of the items account for 80% of the value. Discussions of this 
technique are to be found in most standard Operations management texts, 
for example, Lockyer (1972), Constable and New (1976), Loomba 
(1978), Wild (1979), Lewis (1975,1981), Peterson and Silver (1979), 

and Bestwick and Lockyer (1982); and more recently Krajewski and 
Ritzman (1987), Bennett et. al. (1988), Schroeder (1989), Chase and 
Aquilano (1989), and Nahmias (1989). Indeed no standard Operations text 

would be complete without some reference to the methodology. 
Unfortunately most, in the main, just repeat the technique in its original 
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form , with discussions on the criteria for, choosing categories and 
methods of presenting the information., A small number of authors who 
have attempted to develop and extend the basic ABC principle have 

referred to the fact that inventory period usage values can be 

satisfactorily represented by a lognormal distribution. The value of this 
development and the link with lognormal distributions, if one does exist, 
is on the grounds that the properties of the lognormal distribution (as 
discussed in Chapter two) enable valuable aggregate inventory 

calculations to be made. The extension of the ABC concept to link with the 
lognormal distributions has been mentioned by Lockyer (I 972), Van Hees, 

and Monhemius (1972), Bestwick and Lockyer (1982) and Peterson and 
Silver (1979 and 1985). The views expressed in these references stem 
from Brown's original work and claims (1959 &1963) that period usage 
values are lognormal distributions. In his various works Brown (op cit) 

presented empirical evidence of inventory period usage values that can be 

modelled by lognormal distributions. However, what seems to have gone 

unnoticed by some of the authors who followed Brown was that his 

published empirical studies were all on spare parts inventories. As we 
have seen from our earlier discussions the demand processes for spare 
parts are almost always independently derived from a vast number of 
independent customers. 'Ibis is one of the main requirements for a Poisson 

process to be in operation. We now argue that this is a critical factor in any 
direct link between the lognon-nal distribution and the Pareto distribution. 
In fact,, as will be shown here whereas almost any inventory range can be 

described in ýcumulative curve forms of the classical Pareto type only 
certain kinds of inventory can be modelled by a lognormal distribution, 

ie those for whom the underlying demand is Poisson in nature. Hence the 
link between the two distributions is not, a direct one and therefore the 

occurrence of one distribution in an inventory is not a direct consequence 
of the other distribution as implied in some sources 

The precise nature of the systems measured by Brown are not given 
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much prominence and the casual reader might well assume from Brown's 

work that the use of lognormal distributions can be applied to many types 
of inventory items. In the text references of Van Hees and Monhemius, 
Peterson and Silver and Lockyer and Bestwick, previously cited, it is not 
at all clear if the inventories considered are production/purchased 
inventories, in-process inventories or finished stock inventories. More 

specifically it is not clear if they are inventories for which the derived 
demand is Poisson in character. Lockyer and Bestwick cite the use of the 
Pareto concept in terms of a variety of production management 
applications and go on to say: - 

"The lognormal distribution adequately represents the Pareto 

curve and therefore lognormal probability paper may be used to 

good effect in Pareto analysis exercises" 

In their text Magee and Boodman (1967 ) say: 

"The Pareto curve as applied to inventories is a 
lognormal curve". 

It would be easy to assume from these works that the many quoted uses of 
the Pareto concept to production inventories could be extended also to 
the use of the lognormal distribution in these cases. This author contends, 
based on our work and conclusions here, that this is only so if the 
inventory-in question has been generated to meet the requirements of an 
independent demand system, such as that produced for spare parts; ie 

where a Poisson process is operating. Strong evidence for this stems 
from the work of a number of authors. Heron, for example, has published 
a number of articles on the use of the lognormal distribution in estimating 
aggregate inventory *standards. In his publications of (1974,1978, and 
1981 [in Wild ed] ) he based his work and practical applications of the use 
of, the lognormal distribution on the Wan-ndot inventory given by RG 
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Brown (1963 & 1967). This is an inventory of 35,000 spare parts held for 
heating and ventilation equipment. In his article (1976) Heron refers to 
three inventory ranges, the Warmdot inventory, the Transpo inventory 
(which comprises 29,000 spare parts for transportation equipment) and 
the Sureship Wholesale inventory (11,000 items of unspecified type). 
These are no doubt fictitious company names, but the data is certainly 
from real companies, who Brown and Heron have had contact, with for 

research or consulting purposes. In the publications by Schary and 
Howard (1970) and (1971) in which the lognormal distribution is again 
applied to various practical calculations on aggregate inventory estimates 
the precise nature of the relevant inventories are not specified, but the 

clear implication is that the work is presented in the context of finished 

goods inventories for which it is reasonable to assume that the demand is 
independently derived from many customers. 

It is clear that the disproportionality principle applies to most if not 
all inventory situations and from previous work it is apparent that usage 
values can, in some cases, be modelled by lognormal functions. What 

seems to have gone unanswered is the form of the distribution of usage 
values in those cases where lognormal functions are not appropriate. 
Furthermore there is no reported research in the inventory literature into 

the'cause'of the underlying stochastic nature of the disproportionality of 
inventory usage values, nor into the stability of the distributions obtained. 
This is quite contrary to the work that has gone on in other fields into the 
disproportionality effects of many economic variates. 

11.2 Historical development of the concentration principle. 

'llie disproportionality, or concentration, of a number of other 
economic variates, such as the distribution of firm sizes, the number of 
employees in firms within an industry and the distribution of wealth and 
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income, has been recognised for many years and seems to stem from the 
pioneering work on income distributions by Vilfredo Pareto (1897), 

where he showed that in many economies the wealth of the nation was 
concentrated in the hands of a relatively small proportion of the 
population. Following Pareto's work a number of authors have shown 
that income distributions can also be modelled by lognormal models 
Kapteyn (1916), Kapteyn and Van Uven ( 1916 ), Gibrat ( 193 1) and more 
recently Lydall (1959) andMatcher (1968). 

Parallelling the -work on income distributions, but starting much 
later, is the recognition that the sizes of business enterprises in most 
industries are disproportionate; that is there exists a small number of very 
large firms and a large number of comparatively small ones. The 
literature is rich in the study of the growth and concentration of firm sizes 
and a particularly fertile period occurred between the early 1950's until 
the mid 70's. The major efforts during this period seemed to be to 
discover the underlying stochastic mechanisms providing the impetus for 

growth and concentration; and with finding theoretical distributions that 

satisfactorily, fit the observed empirical firm size distributions found in 

various industries. In particular, valuable work has been published by 
Adelman (1958), Steindle (1965), Simon H. A. (1955), Ijiri and Simon 
(1964), Hyman and Pashignan (1962), Ijiri and Simon (1967), Samuels 
(1965), Quandt (1966), Mansfield (1962), Simon and Bonini (1968), 
Shorrocks ( 1975), and Singh and Whittington (1974). 1 

A common conclusion with most of these authors is that the Gibrat 

assumption (the Law of Proportionate Effect) is the most plausible 
stochastic process explaining the growth mechanism of such economic 
systems. There does not appear however, much agreement about the 
nature of the equilibrium distributions attained by such growth processes 
and as we discussed earlier in this work, the Pareto, lognormal LSD, and 
in Simon's case the - Yule distribution have all been put forward as 

I 
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candidates to explain the finals forms obtained in various systems. 
Additionally some'authors have addressed the problem of measuring and 
placing a meaning to the actual concentrations values found in the variates 
they were studying. In particular, Hart (1957), Blair (1956), Hart and 
Prais (1956), Nelson (1963), Quandt (1966), Silberman (1967). The 

econometric ians, statisticians and economists, who have studied these 
fields have, rightly so, posed questions and sought answers regarding the 

nature of the underlying distributions giving the disproportionality so 
found, and with discovering the plausible stochastic processes that resulted 
in the distributions found. 

Ibis approach has led to an appreciation of the nature and stability 
of such processes and the distributions found. In those cases where the 

empirical data was not a clear fit to a particular distribution then evidence 
from the underlying stochastic processes was often sought to suggest the 
form of the equilibrium distribution appropriate to the system. A further 
important point arising out of this field of work is the appreciation of the 
fact that the parameters of the equilibrium distributions may well be 

changing over time due to underlying stochastic and economic effects. 
This myareness has been particularly noted and researched in the study of 
firm sizes and the distribution of incomes, as discussed by Hart (1957), 
Hart and Prais (1956)-and Blair (1956). On a macro scale it is clearly very 
important (for policy making) to know the underlying processes, 
equilibrium distributions, and the process stability of the key economic 

variates. If the distribution of firm sizes for example, in a particular 
industry, is becoming more concentrated then government agencies, 

policy makers and those concerned with the relevant markets and market 
forces would wish to try and understand why it is so. Such an increase in 

concentration could arise because the larger firms are gaining business at 
the expense of the smaller ones or, the industry is going through a period 

of mergers or, perhaps because many more smaller firms are coming into 

the industry. Similar requirements exist to understand better the 

Page 367 



Chapter 11 

fundamental nature of the distribution of incomes. If the concentration of 
wealth in society is changing then it is a prime requirement of politicians, 
economists and government advisers to know why. 

The wealth of fundamental research work that has been conducted 
in the studies of the growth and dispersion of wealth and the distribution 

of firm sizes has no parallel in the inventory field. Yet the basic nature of 
the issues are similar - that is, the growth, spread and concentration of 
econometric variates governed, almost certainly, as we have seen, in this 

work, by underlying stochastic processes. 

11.3 The concentration of inventory usage values 

The earliest reference regarding the concentration of value in 
inventory systems comes from the second world war. An incomplete 

reference reported in Kulvanich (1976) quoted the US Armed Forces 
during the second world war when investigations into logistics problems 
revealed that between 80% and 90% of the fiscal value in inventory was 
accounted for by between 10% and 20% of the items stocked. In 1951 H. 
F. Dickie published his milestone article (in inventory management terms, 

at least), 'ABC Analysis, shoot for dollars", which was based on his 

work and analysis of inventories at the General Electric Company. In his 

article he clearly and simply showed that by plotting cumulative percent 
item s against cumulative percent value, the classical ABC inventory curve 
is obtained. In the same article, Dickie went on to show how normative 
decision rules regarding inventory item control can be based on suitable 
categories. He arbitrarily segmented his item range into those items (8%) 

which accounted for 75% of the cost, those items (25%) which accounted 
for 25% of the cost and those items (67%) which accounted for the 

remaining 1 5% of the cost. He referred to these groups as A, B and C 

respectively. - 
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This pioneering approach and methodology by Dickie was probably 
the origin of the name ABC Analysis. It is important to note that Dickie 
did not refer to his work as Pareto analysis, nor to the form of the curve 
that he obtained as a Pareto curve. The process of applying, control 
methods according to such a simple categorisation method is now a 
common and well tried practice in inventory management. Over the 
period 1951 to the present time the same basic methodology as that 

presented by Dickie has been presented many times in the management 
literature with various modifications and applications. Most of the 

variants are concerned with choice of the number of groups in the 

categorisation, the criteria for choosing groups and the choice of control 
methods to apply to each group. It is not considered important in this 

work to review the basic variations, however, the following journal 

references give a wide coverage to most of the permutations that have 
been discussed in the literature. Brown (1963), Norbon(1973), BIM 
Report (1975), Zimmerman (1975), Claycombe and Sullivan (1975), 
Reuter (1976,1976a, 1978), Jageti (1976), Conroy (1977) and Rivers 
(1982). What is important from these references, and from the 

production managements texts previously quoted, is the fact that the 
disproportionality principle in inventory values either as stock held or 
stock turned over in a given period, is a universal phenomena that holds in 

almost any inventory range of reasonable size. 

11.4 The erroneous use of the Pareto name 

The origin of the name Pareto analysis as applied to inventory 

systems seems to rest with Juran (1964), who, with extensive examples, 
draws attention to the fact that many industrial situations exist where a 
vital few members of various assortments account for most of the effect of 
interest. Amongst the many examples given by Juran are the value of 
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inventories tied up in a small portion of the range. In cost analysis 
approximately 20% of the factory parts contain 80% of the factory costs. 
In quality control the bulk of the in service failures; machine shop scrap, 
rework and sorting costs are traceable to a vital few in service failure 

modes, shop defects, products, components, processes, vendor designs and 
operators etc. What, according to Juran (1964) that runs through all these 
phenomena is the principle of the "vital few and trivial many". 

According to Juran in 1974 he claims that it was he in the late 1940's 

who named this universal phenomena the Tareto Principle' and the name 
had endured, especially in industrial management applications. However, 
by his own admission, (Juran 1974) it was a mistake to name the 
phenomena the Pareto Principle. The following quote is taken directly 
from the Quality Control Handbook (3rd Edition) 1974 edited by JM 
Juran: - 

"Vilfredo Pareto, an Italian economist (1848- 1923), had studied 
the distribution of wealth and had quantified the extent of 
inequality and nonuniformity of this distribution. However, he had 

not generalised this concept of unequal distribution to otherfields. 
To make matters worse the cumulative Pareto curves first 

published in the quality control handbook should have been 
identified with M. O. Lorenz, who had used such curves to depict 
the concentration of wealth in a graphic form. " (M. O. Lorenz, 

,, Methods of Measuring the Concentration of Wealth. American 

- Statistical Association Publication, Vol. 9, pages 200- 219,1904). 

Dr Juran (1974) then goes on to set the matter straight- 

'Wumerous men over the centuries have observed the existence 
of the phenomena of the 'vitalfew and the trivial manyas it 

applied to their local sphere of activity. Pareto observed this 

phenomena as applied to the distribution of wealth and advanced 
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the theory of a logarithmic law of income distribution to fit the 

phenomena. Lorenz developed a form of cumulative curve to depict 

the distribution of wealth graphically". Juran was (seemingly) the 
first to identify the phenomena of the vital few and trivial many as 
a universal applicable to manyfields. Juran applied the name the 
Pareto Principle to this universal and also coined the phrase 'vital 
few and trivial many'. 

Juran then applied the use of Lorenz curves to depict this universal 
in graphic fonns. The cumulative curves depicting percentage value 
against percentage items as used in inventory control are therefore 
Lorenz curves, not Pareto curves, but the name Pareto analysis or Pareto 

principle has now, it would seem, passed into the management jargon and 
is very likely to stick. This is unfortunate for M. O. Lorenz for not getting 

justifiable credit, and also for Vilfredo Pareto, because to some extent it 

clouds the issue over the real nature of Pareto's distributions, of which 
three were 4eveloped for economic analysis as shown below. 

11.5 The form of Pareto Curves 

In his work on income distribution Pareto put forward three 

general equations (probability distribution functions) to summarise and 
model the observed empirical data on income distributions (none of 
which, in fact, give the precise form of the so called Pareto curve as 
applied and named in industrial applications). Easton (1974) shows the 
form of the true Pareto distributions - 

The Pareto distribution of the first kind- 

F(X) = kX-a 
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where T and 'a' are constants (a = scale parameter) 

The second and third Pareto forms are as foRows- 

F(x) =k (X + c)" 

F(x) = 
ke -ba 

xa c' and 'b' are both constant 

The last Pareto form is also known as the Champernowne 
distribution (Easton 1974).. The Pareto curve as developed and applied in 
industrial situations is obtained analytically as shown in the following 

section. 

11.6'The analytical form of the ABC principle 

Consider an inventory range of W items and period usage values of 
each item given by x. If the probability density function of the period 
usage values is given by f(x) then the total value of the inventory turnover 
is given by the function: 

(X)dx nx 

The proportion of value (usage value) given by items whose individual 

values exceed a particular value 'y' is given by - 

00 
n 
f, 

xf (x) dx 
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or graphically it is shown as shown below :- 

figure 11.2 

f(X) 
dx 

x 

The usual representation of the distribution of usage values of 
inventories is to plot the ratio (v) (Cumulative proportion of value) against 
(w) (the cumulative proportion of items) as shown by Van Hees and 
Monhemius (1972). Thus :- 

xf (x) dx 

f 
vf (x) dx 

0 

and also - 
C. 0 

f (x)dx = [l - F(x)] 

y 

If v is plotted against w we then obtain the Lorenz curve as shown: - 
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figure 11.3 

V 

w 

or as a percentage to give an ABC from - 

loov 

10ow 

At this stage it is now possible to demonstrate analytically that data 

such as inventory period usage values do not necessarily give rise to a 
lognonnal distribution. 
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Iff(X) is a lognonnal probability density function as given by- 

1 
Xp[_ 

1 (loge X_I dA =-e 1)2 dx 
z (T ý -2- 7r 2 C2 

1 

substitute dA forf (x) we get - 

00 
f XdA(X : er2) 

XdA(X : a2) 

and 
00 

wf xdA(x: p, a2) 

y 

We can plot v against w and obtain the cumulative Lorenz curve as 
before. However, f(x) does not need to be lognormal, it can be almost any 
skew statistical distribution and we will still get a cumulative Lorenz curve 
when v is plotted against w. Such curves will of course change shape some 
what, but they will still follow the same general form, provided the effect 
being measured is disproportionately spread amongst the range of items. 

11.7 Empirical evidence and support 

The foregoing analytical reasoning is easily bome out by 

empirical analysis. As discussed above the function f(x) does not need to 
be lognormal it can be almost any skewed function and the characteristic 
Lorenz curve can be obtained. We can demonstrate this by using a simple 
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skewed function and we take the Log series distribution as example. This 
distribution is discussed and used in model building in chapter eight. As 

we have seen the log series function has the fonn- 

f(x) ý -qlx log( 1- q) for parameter q. 

If we set q=0.985 then we can obtain the following set of 
probabilities and the numerical outcomes for a sample data set of 200 
items as shown in table 11.1 :- 

Table 11.1 
LSD frequencies 

Value Probability frequency 
for 200 items 

1 0.2346 47 
2 0.1155 23 
3 0.0758 15 
4 0.0560 11 
5 0.0441 9 
6 0.0362 8 
7 0.0306 7 
8 0.0264 6 
9 0.0231 5 

10 0.0205 4 
11-20 0.1271 25 
21-30 0.0650 12, 
31-40 0.0364 8 
41-50 0.0285 6 
51-60 0.0228 5 
61-70 0.0170 4 
71-80 0.0114 2 
81-90 0.0100 2 
91-100 0.0060 1 

-j 

The characteristic LSD distribution produced by this process is seen 
in the figure below- 
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figure 11.4 

I 

0) 
I 

cr 

value x 

To produce a Pareto ( Lorenz) curve from this data we just simply 

cumulate the distribution starting with the largest values first. Then for 

convenience we take percentage values of each incremental point on the 

cumulation and plot this against the cumulative percentage of items. The 

values are shown in the tabulation 11.1 and the typical Lorenz curve 
follows in figure 11.6. Just to show that we do not have a lognon-nal curve 

a histogram of the log values is also shown in figure 11.5. If the data 

(distribution) had been lognon-nal the histogram would have shown the 

characteristic symmetrical shape of the normal curve. 
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Lorenz curve produced from an LSD distribution 
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We also used a Negative Binomial distribution to produce a Lorenz 

curve based on the NBD shown in figure 11.7 below. As with the LSD 

the frequencies from this NBD were used to produce the Lorenz curve 
as shown in figure 11.8 

159 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 70 

figure 11.7 
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figure 11.8 
1 

Lorenz curve produced from NBD data, 
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60 
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We can see from the Lorenz curve of figure 11.8 above that it is 

not as curved (concentrated), as in the LSD generated case, but it is still a 
Lorenz curve and produced by a skewed distribution that is not 
lognormal, nor is it as skewed as most lognormal functions. A much more 
skewed NBD would have produced a more concentrated Lorenz curve. 

11.8 A relationship between the lognormal distribution and 
the Pareto(ABC) curve 

Although we have shown in this chapter that the classical Pareto 
(ABC) curve need not necessarily be based on a lognormal variate, the 
latter can always be presented in the cumulative ABC form. For example, 
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all our DAF usage value data in this work is lognormal distributed and 
because this variate is skewed it can be presented in the traditional ABC 
curve form. In these cases it is possible to derive useful relationships 
between the parameters of the lognon-nal curve and particular measures of 
interest from the ABC curve. 

It is of interest to management to know what proportion of items in 

an inventory range account for a particular measure of interest, usually 
the turnover per annum. Such measures are of significant interest to 
Operational management due to the fact that they highlight and focus 

attention onto those items which have the greatest disproportionate effect 
and hence demand particular attention for control purposes. In the DAF 

case the top 20% items account for around 95% of the total usage value in 

a given period. For lognormally distributed variAtes this can be readily 
deduced by just a knowledge of the shape parameter of the particular 
lognormal distribution Lockyer (1982) shows the proportion (or 

percentage) of a particular measure that can be accounted for by the top 
20% of the items in an assortment. For example, the proportion of the 
total usage value for an inventory range that can be accounted for by the 
top 20% items. 

We use Lockyer's terminology and development here to show the 
link between the lognormal distribution and the ABC curve, and to show 
how we can readily determine what proportion of activity is accounted for 
by a given proportion of items. 

