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ABSTRACT 

Although there are many computer codes available for analysis of fluid transients, 
only. a few are known to be applicable to linebreak situations and their scope is limited. 
There is, therefore, still a big potential for development work in the subject. Discrepancies 
between different models which have been developed have mainly centred on the 
assumptions used in developing the basic partial differential equations of flow, and 
subsequent simplifications; the thermophysical model used; representation of various terms 
in the equations such as the friction term; and the numerical method of solution of the basic 
partial differential equations. 

A previous model developed by Tiley (1989), overestimated the actual wave speeds 
and had problems of instability of the solution. A new approach, in which the three basic 
partial differential equation of flow are derived, based on the assumption of an unsteady 
quasi-one-dimensional flow of a real gas through a rigid constant cross-section area pipe, 
and using the Gamma Delta method is used. No further simplification is made on the basic 
equations. Significant improvements have been made on the type of equation of state, 
thermodynamic model, heat transfer approximation and friction factor representation. The 
QUANT software for thermodynamic and transport properties of real gases is used. A flow 
dependent explicit equation of Chen (1979) is used to calculate the frictional force and heat 
transfer is calculated using the concept of recovery factor and adiabatic wall temperature. 
Numerical solution of the basic equations is performed using the third-order Warming- 
Kutler-Lomax method, the second-order MacCormack method and the method of 
characteristics. A pc based computer coding with the C language is used. 

The QUANT software has successfully been incorporated with the programme. The 
full benefits of the software could not be realised with linebreak problems due to limitation 
of the range within which it gives output at present, but satisfactory results have 
nevertheless been attained. 

An improved and more accurate way of calculating the break boundary condition 
has been used. A non-uniform grid spacing has been used, which allow fine grid spacing 
in the vicinity of the break in order to enable accurate modelling of the rapid transients 
occurring in that part. Two different models for calculating the heat transfer i. e. one for the 
case of pipes exposed to the atmosphere and buried pipes have been incorporated with the 
model. 

Experimental data from full-scale pipeline tests is used to validate the computer 
models. Results from the computer model simulations show good agreement with the 
experimental data. The MacCormack method has been found to be unsuitable for modelling 
transient flow following linebreak in high-pressure gas pipelines. The method of 
characteristics has proved to be the method of solution for such applications. A better 
understanding of the flow following a break in high-pressure gas pipes is achieved, 
especially the decompression behaviour at the break boundary. Data gathered from 
feasibility studies conducted in the late 1980's for a pipeline in Tanzania is used to validate 
the steady state analysis model and to simulate a linebreak in the pipeline. Results of the 
computer simulation are discussed and recommendations made on the suitability the pipeline 
design. 

Additional work is recommended on refining and further testing of the computer 
programmes and using the Gamdeleps method which covers all the three phases region i. e. 
gas, liquid and gas/liquid. 
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NOMENCLATURE 

Symbol Description Units 

A Cross-section area of pipe m- 

a Wave speed m/s 

c Pipe wall thickness in 

C� Courant number - 

Cp Specific heat of gas at constant pressure J/kgK 

Cv Specific heat of gas at constant volume J/kgK 

d Pipe diameter m 

D Depth of pipe m 

E Energy of the system i 

e Specific internal energy of gas J/kg 

F Force N 

f Friction factor - 

g Gravitational acceleration ßs2 

H Vertical height/piezometric height m 

h Specific enthalpy of gas J/kg 

hBL Heat transfer coefficient through the boundary layer WATR 

hcA Convective heat transfer to the atmosphere W 

I Inventory/mass of gas in the pipeline kg 

k Thermal conductivity W/UK 

L Length of pipeline/wetted perimeter m 

M Molecular weight of gas l 

Ma Mach number - 

m Mass flow rate of gas kg/s 

NL Avogadro's number - 

p Static pressure of gas Pa 

Pr Prandtl number - 
Q Heat transfer rate per unit volume J/m3s 

q Pseudo-viscosity variable N/m2 

r Radial distance of the pipe m 

R Specific gas constant J/kg 
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Rc Recovery factor - 

Re Reynolds number - 

S Specific entropy of gas J/kgK 

St Stanton number - 

T Temperature of gas K 

t Time S 

U Overall heat transfer coefficient Walk 

u Flow velocity of gas mIs 

V Volume flow rate of gas m3/s 

W Work done by the system i 

x Horizontal distance along the pipe m 

Z Compressibility factor of gas - 

Greek Symbols 

a Polytropic alpha coefficient - 
ß Polytropic beta coefficient - 

Polytropic gamma coefficient - 
A Small change in the quantity - 
DE Change in energy of the system J 

S Polytropic delta coefficient - 
e Polytropic epsalon coefficient - 
e Roughness of pipe m 

6 Angle of inclination of pipe to horizontal MdiWs 
K Ratio of specific heats - 

Coefficient of dynamic viscosity kg/ms 

v Kinematic viscosity m2/s 

p Density of gas kg/m3 

v Specific volume of gas m3/kg 

(D Viscous dissipation function - 
x Thermodynamic quantity/dryness fraction - 
ýr Conical angle of the pipe I 

cp Free parameter = 

0 Heat flow into the pipe per unit length of pipe per unit time Jim s 

w Frictional force per unit length of pipe N/m 
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Subscripts 

A Atmosphere 

aw Adiabatic-wall 

BL Boundary layer 

c Critical 

CA Convection to atmosphere 
D Darcy's 

e Equalization 

eff Effective 

F Fanning's 

m surrounding media 

o Stagnation/initial 

p At constant pressure/pipe 

pw Pipe wall 
R Reduced (ratio to critical value) 

r radial 
S Isentropic 

wo Outer pipe wall 

wi Inner pipe wall 

Superscripts 

- mean 
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CHAPTER I 

INTRODUCTION 

1.1 TRANSPORTATION OF NATURAL GAS IN PIPELINES 

Transportation of natural gas in pipelines takes place at very high pressures (typically 

35-150bar, though higher pressures are also used). In main transmission lines, the gas 

mixture normally exists in one phase (liquid phase), thus avoiding problems such as multi 

phase flow and reduction in pipe capacity. These high pressure pipelines, normally cover 

very long distances. The largest natural gas pipeline network in the world is the USA one, 

with a total length of more than 1.5 million kilometres. The former USSR network is the 

second largest in the world. In the United Kingdom, the national transmission system 

covers approximately 5000 kilometres plus another 12000 kilometres, with pressures of up 

to 7bar in the regional distribution systems. In the Netherlands, the high-pressure system 

consists of a series of transmission lines with a total length of over 6000 kilometres. 

Following recent discoveries of natural gas in the South Eastern Coast of Africa, plans are 

now well underway to construct pipelines to transport the gas to areas. with highest market 

potential. In Tanzania, a 200km pipeline is under construction for transportation of natural 

gas from Songo Songo Island to Dar es Salaam and in Mozambique, a 900km pipeline will 

be constructed from Pande to the Republic of South Africa. 

The amounts of natural gas stored in the transmission lines are enormous. In the 

Netherlands system described above, the yearly flow amounts to over 7x 1010 kilogramme 

of natural gas. To give a feeling of the amounts and their qualities, a 145 kilometre typical 

high-pressure pipeline would contain about 7000 tonnes of natural gas, which is equivalent 

to 100MW of heat power for 40 days. With such large amounts of natural gas contained 
in pipeline systems, potential hazards such as pollution, fire and economic losses due to the 

spilling of the gas in case of a rupture are of great concern and need to be thoroughly and 

accurately assessed. This will in turn be the basis for designing and implementing 

preventive measures for such hazards. One example of such cases was in Alberta, Canada, 

where it was necessary to accurately model sour gas (natural gas containing hydrogen 

sulphide) pipeline rupture, in order to set guidelines for land development policy. 
At present, there are over a dozen computer codes for analysing transient flow 

behaviour of fluids in pipelines. Some work which has been done in the past three decades, 

on pipe rupture and blowdown in gas transmission lines, is summarised in Section 1.2. 
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1.2 RUPTURE AND BLOWDOWN OF GAS PIPELINES 

It has been stated in section 1.1 that the amounts of natural gas stored in the transmission 

lines are enormous and the potential hazards, such as pollution, fire and economic losses 

due to the spilling of the gas in case of a rupture, are of great concern. Assessment of the 

flow situation following a linebreak in such pipelines is crucial, in order to be able to design 

and implement preventive measures and to plan corrective action for such hazards. 

Most pipeline ruptures occur accidentally due to causes such as material failure; 

poor or lack of maintenance, faulty operation; damage to pipelines due to excavation work; 

and damage of pipelines by falling objects from platforms, ships and icebergs. Within the 

last decade, the world has witnessed several disasters resulting from accidental pipeline 

ruptures. These include the Piper Alpha disaster on the night of 61h July 1986 and more 

recently (April and May 1995) in Russia and South Korea respectively. The South Korean 

rupture was caused by pipeline damage, due to excavation work and it resulted in many 
deaths. The Russian pipeline rupture is thought to have been caused by pipe failure due to 

corrosion. After the Russian pipeline rupture, flames could be seen up to 25000ft high and 

several square miles of forest were set on fire. Pipe blowdown is a controlled venting to 

the atmosphere and is usually done prior to shutdown or repair. In this report, both rupture 

and blowdown are referred to as linebreak. 

Analysis of the flow following a linebreak in a gas pipeline is done using computer 

models which have been validated with the best available experimental data. A review of 

experimental data which is available on linebreak has shown that it consists of data from 

shock tube tests; laboratory experiments on short sections of pipes; linebreak simulation 

experiments on full-scale pipelines such as those reported by Bisgaard, Sorensen and 
Spangenberg (1987) and Van Deeen & Reintsema (1983); rupture and blowdown tests on 
sections of full-scale pipeline such as the Foothills Pipe Lines (Yukon) Ltd. (1981); and 
measurements on full-scale pipeline system during accidental rupture such as the Piper 
Alpha disaster during which some data was recorded. 

One essential requirement before performing computer modelling of a given pipeline 

rupture is that the test data, specific gas data and pipeline system data must be prepared in 

the form required by the computer programme. Often this involves making a number of 
assumptions and simplifications, such as assuming some parameters to be constant for some 
interval. Computer software such ̀ as QUANT, PPDS-IUPAC, ASPEN PLUS and 
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PREPROP for calculation of thermophysical properties of fluids are available and make the 

process much easier and accurate, while maintaining a sound computation speed. System 

data such as pipeline dimensions, is usually included in experimental data. However, some 

variables such as grid size, friction factor, Stanton number etc. need to be determined. A 

suitable grid size needs to be chosen in order to produce stable results and to adequately 

model the physical behaviour such as the shock wave fronts. Transient analysis in the 

vicinity of the break is very crucial. However, it is often not easy to obtain the required 

experimental data and with the required accuracy in this area. Consequently, the only 

available option is to use computer models. In the more recent studies, such as those by 

Picard and Bishnoi (1989), Tiley (1989) and Chen, Richardson and Saville (1992) variable 

grid sizes were used in the vicinity of the break, in order to enable close monitoring of the 

expansion waves. 

The flow of gas following a rupture in a high-pressure gas pipeline is one case of 

rapid transient flow of compressible fluids in pipelines. Such flows are governed by the well 
known set of three partial differential equations derived from the principles of conservation 

of mass, momentum and energy. The gas properties are described by an equation of state. 
These, together with appropriate auxiliary conditions, determine the mathematical state of 
the gas. Many assumptions and simplifications are involved in the process of formulating 

and manipulating these equations. All these aspects are presented in this thesis. 
When a rupture occurs, the operating parameters such as pressure (p), flow velocity 

(u), density (p) and temperature (T) at different parts of the system vary considerably. For 

example, T could fall to such an extent that it could render part of the pipeline unusable 
after the rupture, due to changes in it's material properties. It is therefore very important 

to be able to determine these variations in order to be able to decide which parts of the 
pipeline should not be used and thus avoid further disaster. In modelling a linebreak in a 
gas pipeline system, questions such as what is the magnitude of the flow rate at the broken 

pipe end, how quickly will it diminish with time, what is the pressure, what is the 
temperature and how are these going to affect the rest of the system have to be answered. 
Another important parameter is the speed of propagation of pressure waves in the system, 
which also has a bearing on the fracture behaviour of the pipe material. 

18 



Results of transient analysis in ruptured pipelines, whether produced by experiments 

or computer models, are normally presented in a set of graphs. The more commonly used 

are the pressure, temperature, flow velocity, mass flow rate, pressure wave speed and mass 

of gas in the pipeline as functions of position and time. 

1.3 COMPUTER CODES FOR ANALYSIS OF FLUID FLOW IN PIPES 

Nearly thirty computer codes, for the analysis of fluid transient situations in gaseous and/or 

multi-phase flows, are known to have been used; and some of these are available 

commercially. These include PIPENET, PIPESIM, PIPESIM PLUS, SURGE, EXPRES, 

PIPETE, IMF, IPSA, TOFFEA, SIMPLE-2P, PISO-2P, PIPETRAN, TRANSFLOW, 

TRAC, FLASH, RODFLOW, RELAP, FEAT, OLGA, PLAC, FLUENT, FLOW-3D, 

PHOENICS, PRO-II, HYSIM, FLOWMASTER, TGNET, PIPE 1, PIPE2, BLOWDOWN 

and PIPEBREAK. In addition, some organisations, such as British Gas [Mallinson (1996)] 

and GASUNZE of the Netherlands [De Bakker (1993)], have developed their own models 

suited to their own pipeline operations. 
FLUENT, FLOW-3D and PHOENICS are general purpose codes for multi- 

dimensional two-phase flow, but limited to dispersed flow or particle tracking. Algorithms 
for separated and stratified flow analysis include IMF, IPSA, TOFFEA, SIMPLE-2P and 
PISO-2P. OLGA and PLAC are one-dimensional flow codes which do not assume 
homogeneous two-phase flow and are therefore suited to low-speed two-phase fluid flow. 
FLASH, RELAP, RODFLOW and TRAC are normally used for Loss-Of-Coolant-Analysis 
(LOCA) in nuclear power plants. They are therefore suited for situations where the two- 

phase fluid is primarily a steam-water mixture. FLOWMASTER, of the British 
Hydromechanics Research Group (BHRG), can handle fluid systems where both rapid and 
slow changes occur in the boundary condition. FEAT is based on a finite-element 

numerical method of solution. 
TGNET, PIPE 1, PIPE2 and BLOWDOWN are among the group of codes for 

analysis of transients following high-pressure gas pipeline ruptures. PIPE1 and PIPE2 were 
developed by Flatt (1985-1989) at the Swiss Federal Institute of Technology, Lausanne. 
PIPET is for perfect gases whereas PIPE2 is for real gases. It is known that at least one 
company has offered to acquire the codes. BLOWDOWN is a computer code which can 
be used to simulate the emergency blowdown of vessels and pipelines containing 
hydrocarbons. The programme can predict pressure, temperature and multi-phase 
composition within a vessel or a pipeline; temperature of the wall; and efflux: all as 
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functions of time. Development of the code [Richardson (1993-96)] started in 1984 at 

Imperial College, London; and the first version of the code was produced in 1988. It has 

since then undergone constant modifications and testing, which it is claimed have not yet 

involved any correction, but have extended considerably the range of problems which it can 

handle. An independent study commissioned to compare BLOWDOWN with PRO-II and 

HYSIM concluded that it is BLOWDOWN alone which is capable of dealing with systems 

containing liquid' condensate or comprising more than one-vessel. BLOWDOWN is now- 

used by many gas and oil companies for the simulation of depressurisation systems. 

Applications have included a large number of individual vessels on offshore platforms and 

onshore installations, a number of multiple vessels connected to a common blowdown 

header, complete platforms and sub-sea pipelines. BLOWDOWN is being used throughout 

the SHELL Group of Companies. British Gas has decided that it will only use 
BLOWDOWN for depressurisation calculations. BLOWDOWN can also be used to 

simulate the repressurisation of a system (which is effectively just depressurisation in 

reverse) and the whole programme is common to repressurisation and depressurisation. 

The main physical difference between the two is that the fluid tends to get warmer (and 

much warmer if the process is fast enough) in the former, while in the latter it tends to get 

colder (and much colder if the depressurisation is fast enough). 
PIPEBREAK is a computer programme which was developed and is being used by 

British Gas Plc for linebreak analysis. The GASUNIE pc model for hazard assessment can 

model gas outflow for complex pipeline networks with different elements and different 

outflow scenarios, all in one model. It can model linebreak, venting and leakage. It can 
handle elements defining different boundary conditions, which can represent, for example, 
the simplified behaviour of a compressor. The emphasis in developing this model was put 
on user friendliness, robustness and the ability to model complex networks. The basic 

relations are solved using implicit finite-difference schemes and a graphical user interface 

makes inputting of the network very easy. An estimate of the accuracy is claimed to be 5 
to 20 per cent, and in the GASUNIE context, this is considered to be sufficient for hazard 

analysis purposes. 
There are numerous studies in which attempts were made to develop computer 

codes for analysis of transients in ruptured high-pressure gas pipelines. Perhaps the earliest 
published model for the analysis of gas linebreak is that by Sens, Jouve and Pelletier (1970). 
There have since then been several attempts to develop computer models for gas linebreak 

analysis, including that by Tiley (1989) which was the starting point of this study. Sens, 
Jouve and Pelletier (1970) claimed that results from their model were identical with their 
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experimental results. Arrison, Hancox, Sulatisky and Banerjee (1977) compared 

predictions from their RODFLOW code with experimental data for blowdown of a 

recirculating water loop containing two pumps, two heated sections and two heat 

exchangers arranged in a figure-of-eight geometry. Groves, Bishnoi and Wallbridge 

(1978) developed a computer model to calculate decompression wave velocities in natural 

gas pipelines. The model was validated with the experimental data of Groves (1976). 

Cheng and Bowyer (1978) used their quasi-one-dimensional unsteady compressible fluid 

flow code to simulate two cases of transient flow. Transients caused by a sudden pipe 

rupture at the left hand side of a three duct steam system were predicted. Lyczkowski, 

Grimesey and Solbrig (1978) presented comparative results of their alternating gradient 

method with analytical results and also their experimental results. 

A study by Alberta Petroleum Industry, Government Environmental Committee 

(1978) reported on two existing hydrogen sulphide isopleth (constant concentration of 

hydrogen sulphide lines) prediction models, one blowdown model and a simplified 

blowdown model developed during the study. Predictions from the blowdown models were 

validated with experimental results in a subsequent study [Alberta Petroleum Industry, 

Government Environmental Committee (1979)]. Knox, Atwell, Angle, Willoughby and 

Dielwart (1980), presented results of their theoretical model and compared them with their 

experimental data. Cronje, Bishnoi and Svrcek (1980) presented their adiabatic model and 

compared its results with the experimental data of Groves (1976). Other studies include 

those by Fannelop and Ryhming (1982), Van Deen and Reintsema (1983), Bisgaard, 

Sorensen and Spangenberg (1987), Lang and Fannelop (1987), Picard and Bishnoi (1988 

and 1989), They (1989), Botros, Jungowski and Weiss (1989), Lang (1991), Kunsch, Sj, en 

and Fannelop (1991 and 1995) and Olorunmaiye and Imide (1993). 

Whereas the physical phenomena of a pipeline system response following a rapid 

transient event is well explained for the other cases such as pump trip, rapid valve closure 

etc., the contrary applies for the case of a linebreak, despite all the studies mentioned in this 

section. It is stated that when a break occurs in a high-pressure pipeline, the pressure drops 

virtually instantaneously at the break and rarefaction waves are transmitted up and down 

the pipeline and are rapidly dissipated when the fluid in the pipe is a gas. Expansion waves 

are created in the section of the pipe upstream of the break and flow reversal occurs in the 

section of the pipe downstream of the break. This study investigates further the linebreak 

phenomenon, especially at the break boundary with the aim of achieving a better 

understanding of the phenomenon and a more accurate and stable model. 
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The process of developing a computer model for analysis of transient flow of gas 
in pipelines entails three main steps, namely formulation of the basic governing equations, 
numerical solution of the equations and finally validation of the model with experimental 
data. Discrepancies between different models which have been developed for analysis of 
transients following a linebreak in gas pipelines have mainly centred on the assumptions 

made in developing the basic partial differential equations of flow, and subsequent 

simplifications; the thermophysical model used; representation of various terms of the 

equations such as the friction term etc.; and the numerical methods used for solution of the 
basic partial differential equations. 

Following a critical review of the previous study by Tiley (1989) a new approach, 
based on the Gamma Delta method developed by Flatt (1989), is used. The three basic 

partial differential equations of flow are derived for unsteady quasi-one-dimensional flow 

of real gases through a non-rigid variable cross-section area pipe. The only subsequent 
simplification are assumptions of constant cross-section area and rigid pipe walls. The 
QUANT software for thermodynamic and transport properties of real gases is used. The 

software is based on the virial equation of state and also contains the isentropic gamma and 
delta coefficients (ys and SS) required for the Gamma Delta method. A flow dependent 

explicit equation is used to calculate the friction losses. Numerical solution of the basic 

equations is done using the method of characteristics; the second-order MacCormack and 
third-order Warming-Kutler-Lomax explicit finite-difference methods. 

1.4 PREVIOUS WORK AT CITY UNIVERSITY 

This work [Tiley (1989)] was an attempt to develop a computer model which can simulate 
a linebreak occurring in a gas pipeline. The procedure involved derivation of the basic 

simultaneous partial differential equations of motion which mathematically model unsteady 
fluid flow in a pipeline, by assuming a one-dimensional homogeneous flow, constant value 
steady flow friction factor, constant value Stanton number and neglecting minor losses and 
changes in cross-section area of the pipe. The equations were solved numerically using the 
method of characteristics. A computer code was written in FORTRAN 77 and a Gould PN 
9005 mainframe computer was used to solve the mathematical model. Finally, the model 
was tested using experimental data. It is reported that although the theoretical model 
successfully simulated the rapid expansion of a gas following a linebreak in a high-pressure 

pipeline, comparison of the model results with experimental data which was available, did 
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highlight some areas of concern. These include overestimating actual wave speeds and 

problems of instability of the solution. Further work was recommended in the two areas 

mentioned above and also further refinement and testing of the model. 

In this study, the whole approach used by Tiley (1989) has been critically reviewed. 

The subjects which have been explored include the following: 

(a) One-dimensional flow assumption. 
(b) Homogeneous flow assumption. 
(c) Neglecting minor losses and changes in cross-section area of the pipe. 
(d) Classification of the partial differential equations. 
(e) Use of a constant value steady flow friction factor to calculate friction losses. 

(f) Use of a constant value Stanton number to account for heat transfer (simplified 

model of heat transfer). 

(g) Use of the method of characteristics for numerical solution of the basic partial 
differential equations. 

(h) Use of FORTRAN 77 and Gould N 9005 mainframe computer. 
(i) Estimation of the gas constants specific heat at constant pressure (Cr), specific gas 

constant (R), critical temperature (T,, ) and critical pressure (Ps). 

(j) Physical modelling of a linebreak situation. 
(k) Assumption that pipe walls are inelastic. 

(1) Determination of compressibility factor. 

(4n) Limitation in the amount and scope of experimental data. 

(n) Simplification of the basic equations. 

The one-dimensional flow approximation was used on the basis that for high 
Reynolds number flows, as in gas transmission lines, the approximation has been shown to 
be very good for steady and slowly varying flows. This was despite the fact that in the 

region of influence on flow of bends and fittings and particularly where there are large, 

rapid changes in conditions, as in the case of a linebreak, larger discrepancies are expected 
from the one-dimensional approximation. An alternative to this approximation is to apply 
the method used in turbulent boundary-layer theory which is lengthy and complicated. 
Some workers have used this method. A review of their work has been done in order to 
find out the limitations of using this method and the significance of errors introduced in the 

model by assuming a one-dimensional flow. 
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Homogeneous one-dimensional flow means that property distribution is uniform 

over the cross-section. This includes assumption about velocity profile, which is to be 

examined in more detail presently. The study by Tiley assumed a homogeneous flow. The 

validity of this assumption was investigated. Darcy's steady flow friction factor was used 

on the basis that there had been no friction factors defined for transient gas flows. It was 

stated that the use of steady flow friction factor for transient flow causes very little error 

when the flow variations are of relatively low frequency and amplitude, but it was also 

admitted that when large, rapid disturbances are occurring, a significant error may be 

incurred. The latter fact was considered when selecting the steady flow friction factor and 

also in subsequent calculations. From the review made, in this study, of flow (Reynolds 

number) and frequency-dependent friction, it is strongly felt that the use of constant value 

steady flow friction factor for transient flow could introduce quite considerable error in the 

model results and could in fact be one of the major causes of the inaccuracies observed with 

the model. A considerable amount of work on frequency-dependent friction in transient 

fluid flow simulation has been identified. This has been reviewed but not used in this study 
because the effects of unsteady friction, in addition to steady friction, are very small. The 

other issues raised by Tiley concerning the friction factor such as friction factor for two- 

phase flow and approximation of the friction term have also been critically reviewed. 
The three partial differential equations describing the transient flow were classified 

as "non-linear hyperbolic partial differential equations", while they are in fact "first-order 

quasi-linear hyperbolic partial differential equations". However, this variation in 

classification of the equations had no impact on the solution and results obtained. An 

investigation has been made on the relative magnitudes of the minor losses and changes in 

cross-section area in a practical situation in order to assess the significance of the error 
introduced by neglecting them. The decision on whether or not to neglect them has been 

reviewed based on the findings of the above investigation and other factors affecting the 
development and execution of the model. 

A constant value Stanton number was used to account for heat transfer on the basis 

that variations in Stanton number with flow rate are not sufficient to warrant the additional 
computation involved, and that the heat transfer term in the basic equations is comparatively 
small. Also in deriving the equation for the heat transfer term, it was assumed that in a 

rapid transient, the pressure changes occur instantaneously, allowing no time for heat 

transfer to take place between the pipe and the surroundings (adiabatic flow). It has been 

argued by others that no models are known for the general case of heat transfer in 

non-steady flows, where there is no thermal equilibrium between the pipe and the 
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surroundings. The literature search made has revealed that there has been previous works 

on this subject. A review of these has been done in Section 2.6 and, as a result, the heat 

transfer model has been improved. 

The Berthelot equation of state was used to determine the compressibility factor, 

since it was said to produce comparatively accurate results for gases and vapours at low 

temperatures. It was stated previously by Thorley and Tiley (1987), that since the terms 
involving compressibility factor in the basic equations are usually relatively small, a complex 

equation of state would be uneconomical in terms of computer time. Therefore, only the 

relatively simple equations were examined. Also equations of state were preferred to 

compressibility charts because the former can easily be programmed into a computer and 

can be solved for derivatives. The equation of state for a real gas and the thermodynamic 
identity were used before applying the Berthelot equation of state. In this study, other 
approaches and equations of state which could be used to produce better results have been 

considered. 
The isobaric heat constant (Cr), isocharic heat constant (C'), specific gas constant 

(R), critical temperature (T) and critical pressure (pJ of the gases used in various 
experiments employed to validate the model were estimated by assuming constant values 
for pressure and temperature ranges encountered for CP; dividing the universal gas constant 
by the mean molecular weight of gas for R; Grieves and Thodes method for T,; and 
Rausnitz and Gunn method for p, A recommendation was made for this to be one of the 

areas to be experimented in, in an attempt to improve the model. In this work, different 

methods of estimating these parameters have been reviewed and the QUANT software for 

thermodynamic and transport properties of fluid has been chosen. Also test data in which 
as many as possible gas constants are specified, has been selected. 

The assumption that the pipe walls are inelastic was made without any discussion 
to justify its validity. It is known that the transient behaviour of a pipeline system depends 

upon the elastic properties of the conduit (including conduit size, wall thickness and wall 
material), external constraints (including type of supports) and the freedom of conduit 
movement in the longitudinal direction. These have been discussed in Section 2.2.3. In 
deriving the basic equations the terms a(pu2A)/ax and a(puA)/ät were neglected on the 
basis that they are very small. Studies are known which have argued for the retention of 
each and both of these terms. These have been reviewed in this study and it has been 
decided that they should both be retained because the error intoduced by neglecting them 
is very significant. 
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Tiley reviewed some of the popular numerical methods used for modelling fluid 

transients and selected the method of characteristics. The main merits of this method were 

said to be the ability to handle small time steps required for rapid transients; relatively more 

accuracy, and ability to pose the boundary conditions properly. It was also stated that the 

method of characteristics is more suited to single pipelines. Since the conclusion of the 

study by Tiley, there has been more studies employing and comparing different numerical 

methods of solution available. It was therefore found necessary to update the review 

carried out by Tiley, in order to decide on the most suitable numerical method. 
A novel feature of Tiley's model, compared to those which were previously 

available is that it allows for the possibility of flow reversal downstream of the break as well 

as handling grid size reduction in the vicinity of the break. Both these features have been 

adopted in the model developed in this study. Tiley's main code consists of two 

programmes, one performing a transient analysis on a given shock tube or single pipe, and 
the other converting the required section of the numerical output of the first programme 
into graphical form. 
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CHAPTER 2 

THEORETICAL DEVELOPMENT OF THE BASIC 
EQUATIONS FOR UNSTEADY FLOW 

2.1 INTRODUCTION 

Unsteady flow of compressible fluids in pipelines is described by a set of three partial 
differential equations, derived from the principles of conservation of mass (continuity 

equation), conservation of momentum or Newton's second law of motion (equation of 

motion or momentum equation) and conservation of energy or First Law of 
Thermodynamics (energy equation). The gas properties are described by an equation of 

state. These together with appropriate auxiliary conditions, determine the mathematical 

state of the gas. Many assumptions and simplifications are involved in the process of 
formulating and manipulating these equations. The form of the equation varies with the 

assumptions made regarding the condition of operation of the gas pipeline and any 

simplifications made. Based on the above the equations may, in the more general 

classification, be linear, quasi-linear or non-linear; parabolic or hyperbolic; and first- or 

second-order. 
It is generally preferred to keep the equations as simple as possible, without 

significantly reducing the accuracy of results in a particular model, in order to economise 

on computational labour and time and also to minimise the computer memory requirement. 
This rule is very effective for modelling of slow transients, but there seems to be not much 

room for manoeuvre in the case of rapid transients, and especially linebreak problems. In 

the latter case, the equations have to be used almost without any simplification in order to 

achieve the required accuracy criteria. In most of the studies reviewed, it is generally felt 

that researchers have made various assumptions and simplifications; used one form of the 
basic equations or the other; represented the various terms in particular ways; in order to 

suit a particular method of solution or application and vice versa. Suwan and Anderson 
(1992) argued that alternative formulations, interpolations, friction force representation, or 
time integration, which may be appropriate for parabolic problems, will all violate the basic 
information carrying physics of a hyperbolic problem. Most cases of unsteady 
one-dimensional flow, where disturbance propagation velocities do not vary significantly, 

are characterised by quasi-linear hyperbolic partial differential equations for continuity and 
momentum. On the other hand, complex phenomena such as stratified and intermittent 

stratified-bubble (slug) flows require a two-dimensional transient analysis. 

27 



Various analytical techniques have been used to reduce the number of equations 
before employing the relevant numerical procedure. Van Deen and Reintsema (1983), for 

example, introduced a technique which reduces the energy equation to a single 

parameter-in-mass equation without the assumption of isothermal or isentropic flow. It was 

stated in section 1.3, that the process of developing a computer model for transient analysis 

of gas pipelines entails three main steps, namely formulation of the basic governing 

equations, solution of the equations and finally validation of the model with experimental 

data. This chapter deals entirely with the first step. Essentially the same approach as used 
by They (1989) is used but an improvement is made on the assumptions used and 

representation of the various terms, with an overall objective of achieving more accurate 
and numerically stable results. 

Tiley (1989) assumed a one-dimensional homogeneous flow in an inelastic pipe and 
neglected minor losses and changes of cross-section area of the pipe. Three simultaneous 
non-linear (Though the equations have been classified by Tiley (1989) as non-linear, they 

are in actual fact quasi-linear) partial differential equations which mathematically model 

pressure transients in a non-perfect gas were derived. A constant value steady flow Darcy's 
friction factor was used to calculate frictional losses. Heat transfer into the pipe was 
approximated by a constant value Stanton number. The Berthelot equation of state was 
considered to be the most suitable for this application. A formulation using the general 
equation of state for a perfect gas and the thermodynamic identity from the Joule-Kelvin 

effect was used. 
Since the development of the Tiley model and even before, there has been a 

considerable amount of research activity on theoretical modelling of fluid transients, and in 

particular those aspects related to linebreak in gas transmission systems. A great number 
of these have been thoroughly and critically reviewed and considered in this study. 
Following this review a new approach based on the gamma delta method developed by Flatt 
(1989), is used. The three basic partial differential equations of flow are derived for 

unsteady quasi-one-dimensional flow of real gases through a rigid constant cross-section 
area pipe. No further simplification is made on the basic equations and the QUANT 

software for thermodynamic and transport properties of real gases is used. The software 
is based on the virial equation of state and also contains the coefficients required for the 
gamma delta method. A flow dependent explicit equation is used to calculate the friction 
losses. Numerical solution of the basic equations is effected using explicit finite-difference 

methods. 
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There are three basic approaches by which fluid flow problems are formulated; 

namely the control volume, integral or large-scale analysis; infinitesimal system, differential 

or small-scale analysis; and experimental or dimensional analysis. In all these cases, the 

three basic conservation laws of mechanics i. e. conservation of mass, momentum and 

energy plus the thermodynamic equation of state and associated boundary conditions must 
be satisfied. A control volume is a finite region chosen carefully with open boundaries 

which mass, momentum and energy are allowed to cross. A balance is made between the 
incoming and outgoing fluid and the resultant changes within the control volume, and 
details of the flow are normally ignored. In the infinitesimal approach, the conservation 
laws are written for an infinitesimal system of fluid in motion and become the basic 

differential equations of the fluid flow. To apply them to a specific problem, one must 
integrate these equations mathematically over the volume, subject to the boundary 

conditions of the particular problem. Exact analytical solutions are often possible only for 

very simple geometries and boundary conditions, otherwise numerical integration on a 
digital computer is used. Experimental study may be full-scale or laboratory based. 

The differential approach can be used for any problem but in practice the lack of 
mathematical tools and the inability of digital computers to model small-scale processes 

makes the application of the differential approach rather limited. Even computer 
programmes sometimes fail to provide accurate simulation because of either the inadequate 

storage or inability to model the finely detailed flow structure characteristics of irregular 

geometries or turbulent flow patterns. The dimensional analysis approach can similarly be 

applied to any problem but lack of time and money and generality often makes the 

experimental approach limited. The control-volume analysis is considered the most useful 
of all the three approaches as far as practical engineering applications are concerned. It 

gives useful results in a reasonable amount of time, though sometimes gross and crude. In 

applications such as modelling of a linebreak in high-pressure gas pipelines, the differential 

or infinitesimal approach is normally used and later validated with experimental results. 
In fluid flow problems the dependent variables, i. e. p, p, u etc., are functions of the 

independent variables Le. - t and x, in the case of one-dimensional flow. In any given flow 

situation, the determination by experiment or theory of the fluid properties as a function of 
position and time is considered to be the solution to the problem. There are two distinct 
fundamental methods of specifying the flow field, namely the Eulerian description and the . 
Lagrangian description. In the Eulerian form, the independent space variables refer to a 
coordinate system assumed to be fixed in space or translating and through which the fluid 
is moving. The flow is characterised by a time-dependent velocity field which is to be found 
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by solving the initial value problem. In the Lagrangian form, the independent space 

variables refer to a coordinate system fixed in the fluid and undergoing all the motion and 

distortion of the fluid, so that the particles of the fluid are permanently identified by their 

Lagrangian variables, while their actual positions in space are among the dependent 

variables to be solved for. 

Although the Eulerian and Lagrangian forms are essentially equivalent, the 

Lagrangian form gives more information i. e. it tells where each bit of fluid came from 

initially and has the virtue that conservation of mass is automatic. This results in 

considerably greater accuracy in some problems. Ritchmyer (1957) stated that for the 

above reasons, the Lagrangian form is generally preferred for some problems in a one space 

variable. For problems in two or more space variables and time, the Lagrangian method 

encounters serious difficulties. In particular, the accuracy usually decreases seriously as 

time goes on, due to distortions, unless a new Lagrangian point-net is defined from time to 

time, which requires difficult and usually rather inaccurate interpolations. From this point 

of view, the Eulerian form is more attractive. However, the Eulerian form is almost useless 
if there are interfaces between fluids having different thermodynamic properties because it 

provides no simple mechanism for telling which kind of fluid is to be found at a given 
instant at a given net-point (for problems in one space variable, such a mechanism can easily 
be provided). Many schemes had been tried, some combining the features of the 

Lagrangian and Eulerian forms but there was no satisfactory universal method that had been 

found for general multi-dimensional problems. 
Fashbaugh and Widawsky (1972) stated that the Eulerian formulation is usually used 

in steady-state fluid flow problems and the Lagrangian formulation is used more extensively 

in unsteady flow and is more desired for solution of shock propagation problems. Also the 

fact that the Lagrangian formulation yields more information, such as where each bit of fluid 

originates initially, facilitates locating temperature contact surfaces propagated in the pipe. 
The study compared two methods namely the pseudo-viscosity and the Lax-Wendroff 

numerical method in modelling the effects of duct area change on shock strength in one- 
dimensional viscous air flow. It was concluded that a one-dimensional variable area 

Lagrange analysis is adequate for predicting shock flow through a duct area increase of up 
to at least area ratios of 10 to 1. In addition, the Lagrangian formulation using the pseudo- 

viscosity numerical method of solution was recommended and preferred to the Eulerian 

formulation with the Lax-Wendroff numerical method of solution for accurate predictions 
in very long ducts, where an appropriate function for the friction factor should be used. 
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Ames (1977) stated that until the early 1960's, the only known stable difference 

approximations for the Eulerian form were less accurate than those for the Lagrangian 

form. Consequently, the Lagrangian forms were preferred. Both systems have 

approximately the same complexity. The major disadvantage of the Eulerian system arises 

when interfaces (shocks) occur separating fluids of different density. The Lagrangian form 

does not have the spatial coordinate mesh fixed in advance and may require refinement of 

the mesh as computation advances. This possibility of regridding arises since the Lagrange 

form is constructed so that mass between two successive mesh points is approximately 

conserved. White (1988) stated that certain numerical analyses of sharply bounded fluid 

flow, such as the motion of isolated fluid droplets are very conveniently computed in 

Lagrangian coordinates. Other more recent writers, including Batchelor (1992) argued that 

the Lagrangian type of specification is useful in certain special contexts but it leads to rather 

cumbersome analysis and in general is at a disadvantage in not giving directly the spatial 

gradients of velocity in the fluid. 

In fluid dynamics measurements, the Eulerian method is the most suitable. To 

simulate a Lagrangian measurement, the probe would have to move downstream at the fluid 

particle speeds. However, this is sometimes done in oceanographic measurements, where 
flow meters drift along with the prevailing current. The Eulerian formulation has almost 

exclusively been used in all recent studies and literature, even in such cases where according 
to the above discussion, the Lagrangian description would seem more appropriate. For the 

sake of convenience, the continuity equation has been derived based on the Eulerian 

approach, while derivation of the momentum and energy equations is based on the 
Lagrangian approach. 

The equations of flow of fluid in a pipe can be quite complex, especially for cases 

such as high-pressure gas pipeline ruptures. This is more so if all aspects of the flow are 
to be taken into consideration. However, the equations can be handled conveniently by 

making a set of assumptions and simplifications regarding the condition of the flow. In this 

particular case for example, one has got to decide whether to use a one-dimensional or 
multi-dimensional flow approximation, single phase or multi-phase flow, include structural 
effects of the system, consider minor losses and changes in cross-section area etc. The 
inclusion of viscous and thermal effects has been well discussed by among others Tiley 
(1989) and Issa (1970), and therefore need not be repeated here. It is therefore being 

assumed that in the equations being formulated, viscous and thermal effects are included 
i. e. non-isothermal viscous flow. Further simplifications could be made, for example by 

neglecting body forces etc. Various workers have made different assumptions when 
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developing the basic flow equations, depending on their particular flow situations. They 

(1989) assumed a one-dimensional homogeneous flow in an inelastic pipe, neglecting minor 
losses and changes in cross-section area, when developing a model for pressure transients 
in a ruptured high-pressure gas pipeline. The same assumptions were made by Goldwater 

and Fincham (1981) and Osiadacz (1987). They all arrived at the same set of equations. 
White (1988) gave a detailed description of the derivation of similar equations for three- 
dimensional flow and Moe and Bendiksen (1993) used equations for three-dimensional two- 

phase flow to develop their model. Chen, Richardson and Saville (1993) presented a set 

of equations for a transient homogeneous two-phase flow model. 

2.2 MAJOR ASSUMPTIONS AND SIMPLIFICATIONS 

2.2.1 DIMENSION OF FLOW 

In one-dimensional flow, the components of the fluid velocity in the circumferential and 

radial directions are ignored. A flow can be assumed to be one-dimensional if the rate of 

change of gas properties normal to the streamline direction is negligible compared with the 

rate of change along the streamline. This means that over any cross-section of the pipe all 

the gas properties can be assumed to be uniform. The assumption of one-dimensional flow 

gives satisfactory solutions to many problems where either the cross-section area changes 

slowly along the path of the stream of gas, the radius of curvature of the pipe is large 

compared with its diameter or the shape of the velocity and temperature profiles are 

approximately constant along the pipe. For one-dimensional flow of a fluid; p, p, u etc. are 

only functions of t and x. The one-dimensional model enables derivation of the basic 

equations of pipeline flow in a simple fashion. 