"If yx represents the activity of interest above which x% of the 
items occur, the proportion of the total activity measure represented by 

these x% of the items is 0 (z* Jyx 1), where z* Jyx I can be shown to be 

zfyxl-lOgeP- Thus the proportion of the total activity measure 
represented by the top x% of the items is a function only of the standard 

ratio p. " [note : where p= ec 1. 
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Hence for example, if x is set at 20% (the top 20% items) then 

z(yx) =0.84. 'Mat is the normal ordinate z=0.84 for the 20% of the area 
in the right hand tail of the normal distribution. Therefore z*(yx) =0.84 - 
10geP, from which the proportion O(z*jyx)) of the total activity 
measure represented by the top 20% of items can be read directly from 

normal curve tables. Using this approach Lockyer (op cit) presents the 
following table for various values of the standard ratio p. 

table 11.2 
Total value in the top 20% items 

p Inp 0.84-Inp Plz*(YX)l 

1 0.000 0.840 20.00 
2 0.696 0.247 40.00 
3 1.099 -0.259 60.00 
4 1.386 -0.546 70.60 
5 1.609 -0.769 77.00 
6 1.792 -0.952 83.00 
7 1.946 -1.106 86.70 
8 2.079 -1.239 89.30 
9 2.197 -1.357 91.30 

10 2.303 -1.463 92.80 
11 2.398 -1.558 94.20 
12 2.485 -1.645 95.00 
13 2.565 -1.725 95.70 
14 2.639 -1.799 96.30 
15 2.708 -1.868 96.90 

The form of the relationship between the standard ratio and the activity 
accounted for by the top 20% of items is readily seen from the graph of 
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figure 11.9 below. Van Hees and Monhemius (1972) present a similar 
table to Lockyer, but in terms of different values of the percent of items as 
shown in table 11.3 below. 

figure 11.9 

Standard ratio versus top 20% item activity I 
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table 11.3 

% value 

% items cr =1 cy = 1.684 a=2.3 
1 9.20 26.00 49.00 
5 25.90 51.60, 74.40 

10 38.90 65.60 84.60 
20 56.30 80.00 92.80 
50 84.10 95.40 98.90 
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Clearly this approach can be extended and it is possible to determine 
for any proportion of items the value of the corresponding proportion 
activity accounted for by those items. Tables relating proportion of items 

to proportion of activity are - not generally available, but the above 
formulation can be used to calculate the values of interest given either a 
or p of the lognormal distribution. We reconsider this theory again in 

chapter 12 where we present a novel approach and method to the problem 
of monitoring the value tied up in the stock invested in an inventory. 

Using a somewhat different approach to the question of the 
disproportionality effect of the item range Aitchison and Brown (1957) 

give a table in their appendix, (page 154), which shows the proportion of 
items that do not exceed the mean value of the lognormal variate. Whilst 

this may be of interest for some applications it is not as useful for 
inventory management purposes as Lockyer's development above. 

11.9 Conclusions 

We have attempted in this chapter to correct some misbeliefs 
concerning the disproportionality principle in inventories. Namely that 
the Pareto name has been wrongly applied and this erroneous use appears 
to stem from Juran, although the term Pareto analysis has become so 
ingrained in management terminology it is likely to stick. Secondly and 
far more importantly there is no direct link between inventory ABC 

curves and lognormal distributions of the same variate. Any highly 

skewed distribution will produce the typical form of ABC curves of 

varying concentration if the data is presented correctly. On the other hand 
lognormally distributed usage values can always be presented in an ABC 

curve form as can any other highly skew data set that may be distributed 

according to some other skewed probability model. 
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We have seen from this chapter and from the work of earlier 
chapters that inventory usage values are invariably disproportionately 

concentrated. In those cases where the inventory variate is lognormally 
distributed then the degree of concentration is likely to be very high 

especially, so if we are considering spare parts systems. By utilising the 

principle of concentration of inventory usage values we have presented a 
very important relationship between the lognormal distribution and the 

proportion of value accruing to a -given proportion of items in the 

population that has the lognormal variate. Using the methods described by 
Lockyer it is possible to determine for any value of the lognormal shape 
parameter what the corresponding proportion of items will be that fall in 

any given fractile of the item range. This valuable relationship and some 

of the other ideas of presented in this chapter form the basis of some 

novel methods of monitoring inventory parameters that we present in the 

next chapter. 
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Aggregate inventory perspectives 

12.0 Introduction 

After a lengthy journey examining the lognormal distribution from 

a theoretical, modelling and validation point of view we now turn to some 
practical inventory perspectives which call on the underlying properties 
of this distribution to yield deeper perspectives of independent demand 
inventories. No direct attempt has been made here to develop particular 
inventory decision rules, rather our primary purpose is to focus on some 
fundamental'relationships which could underpin the development of 
inventory norms, although we indicate several fruitful areas for 

optimisation of particular situations. 

12.1 The distribution of inventory variates 

We have seen from several US studies that inventory usage values 
for independent demand items are very likely to be lognormal., From the 

work here we can say that if the inventory is concerned with replacement 
spare parts for capital equipment then the usage rates, if calculated from a 
sufficiently long period, will almost certainly be lognormal. Furthermore 

we have shown empirically that both usage volume (depending on the 
time period) and unit price will both be lognormal. This is consistent with 
the theory of Aitchison and Brown as discussed in chapter three, namely 
that if two variates, 'A' and 'B', are both lognormal then the product AB 
is also lognormal, but with different parameters values of y and a. 
Likewise if 'A' and 'B' are two independent positive variates such that the 

product AB is lognormal then both A and B are lognormal. (Or as a 

special case if one of the variates is constant then the other is lognormal). 
Furthermore Aitchison and Brown also showed that if 'A' is lognormal 

with parameters y and a, then, if a and 0 are constants, the power 
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function a AP is also lognormal with parameters (a, + py, p 2a 2). Mis 

has great utility in inventory theory because certain functions of inventory 

variates can be expressed in terms of other inventory variates. The whole 
basis on which the theory of the lognormal distribution rests as a tool to 

set aggregate inventory standards depends on such relationships. Ibis 

was discussed at some length in chapter three. 

We -showed earlier in this work thatý when usage values are 
lognormal then so too are usage volumes provided the time period is 

sufficiently long. Hence any inventory variate that can be fon-nulated as a 
power function of usage volumes will also be lognormal. Furthermore, as 
any lognormal variate times a constant will be lognormal, then the mean 
demand for a range of items will also be lognormal, as the mean is the 
total of demand volumes times the inverse of the number of items in the 

range. In the following we show that when volumes are lognormal then a 

number of related inventory functions are also lognormal. 

For example, the standard deviation of item demand volumes can be 
formulated in terrns of average item sales volume by the function shown 
below: 

axp where x is the mean demand ---------------- 12.1 

From 100 randomly selected DAF parts items the log of the mean 
demand was regressed against standard deviation (a ) of demand (see 

appendix three) and this gave the regression model shown: 

log, a= log, a+ß log, -x 

from which it was found that loge a=0.253 and P=0.814 with a 

correlation coefficient r=0.975 and R2 = 0.951. The Durbin Watson 
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statistic was 1.86 (well within the acceptable range for no autocorrelation 
with a sample of 100 items). Hence the standard deviation of demand can 
be very confidently related to the mean demand by - 

1.278(x)0,814 

Now as safety stocks are usually expressed as some rational function 

of the standard deviation of demand, for example :- 

za(R+L)0.5 

Where z is the safety stock factor to set the appropriate service level for 

the relevant demand distribution. R and L are the review and lead time 

periods respectively. (R will be 0 for a reorder policy system). 

If (R + L) is constant and cF is replaced by the function - ax-P 

then we can write - 
za(x)fl (R + L)0*5 

and this function will be lognonnally distributed provided that all the 

mean values xi. are lognormally distributed for a range of items i=1 to m. 

Now as the cycle stock formulation in most computer controlled 
inventory situations is based on a Wilson EOQ or variation we can write - 

/P EOQ(Q) = (EOQfactor)(Vai i)0-5 

where Vai is the annual demand volume of item i 

and Pi is the price of item i 
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If usage volumes Val for items 1=I to m are lognormal then so to 
will be the cycle stock function above because it is equivalent to equation 
12.1. Now the total stock volume invested in an inventory is the sum of 
safety stock plus cycle stock so we can write 

Total stock item, = (EOQfactor)(Vai / Pi)0-5 + za(-x)fl (R + L)0*5 

which in fact is the volume of stock at the peak of each cycle, so average 
stock held will be one half the cycle stock plus safety stock ie - 

Average stock itemi = I/ 2(EOQfactor)(Vaj / Pi)o* 5+ 
za(x-)O (R + L)0,5 

From this function we have that average stock for a range of items 

i=l to m is the sum of two I. ognormal functions, and from the work of 

previous chapters it was shown empirically that the sum of lognormal 
functions tends also to be lognormal. Hence the above average stock 
formulation is most likely to be a lognormal function. Furthermore, if 

we multiply the function by the item price (also a lognormal variate in the 
spare parts case), - then the monetary investments in stock volumes will 
be lognormal. Now as period usage volumes and usage values are both 
lognormal (subject to a sufficient time period), then it also follows that the 
turnover ratios for individual items in a parts range will be lognormally 
distributed, ie the function - 

Annual Usage Volume 
[1 / 2(EOQfactor)(Vai / Pi)0*5 + za(x-)o (R + L)0*5 I 

----------- 12.2- 

will be lognormal across the range of items for i=1 to m. This is a 
significant conclusion because we can deduce from this that the range of 
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values we can expect to see in individual item turnover rates will be very 
wide simply because the lognormal distribution is in most cases so very 
highly skewed. This very fact then calls into question the use of the 
classical inventory turnover ratio to meaningfully measure the overall 
speed of turnover of an inventory range of spare parts. Before we give 
consideration to this issue we first turn to an empirical test of the 
hypothesis that cycle stocks, safety stocks and hence both total and average 
stocks and turnover ratios will all be lognormal, if the individual item 

mean values are lognormal. 

Ibe reader is referred to appendix five where we show the results 
of the tests for lognormality on simulated safety stocks, cycle stocks and 
average stocks for 200 simulated lognormal item demand volumes and 
prices. The results clearly show that each of these functions do indeed look 

very much like lognormal functions and on the basis of the tests reported 
in appendix five we can conclude that in probability, as we predicted, 
these functions can be regarded as drawn from lognormal populations. -- 

12.2 The form of turnover ratios. 

The classical inventory turnover ratio is simply calculated from 

total sales divided by total investment in inventory as shown- 

(Total sales)/( investment in stock) 

Which in truth only gives the simple turnover ratio of the average 
inventory item and it does not give any indication of just how fast or how 

slow the extreme items in the inventory range may actually be moving. 
Indeed when usage values and volumes are highly skewed the value of the 

classical ratio is not anywhere near the value of the average of the 
individual turnover ratios. This result is entirely due to the skewness of 
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the usage distribution. We' can show this empirically by a simple 
example. 'Me simulation tabulation in appendix five showed the simulated 
inventory parameters we derived 'using lognormally distributed demand 
volumes and demand prices. The individual turnover ratios were 
determined for each item using function 12.2 shown above, and, as can be 
seen from appendix five, figure A5.6, this function does indeed turn out to 
be lognormal; which is what one would expect to find given that it is the 
ratio of two lognormal functions. Now as we can see from the table in 

appendix five the overall 'classical' inventory turnover ratio was 
calculated at 17 times per annum; an impressive value by most yardsticks 
of inventory turnover. However, when we examined individual turnover 
rates a very different picture was seen as the ratios ranged from the 
highest at 23.6 to the lowest at 0.2 with a mean of 4.90, far lower than the 
calculated classical ratio. This difference between the overall classical 
ratio and the average of individual ratios was entirely due to the highly 

skewed nature of demand volumes and investment stock volumes, and the 
fact that the average of the individual turnover ratios was not nearly so 
influenced by the extreme skewness of the usage value data as is the 
classical ratio. This same phenomena will also apply to other simple 
average based ratios due to the skewness in the distribution of usage 
volumes and usage values. Both the 'stock to sales' ratio and the 'day sales 
in stock' ratio will, if calculated in the classical way for an inventory as a 
whole, be vastly different from the average of the same ratios calculated 
for individual items. In the case of highly skewed distributions the average 
of the individual item ratios is a much more realistic value to measure and 
represent the behaviour of all items in aggregate, but far less convenient 
to calculate. 

Now most inventory managers and shop keepers know, by 

experience and intuition, that the faster turnover rate inventory items in a 
range of items are more profitable than slower turnover rate items. The 

more times you take the margin in a given period the more profitable will 
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be the item concerned. But this is ultimately subject to the costs of 

reordering and stock out risks and associated costs. Ibe smaller the cycle 
stock the. faster will be the turnover rate, but ordering costs begin to rise 
rapidly and so -too does the risk of stock out because of the greater 
frequency of cycle stock depletion down to the safety stock level. From the 
formulation 12.2 for the turnover of each item in an inventory range we 
can develop a relationship between item turnover and profitability. - - 

If the margin earned by an item T is Mi ( as a proportion of price) 
and the cost of holding an item T in stock is C1, (also as a proportion of 
price as we defined in chapter three), then the actual margin earned by 
item 1, with a turnover rate of T times per period, will be k(Mi). (k 
being defined by function 12.2) 

Now the total gross margin earned will be Pik(Mi)Vhi 

where V1, i is the average volume of stock held for item i 

and Pi is the item price. 

Then total stock holding cost will be Pi ChVhi 

And total ordering cost will be proportional to Cok 

Where CO is the cost of placing a single order and covers receiving, 
checking and possibly expediting costs. 

NOTE: we use the function Cok to express order costs rather than the 

more conventional function - (Annual demand/l/2[EOQ))CO because the 
latter can yield quite unrealistic values for the number of reorder cycles 
when usage values across the inventory range are very highly skewed as 
in the case of the lognormal. We regard the inventory turnover ratio to be 

a more realistic reflection and measure of the most likely number of 
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orders placed per annurn in many inventory situations. 

From the foregoing we can now formulate the real (net) margin, as 
measured by return Ri by an item i as foRows 

Net Margini = kMiPiVhi - [CIPiVhi + Cok] 

Now if the annual demand volume for item i is Vai 

k= 
Vai 

then we can set the turnover rate k as Vhi 

(which is equivalent to function 12.2). 

------------- 12.3 

After substitution of this function in equation 12.3 above followed by 
further simplification we obtain the function 12.4 below: 

Net margin item i Ri = V,, jPj 
Mi - 

Ch Cý, k, 
k PjVj 

I 

----------- 12.4 

But VajPj is the annual sales rate (Si) for item i hence we can 

further simplify function 12.4 to yield function 12.5 below: 

Net margin item i Ri = SijMi _ 
Ch_ C,, k 
k Si 

I 

------------- 12.5 
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This fonnula contains three variables'Si Mi and k which are all 

lognormal functions and hence it becomes amenable to aggregate analysis 
for a whole range of items using the basic theory we have shown in 

previous chapters. 

In this form there is no penalty for lost sales which is the 

appropriate model for the DAF case as the company is essentially in a 
captive demand situation. This formula is much simpler and certainly 
more flexible to use than a formulation given by Heron (1976), who 
used a similar process reasoning'to arrive at an expression for the real net 
margin Ri (or rate of return) on the investment for individual items. 
Heron's model formulated Ri in terms of powers of the sales rate Si. [Each 

term in Heron's formula for order costs, holding costs and stock out costs 
were expressed in powers of the sales]. For specified values of order cost, 
holding cost, and stock out cost Heron produced the following- 

Ri = 0.32Si -1.805*10-6S, 1.438 -9.152*106S 1 
--4.312 _0.0793S, 0.7555 -5 

-1.871SIO. 
5 - 0.1533SIO. 938 +1.625*106S 1 -3.787+ 0.2953S, 0.8045 

Heron clearly went to a great deal of trouble to develop this formula in 

order that the real margin could be measured from just a knowledge of 
the expected sales. However, we feel it is unnecessarily complicated for 

general use, despite the simplification of only one variable Si. The major 
problem is that it must be reformulated for each and every change in the 

value of any input variable. We believe this would prove irksome to the 

average inventory manager. Our formula 12.5 above is far simpler, has 

greater flexibility for general use and it should have more appeal to 

operational management. It is also capable of manipulation in several ways 
to give insight to the items and inventory being examined. For example, if 
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we plot real return Ri against the turnover rate T then we can see the 

effect that W has on the real net margin earned. 'Ibis is shown in figure 
12.1 for a variety of values of W and for fixed values of CO C1, Si and 
Mi. The maximising effect of W can be readily seen in figure 12.1. 

figure 12.1 
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Figure 12.2 below shows the same presentation for a variety of sales rates 
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figure 12.2 
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The concept of a profit maximising turnover rate can be formulated 

analytically as follows. From the fon-nulation 12.5 above we can write 

S'ch 
Ri = SiMi - ý' ý' - C,, k 

k 

Now we take the'first differential of Ri with respect to k thus - 

dRi 
_ 

ChSi 

_C 
A k2 

For a maximum we equate this differential function to zero and on 
rearranging we can express T in terms of the sales- 

CllS' 
CO 

Real margin earned for different sales 

---------------------- 12.6 
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This function gives us the optimum value of W which produces the 

maximum value of the real rate of net return Ri given values for CO, C1, 

and Si. The change of optimum 'k' values with sales is shown below in 
figure 12.3 below. Figure 12.4 shows the same relationship using log 

scales from which it is easier to relate W to sales. 

figure 12.3 
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figure 12.4 
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Now formula 12.6 from above can be rewritten as - 

rýLh 
0.5 

Co Co [Si 1 

and this is of the general form 

a[Si 

and if all the Si values are lognormally distributed then all the optimum k 

values will be lognormally distributed with parameter values given by - 

p*= (a + fly) and (7 *2 =p2a2 

Where y,, and CT 2 
,, are the parameter values of the lognormal distribution 

of 'k' whilst ju and CT 2 are the parameter values of Si. Ibis is consistent 

Page 398 



Chapter 12 

with our earlier prediction that the k values will be lognormal. 

In figure 12.5 below we show the aggregate picture of plotting the 

real net return Ri as a percentage of sales for all 200 items from the 
tabulation in appendix five, against the item turnover rate 'k'. The graph 
clearly shows the negative values of the net return at low turnover rates, 
and also the maximising effect as the rate of turnover increases much 
beyond a value of ten times in the period. Figure 12.6 shows the effect 
more closely in the critical elbow region of the graph between a turnover 

rate 'k' of three and ten. Beyond a turnover rate of ten the real net 
margin, as a percent of sales, cannot be improved further and there would 
be little point in trying to turn the stock over any faster than about fifteen 

times in the period in question. 

figure 12.5 
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figure - 12.6 
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The flexibility of our function 12.4 can also be seen by using it to 
determine the margin Mi that should be applied to prices to achieve a 
target real return Ri. By rearranging 12.5 we can express Mi in terms of 
the remaining'factors and variables as shown below: 

Mi=Si Ri+Ch + C,, k 
kSi -------- 12.7 

The function 12.5 can also be readily modified to admit a stockout 
cost as we show below. Stockout costs are not insignificant, even in a 
captive demand situation such as the DAF system, but it can be very 
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difficult to assign an appropriate value to Cs the single cost incurred in 

ordering, expediting and receiving. of an out of, stock item. Assuming 

management can assign a meaningful value to Cs then the proportion a of 
'stock in stock out' cycles which may be at risk of a stock out will be 
directly related to 'k' the stock turnover rate. (1 -a) is the service we can 
expect from the system in terms of the proportion cycles where demand is 

covered by the stock held. Hence we argue that the stockout cost is 
incurred in ak cycles, and the total stockout cost incurred will be akCS* 
Therefore our function 12.5 can be modified as follows : 

Ri=Si Mi-Ch 
Ck aCsk 

k Si Si 

I 

--------------- 12.8 

After differentiating Ri with respect to k and rearranging function 12.8 

above leads to a modified version of our optimum turnover rate model 
which we show below: 

chsi 

[C, + aC. 1 --------- 12.9 

'Ibis function 12.9 leads to the same curves as seen in figures 12.3 and 12.4 

except for the fact that the optimum value of k is reduced marginally to 
take into account, the additional cost factor a CS. If the stockout penalties 
are proportional to the actual, number of units out of stock then the partial 
expectation function, as shown by Lewis (1981, page 74), can be used to 
derive a stockout cost function and then used in place of Cs above. 

The models we have developed above can provide Operational 

managers with valuable aggregate perspectives of the inventory in 

question which can then aid rational inventory management decisions. 
For example, because the individual turnover ratios are the 'correct' 
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ones, based as they are on the theoretical values of cycle stock and safety 
stock, then an objective view can be taken on the profit margins produced. 
Any adverse values of the profit margin percent, such as negative values 
or unacceptably low values, indicate stock items that should (a) be 

eliminated from the product line, or (b) be moved backwards in the 
distribution channel ie from retail level to wholesale level, (c) have the 
unit prices increased until the profit margin is'acceptable, or-(d)-at least 

evaluated in'terms of the real cost of carrying such an items in the range. 
Some of these decisions are clearly related to marketing policy. For 

example, in some operational systems " it may be considered prudent sales 
policy to hold certain items in stock even though they produce negative 
returns. Under such circumstances then management at least know what 
the real cost of holding the item will be, and, if market conditions allow, 
what price to charge per item to cover the negative return. Clearly this -is 
just one example of using the above aggregate relationship and others can 
be developed. 