In real fluid flow situations, especially in the case of high-pressure natural gas flow 

in pipelines, the flow cannot be truly one-dimensional because viscous effects will produce 

a velocity profile across the pipe with the local velocity zero at the pipe wall and reaching 

a maximum in the centre. Moreover, the flow is turbulent so that there are random motions 

superimposed upon the mean flow. Ansari (1972) investigated the influence of including 

radial flow on the solution of unsteady pipe flow equations. It was shown that neglecting 
the radial velocity can lead to substantial error in the determination of the axial velocity of 
flow. The effect of the assumption of negligible radial flow was also investigated in. relation 
to another assumption which is commonly made, i. e. the gradient of the axial velocity in the 
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axial direction, in viscous flow, is negligibly small compared to the gradient in radial 

direction. It was found that for slow transients the latter assumption is valid while the 

former is not and vice versa for the case of rapid transients. The departure from the one- 

dimensional flow assumption will be even more pronounced where there are bends and 

fittings in the pipeline. Nevertheless, despite the foregoing, the one-dimensional 

approximation in gas transmission systems has been shown to be very good for steady and 

slowly varying flows. When the variations in flow are large and rapid, such as in high- 

pressure gas pipeline ruptures, larger discrepancies are expected from the one-dimensional 

approximation. A more rigorous approach is to apply the integrated equation method used 

in the turbulent boundary layer theory. 

There are many studies and computer models developed for multi-dimensional flow 

analysis. A few computer codes based on multi-dimensional flow models such as FLOW- 

3D are commercially available. However, these models can only be applied to some special 

cases with confidence. Shin (1978) discussed the extension of the one-dimensional method 

of characteristics to two space dimensions. The extended method uses the same 

simplifications and retains the similar simplicity and efficiency as in the conventional one. 

The two-dimensional method is applicable to both the cartesian and axisymmetric systems 

and includes the conventional method as a special case. Wylie (1982) presented a similar 

numerical method for analysis of low-velocity two-dimensional transient fluid flow 

problems. The method contains similarities to the one-dimensional method of 

characteristics but does not follow the traditional characteristics theory for two-dimensional 

problems. The most up to date and comprehensive study is that by Moe and Bendiksen 

(1993), which presented the physical basis of a new type of multi-dimensional two-fluid 

model, particularly suited for transient flow problems. A basic difference between this 

model and the other models is in the solution procedure, aiming in particular at improved 

predictions of transient problems. The numerical scheme is based on an extension of an 

earlier one-dimensional model and employs an implicit finite-difference scheme. 
It follows from the above discussion that the three-dimensional approximation is the 

natural method for the linebreak problem being modelled. However, for the sake of 

simplicity, the one-dimensional model is used with the aim of extending it to three- 

dimensions in the future. As shown in the above mentioned studies, the extension of one- 
dimensional models to two- and three-dimensional models could, in principle, be achieved 

especially if caution is made in representation of the other terms of the equations. 
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2.2.2 FLOW PHASE 

When a high-pressure natural gas pipelines is ruptured, the temperature falls hence 

condensation occurs. A multi-phase flow situation is therefore likely to be encountered. 
Multi-phase flow in general is a very complicated phenomenon. It is conveniently classified 
into flow regimes which may be further grouped into two main types, namely dispersed 

(particles, bubbles and droplets) and separated (stratified, annular and elongated bubbles) 

flows. More complex flow regimes often occur as combinations of these, such as stratified 

and annular flows with entrainment and slug flow. Flow regimes that are commonly 

encountered are stratified (wavy or smooth), annular dispersed, intermittent (slug) and 
dispersed bubble flows. These are shown in Figure 2.1. In relatively long pipelines, with 

possibly large pressure losses, several of these flow regimes may exist simultaneously as a 

result of changing in situ flow rates and physical properties of the fluids. A gas-liquid 

mixture may be treated as a pseudo-fluid, if the mixture and its motion may be treated as 
homogeneous. 

Dispersed flow regimes have been quite extensively studied recently using two- and 
three-dimensional models. For two-phase flow, however, at least three general purpose 

codes are available namely FLUENT, FLOW-3D and PHOENICS. For separated or 

stratified flow, there has been several studies, including those by Oliemans (1987); Wu, 

Pots, Holdenberg & Meerhoff (1987); and Moe & Bendiksen (1993). In the multi- 
dimensional Moe-Bendiksen model, the general two-fluid equations have been applied with 
the assumption of a single pressure field. The modelling of constitutive laws at the interface 

is not general but focused on separated or stratified flows. A volume equation is applied 
for the pressure, enabling a direct two-step solution procedure. Oliemans (1987) 
investigated the accuracy of two-phase flow trunk line predictions by a one-dimensional 
steady model for stratified wavy flow in horizontal and inclined pipes. Wu, Pots, 
Holdenberg and Meerhoff (1987) investigated the exact location of the transition from 

stratified to non-stratified flow for a high-pressure gas-condensate system in a large pipe 
both experimentally and using the Taitel-Dukler mechanistic model and the Wallis one- 
dimensional wave theory. 

According to the one-dimensional linear wave stability criterion for high-pressure 

gas-condensate flow in an 8 inch pipe, unstable (non-stratified) flow occurs at much higher 
liquid fractions than according to the Taitel-Dukler flow regime map. This is confirmed by 
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Fig. 2.1 Flow Pattern for Air-water Mixture Flowing in a Pipe 
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measurements in a pipe using natural gas and live condensate at a pressure of 75 bar. 

Experimentally, at the theoretical transition to unstable waves, stratified flow shifts to a 

flow pattern featuring pipe wall wetting and liquid entrainment. The transition to 

intermittent flow was observed at still larger liquid loadings. It was concluded that a proper 

theoretical description of this flow regime transition most likely requires a more 

sophisticated modelling with due account being taken of two-dimensional effects, liquid 

entrainment and non-linearity. For the intermittent flow boundary, some promising results 

have been obtained by determining the unstable solution of the one-dimensional transient 

stratified model. 

In analysing pressure transients in bubbly air-water mixtures; Padmanabhan, Ames 

and Martin (1978) used a homogeneous model which consists of one-dimensional equations 

of conservation of mass for each of the phases and conservation of momentum for the 

mixture. Bhallamudi and Chaudhry (1990) developed a third-order accurate explicit finite- 

difference scheme for transient flows in one-dimensional homogeneous gas-liquid mixtures 
in pipes. The gas-liquid mixture was treated as a pseudo-liquid. Chen, Richardson and 
Saville (1993) used a two-phase model called the two-fluid model, in which the local 

instantaneous conservation equations are formulated for each phase. In the model by Tiley 
(1989), the fluid was assumed to be homogeneous and no provision was made in the 

representation of the various terms such as friction, for the possibility of a two-phase 

mixture being present.. For the sake of simplicity, the same approach is used in this study. 
However, significant errors could be introduced in the solution because of this 

simplification. 

2.2.3 FLUID STRUCTURE INTERACTION 

The classical waterhammer theory only predicts the extreme loading on a system as long 

as it is rigidly anchored. When a piping system has certain degrees of freedom severe 
deviation from the classical theory may occur due to motion of the system. Pressure waves 
exert forces which cause a compliant system to move. As a result of the motion, pressure 
waves are formed. This phenomenon is known as Fluid Structure Interaction. Fluid 
Structure Interaction is essentially a dynamic phenomenon, the interaction being caused by 
dynamic forces which act conversely on fluid and pipe. The forces in such a piping system 
are classified in two groups namely distributed forces and local forces. Typical examples 
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of distributed forces are fluid pressure and friction. In the case of fluid pressure, rapid 

pressure fluctuations cause a pipe to expand or contract thereby creating axial stress waves 
in the pipe wall. The stress waves in return generate pressure fluctuations in the enclosed 
fluid, resulting in a coupling known as Poisson Coupling. Similarly, friction force is 

responsible for friction coupling. In most practical systems, frictional coupling is weak. 
Local forces act on specific points in a system, such as elbows, tees or valves and cause 

axial and lateral motions which generate pressure waves in the fluid resulting in an 
interaction called junction coupling. Junction coupling is generally dominant compared with 
Poisson and friction couplings. Lawooij and Tijsselling (1990) conducted a study of Fluid 

Structure Interaction in compliant piping systems. They concluded that the most significant 

coupling mechanisms are Poisson and junction coupling. A simple guideline which states 

when interaction is important is formulated in terms of three time scales i. e., the time in 

which the pressure is built up, the eigenperiods of the structure and the time scale of the 

waterhammer waves. They also concluded that Poisson coupling is important for the fluid 

when significant modes of interaction are dominated by stiffness. 
To consider the motion of the pipe, three main displacements are distinguished 

namely axial displacement, lateral displacement and rotation. Therefore in general, the 
dynamics of a pipe system are influenced by four wave families, i. e. axial, flexural and 
torsional waves in the pipe wall and pressure waves in the fluid. These co-exist during 

transience and have different degrees of influence on the transient behaviour. Fluid 
Structure Interaction in compliant piping systems is modelled by extended waterhammer 
theory for the fluid and by beam theory for the pipes. In buried pipelines, the lateral 

restraint is usually sufficient to ensure that the overall behaviour is dominated by axial 
effects. Hence most analyses of Fluid Structure Interaction have focused on the 
propagation of axial waves i. e. pressure waves propagating along the walls of the pipe. In 

suspended pipelines however, few lateral restraints exist and account should be taken of 
flexural and torsional waves. 

In a study on Fluid Structure Interaction in flexible curved pipes, Stittgen and Zielke 
(1990) concluded that the influence of structural motion on the internal pressure is smaller 
than the time dependent internal pressure but can still be of influence in particular cases. 
They also concluded that pressure waves in flexible pipes are quite dependent on visco- 
elastic wall properties. Rachid and Stuchenbruck (1990) stated that the mechanical 
properties of the material, the temperature and the degree of stiffness of the supports, have 
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a significant influence on the response of the system. Stiffer pipe materials i. e. those with 

mechanical damping will experience higher pressures than more compliant pipe systems. 

They also found that Poisson effects can induce significant piping motion especially in long 

pipe reaches and cause high frequency peaks for pressure and stress in visco-elastic pipes, 

e. g. up to 25% above the rigid pipe model. However, mechanical damping of the pipe 

material tends to degrade the solid wave front quite quickly. In most cases, high 

frequencies generated by the Fluid Structure Interaction mechanism are virtually eliminated 

before the first fluid cycle. 

In practice the value of the sonic velocity in the fluid in a pipe is influenced by the 

elasticity of the confining walls and the compressibility of the fluid. As the elasticity of the 

wall materials increases, the effective value of sonic velocity decreases. This effect is 

commonly neglected for typical high-pressure gas pipelines. However, some workers 
including Wood, Dorsch and Lightner (1966), Zielke (1968), Hirose (1971) and 
Beauchemin and Marche (1992) have all taken into consideration the effect of pipe 

elasticity. This has resulted in an additional term in the continuity equation. In the 

Beauchemin-Marche model, no simplification was made on the basic equations and in 

addition the effect of variable cross-section area was included. Despite this, the model 

could still be implemented with acceptable computational costs. 
In the study by They (1989) the effects of Fluid Structure Interaction were not 

considered. The same approach is followed here in order to maintain simplicity of the 

model and also because the review made does not conclude any significant justification for 

incorporating Fluid Structure Interaction in the model. A consideration of the wall 

elasticity is taken into account when developing the basic equations of fluid flow. It should 
be noted however, that in the study by Tiley (1989) the pipe was assumed to be inelastic 
i. e. elasticity of the pipe walls is negligible compared with the compressibility of the fluid. 

2.2.4 MINOR LOSSES AND CHANGES IN CROSS-SECTION 

Another effect worth considering in the formulation of the basic equation of the flow, is that 

arising from minor losses and changes in cross-section area. Swaffield (1967 and 1968-69) 
investigated the influence of bends on fluid transients which were propagated by a rapid 
valve closure in a long pipeline. He used a short dimensional analysis and a series of 
experimental tests which were designed to record the pipe diameter to thickness ratio, pipe 
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elasticity to fluid bulk modulus ratio, restraint applied to the pipe, bend radius of curvature 

to pipe bore ratio, included angle of the bend and initial flow velocity. He concluded that 

the influence of a bend is solely dependent on its geometry. Empirical formulae were 

developed to express the reflection and transmission of a transient at a bend in terms of the 

bend radius of curvature to pipe bore ratio and included angle. Otwell, Wiggert and 

Hatfield (1985) investigated the effect of elbow restraint on pressure transients. They 

observed that if an elbow was fully restrained, there was no alteration of a pressure transient 

travelling through the elbow. However, if an elbow was not fully restrained, there was a 

significant alteration of the liquid transient. The alteration was related to the direction and 

amplitude of the motion of the elbow and it was therefore thought to be dependent on the 

mechanical characteristics of the piping and pipe support structure. A numerical model was 
developed, which accurately predicted pressure and velocity responses. 

Since in this case we are dealing with relatively long and straight lines (rather than 

networks), the assumption that minor losses are negligible is reasonable. Tiley (1989) 

assumed that the above losses were small compared with the distributed frictional losses and 
therefore neglected them. The same assumption is used in this study. Generally, most 

workers have assumed that the cross-section area of the pipe is not a function of the axial 
distance or varies slowly. In some special cases such as in cooling ducts etc. where the 

cross-section area varies appreciably with distance, the effect has been incorporated into 

the basic equations. However, in some studies on compressible flow, including those by 
Zielke (1968) and Flatt (1989), the equations are based on a variable change in cross- 

section area. Tiley (1989) neglected changes in cross-section area of the pipe. Also in this 

study, it is assumed that the cross-section area of the pipe is not a function of the axial 
distance. However, the basic equations of flow have been derived with provision for 

varying cross-section area with axial distance. 

2.3 DERIVATION OF THE BASIC EQUATIONS FOR UNSTEADY 
FLOW OF A COMPRESSIBLE FLUID IN A PIPE 

Derivation of the basic equations describing a homogeneous compressible fluid flow in a 
pipe from first principles is very well known. For one-dimensional flow in an inelastic pipe 
with minor losses and changes in cross sectional area neglected, They (1989) and Osiadacz 
(1987) derived the three conservation equations, in the conventional form using different 
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approaches. Nevertheless, they both arrived at similar equations. Zucrow (1977) derived 

the basic governing equations for unsteady one-dimensional and quasi-one-dimensional 

isentropic flow and also for generalised flow. White (1988) described the derivation of 

similar equations but for the case of a three-dimensional flow. 

Literature on derivation from first principles of more complex phenomena such as 

the one being proposed in this study is rather scarce, but the equations concerned have been 

stated by various workers who used them. In this study, the basic equations for unsteady 

quasi-one-dimensional flow of real gases through non-rigid non-constant area pipes, using 

the gamma delta method, are used. The gravity term, is also included. These equations are 

valid for three fluid forms namely, real (or perfect) gas, homogeneous liquid/vapour mixture 

and liquid. This form of the equations simplifies considerably computer codes and is 

conceived to deal with problems where several of the three fluid forms appear 

simultaneously. The approach is rigorous from the thermodynamic point of view and takes 

into account the compressibility of the fluid and considers the vapour as a real gas. 

Formulation of the energy equation for unsteady flow of fluid in pipes has commonly 

contained either specific internal energy or specific enthalpy. Each of the above mentioned 

dependent variables is related to the other dependent variables p, p and T by a caloric 

equation of state which is often a complicated non-linear empirical correlation in integral 

form. This procedure sometimes involves as many as 20 or more gas dependent 

coefficients. With the help of the two non-dimensional coefficients y and S, it is possible 

to eliminate the specific internal energy and specific enthalpy from the energy equation, 

resulting in considerable computing economy. 

The three basic equations of conservation for unsteady flow are derived from first 

principles, assuming that the cross-section area of the pipe varies with t as well as with x. 
The approach used in deriving the basic equations is very similar to that used by Flatt 
(1993a). The major difference between this derivation and that of Flatt is that the gravity 
term has been included, whereas Flatt neglected the gravity term. The centre line of the 

pipe is assumed to be stationary. Depending on which one is more convenient, either the 
Euler concept which is denoted by (c3.. /at) and (a.. /ax) or the Lagrange concept of full 

derivatives which is denoted by (d.. /dt) are used. It is possible to transform from one of the 

two approaches to the other, by using the following mathematical equivalence: 

-"-"u- (2.1) 
dt at ax 
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In this derivation, the control volume is regarded to be fixed in space (according to the 

Euler concept) and attached to moving particles of the fluid (according to the Lagrange 

concept). 

Continuity equation: 

The continuity equation is derived using the Eulerian approach. An infinitesimal control 

volume for a pipe with varying cross-section area, which is depicted in Fig. 2.2 is used. 
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Fig. 2.2 Sketch Showing the Control Volume at the Beginning of a Time Step 

Mass balance is performed across the control volume. The total mass of the control volume 

with length dx after time dt is the sum of mass flux into the control volume, mass leaving 

the control volume and mass flux through the fictitious stationary pipe wall. In equation 
form, this is represented as follows: 

A+A 2x/ 1 

at 
e 

-A pu 
[APu 

' 
a(axu)A 

"( )Pur (2.2) l 

where 

L= wetted perimeter 
Ur = radial velocity of the pipe 
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Fig. 2.3 Sketch Illustrating Equation (2.2) 

The two parameters are related through the following equation: 
aA 

. Lur (2.3) 
at 

Neglecting the small terms i. e. those containing (dx)2, substituting equation (2.3) and 

dividing throughout by Adx, equation (2.2) reduces to the following equation: 

ap aApu ap au aAp 

at ax A ax ax at A 

Rearranging and using equation (2.1) we get the following equation: 

8p. äp 
. 

dp au_äA pu_öAp 
at ax dt _p 8x äx A at A 

ý2 4ý 

Let the last two terms of equation (2.4) be represented by the notation 1;. Therefore 

at --P 
aAl LA' (2.5) 

AA ax 

For rigid and cylindrical pipes ý=0. - The continuity equation is obtained by substituting 

equation (2.5) into equation (2.4), resulting into the following equation: 

ä? 
.u ap . PL (2.6) 
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Momentum equation: 

The momentum equation is derived according to the Lagrange concept. The forces acting 

on the control volume are shown in Fig. 2.4. 

al) dx 
PA - 

Fig. 2.4 Conical Control Volume Illustrating Body Forces 

Applying Newton's second law of motion to the control volume, in x direction, the 
following equation is obtained: 

(A pdx) 
du 

. pA - 
[PA 

. 
a(ý'A)dx 

.L dx - odl - pAgsin 9 dx 
dt ax ax 

Substituting the value of dl = dx/Cosl, and simplifying we get the following equation: 

Ap dx du 
--A 

ap dx -p 
aA 

dx .pA dx -- 
dx 

- pAgsin 0 dx 
dt ax ax 8x cos 4r 

Dividing throughout by Adx we get the following equation: 

du 8p w 
r dt -_ er - A cos liº 

- Pgsin 9 

Using equation (2.1) for du/dt and dividing throughout by p, we get the following equation: 

all 
'1 

ap 
. ti 

au 
.-"- grin e (2.7) 

at p ax ax pAcos 4r 

For a uniform diameter pipe, Cosgr = 1. 
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Energy equation: 

The Lagrangian approach is used in deriving the energy equation, and heat transfer into the 

control volume in x direction is neglected. This assumption is very common for gaseous 

flows. 

il dx dt 

x. 

e 

Fig. 2.5 Control Volume Illustrating Heat and Work Transfer 

Applying the first law of thermodynamics to the control volume, the following equation 

results: 

pAdxde 0. pAu- Au. a(Mu) 
dr- pLdxu,. 

pdxdt 
-pAgudxsin0(2.8) dt ax dt 

The specific internal energy at stagnation conditions, ea, is given by the following equation: 

eo =e+ '/2u2 (2.9) 
Dividing throughout equation (2.8) by Adx and using equation (2.3), we get the following 

equation: 

de 
°u aP 

_ 
pu äA 

P 
au P aA n_pg 

rt me (2.10 ) 
dt 8x A 8x cox A at A 

Rearranging equation (2.6) for au/ax we get the following equation: 
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au 1dp1 8A u öA 

ax 

lp 

dt A at A öx 
(2.11) 

Similarly, rearranging equation (2.7) for ap/cax we get the following equation: 

ap 
.-p 

du 
"_" pgsine 

ax ar A cos 4r 
(2.12) 

Substituting equation (2.9), (2.11) and (2.12) into equation (2.10) we get the following 

equation: 
de du ( du (a u pu äA 

p. pu- -l pu- "" pugsin0 -- 
dt dt dt Acos'4r A ax 

f 
pdp 

+ 
pöA 

. 
puaA 

_ 
paA 

.0_ pugsin0 
(pdt 

Aat A ax Aat A 

Simplifying and rearranging results in the following equation: 

de pdp cri A 

dt p dt Acos 4r A 
(2.13) 

The specific internal energy is related to specific enthalpy through the following 

thermodynamic relationship: 

e-h-p 
P 

(2.14 ) 

Differentiating equation (2.14) with respect to t we get the following equation: 

de A1 dp 
.pdp dt di p dt p2 dt 

(2.15) 

Both the continuity and momentum equations i. e. equations (2.6) and (2.7) contain 

only p, u and p as the dependent variables and neither of these equations contain the 

variable h. It would therefore be convenient to eliminate h from equation (2.15) by 

replacing it with the variables used in the continuity and momentum equations. This is 

achieved by using the gamma delta method, which was developed by Flatt (1993b) and 

which is -derived in the following part of this section. For small changes in the domain as 
is the case in this model, y and 8 are assumed to be constant. 
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In deriving the basic relationship for the gamma delta method, the polytropic 

coefficients of Dzung (1944) which are described in Section 2.4.5, for the particular case 

of isentropic process are used. The coefficients are as follows: 

as " 
v(aT) 

(2.16) 

Rs- 
p ar s 

(2.17) 

Ys' -v 
ap 

(2.18) 
p av) s 

The three coefficients are related to each other by the following relationship: 
Ps = -as Ys (2.19) 

Flatt (1989) derived a relationship for the coefficient 8s which is expressed as follows: 

8s. 1- 1 
-1-vIaTJ (2.20) 

as Tl öv s 

Another expression relating the specific enthalpy to the isentropic alpha and beta 

coefficients was derived by Flatt (1985b) and is as follows: 

dh = (1- as) v dp + ßs p dv (2.21) 

From equation (2.20) 

1 -as. I "1- 
as 

(2.22) 
as- 1 as- 1 

and from equations (2.19) and (2.20) 

PS - 
YS 

(2.23) 
as -1 

Substituting equations (2.22) and (2.23) into equation (2.21) we get the following equation: 

dh . 
as 

vdp . 
YS 

p dv 
as- 1 8S- 1 
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Rewriting using p we get the following relationship: 

dh 
as 1 dp - 

YS p dp (2.24) -as-1 
p 6s- 1 p2 

Differentiating equation (2.24) with respect to t, the following equation is obtained: 

A as 1 dp Ys pdp 
dt as -1p dt as -1 p2 dt 

(2.25) 

Substituting equation (2.25) into equation (2.15) and subsequently substituting the resulting 

equation into equation (2.13) we get the following equation: 

as dp Ys p dp dp p dp p dp wu Q 

Ss -1 dt Ss -1p dt dt p dt p dt Acos 4r A 

Simplifying we get the following equation: 

6s - (6s - 1) dp 1 (ys 
p dp wry p (2.26) 

. 
6s- 1 dt 6s -1p dt Acos ilr A 

The speed of sound is related to ys by the following equation: 

a2. YSP 
P 

(2.27) 

Substituting equation (2.27) into equation (2.26), using the equivalence presented in 

equation (2.1) and rearranging; the energy equation transforms to the following: 

ap 
f 

uap 
_Q2raP . 

uaPl (as_ 1) Ira 
.ul (2.28) 

at lJlJ ax at ax A cos 4' 

The continuity equation (2.6) contains the partial derivative of p with respect to time, while 

the momentum equation (2.7) contains the partial derivative of u with respect to time. For 

convenience of numerical solution of the three equation of conservation, the energy 

equation is rewritten such that the term containing partial derivative with respect to time, 

would be that of p only. This condition could be achieved by substituting the continuity 

equation (2.6) into equation (2.28). The resulting equation, which is used in the numerical 

solution is as follows: 
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ap It ap 2 au 1( (a It 
_)i 

Cos J. a (2.29) 
at ax +aP äx . das - 1) l\ n+ 

Equation (2.29) is simpler than equation (2.28). However, in deriving the characteristic and 

compatibility equations for the numerical method of characteristics, equation (2.28) has to 

be used instead of equation (2.29) because the latter fails to produce a unique solution. 

This is explained further in Section 4.3.2. 

2.4 THERMODYNAMIC AND TRANSPORT PROPERTIES 

2.4.1 INTRODUCTION 

The three basic equation of conservation [Equations (2.6), (2.7) & (2.29)] must be written 

with dependent variables in such a way that the solution of pressure, velocity, density and 

temperature could be obtained. This is in general, commonly done by using the equations 

of state and some other thermodynamic relationships, which are defined by the model used 

to represent the transient event. An equation of state is an expression which interrelates 

properties of substances, and we distinguish between two types of equations of state namely 

the thermal and the caloric equations of state. A gas which obeys the ideal gas thermal 

equation of state (Equation B-Iin the Appendix) is said to be thermally perfect; and if it has 

constant specific heats, it is said to be calorically perfect (the terms ideal gas and perfect gas 

are sometimes used as synonyms). Sections 2.4.2,2.4.3 and 2.4.4 deal with the thermal 

equations of state while section 2.4.5 deals with the caloric equations of state. 
There are many different ways to approach this problem, for example Van Deen and 

Reintsema (1983) and Tiley (1989) used the general equation of state for a real gas, 

P- ZpRT (2.30) 

and the thermodynamic identity based on the Joule-Kelvin effect [Zemansky and Dittman 
(1983)]; 

T81d dh .Cp dT e. 1p (2.31) 
Pp 

to obtain three equations containing the compressibility factor, Z, and its partial derivatives. 

The latter were then substituted in terms of pressure, temperature and velocity; using the 
Berthelot thermal equation of state. 
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Generally the thermodynamic process during a transient event can be represented 
by two major categorisations, namely the perfect or real gas model and the isentropic or 

non-isentropic (polytropic) decompression model. There is a wide selection of equations 

of state varying in accuracy and complexity. The choice of which equation to use in a given 

situation is determined by the type of gas that is being modelled, the level of accuracy 

required, the temperature and pressure ranges that are likely to be encountered and the 

amount of available computer space that can economically be used. This subject is covered 
in the following sections of this chapter, and some of the available equations of state are 

presented in Appendix B. The perfect gas equation of state holds at low pressures in the 

vapour and gas regions. The perfect-gas model, whether isentropic or non-isentropic is 

perhaps the simplest and thus it has been common practice, when predicting transients in 

a ruptured gas pipeline to assume that the fluid will behave as a perfect gas. The basic 

premise in making this approximation is that any non-ideal effect that may occur will only 

affect the initial stages of decompression, and for the majority of the release process, the 
fluid will behave as a perfect gas. Significant departures can, however occur between the 

perfect gas and the real fluid decompression behaviour due to condensation effects. 
Results from studies by Picard and Bishnoi (1988 and 1989) and Flatt (1985-1989) 

show that the perfect-gas model can underestimate the transient pressure in gas pipeline 

ruptures by more than 20%, and underestimate the mass flow rate of gas escaping from the 

ruptured pipe by up to 50%. One of the major weaknesses of the perfect-gas model is its 
inability to predict the sudden drop of sound velocity that occurs at the onset of 
condensation. However, the perfect gas assumption has been used by several workers 
including Lyczkowski, Grimesey & Solbrig (1978); Lang & Fannelop (1987); Kunsch, 

Sj oen & Fannelr p (1991); Lang (1991); Chen, Richardson & Saville (1992); and 
Olorunmaiye & Imide (1993). Lang (1991) admitted that the assumption of a perfect gas 
leads to errors in the flow rate of about 25% but made the assumption in order to 
demonstrate the possible use of the spectral method. Kunsch, Sjuen and Fannelop (1991) 

made the assumption of an ideal gas just for the sake of simplicity. They expressed the non- 
ideality of the gas by a compressibility factor, which was taken to be 0.82 for the pressure 
levels encountered in the investigation. It was claimed that the important results such as 

mass flow rates were qualitatively well described by the ideal gas model. Another aspect 
to be considered in using: an equation of state for natural gas is the composition of the 
different substances that make up the gas. For example, Flatt (1985), instead of regarding 
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natural gas as consisting of diverse C. H. gases of locally differing composition, methane 

(CH4) was used. Approximately 90 to 95% of natural gas consists of this substance whose 

thermodynamic characteristics are known. The perfect-gas model is not considered for 

application in this study, but instead a real-fluid decompression model, which also takes into 

consideration the mixed nature of natural gas, is used. 

2.4.2 THERMAL EQUATIONS OF STATE FOR REAL GASES 

The term equation of state refers to the equilibrium relation, in the absence of special force 

fields, between pressure, volume, temperature and composition of a substance, whether it 

be quite pure or in a uniform mixture. In terms of a functional relation it is expressed as, 

, 
(p, v, T, x) -0 (2.32) 

An equation of state may be applied to gases, liquids and solids. An equation of state for 

a real gas accounts for dissociation and ionisation which is important where very high 

temperatures are encountered. Over five dozen equations of state are known to exit, which 

represent the liquid, vapour and liquid-vapour regions. These include the Van Der Waals 

(1873), Clausius (1880) Dietrici (1899), Berthelot(1899-1903), Wohl (1914), Keyes 

(1917), NBS-National Bureau of Standards (1923) 
, 

Beattie-Bridgman (1928), Keyes- 

Smith-Gerry (1936), Lennard-Jones-Devonshire (1937), Benedict-Webb-Rubin (1940), 

Hlrschfelder-Bird-Spotz (1949), Redlich-Kwong (1949), Bloomer-Rao (1952), Martin-Hou 

(1955), Hirschfelder-Buehler-McGee-Sutton (1958), Pings-Sage (1959), Storbridge (1962), 

Costolnick-Thodos (1963), Flory-Orwall-Vrij (1964), McCarty-Stewart (1965), Goodwin 

(1967), Martin (1967), Soave-Redlich-Kwong (SRK) (1972), Peng-Robinson (PR) (1976), 

Van Reet-Skogman (1987) and the Kamerlingh-Onnes equations of state. 

There are two general approaches to the development of an equation of state, 

namely the theoretical approach and the empirical or semi-theoretical approach. The 

theoretical approach is based on either the kinetic theory or statistical mechanics, involving 

intermolecular forces. The empirical approach has been covered in detail by, among others, 

Martin (1967). The empirical approach is more of a convenient method of interpolation if 

it is applied to a pure substance. It can become dangerously inaccurate when used in 

unfamiliar situations. Empirical equations have been used more widely than theoretical ones 

because of lack of data to enable the application of the latter equations to various practical 
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situations and fluids [Münster (1969)]. However, the theoretical approach gives high 

accuracy and a basis for a wide application. 

In the search for an equation of state, one must first make a decision on the amount 

and kind of data that will be required to obtain the parameters in the equation; range of 

density to be covered; and the precision with which the pressure, volume and temperature 

(p, v, T) data are to be represented. For some applications it is desirable to have an equation 

which can be obtained from a minimum of data i. e. the critical temperature, pressure and 

volume; or the boiling point; or some molecular parameter. In other applications, an 

equation is sought which will represent a large amount of experimental p-v-T data within 

the precision of the experiment. In all pressure-explicit equations, density is paramount. If 

the same order of precision is to be maintained, a relatively simple short equation will 

suffice for low densities, whereas a long complicated equation will be required if coverage 
is to include both high and low densities. High precision equations have many arbitrary 

constants whose values depend primarily upon the density range and in a minor way upon 

the temperature range. For example, an equation representing precisely up to a fiftieth of 

the critical density may need only two constants, while four or five constants will be 

necessary when in the region of half the critical density. To continue up to the critical 
density at least a half dozen or more constants will be required and twice that many will be 

needed if the goal is one and a half, or two times, the critical density. 

The Keyes equation of state produces data within the experimental precision for 

densities of up to a little over half the critical density, while the BWR equation of state, 

used by Kiuchi (1993), gives good precision for a density range well past the critical 
density. The Bloomer-Rao equation of state is essentially the same as the BWR equation 

of state in which the temperature coefficients have been modified to fit nitrogen data. The 

Keyes-Smith-Gerry equation of state can achieve extremely high precision in calculating 
thermodynamic properties of steam, but is valid only to a third of the critical density. The 

Hirschfelder-Buehler-McGee-Sutton and Costolnick-Thodos equations of state cover a 

wide range of densities and simultaneously maintain a precision which is acceptablefor 

practical applications. In these equations the p-v-T plateau of data is divided into regions 

and separate equations are written for the different regions. The Flory-Orwall-Vrij and 
Lennard-Jones-Devonshire equations of state possess high precision but the range of their 

applicability is limited to the liquid region where the densities are always significantly 

greater than critical densities. The Van Der Waals, Clausius, Dietrici, Berthelot, Wohl and 
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Redlich-Kwong equations of state cover the whole range of density from infinitely 

attenuated gas to compressed liquid, but with fairly large deviations from experimental 

results. The Van Der Waals equation is quite accurate at low pressure, but it is inaccurate 

near the critical point. The Dietrici equation is reliable near the critical point for many 

organic fluids. However, errors are incurred in other regions far from the critical isotherm 

and hence it cannot be used for largely varying temperatures. The Berthelot equation 

produces comparatively accurate results for gases and vapours at low temperatures. 

Thorley and Tiley (1987) and Tiley (1989) considered the Van Der Waals, Dietrici 

and Berthelot equations for application in the analysis of transients in a ruptured high- 

pressure gas pipeline and found the Berthelot equation to be the most suitable. Picard and 

Bishnoi (1987) used the Peng-Robinson (PR) and the Soave-Redlich-Kwong(SRK) 

equations of state to calculate the thermodynamic speed of sound in single-phase fluids 

consisting of pure components and mixtures and in the two-phase region of a multi- 

component mixture. Both the PR and SRK equations of state were noted for their ability 

to provide quite accurate vapour densities and generated reliable equilibrium ratios. 

However, neither was able to provide liquid densities with the same level of acceptability 

although the PR equation of state was somehow better than the SRK equation of state. 

Both the SRK and PR equations of state were weak in predicting sound velocities in liquids, 

although each was considered to have shown some promise for application to vapours i. e. 

with errors less than 10%. The Van Reet-Skogman equation of state, used by Kiuchi 

(1993), is considered adequate for reasonable ranges of pressure and temperature. 

It is generally recommended therefore, that for cases where the fluid is transported 

at conditions near the critical point, more sophisticated equations are required. Also, simple 

equations of state such as the Redlich-Kwong equation of state fail by far to fit the data 

within the experimental precision. Even up to the critical density, errors of the order of 5% 

of more can occur which is considered completely intolerable. These equations can fit data 

quite precisely over limited ranges but they definitely are not the tools to correlate good p- 

v-T data within the experimental precision. They cannot therefore be seriously regarded 

as more than a qualitative tool for predicting p-v-T behaviour. The Beattie-Bridgman 

equation of state, which contains five adjustable constants, represents with some accuracy 

the whole range above the triple point. The Martin equation of state, used by Flatt (1985), 

is the same as the Martin-Hou equation of state with the addition of the exponential terms, 

which permit the former equation to go to about 2.3 times the critical density as opposed 
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to 1.5 times the critical density reached by the latter. The equation of Martin has the 

valuable property that it is also solvable explicitly in respect of temperature. For the 

practical application, the extra expenditure in computation time with the real gas variant 

was 13% as compared with the corresponding ideal gas computation. 

In deciding on the use of one of the equations of state, or the other, it has been 

common practice to choose the simplest possible equation. Various workers have justified 

their choice in different ways. For example Flatt (1985) argued that, in view of the relative 

simplicity of the one-dimensional flow model used, it was not necessary to demand too 

high an accuracy from the equation of state and therefore used the Martin equation of state. 
However, he later admits [Flatt (1993-96)] that the use of the Martin equation of state and 

an empirical C�(p) correlation is inconsistent from the thermodynamic point of view, and 

therefore recommends the use of a theoretical equation of state of the type h= h(p, S). 

Thorley and Tiley (1987) argued that since the two terms in which the compressibility 
factor and its derivatives appeared i. e. 

T az 
and p az 

Z arp z ap 

are usually relatively small, a complex equation of state would be uneconomical in terms 

of computer time and therefore used the Berthelot equation of state. 
In this study the theoretical approach to equations of state is used., Though more 

complex, it is as accurate as experimental data. As a result of this high accuracy, the 
theoretical approach to equations of state is well suited for analysis of high-pressure gas 
transients and it has been used under similar circumstances by Richardson and Saville 
(1991), with satisfactory results. As far as possible, real gas properties and data are used 
in the model. 

2.4.3 THEORETICAL APPROACH TO EQUATION OF STATE 

2.4.3.1 Introduction to the Basic Principles and Equations 

In this approach, the macroscopic properties of the fluid such as pressure and temperature 

are essentially determined by the interaction of very many particles (atoms, molecules), in 

contrast to properties definable for single atoms or molecules, even though the latter 

properties are usually measured in systems with very large number of particles. The 
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underlying idea is that a probability aggregate can be constructed, with the help of which 

certain probabilistic statements can be derived about the system under consideration. The 

theoretical approach to the development of the equations of state has developed over many 

years, utilising both the principles of classical and quantum mechanics. From the viewpoint 

of statistical mechanics, a system is considered to consist of an enormous number of 

molecules, each of which is capable of existing in a set of states at different energy levels. 

The molecules are assumed to interact with one another by means of collisions or by forces 

caused by fields. A system of molecules may be perceived to be isolated or, in some cases, 

considered to be embedded in a set of similar systems or ensemble of systems. Concepts 

of probability are applied, and the equilibrium state of the system is assumed to be the state 

of highest probability. The fundamental problem is to find the number of molecules in each 

of the molecular energy states (population of the states) when equilibrium is reached. It is 

not the intention of this study to go into the details of these principles but rather to find a 

useable form of an equation of state based on this approach, that will represent the situation 
being modelled as accurately as possible. For further details on these principles, the reader 
is referred to Münster (1969). 

On the basis of this theoretical approach, the microscopic description of a system 
involves specifying many quantities, which are not suggested by our sense perceptions and 

cannot be measured e. g. configurational, residual, partition, molecular distribution functions 

etc. The relation between the macroscopic and microscopic points of view lies in the fact 

that the few directly measurable properties, whose specification constitutes the macroscopic 
description are really averages over a period of time of a large number of microscopic 

characteristics. For example, the macroscopic quantity, pressure, is the average rate of 

change of momentum due to all the molecular collisions made on a unit area. In statistical 

mechanics, an ideal gas is defined as a system of non-localised particles whose interaction 

energy can be neglected relative to the total energy of the system. The laws of ideal gas are 
limiting laws at zero pressure. Their practical significance is due to the fact that they 
frequently give sufficiently good approximations for simple gases at ordinary pressures. 
Deviations from the ideal gas laws, which are due to intermolecular forces, arise at finite 

pressures thus the necessity for real gas considerations. For real gases at ordinary 
pressures, at least two effects appear, which can only be included by the addition of special 

constants. These constants are known as the volume correction, which takes account of 
the volume of the molecules themselves and the pressure correction; which takes account 
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of the intermolecular forces of attraction. The Van der Waals equation of state was the first 

to take into account these considerations. The quantitative results of the Van der Waals 

equation are generally not satisfactory, but nevertheless represent the behaviour of real 

gases in a fairly satisfactory qualitative manner. The Beattie-Bridgman equation of state 

proved itself the best from the viewpoint of convenience of computation. 

The most general equation of state is the Kammerlingh-Onnes equation of state 

(Equation B-17). In this formulation, the equation is represented as a power series in v'. 
The equation is commonly called the virial equation of state and the coefficients B, C. D. 

E, etc. are known as the second, third, fourth, fifth, etc. virial coefficients respectively. 
The coefficients vary with temperature, and depend on the nature of the gas and are related 
to molecular properties of the gas. In the pressure range from zero to about forty standard 

atmospheres, only the first two terms in the expansion are significant. In general, the 

greater the pressure range, the larger the number of terms in the virial expansion. The 

equation is used to account for the behaviour of real gases especially at high pressures. The 

equation is tedious to use but one of its merits is that once the virial coefficients are 
determined, the behaviour of any real gas can be predicted. An average reduced virial 

equation of state can be obtained by introducing the reduced state variables p1, T, and v, in 

place of p, T and v. The reduced virial equation of state is: 

2468 
pryr 

(1ýBrKe+C/e 
D, Ce 

ýE/Ce 
F 

e) (2.33) 
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where the reduced state variable are 

P, "pT, "TV-v (2.34) 
P, Tc vc 

and the coefficients Br, C1, Dr etc. are of the form 

B, - bl " 
b2 b3 b4 bs 

(2.35) 
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and the critical coefficient 

NLRTe 
Ke - (2.36) 
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(NL is Avogadro's number). The importance of the reduced form of the equation of state 

(Principle of Corresponding States-Refer to Section 2.4.3.2) is due to the fact that many 

substances have almost the same thermal equation of state in the reduced state variables. 