12.3 Distribution Channel Decisions 

One of the more difficult problems to resolve in a, distribution 

channel embracing say factory level to wholesale level to retail level; is 
how best to deploy the inventory across the whole range to effect (a) a 
competitive market service in terms of price'and availability, and (b) to 

minimise the cost of holding stock in the total system. DAF trucks, for 

example, operate at all three levels, although in the UK most of the 
appointed dealers are independent businesses. However, the company is 

well aware that the marketing success of its truck products depends very 
heavily on the perceived level of service an operator can expect to get 
from spares support. No operator wants his truck out of service any 
longer than absolutely necessary and certainly not for want of a crucial 
spare part. To ensure a high level of service from spares support the 
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company could deploy appropriate stock levels of the entire stock range at 
each local dealer then replenish these stocks from the central warehouse 
on a routine basis. Even so such a policy would not guarantee a 100 % 

service at the dealer level because of the stochastic nature of demand. So to 
balance ordering and holding costs, in particular, service levels must be 
set for each item to give a coverage at, for example, typical service levels 
of around 90% to 96% depending on the criticality of particular items. 
This approach still generally implies a heavy carrying cost penalty in the 
typical spare parts environment due to the very large item range and 
diversity of demand behaviours. Also, because usage values are 
lognormally distributed the tail of the distribution is very long and many 
very high value low demand iternswould have to be held in the system. 
The associated high variance of demand for such items makes the demand 

pattern particularly lumpy and these can be expensive items to hold in any 
spares system. I 

By the use of effective replenishment logistics it makes sense not to 
carry all items at the retail level. Significant savings can be made by 

pushing some items back up the distribution chain and then meeting dealer 
demand by express delivery systems from distributor stock. Ibis works 
and is generally acceptable from the ultimate customers point of view for 

many slow moving very expensive parts. However, there are many parts 
which are moderately fast moving and moderately expensive where the 
right policy is not obvious. The policy at DAF has been to recommend to 
dealers to carry between 60% and 70% of the spares range (and set a 90 
to 95 % service level on these items), but this has been based purely. on 
the level of annual sales value and not on profitability analysis. For 

slower moving items still retained as a stock item at the dealer level there 
is always the possibility that the margin earned will not cover the holding 

costs if the item is in stock beyond a certain point. Such situations can be 

revealed by the use of our concept of a real net margin. 
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From our previous model relating real net profit margin to 
turnover rates we have a rational starting point from which to make 
decisions on which items to move backwards in the chain. The model 
gives us the point at which returns became negative, and hence the cut off 
point indicating those items which should be moved backwards in the 
distribution chain. In the DAF case analysis of turnover rates shows that 
the policy of 70% on sales level alone leaves many negative return items at 
the retail level, whilst many profitable items are moved backwards in the 

chain. The same analysis can be carried out at the wholesale level to show 
which items should be moved back to the factory level. From the 

simulation analysis shown in appendix five, where we used EOQ and 
safety stock formulations equivalent to those used at DAF, it can be seen 
from the simulation tabulation that from 200 items 75 of them show a 

negative real return. These items plus those with only small positive real 
net margins are candidates for moving backwards in the distribution 

channel. The service reputation in DAF, for items moved backwards in 

the channel, can be maintained by efficient information flow from each 
level to the next and by efficient transport logistics. In 1986 DAF had a 24 
hour guaranteed delivery from the wholesale level to the dealer for 
'VOR' items (vehicle off the road) and 48 hours from factory level to 

wholesale level. 

'Me approach to move at least all negative return items backwards 
in the chain could be very cost effective in'the DAF system because in 

1986 the company had a captive demand population for most of its spares 
product range. Hence all sales in a given period at the retail level would 

ultimately be sales in the same or the following period at the wholesale 
level. Very few items in the parts range were obtainable from competing 
spare parts agents, although the situation was expected to gradually change 

as the market becomes large enough to attract spare parts copies. Hence 

there is very little penalty in the short run from lost sales and provided the 
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at a very high level the customer experiences a very efficient service even 
for out of stock items. What we must take account here is the marginal 
costs involved, because as items are moved backwards in the distribution 

chain the fixed cost component of holding costs must be recovered by a 
smaller number of items. Hence more items may, as a result, show'a 
negative return and the process becomes iterative. The alternative 
approach is to ensure that C1, (the holding cost factor) only represents the 

variable cost component of holding cost. This will be the direct cost of 
capital to support each unit of value invested in a stock item. 

An alternative approach to the negative return items would be to use 
equation 12.7 and calculate the value of Mi ( the actual margin applied to 
the price) for each item i for optimum turnover value k to achieve an 
acceptable real net margin Ri. 

12.4 Monitoring Dealer Inventory Performance. 

It is vitally important to any distributor such as DAF, who sell 
capital equipment, that the customers receive a high level of after sales 
support. When dealerships are appointed to serve a given geographical 
market area the distributor has a responsibility to ensure that the local 
dealers has properly trained staff and appropriate systems in place to 
provide all the professional support required to enable the dealer and 
distributor to be competitive in the market place. DAF's competitive 
position in the market place depends heavily on the dealer support for 

existing and prospective customers. Inventory service is just, one area 
where the distributor must monitor the dealers ongoing performance. We 

now consider an approach to this problem. 

One of the significant results that has come out of the research here 
is the remarkable stability of the lognormality of inventory usage values. 
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The changes year to year over a 12 year period at the wholesale level of 
the DAF system have shown only very small changes in the shape 
parameter of the annual usage rate distributions. The practical conclusion 
of this is that inventory aggregates themselves are very stable year to year. 
Furthermore the retail level usage value distributions must therefore also 
show the same stability year to year. Usage values at the distributor level 

are the sum of the usage values for each individual dealer, and analysis by 

this author has shown that the lognormal distributions of usage values at 
the dealer level reveals distributions that are very similar in terms of the 

shape parameter from dealer to dealer. As investment stocks at the dealer 
level are set consistently based on rational formula for safety stocks and 
cycle stocks which in turn dictate what the profile of turnover ratios will 
be; then there exists a rational means to monitor dealer performance in 

aggregate inventory ternis. 

The mean value of any lognormal variate can, 'as we have shown 
previously, be written as follows from the theory of chapter three- 

eju+112a 
2 

Now the global annual sales of all parts at the distributor level can be 

written as - 

neu+112a 

where 'n' is the number of parts in the active stock range andju and a are 
the mean and standard deviation of the lOge distribution of parts usage 
values,, ie the parameters of the lognormal distribution. In, a totally 

captive market all the dealers parts sales are translated into total sales at 
the wholesale level. Also the value of the lognormal shape parameter of 
usage values a will be a strong reflection of each local market being a 
characteristic of the market sales volume and the local aggregate pricing 
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level. 'If Vi is the volume demanded of item T and Pi is the price of item 
T then the usage rate PjVj values are lognormal with parameters - 

(mv +tLp, C2 + 2) 
v a; 

where yv and Cy 2v are the parameters of the volume distribution 

and PP and Cy 2 are the parameters of the price distribution. P 

Now (a 2 +a 2 ), the shape parameter of the usage value VP 
distribution, is known from empirical analysis and it will be characteristic 
of the local market level. Furthermore it will be approximately the same 
for all dealers at the same market level. 'I'he location parameter (, Uv+ 1,1p) 

of the same distribution will vary from dealer to dealer because it depends 
directly on the general level of parts sales for each dealer. Now assuming 
that all'dealers use rational methods to set safety stocks and cycle stocks 
then it is possible to know what each dealer should be carrying in stock to 

support its local parts market 

For any individual part Tthe average investment will be - 

Total stock = Pi I(EOQfactor)(Ti / Pi) 
0.5 

+ za(Xi)fl (R + L)0*5 

It would not be difficult for the wholesaler, (DAF HQ distributor in our 
case), to establish what the local dealer EOQ and demand variance factors 

are., (R+L) in the DAF case were always 2 weeks (in 1986) for routine 
stock replenishment. Hence it is possible to predict at any time what stock 
level the local dealer should be carrying for any item T and what turnover 

rate W he should be achieving for the same item. However, the wholesaler 
will generally not be too interested in the performance of individual items. 
He will be much interested in aggregate inventory factors such as total 
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investment in stock, inventory turnover ratios and the service levels 

achieved. By use of these factors the wholesaler will be able to monitor if 

the appointed dealer is providing the right market and service support to 
local customers. 

By a complete enumeration of the above formula it would be 

possible to estimate these same factors for the entire stock range. With 

same 20,000 plus items in the range however, one could easily use the 
lognormal aggregate inventory approach. For example, the lognormal 

estimate of investment in dealer stocks will be the sum of cycle and safety 
stocks as shown- 

Total Investment = nj(EOQfactor)(Xr )0.5 (Fcs) + za(X, )O (Fss)l 

where Fcs is the loponnal cycle stock factor I exp U(j- 1) ((; 2 /2 
with j=0.5, and Fss is the lognormal safety stock factor given by 

I exp U(j- 1) ((; 2/2)] 1 where now j=P. 

and Y,, is the mean sales for the entire range of items. 

Clearly this same formulation for all dealers in the dealership (30 in 
DAF's case in 1986) will give the entire stock in- the system at any one 
time. If any individual dealership has substantially more or less than the 
values from the above formulation, then it deserves investigation by the 

wholesaler. Low values can mean the local dealer is not giving the 

appropriate level of service. If levels are too high it could mean the 
dealers stock systems are not functioning correctly and that he is losing 

profitability in this area. It is in the distributor's best interest that all the 
dealers in the network achieve a satisfactory level of profit to ensure 
efficient and continued operations in all areas of the business. A dealer in 
financial difficulty is a liability to himself and the distributor and possibly 
to the detriment of the product image in the local and wider market. 
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12.6 A Novel Approach to Monitoring Stock Investment 
Levels 

One of the major ongoing concerns in inventory management is to 
monitor the service given to the customer and to monitor the amount of 
money invested in stock. With good computer controlled systems it is 

possible to monitor both very effectively on an item by item basis. 
However, there can be serious problems with very large inventories 
because the surveillance of the inventory range using item by item control 
does not always reveal the overall performance and behaviour of the 

range as a whole. One of, the classic problems that can occur is the 
inventory range starts to become unbalanced. It is quite possible for an 
inventory range to have approximately the correct investment, as 
measured perhaps by an overall (classical) turnover ratio and yet within 
the range there may well be a growing incidence of stocks outs with some 
items whilst other items are overstocked. What can be happening from an 
overall investment point of view is that the over investment in one group 
of items is being counterbalanced by the under investment in another 
group., The, reason why this can happen, - even in situations where 
appropriate software is use to track demand, calculate reorder points and 
safety stocks, is, in the main, because of the human intervention. There are 
a multiplicity of reasons why stock levels become unbalanced. A few of 
the common ones are given below and are based on many of the situations 
which have arisen in the DAF spares environment. 

(a) Management or supervisors may override the stock 
mechanisms, in anticipation of new demand trends which 
automatic forecasting of historical data patterns will not 
reveal. 'Ibis can be a frequent problem in a spares ,, 
environment when new items are added in to stock, which 
are intended to replace old ones. 
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Management may not have complete trust in the computer 
models used and may override reorder suggestions and adjust 
upwards or downwards based on their best judgment of the 
prevailing situation. 

(c) Many errors occur due to defective information processing at 
various points in the system. For example- Returns from 
dealers may not be booked into stock correctly causing stock 
reporting errors. Picking errors in the warehouse and 
incorrect deliveries to the dealers, although recorded as the 

correct item part numbers, will cause serious stock errors. 
Defective or incorrect parts being returned back through the 
channel, but not properly recorded, at departure or receipt 
points. Incorrect quantities being booked into stock. Stock 
theft of some easily removed items. (including off the back of 
the lorry problems). 

One potentially very effective way to track and control such 
problems is to use the properties of the lognormal model. We know from 

empirical research reported in chapter six that the parameters of the 
appropriate lognormal models are very stable. The shape parameter of 
usage values change very slowly from year to year. Furthermore ý we saw 
in chapter 11 section 11.8 that there is a useful link between the lognormal 
distribution of usage values and the cumulative (Lorenz) ABC curve of 
usage values. Namely, that for a given shape parameter a direct 

relationships between a given proportion of items and the proportion of 
activity they account for can be readily determined. Additionally we have 

seen from the work earlier in this chapter that the average investment 

values tied up in individual stock items are lognormally distributed, and 
therefore there will be a standard deviation and standard ratio of the 

associated log values Of these investment values. 
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In a system where the cycle stocks and the safety stocks are rational 
functions of the usage values then there will be a value of the standard 
deviation (and standard ratio) of the usage values that is the one and only 
correct one to use for aggregate calculations. Furthen-nore because the 
particular value of the standard deviation of the log usage values is 

sensitive to the distribution of value amongst the item range any 
significant change in the value of the standard deviation (or standard ratio) 
is indicative of an underlying change in the inventory. If the range remains 
fixed in the number of different parts then an increase in the standard 
deviation indicates a range that is becoming more concentrated. That is 

proportionately more value is tied up in the faster moving items, and less 

so in the slower ones-, ý yet overall the the total investment in stock win not 
necessarily reflect this. It depends whether there has been a value shift in 

the range. 'If an overstocking has occurred in one group that is offset by an 
understocking value in another group, then overall there may be nothing 
to suggest a problem is occurring in investment terms. The total value in 

the stock will be the same. However, the slower moving items may well 
start to experience stock outs more frequent than the level permitted by 
the given service level. And because such items are slow moving the 
increase in stock out incidence may not be apparent for some time. The 

additional penalty for overstocking on faster moving lines may also not be 

apparent for some time because they will be experiencing less than the 
permitted stockouts and nobody complains about good service. 

Alternatively if there is a shift downwards in the standard deviation 

of the usage values then the opposite effects will occur; the inventory will 
become less concentrated. Whether this becomes apparent to management 
will depend if there has been any significant value changes within the 
range and what counterbalancing has taken place if any. It will also 
depend on the methods management use to monitor stock levels. By using 
our lognon-nal approach and knowing the correct and theoretical value of 
the shape parameter we can readily determine from the theory given in 
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chapter 11 what the correct proportion of value should exist in each 
percentile of the item range. If we find an actual value of the stock 
investment that is significantly different from the correct value then 

management attention is needed. We argue here that using this lognormal 

parameter monitoring approach is the most effective way in which to 
track and monitor the behaviour of the investment in an inventory range 
as a whole entity. 

Based on our 200 item simulation in appendix five we have 

calculated the correct value of the standard deviation of the lognormally 
distributed average stock investment values by two methods. First we 
determined it by simply calculating the standard deviation directly from 

the calculated individual values of stock held. 'Ibis value was. 1.96. Second 

we determined a relationship between the theoretical 
, 
stock held and the 

usage values by a regression method. The 200 usage values were regressed 
against the 200 average stock invested values from which we deduced the 

relationship - 
log (Stock held) = loga +P (log usage values) 

which gave the foRowing regression results- 

p=0.687 
_and 

a=1.885 
R2 = 0.998 

0.994 
. 

Durbin Watson test value = 0.968 

Hence there was a highly significant and very close correlation between 

the two variables. A degree of autocorrelation was present as shown by 

the value of the Durbin Watson test value and a scatter plot of the 

regression residuals, but it was very small in absolute value. terms. From 

this regression we deduced that the the value of stock held could be 

expressed usefully in terms of the corresponding usage values in the 
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fonnula shown - 

stock held =1.885(usagevalueS)0.678 ------------ 12.10 

Now we are able to deduce from the theory of the lognormal 

distribution (reproductive property (i) given in chapter three, section 3.2) 

that the standard deviation of inventory usage values, say (aus ), will be 

related to the standard deviation of the stock held, say (C'stk. held), by the 

relationship 

Crslk. held -41 
PP(7u2s. 

val. ------------------ 12.11 

where'p is the regression coefficient 

This approach gave a value of as1k. held of 1.90, which is in close 

agreement with the first measure of 1.96 obtained directly from the 

simulation. Now since the lognormal distribution of usage value is a very 

stable parameter year to year with only small changes in then the 
lognormal distribution of the stock held will likewise be very stable as 

measured by astk. held* The very close fitting regression model 12.10 above 
is the most effective way to measure astUeld for the average stock held. 

Now from this measure of inventory concentration and the theory 

presented in section 11.8 of the previous chapter we can determine the 

correct proportions of investment value in chosen percentile item 

groupings. The appropriate part of the theory, due to Lockyer (1982), 

(repeatedhere from chapter 11 for continuity), is as follows : 

Ifyx represents the activity of interest above which x% of the 
items occur, the proportion of the total activity measure 

represented by these x% of the items is 0 (z* Jyxj), where z* Jyxj 
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can be shown to be zI yx) -logep. Thus the proportion of the total 
activity measure represented by the top x% of the items is a 
function only of the standard ratio p. [ where p= ec' and cr is the 
ý standard deviation of the appropriate lognon-nal variatel 

Now for example, if we arbitrarily choose decile groupings of 
inventory items in rank order of investment value in stock from our 200 
item simulation of appendix five, then the proportion of total investment 
in each decile group are as shown in table 12.1 below. 

table 12.1 
Activity in top 20% versus standard ratio 

percent items normal 
ordinate (z) z-InP activity 

perce tage 
top 10% 1.28 -0.62 73.24 
2nd 10% 0.84 -1.06 12.30 
3rd 10% 0.52 -1.38 6.08 
4th 10% 0.25 -1.65 3.43 
5th 10% 0.00 -1.90 2.08 
6th 10% -0.25 -2.15 1.29 
7th 10% -0.52 -2.42 0.80 
8th 10% -0.84 -2.74 0.47 
9th 10% -1.28 -3.18 0.21 

10th 10% 0.10 

We can readily see the disproportionality of the item range from 

this tabulation. The top 10% of items account for 73% of the total 
, monetary investment in the inventory, whereas the bottom 10% of items 

accounts for only 0.1% of the value. Now these proportions are the 
theoretical values that we would expect to see as they are effectively 
derived from the chosen formula for detennining cycle stocks and safety 
stocks, which in turn detennine the theoretical values of the 'stock held' 
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stocks, which in turn determine the theoretical values -of the 'stock held' 

for each item. The lognormal distribution'of this variat6 then gives us the 
theoretical value of the lognormal shape parameter 6stk. held which can be 

measured from a simulation, or from the relationships 'given in formulas 

12.10 and 12.11 above. 

Now if we monitor the logarithms of the actual Values of stock held 
for an appropriate sample of items and we find that the value of cFstk. held 
so measured is significantly different to the theoretical value then we can 
be sure that there has been a fundamental change in the profile of the 
inventory. For example; suppose that we find the actual value of atk. held 
to be 10% lower than the theoretical value , ie 1.71 instead of 1.90 then 

the proportionate change in the distribution of the total stock value 
amongst our decile groupings will be as shown in table 12.2 below. 

table 12.2 
Activity proportion for different a values 

a =1.90 a =1.71 
activity activity difference 

percentage percentage 
66.64 73.24 -6.60 
14.14 12.30 1.84 
7.52 6.08 1.44 
4.49 3.43 1.06 
2.75 2.08 0.67 
1.96 1.29 0.67 
1.21 0.80 0.41 
0.75 0.47 0.28 
0.40 0.21 0.19 
0.14 0.10 0.04 

We can see from this table that there has been a 6.6% reduction in 

the investment in the top 10% items and the remaining groups have each 
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remained unchanged then the difference in the cr values indicates a value 
shift within the range of items held in stock. Furthermore this value shift 
will have been to the detriment of the service level for the top 10% of 
items. Furthermore for the total stock investment to have remained 
unchanged then the location 

'parameter 
u must have increased to 

compensate for the shift in the value of cF because of the relationship 
between these parameter as shown by the mean value function of a 
lognormal variate shown in chapter t hree ie- 

a=e, U+112a 2. 

It is however, quite possible for the total investment (and hence also 
the mean value if 'n' the number of items remains fixed) to have increased 

in the above example and yet the value of a may still have decreased as 
shown. In such cases to make sense of what is happening to the stock 
profile we make use of the location parameter of the lognormal 
distribution. In such cases there will have been a value shift in the stock 
profile as well as an overall increase in the money invested. It is possible to 

envisage many practical situations where various combinations of 
management action and undesirable manipulation of stock levels change 
the stock range profile and the amount invested. In general if a remains 
fixed, but y changes then there will have been an overall investment 

change, but the proportion of the value amongst the range will have 

remained constant. If a changes but y remains fixed then there will have 
been a shift in the proportion of value amongst the range. 

Figure 12.6 shows just a few of the possible combinations between 

these parameter values for a range of fixed values of the mean a to show 
the overall effect on investment values in stock. The various values of the 

shape parameter a should also be related the proportion of value 
distributed amongst the inventory range as indicated by table 12.1 
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figure 12.7 
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From all the foregoing we can see that by just having the theoretical 

values of a and u for the stock investment, and n the number of parts in 
the range, then we have a very effective and accurate method of 
monitoring the stock profile. By using the relationship between a and P 
and the function for the overall mean as previously shown ie : 

a= p+112a 

then any shift in the value invested, or a change in inventory range 
concentration can be readily evaluated by comparing the theoretical 

parameter values to the actual measured values of a and g 
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12.7 Conclusions. 

We have seen in this chapter a number of possible novel applications 
of the lognormal distribution to particular aggregate inventory 

management issues and potential problem areas. We have only indicated 

some of the possibilities here and additional research is needed on 
empirical data to demonstrate the efficacy of such methods. We feel in 

particular that the novel methods described in the last section for 

monitoring stock levels and the dynamic changes that can occur in an 
inventory hold considerable promise as effective management tools for 

aggregate inventory management. 

continuing research by this author. 

These methods are the subject of 
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Research Conclusions 

13.0 Introduction 

In this final chapter we drawn together the diversity of findings 

an d conclusions that have come out of the extensive analysis we have 

undertaken over many years, much of it based on data from DAF Trucks 

spare parts inventory. We also highlight where this research has provided 
added value to the knowledge that was already known from previously 
reported work. Finally we consider the areas where fruitful work could 
be continued. There are two parts to this; namely those areas which we 
feel naturally follow on from this work, and, those areas which we have 

encountered on the way which, although not directly related to our quest, 
have nevertheless been revealed as areas worthy of investigation. 

13.1 General rindings 

Our initial question in this research was effectively 'could the 
lognormal distribution represent the distribution of usage values for 

spare parts'. We have beyond any doubt shown this to be the case in the 
DAF system. Our additional empirical studies have shown that spare 
parts usage values in other organisations, which hold and sell spare parts 
to support capital equipment previously sold (or in own operational use), 
are also lognormal. These studies have confirmed in a European context 

what was claimed many years ago in the United States, and so the findings 

were in no sense surprising. We would in fact have been surprised to find 

that usage values were not lognormatfor large spare parts inventories 

given the US based work of Brown and Heron. What we did not expect to 
find however, was such extremely close fits of usage values to lognormal 
distributions, especially those in the DAF Trucks case. This observation 
alone was strong evidence of a very stable underlying process at work 
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governing the form of usage values. A further significant, although 
simple finding, was the fact that, with qualification, both spare parts 
prices and usage volumes were also lognormally distributed. 
Furthermore we have shown from the DAF case that the distributions for 

usage values have parameters that were very stable from year to year over 
the period 1975 to 1985. The shape parameter- a has been remarkably 
stable, whilst the location parameter y showed a gradually increasing 

value from year to year, which is a reflection of the gradual increase in 

prices and to some extent a gradual increase in overall demand volumes 
from year to year. 

We have also demonstrated in this work that usage values remain 
consistently lognormal over long periods of time; 11 years in DAF's case. 
Additionally we have shown that it is lognormal forms of spare parts 
prices and demand volumes that are essential to the lognormality of 

usage values. We have also been able to explain the underlying processes 
at work which account for this lognormality and this has been supported 
by simulation studies and model testing using the process of retroduction. 

13.1(a) The distribution of prices. 

The lognormal forms of the various price distributions that we 
extensively tested have only been reported as an empirical finding in this 

work. We have been unable to discover any testable stochastic reasons 
why parts prices should be lognormal in form. Throughout the entire 
analysis period DAF inventory prices remained consistently lognormal as, 
we demonstrated by a variety of statistical tests. We also found spare 
prices to be lognormal in the other spares systems studied apart from the 
DAN air data. In this case we had a strong suspicion that the data for all 
items in the set was not from the same time period. The most likely 

stochastic process to explain lognormality of prices is a form of the Law 

of Proportionate Effect expressed in terms of the 'theory of breakage'. As 
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an empirical finding we are very confident that spare parts prices for 

complex capital equipment are lognormal, but other than a rather 
simplistic physical analogy, using the theory of breakage we have no other 
explanations why. 

13.1(b) The distribution of aggregate demand volumes 

'We have shown beyond doubt that for very short time periods the 
aggregate distribution of demand volumes in the DAF case is not 
lognormal, but was found to be consistently distributed as the combined 
LSD/NBD model. The distribution is LSD when only the positive demands 

are considered and NBD when the zero (but still live demand items) are 
also considered. We have also shown that the pattern of aggregate demand 

occasions, or incidence, in short periods is fullY'described by a simple 
Poisson'model. These three models, Poisson demand occurrence, LSD 
demand quantity and overall NBD demand quantity, are the necessary and 
complete conditions that satisfy the Afwedson Poisson process of 
aggregate item behaviour. Furthermore we saw' this process to be 

consistently in operation in the DAF case from 1978 through to 1986, 

although we only reported full year data up to 1985 as ihe last year. [It 

was not verified for the period 1975 to 1977 because period demand data 

was not available]. We also saw the same process to be in operation in the 
DAN Air data, although we were not able to test it so extensively as in the 
DAF case. Our definition of short (or single) period in the DAF systems 
was four weeks, whereas in the DAN Air case we had to consider one year. 
We attribute this difference of degree to be due to the fact that in DAN 
Air the volumes demanded overall across all parts were so much lower 

than those in the DAF case. The important point is however, that although 
the time scale between the two systems Was different the underlying 
process was the same-. 

The second major finding in our work was the fact that the short 
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period aggregate demand volumes could be cumulated period by period 
and the overall distribution that was obtained was consistently lognormal. 
The convergence in the DAF case required something in the order of nine 
periods (some nine months) before we could be sure that, lognormality 

was obtained, whereas in the DAN Air case nearly four years were 
required. Furthermore we found that once the system had obtained a 
lognormal form this remained the stable long run distribution of the 
system. This was in the face of the findingslof jjýri and Simon who 
maintained that the Yule distribution is to be expected from systems driven 
by the Law of -Proportionate Effect and where item entries and exits 
occur in the system. What must be borne in mind is that the work of these 
two authors was based largely on the distribution of firm sizes in specified 
industries. We can certainly regard the number of firms in such 
industries as being small compared with say the number of different parts 
in an inventory range. Hence it is very likely that the proportion of firm 

entries and exits to these industries were large compared to the number of 
firms in each corresponding industry. In such cases it is conceivable that 
Ijiri and Simon did observe long term effects that we have not seen in our 
spare parts systems, where the entries and exits (per annum) have been 

comparatively small in relation to the total size of the parts range. (There 

was something in the order of 300 parts per year net change over the 
period 1978 to 1986 for an inventory range varying from 9,000 to 12,000 

active parts). We can only conclude here that we are not necessarily in 
disagreement with Ijiri and Simon, because there may well be much wider 
boundary conditions of entries and exits that would permit the attainment 
of the Yule distribution, but these were certainly not observable in the 
systems we studied. 

The Afwedson process model we have applied to aggregate demand 
is in affect a Poisson compound distribution, with the LSD being the 
compounding function that generates the overall NBD of aggregate 
demand behaviour. This is equivalent to the compounding models that 

Page 422 



Chapter 13 

have been applied to single item demands, but in our work applied to 
heterogeneous populations. Also the Afwedson model as applied to spare 
parts aggregate demand is analogous to the early research work on 
heterogeneous populations presented or discussed in the Biometrics 
literature principally by Fisher (1943), Anscombe (1950) and Quenouille 
(1949). Interestingly, and as a side issue, we found strong evidence that 
the period by period demand for many individual items in the DAF 
inventory were also demand compounded and that the NBD model fitted 

our data sets extremely well. We also found that the Stuttering Poisson 
(sP) model fitted the data very closely. In fact from the limited 

comparisons we carried out it was very difficult to differentiate between 
these two distributions. 

Our simulation studies were conducted, to verify and support the 

empirical findings and to provide additional support to our proposition 
that the cumulation, period by period, of an Afwedson model of short 
term aggregate demand yields a lognormal distribution as the stable long 

run model of the system. This was a very positive outcome and we were 
able to demonstrate a strong empirical relationship between the starting 
LSD parameter 'q' of the model and the value of the lognormal shape 
parameter a when a stable lognormal model was obtained. 

I 
We also showed by simulation that the convergence of short period 

aggregate LSD/NBD demand is independent of the variance of the demand 

streams. Simple Poisson, NBD and high variance NBD demand streams 
all produced lognormal models with means and variances very close to 
those of the empirical distributions. We did not use the Stuttering Poisson 
distribution as the demand stream model because of the computational 
difficulties with -large values of the variate being simulated. We are 
however, confident that an sP model would also have produced a 
lognormal distribution because of its Poisson character and a form that is 

very close to the NBD. We conclude therefore that the aggregate 
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lognormal distribution of demand volumes is dependent on the parameters 
of the starting LSD/NBD aggregate distribution, but independent of the 
variance of individual demand streams, providing the underlying 
character is Poisson. 

In the model testing of chapter eight we were able to verify that it is 
ihe Law of Proportionate Effect that drives the convergence to 
lognormality, although there was some evidence to suggest that the law 

may, -not be operating in its most stringent fon-n. In reality this is of 
academic interest only, as far as our quest for a deeper understanding of 
the aggregate demand behaviour is concerned, but it is nonetheless a 
significant finding that has not been reported before in the context of 
inventory systems. What is of significant value concerning the 

convergence is the speed or time it takes to achieve a stable lognormal 
distribution. This is related to the general level of aggregate demand 

volumes. It appears that the higher is the general level of aggregate 
demand volumes then the faster is'the convergence to lognormality. 

When we looked at aggregate demand occasions in the DAF case we 
found evidence of mixing taking place in the long run, because the long 

run empirical aggregate demand occasions distribution could be fitted to a 
Gamma distribution and the value of the variance was greater than the 

mean. In the short run there was no evidence of this with single period 
demand occasions being described adequately by the simple Poisson 

model. The'increased variance could only come from long run mixing 

processes. We'conclude from this that whilst the evidence for Afwedson 

model was very strong there was evidence that Poisson mixing is also in 

operation. One process does not preclude the other. 'Ibeoretically either 

could exist separately, or both could co-exist in the system. From a 

practical perspective this finding has little value because from an 
inventory management point of view we are far more interested in 

demand quantities and values, both in the short term and long term, rather 
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than demand occasion or incidence. 

13.1 (c) Acceptance of the research hypotheses 

All the findings and conclusions in this chapter summarise 
original work that has, not been reported previously in the literature. 
These conclusions also fully support our working hypotheses of chapter 
five (iv) and (v) and the more refined hypotheses of chapter seven (a) 

though to (e). They are listed again below for convenience. These 
hypotheses were developed from the theoretical reviews of chapters four 

and five, the empirical analysis of chapter six and, the new theory 
development of chapter seven. 

(iv) In the long run aggregate inventory item usage rates are 
lognormally distributed as the stable long run equilibrium 
distribution. The convergence of usage rates to lognormality 
is governed by the Law of Proportionate Effect. , 

(v) Furthermore, as usage values are the product of item prices 
and item demand volumes, then these two factors are also 
lognormally distributed. Ibis is providing that the period 
over which the demand is measured is sufficiently long for 
the process to have converged. 

Both hypotheses (iv) and (v) have been proven correct from our work 
and results given chapter six. 

(a) In the case of prices the inventory range must be large and 
complex in the sense that it must comprise many small value 
items in addition to very high value items as typically found 
in spare parts inventories for complex capital equipment 
such as commercial vehicles, aircraft, tractors etc. In the case 
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of demand volumes the period must be comparatively 
long and it is a discrete form of the lognormal distribution 
that is attained as the stable long run distribution by the 
summation of short period demand volumes. 

The phenomena of demand quantities being lognormal has been proved 
and we have shown that this is the result of the cumulation of short period 
aggregate demands. The item range complexity question is still somewhat 
tentative; we are not sure from our work just how limited the item range 
could become before the conditions for lognormality are no longer 

applicable. We are doubtful if an inventory comprising just a few hundred 
items would achieve lognormality of demand volumes; this is an area that 

requires additional research to verify any limiting lower boundary 

conditions that may exist. 

(b) In comparatively short time periods the aggregate '- 
distribution of demand quantity its fully described and 
modelled by the Log Series distribution of R. A. Fisher. 'Ibis 
distribution is itself a special case of the Negative Binomial 
distribution when the proportion of very low demands in the 
population is high. In the same time period the aggregate 
distribution of demand occasions is described by the simple 
Poisson process. 

(c) - The underlying stochastic process that explains the ' 

occurrence of the Log Series distribution of aggregate 
inventory item demand quantity is the 'Afwedson Compound 
Poisson Process' as previously developed and discussed. 

(d) The Log Series distribution of aggregate demand wiU, if 

cumulated over successive time periods, gradually converge 
to a distribution, which is discrete and has all the 
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characteristics of the integer fonn of the lognormal 
distribution known as the distribution of counts. 

Hypotheses (b), (c) and (d) have all been proven from our empirical 
analysis'of chapter six, the retroductive model testing and validation of 
chapter eight, and then further'supported by our- simulation work of 
chapter nine. I 

(e) The stochastic process that governs the convergence of 
demand volumes, and hence also of usage values, to the 
lognormal distribution of counts is the the Law of 
Proportionate Effect. 

We have shown the Law of Proportionate Effect to be operating in both 

the DAF and DAN Air cases during the cumulation of demand volumes. 
However, because of a similar degree of serial correlation in the 

regression test in both cases we doubt that the law may be operating in its 

most stringent form. 

13.2, Factors which control lognormal parameter, values 

One of the prime concerns of this research was to understand the 
underlying basis for lognormality of inventory usage values. This was 
pursued on the premise that achieving a deeper understanding of the 

processes and mechanisms at work would provide additional opportunities 
for aggregate inventory management decision making and control tools. 
From our foregoing work and conclusions we are able to develop a 
scheme that explains those factors that govern the parameters of -the 
lognormal distribution of usage values. As we have already noted both in 
this chapter and earlier ones it is the shape parameter in particular that is 

of prime interest to inventory management, although a consideration of 
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what controls the shape parameter 'cT ' also indicates what controls 'ju ' 

the location parameter. 

The respective contributions to the parameters of the usage value 
distribution comes equally from the constituent price and volume 
distributions as can be seen from the functions for the lognormal mean 
and variance first shown in chapter three. If we let a and P be the mean 
and variance respectively of the usage value distribution then we can write 
the function as follows : 

distribution mean a= e 
u+1/2a2 

distribution variance p2 
=e2. 

u+a2 (e a2 
- 1) 

Where a and y are the parameters of the distribution. 

Then we can write - 

a= e 
(. U 2 

price +JU 2 
vol)+ 1/2 (a2 price + a2 vol ) 

e 
2(. up, i,, +. u,,, )+(a2price +a2 Vol) 

(e (Cr2price+(y 2vot) 
-I) 

this arises out of the basic theory of lognonnal function given in chapter 
three because :- 

(T 2 
us. val. ---: C price + (T 2 

Vol. 

and 
Pus. 

val. 7- Pprice + Pvol. 

When the value of the shape parameter cy is of theorder two then 
the contribution to the distribution mean is approximately equal between 

the two'parameters. As a lognormal distribution becomes very skewed 
then the shape parameter has greater influence on the mean and variance 
of the distribution. 
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From this stage we can now develop an overall scheme showing 
those factors that explain the values of the parameter values of the 
lognormal usage value distribution. This scheme can also indicate what 
direction these values are likely to move in when underlying changes take 
place. As a first step we start the development as shown below in figure 
13.1 below: 

figure 13.1 
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This shows that the parameter values of the usage value distribution 

are governed equally by the values of the parameters of the separate price 
and volume distributions. However, each distribution is independent of 
the other and for example a change in the parameter values of the price 
distribution in no way affect the parameter values of the volume 
distribution. 

As a second stage we need to consider what factors influence and 
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control the parameters values of the price, distribution and the volume 
distribution. As we have already discussed the price distribution can only 
be specified as an empirical finding. However, unlike the volume 
distribution, which is determined ultimately by failure processes and 
customer service policies and behaviour which in turn determine demand 

volumes, the price distribution is a function of product structure and 
management pricing policy. The product structure is in a sense fixed, 

certainly in the short run, because a truck comprises a certain number and 
type of components each with a propensity to wear and failure. 
Management determine the value to be assigned to a given component part 
to reflect the costs of either the purchase of that part from outside 
suppliers, or the value (cost) accrued during its production. 'Me part is 

then distributed down a distribution chain and at each stage markups are 

added. Hence managers do affect considerably what the price will be at 

each stage, that, when considered over several thousand part numbers, 

will affect to a significant degree the parameters of the lognormal 
distribution of prices. In particular the location parameter will strongly 
reflect the value added at each stage. 'Me shape parameter will reflect 
management behaviour in terms of selective pricing across the range. A 

policy of equal markups on all parts at each stage will increase the location 

parameter, but the shape parameter will remain constant. Selective 

management pricing on certain parts will alter both the shape parameter 
a and location parameter y jointly. This was the basis of our reasoning 
in chapter 12 section 12.6. where we discussed the possible use of the 

parameters as a unique way to monitor inventory performance. 

When we consider the volume distribution we know that the short 

period process that affects lognormality is the Afwedson process and the 

parameter 'q' of the LSD distribution relates to cF the lognormal shape 

parameter. As 'q' increases the so too does a, but not linearly. The LSD 

parameter 'q' is determined ultimately by the wear and failure process of 
individual parts and the servicing behaviour of the truck operators. It is a 
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measure of the aggregate profile of demand volumes in very short time 
periods. At the distributor level 'q' will, to a degree, also be. affected by 
the short run stock replenishment decisions of the dealers. 

As a next stage in our scheme development we show the principal 
factors that affect price and volume distribution parameters in figure 13.2 
shown on the next page. Figure 13.1 and 13.2 indicate the principal 
factors that ultimately affect the overall parameter values of the 
lognormal distribution of usage values. The fact that we have observed 
considerable stability in the parameter values in the DAF system over the 
period 1975 to 1985 can be interpreted with the help of the above two 
figures. As far as the overall shape parameter of usage values are 
concerned we observed very little change in the value of this parameter 
over the period, yet when we examine the factors that are principally 
responsible for its value we see it is controlled principally by Orprice, and 

'7volumes- What has happened over the period is that there have been small 
and counter balancing changes in both parameters year to year. As 

(7volumes has decreased so '7pfices has increased and the overall affect has 
been very little change in the value of aus. values. This is not to say that 
C'us. vaiues would always be very stable. For example, if management at 
DAF Trucks decided upon a policy of intensive selective pricing on 
substantial numbers of parts, in closely related price groups, then the 
value of apices would change significantly. 

This change could be an increase or a decrease depending on which 
group of parts were affected by the policy. If there were selective price 
increases on high value group items then 6prices would increase, ie. prices 
would become even more concentrated. Conversely if selective price 

., 
would decrease. increases were aimed at low value item groups then apic, 

Furthermore we can reason that selective price decreases in 

corresponding groups would have the opposite effects to the foregoing. 
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figure 13.2 
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So far our models above assume a constant parts population in 

terms of the number of different items in the range. Another factor that 
could potentially affect the lognormal distribution parameter values in the 
lo'hger term is the addition (and subtraction) of active part numbers to the 
parts range. What the overall effect turns out to be depends on two 
factors, the prices of the added part numbers and their sales volume. In 

general the addition of high price high volume parts would increase both 

price concentration and demand volume concentration. The addition of 
low value low demand volume parts would have the opposite effect. High 

price but low volume parts would increase price concentration, 'but 
decrease volume concentration, and low price high volume will have the 
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complementary effect. Over the period of study on the DAF systems the 
parts range has gradually increased year by year. 'Me major trend has 
been to add high volume low value parts. Hence the overall effect on the 
lognormal parameter values has tended to be an increase in volume 
concentration and a decrease in price concentration. 

In chapter four section 4.4 we discussed the work of Hart and 
Prais(1956) and Hart (1957) on industry size and concentration. Hart in 

particular considered the effect of entries and exits on the variance of the 

equilibrium distributions and formulated an equation (eq. 4.4) that related 
the industry firm size variance to the mean and variance of the survivors 
and the mean and variance of the new entrants. They concluded that new 
entrants decrease the variance whilst exists increase the variance. It is 

possible to rationalise this with firms in industries because the level of 
business once enjoyed by those firms that leave the industry will be shared 
by the remaining firms. Conversely new firms will compete for existing 
business with existing firms, and so reduce industry concentration. 
Unfortunately the same similar reasoning cannot be applied to new parts 
entering a spare parts range, the situation is far too complex to draw any 
comparatively simplified assumptions. We can only recognise empirically 
the general direction of change that entries and exits will have as 
discussed in our schemes above. 

13.3 Aggregate Inventory standards 

As previously discussed the use of the lognomial distribution to set 
aggregate inventory standards is due to the pioneering work of RG Brown 
(1959) who then used the basic principle of using the parameters of the 

usage value distribution to set inventory decision rules. Brown's work 
was followed by a period when the lognormal distribution received a 
modest amount of attention in the inventory literature and amongst the 
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more prominent authors were Brown (op cit) and (1963,1963a, 1967), 
Heron (1968,1974,1976,1978 and 1981) and to as lesser extent Schary 

and Howard (1970 and 1971), and Bestwick and Lockyer (1982), as we 
discussed in chapter three. According to Heron, and others (eg Schary and 
Howard) IBM utilised the basic theory in their distribution software 
system 'IBM Wholesale Impact', although this author has not had the 
opportunity to see this system or its documentation. Apart from IBM no 
other reported commercial applications has been referenced in the 
literature. From around 1983 onwards very little has been published on 
the application of the distribution to inventory issues. In fact one might 
conclude that the general opinion might have been that a valuable 
technique has been taken as far as it could be in terms of practical 
applications. Furthermore it might have been argued that with the advent 
of faster and smaller, computers and increasingly flexible software then 
the need to set inventory standards using lognormal aggregate methods 

was no longer needed because one could just as easily run through the 

entire inventory range with whatever calculation was needed. This might 
well have become true, accept for the fact that we have considered spare 
parts inventories in this research and these have item ranges that are often 
very large. 

In general spare parts inventories are the largest and most complex 
of all inventories that one can encounter. DAF Holland with just 60,000 

part numbers is really quite modest in its range of items. Ford UK carry 
over 1 million different part numbers. Within the automotive industry, the 

construction equipment industry and the aircraft industry, - hundreds of 
thousands of part numbers in a range are the order of the day. We argue 
that in inventory systems similar to these situations the use of the 
lognormal distribution to set and evaluate aggregate inventory standards is 

still a most valuable tool to use as the methodology is very accurate and 
cost effective compared to complete enumerations; and certainly 
superior in accuracy terms to audits by sampling. 
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However, our concern here is not to try and justify such use, we 
have taken the theory a stage further and our findings and'models have 

opened new areas of application. Because spare parts usage volumes are 
lognormally distributed, subject to the time period, and so too are parts 
prices, then a number of other inventory factors that derive from these are 
also lognormally distributed. We have seen from chapter 12 that the 

average volume held in stock will be lognormal if calculated on the basis 

of functions that can be expressed directly in terms of the sales volume. 
As parts prices are lognormal then so too will stock values be lognormal. 
From these facts we have also seen that individual turnover rates across 
the inventory range are lognormally distributed, and the individual 

variation in turnover rate from item to item is as a consequence very wide. 
We have argued and shown in chapter 12 that because of this phenomena 
the use of the classical aggregate measures of inventory -performance are 

not truly reflective of what is really happening in the inventory. 