The value of K,, evaluated by Münster (1969) from equation (2.36) above, when pr Tr yr 1 

is K. 3.43. The remaining 25 numerical coefficients in equation (2.33) are available from 

Landolt-Bornstein Tables. Also available from this reference are the coefficients of the Van 

der Waals equation for various substances. 

2.4.3.2 The Principle of Corresponding States 

The principle of corresponding states is based on the fact that any equation of state 
f(p, v, T, A, B, C) =0 (2.37) 

which does not contain more than three independent constants can by insertion of the 

critical data be put into the form 

<P(P, unT, ) =0 (2.38) 

The above change is possible because one of the three constants (A, B, C), i. e. the gas 

constant is universal and the two others can be eliminated by means of the following 

equation: 

ap 
- 

alp 
- äv av 2o (2.39) 

pr 

Equation (2.39) holds at the critical point. Equation (2.38), which no longer contains 

constants relating to specific substances, has universal validity. This is called the principle 

of corresponding states. In its simplest form, the principle of corresponding states 

postulates that the surface p1= gv, T1) is the same for all members of a given set of 
substances. 

The fact that any useful empirical equation of state contains more than two specific 
constants means that this principle can not be rigorous in the strict sense. On the other 
hand, experience has shown that the principle is obeyed very exactly by a few substances 
and that for the remainder, all degrees of approximation occur up to complete failure. It 

was concluded by Münster (1969), that the principle of corresponding states will be obeyed 
by the heavier inert gases and non-polar diatomic molecules at best, For other substances, 
deviations will be greater the more unsymmetric and polar the molecule is. The principle 
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of corresponding states applies only to spherical molecules and to pure substances. Kay 

(1936) developed a method of calculating the p-v-T data of hydrocarbon mixtures, based 

on the principle of corresponding states. The p-v-T of the mixtures expressed as deviations 

from the perfect gas law were correlated with similar data on pure hydrocarbons, using the 

pseudocritical temperature and pressure. This was compared with experimentally 

determined data for eleven typical hydrocarbon mixtures in the gaseous state, over a wide 

range of temperature and pressure extending from the saturated condition to the highly 

superheated condition above the critical region. It was claimed that the accuracy of the 

method was comparable to that with which the principle of corresponding states was found 

to hold for pure hydrocarbons. It was observed that the reduced p-v-T relations of pure 

hydrocarbons were not exactly the same for different hydrocarbons. However, the 

differences were, in general, insignificant except at high reduced temperatures. In this 

region the differences were a function of molecular weight. 

2.4.3.3 Extension of the Principle of Corresponding States 

Two major limitations of the principle of corresponding states, namely restriction to a set 

of substances and restriction to pure substances, necessitated its extension to cover these 

situations. One such extension is that by Rowlinson and Watson (1969). In their approach, 

they expressed the residual and configuration properties of a fluid in terms of residual or 

configuration properties of a pure substance, usually termed the reference substance. Non- 

spherical molecules were included by the use of shape factors. The principle of 

corresponding states was defined by a pair of equations that relate the configurational 

properties. The equations were chosen so that the conventional principle of corresponding 

states emerges as a special case. 
Saville and Szczepanski (1982) presented two methane-based equations of state, 

one valid over the reduced temperature range of 0.2-2.6, and the other valid over the 

reduced temperature range of 0.35-2.6. The equations are extended versions of the 
Benedict-Webb-Rubin equation of state and were intended for use as reference equations 

of state in the calculation of thermodynamic properties by the principle of corresponding 

states. The equations reproduced experimentally measured properties of the fluid phase 

over the whole region for which they exist (reduced temperatures of 0.47 to 3.3). 

Extension to higher temperatures was made by utilising experimental measurements made 
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on nitrogen and hydrogen, and an empirical scheme was used for reduced temperatures 

below 0.47. The two equations were reported to have provided a satisfactory basis for the 

calculation of thermodynamic properties of hydrogen and the two-phase behaviour of 

hydrogen-hydrocarbon mixtures, provided the pseudo-critical parameters are used for 

hydrogen and that the temperature of interest is well above the critical temperature of 

hydrogen, so that the effect of quantum behaviour of hydrogen molecules is small. Full 

phase diagrams were calculated for the mixtures including the critical region. 

2.4.3.4 Commercial Computer Software 

2.4.3.4.1 IUPAC 

The IUPAC equation of state package is one of a variety of packages supplied by the 

Physical Property Data Service (PPDS), which is operated by the National Engineering 

Laboratory, UK and the Institution of Chemical Engineers. - The equation of state package 
has been produced by the IUPAC Thermodynamic Tables Project Centre of Imperial 

College, London. It comprises a suite of computer programmes to calculate the 

thermodynamic properties of a small number (currently 10) of pure fluids to an accuracy 

which is comparable with that of the best experimental data. The fluids covered so far are 

ethylene, methane, nitrogen, oxygen, propylene, carbon dioxide, argon, hydrogen, propane 

and ethane. Available experimental results on the fluids have been critically evaluated and 

selected data fitted to an equation of state using statistical methods. Every property is 

calculated from a single equation of state for each fluid, which ensures thermodynamic 

consistency amongst all properties. 
The heat capacity, enthalpy and density are available at any point in the fluid region, 

within wide limits of pressure and temperature, or on the saturation line. The equation of 
state package is written in FORTRAN IV in the form of a portable sub-programme, which 
can be readily linked to design programmes. The sub-programme has been developed to 

suit a number of user applications and computer environments. 

2.4.3.4.2 QUANT 

QUANT is a computer programme for thermodynamic and transport properties of real 
gases and their mixtures. The programme is owned by Silberring Engineering Ltd. of 
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Zurich, and is based on the virial equation of state. In the present version, calculation is 

possible only up to the second virial coefficient, but an extension to further virial 

coefficients is under way. The source code of QUANT is written in the Microsoft 

Professional BASIC language but could be linked to any particular application programme 

written in any of the usual Microsoft languages such as FORTRAN, PASCAL, or C. The 

programme delivers properties of elements, compounds and any of their mixtures; but is 

restricted to the gaseous phase so far. QUANT uses spectroscopic and other experimental 

information as a basis for its formulation. Residual properties of pure gases and their 

mixtures, including partial properties of components in the latter, are calculated using the 

virial equation of state. The virial equation of state is said to be the only one which allows 

one to deduce the properties of mixtures from those of pure substances using a sound 

theoretical basis and moderate amount of additional information. The virial coefficients are 

represented by proprietary temperature functions which allow a reliable smoothing and 

interpolations of experimental data as well as their extrapolations beyond the limits of 

experimental evidence. QUANT operates on IBM compatible personal computers. 

A particular variation of QUANT prints extended gas properties in the standard or 

real state as a function of standard state fugacity or pressure and temperature, in addition 

to those delivered by the standard version of QUANT. The additional data consists of 
isocharic heat capacity related to the gas constant (C, /R); isentropic exponent, also equal 

to the ratio of the isobaric to isocharic heat capacity (K = CJC�); and the partial derivatives, 

ap, ß., y. r, ys and Ss. These properties are available for all substances, mixtures, units 

parameter ranges and steps covered by QUANT. The data from this variant is very 
important in relation to the yS method described in Sections 2.3 and 2.4.5. 

2.4.3.4.3 PREPROP 

Richardson and Saville (1991) used the extension of the principle of corresponding states, 
developed by Rowlinson and Watson (1969), and the methane-based reference equations 

of Saville and Szczepanski (1982) [equations A-19 and B-20], to calculate the 

thermophysical properties in a computer model for blowdown of pipelines (SLOWDOWN). 

Using the result of the above mentioned studies, they developed a computer package called 
PREPROP, for calculation of thermophysical properties of multi-component mixtures. 
Their choice of the corresponding states package was necessitated by the need for good 
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prediction of phase equilibrium, enthalpy and density simultaneously. The model has 

produced results which agree well with experimental results for blowdown of natural gas 

pipelines. 

2.4.4 OTHER APPROACHES FOR REAL-GAS MIXTURES 

A much simpler approach for dealing with real-gas mixtures is the use of Dalton's rule of 

additive pressures or the Amagat rule of additive volumes, described by Holman (1980). 

The difference between these two and the law of partial pressures is that the individual 

pressures or volumes are calculated from some real-gas equation of state. This simplified 

approach neglects interaction between the constituent molecules, and therefore considerable 

errors are expected. In addition to these simple additive rule, there are many relations 

which have been developed for the calculation of real-gas mixtures properties. 

Kay (1936) developed the simple procedure described in Section 2.4.3.2, which 

assumes that the mixture may be treated as a pseudo-pure substance with some empirical 

artifice used to determine the pseudo-critical constants for the mixture. According to 

Holman (1980), the procedure is accurate to within 10% over a wide range of temperatures 

and pressures. 

2.4.5 CALORIC EQUATIONS OF STATE 

For a real gas, the specific heats vary with temperature and pressure, and the caloric 

equation of state may take the form: 

C�=C�(T, p) (2.40) 

When a high-pressure natural gas pipeline breaks, the gas can escapes from the pipe in a 

process that is sometimes approximated as isentropic. The isentropic model assumes that 

heat conduction and wall friction are negligible. However, during isentropic decompression 

of any gas the temperature falls drastically. With natural gas of high specific gravity, this 

may lead to pressures and temperatures which fall within the two-phase (gas-liquid) region. 

Non-isentropic decompression models are developed based on the thermodynamics 

of two-phase (liquid-gas) real-fluid, multi-component mixtures and the laws for unsteady 

non-isentropic processes, i. e. viscous dissipation and heat transfer occurring. There have 

been various such models developed for different applications, but in this study three 
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models are considered, namely those by Picard & Bishnoi (1989), Flatt (1985-1989) and 

Richardson & Saville (1991). These models are briefly discussed here. Both models were 

developed for analysing transient flows following a rupture in a high-pressure gas pipeline 

and were used in conjunction with the method of characteristics. The Picard-Bishnoi non- 

isentropic decompression model utilises the thermodynamics relationship, 

T dS -A-1 
Pdp 

(2.41) 

It determines the complete decompression histories at all locations inside the pipeline 
including the rupture point and the emergency shut-down valve. In working with the 

model, it became apparent that a numerical instability may develop at the rupture plane from 

problems involving non-isentropic flow if the selected distance between grid nodes is too 
large in the high gradient region immediately upstream of the rupture plane (numerical 

instability was not observed for problems involving isentropic flow). In order to overcome 

the instability problem without creating excessive computational demands, use was made 

of non-uniform grid spacing (refer to section 4.4) to allow for fine grid spacing near the 

rupture plane where grid spacing is most critical and coarser spacing further back. Since 

non-isentropic effects in the region of the rupture plane seemed to be caused by the 

instability problem, a second strategy was to impose a short isentropic region at the rupture 

plane. This approximation was considered to be valid assuming the isentropic region is 

small relative to the total pipe length. The use of the modification completely eliminated 
the rupture plane instability problem. 

The Flatt non-isentropic decompression model is based on the polytropic 
coefficients of Dzung (1944), which are as follows: 

rav vap ram a° -v aT)t 
Y° --p av 

ßO - 
PaTl 

(2.42) 
tt 

where the subscript a corresponds to an optional index which represents any set of 
thermodynamic quantity e. g. p, v, T, h, S, etc.; the polytropic characteristic number, 

ýº v 
äh (2.43) 

and the Gibbs equation which is sometimes described as the "definition of entropy" 
T ds - dh -v dp (2.44) 
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Flatt (1989), further developed the model by introducing a new coefficient Ss, which 

enabled it to cover both bi-phase and homogeneous gas-liquid as well as pure liquid flows. 

This approach is called the gamma delta method and in principle can be generalised to three 

dimensional flow. The basic relationships for this method, whose complete derivation is 

given in Section 2.3 is: 

dh 
a 

vdp. 
y 

pdv (2.45) 
a-1y-1 

where, 

b-1-v aT (2.46) 
T(8v s 

The delta-coefficient of the gamma-delta method and also the coefficients a, � ß� and Ys 
have been incorporated into the real gas software, QUANT, described in Section 2.4.3.4.2. 

A non-isentropic decompression model and the Flatt gamma delta method have been used 
in this study. 

2.5 FRICTIONAL FORCE 

2.5.1 INTRODUCTION 

For gas flow in short and medium length pipelines, frictional effects are often small and 
localised, hence they have normally been considered relatively unimportant in view of the 

overall uncertainties involved in modelling most practical problems. However, for long 

pipelines, the principal reason for change in pressure along the pipeline is due to friction 
losses. The frictional effects are, cumulative and become important for long term transients. 
In long pipes they can give rise to significant pressure drop and line packing under transient 

conditions. Modelling of frictional effects may be done either by numerically evaluating the 
frictional factor in equation (2.47) using known flow field data or by using experimental 
correlations. The shear stress at the wall tends to be proportional to the pressure gradient, 
while the average velocity may be out of phase with the pressure gradient because of the 
inertia of the main flow. 

The friction term in the basic equations is denoted by ca and is defined as the 
friction force per unit length of the pipe opposing the flow. After assuming that the minor 
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losses are negligible, the frictional force per unit length is expressed by the empirical 

relationship; 

Ap AD ul2 l (2.47) 

As the transients progress, and the high frequency content of the pressure waves dies out, 

a point is reached where the explicit procedure is no longer suitable. An implicit procedure 

that allows large time-steps is more appropriate. Consequently, in modelling frictional 

effects in high-pressure gas pipeline transients, a number of questions have to be answered. 

These are discussed in the sections of this chapter which follow. Over 20 friction factor 

expressions have been identified in this study. These include those by Hagen-Poiseiulle for 

laminar flow; Blasius (1911), Uhl (1965), Panhandle "A", Smith (1956) and Chaudhry 

(1979) for partially developed turbulent flow; Von Karman (1930), Nikuradse (1933) and 

Smith (1956) for fully developed turbulent flow; Colebrooke (1939), Oliemans (1976), 

Moody (1947), Swamee-Jain (1976), Zigrang-Sylvester (1982), Shacham (1980), Haaland 

(1983), Wood (1966), Colebrooke-White or Prandtl-Colebrooke (1938-39), Churchill 

(1977) and Chen (1979) for the transition region. The relevant expressions for the friction 

factor are presented in Appendix C. 

It should however, be admitted that only very little seems to be known from the 

theoretical point of view of the real behaviour of frictional effects in transient flow because 

the problem is non-linear, thus making the finding of analytical solutions unlikely. Flatt 

(1986) attempted to explain this phenomenon for a rupture at the upstream end of a straight 

pipe. He illustrated his argument with figures for the cases with and without frictional 

effects being considered. According to his model a pressure peak would appear somewhere 
in the middle of the pipe, its location corresponding approximately to the location of the 
flow reversal i. e. where the velocity is zero. With increasing time, the pressure peak slowly 

moves towards and until it reaches the closed end. 

2.5.2 STEADY FLOW FRICTION FACTOR 

The use of a steady flow friction factor to represent the wall shear stress is only justified 

theoretically for steady flow. For the calculation of unsteady flow in pipes the steady state 
friction term is usually used, and can produce acceptable results, although it is well known 

that this term does not describe the real physical phenomenon accurately. Perhaps it is 
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reasonable to expect this to be valid for small perturbations around a steady flow condition 

and some experimental evidence exists to support this. However, this would not be 

expected to be true in the case of large and rapid disturbances. 

Van Deen and Reintsema (1983) argued that the Darcy friction factor is weakly 

dependent on Reynolds number, but it may be considered as constant in the region of 

interest because of the large Reynolds numbers (Re > 10) involved. Being aware of the 

limitation of using a steady flow friction factor for unsteady flow, Thorley and Tiley (1987) 

recommended its use in modelling of unsteady transient flow of compressible fluids in 

pipelines. Their justification was that there had been no friction factors defined for transient 

gas flows, except some time-dependent friction factors for laminar liquid flow and also on 

the basis that "tuning" of the friction term may be employed when investigating rapid 

transients. Tiley (1989) used a constant value steady-state friction factor in modelling of 

pressure transients in a ruptured high-pressure gas pipeline. The basis of this choice was 

the assumption that fully developed turbulence was achieved and if necessary a flow 

dependent friction factor could be substituted into the analysis provided that the 

improvement in the results obtained justified the additional computing involved. The 

various expressions for steady-state friction factor are presented in Appendix C. 

2.5.3 FLOW-DEPENDENT FRICTION FACTOR 

The flow of fluids in pipelines is categorised, depending on Reynolds number, into either 

laminar flow, partially or fully developed turbulent flow. Friction factor is dependent on 

the type of flow as categorised above which may vary from point to point in a pipeline, and 

in addition on pipe roughness. The traditional way of estimating the friction factor for a 

Newtonian fluid flowing through a pipe is based on the well known Moody Friction Chart. 

This chart is made up of various relevant equations for different flow regimes. However, 

in numerical modelling of flow situations, these charts are unsuitable and equations have to 

be used. Numerous equations have been developed for estimating friction factors. The 

most widely used are presented in Appendix C. For laminar flow (Re < 2100), the Hagen- 

Poiseiulle equation is used i. e. 

AD - 
64 

(2.48) 

I 

It should be noted that the Darcy friction factor is four times the Fanning friction factor. 
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For fully developed turbulence, the rough pipe law which assumes that the friction factor 

is solely dependent on the pipe roughness and size is used: 

I L. 
Al logt dJ 

. B1 (2.49) 
E 

YJD 

where A, and B, are constants. For partially developed turbulence either the smooth pipe 
law or the Blasius form of the smooth pipe law are used. Here the friction factor is 

assumed to be only dependent on the fluid properties and pipe size. The smooth pipe law 

is traditionally expressed as: 

-" A2 log (Re fD) + B2 (2.50) 
ID 

The Blasius form of the smooth pipe law is given as: 

fD " A3 Re as (2.51) 

where A2, B2, A3 and B3 are all constants. The above equation is true only over a very 
limited range of Re. For the transition zone between partially and fully developed 

turbulence a combination of both the rough and smooth pipe laws is used. The Colebrooke 

equation (Equation C-2) has been universally adopted for this regime. However, there are 

numerous other equations which could be solved explicitly, and with almost the same 
accuracy as the Colebrooke equation. 

The key factor in applying a flow-dependent friction factor is the determination of 

which flow regime is to represent the flow at a particular point and time. This situation is 

exacerbated by the fact that, in many practical flow situation many flow regimes exist and 
thus different equations have to be used. Typical high-pressure gas pipeline flows are 
characterised by their high Reynolds numbers. The key decision to be made for such flows 

therefore, is whether it could be assumed that fully developed turbulence has been achieved, 
so that the rough pipe law which is independent of Reynolds number and hence flow could 
be employed. If however, the flow is in the partially developed turbulent regime or even 
in the transition zone between partially and fully developed turbulence, the friction factor 

would vary with changes in the Reynolds number (for Newtonian fluids this is not a 
problem). 
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In this study, an expression for friction factor is selected, which covers as much as 

possible, all the flow situations i. e. Re and e/d expected during the transient event being 

modelled. Particular attention is paid to expressions for friction factor, which cover the 

transition zone from partially to fully developed turbulent flow. As seen in Appendix C, 

there are more than twenty expressions for the friction factor in this zone. Though the 

Colebrooke equation is the most accurate (it represents data within 5% of experimental 

results), it has the disadvantage that solution for the friction factor requires iteration. This 

makes it less attractive for computer models. Swamee and Jain (1976) presented an explicit 

equation [Equation C-8], which was found to yield values of the friction factor well within 

±1% of the Colebrooke-White equation for 10-6 s e/d s 10"2 and 5x 103 s Re s 10'. The 

equation was also found to be applicable over the entire turbulent zone of pipe flow, unlike 

the Wood equation [Equation C-7] which is not applicable to smooth-turbulent flows and 

computes the friction factor within ±5% of the Colebrooke equation. The Swamee-Jain 

equation was found to be easy to apply. 

Zigrang and Sylvester (1985) made a review of nineteen explicit friction factor 

equations. Three among these were developed in their above mentioned study. They 

classified the equations, according to precision, into three categories namely simple 

equations [Equations C-11, C-14 and C-15]; intermediate precision equations [Equations 

C-16, C-17 and C-18]; and highest precision equations [Equations C-19, C-20, C-21 and 

C-22]. The equations were compared for precision against the Colebrooke equation, and 

for complexity, in the range 2500 s Re s 107 and 4x 10"s ses0.005. Though the 

equations have relative errors of up to 13%, all the equations in the intermediate and 

highest precision categories were found to have relative errors well within 1% of the 

Colebrooke equation (within 6% of experimental data). The study concluded that the high 

accuracies in the highest precision category are unnecessary. In this study, more attention 

will be paid to the range of flow i. e. Re and e/d which the various equations cover, rather 

than wasting too much time in finding an equation with the highest precision. The accuracy 

in calculating the friction factor in real systems is influenced by how well the pipe wall 

roughness and diameter are known. Both these parameters may vary with time and position 

in the pipe. 

At least two expression for friction factor i. e. those by Chen (1979) and Churchill 

(1977) [equations C-5 and C-6 respectively] exist, which cover the whole range of 
Reynolds numbers and pipe roughness and which produce results which are nearly the same 
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as those produced by the Colebrooke equation. The Chen equation was used by Bisgaard, 

Sorensen and Spangenberg (1987) in modelling of transients in a ruptured high-pressure gas 

pipeline. This equation is also used in this study, because it is explicit, it covers the whole 

range of Reynolds number, and it is simpler than the Churchill equation. The most popular 

method of estimating flow-dependent friction factors is by using the quasi-steady friction 

formula, whereby the steady-state expressions are used for unsteady flow. The friction 

factor is calculated for each grid point as a function of Reynolds number without 

consideration being made to the fluctuation of velocity and the gradient of the other values. 

Eichinger and Lein (1992) proposed and investigated two new methods of 

presenting the unsteady friction term namely based on wall shear stress and on friction 

power. The formula for unsteady friction term based on wall shear stress is solely dependent 

on the value of the gradient of velocity in the near wall region. In this case calculation of 
the velocity profile near the wall is of extreme importance. This applies in particular to 

turbulent flow because as the Reynolds number increases, so does the gradient near the 

wall. The formula for the friction term based on the friction power is based on 

consideration of energy of the incompressible fluid. The difference between the work of 
the internal and external forces and the increase of the kinetic energy of a volume element 
of an incompressible fluid is the dissipation per unit of time. Preliminary investigation of 
unsteady flow using the two unsteady friction terms revealed that the results obtained, using 
the friction factor based on the wall shear stress, were considerably better than those 

achieved using the friction term based on the friction power. Moreover, numerical 
difficulties sometimes arose when using a friction term based on friction power. For this 

reason the friction term based on wall shear stress was preferred and used as an unsteady 
friction term. The formula for unsteady friction term based on wall shear stress, which was 
used by Ohmi, Kyomen and Usui (1985) is as follows: 

(a . 
4v au 

gd 8r 
I 
r' r 

(2.52) 

where ro is the radius of the pipe. 
Thorley and Tiley (1987) recommended the use of a constant friction factor which 

they claimed will usually be adequate as a first approximation. The basis for their argument 
was that in practice the basic data for determining the friction factor, even for steady flow, 

will rarely be known within a few percent. In this study, the explicit equation of Chen 
(1976) [Equation C-5] and the friction term formula based on wall shear stress are 
recommended. However, the equation of Chen has been used. 
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2.5.4 FREQUENCY-DEPENDENT FRICTION FACTOR 

In the study which proceeded this work i. e. by Tiley (1989) very little attention was paid 

to the dependence of friction factor on the frequency of transient events. In this study, an 

extensive investigation is made on studies available on this subject. However, it is admitted 

that there has not yet been any satisfactory results to justify the application of a frequency- 

dependent friction factor in this model. The first and most significant work on frequency 

dependent friction in transient pipe flow was by Zielke (1968). He developed a procedure 

within the framework of the method of characteristics that utilises the recent history of the 

transient to take the shift in phase between the boundary film and the main flow into 

account for the laminar flow case. His equation relates the wall shear stress in transient 

laminar pipe flow to the instantaneous mean velocity and to the weighted past velocity 

changes. Based on the pioneering work by Zielke (1968), Brown (1969) developed a 

quasi-method of characteristics, applied to forcing functions which depend on non-local and 

non-instantaneous (former) states of the system. 

Hirose (1971) was the first to extend the Zielke idea into turbulent flow. He used 

an empirically developed weighting function to adapt the method of characteristics which 
is very simple compared to the analytical expression for laminar flow based on Zielke's 

approach. Trikha (1975) derived a similar expression for frequency-dependent friction in 

transient laminar flow which approximates the exact expression by Zielke very well in both 

the time and frequency domains. This approximation is simpler, easy to program, requires 

significantly less computer storage and computation time and hence is more practical than 

the exact expression by Zielke. Kagawa et al (1983) developed a model which requires 
less computer storage and computation time than Zielke's exact model and more accurate 
than Trikha's approximation model. Kagawa's approximate weighting function is derived 

by approximating Zielke's function with the first-order lag element one by one so its time 

constants of the first order lag elements reduce very slowly, which shows that by taking 

many more terms of the first order lag elements Kagawa's model could reach good 
accuracy. By comparing predictions with experimental data, Budny, Wiggert and Hatfield 
(1990) concluded that frequency-dependent friction factor for laminar flow based on 
Zielke's equation can be extended into the transition zone and beyond, at least to a Reynolds 

number of 11,000 and is capable of predicting the decay over many cycles. 
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Yigang and Jing-Chao (1990) developed a new approach for simulating frequency- 

dependent terms both in the frequency and time domain by using the method of non-linear 

square integral optimum. Because this new method is optimised over a large frequency 

range and needs fewer terms of the first order lag elements than Kagawa's model, it 

possesses an excellent high speed of calculation and accuracy in both frequency and time 

simulations and is more practical for analysing the frequency and transient responses, 

pressure surges, and pressure attenuations in hydraulic pipelines. In the Trikha and Kagawa 

models, the equation of frequency-dependent friction in the time domain includes an 

unknown current flow rate value. Therefore an interactive algorithm is needed to calculate 

the frequency-dependent friction in the method of characteristic, which also makes the 

simulation complex and time consuming. The Yigang-Jing-Chao method does not need 

iterating and requires only half of the computation time of Trikha and Kagawa models. 

Vardy (1992) and Vardy, Hwang and Brown (1993) concluded that the use of 

expressions similar to that developed by Zielke (1968) for transient laminar friction in pipes, 
is justified theoretically and experimentally for transient turbulent friction. In this case the 

weighting function curve ceases to be unique but rather a family of curves exist, one for 

each value of the product (f d Re). The Zielke expression is shown to be an asymptotic 
limit of the family of weighting function curves. Further work is going on [Vardy (1993)] 

to provide a theoretical framework at higher Reynolds numbers and to explore the influence 

of frequency effects in turbulent flows at all Reynolds number. It should also be noted that 

the expression is applicable only to moderate Reynolds numbers and only to smooth pipes. 
Some progress has been made in extending the work to higher Reynolds numbers and to 

rough pipes. All expressions such as Trikha's are limited in the range of time scale for 

which they are applicable and hence appropriate numerical coefficients have to be chosen. 
From this review, it seems rather too early to start applying these frequency- 

dependent friction terms in the modelling of transients in high-pressure gas pipelines. Since 

the effects of unsteady friction, in addition to steady friction, are very small in such 

applications, a frequency-dependent friction factor is not used in this model. 

2.5.5 FRICTION FACTOR FOR TWO-PHASE HOMOGENEOUS FLOW 

During depressurisation of dense-phase gases in a ruptured pipeline, the existence of two 

phases, gas and liquid, is likely to occur. In the process of modelling such an event 
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therefore, one needs to consider how to handle the situation, including the friction term. 

The friction factor is strongly dependent on the liquid fraction and different calculation 

techniques give substantially different results. There are two main techniques of presenting 

the friction term in two-phase flow namely, by modifying the Reynolds number and the 

roughness term in the equation for friction factor; and including in the expression for 

friction a multiplier for two-phase friction, which is determined empirically. 

The expression by Oliemans (1976) [Equation C-3] is an example of the former 

technique. Thorley and Tiley (1987) recommended the use of the latter technique because 

it is relatively simple and had already been adapted by various authors for analysis of 

transient flow situations. They claimed that modifying the Reynolds number and roughness 

term is more appropriate for steady flow analysis. The two-phase friction factor is not used 

in this study. 

2.5.6 FRICTION FACTOR WITH RESPECT TO FLUID STRUCTURE 
INTERACTION 

The phenomenon of Fluid Structure Interaction has been discussed in depth in Section 

2.2.3, and need not be repeated here. With respect to Fluid Structure Interaction the 

friction term in the momentum equation must be corrected for axial motion of the pipe i. e. 

the relative fluid velocity is of importance. Since it was decided earlier, in Section 2.2.3 not 

to include the effect of Fluid Structure Interaction in this model, its effect on friction factor 

is also being neglected. However, this gives an indication of the number of factors that 

affect the friction and how difficult it is to achieve an accurate representation of the friction 

term. 

2.5.7 APPROXIMATION OF FRICTION FACTOR WHEN SOLVING THE 
BASIC EQUATIONS 

It has already been stated in Section 2.5.1 that frictional effects in transient flows are highly 

non-linear. Terms in which finite-differences are used to represent quantities which are 
integrals rather than derivatives, in particular pipe friction, may introduce numerical 
instability and require particular care. It has been argued that a linearised friction term does 

not adequately represent this high frictional effect in gas and so a second-order 

approximation such as the trapezoidal rule has been used. 
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However, Suwan and Anderson (1992) discovered an unconditionally stable linear 

implicit approximations adopted from the method of characteristics, which was the most 

accurate of the many approximations tested over representatives ranges of data. A second- 

order approximation (refer to section 4.3.2) is used to calculate the friction force in this 

model. 

2.6 HEAT TRANSFER 

2.6.1 INTRODUCTION 

Whenever a disturbance occurs in pipe flow system, it causes changes in temperature 

because the change in pressure and velocity of the gas involves an acceleration that in turn 
derives it energy from the internal energy of the gas. This situation leads to heat transfer 
between the gas and its surroundings. The heat transfer term, 0, is defined as the heat flow 

into, or from the pipe wall per unit length of pipe. Although this term is considerably 

smaller in magnitude than the friction term, it is still a necessary inclusion especially when 

considering long distance pipelines. 
Heat transfer occurs by means of forced convection through the turbulence 

boundary layer of the gas in the pipe, conduction through the pipe wall, by natural 

convection outside the pipe and radiation to the surroundings. There are two extreme cases 

of heat transfer namely isothermal flow and adiabatic flow including the special case of 
isentropic flow. In the isothermal flow model the temperature is assumed to be constant 

and therefore there is a net heat flow through the pipe. In this case the energy equation 
becomes redundant except to calculate the value of the heat transfer, n. In the adiabatic 

model, it is assumed that there is no net flow of heat through the pipe. However, in reality 
some heat transfer will take place between the gas and its surroundings although thermal 

equilibrium will not always be achieved. 

2.6.2 HEAT TRANSFER PROCESS 

The most common approach in unsteady flow modelling has been to use either of the two 

extreme cases described in Section 2.6.1. Isothermal flow relates to slow dynamic changes. 
If a pipe is long and the change is relatively gradual, the gas will tend to come to thermal 

equilibrium with the pipe. The mass of the pipe is usually much greater (order of 15 times) 
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than the gas it contains. In this kind of situation therefore, the assumption of constant 

temperature is reasonable. Adiabatic flow relates to fast dynamic changes in the gas, where 

it is assumed that the pressure changes occur instantaneously allowing no time for heat 

transfer to take place between the pipe and the surroundings. 

The subject of whether or not the isothermal flow assumption is adequate for 

modelling rapid transients, especially those following a ruptured high-pressure gas pipeline, 
has been discussed by among others Flatt (1993-96). It is generally considered that for such 
flow situations, the isothermal model is inadequate and thus the energy equation has to be 

used. However, the isothermal model has continued to be used by various workers 
including Lang and Fannelop (1987); Kunsch, Sjoen & Fannelop (1991); Lang (1991); and 
Olorunmaiye & Imide (1993). Wilson (1981) investigated the heat transfer to a fluid 

experimentally. He observed an isothermal condition throughout the length of the pipe, 

except for about the last 200 diameters, during which the rapidly accelerating flow near the 

pipe exit was moving too quickly to gain heat from the pipe walls. The justification which 
is commonly given for this assumption is that the mass flow rate at the rupture shows a 

negligibly small difference between the isothermal and adiabatic models. Kunsch, Sjoen & 

Fannelep (1991). and Lang (1991) used both the adiabatic and isothermal assumptions. 
Both studies observed the difference in flow rates at the break between the two models to 

be very small. Kunsch, Sjoen and Fannelep (1991) attributed this fact to the opposite 

effects of the critical density (higher for isothermal flow) and the critical velocity (lower for 
isothermal flow), on the chocked mass flow rate, which was observed by Ryhming (1987). 

Surprisingly, Olorunmaiye and Imide (1993) found that the flow rate predicted at 
the broken end of the pipe was lower than that of a model based on the adiabatic flow 

assumption by about 18%, but at the same time agreeing quite well with that of Lang and 
Fannelop (1987), for isothermal flow. However, the p(x, t)-distributions of the two models 

are quite different (30% discrepancy). Flatt (1993-1996) believes that this fact was known 

to some of the workers who have used the isothermal model, but they pretended not to be 

aware of it. He states that the coincidence explained above comes from the fact that the 
isothermal flow model leads to almost equal but opposite relative errors in density and 
velocity, such that their product, pu (=m/A) is nearly correct. Flatt (1993-1996) 
demonstrates analytically that the use of this assumption for gas pipeline rupture problems, 
is in fact a violation of the second law of thermodynamics. 
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In his model for unsteady compressible flow following a rupture in a long pipeline, 
Flatt (1986) used both assumptions of isothermal and adiabatic flow. Admitting that both 

assumptions are extremely idealised, reality being somewhere in between, he applied the 

isothermal assumption on the initial conditions and adiabatic flow for the time thereafter. 

His justification was that the isothermal assumption is not valid if important changes in the 

thermodynamic state of the particle occur over short distances as is the case near the broken 

end of a pipeline. Before the rupture, the flow is slow and the time a particle takes to move 

along the whole pipeline is long. The isothermal flow approximation for the initial 

condition therefore appears very reasonable. The sudden introduction of the adiabatic 
hypothesis has almost no effect on that part of the pipeline situated between the upstream 

end of the pipe and the location of the wave front. This hypothesis is confirmed by 

experimental results and thermodynamically using the Mollier-entropy diagram for a steady 

adiabatic pipe flow of a perfect gas with low Mach number. The hypothesis of adiabatic 
flow, especially near the broken end where particles are accelerated relatively rapidly and 

over a short distance was considered closer to reality than the hypothesis of isothermal 

flow. He recommended that for long time intervals the heat transferred into the pipeline 

should be accounted for though admitting that this would considerably complicate the 

analysis. 

In their similar model Van Deen and Reintsema (1983) started by admitting that 

since the thermal contact between the pipe and its surroundings is generally difficult to 

estimate, or is even completely unknown, it is difficult to give a reliable estimate of the heat 

transfer into the pipe. However, they avoided the problem of estimating the heat transfer 
by assuming that the temperature and pressure changes during the transient phenomenon 
could be described by a linear relationship; 

VT - b. Vp (2.53) 

where b is a constant to be determined. This representation is more general than the 

common practice of assuming either isothermal or isentropic flow. Equation (2.53) was 
substituted into the energy equation and after elimination of 12+cau an equation without the 

unknown b was obtained. In this study, a non-isothermal non-adiabatic heat transfer 

model is used. 
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2.6.3 CALCULATION OF HEAT TRANSFER 

For fluid flows at high velocities, the velocity of flow varies from zero at the pipe wall to 

the free stream velocity outside the boundary layer. This velocity distribution, which is 

shown in Fig. 2.6, sets up viscous stresses which do shearing work on the fluid particles. 
The work in turn increases the internal energy as well as the temperature of the particles. 
The resulting temperature gradient causes heat to be transferred through the fluid from the 

region near the wall to the main body of the fluid, in order to transport the energy 
dissipated by the shear work. 

Fig. 2.6 Distribution of Pressure, Temperature and Flow Velocity Along the Pipe Diameter 

Two different approaches to calculation of heat transfer to the gas were considered 
in this study. In the first approach, one of the relationships between the dimensionless 

numbers, namely Re, Pr, Nu and St is used to calculate the convective heat transfer 

coefficient across the boundary layer. In the second approach the adiabatic wall 
temperature and recovery factor are used to calculate the heat transfer. The difference 
between the two approaches is only the way in which the heat transfer between the fluid and 
the inner wall of the pipe is calculated. For the rest of the system, the analysis is the same 
for both approaches. The two alternatives for calculating the heat transfer to the fluid are 
described in the remaining part of this section: 

(a) Heat Transfer Calculation by Using Adiabatic Wall Temperature and 
Recovery Factor 

After the effects of viscous shearing work and heat conduction within the boundary layer 
have been brought to a balance everywhere in the fluid, the pipe wall is at an equilibrium 
temperature (T,,, ). The temperature distribution in the boundary layer is as shown in 
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Fig. 2.6. The temperature difference responsible for the heat transfer from the pipe wall into 

the fluid is related to the adiabatic wall temperature and an empirical value, R, known as 

the recovery factor. The recovery factor is related to the adiabatic wall temperature by the 

following relationship: 

T°" T 
Re (2.54) 

To-T 

where T and T, are average free stream static and stagnation temperatures respectively, as 

shown in Fig. 2.6. T. is calculated by equation (2.75). Shapiro (1953) pointed out that 

various experiments had yielded values of recovery factor for subsonic pipe flow between 

0.87 and 0.91; and for supersonic pipe flow between 0.83 and 0.90. 

From equations (2.54) and (2.75): 

Ta "T+RcU2 (2.55 ) 
2Cp 

The heat transfer through the pipe wall and from the outside pipe wall to the surrounding 

atmosphere is given by the equation: 
Sä=Up. (T. 

0-T.. 
)=Uo(TA-Tj (2.56) 

The overall heat transfer coefficient across the pipe wall is given by the equation: 

kp 
Up� (2.57) 

In 1+ 2c 
d 

The overall heat transfer coefficient from the outer pipe wall to the surrounding 
atmosphere is calculated in either of two ways, depending on whether the pipe is exposed 
to the atmosphere or buried in a medium other than air at atmospheric conditions. In most 
cases, pipes would be buried in either the ground (for onshore pipelines) or water (for 

offshore pipelines). The overall heat transfer coefficient outside a buried pipe is given by 

the equation: 

Uo " 
km 

In 1 2D 

d . 2c 

(2.58) 

and that for pipes exposed to the atmosphere is given by the equation: 
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U. "d. c hCA (2.59) 
2 

In equation (2.58) above, it is assumed that heat transfer is uniform in all radial directions 

of the pipe. For natural convection in air at atmospheric pressure, hcA is calculated using 

the following simplified expression: 

hCA .Ber (2.60) L 

where B and C are constants depending on the geometry and L is the significant length, also 

a function of geometry and flow. AT is the temperature difference between the surface and 
the bulk air in K. 

McAdams suggested values for horizontal cylinders as shown in Table 2.1 below. 

The values of hcA calculated from these coefficients have the dimensions of W/m2. The 

constant numbers Pr and Gr are calculated using equations (A-12) and (A-14) respectively. 
For most cases of high-pressure gas flow in pipes, the product GrPr lies between 10' and 
109. The first row of Table 2.1 is used, resulting into the following equation for hCA: 

h C4 " 1.32 
TA 

d 

T"WO 4 (2.61) 

GrPr B C L 
10'<GrPr<109 1.32 'A Diameter 
109<GrPr<1012 1.24 1/3 1 

Table 2.1 McAdams Constants for Natural Conversion to Air 

The value of T,, 
0 

is calculated from equation (2.56) as follows: 

Up,, Ta�. UoTA 
TM, - (2.62) 

Uý + Uo 

An approximated value of T0 is used in equation (2.61) to calculate the value of hCA. In 

this study, the value of T,, 0 at the previous grid point is used. However, if a higher degree 

of accuracy is required, an iteration procedure could be used. The value of ä2 is calculated 
using equation (2.56), after the above calculations. The radial temperature distribution over 
a section of the pipe and its surroundings is shown in Fig. 2.7. 
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(b) Heat Transfer Calculation by Using Overall Heat Transfer Coefficient Across 

the Boundary Layer 

Two relationships are commonly used to calculate the overall heat transfer coefficient 

across the boundary layer, namely the Colburn equation and the Dittus-Boelter equation 

(1930). The Colburn equation is as follows: 

St = 0.023 Rd-0.2 Pr-73 (2.63) 

where St is evaluated at the average mean fluid temperature, Re and Pr are evaluated at the 

average film temperature, Re>104,0.7<Pr<160, and L/d>60. The Dittus-Boelter equation 

(1930) is as follows: 

Nu = 0.023 Re°-g Pr" (2.64) 

where n=0.3 if the fluid is being cooled 

n=0.4 if the fluid is being heated 

All the fluid properties are evaluated at the average mean fluid temperature. 

Re>104,0.7<Pr<100, and L/d>60 

Depending on whether equation (2.63) or (2.64) is used, equation (A-7) or (A-13) 

respectively, are used to calculate the convective heat transfer coefficient across the 

boundary layer (hßL). The overall heat transfer coefficient across the boundary layer is 

given by the equation: 

UBL .d1 BL (2.65) 
2 

Equation (2.64) is not suitable for transient analysis of linebreak in high-pressure gas 

pipelines because both cases of fluid being heated and being cooled occur during the 

transient event. This would require changing the value of n during the analysis, which 

makes the procedure more complicated. The other overall heat transfer coefficients i. e. Up, 

and U. are calculated in the same way as shown in section (a). Referring to Fig. 2.7, the 

heat transfer into the gas is given by the equation: 

Sä = UIL(Ta, - T) = Urw(Two - Tm) = UO(TA - Tn0) (2.66) 

Equation (2.66) is solved simultaneously for the values of either Tni and/or T. The values 

obtained are substituted into equation (2.66) together with the values of respective overall 

heat transfer coefficients calculated earlier, to obtain Sä. From equation (2.66); 

UnL(T ,- T) = Uew(THO - TM) 

(UBL + UPw)T - Uew Two - Ußß T=0 (2.67) 

and 
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Fig. 2.7 Radial Temperature Distribution Across a Pipe Section and its Surroundings 

UPW(Two - Tm) = UO(TA - Two) 

- UPw T,, i + (UPW + U0)TNO - Uo TA =0 (2.68) 

Multiplying equation (2.67) by (UPw +Uo) and equation (2.68) by UPw we get: 

(UPW +Uo) (UBL + UPW)Twi 
- 

(UPW +Uo) UPW Two = (UPW +Uo) UBL T (2.69) 

- 
(UPW)2 Tai + UPW(UPW +Uo)Two = UPw Uo TA (2.70) 

Adding equation (2.70) to (2.69) we get: 
Twi RUPW + Uo) (UBL + UPW) - (UPW)2] = (UPW + Uo) UBL T+ Upw U. TA 

(U19V+UO) UBL T. Up Uo TA 
(2.71) T 

wi 2 (UPW + Uo )(UBL + UPW) - UPW 

From equation (2.67) 

(UBL ` Upw) TM - UBLT 
Two - (2.72) 

UPw 

Tiley (1989) used a simplified approach of estimating the heat transfer into the pipe. 

She argued that unless the pipe is lagged, it can be assumed that the higher conductivity of 

the pipe results in a negligible temperature difference between the internal and external pipe 
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walls. Therefore the heat transfer may be estimated by the temperature difference between 

the mean wall temperature and the gas temperature and using the Stanton number method 

for a circular cross-section pipe; 

0- ad p uCpSt(T-T) (2.73) 

The problem now remained to evaluate the Stanton number. Tiley (1989) considered two 

methods, either using the boundary layer theory or using a function of the Reynolds and 
Prandtl numbers. She argued that since the heat transfer term in the basic equations is 

comparatively small and since variation in Stanton number with flow rate are not sufficient 

to warrant additional computation involved, a constant value Stanton number was used, 

with provision for "tuning" each situation encountered. In this study, the heat transfer is 

calculated using the adiabatic wall temperature and recovery factor method described in (a). 

2.7 OTHER APPROACHES TO THE BASIC EQUATIONS 

A new approach to the basic equations of flow has been proposed by Flatt and Trichet 

(1995). The method is called the gamdeleps method and it utilises the fluid stagnation 

properties. Stagnation properties are defined as the properties resulting when a fluid is 

decelerated to zero velocity in a steady flow adiabatic process with no work interaction 

occurring and also gravitational, magnetic, electric and capillary effects absent. In this 

report, the stagnation properties will be denoted by a subscript o. According to the first law 

of thermodynamics, stagnation enthalpy is given by the equation: 

2 
ho .h. 

u (2.74) 
2 

For a perfect gas, stagnation temperature is given by the equation: 

To - T. u2 
2Cp 

(2.75) 

The stagnation pressure for a compressible fluid flow is: 

x 
po .p0Xt (2.76) 

-T 

) 
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The two non-dimensional coefficients y and 8 described in Sections 2.3 and 2.4.5 

in relation to the gamma delta method developed by Flatt (1993) have been used by Flatt 

and Trichet (1995), together with a third non-dimensional coefficient e, to calculate the 

stagnation properties for the gaseous, liquid and the two-phase regions of a pure real fluid. 

The coefficient e is calculated using the equation: 

P aY (2.77) 
Y aP S 

This third coefficient e enables description of an infinitesimal isentropic process in terms 

of the Mach number. The three coefficients y, 8 and e describe infinitesimal processes in 

a thermodynamically rigorous manner and are valid for the gaseous, liquid and two-phase 

regions of a pure real fluid. They were used in a new method named gamdeleps method by 

Flatt and Trichet (1995), who also used them to describe the relationships between 

stagnation and static properties of real gases. The relationships are as follows: 

_ 
bl 

To 1e-1 Alfa c1 (2.78) 
2 

po p1s-21 )1ý21 `'1 (2.79) 

_Y E-1Z `'1 
2 

Af (2.80) Po'P1" a 

Y-b 
Zo az1e21 At 7-1 (2.81) 

a2l 2 

ao "al e- 1 
At" 2 (2.82) 

2 

The sign (-) on top of the dimensionless coefficients denote the arithmetic averages of the 

values between the two states. 
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Stagnation properties provide a convenient reference state in studying properties 

ofa flowing fluid. Flatt (1993-1996) suggests that the use of stagnation properties in the 

equations of conservation for unsteady flow of fluids in pipes avoids many difficulties due 

to mathematical singularities at the choked end, which are often encountered when static 

quantities are used. The proposed procedure, which is not yet known to have been used, 

involves writing the conservation equations in the classical form with static quantities and 

then substituting stagnation variables for the static ones. 

The gamdeleps method enables computer codes to be written without the necessity 

of distinguishing between the types of phase the fluid is in. This is especially relevant to the 

study of linebreak in high-pressure gas pipelines where gas/liquid mixtures are anticipated 

and the location of the beginning or end of vaporisation region varies with time. A 

computer code written for any real gas can be used for a perfect gas by setting y=S=c=K. 
Neither the gamdeleps method nor the stagnation properties have been used in this study. 
The stagnation properties were not used, as suggested by Flatt (1993-96) because the 

numerical algorithm did not suffer the singularity problems such as those experienced by 

Flatt (1986). However, the use of the gamdeleps method is recommended as the next stage 

of this study. The gamma delta method which has been used in this model is applicable only 
for gas or liquid or homogeneous liquid/gas mixture phases. 
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CHAPTER 3 

METHODS FOR SOLUTION OF THE BASIC EQUATIONS 

3.1 INTRODUCTION 

Unsteady flow of fluids in pipelines can adequately be represented by a system of partial 

differential equations, of first or second order depending on the type of problem, as 

discussed in Chapter 2. Such systems may either be parabolic or hyperbolic. Methods 

for solving these equations can quite generally be classified as either analytical or 

numerical. Analytical methods of solution are very laborious as regards computation and 

therefore are unsuitable for solving problems of this nature, where the equations are 

rather complex. Analytical or exact solution is available only for greatly simplified 

equations and situations and it is very laborious as regards computation. It offers the basis 

for verifying the accuracy of numerical techniques. As a result of these limitations, the 

analytical method of solution is not feasible normally for analysis of transient flow 

conditions in pipe systems. Many numerical methods are available and have been used for 

the solution of these equations. 
Apart from the numerical method to be selected, the analyst is faced with a choice 

of whether to use a distributed or lumped parameter approach. In the lumped parameter 

approach, the inertia of the fluid in a particular pipe is treated as a lump as opposed to 

continuously distributed in the former approach. Distributed parameter modelling requires 

a relatively complex analytical model and may involve a large number of calculation 

necessary for fast transients occurring in a time scale which is short compared to system 

characteristic time. Lumped parameter modelling utilises a much simpler analytical model 

and requires far fewer calculations. It saves much time and effort and it provides reliable 

solutions for large complex networks. The time interval must be chosen small enough to 

account for pressure waves traversing the shortest pipe section in the network, therefore 

requiring carrying out frequent calculations. 
In this chapter, the most commonly used numerical methods are described 

together with their comparative advantages and drawbacks in various fluid transient 

phenomena. The methods are the method of characteristics, finite-difference methods, 
finite-element methods, flux-difference splitting schemes, the method of lines and the 

wave-plan method. More than three dozen studies, which have used one or the other of the 
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above methods of solution are summarised and discussed, with the objective of leading 

to the selection of a method to be used for modelling of high-pressure gas pipe rupture. 

3.2 NUMERICAL METHODS OF SOLUTION 

3.2.1 FINITE-DIFFERENCE METHODS 

3.2.1.1 General Description 

Generally, the basis of finite-difference formulations is that the differentials of the dependent 

variables appearing in the partial differential equations, are expressed in approximate 

expressions so that a digital computer which performs only standard arithmetic and logical 

operations can be employed to obtain a solution. Two methods which are used for 

approximating the differentials are the Taylor series expansion and the use of polynomials. 

The approximations of the derivatives may be expressed as either forward, backward or 

central differences; first-, second-order accurate and so on. 

The finite-difference approximations are used to replace the derivatives that appear 

in the partial differential equations. Finite-difference formulation of the partial differential 

equations can be done in two ways, namely, explicit and implicit formulations. Finite- 

difference methods are therefore categorised in the two types mentioned above. Among 

the other categories of numerical methods, which have been covered separately in this 

chapter, there are some which are based on finite-difference formulation. These are the 

method of characteristics, the flux-difference splitting schemes, the method of lines and the 

wave-plan method. The above methods are covered separately in Sections 3.2.1.3,3.2.3, 

3.2.5 and 3.2.5 respectively. This section therefore, deals with formulations that are 

entirely based on the explicit and/or implicit finite-difference formulations. 

Solution procedures based on the explicit and implicit formulations are different. 

In the explicit formulation, all unknowns can be solved for directly at each grid point. In 

the implicit formulation, more than one unknown exists and therefore the finite-difference 

equations must be written for all spatial grid points, at a given time level, to provide the 

same number of equations as there are unknowns and which are solved simultaneously. 
Obviously, the solution of explicit equations is simpler than the implicit equations. 
However, implicit formulations are more stable than explicit formulations. This review 
focuses on the explicit and implicit finite-difference methods that are relevant to the solution 
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of unsteady flow of gas in pipelines. Detailed description of the equations used in 

conjunction with the Lax-Wendroff second-order two-step method is given in Section 

3.2.1.4. The MacCormack second-order method and the Warming-Kutler-Lomax third- 

order methods are described in detail in Sections 4.3.2 and 4.3.3 respectively. 

3.2.1.2 Explicit Finite-Difference Methods 

Explicit finite-difference methods integrate the basic partial differential equations by 

considering the changes in the dependent variables along the direction of the independent 

variables, producing the solution values at evenly spaced points in the physical plane. The 

method is classified as explicit because the value of the dependent variable at one particular 

time level, is calculated directly from values of the dependent variable at previous time 

levels. Many different explicit finite-difference methods, ranging from single-step 

first-order accurate to four-step fourth-order accurate schemes, have been developed for 

the fluid transient equations. Some of the popular methods are listed below: 

(i) Forward Euler Method 

(ii) Method of Lax 

(iii) Lax-Wendroff Single-Step Method 

(iv) Lax-Wendroff Two-Step Method 

(v) Alternating Gradient Method 

(vi). MacCormack Method 

(vi) Rusanov-Burstein-Mirin Method 

(vii) Abarbanel-Gottlieb-Turkel Method 

(viii) Hopscotch Method 

(ix) Leap Frog Method 

(x) Pseudoviscosity Method 
(xi) Warming-Kutter-Lomax Third-Order Method 

Explicit finite-difference methods also have their advantages and disadvantages. 

The major advantage of explicit finite-difference methods especially in comparison with the 

method of characteristics is that they are very simple to programme. The conservative law 

form of the hyperbolic equations has the favourable property that conservative finite- 

difference methods applied to it produce solutions automatically satisfying the 

Rankine-Hugoniot relations across a shock, which greatly facilitates accurate shock 
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calculation. No special care need to be taken of the location of shocks, therefore it is 

suitable for systems in which shocks form. There are no eigenvectors to be computed. 

Eigenvectors are needed solely for testing stability conditions. There are no linear or 

non-linear equations to be solved. Explicit finite-difference methods need comparatively 

little computer memory space since they solve the equations directly rather than 

simultaneously. The majority of finite-difference methods (including implicit) models 

neglect the term uau/ax as in the method of characteristics but some also neglect the term 

a(pu)/at to get a creeping flow model. Second-order of accuracy is normally regarded as 

sufficient for the analysis of gas transients. Finite-difference methods produce solution 

values at evenly spaced points in the physical plane. One of the major disadvantages of 

finite-difference methods, other than the method of characteristics, is that continuous initial 

data may propagate along the characteristics thus making it difficult to handle. Explicit 

methods suffer from stability problems since they are only conditionally stable. Time steps 

are restricted by a stability criterion, which result in a large amount of computer time being 

required. They are therefore not suitable for analysis of large systems or unsteady flows 

over long periods of time. In the presence of shocks, methods of higher than first-order 

produce considerable overshoot and oscillatory systems. A smoothing parameter for 

overshoot can tend to smooth out the transient peaks. Unlike the method of characteristics, 

finite-difference methods are unable to solve the boundary conditions naturally. 

The MacCormack Method is superior to the method of characteristics when 
Courant number (Cj differs from unity appreciably. It is inherently dissipative i. e. because 

it is second-order accurate in both space and time, no special shock capturing approach is 

needed. It is unconditionally stable if C. is less than unity and it produces minimal precision 
loss when C. moves away from unity. The method permits the use of a grid spacing that 
is not overly fine even in highly complex cases. As the method is quite efficient, overall 

computation effort remains reasonable. The MacCormack method could be very well suited 
for applications of increasing complexity such as two-phase, gas-liquid flow problems and 

multi-dimensional flow. It is simple and has low development cost. The complete 

equations can be used without making any simplification. 

The pseudoviscosity method has a relatively good accuracy. It is stable and more 
suitable for the Lagrangian formulation. Any shock front that occurs in the flow is spread 

over more than one finite-difference mesh length and the dependent variables; i. e. pressure, 
velocity, density, internal energy, entropy, etc. are continuous throughout a shock front; 
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thus eliminating the need for shock fitting. It produces no overshoot in pressure and is 

more versatile i. e. can be used for variable cross-sectional area ducts. 

The Warming-Kutler-Lomax method is third-order accurate both in space and time. 

It is a simple extension of the second-order schemes. The diffusive and dispersive errors 

are easily controlled by selecting appropriate numerical parameters. It captures shock 

without any special treatment. 

3.2.1.3 Method of Characteristics 

The method of characteristics is the natural numerical method for quasi-linear hyperbolic 

systems in two independent variables. By an appropriate choice of coordinates, paths can 
be defined in the x-t plane, called characteristic lines, along which the system of partial 
differential equations is converted into a system of ordinary differential equations that may 
be solved by standard single step finite-difference methods for ordinary differential 

equations. The basic rationale underlying the use of characteristics is that by an appropriate 

choice of coordinates, the original system of hyperbolic equations can be replaced by a 

system whose coordinates are the characteristics. The use of this method becomes 

particularly simple when applied to two equations in two dependent variables. When the 

characteristic coordinates are used in this way, the method is known as the natural method 

of characteristics. 
One of the major drawbacks of the method of characteristics is that if the dependent 

variables are required at fixed time intervals, a two-dimensional interpolation in the 

characteristic net is required and this may be quite complicated. This drawback has been 

overcome by the mesh method of characteristics called the method of specified time 
intervals, which solves the characteristic equations on values for the dependent variables 

at specified time-distance coordinates. With the mesh points defined in advance, and the 
interpolation taking place as computation advances, it becomes a one-dimensional 
interpolation. Although the method of characteristics is most ideal for the solution of 
quasi-linear hyperbolic equations with two dependent variables on characteristics, which 
is the natural coordinate system, a great deal of effort has been made to extend the method 
to other more complicated cases. However, this is at the expense of simplicity and 

accuracy. The above effort includes the extension for calculating three dependent variables 
encountered in transient non-isothermal gas flow. Also several methods have been 
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developed to increase accuracy of solution in these complicated cases. A detailed 

description of the procedure and derivation of equations used in method of characteristics 

solutions is given in Section 4.3.1. 

The method of characteristics has many advantages compared with the other 

numerical methods of solution. In the method of characteristics solution, discontinuities in 

the initial value may propagate along the characteristics, making it easy to handle them. 

Large time steps are possible in the natural method, since they are not restricted by a 

stability criterion. The boundary conditions are also properly posed. The method of 

characteristics is relatively accurate, but requires one to understand how it operates and to 

choose a suitable time step. The method can be readily adapted to solve for three 

dependent variables required for the analysis of non-isothermal transient gas flow. It is time 

consuming to programme on a computer. Discontinuous initial data and shock waves do 

not lead to solution with overshoot and details are not smeared, in the natural method. 
Exact solution is possible in the constant coefficient case with two dependent variables 

regardless of eventual discontinuities in the initial data, in the case of the natural method. 

No attention needs to be paid to the position of the shocks, in the hybrid method and in 

general it causes only a small overshoot. The hybrid method is easily generalised to more 

than two dependent variables. The natural method is unconditionally stable. The method 

of characteristics also has some disadvantages. If more than two dependent variables are 

required to describe the system in the natural method, then the complexity increases. If the 

solution of dependent variables in the natural method is required at fixed time intervals, then 

two-dimensional interpolation in the characteristic net is required, and this can be very 

complicated. The hybrid method is comparatively slow because the time steps are restricted 
by a stability criterion. If calculation is to be performed in terms of an arbitrary set of 
dependent variables, eigenvalues and eigenvectors are needed at each node (easy with 
Riemann type variables). Difficulties arise with curved characteristics, because it requires 

solving for different levels of time at each step, which is tedious and time consuming and 
increases the complexity. The hybrid method is difficult to apply to networks because of 
the restriction by the stability criterion i. e. Ax i ax At (the hybrid method is conditionally 

stable). If more than two dependent variables are required to describe the system, then the 

complexity of the computation increases and hence computing costs and time become 

considerably high. In order to simplify the computation, part of the momentum equation 
i. e. the term uaulax in equation 2.7 is neglected and thus yielding straight characteristics. 
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3.2.1.4 Lax-Wendroff Second-Order Two-Step Method 

Referring to the finite-difference grid in (Fig. 3.1) and Equation (4.73), the two-step 

second-order Lax-Wendroff approximation [as developed by Lax and Wendroff (1960)] 

may be written as follows: 

First Step: 

I A(, 2J ?)-I p(t. t, ) +2 Axr(r. t, ý) - 
B(rr)]' 

I 
Agc(i. t. º) ' 

CUýý - O(Ox2, AQ (3.1) 
22 

Second Step: 

A(, /, 1) - A(,, ) - xý r. ý -B, , 1. er(c ,,. c. o(ex2, et2) (3.2) 
2ý 2i 

cr 2+ý 2ýJ 
0.21.2 0-2J. 2ýJ 

where O(Ax2, At2) is the truncation or rounding error. 
A close examination of Equations (3.1) and (3.2), reveals that the values at all the points 

at time level t= i+ý/2 can be found in the first step. These values are then used in the second 

step to derive the values at time level t =j+1. This is illustrated in Fig. 3.1. 

+t 

I+1/2 

ýIIIý 
Joýbýo 

a, 

Distance 

0 initial known values 

0 
values found the first step of calculation 

Q values found from the second step of calculation 

Fig. 3.1 Finite-Difference Grid Illustrating the Two-step Lax-Wendroff Method 

The Lax-Wendroff method produces slight overshoot at discontinuities and shocks. 
It is most suitable for dealing with systems in which shock waves form. With this method, 
it is easy to deal with the energy equation. It has a relatively good accuracy and it is stable. 
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It is especially effective for the Eulerian formulation. Any shock front that occurs in the 

flow is spread over more than one finite-difference mesh length and the dependent 

variables i. e. pressure, velocity, density, internal energy, entropy etc. are continuous 

throughout a shock front; thus eliminating the need for shock fitting. The method yields 

an overshoot in pressure at the shock front, thus reducing accuracy in determining peak 

pressure. 

3.2.1.5 Implicit Finite-Difference Methods 

In implicit methods the finite-difference equation contains, at a particular time level, 

dependent variable which can not all be calculated explicitly from the previous level. Many 

numerical methods based on this principle have been developed and used for the solution 

of various engineering problems. Those which have been popular for the solution of the 

partial differential equations describing unsteady fluid flow in pipelines include the 

following: 

(i) Fully Implicit Method 

(ii) Crank-Nicolson Method 

(iii) Centred Difference Method 

(iv) Characteristic Finite-Difference Method 

(v) Explicit-Implicit Methods 

(vi) Guy Method 

(vii) Gear Method 

(viii) Backward Euler Method 

(ix) Beam-Warming Method 

The major difference between explicit and implicit finite-difference methods is that 

implicit methods are unconditionally stable. The restriction on time step, which is 

experienced with other methods is overcome, i. e. no restriction on the maximum allowable 

time step. The maximum practical time step is limited by the rate of change of the variable 
imposed at the boundary conditions rather than by limitation required by a stability criterion. 

In case of rapid transients, where small time-steps and large number of sections are 

required, the method looses the advantage of fast computation. The major weakness of 
implicit finite-difference methods is that they can yield unsatisfactory results for rapid 

transients. They are suitable for the analysis of slow transients on relatively large 
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networks. Some methods have been known to produce erratic results during the imposition 

of some types of boundary conditions. Computer programmes based on these methods do 

not allow easy extension. The methods require the solution of non-linear simultaneous 

equations usually by Newton-Raphson linearisation at each time step; for complicated gas 

networks the matrix becomes quite large, the computer storage requirements become very 
large and the solution time can be excessive. These drawbacks have been minimised by 

the use of a sparse matrix procedure. 
The fully implicit method does not suffer from spurious oscillations but does not 

have as high asymptotic accuracy as At-O, as the Crank-Nicolson method. Though the 
fully implicit method involves solution of simultaneous non-linear equations, usually by the 

Newton Raphson method, the jacobians are sparse and therefore full advantage of this is 

taken in solving the large set of equations economically. Stability of the method depends 

on convergence tolerance. Rapid transient phenomena such as pulsation is filtered in case 

of large time-step adopted. 
The Crank-Nicolson method has a high-order of accuracy. For sudden changes in 

the forcing function, the solution is prone to oscillation about the true solution. The 

method involves the solution of simultaneous non-linear equations, usually by the 
Newton-Raphson method. It is relatively simple, easier to programme and readily extended 
to pipeline networks of any size. Consequently, computation is much faster. The centred- 
difference method requires a large amount of computer storage and lengthy execution 
times. It has the advantage of using a sparse matrix method. The Beam-Warming method 
is second-order accurate in space and time. It introduces negligible diffusive errors and 

captures shock without special treatment. 

3.2.2 FINITE-ELEMENT METHODS 

The finite-element method is believed to be one of the oldest. It was used by Babylonians 
to evaluate numbers between those given in tables and by early oriental mathematicians in 

the approximation of the circumference of a circle. Solving an engineering problem by the 
finite-element approach involves the following steps: 

(a) Formulation of governing equations and boundary conditions 
(b) Division of the analysis region into finite elements 
(c) Selection of interpolation functions 
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(d) Determination of element properties 

(e) Assembling of global equations 

(f) Solution of global equations 
(g) Verification of solution 

The finite-element method consists primarily of replacing a set of differential equations in 

terms of unknown variables with an equivalent but approximate set of algebraic equations 

where each of the unknown variables is evaluated at a nodal point. Several different 

approaches may be used in the evaluation of these algebraic equations, and finite-element 

methods are often classified according to the method used. In order to arrive at a proper 

method for a particular problem, it may be necessary to examine several methods. The 

three most common methods of formulation of finite-difference equations are direct 

methods, variational methods and residual methods. 
Division of the solution region into elements can take the form of either one-, two- 

or three-dimensional elements of varying shapes. There is usually not a single correct way 

of dividing a particular solution region with all the others being wrong. Decisions on how 

to divide up the solution region into elements is based on engineering judgment and there 

are no definitive guidelines available. Depending on the positioning of nodes in the element 

and whether the sides of the element are straight or curved, finite elements are generally 

classified as simplex or higher order elements. Regardless of the geometrical shape, finite 

elements are categorised as either Lagrangian or Hermite elements. In contrast to the 
Lagrange family of elements, the Hermite category includes derivatives of the variables as 

well as values defined at the nodes. The theoretical basis of the finite-element methods 
has been covered extensively by Allaire (1985). Finite-element methods have not been 

used for gas transients as widely as the finite-difference based methods and thus there are 
not many of these methods known. 

Until recent years, only two methods namely the Galerkin Method, used by 
Rachford and Dupont (1974), and more recently by Osiadacz and Yedroudj (1989) and 
Kiuchi (1987); and the moving finite-element method, have been used. Bisgaard, Sorensen 

and Spangenberg (1987) developed a weighted residual finite-element method which uses 
the Galerkin finite-element method to discretize the equation. The most popular finite- 

element methods for fluid transients are therefore the following: 

(i) Galerkin Method 

(ii) Spectral Galerkin Method 
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(iii) Spectral Collocation Method 

(iv) Moving Finite-Element Method 

(v) Method of Bisgaard-Sorensen-Spangenberg 

Finite-element methods have some advantages over finite-difference methods. The 

former methods can be used to solve virtually any engineering problem for which a 

differential equation can be written. They have a higher accuracy because cubic hermite 

splines which should give errors which are of 0(h°) could be used. However, this accuracy 

cannot always be usefully realised due to the geographical nature of networks. Finite 

element methods are most useful for two and three-dimensional problems. Variational 

methods are easy to extend to two and three-dimensional problems. Residual methods can 

be applied to any problem for which a governing boundary value problem can be written. 

For the case of residual methods, once techniques are learnt, the details are relatively 

straight forward. The major disadvantage of finite-element methods is that they are 

somewhat complex, with complexity being proportional to the complexity of the differential 

equations for that particular problem. Direct methods are difficult to apply to two and 

three-dimensional problems. Variational methods lack a functional for certain classes of 

problems, for example those dealing with the flow of viscous fluid. It is difficult to find 

variational methods for some problems, even though they exist. The procedure for finite- 

element solution is rather lengthy and not widely used in gas network simulation. When the 

solution possesses discontinuities, higher-order methods may not always give more accurate 

solutions. 

The Galerkin method requires a lengthy execution time. It is formulated to treat 

slow transients. Computer resources required are small enough and it has some significant 

theoretical advantages. In using the moving finite-element method, care needed in 

treatment of boundary conditions. The method is very complicated to programme. 

3.2.3 FLUX-DIFFERENCE SPLITTING SCHEMES 

The concept ofupwinding has been used in local discrete approximations in finite-difference 

and finite-element methods for many years. Upwind schemes have become popular since 
the beginning of the 1980's and these methods now play an important role in computational 
fluid dynamics. They offer a sound theoretical basis of the characteristic theory for 

hyperbolic systems and are capable of capturing discontinuities. Some of the most common 
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methods for the solution of the basic equations for transient gas flow are the X formulation, 

flux-vector splitting methods and flux-difference splitting methods. 

The flux-vector splitting methods were pioneered by Steger and Warming. Van 

Leer developed a flux vector splitting with an implicit relaxation algorithm, which is 

efficient, simple and capable of capturing the sharp shock waves. The simplicity of this 

method, however, came at a price of reduced accuracy for viscous flows due to the large 

dissipation. Higher-Order Polynomial Expansion (HOPE) scheme of Lion and Steffen and 

the Low-Diffusion Flux-Vector Splitting Scheme of Van Leer were aimed at building up 

a pure flux-vector splitting scheme with vanishing mass diffusion. They did achieve the 

required split mass but instability and non-monotonicity of the schemes are not acceptable 

for practical calculations. Efforts have also been made to improve the original Van Leer 

scheme by using some techniques borrowed from the flux-difference splitting schemes first 

suggested by Hanel and then extended by Van Leer. The Van Leer-Hanel (1990) Scheme 

uses the net mass flux and the one side velocity, and the total enthalpy for the transverse 

momentum and energy equations. A successful and more promising scheme was suggested 

by Liou and Steffen, the Advection Upstream Splitting Method (AUSM). They introduced 

an advective Mach number by combining split Mach number contributions from the original 

Van Leer's mass splitting. In a variety of calculations, this scheme was reported to be as 

accurate and convergent as the Roe flux-difference splitting scheme, which was considered 

to be the most accurate by then. 

One of the more recent works in this area is that of Zha and Bilgen (1993). A 

new flux vector splitting scheme, using the velocity component normal to the volume 

interface as the characteristic speed, and yielding a vanishing individual mass flux at the 

stagnation has been developed. Flux-difference schemes can correctly capture shock waves 

and provide criteria to discriminate the correct information carried by propagating waves. 
The difference in flux between two adjacent node points is split into terms that will affect 

the flow evolution at points either side of the section under investigation. It is assumed that 

uniform flow occurs at each node point and over the cell extending one and a half grid 
intervals each side of the node point. A discontinuity generally separates two neighbouring 

cells in the middle of the interval, and the evolution in time of this discontinuity provides 

the criteria for splitting the flux difference over an interval into terms associated with waves 

that propagate up and down the pipe. The above procedure is known as the Roe method. 
This method was extended by Pandolfi to hyperbolic equations. The Roe method was used 
frequently since it can take care of both steady shocks and contact discontinuities. 

$3 



In an attempt to extend the upwind idea to global methods such as spectral or 

pseudospectral methods, Huang and Sloan (1993) developed a new upwind pseudospectral 

method for solution of linear singular perturbation problems without turning points. 

Glaister (1994) presented a flux difference splitting numerical scheme for the solution of the 

Euler equations of compressible flow of a gas in a single spatial coordinate. The scheme 

uses the Riemann solver for the Euler equations for a duct of variable cross-section and 

using the arithmetic mean (in contrast to the usual square root averaging of Roe's Riemann 

solver) for computational efficiency. 

Flux-difference splitting methods can correctly capture shock waves and provide 

criteria to discriminate the correct information carried by propagating waves. Good results 
have been obtained for flux-difference splitting methods, but required numerical 

experimentation. Flux-difference splitting methods are unconditionally stable and solution 

at boundaries create no difficulties. The X formulation method requires comparatively low 

computing time and is sufficiently accurate. The disadvantage of the A formulation 

methods, is that shock waves have to be treated explicitly. Flux-vector splitting techniques 

of first-order are very diffuse. Higher order flux-splitting methods generate post shock 

oscillations. A considerable amount of time is required to split the flux-difference. If a 

second-order method is used the integration in flux-difference splitting methods, the 

computation time is again increased. Some inaccuracies can develop in flux-difference 

splitting methods for cases such as interaction of shocks. Flux-difference splitting methods 

are complex and require large execution times. The Zha-Bilgen Method is very simple and 

easy to implement. It is efficient and capable of capturing the crisp shock profile. With 

third-order differencing, it produces results with least oscillations near the shock. 

3.2.4 METHOD OF LINES 

The method of lines has been studied and used extensively in the former Soviet Union for 

over forty years and more recently in the USA and other parts of the world. In this 

method, a system of partial differential equations is transformed into a system of ordinary 
differential equations by discretizing all the equations in. all but one independent variable. 
The system of ordinary differential equations can then be solved by any suitable numerical 

method. For the case where the partial differential equations depend on two variables, the 

method of lines is essentially a technique for replacing the system of partial differential 

equations in two variables, by an approximate system of ordinary differential equation in 

one of these variables. Thus for the fluid transient equations, finite differencing in the 

94 



space variable leads to a set of time-dependent ordinary differential equations. The 

number of ordinary differential equations is equal to the number of partial differential 

equations multiplied by the number of grid points used. In the above example, spatial 

derivatives are replaced by difference quotients. Since for the numerical solution of the 

generated system of ordinary differential equations the time variable is in fact discretized 

too, we finally obtain a full finite-difference system. Many of the known finite-difference 

methods can be thought of as being generated in this way. The boundary within which the 

method is applied is taken to be a rectangle. Boundaries of more general shapes can be 

reduced to this form by suitable coordinate transformations. Boundary conditions are 

prescribed on all or some sides of the rectangle. For applications in transient gas flow 

analysis, a parabolic form of the partial differential equations is used, for which the 

boundary conditions are only needed on three sides. 
Presently, there is a general purpose software code based on this method available. 

Ames (1977), Holt (1984) and Osiadacz (1987) gave theoretical descriptions of this 

method. In Holt's description, the method is based on a second-order partial differential 

equation of elliptic or mixed type whereas Osiadacz uses a parabolic partial differential 

equation. Osiadacz further discusses the application of this method to solve a system of 

partial differential equations describing the unsteady flow of gas in pipes and problems 

associated with its use, when dealing with rapidly varying signals and means of avoiding 

and overcoming them. It has been found that the procedure is satisfactory only where 
transients are gradual and continuous. There has been some recent studies where this 

method has been used practically to analyse unsteady flow of gas in pipelines. These are 

summarised in Section 3.3. 

Sophisticated packages based on the method of lines exist for numerical solution of 
ordinary differential equations. The method of lines is empirical and extremely simple. 
Higher-order methods can be used for the integration of time, for example fourth-order 
Runge-Kutta or multi-step predictor-corrector methods, which is approximate for parabolic 
problems. Numerical time-domain solutions using the method of lines can be compared 
directly with corresponding method of characteristics solutions. The main advantage of the 

method of lines is that it offers the possibility of utilizing highly developed software for 

ordinary differential equations. The method of lines is only suitable for numerical solution 
of partial differential equations of elliptic, mixed-elliptic and parabolic type. It is usually 
but not exclusively applied to parabolic problems. Special care must be taken on the 
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formulation of boundary conditions. The method is convenient in particular where 
lumped-parameter systems of ordinary differential equations in time is required. Second- 

and higher-order accurate methods do not give better accuracy for parabolic problems than 

first-order Euler integration. With the method of lines it is difficulty treat the boundary 

conditions properly. 

3.2.5 WAVE-PLAN METHOD 

The wave-plan method is based on a physical description of transient flow as a movement 

of pressure waves at sonic speed and corresponding pressure-flow relations for the effects 

of these waves impinging on fluid elements. It has some similarities with the method of 

characteristics solution because of the technique of tracing sonic disturbances throughout 

the system. The wave-plan solution is obtained as follows: 

(i) At the point or points in the fluid system where a disturbance is introduced, an 
incremental change in fluid flow rate because of the disturbance over a short interval 

of time is computed. 
(ii) The incremental pressure. pulse accompanying the flow rate change is then 

computed. 
(iii) This pressure pulse is propagated throughout the system at sonic speed. 
(iv) The pressure pulse is partly reflected and partly transmitted at all geometrical and 

physical discontinuities. 

(v) Pressure- and velocity-time histories are computed for any point in the system by 

summing with time the contributions of the incremental waves. 
The relationship between pressure head and flow changes caused by a pressure wave 
travelling in the fluid filled line can be computed from momentum considerations. 

Application of this method has mainly been on liquid systems and therefore the 
basic partial differential equations have been derived from the equations of continuity and 
momentum. In the original formulation of this method by Wood, Dorsch and Lightner 
(1966), the resulting equations for the case where the fluid and pipe are assumed to be 

elastic, are non-linear partial differential equations. Since this method was formulated, 

there has not been much published application, until recently by Boulos, Wood and Funk 
(1990) and again by Wood, Funk and Boulos (1990). Both of these are on hydraulic 

systems applications. 
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The wave-plan method is more easily applied to complex unsteady flow systems, 

in addition to lending itself better to physical interpretation. Complete solution is obtained 

i. e. both the transient and steady-state response to a suddenly imposed periodic flow 

disturbance are obtained. The disturbing function can be of arbitrary form and need not be 

periodic. Non-linear effects are easily included. The wave-plan method is advantageous 

in making certain types of dynamic response calculations. For example, the response of 

fluid filled lines having types of axial cross-sectional area distribution for which there would 

be little hope of obtaining closed-form analytical solutions, can be easily handled. The 

method readily solves problems in which there is interaction between the structural motion 

of the conduits and the perturbations in the fluid flowing within the conduit. It offers 

certain advantages for handling complex networks and it closely represents the actual 

mechanism of transient pipe flow. The main limitation of the wave-plan method when 
dealing with pipe networks is that the time interval must be chosen small enough to account 
for pressure waves traversing the shortest pipe section in the network thus requiring 
frequent calculations. However, there are economies in time when computing for 

associated long lines as calculations for intermediate points can be omitted. 

3.3 A REVIEW OF SOME NUMERICAL STUDIES 

3.3.1 GENERAL STUDIES ON TRANSIENT FLOW 

There have been many studies on fluid transients since the last review by Tiley (1989). 

These, together with some which were not used in the above study are reviewed. Also 

some studies which were used in the previous review are deliberately included so as to lead 

to what is thought to be a more consistent selection of a numerical method for modelling 
transients in ruptured gas pipelines. Most of the studies are based on gas systems, although 

a few based on other systems have also been included in order to support some of the 

arguments used in selecting the optimum method. The studies are generally grouped into 

three categories. The first category is that of studies consisting of theoretical reviews 
and comparisons of various numerical methods of solution of fluid transient problems. 
The second category consists of practical studies on various fluid transient phenomena, 

other than pipe rupture. The third category is that of studies dealing with pipe rupture and 
blowdown: modelling. The former two are dealt with in this section while the latter is 

covered in Section 3.3.2. 

97 



In the first category i. e. theoretical studies, Ames (1977) made a very 

comprehensive survey, description and discussion of finite-difference methods for partial 

differential equations. Some important hints were given to assist in deciding on whether 

a particular method is suitable for the solution being sought. If the equations are of no 

great complexity and are known to possess well behaved solutions, finite-difference 

procedures can be employed providing the limitations imposed by the characteristics are 

considered in the development. Since parabolic and hyperbolic equations characteristically 

have open integration domains, explicit methods are applicable to these problems. 
However, stability questions are crucial to these situations. On the other hand, stability 
difficulties are not as serious in implicit methods. In many non-linear cases, the use of 
implicit methods leads to the necessity to solve sets of non-linear algebraic equations. For 

such cases, there is little to be gained by employing finite-difference methods over that of 

characteristics. However, in some problems the proper use of implicit methods can lead 

to linear equations. Finite-difference methods can also be used for single or simultaneous 
first-order equations, providing the convergence and stability requirements are considered. 

Methods of treating shocks by finite-difference approximations include the Lax-Wendroff 

and the pseudoviscosity methods. Numerical evidence shows that in the presence of 
discontinuous initial values or shock waves, finite-difference methods of higher than first- 

order produce solutions with non-physical overshoot. 
Niessner . (1980), compared different numerical methods for calculating 

one-dimensional unsteady flows. The methods included are the method of characteristics, 
both explicit and implicit finite-difference methods and the method of lines. Advantages 

and disadvantages of each are discussed for different fluid transient cases. Implicit 

methods are appropriate if the time step is more restricted by the stability criterion of 
implicit methods than by accuracy requirements. Since the accuracy is determined by 

derivatives of the solution, the application of implicit methods is likely to be successful in 

the case where the solution varies slowly in space and in time or where the important effects 
propagate slowly with respect to the acoustic waves. This seldom occurs with unsteady 
flows, where the system changes significantly with small time intervals so that there is no 

opportunity for larger time steps. The study concludes that the Lax-Wendroff method 

seems to present a good compromise between simplicity, accuracy, speed and robustness 
(moderate overshoot in case of shocks). Because of its simplicity, it can be applied to all 
points except those on the boundary. Seemingly without loss of overall accuracy, boundary 
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points can be handled by a proper adaption of the method of Courant-Isaacson-Rees. 

Application of higher order methods like the method of Abarbanel-Gottlieb-Turkel often 

prove unhelpful because of the difficulty of a proper treatment of boundary conditions even 

if they are approximated with one order lower accuracy thereby not destroying the order 

of the method. Some attractive methods such as the leap-frog and the Hopscotch method 

produce considerable overshoot in the event of shocks. 

Goldwater and Fincharn (1981) explained and discussed applications of some of the 

popular numerical methods, including finite-difference methods, the method of 

characteristics and finite-element methods in modelling gas supply systems. Osiadacz 

(1987), gave a theoretical description of various finite-difference methods for computer 

solution of partial differential equations describing unsteady flow of gas in pipelines. 

Methods for both the parabolic and hyperbolic systems were presented. Of relevance to 

unsteady gas flow are explicit and implicit finite-difference methods, the method of 

characteristics and the method of lines. 

Thorley and Tiley (1987), provided a review of theoretical and some experimental 

studies with dense-phase gas transmission systems, without assumptions such as isothermal 

and isentropic flow of ideal gas and including the effects of wall friction and heat transfer. 

The major aim was to be able to choose a numerical method to be used to solve the partial 

differential equations describing gas flow transients following a pipe rupture. The more 

popular methods were reviewed including the method of characteristics, explicit and implicit 

finite-difference methods, finite-element methods and flux-difference splitting schemes. 