Lognormal distributions are almost always very highly skewed and in 

such cases a simple-average measure can be very misleading. Hence'the 
broad based aggregate ratios such as 'stock turnover rates', 'day sales in 

stock', and 'stock to sales' when calculated in the classical way are not 

very helpful to Operational management. If an average ratio is to be used 
then it should be based on the calculation of the average of the individual 

ratios. This is a much truer representation of the behaviour of the range of 
items. We feel that the inventory factors and relationships we have shown 

and'discussed in chapter 12 can be used to develop a range of new tools 
for aggregate inventory performance measurements not possible with 
previous knowledge. We have not developed such tools in this work, that 

was never the intention, but we hope this current work will enable others 
to build on these ideas. 
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13.4 The Integration of Knowledge 

In the execution of this research we have had recourse to can on 
existing knowledge from a variety of fields of enquiry. In consequence we 
can claim to have integrated concepts and theories from several 
knowledge areas. Indeed the development of the theory underpinning our 
empirical observations, and model development has only been possible by 
the integration of theory and empirical observations from several diverse 
fields of enquiry. We have drawn on work from fields as diverse as 
biometrics, consumer purchase theory, theoreticaL statistics, applied 
statistics, industrial economics and inventory theory and practice. 

From the theory of the distribution of firm sizes we have drawn 
important concepts from the stochastic processes that govern both the 
growth of economic variates, such as firm sizes, and the form of the 

equilibrium distributions obtained. This area has also provided valuable 
ideas regarding the concept of concentration of economic variates. These 
ideas were discussed in chapter four and to a lesser extent in chapter 
eleven. 

Our early search for various applications of the lognormal 
distribution lead us, via Geoff Easton's (1975) work, to the literature on 
consumer purchase theory. Here we found valuable theory on repeat 
purchases and the NBDALSD models of Andrew Ehrenberg. Ehrenberg's 
Poisson Gamma model proved to be of direct value in our modelling work 
and enabled us to consider the important distinction between purchase 
incidence(or occasion) and purchase quantity. Ehrenberg and Easton also 
provided valuable stochastic models that we have been able to adapt to our 
work in chapter five. 

'Me field of applied statistics has provided a considerable amount of 
theory that has underpinned our research development. In particular the 
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theory of recurrent event processes in terms of compound and mixing 
Poisson processes proved to be of immeasurable value. The application of 
compound models in inventory theory provided a starting point to see 
what bridges could be made across the gap from single item behaviour to 
the behaviour of a whole class of items in aggregate. As we have seen it is 
the Afwedson model of Poisson compounding that provides the 
underlying explanation of the form, of aggregate demand volumes. 
However, we could not have made the necessary deductions and inferences 

regarding the application of the Afwedson model to heterogeneous spare 
parts systems without the evidence of heterogeneous item behaviour 
drawn from work in the Biometrics field. This was a fortuitous finding, 

and in particular the work of Fisher(1943), and Jones and Mollison 
(1948), and then also the work of Anscombe (1950) and Quenouille 
(1949), discussed in chapter seven, proved to be a turning point in our 
work, This gave us considerable confidence to move forward along the 

path to heterogeneous compounding for aggregate spare parts parts 
demand quantity in short time periods. 

13.5 Further Research 

rMere are a number of areas where we feel that further research is 
justified. We have been unable in this work to examine the underlying 
processes at work which account for parts prices being lognormally 
distributed. From an inventory management point of view it is sufficient 
to accept it as a proved empirical fact. However, from a marketing point 
of view we think there should be merit in trying to understand this 

phenomena at a more fundamental level. The process may well have great 
utility-. in terms of pricing theory. We also feel there is mileage in the 

possibility of using the parameters of the price lognormal distribution to 
monitor competitor prices. It is always possible to watch competitor price 
moves item by item, but we feel that watching them move in aggregate by 
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the change in lognormal parameter values will give a deeper insight to the 
competitor's pricing behaviour not possible by other means especially if 
the product range is large. 

AH our work in this thesis has been focused on spare parts systems. 
All the underlying theory rests on the fact that in such systems, and in the 
environment that generates the demand for such items, the underlying 
demand character is Poisson in nature. There are however other product 
fields that should yield similar market demand and product profile 
characteristics and hence quite possibly the same underlying theory will 
hold. An area of promise are food products inventories of the type 
typically encountered in supermarkets. These inventories are often 
comparatively large and of the order of several thousand of items. 
Furthermore the demand generation is from a large independently buying 

population. The requirements for an underlying Poisson process may well 
exist in such environments. This author had the opportunity at once time 
to examine inventory problems in a confectionery wholesale warehouse 
operation (Trebor Group Distribution). Although it was not part of the 
project inventory usage values were subjected to lognormal analysis, and 
they were found to fit very well to a lognormal distribution! We were not 
too surprised by this finding but it was not pursued any further. If the 
theory we have developed in this thesis could be applied to such product 
fields it could ultimately have greater utility than in the spare parts case. 

'For one thing it is very likely that the lognormal distribution will fit usage 
values of such inventories in very short time periods simply because of the 
typically very high demand volumes involved in such systems. Far higher 

than in our DAF systems for example. We recommend that the lognormal 
theory be investigated in other product fields and we are confident that all 
we have developed in this work can be applied to a number of product 
fields providing the underlying demand process is Poisson. 

In the case of fast moving inventories of the food merchandise type 

Page 438 



Chapter 13 

we feel there should be significant merit in examining the demand 

volumes very carefully to see if the Yule distribution is a more accurate 
description of the aggregate demand. Such inventories are likely to 
display a vastly greater degree of item entries and exits to the system than 

we have seen in spare parts systems. Also the item range will be much 
more limited in size than spare parts, being typically of the order of three 
or four thousand in an average supermarket operation. Hence the overall 
effect of system entries and exits may well be significantly larger than we 
have observed in spares systems. 

At one point, in the general investigation carried out by this author 

on DAF data we attempted to test the hypothesis that the shape parameter 
of the lognormal distribution would be closely related to a measure of the 

ageing vehicle fleet in the field. What DAF executives referred to as the 
'Truck Park'. Intuitively it seemed that as the vehicle fleet aged, as it did 

steadily from 1975 until 1986, then this phenomena should be reflected in 

some way in the changing value of the shape parameter of the lognormal 
distribution of usage values. The rational for this was on the basis of the 
fact, that as trucks age they generally have a greater call on the more 
expensive parts, eg engines, gear boxes, differentials etc. If such a 
process is taking place then it is argued that it will have an effect on the 

profile of the usage value distribution. If such a relationship can be 

established then the changing average truck age may be used as an 
indicator of the future shape parameter of the associated lognormal 
distribution. Preliminary analysis failed to reveal any meaningful measure 
of truck age which we could relate to the changing value of a year by 

year. However, this author contends that such a relationship should exist 
and additional research in this area is worth pursuing. 

. Although it was not a direct focus of our work we had need to 

consider the nature of period demands for individual spare parts. As we 
discussed in chapter five and then again from an empirical point of view in 
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appendix one we concluded that compound Poisson models are the 

appropriate ones to use for spare parts fixed interval demand, although 
for low demand volumes the simple Poisson seems appropriate. In our 
limited work in this area of investigation the case for the NBD and the 
Stuttering Poisson distributions was extremely strong. Furthermore we 
feel these two distributions should be examined closely to ascertain the 
conditions under which they apply. We were not able to differentiate 
between them, but from an inventory theory point of view it would be a 
significant value to know the conditions in which they apply, the 

circumstances ' 
where they give similar results and the conditions when 

they diverge. Sherbrooke (1968) has done a limited amount of work here, 
but not nearly enough to be really helpful. According to Sherbrooke (op 

cit) it was claimed that for variance to mean ratios (q) up to a value of 
three, the two distributions give almost identical results (ie probabilities 
of the variate x), but begin to diverge thereafter. We found that for values 

of q up to seven the probabilities were very close, but the NBD produces a 
slightly longer tail. This fact alone would will have importance for setting 
reorder levels. We also found certain errors in Sherbooke's tabulated 

probability values that puts some of his results in question. Ultimately 
from an inventory management point of view it is the mean and variance 
of demand in the replenishment lead time that is important for setting 
inventory parameters, but one must know the nature of the appropriate 
models in fixed intervals first and then combine these with an appropriate 
choice of lead time distribution. 

We also consider there is merit in researching the possibility of the 

so called Stuttering Erlang process as an appropriate model to represent 
spare parts demand between retail and wholesale points in a distribution 

chain. The degree of demand regularity introduced due to the retail 
restocking effects may exhibit underlying behaviour that is better 

modelled by an Erlang process than by a Poisson process. 
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Determination of the Distribution 
of DAF period demands 

1.0 Introduction 

In this section we show the calculations undertaken to demonstrate 
that the period demands in the DAF case are almost certainly compound 
Poisson distributed with either the Negative binomial distribution (NBD) 

or the Stuttering Poisson (sP) distribution as very strong candidates. Four 

parts were chosen randomly after checking that the demand over a 30 

period time span showed no significant trend in each case. The mean and 
variance of demand of each empirical demand stream were used to 

calculate the probabilities of the corresponding NBD and Stuttering 
Poisson distributions, which in turn were used to generate theoretical 
demands. The empirical demands Were then tested against the theoretical 
values for goodness of fit. 

1.1 Gasket set 

The 30 demand values for the Gasket set (part number 115262) are 
shown in the graph below, where it can be seen that no significant trend is 

evident in the chosen data set. This was an important characteristic 
because any significant trend in the data would interfere with an objective 
test against an appropriate (and stationary) NBD or sP model. 
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I figure Al. 1 
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The parameter values of the empirical data were as follows- 

Mean m= 23.900 
variance s2= 176.079 
Variance to mean ratio 'q' =7.369 

These values were used to determine the form of the appropriate NBD. 
Firstly we determined P(x=O) for the NBD from - 

P(x = 0) = (1 
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where k= ml(q-1) 

Subsequent probabilities were calculated as shown in chapter eight using 
the recursive NBD relationship :- 

(a )(1 
_a- 

m)p. P(X) = 1+a ax X-1 

whem a= m1k 

The form of the particular NBD so generated is shown in figure 
A1.2 below and table A1.2 shows the theoretical demand values generated 
from the NBD, together with the relative frequencies and cumulative 

relative frequencies. The frequencies for the sP distribution were 
calculated using the recursion formula that was shown in chapter five, 

namely: - 

(1-P)At J=M 
-'R,, ljpj 

-j n j=l 

To use this model we determined the values of the parameters p and A by 

the following relationships given by Ward (1978) :- 

(q + 

2m 
(q + 
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where W is the distribution mean and 'q' is the variance to mean 
ratio. 

An Excel spreadsheet model was developed to calculate the sP 
frequencies for values up to 100. Because the number of calculations 
involved are proportional to the value of Y the sP distribution soon 
becomes very laborious to use, and would require a very high powered 
system for large values of 'x'. (An sP distribution with mean value equal 
to 100, or greater, would require 'main frame capacity. We used a pc 
system model based on an 'Excel' spreadsheet and this could cope with 
values from distributions with means up to 50 and comparatively long 
tails) 

Table A1.1 shows the empirical gasket data compared to the 

corresponding sP distribution, whilst table A1.2 shows the same data 

compared to the NBD distribution. 

In both cases of'the NBD and the sP the cumulative frequencies 

were used to determine a goodness of fit using the Kolmogorov Smirnov 
test. It can be seen from tables A1.1 and A1.2 that the maximum Dn 

values for the difference between the two cumulative distributions in each 
test was very small at 0.0233 and 0.0300 respectively. These compare 
extremely favourable with the theoretical Kolmogorov Smirnov Dn test 
values of 0.24 and 0.27 respectively for a sample size of 30. (Dn values 
provided in Kendall - Advanced theory of Statistics, vol. five)' Hence on 
this basis the empirical data could easily pass as either NBD or sP 
distributed; both are highly significant. If there is any difference at all, 
based on the KS test, then it is marginally in favour of the NBD, although 
one could not claim the difference to be significant; it is far too small and 
could be explained away due to sampling error. 
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figures A1.2 and A1.3 
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Figures Al. 4 and A1.5 show the cumulative frequencies as line 

graphs from which can be seen the very close correspondence between the 

empirical data and the theoretical data generated from both the NBD and 
the sP distributions. 

figure A1.4 
Negative Binomial Distribution Test 
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figure A1.5 
Stuttering Poisson Distribution Test 

11 Comparison of cumulative empirical with sP 
1.0 

r_ 

0 0.5 

0.1 

Sequence 

I 

at 

From the above results we have very strong evidence to suggest that 
the period demands for the Gasket set are distributed according to a 
compound Poisson distribution and it could well be either as a Negative 
Binomial distribution or a Stuttering Poisson distribution. Figure A1.9 

and A1.10 in section A1.3 below show that the two distributions are so 
close that it is very difficult to separate them in terms of frequencies. 
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A1.2 Additional parts 

The three other parts that were 
comparison analysis as the gasket set were- 

Part No. 103820 'King Pin' 

subjected to the same NBD 

-a wear out item 
Part No. 229963 'Temperature indicator' -electrical item 
Part No. R241787 'Starter motor' -expensive repairable part 

The analysis on each one produced 
, 
very similar results to the Gasket 

set in terms of the highly significant Kolmogorov Smirnov test. 

Mean 
Part No. 103820 45.833 
Part No. 229963 11.533 
Part No. R241787 45.966 

variance Max observed Dn 
246.557 0.0255 
33.292 0.0295 
173.257 0.0226 

Each of the above Dnmax values were compared to the theoretical 
values of Dno. 01 and DnO. 05 at 0.27 and 0.24 respectively. Hence, as with 
the gasket set they are very significant results and are strongly indicative 
that the demands for these parts are distributed as compound 
distributions, that are very likely NBD; although we have not proved it to 
be any more efficient than the corresponding sP. This detailed analysis 
has been limited to just these four randomly chosen parts, but we are 
confident from the results that the NBD is a satisfactory distribution to 

model period demands for a wide variety of parts in the DAF case. Hence 

we were also confident that it was a valid choice to model demand 

streams in the simulation work of chapter nine. 

The actual demand patterns for each of these three parts are shown 
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in the following figures where it can be see that each had a reasonably 
stable demand pattern over the time span chosen. (A 30 period time span 
from early 1983 until 1985). It was considered better to choose parts that 
had this characteristic rather than try to remove any trend effects. 

figures A1.6 to A1.8 

80 

70 

60 

50 

:i r, 40 

30 

20 

10 

Part number 103820 Kinz Pin 

0 10 20 30 40 

time (consecutive months) 

Page 449 



Appendix I 

80 

60 

40 
(1) 

pzi 

20 

0 10 20 30 

Time (consecutive months) 

30 -1 Part Number 229963 Temperature Indicator 

20 

"C 

"U 10 

0" 
0 10 20 30 

time (consecutive months) 

40 

40 

Page 450 

Part no. R241787 Starter motor 



Appendix 1 

AM Comparison of the NBD and sP distributions 

In figures A1.9 and A1.10 we show a detailed comparison, 
frequency by frequency, of the NBD and sP distributions used in the 
gasket analysis. Whilst detailed comparisons of NBI)s and sPs have no 
central role in our research it is of passing interest to see the comparison 
on this particular data set. 

By examining the frequencies in the way shown it can be seen 
" 
where 

the two distributions correspond and where they depart, from each other. 
It can also be seen that there are several cross-over points (three in fact). 
The frequencies in the long tail seem to correspond very well. 

figure A1.9 and A1.10 
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We can conclude form the work in this appendix that we are quite 
confident in regarding the period demands for individual items as being 

compounded and that the NBD provides a very good fit to the data. The 
Stuttering Poisson also provides a good fit over the ranges of parameter 
values we have explored. Certainly from the gasket set data the two 
distributions are very close indeed, even with a variance to mean ratio 'q' 

of 7.367. According to Sherbrooke (1968), in his limited work with the 
two distributions, he reported a gradual divergence in the frequencies as 
'q' exceeded a value of three. In our work here 'q' was equal to 7 in the 
gasket data and there was a very close correspondence between the two 
distributions as shown by figures A1.9 and A1.10. 'Ibis is clearly an area 
that deserves further research to establish more precisely the range and 
nature of the conditions over which the two distributions correspond and 
then diverge. 
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Table Al. 1 

Gasket set data testing aginst the Stuttering Poisson distribution 

Empirical, Empirical Empirical Theoretical Theoretical Theoretical K. numov 
frequency f(x) F(x) frequency f (X) F(x) F(x)-F(x) 

2 0.0028 0.0028 1 0.0015 0.0015 0.0013 
7 0.0098 0.0126 3 0.0044 0.0059 0.0067 

10 0.0139 0.0265 6 0.0088 0.0147 0.0118 
10 0.0139 0.0405 7 0.0102 0.0249 0.0155 
10 0.0139 0.0544 10 0.0146 0.0396 0.0148 
11 0.0153 0.0697 10 0.0146 0.0542 0.0155 
11 0.0153 0.0851 10 0.0146 0.0688 0.0162 
15 0.0209 0.1060 12 0.0176 0.0864 0.0196 
16 0.0223 0.1283 14 0.0205 0.1069 0.0214 
18 0.0251 0.1534 15 0.0220 0.1289 0.0245 
20 0.0279 0.1813 17 0.0249 0.1538 0.0276 
20 0.0279 0.2092 19 0.0278 0.1816 0.0276 
20 0.0279 0.2371 19 0.0278 0.2094 0.0277 
21 0.0293 0.2664 19 0.0278 0.2372 0.0292 
22 0.0307 0.2971 22 0.0322 0.2694 0.0276 
25 0.0349 0.3319 23 0.0337 0.3031 0.0288 
25 0.0349 0.3668 23 0.0337 0.3368 0.0300 
25 0.0349 0.4017 24 0.0351 0.3719 0.0298 
25 0.0349 0.4366 25 0.0366 0.4085 0.0280 
27 0.0377 0.4742 26 0.0381 0.4466 0.0276 
27 0.0377 0.5119 26 0.0381 0.4847 0.0272 
30 0.0418 0.5537 27 0.0395 0.5242 0.0295 
30 0.0418 0.5955 30 0.0439 0.5681 O. U274 
31 0.0432 0.6388 55- 0.0483 0.6164 0.0223 
32 0.0446 0.6834 36 0.0527 0.6691 0.0143 
35 0.0488 0.7322 T8 0.0556 0.7248 0.0074 
36 0.0502 0.7824 39 0.0571 0.7819 0.0006 
37 0.0516 0.8340 40 0.0586 0.8404 -0.0064 
58 0.0809 0.9149 47 0.0688 0.9093 0.0057 
61 0.0851 1.0000 62 0.0908 1.0000 0.0000 

sum 717 683 
mean 23.9 -22.76667 
stdev 13.27001 13.78326 
var 176.0931 189.7 
var/mean 7.367912 1 8.344575 
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Table A 1.2 

Gasket set data testing against the NBD distribution. 

Em irical EmDiri al Empirical Theoretical Theoretical Theoretical K. Smirnov 
frequency f(x) Fx fre uenc f (X) F'(x) F(x)-F(x) 

2 0.0028 0.0028 5 0.0075 0.0075 -0.0047 7 0.0098 0.9126 7 0.0105 0.0180 -0.0054 10 0.0139 0.0265 8 0.0120 0.0299 -0.0034 10 0.0139 0.0405 11 0.0164 0.0464 -0.0059 10 0.0139 0.0544 11 0.0164 0.0628 -0.0084 11 0.0153 0.0697 11 0.0164 0.0792 -0.0095 11 0.0153 0.0851 12 0.0179 0.0972 -0.0121 15 0.0209 0.1060 
- 

14 0.0209 0.1181 -0.0121 16 0.0223 0.129 3 16 - 0.0239 0.1420 -0.0137 18 0.0251 0.1534 17 0.0254 0.1674 -0.0140 20 0.0279 0.1813 18 0.0269 0.1943 -0.0130 20 0.0279 0.2092 _ 18 0.0269 0.2213 -0.0120 20 0.0279 0.2371 21 0.0314 0.2526 -0.0155 21 0.0293 0.2664 21 0.0314 0.2840 -0.0176 22 0.0307 0.2971 22 0.0329 0.3169 -0.0198 25 0.0349 0.3319 23 0.0344 0.3513 -0.0193 25 0.0349 0.3668 23 0.0344 0.3857 -0.0189 25 0.0349 0.4017 23 0.0344 0.4201 -0.0184 25 0.0349 0.4366 24 0.0359 0.4559 -0.0194 27 0.0377 0.4742 26 0.0389 0.4948 -0.0206 27 0.0377 0.5119 27 0.0404 0.5352 -0.0233 
'30 0.0418 0.5537 27 0.0404 0.5755 -0.0218 30 0.0418 0.5955 27 0.0404 0.6159 -0.0203 31 0.0432 0.6388 30 0.0448 0.6607 -0.0219 32 0.0446 0.6834 30 0.0448 0.7056 -0.0221 35 0.0488 0.7322 30 0.0448 0.7504 -0.0182 36 0.0502 0.7824 37 0.0553 0.8057 -0.0233 37 0.0516 0.8340 38 0.0568 0.8625 -0.0285 58 0.0809 0.9149 44 0.0658 0.9283 -0.0133 61 0.0851 1.0000 48 0.0717 1.0000 0.0000 

sum 717 669 
mean 24 22 
stdev 13.27001 10.60302 
var 176.0931 112.4241 
var/mean 7.367912 5.041441 
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Determination of Sample Sizes 
to Estimate Standard Deviations 

1.0 General Onsiderations 

In much of the empirical analysis undertaken in this work we had to 

resort to taking samples, and hence the question of the sample size had to 
be given careful consideration. In the main our sampling needs were to 
determine the standard deviation, and hence variance, of logarithmically 
transformed data from demand volumes, demand prices, or usage values. 
Hence we were examining in most cases data that was normally distributed 

or closely normal. In most cases we used sample sizes of 200 and the 

rational for this is developed below. 