Implicit finite-difference methods were recommended for slow transients because they do 

not require small time steps for stability, hence provide considerable saving in 

computational time. The method of characteristics was recommended for rapid transients 

because of the advantage of using small time steps to model events changing rapidly in 

space and time. It was further stated that a method of solution that would not 

accommodate a varying wave speed should not be used for non-isothermal flows. The 

Lax-Wendrofl'two-step explicit finite-difference method was recommended as the most 

suitable for dealing with systems in which shock waves form. 

In the second category of studies, Fashbaugh and Widawsky (1972) presented 

results of an analytical study concerned with a one-dimensional prediction of the 

propagation of shock waves through air ducting systems, with variable cross-sectional area 

and including attenuations due to viscous effects at the wall of the duct. Shock fitting 
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using the method of characteristics, the pseudoviscosity method and the Lax-Wendroff 

two-step method were considered. It was concluded that shock fitting using the method 

of characteristics is complicated, especially for problems where more than one shock front 

is present. The pseudoviscosity finite-difference method in the Lagrange formulation was 
found to predict with good accuracy shock waves propagating through ducts with 
increasing cross-sectional areas up to area ratios of at least 10 to 1. Either the 

pseudoviscosity finite-difference method in Lagrange formulation or the Lax-Wendroff 

two-step method in the Eulerian formulation can be used for predicting shock attenuation 
in constant area ducts. The Lax-Wendroff method however, yields an overshoot in pressure 

at the shock front, which reduces accuracy when determining the peak pressure. The 

shock velocity differs slightly between the two methods, which is attributed to the pressure 

overshoot. The addition of the friction term (using a constant friction factor) in the 

pseudoviscosity and the Lax-Wendroff finite-difference methods brings these methods into 

fairly good agreement with experimental results. It was recommended that for accurate 

predictions in very long ducts, an appropriate function for the friction factor is needed and 
the pseudoviscosity method should be used. 

Padmanabhan, Ames and Martin (1978) used the explicit-implicit method which was 
introduced by McGuire and Morris for a simple boundary-value problem of wave 

propagation in bubbly two-phase mixtures. The homogeneous model of two-phase flow 

was used to simulate the transient response of a flowing bubbly air-water mixture 
subsequent to the rapid closure of a valve at the downstream end of a horizontal pipe 25mm 
in diameter and 18m long. Computation along the boundary was accomplished using the 

method of characteristics. It was shown that in the event of discontinuity due to shock- 
wave formation, the direct numerical integration using the explicit-implicit method is much 
simpler than the commonly used method of characteristics, which in this case involves a 
shock fitting procedure. It was concluded that the explicit-implicit method is simple and 
versatile, and because of the implicit set of computations is more suitable for boundary 

value problems than such explicit methods as the Lax-Wendroff scheme. 
Mathers, Zuzak, McDonald and Hancox (1976) presented a finite-difference scheme 

using backward-differencing in time and which is structured so that the difference equations 
resemble, as nearly as possible, the method of characteristics. This method was referred to 

as the characteristic finite-difference method. Special procedures were presented for 
treatment of discontinuities associated with phase transition (liquid to two-phase and 
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vapour to two-phase). Solutions from this method were compared with experimental data 

for blowdown from subcooled conditions and with solutions obtained using the method of 

characteristics. It was concluded that the characteristic finite-difference scheme is simpler 

and more versatile than the method of characteristics and produced good agreement with 

the method of characteristics. It also demonstrated a potential for the natural treatment of 

boundary conditions and relative ease with which unequal segment lengths and junctions 

can be handled. In addition the scheme could readily be extended to more sophisticated 

flow-boiling models, e. g. models which, consider flows with equal phase velocities but 

unequal temperatures. 

Kawabe (1982) developed an analytical method for single and two-phase flow in 

arbitrary piping networks. In this method, the piping network was represented by flow 

channels and vessels. The thermal-hydraulic transients in the channel were expressed by 

partial differential equations, which were solved by an implicit method simultaneously for 

the whole network with ordinary differential equations describing the change of vessel 

pressure and enthalpy. Osiadacz and Yedroudj (1989) reported on a comparison of an 

implicit finite-difference scheme with the Galerkin finite-element method using linear and 

cubic extrapolating polynomials for the simulation of transient phenomenon caused by the 

change of capacity of a compressor feeding a gas pipeline. The comparison between the 

analysed methods was based on the accuracy of results and computation time. In this 

comparison, the basic equations were derived from the laws of conservation of mass and 

momentum and further simplified into two types of equations. These are a non-linear 

parabolic model, which could be simplified into a linear model if variations of flow through 

the pipe are small; and a second-order parabolic partial differential equation, linear with 

respect to pressure at every time step. The two methods were compared on both the above 

'forms of the basic equations. The study showed that the finite-difference method has a 

considerable advantage in computation time over the finite-element method, while both 

produce results of approximately the same accuracy. 
Bhallamudi and Chaudhry (1990) reported on the application of two methods of 

integrating numerically the non-linear partial differential equations describing transient flows 

in homogeneous gas-liquid mixtures in pipes. The numerical methods are the third-order 

explicit finite-difference scheme developed by Warming, Kutter and Lomax (1973) and an 

implicit second-order finite-difference scheme, which is a variation of the scheme of Beam 

and Warming (1976). The Warning-Kutler-Lomax scheme is an extension of the presently 
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available second-order schemes. The diffusive and dispersive errors are easily controlled 

in this scheme by selecting appropriate numerical parameters, and it is third-order accurate 

in space and time. The Beam-Warming scheme is second order accurate in both space and 

time, unconditionally stable and non-dissipative. Both schemes capture shocks without 

special treatment. They observed that computed results using these two schemes 

compared satisfactorily with experimental results and also with result obtained using other 

numerical schemes. The study concluded that the method of characteristics usually 

employed for analysing transients in single liquid flows is not suitable for mixture flows 

because of the pressure-dependent coefficients in the governing equations. The wave 

velocity varies with pressure and shocks may form during the transient state. 

Moe and Bendiksen (1993), presented the physics of a new type of 

multi-dimensional two-fluid model, based on a first-order semi-implicit finite-difference 

scheme, which is solved in two steps applying a separate equation for pressure. The 

numerical scheme is based on an extension of one-dimensional models used earlier. A 

basic difference between this model and the other existing models is in the solution 

procedure, aiming in particular at improved prediction of transient problems. A volume 

equation is applied for the pressure, enabling a direct two-step solution procedure, which 

involves first the solution of pressure and velocities implicitly from the volume and 

momentum equations and then the solution of the specific masses from the continuity 

equations. These linearised equation sets are solved directly applying a Gaussian band 

solver, thus avoiding an iterative solution procedure. In local instantaneous formulations 

of multi-phase flow, the domain is described by single-phase subsets separated by 

interphases. The conservation equations for single-phase flow are applied within each 

subset and local instantaneous transfer rate of mass, momentum and energy are formulated 

as boundary conditions at the interphase. The model differs from the other models for 

separated or stratified flow mainly in the ordering of the solution procedure sequence, 

particularly the stage at which the volume fraction is determined as well as the degree of 
implicit-explicitness to which the equations are formulated. The model is designed to cover 

a wide range of separated flows with volumetric gas fractions from zero to unity. 
Single-phase flow is treated as a special case where the gas fraction or the liquid hold-up 

is zero. There are no restrictions on the range of fluid properties that can be applied, i. e. 
in principle the model accepts any fluid, liquid or gas. The model was verified through 

extensive comparisons with available experimental data as well as through comparisons with 
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other models. It was shown that this scheme is robust, as well as mass and (with a proper 

correction) volume conserving. Single-phase simulations show excellent agreement with 

analytical solutions for laminar pipe and channel flow, including dambreak and collapsing 

liquid column problems. Four different types of transient two-phase phenomena were 

simulated. The model predictions compare very well with experimental data and where 

available with other models such as FLUENT. The dambreak problem illustrates the 

importance of the horizontal convective term in the momentum equation on the numerical 
diffusion. More comprehensive studies of two-phase stratified and slug flow problems 

were reported to be underway. 

Kiuchi (1993), described a fully implicit finite-difference method for calculating 
isothermal unsteady gas flow in pipeline networks. The centred-difference form was used 
in space and a fully implicit algorithm in time. The algorithm for solving the finite- 

difference equations is based on the iterative Newton Raphson method. Standard 

Neumann stability analysis and an iterative convergence method are used. The Neumann 

stability analysis applied to the equations show that they are unconditionally stable. The 

iterative calculation method for a junction with three branches, which was proposed by 

Guy, was used. The second inertia term in the basic equation was neglected. Calculation 

results of a few valve opening and closure sample cases were compared with those of the 

method of characteristics, two-step Lax-Wendroff method, Guy's implicit method in which 

the second inertia term is included and the Crank-Nicolson method. It was found that the 

method using the Crank-Nicolson implicit method in time, gives an unstable solution in 

the case of the large time steps adopted, and even in the case of small time steps the 

method gives unrealistic oscillations. It was concluded that explicit methods give a correct 

answer when the pipes are sufficiently divided into small sections. Oscillations are greatly 
damped in Guys method and the same tendency is seen in the present method when a small 

number of sections and large time steps are adopted. 
Comparisons on network applications were made for the present method, Guy's 

method and the method of characteristics. Results of the three methods agreed well even 
if the time step is increased from one minute to thirty minutes. The present method showed 
a considerable advantage in computation time over Guys method and most over the method 

of characteristics. Although the present method applied to a pipe is unconditionally stable, 
the iterative calculation at connecting points among pipes does not always assure 
convergence. Therefore convergence has to be confirmed. It was found that stability 
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depends on the convergence tolerance. Excellent agreement with the method of 

characteristics and the two-step Lax-Wendroff method regarding accuracy and computation 

time is greatly reduced compared to the above methods in small time steps. Large time 

steps can be used compared to explicit methods, which require small time steps according 

to the Courant condition. The method was found to have advantages in stability and 

computation time compared with the method of characteristics, the two-step Lax-Wendroff 

method, Guy's method and the Crank-Nicolson method. It was also found that a rapid 

transient phenomenon, such as pulsation, is filtered in the case of a large time step adopted 

with the present method. Such problems require small time steps and a large number of 

sections and the subject of interest is concentrated on such phenomena, thus losing the 

advantage of fast computation. Finally it was found that convergence of calculations at 

connecting points using iterative convergence methods depends on the time step, the 

number of iterations and pipeline size; but it is predictable in most cases. 

Van Deen and Reintsema (1983), used a discrete-space continuous-time approach 

on a second-order finite-difference method for the solution of the partial differential 

equations on an analogue computer. Dynamic behaviour of a 90km long, 0.76m (30 

inch) diameter main transmission line in the Gasunie system of the Netherlands was used. 

Gas was injected into the line from both sides and delivered from a series of points., A 

gate valve in this line was closed and reopened after 45 minutes. Flow, temperature 

and pressure were measured during and after reopening of the valve at two points. It was 

found that the form and magnitudes of experimental and model results were quantitatively 

correct. 

Beauchemin and Marche (1992) showed that the use of the method of 

characteristics over the MacCormack method is no longer justified in contemporary 

closed-conduit transient analysis where the systems being studied are highly complex and 

the full equations are used. Details of a numerical scheme, computation procedure and 

treatment of the boundary conditions of a full model employing the MacCormack scheme, 

which is a two-step second-order explicit finite-difference scheme of the Lax-Wendroff 

type, were presented. The model is based on single-step isothermal liquid flow in an elastic 

pipe. A steady state friction factor was used and no simplification was made on the basic 

equations. The model was applied to many real world hydraulic transient problems 
including multiple pump trip-out in branching networks with many different types of pipes 
(varying wave speeds) and pump failure in a multiple-pipe single-branch system. Most of 

104 



these cases had secondary controlling devices such as pressure regulating valves and air 

inlet valves, already present in the system and involved either the verification or the 

design of primary control devices such as throttled surge tanks and air chambers. It was 

found that the MacConmack method is superior to the method of characteristics when the 

Courant number (Ca differs appreciably from unity. For this, precision rather than cost is 

the main criterion, especially for well behaved C. When C. is much smaller than unity, 

the MacCormack method produces results with a precision that could not be attained with 

any reasonable number of computation nodes when the method of characteristics is used. 
Also an important observation was made regarding the use of the MacCormack method. 

The use of the first and second alternatives in succession on consecutive time steps could 
introduce important oscillations in the solution especially where the basic equations are 

poorly approximated. This can be avoided by using exclusively one of the two calculation 

alternatives. Directional bias caused by the above is important only when working with 

two space dimensions, in which case it is recommended that the average with both methods 
be used. Doing so does seem to smear the shock slightly and the computation time is 

doubled. 

The study concluded that the method of characteristics is the most accurate and 
least costly for simple systems when C. is equal to unity. If C. is not equal to unity, 
linear interpolations (spatial or temporal) are required, which can introduce very significant 

attenuations and dispersion errors in the solution. On the other hand, the MacCormack 

method is superior to the method of characteristics when C� differs from unity appreciably. 
The MacCormack method is inherently dissipative, that is, because it is second-order 

accurate in both space and time, no special shock capturing approach is needed. It is 

unconditionally stable if C. is less than unity, and produces minimal precision loss when 
C. moves away from unity. The method permits the use of a grid spacing that is not 

overly fine, even in highly complex cases and as it is quite efficient, overall computation 

effort remains reasonable. The method could be very well suited for applications of 
increasing complexity such as two-phase gas-liquid flow problems; and multi-dimensional 
flow. It is simple and has a low development cost. 

Boulos, Wood and Funk (1990), compared procedures based on an exact 

solution, the method of characteristics and a wave-plan method for solution of two simple 
pressure surge problems and compared the results. The basic partial differential equations 
were greatly simplified by assuming isothermal flow and neglecting the distributed frictional 
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effect within the pipe as well as the convective terms. Friction effects were included in the 

wave-plan method. Calculations were carried out for all the three methods, using data 

provided for a case of valve closure for a system of liquid flowing from a reservoir at the 

upstream end to the downstream end of a line of constant cross-sectional area. Two 

cases were considered for each method, that is one with an open end connecting the 

upstream reservoir and the other where the orifice is positioned at the upstream end 

between the entrance reservoir and the pipeline (simulated friction). It was shown that 

each of these numerical methods produces a solution which is identical to the exact 

solution. It was also shown that an exact solution to transient complex piping system is 

generally not available. Results obtained using the numerical techniques for a network of 

pipes agreed closely with only minor differences. 

Wood, Funk and Boulos (1990), compared a distributed parameter model using the 

wave-plan method to a lumped parameter model based on a combination of the dynamic 

line and continuity equations to form a set of difference equations for a path of pipes, for 

several cases of transient conditions in pipe networks. Two piping systems, a three pipe 

junction system and a network, were analysed using both methods. Comparison was made 

for various transient situations, including a ramp change in the head and sinusoidal 

variation for the former system; and a pump trip, a 50% change in pump speed and a 

sinusoidal speed change in the pump for the latter. It was observed that a distributed 

parameter transient analysis of a piping system requires a relatively complex analytical 

model and may involve a large number of calculations. On the other hand, ' a lumped 

parameter analysis utilises a much simpler analytical model and requires far simpler 

calculations. The time interval for distributed parameter model must be chosen to be 

small enough to account for pressure waves traversing the shortest pipe section in the 

network, thus requiring the carrying out of frequent calculations. The number of 

calculations is generally much larger than the number required utilising the lumped 

parameter model. The study concluded that for fast transients, i. e. those occurring in a 
time scale which is short compared to the system characteristic time, it is necessary to use 

a distributed parameter model to accurately describe pressure and flow at a particular 

point. For extremely slow transients it is often acceptable to use a quasi-steady model. 
When the transient is too fast for a quasi-steady description, yet slow relative to the 

system characteristic time, a lumped parameter model may be used. A technique 

employed to solve the lumped parameter equations, which comprise the dynamic model, 
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is similar to the simultaneous path method for steady state flow and provides reliable 

solutions for large complex networks. The use of the lumped parameter model saves 

much time and effort. 
Suwan and Anderson (1992), developed a reliable basis for lumped-parameter 

model suitable for stability analysis of self excited perturbations based on the method of 

lines, discounting the previous conclusion that the procedure is satisfactory only where 

transients are gradual and continuous. The physical problem used was that of a rapid 

transient initiated by an instantaneous downstream valve closure. The model was 

successfully applied to the prediction of compressor surging in a system where fluid 

compressibility effects are important. The model produced results identical with the 

method of characteristics. It was found that a linear method of lines solution is not 

necessarily identical to the linear method of characteristic solution even if axAt = Ox, 

unless it is appropriately formulated and appropriate forward and backward interpolations 

are adopted to represent information transmission in the characteristic directions. This is 

clearly most significant in problems where wave fronts are distinct and wave reflections 

occur, for example with standing wave patterns often associated with self excited 

oscillations. For slow transients or flood routing problems which are less dominated by 

either boundary conditions, the above conclusion would not have the same significance. 

Some significant aspects regarding the use of the method of lines were investigated in the 

study. The dependent variables have often been taken as the original primitive variables 
but this study concluded that Riemann or Allievi characteristic variables are preferable. 

For the waterhammer hyperbolic equations, at least, a first-order discrete space 
interpolation polynomial represents the underlying physics better than higher order 

approximations. The terms in which finite-differences are used to represent quantities 

which are integrals rather than derivatives, in particular pipe friction, may introduce 

numerical instability and require particular care. For time-domain simulations, 
first-order Euler integration is more accurate than higher-order methods, which introduce 

errors by violating the hyperbolic equation domain of dependence. 

Zha and Bilgen (1993), presented a new flux-vector splitting scheme for the 

numerical solution of the Euler equation, using the velocity component normal to the 

volume interface as the characteristic speed and yielding vanishing individual split mass flux 

at stagnation conditions (with Mach number approaching zero). This keeps the 

advantages of the flux-vector splitting schemes, such as being able to capture crisp shock 
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profile, simplicity and efficiency. The scheme also leads to vanishing numerical 

dissipation for the mass and momentum equations with Mach number approaching zero. 

It was stated that even though one of the diffusive terms of the energy equation does not 

varnish, theoretical analysis indicates that diffusion may be ensured by using higher-order 

differencing. Application of the scheme to solve the one-dimensional Euler equation 

yielded solutions which are monotone and normal shock wave profiles which are crisp. 

For a one dimensional shock tube problem with shock and contact discontinuities, this 

scheme and the Roe flux difference splitting scheme, give very similar results, which are 

the best compared with those from the Van Leer scheme and Liou-Steffen Advection 

Upstream Splitting Method (AUSM) scheme. For multi-dimensional transonic flows, 

sharp monotone shock wave profiles with mostly one transition zone are obtained. The 

results were compared with those from Van Leer scheme, the AUSM scheme and also with 

experiments. 

It was concluded that for viscous flow, the present scheme may be more accurate 

. 
than the flux vector scheme without the mass flux vanishing at stagnation conditions. 

The scheme with a Mach number polynomial of degree one, which is the natural and 

lowest degree, is very simple and easily implemented. The scheme converges well for the 

cases tested, slightly faster than the AUSM scheme and slower than the Van Leer scheme. 

With a third-order differencing method, the present scheme produced results with least 

oscillations near a shock. The results also agreed favourably well with experimental results 
for a transonic nozzle. 

Huang and Sloan (1993) presented a new pseudospectral method with upwind 

features for numerical solution of linear singular perturbation problems without turning 

points. It was shown that this upwind pseudospectral method has distinct advantages 

relative to the standard pseudospectral method and the upwind finite-difference methods 
for singular perturbation problems without turning points. However, a conclusion was 

made that it needs further study to apply the upwind pseudospectral method to singular 

perturbation problems with turning points and to the numerical solution of high Reynolds 

number flow problems in fluid dynamics. Glaister (1994) presented results produced by his 

method, which has been described in Section 3.2.3, for five shock tube test problems. 
These were compared with exact solutions and solutions using other more complex 

algorithms. It was generally found that the results are comparable. It was concluded that 

the Glaister method can be used for slab, cylindrically or spherically symmetric problems 
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with confidence. It was also concluded that the method can be used as a comparison with 

results from two-dimensional schemes by choosing a large number of mesh points for 

accuracy and not be expensive on computing. 

3.3.2 STUDIES ON PIPELINE RUPTURE AND BLOWDOWN 

Work done on this category of studies is somewhat limited both in quantity and quality. 

One of the earliest models for the analysis of gas pipeline rupture on record is that by Sens, 

Jouve and Pelletier (1970). This was followed by Lyczkowski, Grimesey and Solbrig 

(1978). Knox, Atwell, Angle, Willoughby and Dielwart (1980) claimed that three models 

existed, which adequately predicted the transient release of a gas from a ruptured pipeline. 

These are described by the Alberta Petroleum Industry, Government Environmental 

Committee (1978). There have since then been several attempts to develop a computer 

model for gas pipe rupture analysis, including that by Tiley (1989) which forms the 

starting point of this study. The majority of those which are discussed in this report are 

based on the method of characteristics. The rest are based on various finite-element and 

finite-difference schemes. These studies are summarised in this section. 
Sens, Jouve and Pelletier (1970) used an explicit finite-difference method for the 

numerical solution of partial differential equations to simulate transient flow in a gas 

pipeline a few seconds after a break. Lyczkowski, Grimesey and Solbrig (1978) 

investigated several explicit finite-difference numerical schemes for solution of 

homogeneous equations of change for one-dimensional fluid flow and heat transfer. The 

Alternating Gradient Method (AGM), which is based on the two-step Lax-Wendroff 

procedure, was found to be the most successful. Results using the AGM were compared 

with analytical results for an ideal shock tube and blowdown of an ideal gas, and also 

experimental results for blowdown of a steam-water mixture. Agreement between the 

results was very good. Comparison of the AGM with the two-step Lax-Wendroff method 
for the shock tube indicated that the AGM is more accurate than the Lax-Wendroff scheme, 

probably due to more numerical damping in the AGM. Although the AGM is restricted by 

a time-step limitation which is slightly smaller than the standard Courant condition for a 

given time-step and mesh size, it is at least as accurate as implicit schemes. Since only two 

cycles per time step are needed, the AGM is faster than a fully implicit scheme. In addition, 
the AGM is simple to programme. 
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In the study by the Alberta Petroleum Industry, Government Environmental 

Committee (1978) to evaluate and improve hydrogen sulphide isopleth prediction the 

following techniques were used: two dispersion models, the INTERA Environmental 

Consultants Ltd. (INTERA) model and the Energy Resource Conservation Board (ERCB) 

model; and two blowdown models, the INTERCOMP Resource Development and 

Engineering (INTERCOMP) model and a simplified blowdown model. Common 

blowdown curves generated by the INTERCOMP "TRANSFLOW" blowdown model were 

used in both the ERCB and INTERA atmospheric dispersion calculations. The 

INTERCOMP "TRANSFLOW" model uses the basic momentum, mass and energy 

balances in a numerical simulator to calculate the time curve defining the rate of gas 

blowdown from the pipeline. Among other things, the model has the capability of including 

valve closure time, frictional effects and gas flow rate in the line before rupture in the 

calculations. No further details of the models were given in the report. 

Knox, Atwell, Angle, Willoughby and Dielwart (1980), reported on a project to 

assess the basic source characteristic assumptions relevant to modelling of sour gas 

pipeline ruptures and well blowouts. A 3.2 kilometres long, 168 millimetre diameter 

pipeline was ruptured 32 times under varied conditions. A 7.1 kilometres long, 323 

millimetre diameter pipeline was also ruptured and results were photographically recorded. 
The experimental rupturing technique, transient release rate and sensitivity to source 

configuration were evaluated. Parameters investigated included overburden, wind speed, 

release angle, fracture length, rupture mode and line pressure. Computer input parameters 

which needed verification are plume rise, volume dilution and rate of release. The study 

was based on three computer release rate models which existed [Alberta Petroleum 

Industry, Government Environmental Committee (1978)] and which have been described 
in the previous paragraph. It was confirmed that all the three computer release rate 
models adequately predict the transient release of gas from a ruptured pipeline. 

Cronje, Bishnoi and Svrcek (1980) described a procedure to solve the equations for 

single-phase, one-dimensional, unsteady, compressible, frictional flow with heat transfer. 
The procedure is based on Hartree's hybrid method for solving the governing hyperbolic 

partial differential equations. In this numerical method, a rectangular grid is superimposed 

on the characteristic mesh in the time-distance plane. The values of the variables at points 
lying on the characteristics at time t are calculated by linear interpolation from their known 

values prevailing at the rectangular grid points at the same time, t. The governing equations 
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are integrated along their characteristics over a time step at in time, to obtain the new 

values of these variables at the grid points at time t+ at, and the process is repeated until 

the required time interval is covered. The method was applied to shock tube data that 

simulate a gas pipeline rupture. It was shown that the effect of friction is considerably more 
important than the effect of heat transfer. For large elapse times, the effect of friction is 

significant and the numerical model predicted well the available experimental values at 

these times. However, the numerical model agreed with experimental data at higher 

pressure ratios, at short elapse times and near the rupture plane. 
Jones and Gough (1981) reported on a theoretical model for analysing high-pressure 

natural gas decompression behaviour. The method was incorporated in a computer 

programme called DECAY. The model was tested with a series of experimental data, 

which is reported in Chapter 5 and Section 6.2.2. Jones and Gough (1981) also reported 
that other organisations, including Exxon Production Research and the University of 
Calgary, were involved in studies on high-pressure gas decompression behaviour. The two 

organisation had developed similar models to that of the British Gas. Mallinson (1996) 

reports about another computer model called PIPEBREAK, which has been validated with 

recent full-scale pipeline experimental data with reasonable success. 
Fannelop and Ryhming (1982) studied the sudden release of gas from long pipelines. 

A straight forward solution based on the time-honoured concept of integral methods in 

boundary-layer theory was used. Spatial profiles of pressure and flow rate were assumed 
which satisfy the boundary conditions. He defined different time regimes, each requiring 
a different method of solution. The inviscid regime is often of very short duration, probably 
much shorter than the time required for a full break to occur. It is followed by a viscous 
expansion process in which wave and dissipation processes are both important and in which 
the pressure at the break approaches the ambient value. The combined inviscid and viscous 
expansion -phase were categorised as the early time regime. The time regime when the 
pressure decreases monotonically towards the open end, such as in the case of a break at 
the low-pressure end was referred to as the late time regime. The intermediate time regime 
was defined as the time which lasts from t=25 seconds to the time when the pressure peak 
has moved to the other (closed) end. Simple solutions were developed for flow cases of 
prime interest. Validity and accuracy of the methods were checked using two procedures 
namely variations of profile families and mathematical analysis of the partial differential 

equations based on an iterative approach carried out to second order. The integral, method 
was shown to have adequate accuracy for engineering studies. 
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Van Deen and Reintsema (1983), developed a computer model for high-pressure 

gas transmission lines based on the method of characteristics and compared it with 

experimental data from the Gasunie transmission system. A leak was simulated by the fast 

opening of a valve connecting the pipeline to a nearby parallel pipeline at a lower pressure. 

Pressure responses at a point 10km downstream of the leak were investigated. Lack of 

agreement in the magnitude of the reflected pressure waves was observed and attributed 

to imperfect modelling of the boundary conditions: It was also observed that changes in 

the numerical values of the resistance factor of the pipeline have only a slight influence 

on the value of the result. 
Flatt (1985-1989), studied the use of the method of characteristics for analysis of 

unsteady compressible flow in long pipelines following a rupture. In his model the 

simplifying assumptions of isothermal and low Mach number, often applied in the case of 

unsteady compressible flow in pipelines, were not used. To achieve higher accuracy, 

higher-order polynomials and an assumption of correspondingly curved characteristic lines 

were also used. The algorithms used were limited to shock free flows. An accuracy 

criterion showed that higher numerical accuracy may be obtained if the number of grid 

points was sufficiently large and if a special modified form of the boundary conditions 

at the broken section was used. The major difficulty encountered was due to the 

singularity which resulted from the combined effects of friction and chocking (M, = 1), 

occurring at the broken end. The results confirmed conclusions established earlier that 

viscous flows with large values of 4flJd (order of magnitude of 1000) behave very 
differently from flows without friction. In particular the mass flow escaping through the 

broken section, and the pressure there fall to much smaller values. On the other hand, at 

some distance from the broken section the pressure stays at high values much longer than 

in the case without friction. The study concluded that the method of characteristics is 

more suited to problems with relatively low values of the parameter fl , /d. Cases with 
important frictional effects have to be carefully checked regarding the accuracy of the 

results and require many more grid points than cases without friction. 

Bisgaard, Sorensen and Spangenberg (1987), reported on a finite-element method 
developed for transient compressible flow in pipelines. A weighted residual method with 

a one-dimensional straight line element with two nodes was combined with an implicit Euler 

method and applied to the basic equations without making any simplification. Higher-order 

polynomials were used as interpolating functions, since derivatives must be specified at the 

nodes in addition to the variable itself. The Galerkin finite-element method was used to 
discretize the equations. Gauss quadrature was used for the integration, where the order 

112 



of the Gauss quadrature was adjusted to the order of the polynomial. A fully implicit Euler 

integration method was used for time integration after a third-order Runge-Kutta method 
had failed the stability criterion. The method was used to describe blowout and to 

determine the performance of a leak detection system. The first derivative of density and 
the first and second derivatives of velocity were included since small leaks are more easily 

recognised from derivatives of specified variables than from the variables themselves. A 

comparison was made between full-scale measurements carried out on a 77.33 kilometres 

gas transmission line from Neustadt through Sörzen to Unterföhring, in Germany, and 

corresponding finite element calculations. In the rupture simulation, the fluid was 

assumed to behave like an ideal gas with constant specific heat flowing through a 

convergent nozzle and calculations were carried out with 21 elements and a time step 
length of 0.5 seconds. It was claimed that results from the computer model had 

successfully been compared with process data from a full-scale pipeline. However, this was 
not shown in the paper for the case of a pipe rupture. It therefore remains doubtful as 
to whether the method could accurately and efficiently be used for the analysis of pipe 
rupture problems. 

Lang and Fannelop (1987) reported on a method for efficient computation of the 

pipeline break problem. In their method, partial differential equations were reduced to a 
set of ordinary differential equations by means of procedures in the family of the method 
of weighted residuals. The reduced equations were integrated by standard numerical 
techniques. The finite-element method, the spectral Galerkin method and the spectral 
collocation method were all used and results compared. It was demonstrated that stable, 
accurate and efficient solutions to the pipeline break problem could be obtained by the 

method of weighted residuals. Although the approximate functions used with the spectral 
collocation method would appear to be suited primarily for elliptic problems, it was possible 
to apply them to the hyperbolic equations by modifying one of the coefficients. Good 

results were obtained, and it was recommended that the computer time required by this 
method could be further reduced without loss of accuracy when the number of polynomials 
in the approximate solutions is reduced successively during the course of the calculation, 
as the gradients of pressure and velocity become smaller. It was concluded that the best 

results in terms of stability, accuracy and computing time were obtained with the collocation 
method. 

Cheng and Bowyer (1987) presented a general quasi-one-dimensional unsteady 
compressible fluid flow code, which adopted the Eulerian approach and used the artificial 
viscosity method for finite-difference numerical integration of the governing equations. The 
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numerical method is a generalised two-step explicit Lax-Wendroff finite-difference scheme 

that includes an adjustable implicit artificial viscosity term. Two sample computations were 

used to demonstrate the code capability. In the first case, the transient imposed on a system 

undergoing a pipe rupture was studied for different combinations of the effects of elbows 

and restrictors. A steam vessel was considered to be the reservoir with a pressure of 

1000psi (69bar) and a temperature of 550°F (288°C). A flow restrictor (with a throat 

whose cross-sectional area is 36% of the- duct flow -area) - was located 8ft (2.5m) 

downstream of the second elbow. In the second case, transients caused by a sudden pipe 

rupture at the left side of three-duct system were predicted. 
Picard and Bishnoi (1988 and 1989) used their three models, namely the Perfect-gas 

Isentropic Decompression (PID) model, Real-fluid Isentropic Decompression (RID) model 

and Real-fluid Non-isentropic Decompression (RND) model to investigate the importance 

of real-fluid behaviour in modelling of high pressure gas pipeline ruptures. All these models 
are based on the method of characteristics. Botros, Jungowski and Weiss (1989), discussed 

some computational models and solution methods for gas pipeline blowdown and assessed 
the significance of the various assumptions involved. Two physical models, namely a 
volume model, where a pipe is considered as a volume with stagnation conditions inside; 

and a pipe model, where a pipeline section is considered as a pipe with velocity 
increasing towards the exit were considered. The pertinent equations for each model were 
solved analytically and numerically. The volume model was represented by a set of 
quasi-linear ordinary differential equations which were solved by a variable order backward 
differentiation formula method (Gear's method). The pipe model is governed by a set of 
non-linear first-order parabolic partial differential equations, which were solved by a 
first-order Euler implicit finite-difference scheme. It was concluded that the accuracy of 
results obtained from the various models and solution methods depends greatly on the 
ratio f . 

id of the pipe section under blowdown and the stack relative size with respect to 
the main pipe size. Generally as f Jd increases, predictions using all models tend to 
become inaccurate. For relatively low IL/d values, all models provide reasonable 
predictions and therefore the simple analytical volume calculations can be used effectively. 

Tiley (1989), used the method of characteristics for pressure transients in a 
ruptured gas pipeline with friction and thermal effects included. A real gas equation of 
state (Berthelot equation) was used and the "small terms" in the basic equations were 
neglected. A reducing grid size was used in the vicinity of the break to be enable 
rarefaction waves to be modelled following a linebreak. The friction term was represented 
by a second-order approximation. The values at a state I at the base of the characteristic 
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were found by interpolating the grid points. Hence by solving these equations, a first-order 

approximation was obtained for the predicted pressure, temperature and flow velocity. 
Since the required stability and accuracy was not achieved using the first-order 

approximation, this solution was used as an initial estimate in a second-order procedure. 
Although the exact procedure of this second order model is dependent on the type of 

grid point being examined, in principle, new values for the variable at state I were found 

using quadratic interpolation. The coefficients in the characteristic equations were then 

calculated using these values. The coefficients were averaged with the previous state 1 

coefficients and the results were substituted back into the characteristic equations. By 

this method, new values for the predicted pressure, temperature and flow velocity were 

obtained. Results were obtained by performing a number of computer simulations for a 

set of data and comparing the results with shock tube and full-size pipeline experimental 
data. Problems were encountered with numerical stability and accuracy of results. For 

certain grid size and initial conditions, the solution became unstable at random points 
along the pipeline. It was concluded that although this type of instability could be 

controlled to an extent by varying the grid size and break boundary conditions, the 

problem may be totally alleviated by using an alternative numerical method for solving the 

theoretical equations. 
Lang (1991) reported on the computation of gas flow in pipelines following a 

rupture by a spectral method. The governing partial differential equations were converted 
into a scheme suitable for solution by a computer by a two step procedure. In the first step, 
the collocation version of the spectral method was used to calculate the space derivatives. 
The remaining ordinary differential equations were then integrated by standard numerical 
techniques in the second step. Accurate results were obtained for short computing times 

with only a few collocation points. Kunsch, Sjoen and Fannelop (1991) reported on a study 
of the flow characteristics close to a shut-down valve for an offshore gas pipeline, and over 
the length of the segment between the valve and a rupture. Integration of the partial 
differential equations was performed with the two-step MacCormack method. A fine mesh 
size was imposed at the boundaries where the gradients can be large. Treatment of 
boundary conditions, especially those relative to the valve, based on concepts from the 
method of characteristics, proved to be adequate. The calculations showed a better 

accuracy than previously used models. In another publication, Kunsch, Sjoen and Fannelop 
(1995) concluded that a precise knowledge of the coefficient of friction and other losses 

coefficients is not necessary. They demonstrated that the mass flow rates are insensitive to 
the exact geometric shape and contraction ratio of the break, resulting from an accidental 
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rupture. They also compared their model results with those obtained by Flatt (1985b). 

They admitted that the results from Flatt's model (which was based on the method of 

characteristics) were probably more accurate than their's, for the inertia dominated early 

time regime. They observed that the ideal gas assumption overestimated [Flatt (1993-94)] 

the mass flow rate. Flatt (1985b) observed the opposite effect, when the perfect gas 

assumption was used. 
Chen, Richardson and Saville (1992) presented a model for simulation of blowdown 

or rapid depressurisation following a full-bore rupture of pipelines containing perfect gases. 

The equations of gas dynamics were solved by the method of characteristics using four 

different algorithms namely the hybrid method, the hybrid method with multi-grid system, 

wave-tracing and multiple wave-tracing methods. The multiple wave-tracing method was 

found to be the most efficient and accurate method among the other methods for simulating 

long gas line rupture problems. This method was used to simulate the blowdown of the 

sub-sea pipeline between the Piper Alpha and MCP-O1 offshore platforms and the result 

was compared with measurements made during the night of the tragedy on the Piper Alpha 

platform. The results were found to be in moderate agreement, the discrepancy being due 

to real fluid behaviour. It was concluded that although the perfect gas blowdown model 

is not capable of modelling real fluid behaviour, its simplicity and speed combined with the 

multiple wave-tracing method should provide a quick yet reasonably accurate evaluation 

of gas dynamics for risk assessment to a gas transmission line. 

Chen, Richardson and Saville (1993) developed a simplified finite-difference method 

to solve transient two-phase pipe flow problems. In this method, the flow channel is 

discretized using staggered meshes where the flow velocity is defined at the cell edge and 

all other variables defined at cell centre. Following the guidelines of the Fourier stability 

analysis, the scheme treats the momentum convection term explicitly and the flow velocity 
is expressed in terms of pressure. The density in the mass conservation equation is further 

eliminated using a locally linearised equation of state so that the descritized conservation 
laws can be reduced to two difference equations in terms of mixture enthalpy and pressure 

only. The only assumption made is that there is thermodynamic equilibrium between the 

two phases. The method has several advantages. Since the velocities in the momentum 

equations are decoupled from other state variables, the extension of this method to other 

two-phase flow models is very straight forward. The size of time step for the integration 

is not limited by a Courant number restriction. The choice of mixture enthalpy and pressure 

permits the method to make transition between single-phase and two-phase without 
difficulty. Extension to a multi-component system with concentration stratification effects 
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is possible. Results of the model were presented by way of example for the blowdown of 

a 100m long pressurised LPG pipeline using a homogeneous two-phase flow model. 
Olorunmaiye and Imide (1993) presented a mathematical model based on unsteady 

isothermal flow theory and solved by the method of characteristics. It was reported that 

the model predicted results for natural gas pipeline rupture problems consistent with 

predictions of other workers. The accuracy of the numerical scheme when using linear 

characteristics with quadratic interpolation was found to be adequate. It was found that the 

curvature of the characteristics is not as pronounced in isothermal flow as it is in adiabatic 
flow and therefore it is not necessary to include the effect of curvature of the characteristics 
in the computation of unsteady isothermal flows. It was concluded that the model is useful 
in analysing other unsteady flows associated with pipeline operation, such as controlled 

venting to the atmosphere prior to shutdown or repair, and sudden changes in pressure at 

either end of the pipeline. The waves generated in these operations cannot be as strong as 

waves associated with pipeline rupture. 
Gasunie of the Netherlands [De Bakker (1993)] have developed a pc-model for gas 

out flow for complex pipeline networks with different elements and different out flow 

scenarios all in one model. It can model linebreak, venting and leakage. It can handle 

elements like valves, vessels, restrictions and elements defining different boundary 

conditions, which can represent e. g. the behaviour of a compressor. The basic relations 

are solved using an implicit finite-difference scheme. A graphical user interface makes 
inputting of the network very easy. In developing the model, emphasis was put on 

userfriendliness, robustness and the ability to model complex networks. The accuracy of 
the model is estimated at 5 to 20%, which is considered by Gasunie to be sufficient for 

hazard analysis purposes. 
The Southwest Research Institute (SwRI) [Morrow (1996)] has conducted a study, 

to simulate venting of natural gas pipelines, for the Gas Research Institute. The computer 
model which was reported by Olorunmaiye and Imide (1993) was used. One of the aspects 
which were considered was whether a leak detection system could distinguish between a 
signal caused by a pipeline leak and other transient signals caused by normal operation, such 
as compressor startup and shutdown and deliveries of gas through branched lines. Initially, 
the computed transient results overestimated the gas outflow and pressure drop. In order 
to match the computed results to experimental data, the throat area of the relief valve was 
reduced below its physical size. This empirical adjustment, which is called "exit loss 
factor", resulted in a fairly well agreement between computed and measured pressures. 
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3.4 DISCUSSION OF NUMERICAL METHODS 

The criteria upon which a suitable numerical method is selected for analysis of a particular 

fluid transient problem is based mainly on the accuracy of results and computation cost. 

Each numerical method has its own advantages and disadvantages. These have been 

discussed in Sections 3.3.1 and 3.3.2. In general, higher degrees of accuracy can be 

achieved at the expense of increased computational labour. The problem is to find, for a 

given mathematical model of a pipeline, a numerical model which meets the criteria of 

accuracy at relatively small computation time. 

Before proceeding with a discussion of the numerical methods, it is important to 

understand and define precisely the type of system and transient phenomena to be modelled. 
The problem of gas pipe rupture is highly non-linear and no general analytical solution is 

yet known. The foremost objective of this study, therefore, is to develop a computer 

model which will lead to a better understanding of the unsteady fluid dynamics behaviour 

occurring inside the pipeline. One also needs to distinguish between simulation of unsteady 

gas flow in a single pipe and that in a complex gas pipe network, including the way in 

which non-pipe elements are provided for in the simulation process. At this initial stage, 

the model is limited to the simple case of a single pipeline, since the primary interest is 

long, high-pressure trunk pipelines. However, note is taken of these other more 

complex cases and a criterion of flexibility for extension to such situations is added in 

the list of selection criteria. By the same argument and also the conclusion made by 

Wood, Funk and Boulos (1990), that for fast transients it is necessary to use a 
distributed parameter model, the same model is used. Despite their advantages of simplicity 

and fewer calculations, lumped parameter models, including the method of lines are 
therefore not suitable for application in this particular situation. 

Knox, Atwell, Angle, Willoughby and Dielwart (1980), showed that the system 

response to, and therefore its modelling, depends on among other things the rupture mode. 
Botros, Jungowski and Weiss (1989) distinguished between two modes of rupture which 

require different modelling approaches, one in which the exit area is much smaller than 

that of the main pipe and the other in which the exit area is as large as the main 

cross-sectional area. This study focuses on the latter case. However, with appropriate 
specification of the boundary conditions the model should be able to analyse any other 
mode of rupture. For this case the flow velocity in the pipe becomes high (about 350 m/s) 
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initially, at the ruptured section, and varies rapidly with time. Shock waves of varying 

speeds are formed. These travel up and down the pipe and are ultimately transmitted and 

partly reflected at geometrical and contact discontinuities. For long transmission lines 

(typically 150km), this could take some time. A method must therefore be chosen that 

will accurately represent these shock waves and accommodate the varying speeds of the 

waves without smearing the details or overshooting. With appropriate choice of a 

numerical method, all shocks may be treated wherever they appear in the pipeline. In 

addition, shock interactions with boundaries and other shock waves may also be treated. 

Having read Sections 3.3.1 and 3.3.2, one would have probably had an answer for 

which numerical method is to be selected. As regards the review of numerical methods 

as well as the actual modelling of pipe rupture, the work by Tiley (1989) remains the most 

recent and comprehensive. However, a major inconsistency is observed in selecting the 

method of characteristic as the optimum numerical method. This is mainly because it was 

admitted that the Lax-Wendroff two-step explicit finite-difference method is the most 

suitable for dealing with systems in which shock waves form. The study could also have 

benefited from previous similar studies by Flatt (1985-1989) and Picard & Bishnoi 

(1987-1989), which seems to have arrived at the same results and conclusions. The two 

strong arguments put forward by Tiley (1989), in favour of the method of characteristics 

are, small time step requirement and proper handling of the boundary conditions. The 

discussion in Sections 3.3.1 and 3.3.2 shows that these could both be achieved with other 

methods such as the explicit finite-difference method used by Beauchemin and Marche 

(1992). In addition, in both the studies by Van Deen and Reintsema (1983) and by Tiley 

(1989), there appears to be some problems due to the representation of the boundary 

conditions. Flatt (1986) claimed to have achieved higher numerical accuracy by using a 
special modified form of the boundary conditions at the broken section. However, the 

algorithms he used are limited to shock free flows. It is therefore doubted as to whether 
the advantage of the method of characteristics on handling the boundary conditions really 
holds in the case of ruptured gas pipelines. 

There are conflicting results regarding the significance of the friction effects on the 

results, from the studies of Van Deen and Reintsema (1983) and Flatt (1986). Whereas 

the former concluded that changes in the numerical value of the resistance factor of the 

pipeline have only a slight influence on the results, the latter confirmed the effect to be 
the opposite for flows with large value of fl, /d. From the studies on modelling of 
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transients using the method of characteristics, the selection of whether or not to use the 

method is based on among other things the ratios of fl, /d, Mach number and Courant 

number (C. ). The method of characteristics is more suited to problems with relatively 
low values of the parameter Ud (order of magnitude of 250). For C. values not equal 

to unity, the method of characteristics produces inaccurate results. Most of the studies 

on gas pipe rupture, using the method of characteristics have produced unsatisfactory 

results. Moreover, as stated by Bhallamudi and Chaudhry (1990), the method of 

characteristics is not suitable for mixture flows, which are likely to occur in high-pressure 

natural gas pipeline ruptures. Based on this argument, it is therefore concluded that the 

method of characteristics is not suitable for modelling of transients in ruptured gas 

pipelines. 
Implicit methods are appropriate if the time step is more restricted by the 

stability criterion of explicit methods than accuracy requirement. Since accuracy is 

determined by derivatives of the solution, the application of implicit methods is likely 

to be successful in cases where the solution varies slowly in space and time or where the 
important effects propagate slowly with respect to the acoustic waves. This occurs 
seldom with unsteady flows where the system changes significantly with small time 
intervals so that larger time steps are not applicable. Implicit finite-difference schemes 

are more economical than the explicit finite-difference schemes and the method of 

characteristics, although the latter can achieve more accurate results. From the above 
reasoning, implicit finite-difference methods are not favourable for applications dealing with 

rapid transients such as in the case of a ruptured gas pipeline. 
The method of Moe and Bendiksen reported before, represents a typical model 

for complex flow analysis incorporating aspects such as multi-phase and multi-dimensional 
flow. But since it is based on implicit finite-difference formulations, it is doubted as to 

whether it meets all the requirements for analysis of transients in a ruptured gas pipe. 
However, the theoretical background and the procedure used, could form a useful basis for 

developing a model for the particular case being addressed. 

The recent applications of finite-element methods in transient compressible flow in 

pipelines such as the one described by Bisgaard, Sorensen and Spangenberg (1987), 
indicate a good potential of the methods for such applications. However, compared to 
finite-difference methods, the latter have considerable advantage in computation time. 
Adding this to the complexity of formulating the finite-element equations, especially in 
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unsteady gas flow in pipelines, the method becomes less favourable for such applications. 
Recently developed flux-difference schemes, such as the Zha-Bilgen flux-vector splitting 

method, appear to possess most of the properties required for analysis of transient gas 
flows. Also the wave-plan method looks promising as an alternative solution method, 

although its application on gas transients analysis is as yet unknown. 
Explicit finite-difference methods including the pseudoviscosity method, the 

second-order two-step Lax-Wendroff method, the Alternating Gradient Method of 
Grimesey and Solbrig (1978) and MacCormack method and the third-order 
Warming-Kutler-Lomax method, are by far the most preferred. Despite being efficient and 

able to capture shock waves with only a slight or no overshoot problems, they can very 

well be suited for applications of increasing complexity such as two-phase liquid-gas and 

multidimensional flows and complete equations can be used. The MacCormack 

second-order method and the third-order Warming-Kutler-Lomax method have particularly 
been selected, in addition to the method of characteristics. 
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CHAPTER 4 

THE COMPUTER MODEL FOR LINEBREAK ANALYSIS 

4.1 SIMPLIFICATION OF THE BASIC EQUATIONS OF FLOW 

4.1.1 SHOULD THE SMALL TERMS BE NEGLECTED? 

There are two contradictory constraints in developing a computer model for the transient 

flow of compressible fluid in pipelines. On the one hand, it is required that the description 

of the phenomenon is accurate and on the other hand, it has to be simple enough that the 

computational means necessary for solving this model are reasonable. As a common 

practice, simplified models are sought which present a reasonable compromise between the 

accuracy of the description, computation time and storage requirements. Simplified models 

are obtained by neglecting some terms in the basic equations, based on quantitative 

estimations of the particular elements of the equation, for some given conditions of 

operation of the pipeline. Different authors have used various simplifications and have 

neglected or retained one term or the other. The terms which are commonly neglected in 

the simplification of the basic equations are the inertia or acceleration terms, puäu/ax; the 

convective term, uaplax; and the gravity term pgsinO. To decide which terms may be 

neglected, magnitudes for each term for characteristic values of the variable are needed. 

By considering a high-pressure transmission line, where the dynamic variations are 
determined by the fluctuations in demand with significant changes occurring on the time 

scale of hours, Goldwater and Fincham (1981) concluded that it is reasonable to neglect the 

inertia terms as they contribute less than one per cent of the friction term. This 

approximation is referred to as the creeping motion approximation. However, if the 

disturbances are more rapid, the values of the inertia terms in the region of the disturbances 

will be significant. The creeping motion approximation is therefore not likely to be 

satisfactory in that region, though it may still be a reasonable approximation to the gross 
behaviour of the whole system. Weimann (1978) concluded that the second inertia term, 

puau/ax, can be neglected, but the first inertia term, pau/at, should be retained if 

disturbances. with a cycle time of less than eight minutes are important. 

Assuming steady-state conditions and using a steady-state flow computation 

procedure, Osiadacz (1987) calculated the approximate values of the particular terms of the 

momentum equation. His results showed that the first inertia term, second inertia term, 
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gravity term and the friction term, amounted to 0.170 to 3.407%, 0.053%, 6.424% and 
145.9% respectively, of the term describing the pressure drop along the pipe. The majority 

of workers have neglected the second inertia term, but have retained the first term. 

Goldwater and Fincham (1981) stated that this decision is influenced by the convenience 

of this approximation in applying the method of characteristics. Kiuchi (1993) argued that 

the second inertia term can be eliminated by assuming that the convective term is negligible, 

and the flow velocity is small compared to the speed of sound. He justified his assumption 
by the observation by Guy (1967) that for most cases of operations in actual gas pipelines, 

the ratio of the values of the pressure term : first inertia term : the second inertia term is 

approximately 1: 0.1: 0.01. However, in the case of high flow velocity, where the above 

assumption is not valid he recommended that the energy equation should be considered 
because of the Joule-Thompson effect. A strong argument for retention of both the inertia 

terms was put forward by Rachford (1972) and again by Rachford & Dupont (1974), on 
the basis that their deletion is justified where models are used only to simulate slow 
transients. 

A simplification whereby the convective term has been neglected is known as the 

acoustic approximation. Lavooij and Tijsseling (1990) argued that the convective term can 
be neglected if the fluid velocity is much smaller than the propagation speed of the pressure 

waves. Moe and Bendiksen (1993) used the dambreak problem to illustrate the importance 

of the horizontal convective term, in the momentum equation, on the numerical diffusion. 
The gravity term is neglected in simplifications whereby it is assumed that the pipeline is 

horizontal. The majority of workers have used this approximation in their models. Flatt 

(1993-1996) argued, by using the momentum equation of a stationary one-dimensional flow 

with friction and gravity terms included, that for a typical pipe flow situation, the influence 

of the gravity term is small compared to that of the frictional effects. He argued that since 
the friction factor is not known accurately, the error made by neglecting the gravity term 
is less important than the error in the friction factor plus the error due to the one- 
dimensional flow assumption. For unsteady flow, the uncertainty on the friction factor is 

actually very large. He noted the case of two-phase flow is a totally different one as gravity 
affects even horizontal flows. Such flows are extremely sensitive to how well the two 

phases are mixed. Gravity, having the tendency to unmix the liquid and gaseous 
components, can result in a significant error in the solution. However, this later effect is 

not taken into account in the simplified model used in this study. 
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Two other terms in the basic equations which need to be considered are the term 

uaH/ax for the geometric variation of the pipe cross-sectional area, and the term uap/c3x 
for variation in cross-sectional area of the pipe due to the elasticity of the pipe material. For 

high-pressure gas pipelines, where thick walled and uniform diameter pipes are used, these 

terms are normally omitted. However, some workers including Flatt (1989) and 
Beauchemin & Marche (1992), have included these terms. In the study by Tiley (1989); 

all the four terms discussed earlier i. e. the two inertia terms, the convective term and the 

gravity term; were included. This was despite the fact that the method of characteristics 

was used for numerical solution of the basic equations. However, the model did not take 
into consideration the terms representing the variation of the pipe cross-sectional area. 
Exaggerated simplification of the basic equations may lead to distorted understanding of 

reality and false conclusions. On the other hand if the model is too complicated, it may 

prove impractical. Following on from the foregoing argument, it is concluded that the three 
basic partial differential equations will be used in their "accurate" form i. e. Equations (2.6), 
(2.7) and (2.29) with the exception that the term for variation of cross-section area i. e. g 

is set to zero. In addition the pipe diameter is assumed to be uniform i. e. cos* = 1. The 

resolution equations are as follows: 

Continuity equation 
ap 
at 

Momentum equation 

au lap 
at p 6x 

Energy equation 

u 
aP 

. pau 0 
ex ax 

.u 
au 

"-g sin0 
äx pA 

(4.1) 

(4.2) 

öp 
u 

öp Z äu 1 (as - 1)(p. w u) at äx "aP ax -A 

4.1.2 SOLUTION PROCEDURE 

(4.3) 

The basic partial differential form of the three conservation equations are to be solved using 
a suitable numerical method. Different workers have used different approaches in 

manipulating and solving such equations. Cronje, Bishnoi and Svrcek (1980) developed the 
three equations of conservation in a very similar manner to the one used in this study. They 
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used the thermodynamic relationships for a perfect gas to obtain a set of transformed 

equations, which were then solved numerically. Van Deen and Reintsema (1983) reduced 
the three conservation equations and the equation of state into two partial differential 

equations (with respect to pressure, velocity and temperature), which were then solved 

numerically. By introducing the so-called molar flow and substituting it to the continuity 

and momentum equations, Osiadacz (1987) reduced the two equations into one second- 

order partial differential equation. 

As it can be seen above, there are various ways of manipulating the basic 

conservation equations, which could result in different numbers and forms of the equations. 
However, the majority of workers have used the basic equations (after the simplifications 
discussed in Section 4.1.1), without manipulating or combining them as shown above. For 

the case of non-isothermal flow, an equation of state is added (in some cases combined with 
the conservation equation). The basic principle in manipulating these equations is to ensure 
mathematical consistency, i. e. the number of equations should be the same as the number 
of unknown dependent variables. 

It has already been stated, in Section 2.3, that the three equations of conservation 
have been developed in a way which enables them to be valid for real (or perfect) gas 
homogeneous liquid-vapour mixtures and pure liquids. The form of the equations is almost 
identical to the one required for a perfect gas, which simplifies considerably computer codes 
and can deal with problems where several of these three fluid forms appear simultaneously. 
The three equations of conservation contain three dependent variables, namely p, u and p. 
In addition, T, which is also required in calculating 0, needs to be determined. This 

necessitates the addition of another equation, the equation of state, in order to ensure 
mathematical consistency. These four equations will be solved simultaneously by a 
computer, using a suitable numerical scheme. In Section 2.4, a detailed discussion is made 
of the available options which can represent the equations of state. This work will be 

greatly simplified if one of the computer software packages available is obtained and used 
a sub-routine of the main programme. The QUANT software is strongly recommended 
because apart from the usual thermodynamic and transport properties of the gas, it also 
gives the values of the partial derivatives ap, ßr, YT' Ys and Ss required for the y8 method, 
which is used in this study. 

The Chen expression for friction factor [equation (C-5)] is used to account for the 
friction losses. The formula for unsteady friction loss based on wall shear stress has been 
found unsuitable for this study because it requires two-dimensional flow consideration. 
Also the two-phase friction multiplier has not been used at this stage. Using the two-phase 
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friction multiplier, the expression for the friction term becomes 
AP fD j 

UIUI 2 (4.4) 
d 

where cZ is the multiplier for two-phase flow. The heat transfer is calculated using the 

recovery factor and adiabatic wall temperature method. The fluid properties used to 

calculate both the friction force and heat transfer are flow dependent, rather than the 

constant value Reynolds and Stanton numbers used by Tiley (1989). 

4.1.3 REPRESENTATION OF NON-LINEAR TERMS 

The basic equations for the unsteady flow of fluid in pipelines contain terms which cannot 

be represented directly by finite differences. These terms are the pipe friction term, the 

second inertia term, the convective term, and the term representing the geometric variation 

of cross-sectional area. Some workers have avoided this problem by neglecting as many 

of the above terms as possible. However, finite-difference methods can take into account 

these non-linearities in the basic partial differential equations, which are neglected in the 

linear transfer techniques but which do have an influence on the flow. A second-order 

approximation is used to calculate the frictional force. 

4.2 INITIAL AND BOUNDARY CONDITIONS 

4.2.1 INTRODUCTION 

Partial differential equations are classified according to their order as first-, second-order 

etc.; as either linear, or quasi-linear or non-linear; and either elliptic, or parabolic, or 
hyperbolic. The criteria for this classification is explained in most literature dealing with 

partial differential equations, including Ames (1977), Hoffman (1989) and Lapidus & Pinder 

(1982). Further classification is made through the engineering and physical problems 
described by these partial differential equations as either equilibrium (boundary value), or 

eigenvalue, or propagation (initial value) problems; according to the type of initial and 
boundary conditions existing. Equilibrium problems are problems of steady-state nature. 
Very often, but not always, the integration domain is closed and bounded. The governing 

equations for equilibrium problems are elliptic. Eigenvalue problems may be thought of as 

extensions of equilibrium problems, wherein critical values of certain parameters are to be 
determined in addition to the corresponding steady-state configurations. Propagation 
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problems are initial value problems that are unsteady-state or transient by nature. 

Prediction of subsequent behaviour of the system, given the initial steady-state, is achieved 

by solving the differential equation within the domain when the initial steady-state is 

prescribed and subject to prescribed conditions on the boundaries. The integration domain 

is open. The problem of propagation of pressure waves in fluids, falls under the 

classification of propagation or initial value problems. Propagation problems are described 

by parabolic and hyperbolic partial deferential equations. 

In order to obtain a unique solution to a partial differential equation, a set of 

supplementary (initial and boundary conditions) must be provided, in order to determine the 

arbitrary functions which result from the integration of the partial differential equations. 

An initial condition is a requirement that the dependent variable is specified at some initial 

state. A boundary condition is a requirement that the dependent variable or its derivative 

must satisfy at the boundary of the domain of the partial differential equation. Four 

different types of boundary conditions are distinguished, namely the Dirichlet, Neumann, 

Robin and mixed boundary conditions. In the Dirichlet boundary conditions, the dependent 

variable is prescribed along the boundary, in the Neumann boundary condition, the normal 

gradient of the dependent variable along the boundary is prescribed; in the Robin boundary 

condition, the imposed boundary condition is a linear combination of Dirichlet and 

Neumann types; and in mixed boundary conditions, the boundary condition along a certain 

portion of the boundary is frequently of the Dirichlet type and on another portion of the 

boundary is of the Neumann type. 

The initial condition is the steady-state condition in the pipe prior to the initiation 

of unsteady flow. The initial conditions are also specified at the boundaries at the initial 

time. Boundary conditions require values only at full node points (points which have an 
integral number in the spatial index) and do not involve any tentative locations. 

Lyczkowski, Grimesey and Solbrig (1978) stated that when the numerical scheme is of the 
higher order than the differential equations, as is often the case, more boundary conditions 

are required for the partial difference equations than for the partial differential equations. 
The additional conditions are referred to as missing boundary conditions. However, the 

theory of characteristics applied to differential equations restricts the boundary conditions 

which may be specified. The boundary conditions which can be prescribed are inlet 

(upstream), outlet (downstream) and closed boundary conditions. Missing boundary 

conditions only occur for the inflow boundary. This additional information is obtained by 
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extrapolating from the interior. At an inflow boundary, the theory of characteristics permits 

only two items to be specified; and for an outflow boundary, only one item can be specified. 
Only a zero velocity may be specified at a closed boundary, in the case of gas flow. For 

liquid flow, cavitation can occur and for a vapour condensation may occur. 
When flow reversal occurs at a boundary which was initially prescribed to be an 

outflow boundary, the pressure at the boundary remain the same. However, the internal 

energy at the inflow boundary that was previously at the outflow boundary becomes the 
internal energy from the previous time step. In the case of ruptures in pipelines, boundary 

conditions are specified at the break. As already stated in Chapter 3, one of the main 

advantages of the method of characteristics is that the boundary conditions are properly 

posed. Moreover, when using finite-difference methods of higher than first-order, it is not 

possible to solve the boundary nodes directly. Beauchemin and Marche (1992) gave the 

two methods which are generally used in conjunction with the MacCormack scheme. The 

first method involves using the appropriate characteristic equation at each boundary. The 

second method involves extrapolation of interior fluxes at fictitious calculation nodes 
beyond the boundaries. The presence of these fictitious nodes permits differencing in both 

directions even at the boundaries. The use of characteristic equations is preferred to the 
flux extrapolation method because the former method generally yields better overall results. 
When using a third-order scheme, it is only possible to solve for nodes j=3,4, 

..... N-2; 

where N is the number of reaches. In this situation, a second-order scheme without the 
third level is used at the nodes adjacent to the boundary. 

4.2.2 STEADY STATE ANALYSIS 

4.2.2.1 Basic Equations for Steady State Flow 

The details of the programmes developed in this study are given in Section 4.6. After 
prompting for system data and in the case of variable grid size generating the distance grid, 
steady state analysis is performed for all the distance grid points in both the upstream and 
downstream sections of the pipe. Two separate programmes have been written one for 

each of the pipe sections. The programme for the downstream section depends on data 

calculated by the programme for the upstream section. This makes it necessary for the 
former programme to be run in succession to the latter programme. 
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The steady state model assumes a fully developed flow, with the fluid properties 
being known at the initial grid point. The basic equations for steady state flow analysis are 
derived from the basic equations for unsteady flow (Equations (4.1), (4.2) and (4.3)). All 

the partial derivatives with respect to t are set to zero, thus resulting in ordinary differential 

equations with respect to x. Assuming that the cross-section area of the pipe is constant, 

the three ordinary differential equations are as follows: 

Continuity equation: 
u 

dP 
.p 

du 
.0 (4.5) 

dx dx 

Momentum equation: 
dp du 
dx ,PUA*I-! 

L 
- 8sin 0 p- 0 (4.6) 

lP 

Energy equation: 
dpP ai � 1(as-t) °-. 

.0 (4.7) dx u dx Au 

In addition to the above three equations, the QUANT software is used to calculate the 

thermodynamic and transport properties of the fluid. Also the equation of state can be used 
in any form which is convenient for the type of assumptions used. Given the fluid 

properties at one grid point, the equations are solved simultaneously to obtain the 

properties at the next grid point. Four different models all of which assume viscous flow, 

were developed in this study. The models are an incompressible flow model and three 

compressible flow models based on isothermal, adiabatic and non-isothermal non-adiabatic 
flow assumptions. 

Directiori of Flow 
- DISTANCE[X] 

AB 

Fig. 4.1 Grid Mesh for Steady State Analysis 

Three numerical methods of solution are compared (only for incompressible 

adiabatic flow assumption). The methods are first-order backward, first-order forward and 
second-order finite difference methods. For the rest of the flow assumptions only the first- 

order backward finite difference method is used. Aller calculating p, u and p; the 
temperature of the fluid is calculated using either the QUANT software or the general 
equation of state [equation (B-2)]. The speed of sound is calculated using either equation 
(A-10) or (A-11), depending on the assumptions made. 
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4.2.2.2 Incompressible Flow 

The incompressible flow assumption means that 
dp p 
dx 

which according to the continuity equation (4.5) implies that 
du 0 
dx 

From the momentum equation (equation (4.6)) 
dp 

"_L. gsino p 
dx pA 

In one variation of the model, it is assumed that temperature is constant i. e. isothermal flow 

while in another variation an adiabatic flow is assumed. In both the variations, numerical 

analysis is performed using a finite-difference method in which the fluid properties at the 

previous grid point are used to calculate the new fluid properties at the new grid point. 
This numerical method is referred to as the backward difference method, and is of the first- 

order of accuracy. Using this method and referring to Fig. 4.1, the pressure difference 

between the two points is given by the following equation: 

ep. --' " gsinepAr (4.8) 
pA 

p and u are constant for both the isothermal and adiabatic models and T is also constant for 

the isothermal model. The temperature drop in the adiabatic model is obtained by 
differentiating the equation of state [equation (B-2)]. The resulting equation is as follows: 

dp=ZRp dT 

Rearranging the above equation, we get: 

dT dp 
ZR p 

which in finite differences becomes 
AT " 

°p 
ZRp 

(4.9) 

4.2.2.3 Isothermal Compressible Flow 

From the continuity equation (equation (4.5)) 

dp p 
du (4.10) 
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and from the momentum equation (equation (4.6)) 

dp --pu du ."g sing p dx (4.11) 
PA 

Differentiating the equation of state (equation (B-2)), with respect to p, we get: 

dp 
ZRT 

(4.12) 

Equating the right hand side of equations (4.10) and (4.11) results in the following 

equation: 

dp du 

ZR Tu 

and rearranging we get 
du -' 

PZRTdp 
(4.13) 

Substituting equation (4.13) into equation (4.11), results in the following equation: 

i 
dp pU dp +w+ gsin9 pdx 

pZRTpA 

which upon solving for dp gives 

g sing 
dp "-p `4 p dx 

I1 
- 

u2 
ZR T 

Based on the proceeding equations and referring to Fig. 4.1, the finite difference 

equations based on the fluid properties at the previous grid point are as follows: 

(1' 
,g sin0 

AP -pAP Ax (4.14) 

1- u2 

"ZRT 

Au .-Z"RT Ap (4.15) 
p 

AP - -P Au (4.16) 
u 

and T is constant. 
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4.2.2.4 Adiabatic Compressible Flow 

Equations (4.10) and (4.11) are also used for this model. In addition, the equation of state 

for adiabatic flow is used. The equation is as follows: 

P= p" (4.17) 

where n is the polytropic coefficient of the gas. Expressing equation (4.17) in natural 

logarithms we get the following: 

lnp=nlnp 

Assuming n is constant and differentiating we get: 

dp "p 
dp 

np 
(4.18) 

Similarly from equation (B-2) and assuming that Z is constant. 

dT - 
dp 

- 
dP IT (4.19 ) 

P PJ 

Three different numerical methods are used, in this thesis, to solve the four 

differential equations (4.10), (4.11), (4.18) and (4.19). The three methods differ in the 

properties of the fluid used to calculate the dependent variables at the new grid point i. e. 

point B in Fig. 4.1. In the first method, the fluid properties used are those at the previous 

grid point (point A). This method is referred to as first-order backward difference method. 

In the second method, the properties used are those at the new grid point (point B) and the 

method is called first-order forward difference method. The third method, is referred to as 

a second-order difference method and uses the average of the properties at the previous and 

new grid points i. e. points A and B respectively in Fig. 4.1. A comparison is made between 

the three models with regard to their accuracy, and simplicity. Since most of the data used 

are for relatively short pipelines and zero initial flow velocity, it is generally found that there 
is not much difference in the results from the three methods to justify further investigation 

and validation. The first-order backward method was selected for use in all the steady state 

analysis programmes, especially because of its simplicity. Also since the steady state model 
is by itself a very inaccurate representation of the flow of gas in high-pressure pipelines, it 

is concluded that there is no justification for using a more accurate numerical method. 
However, for longer pipelines and flow velocities which are significantly greater than zero, 

variations in the results from the three numerical methods are expected. 
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(a) First-order Backward Difference Method 

In this method, the dependent properties of the gas p, u, p and T; are calculated based on 

the properties of the gas at the previous grid point. The four differential equations (4.10), 

(4.11), (4.18) and (4.19) are used to derive the finite-difference equations for this method. 
From equations (4.10) and (4.18) 

AU U AP (4.20) 
np 

From equations (4.11) and (4.20): 
10 

.. g sin 9I 
Ap lpA 

p Ax (4.21) 

Ip u2 
-1 

np 

and 
Op --p 

Au 
(4.22) 

U 

or 
AP-P 

Ap 
(4.23) 

np 

From equation (4.19) 

AT -AP -pT (4.24) 
pp 

Alternatively, equation (4.12) could be used instead of equation (4.18), in which 
case equations (4.20) and (4.21) would be replaced by equations (4.15) and (4.14) 

respectively. The other thermodynamic and transport properties of the fluid are also 

calculated, based on the state of the fluid at the previous grid point. 

(b) First-order Forward Difference Method 

Calculation of the four dependent gas properties p, u, p and T at the new grid point is 

effected using values of the same properties at the new grid point. But in this study, the 

other thermodynamic properties and also the transport properties used are based on the 

previous grid point. Equation (4.6) expressed in finite differences is as follows: 

Op + (P+Op)(u+Du)Au + (p+Op)lOx =0 (4.25) 

where 

l to 
.g sin g 

pA 
(4.26) 

Equations (4.23) and (4.20) are used to calculate Ap and Au respectively. 
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Calculation of A p: 

ep . 
(p. AP) Ap 

. PAP " 
°p°p 

n (p"Ap) n(p"Ap) n(p. Ap) 

, &P 
(I- Ap PAP 

n(p"Ap) n(p"Op) 

ep. PAP n(P+AP)PAP 

n(p. eP)( i- AP n( +Ap)[n( +Ap)- API 
n(p"AP) 

AP p °p (4.27) 
np + (n-1)Ap 

Calculation of Au: 

AU .- 
(u. e u)Ap 
n(p"Ap) 

_ 
uAp 

" _ 
AuAp 

n(p«Ap) nip. Ap) 

Au 1" 
Ap 

. _ 
uAp 

n(p"Ap) n(, p"Ap) 

Au -- 
uAp 

n(p. Ap)I1. Ap 
l ncp, Ap) 

Au -- 
uAp 

n(p. Ap). Ap 

Au --u 
Ap 

np. (n . 1) Ap 
(4.28) 

Calculation of A p: 

Equations (4.27) and (4.28) are substituted into equation (4.25) and rearranged to form a 

polynomial function in A p. The polynomial is solved for A p, which is then substituted into 

equations (4.27) and (4.28) to obtain Ap and Au respectively. Substituting equations 
(4.27) and (4.28) into (4.25) we get: 
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eP 
ý(, 

PeP ,. AP ue _P 
np . (n-1)ep np + (n. 1)ep np . (n. 1)ep 

p. 
pAp lAx - 

( 

np " (n-1)Ap 

Multiplying throughout by [np + (n-1)Ap] and [np + (n+1)Ap]2 

{[np + (n-1)Ap][np + (n+1)Ap]2 Ap) + 

{[np+(n-1)Op] p+p Op){[np+(n+I)Op]u-u Ap){- u ip }+ 

([np + (n-1)Ap][np + (n+1)Ap]Z p+ [np + (n+1)Ap]Z p Ap) 1 Ax =0 (4.29) 

Equation (4.29) can be considered as having three terms I, II, and III on the left hand side, 

represented by the first, second and third lines respectively. The three terms of equation 
(4.29) are simplified as follows: 

Term I: 

I= [np + (n- 1) A p] [n2p2 + 2np(n+1)Ap + (n+1)2 (i p)2] Op 

_ [n3p3 + n2(n-1)p2 Ap + 2n2p2(n+1) Ap + 2n(n+l)(n-1)p(ip)2 + 

n(n+1)2 p (A p)2 + (n-1)(n+1)2(A p)3] Ap 

I= n3p3 +n2(n-1)p2 + 2n2 (n+1)p2(ß + 

2n(n+1)(n-1)p ip3+ n(n+1)2 p Ate' + (n+1)2(n-1)iß° (4.30) 

Term II: 

II = [npp + (n-1)P Op +p ip][npu + (n+1)u Ap -u Op][-u Ap] 

_ (npp +np Ap)(npu + nu A p)(-u A p) 

_ -u i p[n2p2 Pu+n2p Pu OP+n2p Pu OP+n2 Pu(OP)2] 
II = -n2 u2 p()3 - 2n2 u2 pp( - n2 u2 p p2 (AR (4.31) 

Term III: 

III = [n2p2 + 2n(n+l)p ip + (n+l)2 (Ap)2][np + (n-1) Op + Op]pl Ax 

_ [n2p2 + 2n(n+1)p Ap + (n+l)2 (Ap)2][np +n Op]pl Ax 

_ [n3p3 + 2n2 (n+1)p2 Ap + n(n+1)2 p(Ap)2 + n3p2 Op + 

2n2 (n+1)p(Op)2 + n(n+1)2 (Ap)3]p 1 Ax 

III = n(n+1)2 pl Ax(A )3 + n(n+1)(3n+1)pp I Ax (A2)2 + 

= n2(3n+2)p2 pl Ox ()+ n3 p3 p! Ax (4.32) 
Substituting equations (4.30), (4.31) and (4.32) into equation (4.29) we get: 
[(n+1)2 (n-1)] LW p4+ [2n(n+1)(n-1)p + n(n+1)Z p- n2 pu2 + n(n+1)2 p1 Ax]"' + 
[2n2 (n+1)p? + n2 (n-1) p2 - 2n2 ppu2 + n(n+1)(3n+1)pp I Ax](W + 
[n3p3 - n2p2 put + n2(3n+2)p2 Pl iXx](A2) + n3 p3 p 10x =0 (4.33) 
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Equation (4.33) is a fourth order polynomial in Ap and is solved using a recipe XZRHQR4, 

which is a modified version of recipe XZRHQR from Press, Teukolsky, Vetterling, and 

Flannery (1992) and Vetterling, Teukosky, Press, and Flannery (1992). The polynomial 

equation (4.33) can be expressed in a simplified form as follows: 

al (Ap)4 + a2 (Ap)3 + a3 (A p)' + a4 (Ap) + a5 =0 (4.34) 

where the coefficients al to a5 are defined as follows: 

al = (n-1)(n+l)2 (4.35) 

a2 = 2n(n+l)(n-1)p + n(n+l)2 p- n2 pu2 + n(n+1)2 p1 Ax (4.36) 

a3 = 2n2 (n+l)p2 + n2 (n-1)p2 - 2n2 ppu2 + n(n+l)(3n+l)p pI Ax 

a3 = (3n+1)n2p2-2pu2n2p+n(n+l)(3n+1)ppIAx (4.37) 

a4 = n3p3 - n2p2 put + n2(3n+2)p2 p1 Ax (4.38) 

a5 = n3 p3 pl Ax (4.39) 

The fluid temperature is calculated using equation (4.19) as follows: 

AT T- °ý' 
-°P (T. e 

1ý P 

- 
(A-P AP 

T. 
Ap 

- 
AP AT 

PPPP 

ApAP 

AT -pp (4.40) 

1-IAp - 
PI 

J Pp 

(c) Second-order Difference Method 

In this method, the fluid properties are based on the averages between the properties at the 

previous and new grid points i. e. points A and B respectively, in Fig. 4.1. Equation (4.6) 

expressed in finite differences for this method is as follows: 

ep, (u. °-2")Au(p. °-2Pý rAx(P. °-2Pý 0 

Equations (4.23) and (4.21) are used to calculate Ap and Du respectively. 

(4.41) 
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Calculation of A p: 

°P 
e 

e 
(p 

2) 
p 

2pAp 
f 

App 
Pn 

(p " 
AP) n(2p. Ap) n(2p. Ap) 

2 

nP 1- 
°p 2PAP 

n(2p. Ap) - 
n(2p. Ap) 

AP . 
2pAp 

n(2p+Ap) 1- Ap ( 

n(2p"Ap) 

2pAp 2pep Op - 
n(2p`Ap)_Ap 2np. (n_l)Ap 

AP . 
2pAp (4.42) 

2np+ (n-1)Ap 

Calculation of Au: 

Du 
u. - 0 

eu 
(2u. Au)Ap (2uAp. AuAp) 

p n(2p+Ap) n(2p+Ap) 
np. A2 

Au 1, 
ep 

._ 
2uep 

ný2P"ýP) n(2p"AP) 

Au . -2uAp -2uAp 
n(2p. Ap)+Ap 

n(2p+Ap) 1. 
n(2p+Ap) 

Au -2uAp (4.43) 
2np. (n. l)Ap 

Calculation of A p: 

In a similar way as for the first-order forward difference method, substitution of equations 
(4.42) and (4.43) into (4.41) leads to a fourth order polynomial function in Ap, which is 

also solved by the numerical recipe XZRHQR4. Substitution of equations (4.42) and (4.43) 

into (4.41) gives the following equation: 

Ap+ u+ 
(-)uAp -2uAp p+ 

POP 
+i &x p+ 

pAp 
.0 2np+(n+1)Ap -2np. (n+l)Ap 2np+(n-1)Ap 2np+(n-1)Ap 
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NB: For equations (4.42) and (4.43), 

2np + (n+1) Ap= n(2p +A p) +Ap and 

2np+(n-1) Ap = n(2p+ Op) - Op 

Therefore multiplying throughout the above finite-difference equation by [2np + (n+l)Ap]Z 

and 2np + (n-1) Ap we get 
[2np + (n-1) Op][2np + (n+1)Op]2 Ap + 

{[2np + (n+I)Op]u -u Op} {-2u Op} ([2np + (n-1) Ap] p+p ip) + 

{[2np+(n-1)Ap][2np+(n+1)Ap]Z pl Ax+[2np+(n+1)Ap]2p/AxAp} =0 (4.44) 

The above equation is split into three terms I, II and III represented by the left hand side 

first, second and third lines respectively. The three terms are simplified as follows: 

Term I: 

I= [4n2p2 + 4np(n+1)Ap + (n+1)Z (Op)2][2np + (n-1), &p] p 

_ [8n3 p3 + 4n2 p2 (n-1)Ap + 8n2 p2 (n+1)Ap + 4np(n+1)(n-1)(Ap)Z + 

2np(n+1)2 (, & p)2 + (n-1)(n+1)2 (Ap)3]i p 
I= 8n; p3 (An) + 4n2 p2 (3n+1) ( )2 + 4np(n+1)(n-1)(AR)3 + 

2np(n+1)2 ( )3 + (n-1)(n+l)2 (4)4 

Term 11: 

II = [(2np +n Ap + Ap)u -u Op][-2u Ap][(2np +n Ap - Op)p +p Op] 

_ (2npu + nu Ap)(-2u Op)(2npP + nP AP) 

-[4npu2 Ap + 2nu2 (Op)2][2npp + np Ap] 

_ -8n2 p2 u2 p Op - 4n2 u2 pp (Op)2 - 4n2 u2 pp (Ap)2 - 2n2 u2 P(, &P)3 

II = -8n2 p2 u2 P(") - 8n2 u2 pp (g)2 - 2n2 U2 P(A)3 

Term III: 

III = [2np + (n-1), &p +i p][4n2 p2 + 4n(n+l)p Ap + (n+1)2 (Ap)2]p I &x 

= [2np +n Ap][4n2 p2 + 4n(n+1)p Ap + (n+l)2 (Ap)2]p 1 Ax 

_ [8n3 p3 + 4n3 p2 Ap+ 8n2 (n+l)p2 ip+ 4n2 (n+1)p(A p)2 + 

2n(n+1)2 p(, & p)2 + n(n+1)2 (Ap)3]p 1 Ax 

III = n(n+l)2 pI &x(4)3 + 2n(n+l)(3n+1)pp I Ax(A")2 + 

4n2 p2 (3n+2) p1i x(A2) + 8n' p3 p 10x 
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Substituting the three terms I, II and III back into the original equation (4.44) we get the 

following equation: 

(n-1)(n+1 )z (4)4 + 

[2np(n+1)2 + 4np(n+1)(n-1) - 2n2 U2 p+ n(n+1)Z pI Ox](g)3 + 

[4n2 p2 (3n+1) - 8n2 u2 pp + 2n(n+1)(3n+1)pp 1 ix](AR)2 + 

[8n3 p3 - 8n2 p2 u2 p+ 4n2 p2 (3n+2) p/ Ox](AR) + 8n3 p3 pl Ox =0 (4.45) 

Equation (4.45) is a fourth-order polynomial in Ap and could also be expressed in the same 

form as equation (4.34). The coefficients of the polynomial are as follows: 

al = (n-1)(n+1)2 

a2 = 2n(n+1)2 p+ 4n(n+1)(n-1)p - 2n2 u2 p+ n(n+1)Z p/Lx 

a3 = 4n2 (3n+1)p2 - 8n2 u2 pp + 2n(n+1)(3n+1)ppl Ax 

a4 = 8n3p3 - 8n2 p2 u2 p+ 4n2(3n+2)p2 p1 Ax 

a5 = 8n' p3 pi Ox 

The fluid temperature is calculated using equation (4.19) as follows: 

AT " 
Ap 

-Ap 
)(T+ AT 

PP2 

2AT - 
(. 4-p 

-LP 2T + 
Ap 

-AP AT 
PPPP 

, 
+&p eP 

AT- pP (4.51) 
Ap Ap) 

pp 

4.2.2.5 Non-isothermal Non-adiabatic Compressible Flow 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

All the three basic equations for steady state flow analysis, equations (4.5), (4.6) and (4.7), 

are used in the non-isothermal non-adiabatic compressible flow model. The QUANT 

software is used to calculate the thermodynamic and transport properties of the fluid. The 

procedure used is as follows: 

(i) The fluid properties at the previous grid point are calculated using the QUANT 

software. 

(ii) Using the properties determined in (i) above, Sä and w are calculated. 
(iii) Solving equations (4.5), (4.6) and (4.7) simultaneously for dp, du and dp and 

transforming the resulting equations into finite-difference equations to obtain b p, 
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Au and A p. In all the calculations, the fluid properties are based on the properties 

at the previous grid point. 

(iv) Calculation of the values of p, u and p at the new grid point. 

(v) Repeating the procedure for the subsequent grid points. 

Solution of equations (4.6) and (4.7) simultaneously, results in the following equations: 

du 
��, a 2w. 

gsin 6p. (89' 1) 
AA 1.0 

dx u pA Au 

Sý1) 
A"t, ýu 1. 