From statistical theory, Spiegel (1961) and KendaH(1963), it is 
known that provided the parent population is approximately normally 
distributed, then the sampling distribution of 's ' for large samples is 

normally distributed with mean s and standard deviation s /42n. Hence 

we can assert with a probability of (1-a ) that - 

S- Za/2 72ýn < (T <S+ Za/2 727 

Where za /2 is the standard normal deviate at significance 
level a. 

Now we can equate the confidence interval function to the required 
accuracy (P ) as a percentage of 'a ' the true population standard 
deviation as foRows ý- 

Za/2 --Z 
P% 

V-2n 
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Now for large samples we can replace 'a ' by T the sample 
standard deviation with only a small loss of accuracy , hence we can 
write 

Za/2 
s- so 

72: --n - 100 

from which we can write - 

Za/2 

q-2n 

where P is now the accuracy required as a proportion of a. After 

rearranging we can express the function in terms of n- 

n=1/2[ 
Za/2 

]2 

0 

Thus for a 95% confidence level, which sets the normal ordinate at 1.96, 

and an accuracy of 10% we can detennine n as follows 

n=1/2 
1.96 10.11 

P__ - from which n is given as 192. In considering the trade off between sample 
size, required accuracy and confidence levels, in our work in previous 
chapters, we chose n to be 200, which was considered to be a reasonable 
trade off between sample size and accuracy. Thus it can be seen from the 

above development that when n=200 this gave a 95% confidence of 
obtaining estimates of a within 10% of its true value. 
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Higher values of confidence, or smaller accuracy limits, demand 

very large values of n as can be seen from the following tabulation of n 
against the estimate accuracy P for different confidence levels. 

Figure A2.1 

1W 

i04 

U 

102 

10, -ý 0 

4Znmnlp e; -7pe upretic antvirnnir fAr unr; mic i-nnfiripm-P. lp. vt-. Iq 

It can be clearly seen from the above diagram that the sample size 
required begins to rise very fast for accuracy levels much below 10%, 

and at 5% and less the sampling requirements are really prohibitive. 
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A relationship between mean demand and 
standard deviation of demand 

1.0 General considerations 

In this appendix we verify the proposition that the mean demand of 
item i can be related to its standard deviation of demand by the general 
function - 

a= a(xi)p 

where a and P are constants and a is that standard 
deviation of demand for item i. 

100 items were selected at random from a DAF parts history file and the 
mean and standard deviation were calculated from a 15 period time 
duration during 1984/1985. The regression Of lOgestandard deviation 

against the lOgemean produced the following results- 

log, a=0.25 3+0.814 log, x 

from which it was determined that a=1.287 and therefore 

1.287 (X)0*814 

correlation coefficient r=0.975 

coefficient of determination R2 = 0.951 

standard error = 0.355 

Durbin Watson test = 1.860 
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figure A3.1 
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It can be clearly seen from the above results that the standard 
deviation does indeed regress very closely the mean of demand, and 
we can be very confident in the function - 
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1.287 (X)0.814 

to be a very god representation of the standard deviation of demand 
in place of a. The Durbin Watson test gave a good value of the test 
statistic V at 1.86 indicating no serial correlation, and the scatter 
plot of the residuals shows them to be randomly spread around zero, 
and they would certainly pass as not exhibiting any heteroscedasticity. 
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A Regression Test for Lognormal Data 

1.0 , -General considerations - 

The lognonnal distribution has quantiles of any order as shown by 
Aitchison and Brown (1957) and there exists a relationship between the 

quantiles of order 'q' of the lognonnal distribution and those also of order 
'q' of the corresponding normal distribution. This can be expressed in the 
following fonnula - 

ýq= p+va 

where ýqare the quantiles of the lognonnal distribution 

and where vq are the quantiles of the nonnal distribution 

In the above formula 
ju and cr are the shape and location 

parameters respectively of the lognormal distribution and also the mean 
and standard deviation of the transformed natural log data, such that if x 
is the lognon-nal variate then lOgex is the corresponding normal variate. 

From this we can write - 

log'. av, + /I 

hence the locus of v against 109, ýq is a straight line with slope equal 

to a and intercept u. 
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The quantile vq is the value of the standard normal deviate 
[measured on the normal ordinate scale N(x) ], that gives the area under 
the curve equal to q as shown in the diagram below : 

figure A4.1 

P(Vq) 

Vq 

Now if F(xi) denotes the sample distribution function, so that F(xi) 
is the proportion or percentage of sample values that are equal to or less 
than x, then if we write: - 

qi = F(xi) 

and yi ý-- 109exi then we can write: - 

loge Xi (7vqi + 
JU 

or Yi ý- 6vqi +9 
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If the sample distribution is lognormal the points (Vi, YI) will lie 

on a straight line. Hence a regression test can be applied by regressing 

lOgex against the normal ordinate vqi from which the goodness of fit of 

empirical data to a lognormal distribution can be judged by the usual 

criteria for judging regression models. 

To apply the test in practice the sample data is cumulated to produce 

the empirical sample distribution F(x) and the corresponding sample 

normal ordinate for each step in the cumulation is determined from 

Schmeiser's (1979) approximation as follows - 

F (X)0*135 
-[l-F 

(X)]0.135 
vqi = 0.1975 

This approximation produces values of the non-nal ordinate with less than 

one half percent error. From the above developments 109ex! is then 

regressed against v,,,. The process is shown graphically in figure A4.2 

below, which is identical to figure 6.3 first shown in chapter six page 170. 
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Figure A4.2 

(a) 

f(x) 

I -It 

F(x) 

loge x 

x) 

N(x) 

(b) 

loge x 

(d) 

loge x 

All the regression tests applied in the early chapters of this work 
were conducted using an Excel spreadsheet model, that required the 
sample frequency to be entered in equal logarithmic bands. The model 
then cumulatedf(x) to give F(x) from which the normal ordinate was 
calculated. The mid cell log value of the sample groupings were then 
regressed against, the 'Schmeiser calculated normal ordinates, thus 
reproducing figure (d) from above. 

Page 464 

variate x 



Appendix 5 

Regression Tests on Various Inventory Functions 

1.0 General considerations 

In this appendix we present the results from a simulated experiment 
to enable us to see the distribution form of various inventory parameters, 
namely safety stock, cycle stock, average stock held and the form of 
individual item inventory turnover ratios. The process was achieved by 

simulating 200 item demand volumes from a lognormal distribution with 
the same mean and standard deviation parameters as volumes from 1979 

and then for each item we simulated 200 lognormal prices also with the 

same parameter values from the price distribution of 1979. Hence we 
were assured that we were starting with both lognormally distributed 

volumes and prices, and therefore lognormal usage values. 

Safety stocks were calculated from the relationship developed in appendix 
three, namely the function :- 

a= a(xi)' 

with alpha at 1.287 and beta 0.814. The level of service was determined 
by setting the normal deviate V at 1.96 for a so called 95% service level, 
(assuming a fixed lead time of one period). 

Cycles stocks were determined from a simple Wilson EOQ model as 
foHows :- 

EOQ = 
5.284 

2 
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where 5.284 was the EOQ factor used by DAF in 1979/80. 

'Ilie average stock held was simply the safety stock plus half cycle 
stock. The individual item turnover was determined by dividing the 
annual sales volume by the average stock held. The tabulation for the 200 
items is shown at the back of this appendix. The following charts show the 
factors of interest in loge fOI- 

figure A5.1 

4-i 
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figure A5.2 
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figure A5.3 
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The average stock held was subjected to a regression test for 
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nonnality as explained in appendix four with the following good results- 

correlation coefficient r=0.997 
coefficient of determination R2= 0.994 
Durbin Watson test = 2.530 

, The plot of the regression line is shown in figure A5.4 and the plot 
of the residuals is shown in figure A5.5. The results confirm what was 
predicted from previous work in this thesis that the average stock held is 
lognormal because both safety stocks and cycle stocks are themselves 
lognormal functions. 

figure A5.4 

CL) 
4.. & 

15 
Regression of loge stock held 
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0 
m 

0234567 
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III- 
The correlation coefficient is statistically significant and the Durbin 

Watson test does not indicate any strong auto correlation. 
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figure A5.5 
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The loge turnover rates were also subjected to a regression test for 
lognormality with the following results- 

correlation coefficient= 0.988 

coefficient of determination = 0.974 
Durbin Watson test = 0.795 

The regression line and the plot of the residuals are shown in 
figures A5.7 and A5.8 below. The Durbin Watson test and the residuals 
plot does indicate that there is some auto correlation in the residuals in this 
test, although the actual size of the residuals are very small. Hence, 

although in all probability the turnover rates are lognormal as predicted 
in this particular sample there is something else affecting the relationship 
between the log value of turnover rates and the theoretical normal 

ordinate. 

3 

2 
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0 
- 

A 
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-3 -1 

figure A5.7 
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figure A5.8 
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The results of the 200 item simulation are shown in the following tables : 

Page 471 



I" N en IRt ti) ýc r- 00 - cq en Iýt W) ýc r- 00 C% C ý4 cq C#) IRt W) z 

cq cq cq N cq cq cq 

*-I 
< 
> 

tn 
m C14 

V) 
10 (14 

ýc 
C4 
*10 

"t, 
cq 
IC 

oo 
W) 
W) 

tn 
N 

a% 
wl, 

- 
-4 

r- 
P 9 

c7N 
-, t wi cs 

\0 
0 Cý r- 

0 
tn 14 r- 

Cý 
= 06 te) 

en 
oN r-- tn 

wl 
-Q :r wl 

= 

C-? en W) 

m 

"'t N w) 

1-4 

tf) 

'C 

w') 

M 

0 
W) 00 

ýr 

"-4 

W) 

ýC 

a% 
rn 

- 

en 

W) 

en rn 

Cý 

en cn 

l 

en 
<I 

I 

.. J 
< 

W 

z 

0 
N 

-, 
; 

- 
-t 

-4 

CN 
-t 

C'i 

CN 
,t 

C'i 

mt 
W) 

C'i 

ON 
\, o 

C'i 

N 
"I': 

cn 

In 

c) 

"': 

en 

w! 

cn 

c) 

m 

-I rý r-: 0ý cý 0 cr, 

tri 

-. 4 

wi 

00 
q 

ýo IRt 

wi 

Rt wl 

wi 

ef) r- 

tri 

00 ýo 

wi 

w 

> Uý 
w 

ON 
v--q 

lq: t 
N 

:3 en 
Itt 

:3 \, o 
ICT 

cn 
\0 

it') 
ýc 

8 1 P" r- 
0 
00 

W) 
CN 

r-. 
C\ 

\0 
CN 

00 
C., 

C;., 
C7\ 

C4 
0 

r-- 
C7\ - o 

ON 
o 

00 
00 

\0 
" 

= 
N 

CD 
m 

WI) 
C, 4 

0 ý- O o o o o o C5 C5 6 6 C5 C5 C5 (: 5 6 6 6 ý 6 -; -4 6 -ý -ý -4 -: 

> 

00 W) 
eq 
W-) 

en 
r- 

ý: r ýo N 
en 

W; 
cn 
ýc 

vi 
W) 
00 

vi 
-q 0 

0 

rý 
m 
1 

06 
c7N 
"t 

06 
ýo N 

Cý 
N 
en 

Cý 
N 
W'i 

Cý 
en wl 

Cý 
ON 
00 

Cý 
t- 00 

Cý 
ýo r- 

Cý 
\, o \, o 

ci 
00 (= 

cl 
r4 m 

C'i 
v. I m 

6 
(2N -tT 

"i 

W J r- 
ti) 

Cý 

Zý 

d 
M- 
cli 

00 
C) 

C-i 

W) 
(a) 

\6 

\0 
- 

t1i 

IRt 
C\ 

C5 

0 
Cý 

(-i 

ef) 
0 
6 

0 
- 

\6 

- 
m 

Cý 

r- 
ýc 

06 

r- 
CD 

Cý 

00 
cq 

06 

('4 
(=) 

tri 

tn 
0 

ý6 

en 
C-4 

Cý 

Rt 
C\ 

cli 

N 
C\ 

N 

N 
C\ 

- 

r, 
r, 

N 
cl 

N 

r- 
0ý 

en 

8 

. 00 

C) 
\. R 

\Z 
CI% 

efi 
'tt 
C14 

N 
C4) 

-4 V-4 en 
- 

0 
N 

C7% 
N 

0 

1-4 
C14 It m 

u 

>4 
u 

U 
en t 

W) 
r-: 

- 

00 
C14 

a\ 
eq 

W) 
en 

W) en 
(-i N 
N 

00 

W-i 
06 CN 
N 

00 

\. o 
06 

en 

c 
14 

V) 

00 
r-z 

t- 

-q 
14 C9 

(7\ 

r, 
wi 00 

00 

ýo 
\ý6 \C 

ev) 
06 cn 

o 

r- 
"6 W) 

ýo 

00 
-4 

CN 

C) 
Cý 00 

0 
Cý 

v .1 

m 
wi m 

C7, 

en 
t'i 

\C 00 

10 
rý N 

W11 
Cý 

C14 

N 
06 in 

q! T 

m 
r-Z CNI 

E-. 4 

cn 

u 

C) 
E- 
cn 

M 
tn 

C'i 

- 
- 

C'i 

(= 
tf) 

r-: 

\0 
- 
tti 

en 
tn 

en 
ýc 
6 

en 
\D 

06 

- 
en 

'i 

W') 
cn 
4 

Cc 
(=) 

C'i 

ýo 
-Rt 

-4 

C) 
W) 

ON 
cq 

r'i C14 

0 
ýc 

; 
en ý6 

W) 
M 

Cý 

rl- 
ef) 
týz 

ItI, 
00 

'i 

N 
CN 

C'i 

r-- 
W') 

'. 6 
00 
cf) 

C4 Cn 

10 
W) 
6 

C\ 

--q 
\6 

ýc 
'RT 
06 

00 
Cf) 

C'i 

C-4 
\, c 

\. 6 

uj 

I 

w 

>-I 

I- cq 

Cý 

f 

M 
Itt 

6 
cf) Wl 

I 

en W) 

1 

en ýo 

-1 

C', 
00 

W) N 

vi 

Z 
11 

Ci 

0 
Itt 

C,; 

1 

C14 r- 

C'i 

1 

- C 

tri 
eq Z 

vi 
It 0 

06 

1 

z N 

C, 6 

1 

CN 
00 

06 
00 

q 

Cý 
aý cn 

Cý 
wl r- 

Cý 
cn z 

Cý 
en C;, \ cq z 00 cf) r- Cý z r- 

W') 
el 

-4 
Ch 

N 

0 

6 

en 

0 

6 

en 

CD 

6 

wl 

0 

6 

en 

N 

(: 5 

0 

00 

C5 

N 

0 

6 

cq 

CD 

C; 

ýo 

tf, ) 

6 

%C 

M 

C5 

tn 

r- 

6 

W) 

0 

6 

qt 

0 

C5 

en 

0 

C; 

-4 
N 

mt 

-4 

cs 

4 

C\ 

C) 
en 
qct 

:t 
C14 

Rt 
C) 
6 

C) 
%. o 
4 

\, o 
en 

C5 

ýc 
C14 
6 

(ON 
-4 
C5 

o 

tT 

C5 

z "OE cn r- 
V--4 

o 
tn 

I 

- 
cn 

f 

r- 

I 

C-4 

I 

cq 
W-3 

II 

0 
-4 

I 

\c 

I 

C) 
-4 

-I 

t- 

I 

- 

I 

C\ 
CN 

I 

o 
C*A 

Cf) 
It 

V-1 
\-c 

C\ 
It 

ti) 
0 

(-, I 
("1 

C, 4 
ýT 

Cý 
CN 
cq 

C, 4 C\ 
en 

r, 
wl 

C4 
C\ 

cn 
't 

C 
0 

75 

F= 

C) 
C) 
C\j 



r- 
C14 

00 
C14 

CN 
C14 

0 
en 

- 
en 

N 
en 

en 
M 

IRT 
M 

W') ýc 
en en 

- 
en 
00 CN 

Cf) 
0 
IRt 

- 
qt 

cq en ti) 110 
IRt 

t- 
qt 

00 
IRt 

C*A 
ql 

0 
W) V" till 

N 
%n en V) IT tn 

00 
tn 

q* 
cq 

qt 
en 

r. - 
-. 4 

ýc 
\ýo 

c-, 
r- 

N 
00 

\-o 
r- 

W) 
r- 

W') 
ON 

- 
r- 

C7% 
0 

- 
- 

r- 
ýo 

0 
IT 

qt 
tl) 

r- 
te) 

W) 
C7% 

\-o 
00 

0 
C14 

tri 
00 

r- 
"T 

C, ý 
00 

0ý 
N 

en 
CN 

- 
'Rt 

VI 
ON 

r- 
r- 

tti C'4 ý6 C'4 tlý cl; 6 6 
C-4 

6 
N Cý 06 rý ý6 06 1.6 tri rý kti 4 

I 

14 

f 

Cfi 

I 

Cý Ili c"i 1.4 1-4 14 

en C) C\ 00 N C\ 0 0 C, \ 0 ýt 0 en C en 0 t-- 0 - 0 ef) C 8 0 0 en C\ 00 ON - C\ 00 00 
mt 
t- 

C 
00 

- 
r- 

00 
00 

r- 
t- 

cq 
\C 

\C 
kn 

cq 
ýo 

V') 
W) 

ON 
q: r 

--o 
en 

ý6 tti t1i vi tri t1i tri tri vi t1i tri wi vi wi t1ri tri 

m tn 
cn 

cn 
en 

cn ti"I 
00 

\ýo ýo VI 
M 

\C 
'It 

r- 
C% 

1%0 
W) 

00 
It 

\0 
ýo 

00 
00 

tl- 
en 

V') 
'Rt 

r- 
r- 

00 
Ck 

- 
0 

00 
00 

0 
W') 

\0 
00 

r- 
'R: r 

C71% 
V') 
0 

00 

00 
N 

Cý 
ON 

CN 
W') 
" 

C-li cli Cý 1; 1: cli 

cn C\ 
r- 

M 
W) 

ýo 
- 

00 
a\ 

tn 
C14 

N 
IRt 

'It 
00 

M 
ýo 

00 
00 

It 
N 

N 

In 
WI) 

Cý 
m 

C? 
IRt 

Ci 
ýo 

(R 
en 

q 
C\ 

Ci 
IRt 

Cli 
m 

li 06 06 
r" 

06 06 
-4 

Cý 
T-4 

Cý 
P-4 

(6 
C14 

Cý 
F--q 

ý4 C14 
C-i 
N -; (14 "" C14 cq ""' m 

N 
C14 
N 

m 
N 

qt 
N 

qq* 
N 

qt 
N 

WI) 
N 

wl 
cq 

W) 
N 

tf) 
N 

\0 

tn 
rý 

ci 
F -4 r- 

09 
"-q 
r -i 

cf) 

\4ý 
00 

ý, ý 
00 

cq 
M 

2 
C*% r- 

00 
r- 

r- 
IRt 
cyý 

cn 

00 
8 CA 

r- 
N 
IT 

I'D 
0 

,I 
- 

- 
ýo 

0 
C14 

C*4 
r- 

C en tn 
W) It 

en 00 C, \0 C-4 r, r- cy., W) - In tn W) C; tt') t1i tn cri M C'i en tti CD r-Z W) \6 4 
en C-i C71\ ý; cl C'i en (6 CN C5 C'i N \-d tn 

6 
C*4 -4 M 

q 
en tti tn 

oo C; N C; N 
C\ 
q: T 

m 
(1) 

cq 
cn "CT 

(: D 
w W) 

cq 
01% 

00 
cq 

(7\ 
- 

00 
- 00 

C7, \ 
C;, \ 

C\ 
en 

\0 
00 

W) 
00 

r- 
r, ý 

"t 
q 

t- 
" 

It 
c; %\ 

N 
It! 