+ gsin 8p 
`4 rt pA dx du . -t 

a2 
pu - p- 

u 

(a 1) 
a. wu 1.0. 

gsin e 
Au pA du 

p 

-- dx 
z 

pu 1 
(. 

E 
u 

Transforming into finite-difference equations, we get the following equation: 

(awl) 
Q. cou 1(. 

gsin @p 

Au ."A 
u__+ 

( 

pA Ax (4.52) 
)21 

pu 1a 
u 

Expressing equation (4.6) in finite differences we get the following equation 

Ap "- puAu - 
pA 

gsin 9 pAx (4.53) 

The temperature at the new grid point is calculated using the QUANT software. 

4.2.3 BREAK BOUNDARY CONDITIONS 

Correct approximation of the initial values of the dependent variables, p, u, p and T, at the 

break point at the time of the break is equally as crucial as developing an accurate model 

for analysis of the transient flow which follows. No matter how accurate the transient 

analysis model is, it will give incorrect results if the initial break conditions are incorrect. 

When a full-bore break of a pipe occurs, the gas escapes from the full area of the pipe and 
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the properties of the gas such as p, u, p and T change drastically. In reality, the break could 

be different from a full-bore break. The former is considered to be the worst situation. 

Although the gas properties change almost instantaneously after the break, this happens in 

a finite interval of time. The problem here is to find a physical model to represent this 

process. There have been several models to calculate the initial conditions after the break 

of high pressure vessels and pipelines containing gas. Some of these are presented and 
discussed in this section. 

British Gas [Jones and Gough (1981)] developed a single-phase decompression 

model which assumes that when a pipeline breaks, the gas escapes from the full area of the 

pipe in a process that is essentially isentropic. The decompression disturbance travels back 

into the pipe, with each pressure level propagating at a fixed speed. At the break, the 

pressure level falls until the gas is escaping at sonic speed with corresponding equalisation 

pressure given by the following equation: 
2K 

P, 
2 R"1 (4.54) 

`" Po 
K+1 

where the subscripts e and o denote equalisation pressure and initial pressure before the 
break respectively. 

Flatt (1986) developed a homentropic decompression model which is represented 
in Fig. 4.2. The initial conditions before the break are calculated by the appropriate steady 

state and/or transient analysis programmes and are represented by curves 0-0-(I and A-B- 

D for p and u respectively. A sudden break at the broken end at time t=0s is accompanied 
by an instantaneous drop in static pressure from point 3 to a much lower pressure at point 
4, corresponding to choked flow i. e. M, (,,. L) =1 for t>Os. The initial values pe(x), p. (x), 

a, (x) and u, (x) for L1sxsL, whereby the arbitrary value L-L' may cover one or more Ax 

meshes, are calculated by equations (4.55) to (4.62) [Flatt (1986)]. The subscripts e and 

o are as defined earlier. 

u` 1+ 
(E2 

0ao (4.55) 
ao To 

U 

Qs - 1- u K-1 s- uo 
a (4.56) 

2 ao 0 
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Fig. 4.2 Diagramatic Representation of the Flatt Decompression Model 

i 
P 

as K1 Po (4.57) 
` a,, R To 

Ps 
s 

x-t (4.58) as 
Po 

ao 

where 

a0- KR To (4.59) 
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To . 
ýt ' 

ao (4.60) 

E-x (4.61) 
L 

and 

0 t' 
L- L' 

(4.62) 
ao 

Kunsch, Sjoen and Fannelop (1991) developed an isothermal model which is very 

similar to that developed by Flatt (1986). The resulting equations for the former model are: 

us - ao -x-L (ao - aO) (4.63) 
Ll -L 

a, = as (4.64) 

peP" 
(uo-1 

1x-L (4.65) 
so ao LI -L 

where 
P= lnp (4.66) 

Tiley (1989) used a different approach, in which linebreak was considered as the 

situation occurring in a shock tube when the diaphragm is suddenly ruptured. The 

equations for particle velocity for rarefaction wave assuming isentropic conditions and that 

of particle velocity of the compression wave derived by Earnshaw (1860) and Bannister and 
Mucklow (1948) respectively were used. The Earnshaw equation is as follows: 

u2a 1- ` (4.67) 
po K-1 - 

and the Bannister and Mucklow equation is as follows: 

a 
P. 

-1 

ue 
P 

(4.68) 
Ka 

(K " 1) 
_P` 

a 
+ (Ka - 1) 

2 

The subscripts e and o are as defined before and the subscript a denote the properties at 

I 
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the resulting ambient conditions (low pressure zone). The equalisation pressure, p., was 
determined by equating equation (4.67) to (4.68) and solving for p., by iteration. Tiley 

(1989) also defined the critical value of the equalisation pressure as given by the following 

equation: 

2K 
2 K1 

po (4.69) pý ýKr1 

All the three models discussed above, those by Flatt (1986), Tiley (1989) and 
Kunsch, Sjoen and Fannelep (1991) were considered in this study. All except Tiley's 

iteration method were found to overestimate the equalisation pressure, thus causing severe 

problems with the numerical method for transient analysis after the break. Even the Tiley's 

equation for critical equalisation pressure overestimated the equalisation pressure. Tiley's 

iterative method resulted in equalisation pressure and wave speed which are lower than the 

critical values. Although this situation does not cause any problem with the numerical 

method, it results in underestimation of the initial gas outflow and therefore underestimation 

of the release rates and blowdown time. In addition, this method produces good results 

only if the low pressure zone (in this case ambient) state is defined close enough to its 

actual value. This requires a trial and error procedure. It should be noted that the 

properties on the outside of the pipe at the break are not the final ambient conditions. For 

example, a break problem involving a pipeline with initial conditions before the break as 

po 3.14MPa, as 378m/s and T,, =281K, the speed of sound at the low pressure zone after 
the break is 220m/s while the speed of sound at the final ambient conditions is 399m/s. It 

has also been found that the arbitrary length L-L1, in Fig. 4.2, of one 0x mesh is adequate 

as a starting point for transient analysis after the break. 

A much simpler and more accurate method than any of the four methods discussed 

above is developed and used in this study. This method assumes that the flow velocity and 

wave speed at time t=Os after the break, at the break point (x=L) is the same as the speed 

of sound at the break. In equation form, this is expressed by equations (4.63) when x=L 
i. e. 

u. = a0 

and equation (4.64). 

(4.70) 
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a [m/s] i 
amax t- ---- 

a,,,. -j----- 

P [MPa] 

Fig. 4.3 Typical Decompression Curve at the Break Boundary 

The equalisation pressure is calculated explicitly by substituting equation (4.70) into the 

Earnshaw equation (4.67). The resulting equation is as follows: 

2r 

pe 
3 -2 Kjx1 

po (4.71) 

The values calculated by equations (4.64) 
, (4.70) and (4.71) represent the fluid properties 

at the critical equalisation pressure i. e. point 2 in Fig. 4.3. Using this model, the maximum 

possible gas flow speed is achieved and thus reducing the possibility of underestimating the 

gas outflow. The transient analysis programme then models the flow after the break and 
the state of the gas at the break point, ideally, follows the path shown in Fig. 4.3 as O-®- 
O-®. 

Referring to Fig. 4.3, two distinct time regimes are considered at the broken end. 
As long as the pressure at the boundary x=L (Refer Fig. 4.2) is higher than the external 

pressure, there will be choking of the flow i. e. M,., =L(t) = 1. When the pressure at x=L 

reaches the exterior pressure, the choking condition no longer holds and the boundary 
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condition is replaced by the condition that px_L(t) = p,. The choking and constant pressure 

boundary conditions are represented by the straight lines (D-0 and Q -T respectively, of the 

curve in Fig. 4.3. 

It could be seen clearly, from equation (4.71) that the equalisation pressure is 

independent of the external conditions, but finally the conditions inside the pipe (at the 

break) will converge to those outside the pipe, through the path shown by the curve (D-0- 

Q-T. At the start of the break, the state outside the pipe at the break point is marked as 

point e. This state represents a low wave speed resulting from the temperature drop due 

to the sudden pressure drop at the break. As the gas heats up, the wave speed rises to the 

value marked as point ®, which corresponds to the final ambient temperature. However, 

a situation could exist whereby the exterior pressure is greater or equal to the equalisation 

pressure. A typical example could be in pipes buried under water. In such cases, no 

choking flow would occur and the constant pressure boundary condition will be the only 

existing one. The resulting process would be as represented by the path 0 -0-04 in 

Fig. 4.3. 

Any model which produces equalisation pressure which is higher than the critical 

equalisation pressure (point ® in Fig. 4.3), for the case where p. >%, will suffer severe 

problems with the numerical analysis which follows after the break. 

4.3 NUMERICAL SOLUTION OF THE BASIC EQUATIONS FOR 
UNSTEADY FLOW 

4.3.1 INTRODUCTION 

The various numerical methods for solution of the basic partial differential equations of 

unsteady fluid flow in a pipeline and a detailed discussion of their applications and suitability 
for the solution of the unsteady flow equations for a ruptured high-pressure gas pipeline are 

presented in Chapter 3. The shock-capturing explicit finite-difference methods of solution 

are preferred to the shock fitting scheme using the method of characteristics. Both Tiley 

(1989) and Niessner (1980) gave presentations of the basic partial difference equations for 

the more popular numerical methods. It is not intended to repeat this presentation here, but 

nevertheless a presentation will be made for those methods which are used in this study. 
Explicit finite-difference schemes range from the single-step first-order schemes to four-step 

fourth-order schemes. Explicit finite-difference methods integrate the basic partial 
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differential equations by considering the changes in the dependent variables along the 

directions of the independent variables. This produces the solution values at evenly spaced 

points in the physical plane. 
Various explicit finite-difference schemes were presented by Thorley & Tiley 

(1987), Tiley (1989) and Niessner (1980). Niessner (1980) included higher-order methods. 

This study focuses on the MacCormack and also the non-centred third-order Warming- 

Kutler-Lomax method. These methods allow explicit calculation of approximate values 

A +, ) of the solution at certain node points (i, j+1) of a rectangular grid from known exact 

or approximate values A(, j) of the solution at another node point (i, j), preferably belonging 

to the past. No eigenvectors need to be calculated. Eigenvalues are required only for 

testing stability conditions. Here "explicit" means that no linear or non-linear equations are 

to be solved. In order to write the equations for the third-order Warming-Kutler-Lomax 

finite-difference numerical method, the basic partial differential equations have to be 

expressed in the following form: 

aA 
.B 

aA . C. o at ax 
(4.72) 

The form expressed in equation (4.72) above, also applies for the method of characteristics. 
The form stipulated for the MacCormack method is as follows: 

a p) 
+ 

a(B) 
.C (4.73) at ax 

MacCormack (1971) used his method for the time dependent Navier-Stokes equations in 

two dimensions. The equations are linear i. e. body forces and heat transfer were neglected. 
However, the method can be used in situations where the basic equations are not linear as 
done by Beauchemin and Marche (1992) for analysis of transient flow of a compressible 

single-phase liquid in an elastic pipe. The basic equations in that case were quasi-linear i. e. 
in the same form as equation (4.72). The same approach as used by Beauchemin and 
Marche (1992) is used in this study. 

The three basic partial differential equations (4.1), (4.2) and (4.3) can be expressed 
in the matrix form of equation (4.72), where the matrices A, B and C are as follows: 

P 
rý (4.74) 
P 
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u pa 20 

B. .1u0 (4.75) 
p 

0pu 

(1 -68)Q"tau) A 
W- 

.g sin 0 (4.76) 

pA 
0 

Before performing transient analyses, a steady state analysis has to be performed in order 

to establish the initial conditions (conditions at t= Os) in the pipeline. This could be 

followed by transient analysis before introducing the break boundary conditions. 

The discussion in Chapter 3 concluded that explicit finite-difference methods are the 

most suitable for solution of the basic equations for analysis of linebreak problems. In this 

case the equations to be solved are equations (4.1), (4.2) and (4.3). The second order- 

method developed by MacCormack (1971) and the third-order method developed by 

Warming, Kutler and Lomax (1973) are the most preferable for this study. The method of 

characteristic could also be used, but it was selected for solution at the boundary points, 

while the MacCormack method was selected for solution at the nodes next to the boundary. 

The three different numerical methods of solution mentioned above are used for complete 

solution of the basic equations. The method of characteristics is studied in two forms 

namely the first-and second-order. The different methods were compared with regard to 

accuracy of their numerical results, stability and economy in computing resources. 

4.3.2 METHOD OF CHARACTERISTICS 

The theory of the method of characteristic is very well known and documented. It is 

therefore not intended to repeat it in this study. For more details on the method, the reader 
is referenced to among others Courant and Friedrichs (1948), Hartree (1955), Lister (1960) 

and Ames (1977). The major weakness of the natural method of characteristics arises in 

the event that spatial distribution of the dependent variables are required at fixed time. This 

is normally the case in many fluid transient flow analyses. In such cases, a two-dimensional 

148 



interpolation in the characteristic net would be necessary and it could be complicated 

depending upon the form of the equations. However, the problem can be avoided by using 
hybrid methods, which define the mesh points in advance in space and time. In the hybrid 

methods, the interpolation is done as computation advances and consequently the 

interpolation becomes one-dimensional. 

Two common hybrid methods are those by Courant, Isaacson and Rees (1952) 

which is a first-order method and Hartreee (1955) which is a second-order method. 

According to Ames (1977) the Hartee method is more accurate than the Courant-Isaacson- 

Rees method. Ames (1977) also stated that the former method could be applied to second- 

order systems with only minor changes. Referring to Fig. 4.4, the hybrid method starts by 

assuming that the solution is known at the mesh points on time level t. The intersections 

of the characteristic lines with the time level t line i. e. points Q, R and S are unknown. 
These together with the values of the dependent variables at point P are determined using 

the characteristic and compatibility equations. Interpolation for the values of the dependent 

variables and the positions of points Q, R and S is necessary at each step. 

The first step in the method of characteristics solution is to convert the basic partial 
differential equations of flow into ordinary differential equations. Two most common 

methods of achieving this are the matrix transformation method, such as the one used by 

Tiley (1989) and that of multiplying the basic equations by an unknown parameter and 

summing them. The latter method was used by Lister (1960), Wylie and Streeter (1978) 

for isothermal flow (only two equations) and by Zucrow and Hoffman (1977) for non- 
isothermal flow (three equations). The method used by Zucrow and Hoffman (1977) is 

adapted for this study because of its simplicity, mathematical rigour and also because the 

equations used in this study are very similar to those used by Zucrow and Hoffman (1977). 

The common practice in the method of characteristics solution is to use first-order 

and linear approximations to calculate values at the next time level. Values obtained in the 
first-order calculation are used as initial estimates for the iterative solution in the second- 

order approximation. In the case of hybrid methods, the first step is to find the positions 

of the intersections of the characteristic curves with the distance axis at time t, point Q, R, 

and S. This also could be done using either first- or second-order approximation. Tiley 

(1989) used linear interpolation to determine the intersection points Q, R and S, based on 

values of u and a which were averaged between the respective surrounding grid points for 

each of the characteristic curves. First-order approximation was used to calculate the 
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Fig. 4.4 Hybrid Method of Characteristics Solution Grid 

properties of the fluid at the next time step i. e. the interaction of the characteristic curves 

or point P in Fig. 4.4. New positions of points Q, R and S were defined using the 

previously calculated intersection points and the newly calculated point P. Taylor's 

theorem was used to derive equations for quadratic interpolation so that new values of the 

fluid properties could be calculated at the bases of the characteristics. These values were 
then averaged with the predicted values obtained from the first-order approximation or 

previous second-order approximations. The results were used as variables in the 

characteristic and compatibility equations. 
There are other methods which have been developed for application in the method 

of characteristics, with the aim of simplifying the process, improving accuracy and reducing 

computation costs. For example, Flatt (1985) developed a singly-iterative second-order 

method which was based on the use of curved characteristic lines within each numerical 

space-time mesh. No iteration was need in determining points Q, R and S. Iteration was 
required only in determining the values at the next time level. Flatt (1985) claimed that with 
his algorithm, the overall procedure needed only a single iteration and was as good as a 
second-order method,. giving more accurate results with less computing time. 

In this study, both the first- and second-order approximations are used in succession 
and taking full advantage of the flexibility of the C programming language. Different 

subroutines have been written for each of the two orders of approximation. For the first- 

order method, points Q, R and S are calculated using the characteristic equations and the 
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values of u and a at point M initially, and the averages between the values at M and those 

estimates at P in subsequent iterations. The fluid properties at Q, R and S are calculated 

using linear interpolation between those at the respective surrounding grid points. A first- 

order approximation is used to calculate the properties at the next time step i. e. point P, in 

the first-order method. In the second-order approximation, the procedure is exactly the 

same as that used by They (1989), which was described earlier, with the exception that 

values calculated by the second-order approximation are not averaged with those calculated 

using the first-order approximation. The latter values are only used in the first iteration of 

the second-order approximation. 

DERIVATION OF THE CHARACTERISTIC AND COMPATIBILITY 
EQUATIONS 

The basic equations for unsteady flow are derived from first principles in Chapter 2 and 
further simplified in Section 4.1.1. The resulting equations are given as equations (4.1), 

(4.2) and (4.3) for the continuity, momentum and energy equations respectively. The 

characteristic and compatibility equations corresponding to equations (4.1), (4.2) and (4.3) 

are derived by multiplying equations (4.1), (4.2) and (4.3) by unknown parameters 81,62 

and 83 respectively, summing the products and equating it to zero. In this procedure 
reference is made to Fig. 4.4. For the sake of convenience of mathematical manipulation 
the energy equation used is that given by equation (2.28), but after making the same 

simplifications as those made to equation (2.29). The use of equation (4.3) leads to a 
coefficient matrix in which the elements of one row are all zeros. This results in equation 
(4.88) with both sides being zeros and therefore no solution for 1. The starting equation 
is as follows: 

81(4.1) + 62(4.2) + 83(4.3) =0 (4.77) 
Substituting equations (4.1), (4.2) and (4.3) into (4.77) we get the following equations: 

au au I ap an cý S1 ap 
. uaP " P- " 62 -"--"u-"-"gsin9 . at ax ax 

( 

at p ax ax PA 

a3 ap 
.u 

ap 
-a 

2 a? 

at ax - at a2ttaP (1-a) pW« 
ax s. o A 
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61 (. 61ua- . ölpaa . a2 
au 

. 
a2 ap 

+ ö2 u 
au 

" 
at ax ax at p ax ax 

b2 . gsin8 b3ap + b3 rta - b3 aZap - b3 a2 
Q+ WU 

U-+ b3 0-6S) 0 
pA at ax 8t ax A 

(S1-b3 a2)aP . (a 
IU-E3ua2) 

ap 
a2au 

. (al p. a2u)au 

at ax ar ax 

a3 ap 
+? + b3 u 

ap 
+ SZ + gsin 8 S3 (1-bs) 

Q+týu 
"0 

49t p äx pA A 

Factoring out the coefficients of the x derivatives we obtain the following equation: 

(atU -63ua2) 
aP 

öx 

(alp. a2u)t 
211-1 

ax 

81 -a3 a2 ap 
" 

61 u- 63 ua2 at 

62 all 
81p. S2u at 

a2 
Su ap 63p ap 

p3 ax 52 , a3 pu at 

a2 -' . g,;. e+63 
[(1 

-as)Q. "" ,o4.78) pA A 

The slopes of the characteristic curves dt/dx = 1, are the coefficients of the partial 
derivatives of p, u and p with respect to t. Therefore: 

a, - 63 a2.62 63 P (4.79) a1 u- a3 u a2 8, p "62u a2 ,63pu 

Assuming p, u and p are continuous, then 
du au ai_ 

(4.80) 
dx ax at 

ax - ax at 
(4.81) 

dp 
- 

ap 
+ Jl ap 

(4.82) 
dx ax at 
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Substituting equations (4.80), (4.81) and (4.82) into equations (4.78) we get the following 

equation: 

(61 u-63ua2)dp+(61p+62u)du + 
62+63u 

dp+ 
P 

0 (4.83) 82 PA 
+ gsfn 8+ 63 

((16s)( 
-pA A" 

Equation (4.83) is the compatibility equation, which is valid along the characteristic curves 

determined by equation (4.79). What is required now is to eliminate the unknown 

parameters S1, S2 and S3 from equations (4.79) and (4.83). Solving for S1, S2 and S3 from 

equation (4.79) we get the following equations: 

(Au - 1) 81 + (0) 82 - a2 (Au - 1) 83 =0 (4.84) 

(AP) 81 + (Au - 1) 82 + (0) 83 =0 (4.85) 

(0)S1 + (A)82 + p(flu-1)83 =0 (4.86) 

For equations (4.84) to (4.86) to have a solution other than 61 = 62 = 63 = 0, the 

determinant of the coefficient matrix for the system of those equations must vanish. Thus 

Xu-1 0- a2(11u-1) 

lp Au-1 0-0 (4.87) 

01 p(Au-1) 

The above determinant is expressed as follows: 

(Au - 1) [(Au - 1)2 - a2 A. '] =0 (4.88) 

Equation (4.88) is a cubic polynomial in I whose roots are as follows: 

A, dt 
.1 (4.89) ° dx 

°u 

;.. - (&) -1 (4.90) 
dx u+a 

A 
dt 1 

(4.91) 
dx u-a 

Equation (4.89), (4.90) and (4.91) represent the three characteristic lines namely the path 
line characteristic Co and the right- and left-running Mach lines C. and C. respectively. The 

compatibility equation along the path line is obtained by substituting the equation for the 

path line i. e. (Xu - 1) =0 into equations (4.84) to (4.86). This substitution results into the 
following solution: 
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S1 =0 SZ =0 S3 is arbitrary (4.92) 

Substituting equation (4.92) into (4.83) we get the following equation: 

dp - a2dp -- 1-8s)(Aýcvu) x (4.93) 
An 

Similarly for the Mach lines, equations (4.84) to (4.86) are solved for the 8's as follows: 

(A u- 1)82 
. a2 6g (4.94) bl - llp 

82- .lp a2 S3 
-p 

(A u- 1)63 
2 

(4.95) 
(I u- 1) 1 

61 - a2 a3 (4.96) 

Equations (4.94) and (4.95) are not independent and consequently there are only two 

independent relationships between S1, S2 and S3. This implies that one of the three S`s is 

arbitrary. S3 is chosen to be arbitrary and equations (4.95) and (4.96) are substituted into 

equation (4.83). The resulting equation is as follows: 

du 
2U- Aa 

dp - [_pa2 . 
(Au-1) At-1 

(1-6S) 
lpa2 

+ gsin0 dx -0 (4.97) 
A (Au-1) pA 

Using the equation for the Mach line characteristics in equation (4.88) i. e. (flu - 1)2 = a2 

X2, equation (4.97) is simplified to: 

I dp (Auf- 1) 
ps 

11 , _ul 
- 

(Jlu-1) 

Pl 
--2 du 

[i_( 

AIp +gsin9J dx"0 (4.98) 

Multiplying throughout equation (4.98) by A we get the following equation 

dp - 
(Au-1) 

pdu . 
[A1 

-a) 
A"c, )u 

- (AU-1) pw« gsür 0 dx "0 (4.99) 
ISA pA 

Substituting the equation for the Mach line characteristics i. e. equations (4.90) and (4.91), 

we get the compatibility equations for Mach line characteristics, which are as follows: 
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Right-running Mach line characteristic: 

dp + padu --1 (1-SS)f 
QA 

+ap( 
ý' 

+ gsin0l dx (4.100) +tau 
[u+a 

A) u+a pA J 

Left-running Mach line characteristic: 

dp - padu -- 11 (1-6S) 
Q+c u-apw* gsin B dx (4.101) 

u-a A u-a pA 

Substituting equations (4.90) and (4.91) into equations (4.100) and (4.101) respectively, 

we obtain the following equations: 

dp + padu pa ( 
+gsin0 + (1-6s) 

n+wu 
dt (4.102) 

pA 

dp - padu --- pa 
pA A+ 

gsin 0J I+ (1-SS)` I 
aA uI dt (4.103) 

lJ 

Equations (4.93), (4.102) and (4.103) are the compatibility equations along the path line 

characteristic Co and the right- and left-running Mach lines C, and C. respectively. 

According to the theory of characteristics [Courant and Friedrichs (1948)], every solution 

of the original system of partial differential equations should satisfy the characteristic and 

compatibility equations. The converse is also true and therefore every solution of the 

characteristic and compatibility equations must satisfy the original system of partial 
differential equations. 

A second-order approximation of the friction term is obtained by differentiating 

equation (A-4), which gives: 

do - 
aw 

dp " 
adu 

ap au 

dw -- dp . 
2w 

du 
pu 

The average value between two given points, I and 2, is given by: 
wl . W2 

2 

(4.104) 

155 



If w is the value at point 1 and w+dw is the value at point 2, then 

w. (o + do) dc 
--w+ - 22 

do (4.105) 
2 

Substituting equation (4.104) into (4.105) we get: 

0d- +2o 
2( p ri 

2p "u 
du 

J (4.106) 
2p 

The right hand side of equation (4.106) is substituted for ca in the compatibility equations 
(4.93), (4.102) and (4.103) resulting in the following equations: 

Along the path line characteristic: (NB: dx/u is substituted by dt) 

dp - a2dp - 1-8s) 0.6)u(l+dp + 
dui ±'- 

2puA 

A dp a 2A dp 
.-Q- Wu 1. dp+dit 

(1-6) dt (1-6S) dt 2p u 

A dp a 2A dp n_ wlt wit dp 
_ wdrt 

(1-bs) dt (1-6s) dt 2p 
2 A dp -awu dp. wdu - -A - (ou (4.107) [(1_6s)dt] (143)dt 2p 

Along the right-running Mach line characteristic: 

dp , padu -- 
Iapl 

w" 
gsin8l (1-bs)(A Äwu) 

)dt 

`/ 

1 dp+ padu 
- 

paw pagsinO -1 (1-b )A - 
(1-8s)wu 

dt dt pA AsA 

A dp . 
perdu 

- u(1-bs) . 
P° 

ca - paAgstnO - (1-bs)Q 
dt di 

.p 
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Substituting equation (4.106) for w we get the following equations: 

A dp + 
paA du Pa 1+dp+ - paAgsin9 - (1-SS)A 

dt dt p 2p u 

dp +2 
'-ý(1-6) 

.P dp . 
p4 

+ (1-bs) + 
°-I du " 

(P ) 

dt uJ 

- :, (1-as) - P. 1 c. ) - paAgsin e- (1-6s)0 
P 

Along the left-running Mach line characteristic: 

dp - padu --- api 
0" 

gsin0 
[(1 

-bs)(Q 
Äýlý) j)d: 7 A 

I dp - 
Pa du " 

paw 
. pagsinO -1 (1-bs)A - 

(1-Ss)wu 

dt dt pA AA 

A dp- pE± du " 
Paco 

.A pagsin 9- (1-bs)Q - (1-bs)wu 
dt dt 

A dp - 
paA du -- u(1-6s) - 

Pa o. paAgsin O- (1-8s)Q 
dt dt p 

Substituting equation (4.106) for ci, the following equations are obtained: 

(4.108) 

A 
dp - 

paA du "- u(1-6) - 
pa 

w l. 
dp, dr1 

" paAgsinO - (1-8s)° 
dt dt p 2p It 

A dp "u ý1-SS) -a dp pý 
w 

(1_8s) 
-a du - dt 2pp dt u 

- u(1-as) - 
P° 

(a . paAgsinO - (1-as) a (4.109) 
P 

Equations (4.107), (4.108) and (4.109) are simultaneous equations with three unknowns, 

namely dp, dp and du. The equations can be expressed in a simplified form as follows 

all dp +a12 dp +a13 du = bl l 

a21 dp + a22 dp+ a23 du = b21 

a31 dp + a32 dp + a33 du = b31 

(4.110) 

(4.111) 

(4.112) 

Equations (4.110), (4.111) and (4.112) are solved simultaneously together with the 

characteristic equations (4.89), (4.90) and (4.91). The coefficients of equations (4.110), 

(4.111) and (4.112) are as follows: 

all "A (4.113 ) 
(1 - 6$) dt 
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a12 --A 
a2 

- 
G)u (4.114) 

(1 - S) dt 2p 

a13 - (u (4.115) 

a21 - `4 (4.116) 
dt 

a22 -u (1 (4.117 ) 
PP 

a23 - 
paA 

. (a (1 -6s). 
°- (4.118) 

dtu 

a31 -A (4.119) 
dt 

a32 -u (1 - Ss) -a (4.120) 
2PP 

a33 -- 
Pý 

-w1- as) -a (4.121) 
dt u 

bl I=- (0 + wu) (4.122) 

b21 =[ -u(1 - SS) - a]w - pa Ag sin6 - (1 - SS)O (4.123) 

b31 = -[u(1 - SS) - a]w + pa Ag sine - (1 - SS)Q (4.124) 

Whereas the natural method of characteristics is unconditionally stable, the hybrid method 

of characteristics is only conditionally stable. The stability criterion used is that of Courant, 

Friedrichs and Levy, which states that the domain of dependence of the exact solution is 

contained within the domain of dependence of the numerical solution. In symbols the 

Courant-Friedrichs-Levy stability criterion is represented as: 

Ts (ýI 
1 (4.125) 

)., 

The solution of characteristic and compatibility equations could be obtained using 

either a first- or second-order approximation. In the first-order method, one finite- 

difference approximation is expressed as: 
fX +Axgx) dx - f(x) Ax (4.126) 
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and in the second-order method, the approximation is expressed by the trapezoidal rule as 

follows: 

fz +&xfx) dx - '/2[f(x) + gX+Ax)] Ax (4.127) 

FINITE DIFFERENCE SOLUTION OF THE CHARACTERISTIC AND 
COMPATIBILITY EQUATIONS 

The following procedure is used to calculate the fluid properties at a point distance x, for 

a new time level t+At, using the characteristic and compatibility equations: 

First Stage: First-order Approximation: 

(i) Determination of the positions Q, R and S by first-order approximation of the 
characteristic equations: Referring to Fig. 4.4. 

XQ=x - u`MAt (4.128) 

XR =X- (ut 
4+ 

dM) At 

XS =x- (utM 
- atM) At 

(4.129) 

(4.130) 

where the subscripts denote the point on the x-t plane and the superscripts denote the time 

level. 

(ii) Determination of the fluid properties at Q, R and S by linear interpolation: 

It is customary to assume that the characteristic lines are positioned as shown in Fig. 4.4. 

However, the positions may not necessarily be the same always. For example, if u is 

negative (opposite to the direction of positive x shown in Fig. 4.4), the characteristic curve 
QP would shift to the opposite side of line MP. Also if the flow is choked or supersonic 

the characteristic line SP would coincide with line MP or shift to the opposite side of MP 

respectively. In this way the values of fluid properties at position Q, for example, calculated 

assuming that it is between points L and M while it is in fact between M and N will be 

incorrect. To avoid such problems, a two-stage procedure is used. In this procedure, a 

check is first performed to establish the position of points Q, R and S in relation to points 
L, M and N. Such provision was not included in the model by Tiley (1989). The only 

properties which are approximated using this method are p, p and u. The remaining fluid 

properties are calculated by the QUANT software using the values of p and p obtained in 

the first-order approximation as input values. The equations for first-order approximation 

of fluid properties at points Q, R and S are as follows: 
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Fluid properties at position Q: 

IfxQ<x 

rx- xQ r (x - XQ r (4.131) PQ ' ex 
Px-ex " 1- 

Ax 
) Px 

r x- X0 r x- xQr 
(4.132 ) uQ ' U. -ex + 1- () ux 

Ax Ax 

(4.133) PQ 

(x_xc 

x 
Px ex +1 (x 

ex 
Q) Pxt 

If xQ >x 

PO 
x x x) 

PxeX . 1- (xe Px (4.134) 
Ax x 

ut 
x x x) 

uxex' (xe ux (4.135) 
Ax x 

PQ " 
x x 

Pxex' 1- (xA 
x) 

px (4.136) 
Ax x 

Fluid properties at position R: 

If XR<x 

Ax 
R p1.. " 1- (X- R Pz (4.137) pQ "X 

ux-ex " 1- ( 
ex 

) ii (4.138) UR 
XOXR XR 

PQ 
xAxR 

Px-Ax ' 1- (xAXR) pt (4.139) 
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If XR> X 

PR 
x x 

I Pxex' 
I 
1- (xe )I Px (4.140) 

Ax z 

UR ' 
xR- x 

ux. Ax + 1- (xR- 
X 

ux (4.141) 
Dz Ax 

t XR- x 
PR ' x' Pxo 

XR- xr 
1- ()P. (4.142) 

Ax Ax 

Fluid properties at position S: 

If xs<x 

Ps 'x 
s P: ex ' 1- (x s) Px (4.143) 

Ox ex 

s us -x Ux-ex ' 
s) U I- (x (4.144) 

Ox Ax 

Ps -x 
xs Px ex + 

x s) Pz 1' (x (4.145) 
e e 

If x$>x 

t PS ' 
xs _x t 

PxAx 1- (xs 
x) 

Pz (4.146 ) 
Ox Ax 

us - 
x x ( -) 

Uzes " 
, 1- (x 

x) s uz (4.147) 
ex ex 

r 
Ps ' 

xs _x t 
Pxes ' 1- (xs 

x) 
i (4.148 ) 

ex Ax 

(iii) Calculation of p, u and p at position P using first-order approximation: 
The values of p, u and p at position P are obtained by expressing the three differential 

equation (4.110), (4.111) and (4.112) in finite differences and solving them simultaneously. 
The fluid properties used to calculate the coefficients of the equations are evaluated at 

position M. The finite difference equations are as follows: 
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Along the path line characteristic, equation (4.110) becomes 

alI(pe - pQ) + al2(pp- pQ) + a13(up-uQ) = bll 

a11pp+a12pp+a13up=allpQ+al2pQ+a13uQ+b11 (4.149) 

Similarly, equations (4.150) and (4.151) below, are obtained from equations (4.111) and 

(4.112) along the right- and left-running Mach line characteristics respectively. The 

equations are as follows: 

a21 pp + a22 pp + a23 up = a21 PR + a22 PR + a23 UR + b21 (4.150) 

a31 pp + a32 pp + a33 up = a31 ps +a32 ps + a33 us + b31 (4.151) 

Equations (4.149), (4.150) and (4.151) are simplifies as follows: 

A11 pp + A12 pp + A13 up = B11 (4.152) 

A21 pp + A22 pp + A23 up = B21 (4.153) 

A31 pp, + A32 pp + A33 up = B31 (4.154) 

where the coefficients are as follows: 

All = all (4.155) 

A12 = a12 (4.156) 

A13 = a13 (4.157) 

A21 = a21 (4.158) 

A22 = a22 (4.159) 

A23 = a23 (4.160) 

A31 = a31 (4.161) 

A32 = a32 (4.162) 

A33 = a33 (4.163) 

Bll =a11pQ+a12pQ+a13u. +bl1 (4.164) 

B21 = a21 PR + a22 PR + a23 uR + b21 (4.165) 

B31 = a31 ps +a32 ps + a33 us + b31 (4.166) 

Second Stage: Second-order Approximation: 

In order to achieve a higher degree of accuracy, the second-order method is used after all 
iterations of the first-order method have been completed. The values of pp, pp and up 

calculated using the first-order approximation are used as initial estimates. 
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(i) Determination of the positions Q, R and S by second-order approximation of 
the characteristic equations: Referring to Fig. 4.4. 

l_ 2At 
XQ- X1' (4.167) 

kt uQ U? 

XR .x_1 
2e t1 (4.168) 

(u . a)R (u . a)P 

x*1 . x_ 1 
2A t 

1 
(4.169) 

(u - a)S (u - a)y 

where the subscripts k and k+l represent the iteration numbers. 

(ii) Determination of the fluid properties at Q, R and S by quadratic interpolation: 

The very well known Taylor's theorem is used. The theorem produces a set of equations 
for quadratic approximation of the fluid properties at points Q, R and S. If higher accuracy 
is required, a higher order polynomial could be used. Referring to Fig. 4.4, the Taylor's 

expansion around point M which is at a distance x, for a property, say p, is as follows: 

P(x. Ax) " p(x) . Ax p'(x) . 
(A2 X) 

p n(x) . 
(A6 X) m(x) . ... (4.170) 

P(x-Ax) - p(x) - Ox p'(x) . 
(A X)2 )2 

p �(x) _ 
(AX)3p,,, 

(x) .... (4.171) 
6 

Adding equation (4.171) to (4.170) and neglecting terms with higher order than two we 

get: 

p(x+Ax) + p(x-Ax) = 2p(x) + (Ax)2 p! (x) 

p"(x) -1 [p(x. Ax) . p(x-Ax) - 2p(x)1 (4.172) 
(A x)2 

Subtracting equation (4.171) from (4.170) and neglecting higher order terms we get: 
p(x+Ax) - p(x-Ax) =2 Ax p'(x) 

p'(x) - 21 
(p(x. Ax) " p(x-Ax)] (4.173) 
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Substituting equations (4.172) and (4.173) into equations (4.170) and (4.171), neglecting 
higher order terms and interpolating for properties at position Q we get the following 

equations: 

p(x, AxQ)P(x). AxQ 
2-11 

j (x. Ax)P(x-Ax)]. (, &2)2 

X)2 
[(p(x. Ax)"p(x-Ax)-2p(x)]) (4.174) 

( 

P(x-AXg)P(x)-AXQ 
1 [p(x, Ax) p(x-Ax)], 

(ßx)2 1 [p(x. Ax)"p(x-Ax)-2p(x)] (4.175) 
2Ax 2 (0x)2 

Equations (4.13 1) to (4.148) transform into equations (4.176) to (4.184), which follow: 

Fluid properties at position Q: 
k. 1 1 

Ir' k. l 1 k. 1 2 
PQ - PM * 

2Ax @ L' PN) 
ýxQ 

' x) '2(, 
& x)2 

@L' PN - 2pß) ýxQ 
- x) (4.176) 

k. 1 1 
- x) . 

2(ex)2 
(pL+ pN -2 pM ) (xk l-x ý2 (4.177) Q. pM ± 

2Ax 
(Pe PN) (xQ k. 1 

x 
ýle uN) 

(XQl 
- x) (i"L. uN - 2uM ) (xQl 

-x 
)2 (4.178) uQl - UM t 

2A1 
k- 

2(A x)2 

Fluid properties at position R: 
M1k. l 1 k. l 2 

PR 'P 2Ax 
@L' PN) 

(XR 
- x) .z @L. PN - 2PM ) (xR 

- x) (4.179) 
2(Ax) 

k. 1 1 k. l 1 k4 2 
R-x, . (PL. PN . 2p ) (xR 

- x, (4.180) PR " pit 
2Ax 

(PL" PN) 
(X 

2(Ax)2 

k. 1 
.f1 rt. uNxk'1 -x. 

1 Irj. u -211 xk* ýL )(R 
2 1L N M)`R 

, (4.181) UR 
i-x2R 

rtM 
2är 2(A x) 

Fluid properties at position S: 

k. 1 / k. l k. l 2 
PS - PM 

2Ax 
(PL ' PN) Ixs - x) 

2(0x)2 
@L'' Prº - 2PM ) (xs 

-x) (4.182) 

k. 1 1 k. 1 1 k. l 2 PS . PMT 
2, &x 

(PL+ PN)(xs -x). (PL+ pN- 2p ) (xs 
- x, (4.183) 

2(AX)2 

us. 
l 

. tUM f 
2Ax 

(UL. UN) lxs 
1- 

x) .1Z (uL+ uN - 2uM) (xs 1-x )2 (4.184) 
2(Ax) 

The positive and negative signs are used if the position of Q or R or S is between M and 
N and L and M respectively. 
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(iii) Calculation of p, u and p at position P using second-order approximation: 

The same equations as used in the first-order approximation, equations (4.152), (4.153) and 

(4.154) are used. The fluid properties used to calculate the coefficients of the equations 

are averaged between those at the newly established positions of Q, R and S and those 

previously calculated at point P. Therefore, the coefficients of equations (4.152), (4.153) 

and (4.154) are calculated as follows: 

A11 = '/2{[all]k+1Q + [all]kp} (4.185) 

A12 = '/2([a12]k+'Q + [a12]kp) (4.186) 

A13 = '/2([a13]k+1Q + [a13]kp) (4.187) 

A21 = '/2{[a21]k+1R + [a21]kp) (4.188) 

A22 = '/2([a22]k+'R + [a22]kp) (4.189) 

A23 = '/2{[a23]k+1R + [a23]" P) (4.190) 

A31 = 'h ([a3 J]k+'S + [a31 ]kp) (4.191) 

A32 = '/2{[a32]k+IS + [a32]kp) (4.192) 

A33 = '/2([a33]k+IS + [a33]kp} (4.193) 

B11 = '/2{[R11]k+'Q + [all]kp)pk+IQ + 1/2{[a12]k'1Q + [a12]kp}pk+IQ + 

'/2{[a13]k+1Q + [a13]kp} uk+1Q + '/2([bl l]k+1Q + [b11]) (4.194) 

B21 = '/2([a21]k+1R + [a21]kp) pk+1R + 1/2{[a22]k+1R + [a22]kp) pk+1R + 

'/2 { [a23]k+IR + [a23]kp) uk+IR + Y2 { [b21 ]k+1R + [b21 ]kp} (4.195) 
B31 = '/2([a31]k+'S + [a31]kp)Pk+1S + 2([a32]k+IS + [a32]kp)Pk+IS + 

'/2{[a33]k+'S + [a33]kp)uk+ls + '/2{[b31]k+'s +[ b31]kp} (4.196) 

The values of p, p and u calculated using the above coeffici ents are to be used in the (k+l ) 'h 

iteration. The iteration would continue until the required accuracy criterion i s met. 