C) 
" 

r- 
-: 

r- 
C; 

C'i V') ý, 6 wi pi cn wi Itt \, 6 qtzt C3 qýr C'i MT gi N C'i IRT Cý 00 q N \, g \0 wi C14 -; r- 
qwl*. 
W14 
00 

en 
eq 

C14 

f 

r- ýo 

f 

- 
qt: r C*% 

f 

eq 

cq 

V) 

cq 
"-4 ý4 

00 
en 

00 
\0 

- 
en 

r- 
cq 

C7\ 
:t 

N 
tn 

CN 
Z 

- 
a\ 

Cl\ 
\C 

C\ 
W) 

"t 
- 

'RT 
00 

M 
C\ 

t- 
tn 

ON 
N 

0 
- 

'tT 
M 

W) 
C14 

C14 
t- 

00 
W'i 

en 
tt) 

00 
cf) 

"t 
en 

6 Clf) cli Cý cli cn C-i cli Cý cli Cý V) efi cli 06 6 
C14 \6 \C 06 r-: W) Cfi \-6 14 1-: 06 Cý Cfi M 

W) Rt en CN 
00 

'CT 0 
00 
C) 

m 

tn 

W) 

Ci 

I qt tn 
N 

tn 
00 

C\ 

en 
It 
0 

W) 
m 

N 
0 00 r- 

cr\ 

t1l) 

W) 

00 

ýc 
N 

en 
C14 

r- 
C 

W) 

\-O 
cn ýo 

("i C-4 ri cq 

I 

efi C9 

II 

tei C'4 cý C-4 C7, N 

I 

00 N c cn 

I 

C, 4 en 

I 

efi m 

I 

\. 6 
m 

I 

C-; cn en 

I 

Cf) 
4 
en 

II 

06 en 
6 
:r 

I 

06 t 

I 

-; 'It 

I 

\6 'It Cý cn C-4 "t Cý r. 4 
Itr 06 llýr C; W) 

I 

wla 

00 

0 "-f W tn tr) -4 0 W-4 cn W'j cn tt en N ýo cn 00 0 en ýD 0 r- cn en N 
M 
'4D mt N eq 0 N r- = 0 ýc cn \0 CD 

m 
'Rt 

0 N 0 00 M r- W'a 11 w - 
C-i 6 6 efi ci 6 6 C5 6 cli 6 6 6 6 6 6 

00 C14 ýo 
V) 

sý 
C14 

C\ 00 
N 

(7\ C14 

en C7, % 
cl-I en en V) IRt 00 en C14 eq 

Rt 
Cq 

00 
W'l 

en 
0 

ýo 

r- 
- 

c) 
'4T 

C7\ 
0 

r- 
mt 
C14 

00 
W') r- \D 

C) CD 
cn 

C14 

c 
0 
cu 
3 
E 
0 
E 

C) 
C) 
C\j 



tf) 
tn 

No 
W) 

r- 
W) 

00 
W) 

cs 
WI) 

0 
ýo 

cq 
ýo 

en 
1%0 ýz W) 10 z z 

r- 
z 00 

ýo z t- P" r- 
cq 
r- en t- tt r-- 

kn 
r- 

ýo 
r- 

r- 
t- 00 r- 

CN 
r- 

C 
00 

- 
00 

cq 
00 

00 It 
tn r- It ýo cn 

Cf) en 
- 

rI CN Cl% 
- 

C14 
tt) 

C 
r- en 

- 
cq 
tn en 00 ýc 

00 
m N r- 

lZ 
W) 
00 I'D 

cf) m 
IAO 

Cs 
N en en 

C., 
- -4 00 -1 (= 

00 rý 
0 
'" 

W) 
C-4 en rý r, 

'" Cý Od Od 'i 4 cli cli cli cli Cfi cli d C5 C; C4 C-4 Cq -: c4i 

0 

ý-4 

ýc 
0 W) 

C14 

qýT N 
W*) 

00 

tl- 
C 

-. 4 
tt) 

Itt 
00 

r- 
W) 

IRT 
ýo 

00 
00 en 

qT 
r- 

It 
ON 

N 

'RT 
- 
00 

Ift 
en 

C7% 

cn 
cn 
C14 

0 

IRT 
- 
W) 

0 

cl 

00 

qt: r 
00 
W) 

W) 

qCT 
tri tti t1i Cfi cli c"i cli C-; cli cli cli 1; 

6 C5 C5 
6 

cli 14 .4 cli cli cli wi 

00 

". 4 
C-4 
C, 4 0 tn cf) W) 

0 
ýT 

cq 
ýc 

rn 
en 

V) 
t', 

W) 
en 

CN 
V'l 

00 
r- 

ýo 
"It 

of) 
\ýo 

it) 
t- 

- 
- \D 

en 
ýo 

0 
C14 

00 
00 

C14 
q1t 

r- 
as 

8 W) 
r-% 

00 
-4 

r4 

I 

cli 

I 

C-i 

I 

C%i C-i 

I 

C-i 

I 

cli 

I 

cli cli 

I 

cli 

I 

cli 

I 

cli Cý 

I 

cli 

I 

Cý 

I 

cli cli 

I 

Cfi 

I 

C14 cli 

I 

cli 

I 

e6 

I 

cli C6 

I 

cli 

I 

cli 

I 

cli c"i 

I 

00 CT 

ýo 

C, 4 
cN 

en 
00 

C14 
r- 

CN 
00 

00 
ItI, 

\C 
IRt 

M 
00 

W') 
'1, 

CN 
vt 

r- 
- 

t- 
m 

00 
"t 

cn 
r- 

r- 
q: t 

en 
N 

Itt 
en 

- 
%0 

ýo 
lwl* 

r- 
W) 

W) 
r- 

cf) 
- 

M 
M 

Cn 
\-c 

en 
ýc 

\0 
en 

en 
ýo 

Q 
t'ri ý6 06 C'i .4 'i wi ý6 wi 06 r-: Cý 06 06 C'i C'i C'i ý; # # # vi \, 6 q: -: ý; 'ti 4 
C-4 C-4 C-4 m Cf) cn cn m ef) m m cn m m R: r 'qT I I 't Nt It W) W) V) V) 

r- 00 
ýo 

en 
C\ 

00 
r- 

c#) 
00 

R: t 

--4 

Cs 

ýc 
- 
ýc 

C\ 

-. 4 

cq 
N 

r- 
CN 

0 

r- 

N 

(14 
en 
r- 

ýo 
V) 

- 
- 

\c 

en 

cs 

W) 
wl 

00 
wl 
0 

wl 
00 

- 
en 

- 
C14 

q% 

cq 
wI 
00 

W's 
cq 

R: t 

ýo 
qt 
en 

c"i ýo 1.6 en cli It C-i It Cfi W) 
d 
r- Cý Cf) vi -14 14 C14 ý4 en 

6 
C14 

6 
\ýc 

4 
M eli C14 r. ý 

IRt 
ý g Cs 4 M gi en 06 M 6 

- Cý W'l Cý N g 
W') 'i Wl C6 C14 wi t-- 

C\ 

N 
cf) 

N 
N 

tt te) 
00 

00 
r- 

Wl 
cf) 

r- 
00 

CD M 
cf) 'tt 

00 
'Rt 
0 

0 

R: t 
ýo 

N 
N 

(o 
C4 

qrt 
C\ 

-4 
w) 

"-f r- C7% 
C\ 

N 
m 

tn 
t-- 
N 

C\ 

N 

C14 
t1i 
C14 

\6 
C14 

vi 
C) 

Cý 
cq en 

(: ý 
ItT 

116 
clq 

C-i 
00 

C-; 
-" 

4 
C7% 

e-; 
-14 "1 

wi 
CN 

wi 
- 

06 
C14 

(Ii 
't 

14 
- 

Cq 
N -ý N 

wi 
N 

r-: 
I'* 

06 
cf) 

efi 
c1f) 

cli 
ef) 

14 
en 

cli 
- 

06 
, ýT cq cq 

C4) It V-) CN m \D W) WI) - It qt (14 W) 
--4 

M r- N ýo C7\ ItT C\ 00 C\ en C7ý 0 CN 00 N wl - t-- 0 - r- W) en It 1ý0 00 0 r- C r- 00 It VI Cn \-o W) eq r- r- cn WI) 0 

rý: en r.: cn 
d 

.q r-: cn cli P-4 ý6 _; N cli "" cli en r-ý r--: m r-: Cý 06 M 06 4 
9-4 _; C14 d 00 cli 1; rfi cli 1ý0 

6 
C4 wi (7N 06 06 r-: N 

\. O 

C: r 

0 

C-) 

m 

W) 

C\ 
Q 

I \. C 

0 
t4f) 

en 
IRT 

- 

00 

r- 

00 
00 

0 

r- 
- 
'Rt 

"I 
r- 

IRT 
til 

- 
00 

4 \0 

4t 

M 
czý 

N 
N 

ýo 
00 

ýo 

- 

00 
N 

C\ 

00 
00 
c7N 

0 

Rt 

W) 

00 
00 

cn 

0 

0 

vi C'6 C, 6 ; Cý 4 Cý r-: r'i (: ý C-; C-i qý \ý6 Ci \ý6 r-: 06 r-: Cý Iri q .4 C-i q: Cý ri W) W) te) 00 00 00 00 00 C\ CN 0 clý 0 C) 0 N --f ItI, en IND W) VI 'ItT rl- 

\0 \, c r- en cq %0 0 C14 - en CN cq It = ON 00 \ýo 1 00 t/I W'h cq C\ "t - tn en N -4 r- C14 = N'D w) C\ en 00 N C7% \. c ('4 r- ON ýo - N en ýo r- 6 C5 6 46 (6 6 6 6 -4 6 6 6 -4 6 

tf) 
en 

\. o 
en 

\ýo 
r- 

(7N 
W) 
en 

- 
CD 
"-4 

00 
N 
"-4 

r- 
t- 
--1 

too) 
CN 

N 
C) 
en 

CD 
W) 

Cf) 
\D 
m 

'IT 
\c 
tt) 
-0 

't 
t- 
en 

00 
W14 

v) r- 
t- 
-4 

ýc N 
C7\ 

r- 
00 

IRT 
C) 
"-4 

ef) 
r- 
ýc 

0 
r- 

" 

r- 
C14 

-4 
kn 
ý4 

rn 
\D 
-4 

r- 
W) 

C) 
Itt 
eq 

r- 
0 

75 
E 
0 
E 
Q) 

0 
Q 
C\l 



en mt Vlh %0 r- 00 CN C) -. 4 eq 'n qzT ti) z r- 00 CN 0 - cq m qT W) ýo r- 00 Cý 0 
00 00 00 00 00 00 00 CN c7N CN CS C., Cý C*% c7% CN Cý C) 0 0 0 C) 0 CD 0 CD C) 

r-4 -4 " -4 ý4 P-4 

I: t 

m 
00 

ýo 
(7% 

\0 
IR4* 

N 
IWI* 

N r- - 
r- 

0 
CN 

(71% 
N 

M* 
r- 

C 
Cn 

N 
00 

r- C*, rl- IC Itil C\ 0 
r- 

r- 
vi 

C 
\C 

IR Cý 
CD 

Oý 
%0 

1: 7ý 
r- 

li 
C 

Cý tri c"i -1: .4 tri \ý6 06 \6 06 06 r-: Cý 06 Cý Cý 06 Cý 0 C\ Cý - 0 0 ON - 0 

tf) tn 

00 
- 

CN 
W) q 0 00 \C 00 

00 
IR: r 00 s r- 0 ýc 

00 
N 

CN 
N 

t- 
CN 

tn 
ýc 

00 
N 

m 
en 

00 
- 

C14 
w1h 

CN 09 
- 

00 
;S \D 

C14 
\0 

r- 
Cý c4i Cý 

C, 4 cq 
06 -4 cq "-1 Cf) r- Clf) eq m en Cý 06 m g 

IRT tri r'i qt r.: wi Cý r.: IT cý \0 t.: 14D 06 W) 6 00 Cý r- 

N 
_4 

en 
en 

r- 
00 

r- 
CN 

t- 
ýc 

t- 
00 

C7% 
N 

cn 
W) 

- 
'1' 

cý, 
ýo 

\0 
r- 

wl 
qýt 

a\ 
00 

t 
00 

C-4 
W) C14 

en 
r- 

C7% 
0 

r- 
Rt 

cq 
C14 

CN 
ýo 

ON 
It 

w1h 
C4 

rl- 
C\ 

tn 
- 

r- 
cf) 

00 
r- 

c4i cli C-i cli cli C\li qti cli 1-1: 1: eli cli ql: cri 
4 

li Cfi 
4 4 

qi c4i wi tri 
4 4 

wi 
4 

cn 
\0 
wl* 

'Q 
W) 

C, 4 
cn 

'. 4 
W) 8 cs 

IRT 
IR: r 
- 

en 
r- 

00 
w') 

ON 
0 

N 
1%0 

t- 
w) 

M 
0 

C., 
\C 

ýo 
r- 

1%0 
tn 

W) 
en 

cq 
00 

t- 
- 

Wt 
en 

WI) 
C14 

IRT 
- 

m 
'tT 

N 
C14 

00 
r- 

\0 
en 

W) 
W) 

Cý vi tri ý-d Cý 06 -; 06 C'i 06 wi Ci -4 vi r-: wi ý4 c4i cli 06 -; tr; 06 ý6 -4 -4 -; 
tr) W) ýo r- 00 r- r- 00 00 00 00 en cq N N tt - C, 4 Itt en q* 

en 00 
\0 

cq 
It 00 

n 4 C\ 
0 r- 0 "t r- - ON 

r- 
ON 
ON 

N 
M 

0 
CN 11 = a It 

N (N r- "o r- - t-- 
01% 
C14 

r- W14 %C ON \Z M \0 r- 

W-1 ci tti 4 o6 4 4 'i 4 
cq 't tf) W) 00 r- cq C\ 1ý0 N C\ ItT - en M -. 4 cn --4 --o C14 00 ýc 

C4 N 

(= 
r- 

C4 
00 

m c\ cn 
- 

C\ 
Q 

\0 
cn 

r- 
00 

'It 00 
00 

r- 
00 

W-) 
00 

N 
kn 

%. o 
cn 

- 
W) 

- 
C14 

C\ 
ýo 

:3 it) 
CIS - 

'It 
in 
\0 

m 
C) 

8 " 
CYN 

10 
ýo 

C\ 
C14 

- VI) 
tr) 
14t 

Cý 
-4 

q 
(14 en 

4 C5 
cl) 

Cý 
mt 

e-; 
0 - 

r--: 
- 

6 
\-c 

C'i 
- 

tri \6 
C14 _; 

- 
6 
W) 

C'i 
N ý6 4 

'" 
Cý 
cq 

\-6 
V-4 

wi ýd 
CN 

6 
N ý4 \. c -; 

- 
06 
C\ -; cf) 00 

tf) tn Rt 00 C\ \C ") C) C CN M qtT r- \C as M N en r- N ItT --4 00 vi N 

\, o cq 00 ýo CNI r- r- N r- C14 C\ CN '4tt Cý cn \C ") CD - - r- CN ýq 00 ") 

0 V--4 cq 
q C, 4 

(14 "i Cf) r-: C-i 6 
r- C-i 0 C-i \6 6 C'i C'i "T ýi N 06 ý6 Cý 00 ý0 en "t \c C\ vi W) C-i - wi 00 cri m 

en 
I 

1-4 
I I I 

1.4 

'. 4 
Wi 

en 
-4 

Rt 
cn 

\-c 
CD 

W-) 
w) 

\-O 
00 

cq 
- 

cq 
r- 

ýc 
0 

W'i 
00 

00 
en 

00 
r, - 

Wl 
C - 

"I' 
ON 
ýo 

\0 
W) 

t- 
0 

CN 
'R: t 

eq 
C\ 

(01\ 
t- 

\0 
C\ 

en 
00 

00 
C'4 

'Rt 
N 

t- 
00 

W') 
ON 

CN 
r- 

r- 
r- 

m ý6 wi Cý .4 r-: C-li 06 C-; ý6 14 14 ý6 ýd 0ý ýd C5 c; C-i cli t-: 06 tfi ý6 cq 

C, 4 
00 

4 

f 

C, 4 

I 

C*4 

I 

W') 

N 
00 

C14 
CD 

re) 
'Rt 

M 
- 

en 
\-c 

cn 
- 

I* 
ON 

M 
CN 

Cn 
CN 

'It 

ý 
00 

ItT 
00 

IT 
00 

11 
0 

W) 
vi 

tt) 
qtl* 

W') wl 
m 

\0 
N 

\D 
N 

\-c 
00 

W') 
C) 

r- 
r- 

ýc 

t1l) en CN en rl- en cn 0 00 \C It ýc r- 00 00 - CN Wl r- 00 "tT N q Cý RT en 'IT M - "It 'It 00 - W) 0 C\ - ýo 0 en W) 0 C r- d d (6 4 d .4 1-4 C-i Cý C-; C-i cri C-i 6 6 6 C14 

w 00 R: t 00 W11 Irt %0 en WI) r- rl- M cl C\ C\ It rý en wl N V) 't - 
cf) 
ýc 
It 

Cq 00 (N cl C7% C, 4 
en 

en 
t- 

C\ tf) 
00 

el) 
C14 

1 

-. 4 

CS lwt ýc C% - = W) (14 ýC 
(14 

'- 

'IT 

1 

't \ýo 
00 
ý" 

11, 
- 
P-4 

w 
kil 

0 
- 

Cý 
ON 

E 

- 
en 

C 
0 

co 
75 
E 
0 
E 

0 
Cý 
cli 



-4 

N 

-4 
-4 

m 

-4 
--4 

Rt 

P-4 1" 

tri 

-4 -4 

ýo 

-4 ý" 

r- 

'" 1-4 

00 

-4 1-4 

cr\ 

ýý 1" 

0 

N 
"--4 

- 

C4 
-4 

(N 

C'4 
en 

C'4 
"t 

C-4 
W) 

N 
\-c 

C'4 
r- 

C'j 
00 

N 
C7% 

C14 
0 

en 
--4 

cn 
N 

en 
en 

en 
-t 

en 
v. I 

en 
ýo 

en 
r- 

rf) 
00 

cn 

en cn a, ý. c r- - - en 0 C'4 r- c7A \-c 'T W) \. o C-4 W) CN r- tf) N -1 ýo W) \0 - 0 r4 RT m \, o C, 4 rý C7, 00 0 tf) r, Vj r, en 
W. 1 00 "t 0 ýo tn 

N 
N 

r- 
00 

CD 
(2ý 

C5 C7: \ -4 C3 _; 6 6 -4 C-i c"i cli C-i Cý Ci Ci Ci C'i '. 
4 ("i Ci Ci efi Ci Ci 

_-q -4 -. 4 -4 -14 1" 1" 1-4 -4 ýý VIO I" T" ý" W" P" I" 

I 

V-4 

f 

I" P-4 -4 P-4 "-4 -4 " " 

, Rt 

ON 
eq 

00 
R: r 

0 
- 

00 
0 

00 
ýo 

Cf) 
- 

0 
RT 

r- 
Rt 

Q 
C\ 

en 
- 

ON 
00 

ý-o 
W) 

IC 
r- 

-4 
en 

w) 
%0 

en 
-* 

t- 
N 

00 
el ZI 00 0 

r- 
g 

t- 
CD 

cl 
-4 

' 
g 

' 
:3 V-) 

, 
t--z 
ýo 

cli \0 
C5 
00 

Cý 
ýo -; 00 

6 
00 06 r- 14 C\ 14 - 

Cý a\ r-: r- r-z CN Cý 
0\ Cfi en 

ý6 
ýq 

C'i 
1-4 
C', ý6 

". 4 " 
6 
en 
-4 

cq 
.. 4 1-4 

en 
1.4 

Cý Cq 
1-4 

.. 11, W) wl 
1-4 

tri wl 
1" 

t =i r- 
-4 

-; \0 
1.4 

0 6 
\0 

en tn Iýt 114t 00 ýc tl- m \C Itt C\ cn Itt t, m r- Itt r- wl, (14 CN cq 00 (q tt) 
cq r- C\ - C\ ýc 0 -14 mt C14 C14 0 C\ - C\ N M en ýo r- CNI ýc r- N C14 - ýc tn 
4 cli 4 4 4 14 1: tri ý6 t1i C-; vi 14 rl: vi 16 \-d %d vi t-: wi wi vi ý6 vi vi 

-4 'IT 
rn 
r- V-4 C\ 

W") 
t- V- \C 

r- 
01% 

00 
\C 

tl- 
rl- 

en 
00 

CN 
0 

r- 
IT 

;s :g 't 
tn 

00 
C) 

N 
W') 

CNI 
WI) 

- 
tn 

WI) 
0 

W) 
Iýt 

0 
r- 

cn 
t4r) 

\C 
r- 

00 
lqt 

00 
CN 

- 
(= 

8 "'t 
C14 

'r; WI) pi r- 
4 c"i \10 06 IFT 06 WI) C'i 00 r.: wli g 

IRT -; ýo 06 W') ýg ýo 4 r- c"i IRT 06 tn 'i W) rý: wl ýg ýo c"i 00 r.: W13 wi 0 
N 

Iti elf) 
cq 

Cý It 
Cl 

C, 4 ") 
Cl 

\ýg en 
cq 

06 CD 
C4 

e,; N 
eq 

vi ") 
N 

(ON 
0 

Rt 

C\ 
tt 

C\ 
(14 
0 

'o 

- 
tf) 

Clf) 
tf) 

wm) 
tt) 

aN 
en 

C% 
t4fl 

": r 
ttl 

cq 
-4 

-mq 
00 

r- 
CN 

W') 
\0 

00 
00 

C\ 
CD 

N 
t*- 

vi 
-4 
cq 

\ýo 

tn r- 
4 

C-n 
00 

\0 
VI 

CN 
00 

00 
00 

00 ýo 
cli 06 \ý6 06 Cý \. o 06 cr) cri -4 cli 00 \6 C) r-: 00 C-i e4 .4 W) wi IRt -4 (14 t-i W') ý6 W) Cý - r-: 0 C5 tn Cfi W) Cý Cý Cfi 06 cn \6 06 \0 r-ý kn 

\C C14 C14 M M en - \D 

ý'c 00 tr) r- eq wl W) C14 cq W) rl- en C'% CN 0 a\ C\ Rt C) N - P- N 00 
C> RT ttl tt) C-4 C-4 en ýo \-c N-0 ýo tf) \ýo W) IRT wl - tl- 00 r- N 0 qtt cq 

en r- 
en 

r- en 
cn 

t-: wi Cý 
cn 

e-; 
It 

-4 
IRT 

6 06 
C14 

q 
C14 

C-i 
rn 

cfi 06 
00 

06 
00 

kti 
\ýo 

cý 
It C'i N rý: rýz r.: vi \ýg 06 gi 

m r- -4 "-4 -4 CP\ 

N 
0 ýo 

IFT 
q W) 

It 
cn C\ 

C) 
N Cf) m 

cq 
m 

C) 
00 

00 
kn 

ON 
W) 

C*A 
0 

0 
C) \0 

C14 
r- 
t4fl) - ýo 

00 
rn 

r- 
"I 

W) 
r- 

C\ 
C7\ C14 N (= 

cn 
r- 
C14 

r- 
\C 

coo ON 00 ON cq 
cq 

c4i r-4 
tti Cý d vi M 1: 06 Cfi efi ýc t1ri ql _; cli en 

d 
m cli 06 tri ýo r-: \0 14 W) r-: W) 11i 00 C5 m C-i cli \. 6 

CIA C-; N Cý r- Cý m 
4 
m 

C-4 00 \0 :3 0 C\ CN r- r- 00 :3 00 r- 0 - N re) en 10 0 en I 
ItT C14 't C*4 CIF) \0 It r- C14 C; ) -i Oý Wi C; tr? ri (=ý In Cý rlý Iýq q C) Ci Iýq r.: 06 \ýd r-: 

6 
Cý tri Cfi 

6 
M C14 C\ tf) M 00 Cý 1ý0 - cn en ýt RT . t- CD 00 wl It \0 

tn r- m m R: t ý- r- lwt mt M W) N M ýo (7ý \%o C#) - 00 ON r- C4) en 00 Wl C) 
10 \. c r- r- r- 00 c7N 00 00 00 00 0 C\ C\ C\ 0 0 (14 0 0 - CIA C14 C14 cq cn 

f f 

-. 4 

II I 

m en 00 ON VI) I", (31\ 0 en 't C14 00 en N 0 en cq en cq 00 N 00 r- cf) 00 C. \ cq 00 r- ýo r- W) - 00 - C, ý en 0 R: r cq 0 
ýc cý oý C'i 4 r6 4 C'i efi 6 6 6 6 6 e-; C-4 C-4 tti qi 1-4 "-4 1-4 

00 t1l) 0 r- tn 00 W) 00 r- c" n 't t- (O cn t- W) - M (=) - -4 M OO r- O 
cs elf) 00 

Cl) 
r- lqt 

cn 
r- 
"-4 

WI) C14 
Itt 

C*4 
C31% 

W) 
N: r - 

en 
t'- 
N 

00 
00 
00 

-4 m 
C14 
N 
(14 

wl 
C*4 
C, 4 

en 
0 
C, 4 

0 
\C 

N 
r- 
(14 

00 
N 

CN C\ 0) 
r-4 

= 
N 

(0 
Cl\ 

00 
Clf) 

C14 
Cf) 

I f I I 1- 1 1 1 1 1 1 

c 
0 1= 
cz 
75 
E 
(n 
E 
C) 

cli 



r4 

rn v) 
" 

vi 
V) 
vi 

\O 
vi 

r- 
vi 

00 
vi 

ON 
V) 

CD 
\O -q ýo 

N 
ýc 

m 
\O 

;Z vi 
ýo 

ýo 
ýo 

rn 
ým 

00 
tn 

rn 
m 

rn 
(: 

1%0 
r- 

kel 
- 

cý 
(9 

M 
N 

00 
00 

M 
cý 

\O 
cý 

ýo 
CD 

4n 
vi 

lKt 
CN 

CD 
cn 

tA 
CD 

en 
C-ý 

cý 
CD 

t-- 
e 

vi 
ýc 

(> 
rn 

V) 
m 

CD 
rn 

CD 
vi 

cý 
cý 

m 
e 

cý 
c4 

r- 
4n 

00 ýQ 
\O 

-4 

C\ - 

e 
Igt 

00 
cý 

le 
V) 

en 
0 

V'l 
- 

00 
ON 

qt 
r- 

p- ? 
M 

00 
M 

llt 
ýo 

VI 
C 

ý-0 
r- 

Izt 
\O 

m 
M 

vl 
\o VI qt 

cý 
-4 

et 
V) 

09 
le 

Ci 
ýc 

-: 
\M 

r- 
r- 

c5 Od vi kri c-; c; (-i %ýd ri rei cc; cý (-; c-; r-: 9 cli CD ' m r- vi coý c\ C> ri 
rq 

(N 
r9 

nt 
rq 

V) 
c9 

V) 
C, 1 

V) 
c4 ýo rq 

00 
elli 

cý 
N 

m 
m 

\O 
m 

lKt 
m 

le 
M 

oý 
en 

00 M r-A 
le 

1,0 
nt 

vl 
let 

VI - 
vi 

r- vi 
CD 

3 0 
00 

- et 
- 

tr1 
lKt 

CD 
M 

VI 
en 

c9 
M 

VI 
r4 

\O 
M 

ýo 
- ýo O\ 

0 
V) 

8 �t 
t- 

%0 
ri 

v) 
M 

ell 
C> 

CY% 
rn 

CD 
00 

r- e t-- e 
clý 

wlý 
et 

rq 
V) 

r- 
(1q 

vl 
CD 

vl 
00 

00 
00 

ON 
00 

cý CD 
r- 

M 
le 

e 
e9 

00 N CD 
N r- 

N 
r, - 

r4 
r- 

rl 
ri 

en 
00 

C% 
Wi 

ch t- 
M 

cn 
ýo 

00 
(N 

t- 
M 

0 
c\ 

- 
- 

VI cq r-z rli relý coý t-z (fi cý le: 06 rei tri \Ci CD Wý e rn 00 CD c4 rl - ýo ýo CD cý - V) r- en N r- r4 N V) 
c9 (, A rn CN c4 r. ý rA clý cq en M M M Vi M le (1,1 en VI en le M t en le \M le e 

r4 \C e - 00 cq ýo 00 cý vl ýo M ýo C ýc alt r- 00 - - oý VI CD M 00 
cn t- p--4 - \Q M (14 --4 00 M r- 00 \M C, 4 le V-4 CD le t- 00 C\ en cý t- e 

vi r,; .ý cý Cý -; C-4 oý ýo 4-; r- \, 6 
- r4 C% (-i 00 od \O mý r- cý \Q cý cý -; , 't vi ý cý = 

4 cý 0 vl eý 00 t- 
Z r- 

en ý ci Z 
CD rei m 

M 
wl ri cq od 00 

00 -Z le 

Z 0 \O m \O - 
Z\ 
ne 

vl 
m 

V) 
m 

CD 
e rn 

le 
en 

r- 
t-- 

tn 
r- 

0 
m N 

0 
le 

ri 
(> 

ýQ 
-4 

vi 
--14 

r- 
--4 

en 
le 

xt 
vi 

rn 
le 

0 
r- - 

vi 
00 

rý cý cli Od cs rli vi vi \ii -4 vi r-: rei cli Ilý «i -4 
' 

m * m * ýb c-; -; 14 r-: 11.6 clö 1 6 re) en = KA cq r- Ilt rn M clý (11 ýo r4 -, C\ r- 
9 

- Vlb - - e �0 . = 

qe 
CII, 

C\ 
c*-4 

ýiD 
r- 

4 C 
V, 3 

N 
00 

- 
CN 

C\ 
CD 

oý 
r- 

00 
vl --1 CD 

0 
CD 

O\ 
en 

- 
C> 

CD 
C> 

vi 
c4 

C\ 
r- 

wý 
--4 

m 
rn 

IZ 
ktl 

let 
ýc 

r- 
vi 

CD 
ýo 

(4 
C\ 

CD 
clq 

le 
V) 

rn 
ýo 

tli le c5 r- r-: le vý cý c5 r- \j5 kri c; V) r-; le t-: e t-Z cý r-: vi let r-z clý (-i V'> cý (4) c5 r- zi en vi c9 \iö rq ý+ oý vi 00 cý - c:: ý 
c9 Ilý v) 

P-q P-4 -9 P-4 -4 M c4 rn cn -4 "-1 

rn c9 wý ge 00 01, e r- kri C rq M 00 ýo rn \O - N CD cý \jo 00 (4 - M r- qt r- 
�0 ýo cn �0 ri vi ýo r-1 - ýc t- e 1- CD M (> N 00 00 M 00 v) CD Kt 00 M O, \ CD 
od od d cý -4 zi (-i cý -ý (-i c5 Ild t; -4 f4 CD ýo - (N r- r- CD rn CD r-: 1-ý vý CY\ 
rn 

vi 
lqt 

vi 
vi 

m 
ýc 

r_ 
r- 

f9 
oo 

--4 c\ 
CN 
CD 

00 
CD 

r, - 
N 

cý 
r- 

CD 
e 

- 
\O 

00 
V) 

V) 
c> 

CD 
\C 

CD 
00 

r9 
00 

le 
cý 

C% 
cý 

vli 
CD 

lzt 
00 

cý 
M 

V) 
00 

vl 
r- 

cý 
vi 

:3 CD 
cý 

rn 
ýc 

1,0 
r- 

C) 
- 

00 
ýc 

C> 
e --4 

le 
00 
C\ 

N 
(n 

M 
r-) 

(9 
00 

\O 
Kt 

r- 
r- 

00 
V) 

\C 
m 

G vi 
vi 

le 
V) 

\O 
le 

00 
CD 

KA 
le ýa N 

ch 
00 

ci ci od ý C, 4 cý c:: ý cý ei ci -i ., i r-: tri cý cý ei cýd c::; cý cý rei I: ('i 

cý qe v-, kri r- \O r- 00 t- CD - rn -14 cý cý O\ - 00 - V) Rt ýc e N C-1 r- rn - lz 
00 

110 
V) 

vi vi 
tr) 

r- 
t- 

ri 
c> 

CD 
tn 

00 
V) 

(14 
V) 

rn 
9t 

r- 
le 

vi 
p-ll 

le vi 
le 

le 
(4 

en 
"0 

en 
m 

00 r- 
r- 

(1q 
M 

O\ 
CD 

ei) 
r4 

vlý 
e 

Ch 
V% 

vi 
- 

CD 
VI 

et 
CD 

r_ 
0 

co 
75 
E 
w 
E 

Cý 
C\j 



00 0, % CD - 
00 

(N 
00 

m 
00 

le 
00 

vi 
oo 

ýo 
oo 

rý 
oo oo = oo > g1 Ch - (> c> 

le 
c> 

Vlk 

r- 
IZ (1q 

m 
le V) 

(9 
- 
00 

CD 
r- 

\O 
ýo 

a VI 
C> 

00 
<'4 

ýc 
V') 

cý 
t- 

N rn r% rn oo Kt 
r- 

eg 
nt -4 

-4 
%, m 
c> 

00 
-4 

eg 
(N 

r. ý c4 
r-ý 
00 

00 
ýo 

-e 
r-ý 

vi Ild ýd ýd ýd rz ýd rýZ rz r-: t-z 

00 
rn 
00 

cý 
r- 

M 
O\ 

00 
vi 

M 
(N 

e4 
1,0 (111 

cl 1 
vi 00 r- 00 et r- 00 

e 
cý 

c> 
". -4 

v) 
r- 

od 
P-4 ýc 

g 
00 
YD 

pi 
en 
ýo 

-ý 
ro 

od 

C-D -, 
ti 

r- 00 
ý+ 

r- c`A 
ýd 
Z M 

cd 

oo - 
-4 

Z 
ei 

oo clý 
Cj 
e C\ 

# 

cq 

vi 

CN 

c; 

C, 1 

r,.: 

vi 

-; 

m 

r- 

et 

r- 
r-) 
oo 
r- 

- 

CA 
m 

r- 

Öto e 

ýc 

1020,1 go 

r- 

rInn V) 

- 

wl 

1,0 

oo 

t 
M 
rn 
wl 

rq. 
vl 
r-4 
r-1 

kt) 

en 
oo V) , CN 

, --4 
CD 

IZ p- 00 (14 00 V) le t- IZ rn M c\ r- m r- " r- m (Z v. 1 eg CD ""' e4 m ri RA 

cý ýc r- cý v oo r- r- oo r-: oý cý cý cý cs oý --ý ci cý rei CD 0 - - - v) m eii 

c> 
P. -1 

en 
e mt 

V) 
00 

* 

r- 
c; % 

CD 
ýo 

CD 
Q 

00 
r- 

C, 4 
VI 

cý 
- 

M 
m ýc oo - \. O 00 CD CD nt - C-4 C) r- rq r- - 

116 
rn 
, et 

t-- 
c, % 
�o 

cq 
e 
V) 

C\ vi -ý (-i vi rz vi vi C> 
rn 

t-z - 
(4 

Od r9 
cq 

c06 vi 
c4 

(-i - e 
C, 6 
le 
- 

rli et 
ýo 

r-i N 
w 

oý Vi 
cý 

cý VI 
e 

tz 00 
V) 

%ei 00 
"-I 

1.6 00 
r- 

\Ci ýo 
vi 

rz v) 
0 

ýý - c> 
vi CD 
r- 

cý r- 
w 

KA 
't 

�0 
rý 

Cý 
rq 

vi 
00 

3 r- 
00 

cý 
mt 

M 
\O 

- 
M 

O\ 
M 

C> 
le 

vl 
ýo 

e 
t- 

alý 
N 

r- 
N 

�o 
00 

cy\ 
te) 

\M 
rq 

0 
1,0 

V) 
"-q 

- 
qt 

ýo 
"-4 

0% 
xt 

Rt 
rlý 

0, % 
09 

1,0 
11: ý 

N 
C, 9 

a 

vi vi c; vi cý oý cý .+ ci r-: ci ci (, i cý od r-: od -1: 4 --. nt 0 \. O r- 
M . -4 

tA 
rý- 

M Ilt 
9. -4 

V) le 
"_q 

rn 00 \Z 
- 

Ilt 
c9 

le 
C, 1 

00 
- 

cý - 
rn 

- 
-4 

\o r- 
\O 

00 
"-e 

C\ CD 
c�l 

M 
CIA 

00 
- 

CD 
le 

CD 
cq 

r- 
N 

rn 
\O 

M 
= 

r- 
C> 

m 
W 

:3 w 
r- 

w 
= 

- 
"-, 

- 
r- 

(Z 
r- 

w 
(> 

0 
�o 

le 
-4 

0 
ýQ 

r- 
00 

P-4 
00 

9 w 
00 

C\ 
rn 

(> 
C> 

le 
r- 

cq 
00 

- 
ch 

r- 
le 

00 
CD 

rn le cý c-i m rz CD rz -4 let c-i 9--4 od r4 ýd od --4 od M cod vi oý V) cý le c-; - od "0 oý -A r. od \O r4 M cý - rfi (n cý le vi r-1 mi rý 

rý c> 
V'l 

'Z 
IZ 

M 
CD 

r- 
IZ 

cý 
C% 

KA 
CD 

\O 
00 

M 
'le 

tý- 
N 

O\ 
r- 

ý, 0 
C\ 

\C 
r- 

c> 
ýo 

en 
- 

r. 
CN 

r4 
r- 

V) 
gt 

CD 
t- 

\C 
r-4 

cq 
CD 

r- 
r- 

V) 
r- 

rq 
0% 

t- 
Ch 

Ch 
Cl% 

e 
tý, 

CD 
-e 

rn 
�d 
N -; r- 

od 
:3 

rz 
r9 

od 
C\ 

r,; 
lqt 

od 
rn 

ri 
00 

c-i 
en 

d 
r- 

vi 
(N 

r,; 
00 

r,: 
00 

d 
Int 

cý 
r- 

r,; 
le 

c5 
CD 

ci 
ýc 

od 
CD ýd vi 

ei 
00 

r-z 
ýc 

c5 
C> 

od 
V) 

vi 
\M 

r,; 
C> 

(, i 
V) 

V) clq c> 00 41 (111 00 CD let CD (A I: cý rý e: ýI rA rý ri vý ri cý og r- (- c, 

cq r- 
ýd 
rý 

06 
00 oo 

WI 

0% 00 
rq 

3 

VI 

vi 
00 

q 

- 
M 
r, - 

rq 
r- 
r- 

r- 
"-t 

r- 
--4 

c-i 
V) 
Ilt 

CD 
V) 
r- 

cý 
! ý: 

cl 
r- 
O\ 

r- 
cli 
M 

m 
\O 
le 

rq 
O\ 

oo 
00 
f4 

vi 
Ivt 
m 

cý 
" 
00 

cK 
r- 
V) 

r4 
V-) 
ýo VI W W r- e rq "-, clý M Ilt CD 00 00 W = rq cý ýo 0, % W, V% 

. --4 -4 --4 --4 -4 cri ". 0 r4 it P. -4 ri V) m rý 't (14 cý V) 1 

P--4 vl 
CD 
r4 

IZ 
vi 

CD 
-4 

CD 
t-ý 

e 
--4 

00 
le 

00 
00 

c9 
\Z 

C\ 
vl 

O\ 
en 

\O 
CD 

c> 
CD 

e 
00 

- cý 
VI 
N 

CD 
r- 

00 
(1-4 

VI 
- 

M 
r- 

t- 
CD 

M 
00 

00 
CD 

V'l 
cý 

\O 
en 

00 
r- 

Wý 
00 

cý cli r-: vý vi rZ vi vi r-z tri vi tn (14 c4 en kn m 
CD 

o rn 2 e 00 r-4 r- 
(11 
e 

00 
C7N 

c9 
00 

". 0 
00 

rn 
N 

(: 
00 

00 
CD 

00 
cý 

C\ 
ýc CD 11» 

V) 
CD ', 0 VI 

1,0 
vi 

C, 4 
r- 

rq 
(> 

1,0 
CI, 1 

et C-4 r. - 4n C'A - e rn c> C-4 r- kt) ke) V-1 00 00 vi cýI \O 00 CD c7% N \z - 00 e r- 
m 

00 c4 (11 c�4 c4 
c9 M 

r_ 
0 

1= 
cz 
75 
E 
0 
E 

CNJ 



00 
00 c\ Irl ch clý rz rz r-: t-: oý od 

\M CD 00 00 le (1q 
N "-. i rf) Vlb N CD 

cli 06 -1: rei C-i cý ýo c"i \o ýo - "0 
CD 00 Ikt r- r- 3 

C\ 

\O 
(N 

rn 
"-4 

IZ 
"-4 

c4 
-0 

le 
m CD 

vi coý \m 00 00 r- 
tn 

CD 
N 
le 

CD 
c9 
r- 

m 
CD 
-q 

vi 
r, - 
(In 

C% 
r- 
-14 

"0 
Igt 
M 

V f--4 P-4 (N 00 \O > 
vi 

rA 
rn 
00 

CD 
vi 
V) 

m 
C\ 
rn 

--4 C'% 
Cf) 

ri VI 
en 

ZD 
cn 

00 
"0 

le 
vi 

m 
vi 

(-: 

rn 

00 
Kt v) cA 

M 

4-i C> 
140 

00 
lKt 

iti ýo 
rn 

ýý+ r- 
rn 

r- 
rA 
N 1 

- r- 11 

vi rn ýc c> 00 KA 
00 

00 

ýý 

-et 
00 

ýc 
r- 

rA 
qt 
00 
CD 

\O 
- 

CD 
vi 
0, % N 

- 
CD 
(N 
00 

V) 

:3 CD 
ýQ 

2 
M 00 VI 

1 en 1 1 

rq 
4 

CD 
vi 

CD 
cli 

Ilt 
C-i 

N 
rz 

. --4 - V') (n ýo Z 
P-4 cn 

00 le rn \O CD 
00 

9 
00 t- a llt 
r4 00 V) 

en 00 KA ýo V) 
. -4 %A 

0 

ill 

0 

U 

C 
0 

1= 
C%$ 
75 
E 
ca 
E 

C\l 



Appendix 6 

Parameter estimation Methods 

1.0 General considerations 

As we have shown in chapter three the lognormal distribution has 
two parameters namely a the shape parameter, and y the scale or 
location parameter. A third parameter p is sometimes referred to in some 
inventory calculations and has been called the the STANDARD RATIO by 
R. G. Brown (1959). However, p is in fact directly related to the shape 
parameter as follows- 

p=ea 

The parameter estimation methods for the lognormal distribution 

are discussed in depth in by Aitchison and Brown (1957). From the 

extensive work by these authors on the efficiency of the parameter 
estimation methods they conclude that the maximum likelihood method 
provides the most accurate values. This approach provides estimates that 

are unbiased and consistent, whether for grouped or ungrouped data. 
Tberefore all the estimates on distribution parameters that we have used in 

this work are based on the maximum likelihood function. 

The maximum likelihood formula for'c' and 'y' are as follows- 

2 nlfi(lnxi )2 
-[Ifi(lnxi)] 

2 

Cln 
x- 

n(n - 1) 

for i= 1 ton 

a22. 
where inx is the maximum likelihood estimator for a 
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Appendix 6 

The likelihood estimator for the scale parameter ju 
is obtained from - 

Inxi fi (In xi 
n 

for i= 1 ton 
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Appendix 7 

Usage Value Data Sets 

1.0 General considerations 

In this section we present ten example pages from one of the 

computer prints from the DAF Parts department computer system. This 
data is from the 1979 ABC Usage Value distribution and it was used to 

produce the lognormal plot on log normal graph paper shown in chapter 
one. We give the first ten pages that shows the cumulative distribution up 
to the 75% percentile level. It was not feasible to include any more pages 
because of the long tail of the distribution. The complete print out was 
nearly 300 pages long. (A photocopy of the complete printout can be 

made available to other researchers on request to the author at City 
University, as can examples of demand history printouts for various 

years. ). A nominal charge would be made to cover photocopy costs. 
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