SOLUTION OF THE THREE SIMULTANEOUS LINEAR ALGEBRAIC 
EQUATIONS 

Equations (4.152), (4.153) and (4.154) are simultaneous linear algebraic equations with 

three unknowns pp, pp and u, which are to be determined. A brief review of the various 
forms and behaviour of such equations is given in this section. For further details reference 

should be made in specialised literature. If there are as many equations as there are 

unknowns, the system of equations is known as non-singular, and there is a good chance 

that a unique solution exists. A system of equations is singular if it fails to produce a unique 

solution analytically. The latter situation could result even though the number of equations 
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is equal to the number of unknowns, if one or more of the equations is a linear combination 

of the other (row degeneracy) or if all the equations contain certain variables only in exactly 

the same linear combination (column degeneracy). For equations with the same number of 

variables as the number of equations, row degeneracy implies column and vice versa. 
Some equations may be too close to linearly dependent that round off errors in the 

computer render them linearly dependent at some stage in the solution process. In such 

cases the numerical procedure fails. Also sometimes accumulated round-off errors in the 

solution process can swamp the true solution. This problem emerges particularly if the 

number of unknowns is too large. In this case the numerical procedure does not fail 

algorithmically but it returns a set of solutions that are wrong. The closer a set of equations 
is to being singular, the more this situation is likely to happen. Much of the sophistication 

of complicated linear equations solving methods is devoted to the detection and/or 

correction of these two pathologies. 
Methods of solution of linear algebraic equations are generally classified into two 

categories, namely direct and iterative methods. Direct methods execute in a predictable 

number of operations, while iterative methods attempt to converge to the desired solution 
in however'many steps are necessary. Iterative methods are preferred when the loss of 

significance is critical either due to large number of unknowns or because the problem is 

close to singularity. On the borderline between direct and iterative methods, there is a 

technique called iterative improvement of a solution that has been obtained by direct 

methods. At the extreme end of the spectrum, there are linear problems which by their 

underlying nature are close to singular. In this case sophisticated methods are necessary. 
However, a technique called singular value decomposition can sometimes turn singular 

problems into non-singular ones, thus additional sophistication becomes unnecessary. 
Several packages are available for the solution of algebraic equations, although not 

always in the C language. These include LINPACK, developed by Argonne National 

Laboratories, which was published and is available for free use. A successor of LINPACK, 

called LAPACK is now available. Packages available commercially include those in the 
IMSL and NAG libraries. Routines for various tasks are usually provided in several 

possible simplifications in the form of the input coefficient matrix e. g. symmetric, triangular, 

sparse, banded, positive definite etc. Special routines for these special case have advantages 
of higher efficiency than the form provided for general matrices. Press, Teukolsky, 
Vetterling and Flannery (1992) presented a series of packages which include the Gauss- 
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Jordan elimination method, LU decomposition methods, tridiagonal systems, band diagonal 

systems, iterative improvement of a solution to linear equations, singular value 

decomposition and packages for sparse linear systems. 

Some workers have reported the problem of singularity in the solution of the 

equations for unsteady flow following linebreak in high-pressure gas in pipelines, especially 

near the break. Flatt (1986) explained this as being caused by the pressure gradient near 

the break approaching infinity i. e. (ap/cäx), -. - 00 owing to the choking condition (M, =1) and 

the cumulative effect of friction over long pipelines. He proved analytically that as Mach 

number tends towards unity, the solution tends towards infinity. Flatt (1993-1996) suggests 

that this problem could be eliminated by using stagnation properties of the fluid, in place 

of the conventional static properties. Tiley (1989) also reported similar problems with her 

model. She described it as instability which occurred at some grid sizes and initial 

conditions, at random points along the pipe. No such problems have been observed in this 

study. The model has been tested with pipelines of up to 68km length and pressure of up 

to 12.5MPa. At some stage during the development of the model, it was thought that 

singularity problems existed but it was later found that they were caused by machine round 

off error, incorrect initial break conditions and mistakes in the numerical algorithm. A 

numerical recipe called XSVBKSB from Press, Teukolsky, Vetterling and Flannery (1992) 

and Vetterling, Teukolsky, Press and Flannery (1992) was modified and adopted for use 

with the programmes developed in this study. The recipe is based on the singular value 
decomposition, which sometimes can turn singular sets of equations into non-singular ones. 
However, it was found that the recipes XSVBKSB could not handle the kind of singularity 

problems which were experienced during this study. In addition, the use of numerical 

recipes from Press, Teukolsky, Vetterling and Flannery (1992) and Vetterling, Teukolsky, 

Press and Flannery (1992) presented an additional problem in that more computer capacity 
is required to compile and run the recipes. This problem could be reduced by doing 

separate compilation of the recipes. However, since singularity is no longer a problems in 

this model, it was decided to solve the equations using a simple analytical procedure. The 

procedure is as follows: 

(i) Solution at interior points: 

For interior grid points, solution using the method is as follows: We first multiply equations 
(4.152) and (4.153) by A21 and A11 respectively, obtaining the following equations: 
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All A21 pp + A12 A21 pp + A13 A21 u,, = B11 A21 (4.197) 

A21 A11 pp + A22 Al 1 pp + A23 Al l up = B21 All (4.198) 

Subtracting equation (4.198) from (4.197) we get: 

(A12A21 - A22A11)pp + (A13A21 - A23 A11)up =B 11 A21 - B21A11 (4.199) 

Similarly, multiplying equations (4.153) and (4.154) by A31 and A21 respectively we get 

A21 A31 pp + A22 A31 pp + A23 A31 up = B21 A31 (4.200) 

A31 A21 pp + A32 A21 pp + A33 A21 up = B31 A21 (4.201) 

Subtracting equation (4.20 1) from (4.200) we get: 
(A22A31- A32A21)pp + (A23A31 - A33 A21)up = B21 A31 - B31A21 (4.202) 

Equations (4.199) and (4.202) are then solved simultaneously for up by multiplying equation 

(4.199) by (A22A31-A32A21) and equation (4.202) by (A12A21-A22A11) and 

subtracting. The resulting equation is as follows: 

[(A13A21-A32A11)(A22A31-A32A21)-(A23 A31-A33A21)(A12A21-A22A 11)]up = 
[(BI IA21-B21 A11)(A22A31-A32A21)-(B21 A31-B31 A21)(A 12A21-A22A11)] 

up . 
[(B11A21 B21All )(A22A31 A32A21 )-(B21A31 -B31A21 )(A12A21 A22A11 

(4.203) 
[(Al3A21 A32A11 )(A22A31 A32A21 )-(A23A31 A33A21 )(A12A21 A22A11 )] 

Examination of equations (4.116) and (4.119) show that, for constant diameter pipes and 

same At values for both the RP and SP characteristics, the values of A21 and A31 are the 

same. Consequently, equation (4.203) could be simplified further. However, this 

simplification is not made because in some cases the break is such that the cross-section 

area at the exit is not the same as in the rest of the pipeline. Either equation (4.199) or 
(4.202) could be used to solve for pp. Using equation (4.199) 

(B11A21 - B21A11 )- (A13A21 - A23All )u p Pp 
(A12A21 - A22A11 ) 

(4.204) 

Similarly, either equation (4.152), (4.153) or (4.154) could be used to calculate pp. Using 

equation (4.152) 

Pp . 
B11 - A12 pp - A13 up 

All 
(4.205) 

The value of up calculated by equation (4.203) is used in equations (4.204) and (4.205), and 
the value of pp calculated by equation (4.204) is used in equation (4.205). Equations 

(4.203), (4.204) and (4.205) are also used for the case of choked flow at the broken end, 

since all the three characteristics exist in the domain. 
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(ii) Solution at boundary points: 

Solution at interior points by the method described in section (i) would enable solution 

within the domain bounded with circles in Fig. 4.5. This means that at each time level, one 
distance mesh is lost on each end of the pipe section. Consequently, for any transient 

analysis, a solution could not be obtained for the whole length of the pipe unless the 

calculation started with a pipe extending beyond both ends of the pipe section. The length 

of the pipe should be such that after calculation for the required number of time levels, the 

whole length of the test section would still be covered. Apart from the fact that such a 

procedure would be unnecessarily time consuming, it is also not practical especially if the 
boundaries are fixed or the analysis takes place over a long period of time. A typical 

example of the latter condition is in this study, where the break boundary is fixed and it has 

to be modelled throughout the run time. 

In order to enable the boundary points to be fixed and modelled, some boundary 

conditions have to be specified. Boundary conditions are additional parameters to the 

characteristic and compatibility equations, which exist at the boundary points. They may 
be the equation of the boundary in the x-t plane and various specifications of the dependent 

variables as a function of the independent variables. To obtain a solution at a boundary 

point, the number of additional equations required is the same as the number of 

characteristic curves lacking at the boundary point. Let us consider a pipe flow from an 

upstream boundary which is at a distance xo to a downstream boundary which is at a 
distance x,,. The equations of the boundary points on the x-t plane are fixed at x=x, and 

x=x� for the upstream and downstream boundaries respectively. For calculation between 

time levels to and t1, the meshes next to both boundaries are represented in Fig. 4.6. The 

characteristic curves defined in Fig. 4.4 are superimposed on the boundary meshes. The 

requirement is to find a solution at point P in Fig. 4.6 (a) and (b). It is assumed that u is 

positive in the downstream direction and also the flow is subsonic at both the boundary 

points. The same procedure as for the interior points is used to calculate the solution at 
point P, but in this case the number of characteristics and hence the number of equations 
is less than the number of unknowns i. e. two equations less in Fig. 4.6(a) and one equation 
less in Fig. 4.6(b). In order to obtain a unique solution at the boundary points, the missing 

equations must be replaced by specifications for some of the dependent variables. 
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Fig. 4.5 Solution Domain in the x-t Plain Using Interior 

However, the flow could be such that the two assumptions made in Fig. 4.6 do not 

apply. A typical example in linebreak problems is that u could be negative in the 

downstream direction in Fig. 4.6(b). If the magnitude of u is less than that of a i. e. M, <1, 

then there will be only one characteristic curve present in Fig 19(b) i. e. the RP characteristic 

curve. In order to obtain a unique solution at point P, two specific boundary conditions 

have to be specified. If the magnitude of u is greater than or equal to that of a i. e. M, z 1, 

then there will be no characteristic curve existing in the x-t domain of dependence for 

solution at point P. In this case, the solution at point P will have to be evaluated entirely 

from the specific boundary conditions. However, if u is positive in the downstream and the 

flow is such that Mk 1, all the three characteristic curves would exist in the domain of 

dependence and no additional boundary condition needs to be specified. A typical example 

of this situation is choked flow resulting after linebreak in high-pressure gas pipelines. A 

similar situation would occur in the upstream section [Fig. 4.6(a)]. If M, z 1, and u is 

negative in the downstream direction, there would be no characteristic curves in the domain 

of dependence. The solution at point P would have to be calculated in a manner based 

entirely on the specific boundary conditions. But if u is positive in the downstream 

direction, all the three characteristic curves would exist in the domain of dependence and 

no additional boundary conditions would be required. This is the other case of choked flow 

in linebreak problems. If u is negative in the downstream direction and M, <I, two 

characteristic curves would exist in the domain of dependence and only one additional 
boundary conditions would have to be specified in order to obtain a unique solution at point 

P. 
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Fig. 4.6 Solution at Boundary Points 

In general, there are four different cases of boundary condition specification for each 

of the upstream and downstream boundaries. The four cases are summarised in Table 4.1. 

However, in most steady and slow transient flows in pipelines, alternatives 3 and 6 in Table 

4.1 are the most common. In rapid transients following linebreak of high-pressure gas 

pipelines, any one combination of alternatives 3,4,5,6,7 and 8 could occur. Before 

performing a transient analysis all the necessary boundary condition required to obtain 

unique solutions at the boundary throughout the run time should be specified. Sometimes 

it is not easy to specify accurate boundary conditions and some approximations and 

assumptions have to be made. Examples of boundary conditions which are commonly used 

are constant p, constant mass flow rate, constant T, the prescription of p as a function of 

t and the prescription of u as a function oft. 

Calculation of the solution at boundary points when two characteristic curves exist: 

Boundary condition: p at point P is given 

In this case equations (4.152), (4.153) and (4.154) transform to: 
A12 p. + A13 up = B1 (4.206) 

A22 pp + A23 u, = B2 (4.207) 

A32 pp + A33 up = B3 (4.208) 

where 

BI =B 11 - All pp (4.209) 
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B2 = B21 - A21 pp 

B3 = B31 - A31 pp 

(4.210) 

(4.211) 

UPSTREAM CHARACTERISTICS DOWNSTREAM 
BOUNDARY AVAILABLE BOUNDARY 
1. u>a NONE 2. u>a 

u Positive u Negative 
3. u<a ONE 4. u<a 

u Positive SP RP u Negative 
5. u<a TWO 6. usa 

u Negative SP QP u Positive 
P RP 

7. uZa THREE 8. uza 
u Negative QP, RP & SP u Positive 

Table 4.1: Possible Boundary conditions 

Dividing equations (4.206) by A12, (4.207) by A22 and (4.208) by A32 we get the 

following equations: 

A13 
u. P PP 

B! 4 212 
A12 A12 

A23 B2 
u- Pp P (4.213) 

A22 A22 

A33 B3 
` p Pp (4.214) 

A32 A32 

Referring to Fig. 4.4, the characteristic curves available could either be QP and RP, RP 

and SP or QP and SP. If the characteristics available are QP and RP, equations (4.212) 

and (4.213) are solved simultaneously, obtaining the following equations: 

B1 B2 
A12 A22 

uP 
A13 A23 
A12 722 

: gy 
BI A22 - B2 A12 

(4.215) p A13 A22 - A23 A12 

From equation (4.212) 

BI - A13 up 
PP - A12 

(4.216) 
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If the characteristic curves available are QP and SP, equations (4.212) and (4.214) are 

solved simultaneously, obtaining the following equations: 
BI B3 

A12 A32 
uP = .,, ... A! J f1JJ 

Atz A32 

B1 A32 - B3 A12 (4 7171 
A13 A32 - A33 A12 I 

As in the previous case, equation (4.216) is used to calculate pp. If the characteristic 

curves existing are RP and SP, equations (4.213) and (4.214) are solved simultaneously 

resulting into the following equations: 
B2 B3 

A22 A32 
up " A23 A33 

A22 A32 

B2 A32 - B3 A22 
UP (4.218 ) 

A23 A32 - A33 A22 

From equation (4.213) 

B2 - A23 up 
Pp - (4.219) 

A22 

Boundary condition: u at point P is given 

The same procedure as for the case when p was given as the boundary conditions used. 
Equations (4.152), (4.153) and (4.154) transform into the following equations: 

A12 Pp BI 
Pp (4.220) 

All All 

A22 P Pp (4.221) 
A21 A1 

A32 P Pp + " (4.222) 
A31 31 A 

where 

B1 = B11 - A13 up (4.223) 

B2 = B21 - A23 up (4.224) 

B3 = B31 - A33 up (4.225) 
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If the characteristic curves available are QP and RP, equations (4.220) and (4.221) are 

solved simultaneously, obtaining the following equations 

BI A21 - B2 All .. __ý. Pp 
A12 A21 - A22 All 

Using equation (4.220) 
BI - A12 pp 

pp . All 

(4. LLb ) 

(4.227) 

If characteristic curves available are QP and SP, equations (4.220) and (4.222) are 

solved simultaneously, thus obtaining the following equation: 
BI A31 - B3 All � ,.,,, , Pp 

A12 A31 - A32 All 
L4. LLa ) 

Equation (4.227) is used to calculate p at position P. If the characteristic curves 

available are RP and SP, equations (4.22 1) and (4.222) are solved simultaneously, thus 

obtaining the following equation: 

B2 A31 - B3 A21 
(4.229) PP 

A31 A22 - A32 A21 

Equation (4.221) is used to calculate p at position P as follows: 

B2 - A22 pp 
Pp = A21 

(4.230) 

Boundary condition: p at point P is given 

Using the same procedure as for the two case where p and u are give, the following 

equations are obtained: 
A13 up BI 

Pp " 4.231 () 
All All 

A23 up B2 
Pp (4.232) 

A21 A21 

A33 t[ BI 
pp (4.233) 

A31 A31 

where 
B1 = B11 - A12 pp (4.234) 

B2 = B21 - A22 pp (4.235) 

B3 = B31 - A32 pp (4.236) 
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If the characteristic curves available are QP and RP, equations (4.23 1) and (4.232) are 

solved simultaneously, obtaining the following equations 

Bl A21 - B2 All � ft-%-T% Up " 
A13 A21 - A23 All 

I't. c. I ) 

Using equation (4.221) 

BI - A13 up 
Pp - (4.238) 

All 

If characteristic curves available are QP and SP, equations (4.221) and (4.223) are 

solved simultaneously, thus obtaining the following equation: 
BI A31 - B3 All ,,.,, , up " 

A13 A31 - A33 All 
t4. zsy) 

Equation (4.238) is used to calculate p at position P. If the characteristic curves 

available are RP and SP, equations (4.222) and (4.223) are solved simultaneously, thus 

obtaining the following equation: 

UP   
B2 A31 - B3 A21 (4.240) 

A23 A31 - A33 A21 

From equation (4.232) 

B2 - A23 up 
Pp p- (4.241) 

A21 

Boundary condition: Mass flow rate at point P is given 

Substituting equation (A-2) into equations (4.152) (4.153) and (4.154), we get the 

following equations: 
A12 pp A13 »m Bll 

Pp 
All All A pp All 

(4.242) 

A22 pp A23 M B21 (4.243) ýp * 421 + 
A21 A pp A21 

A32 pp* A33 t_ B31 
ýp 

A31 A31 App A31 
(4.244 ) 

If the characteristic curves available are QP and RP, equations (4.242) and (4.243) are 

solved simultaneously, obtaining the following quadratic equation in pp: 
r A12 A22 2_ Bil 

_ 
B21 A13 A23 th 

All A21 Pp 
All A21 

PP 
All A21 A 
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The quadratic equation is solved for pp as follows: 

Bll B21 B21 Bil ( A12 A22 A13 A23 ) 
th 

All A21 A21 Al! 

2 
4 

All A21 All A2! A 4 245 Pp 
2 A12 A22 

() 
(All 

A21 

From equation (4.242) 

BI1 

Pp . 

- A12 pp- A13 "' 
A pp 

All 
(4.246) 

The value of u at position P is calculated using equation (A-2). If characteristic curves 

available are QP and SP, equations (4.242) and (4.244) are solved simultaneously, thus 

obtaining the following quadratic equation in pp: 

A12 A32 2_ B11 
_ 

B31 Au A33 th 
All A31 

Pp 
All A31 

Pp 
All A31) A 

The quadratic equation is solved for pp as follows: 

Bll B31 
± 

B31 
_ 

Bl !2_4 A12 
_ 

A32 A13 
_ 

A33 to 

pp   
All A31 A31 All All A31 All A31 A 

(4.247) 

2- 
(Alt A32 

All A31 

As for the previous case, the values of p and u at position P are calculated using 

equations (4.246) and (A-2) respectively. If the characteristic curves available are RP 

and SP, equations (4.243) and (4.244) are solved simultaneously, thus obtaining the 

following quadratic equation in pp: 
r A22 A32 2_ B21 B31 A23 A33 sir 

_0 A21 A31 
PP 

A21 A31 
Pp 

A21 A31 A t 

The quadratic equation is solved for pp as follows: 
1B21 

_ 
B31 B31 

_ 
B21 24 A22 

_ 
A32 

A21 A31 A31 A21 A21 A31 
Pp 

2 A22 A32 
A21 A31 

) 

From equation (4.243) 
B21 - A22 0., - A23 A 

Pp . 
.r -- A pp 

A21 

The value of u at position P is calculated using equation (A-2). 

A23 A33 th 
A21 AH A 

(4.248) 

(4.249) 
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Calculation of the solution at boundary points when only one characteristic curve 
exists: 

Boundary condition: u and p at position P are given 

In this case equations (4.152), (4.153) and (4.154) are used. If the characteristic curve 
which exists in the domain is QP: 

B11 - All pp - A13 up 
Pp (4.250) 

A21 

If the characteristic curve which exists in the domain is RP: 
B21 - A21 pp- A23 up 

Pp - (4.251) 
A22 

If the characteristic curve which exists in the domain is SP: 
B31 - A31 pp - A33 ti p Pp - (4.252) 

A32 

Boundary condition: p and p at position P are given 

Using the same equations as for the previous case, if the characteristic curve which 
exists in the domain is QP: 

BIl - All pp - A12 p 
1p- 

A13 
(4.253) 

If the characteristic curve which exists in the domain is RP: 
B21 - A21 pp - A22 pp /. p - 

A23 

If the characteristic curve which exists in the domain is SP: 

., _ 
B31 - A31 pp - A32 pp 

"p - 
A33 

Boundary condition: u and p at position P are given 

(4.254) 

(4.255) 

The same equations as for the previous two cases are used. If the characteristic curve 
which exists in the domain is QP: 

Bl! - A12 pp - A13 tI p PI (4.256) 
All 

If the characteristic curve which exists in the domain is RP: 
B21 - A22 pP - A23 up 

Pp " (4.257) 
A21 
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If the characteristic curve which exists in the domain is SP: 
B31 - A32 pP- A23 up 

(4.258) Pp 
A31 

Boundary condition: Mass flow rate at position P is given 

Equation (4.242), (4.243) and (4.244) are used to calculate p at position P, and 

equation (A-2) is used to calculate u at position P. If the characteristic curve which 

exists in the domain is QP, equation (4.242) is used and the following quadratic equation 
in pp is obtained: 

A12 pp " (All pp - Bll) pp. A13 m"0 
A 

The quadratic equation is solved for pp as follows: 

(Bll -All pp) f (A11 pp - BI! )2 -4 A12 A13 "-' 

PP -2 A12 
A (4.259) 

If the characteristic curve which exists in the domain is RP, equation (4.243) is used and 
the following quadratic equation in pp is obtained: 

A22 pp " (A21 pp - B21)pp + A23-" "0 A 

The quadratic equation is solved for pp as follows: 

(B21 -- A2 pp) f (A21 pp - B21)2 -4 A22 A23 m 

Pp -2 422 
A (4.260) 

If the characteristic curve which exists in the domain is SP, equation (4.244) is used and 
the following quadratic equation in pp is obtained: 

A32 pp . (A31 pp - B31)pp . A33 A"0 A 

The quadratic equation is solved for pp as follows: 

(B31 - A31 pp) f (A31 pp - B31)2 -4 A32 A33 m 

Pp 
2 A32 

A 
(4.261) 
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4.3.3 MACCORMACK SECOND-ORDER TWO-STEP METHOD 

The finite difference form of equation (4.73) using the MacCormack method can be written 
in either of the two alternatives I or 2 described below. The subscripts and superscripts 

used refer to Fig. 4.7. 

ALTERNATIVE 1: 

Predictor step (forward difference): 

AP. A ,t -Bit ex 
(4, i-A, ) 

- C, tA t (4.262 ) 

Corrector step (backward difference): 

Ate - At - BI 
Ax 

At - Aji) - Cr At (4.263) 

ALTERNATIVE 2: 

Predictor step (backward difference): 

AI-A jý -B, 
At (Ali 

- A, 1) - C, 'A t (4.264) 

Corrector step (forward difference): 

Air - A, -Bi ex 
ýr1 

-Aj - C, At (4.265) 

Applying the method used by Beauchemin and Marche (1992), to write the finite difference 

equations for equations (4.1), (4.2) and (4.3), the following equations are obtained: 

ALTERNATIVE 1: 

Predictor step (forward difference): 
PI tS At <t sAtr, << Pt - Pi - ur 

Ax 
(P 

I. 1 - p1 )-P, 
Ax c, (. 1 - ul 

, (4.266) 

PI t1 At ýr t) 
- u(At 

(ut 
ut A 

(6t 
g sing (4.267) 

Pt Ax Ar 
pt, A 

rr Pt t text Ir r) r2ter t) t 
pý ýr 

pr ' Pr - ur al ' Pr - [a1] Pr - rr, 1 - ur "A (1 
A 

(4.268) 

179 



i _ýý t+o 

m 

h 

t 

i- ii 

DISTANCE 

Fig. 4.7 Calculation Mesh for the Second-order MacCormack Method 

of 

f- i 

Corrector step (backward difference): 

Cl PI 
_ 

PI At tttAt PI PI 
Pr ' Pi ur 

Ax 
(PI 

- Pai) ' pt 0x 
(u( 

- u11 ) (4.269) 

PI 
Cl PI 1 AL PI PI Pi At PI PI w, 

, sin 0 (4.270) rr1 " ut - Pil ex 
ýpr 

- P1-1 
,- 

ur 
Ax 

Cl 

ýrl 
- uýl 

)+D 

Pfl 
gsin 

PI PI P! 
Pl Pl A tý t pi) Pl 2 PI At ( PI P1 PI A1'_t tt 1 

pr - pi - u1 
Axe rrý- [a, ] Pr 

Oxur -ur"i 
). A (1-[8s]r 

A 
(4.271) 

ALTERNATIVE 2: 

Predictor step (backward difference): 

p2 ttAttt ter tr Pr ` pr - u1 
ex 

(Pt 
- p11 )- p1 ex 

ý9-u 
.1 

(4.272) 

P2 t1 ur - trr 
At tt tAt (tt 

`nr - ttýl) 
ýl 

Pi 1 ut .O 

It 
(at 

. gsin 8 (4.273) P( Ax Ax P 

P2 tut At 
Pr Pr t 

it 
r 

t ý- 
at2 tAt Irrt 

ut rýi - Pt-t r] Pr A 
rtt 

1. [6s] ýýýrr (4.274) 
Ax Ax tA 
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Corrector step (forward difference): 

C2 P2 P2 At P2 P2 P2 At t P2 
p1 - pi - u1 Ax 

(Pla 
- pi )- p' 

Ax 
(I 

i-I - ui 
) (4.275) 

P2 

Ui 
C2 

. t, 
P2 1Ot P2 P2 

_U 
P2 At lu P2 

-u 
P2 j. ArA. sin 8 (4.276) 

rrr l' Pr 1r Ax 
l (. 1 rJS 

Pi Ax P 

QP2.4ýP2 P2 
C2 

" 
P2 P2 A t'P2 P2ý P2 2 P2 At iý P2 

U 
P2) A (1 

"b 
P211 `rrr 4Pr Pr -Ili e-xlpr. i 

p, r[Qr ] Pr Ax r. i -1([ s]r A 
(. 277) 

The value of each variable at the end of a time step is the average of the variables' values 

at the beginning of the tim 

t+nt ,r cý Pi _ /2(Pi+ P. . 
ui+et = 1/2(ui + uct) 

Pý+et _ I/2(Pý + Pc') 

e step and its corrected values. 

or p, +e1 _ '/2(pil +P c2) (4.278) 

or u; +et = '/2(u; +u C2) (4.279) 

or pi+et . '/2(p' +P CZ) (4.280) 

It is possible to use each of the two alternatives exclusively or alternatively at each time 

step. Another more complicated alternative is to use an average of the corrected values 

obtained when both alternatives are carried out at every time step. In equation form, this 

alternative is expressed as follows: 

Pcz Pf+nt _ , /2 p1 + , /4 Pica + 1/4 

Ui 1+4 1_ 1/2 U: + 1/4 Ui cl +1 U1C2 

Pi`at _ , /2 pt + , /4pci + , /4pC2 

(4.281) 

(4.282) 

(4.283) 

The merits, demerits and suitability for application of the three alternatives of using the 

MacCormack method are discussed in Chapter 3. In this study, the three alternatives are 

compared. The main reason for his selection is that alternative 1 is simple. Using 

alternative 2 would make it necessary to calculate predicted values at the subsequent 
distance point, which makes the procedure more complicated and requires more computer 

storage capacity. However, it should be noted that Beauchemin and Marche (1992) 

recommended the use of average values with both alternatives, in cases where it is 

important that the signal be transmitted at the correct speed. 
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3.3.2 WARMING-KUTLER-LOMAX THIRD-ORDER METHOD 

The finite-difference equations for the third-order Warming-Kutler-Lomax method for 

hyperbolic equations of the form of equation (4.72), and with reference to Fig. 4.8, are as 

follows: 

Ail) - Ai -2 
At Bi ýit 

-Ai) 
? AtC( (4.284) 

3 Ax 3 

A(e) .1t+ A+i) -2 
LB' 

, 411) -A 
(1)) (4.285) 

23 Ax 3 

A, i 
(iý 

. A/ 2 0t BI!, Aý) ? At Cý (4.286) 
ýi -3 0x 3 t-t 

A(2) .1. A(1) 2 AtBf (A(1) A(1)' - 
? DtC(1) (4.287) 

1-1 2 ý1 ,1-3 Ax t-t aI 1-2 3 

AAit -2 
At 

Bitýri'AL1)-? AtCr1 (4.288) 
3 Ax 3 

A(t) 
2 AtBj (A(1) A 1)) 

- 
? AtC(l) (4.289) 

ri21.1 &1 -3Axr. i ai r3 at 

In order to able to obtain the solutions for all the above equations, it is necessary to 

calculate the values of A(') ib C(1) b C(1) j-19 C (')1+2. These values are calculated as follows: 

(1) 
_2 

At f> >) 2f A1-2 " A1-2 
3 Ox 

B1-x ý-t .7 
AI2 -3 At Cß-2 (4.290) 

The values C' ) i.,, C (') i, and C (')i+, are calculated after solving for Aß'1 i. 1, A"), and A(') 

i+j. The values of the dependent variables at the new time level are calculated using the 

following equation: 

(0) !_1 At !! 1'! 3 At ý, q (2) (2)1 Ai -A, 24 Ax 
Bf (- 2A(. 2 " 7A1 - 7A1-1 - 2A i2 )8 

Ax 
Bý 

\ 1.2 A1-i) - 

'&t Cif - 24 
ý1ý1.2) 

- 4A' 1) . 6Af - 4Aý1) , Aý2) (4.291) 

After developing the finite-difference equations for the Warming-Kutler-Lomax method, 

what is required now is to express the basic equations of flow [equations (4.1), (4.2) and 

(4.3)] in the form of equation (4.72). The value of cp in equation (4.29 1), which is called 

the free parameter, is chosen such that dissipation and dispersion errors are minimum. The 
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following equations are used: 
= 4C2n - 

Con 

(4CK " 1) (4 - CN) 

5 

where 
C -pta sI 

Ax 'ý" 

J 
uC 

J-1 

(4.292) 

(4.293) 

(4.294) 

pX 

I 

i- ii it i i+2 i-2 

DISTANCE 

Fig. 4.8 A Finite Difference Grid Illustrating the Three-step Warming-Kutter-Lomax 
Method 

Warming, Kutler and Lomax (1973) recommended that for practical purposes and for a 

given value of Courant number such that ICJ s 1, the value of the free parameter cp should 
fall in between the values calculated by equations (4.292) and (4.293). In this model, an 

average of values calculated by the two equations above is used. For equations (4.1), (4.2) 

and (4.3) to be expressed in the same form as equation (4.72), the former equations have 

to be expressed in a matrix form, where the matrices A, li and _C are as follows: 

p 

u (4.295) 

p 

up0 

0up (4.296) 

0a 2p u 
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0 

-. gsin 9 
pa (4.297) 

+ W,. ) 
A 

4.4 VARIABLE GRID SIZE 

The concept of variable grid size in the solution of the partial differential equations, was 
introduced in order to be able to model adequately the physical behaviour following a break 

in a pipeline; to reduce the CPU time; and to increase accuracy and stability of solution is 

not very new. Press, Teukolsky, Vetterling and Flannery (1992) reported that practical 

multigrid methods which are commonly used to solve elliptic partial differential equations 

were first introduced in the 1970's. In such problems, conventional elimination methods 

can be quite inefficient and traditional iterative (or relaxation) methods tend to become 

ineffective as the problem size grows. These limitations can be eliminated by multigrid 

methods. Multigrid methods increase the speed of convergence of solution. 
In hyperbolic problems, such as in this study, the situation is somewhat different. 

In the case of linebreak problems, the pressure drop is very rapid and as a result very rapid 

transients occur in the vicinity of the break at the early times after the break. These 

transients are transmitted to the side of the broken section which is away from the break 

and tend to die away as one moves away from the break. Even in the vicinity of the break, 

rapid transients die out with increasing time after the break. With such rapid transients in 

the vicinity of the break, a very fine grid mesh is required in order to model the flow 

accurately. The effect of grid size on accuracy, convergence and stability in linebreak 

problems has been investigated by among others Flatt (1986) and Picard and Bishnoi 
(1989). It is generally concluded that stable solutions are obtained if the grid size is less 

than or equal to some critical value. For typical pipelines (1 km and above), the critical grid 
size would result in excessive computational load. 

The practical solution to the above problem is to use what is referred to, in this 

study, as the variable grid size in order to avoid confusion with the multigrid methods used 
for elliptic equations. The variable grid method involves the use non-uniform grid spacing 
in order to allow for fine grid spacing in the vicinity of the break, where grid spacing is most 
critical and coarser spacing further away from the break. The use of this method was first 
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reported by Tiley (1989) and Picard and Bishnoi (1989). Since then it has become the 

common practice for linebreak problems and it has been used by among others Kunsch. 

Sjeen and Fannelep (1991) and Chen, Richardson and Saville (1992). 

In using the variable grid size method, an important parameter to be determined is 

the factor between successive grid sizes. Tiley (1989) tried first a factor of ten and found 

that such a dramatic grid size difference caused numerical instability in the solution. This 

was probably caused by interpolation error between the bigger grid mesh. A factor of two 

was found to produce minimum instability. Chen, Richardson and Saville (1992) used a 
factor of five. There is no study known which has attempted to reduce the computation 
load further by increasing the grid size in the vicinity of the break after the rapid variations 
have died out. This would result in a more efficient programme, but the procedure would 
be more complicated. 

In this study, a variable grid size is used and a factor of 2 is used between the size 
of two successive grid sizes. The finest grid size is selected first, based on the stability of 

the solution and also the length of the pipe section being modelled. If the grid size selected 
is not small enough, problems could be encountered with stability in the solution. On the 

other extreme, if the finest mesh size is too small, it may not be possible to model the whole 
length of the pipe within reasonable CPU time and computer memory. A computer 

programme for generating distance grid mesh has been written. It can generate up to a 
dozen different mesh sizes. The number of different mesh sizes and the number of grids in 

each size depends on the size of the smallest mesh size selected and the length of the pipe 
being modelled. The grid generation programme generates only the distance mesh and the 

time mesh is generated by the transient analysis programme as the computation proceeds. 
A typical grid mesh for a variable grid analysis is shown in Fig. 4.9. Also the criteria for 

selecting the smallest grid size is discussed in Section 4.7. 

Solution at the boundaries between different mesh sizes (interior boundary points) 
may be performed in two different ways. In the first alternative, there is no interpolation 

used and calculation is performed with different Ox and At on each side of the boundary 

point. The finite-difference grid mesh for this alternative is shown in Fig. 4.9 above. In the 

second alternative, interpolation is performed first, before the transient analysis, so as to 

ensure the same grid size on both sides of the interior boundary point. Quadratic 

interpolation based on the Taylor's theorem , such as the one used in Section 4.3.2 for the 

second order method of characteristics is used. The grid layout for this alternative is shown 
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in Fig. 4.10. The smaller grid sizes are used at the interior boundary points throughout the 

upstream section, while in the downstream section the bigger sizes are used for the second 

time level calculation. 
The reason for using the bigger grid size for the downstream section is that it is not 

possible to interpolate for point F in Fig. 4.10(b) without knowing the properties at point 
G. At the time of calculating the new values at the second time level at the interior 

boundary point, the values at point G will still be unknown. Tiley (1989) used the first 

alternative for the second-order method of characteristics. In this study, the second 

alternative is used for all the programmes using numerical methods of high than the first- 

order of accuracy. A first-order accurate programme, using the first alternative for the 

interior boundary points has been written. The programme could be extended to the 

second-order of accuracy. The interpolation procedure which ensures the same Ax and At 

on each side of the interior boundary point i. e. the second alternative, is more convenient 

especially when using the explicit finite-difference methods. 

4.5 APPLICATION OF THE QUANT SOFTWARE FOR THERMODYNAMIC 
AND TRANSPORT PROPERTIES OF FLUIDS 

The thermodynamic and transport properties of the fluid are calculated using the QUANT 

software which was described briefly in Section 2.4.3.4.2. The QUANT software is 

presently available in a version which can be used only on personal computers operating 

under the MS-DOS environment and it can be run in two different ways. In the first way, 

any quantity of data books can be printed (as hard copies or disk files) for any of the gases 
included in the coverage range or any of their mixtures. This method requires the selection 

of such a spacing of parameter entries that is adequate for the application being sought. 
Such files can be read by almost any programme, written in any programming language and 
in any operating system. In this way, retrieval of information generated by QUANT may 
be more rapid (in particular if the files necessary for any particular case are copied to the 
RAMDRIVE) because once performed, QUANT calculations may be used as many times 

as necessary. The data books written by QUANT deliver everything as a function of 

pressure and temperature. Therefore some manipulation by either linear or polynomial 
interpolation, in order to get the sought information as a function of pressure and 
temperature, is necessary. The output of specific volume is given in a dimensionless form 
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of compressibility factor, from which the former could be calculated. The temperature can 

also be found therefrom as a function of pressure and specific volume but an iteration of the 

compressibility factor becomes necessary. 
Calculation can be simplified further and accelerated by restricting the storage of 

data to properties at the standard state and to the virial coefficients, including their 

temperature derivatives. These sets of data are dependent only on the nature of a pure gas 

or on the composition of the gas mixture and on temperature. They are independent of 

pressure and specific volume. But everything else (except transport properties) for real 

gases can be calculated from this data, using equations which are provided in the software 
literature. This procedure would, however, not deliver any information about the parameter 
limits within which QUANT delivers valid data of real gases and care must be taken not to 

exceed them. 

In the second way of running the QUANT programme, output data for any 

requested set of input parameters is returned and could be displayed on the screen or 

returned to the calling programme for further processing. A master programme written in 

this way, can be used to prepare or modify the input parameters or any part of them for any 

other master programme and to store them on disk files for repetitive use. Any pair of the 
five thermodynamic properties, namely p, T, v, H/R and S/R can be used as input. 

Alternatively, only one of the five properties could be used as input parameter, if the 

properties are required at the dew point of an individual gas or the dew point of such a 

component of a mixture which starts to condense at the highest temperature or at the 
lowest total pressure. Running the QUANT software in this way produces the output data 

at precisely the input parameter state, with iterations being performed automatically by the 
QUANT programme. The output data is registered in a random access file in the virtual 
drive. The data is stored in the file as binary data in single precision numbers in IEEE 
format. This method is expected to be more practical for such applications as in this study. 

Regardless of which of the two options of using the QUANT software described 

above is used, there are additional input parameters to be specified. These include data on 
the substances used and units of the input and output data. The present version of QUANT 

covers over 100 individual substances including hydrocarbons, alkenes, cycloalkanes, 
inorganic compounds, noble gases and other gases. The input data in this case includes the 

chemical formulae of the substances, isomer number, hyperfine structure variant number 
(HFS) and fractional composition of each substance in the mixture. The HFS number is a 
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number which indicates which of the different isotopes are contained in the compound. For 

example the HFS number for substances composed of the most abundant or most stable 
isotopes, would have HFS value of zero. The other HFS variants are designated by 

numbers e. g. 1 to 3 for hydrogen. For the first three parameters i. e. chemical formula, 

isomer number and HFS number; QUANT offers two options for their inputting namely 

selecting from the QUANT default data and user selected inputting. In a similar way, the 

units for T, p, v, µ and k have to be specified before running QUANT. The input 

parameters are store in appropriate records in the respective random access files in the 

virtual disk. The data contained in those files is stored in a binary form, each record 

representing either a single precision number, an integer or a character in IEEE format or 

an ASCII code. A typical example of input data required for a particular mixture in order 

to fully specify the substances used is shown in Table 6.2. 

A call to any of the QUANT programme variants returns the thermodynamic and 

transport properties of individual gas or of a gas mixture, including the input parameters, 

in the units selected by the user. The speed of execution of the QUANT programme can 

be increased by restricting the frequency of modifications of the list of substances. It can 

also be increased to a lesser extent by restricting the frequency of modification of mixture 

composition. On the other hand, the speed of execution decreases with the increasing 

number of components. The speed is not affected by changing units and is highest if p and 

T are the input parameters. It is slightly lower when the other pairs of independent 

parameters are the known input properties and it is significantly lower whenever output is 

requested at the dew point. A mathematical co-processor greatly increases the speed of 

execution. For example, in this study, it was observed that it took over two minutes to 

calculate the output properties using the option in which output properties are produced 
for an individual set of input parameters. The calculation involved a mixture of twelve 

substances and was performed on a 486SX personal computer with 8MB RAM capacity 

and a CPU speed of 25MHz, but without a mathematical co-processor. The same 

calculation was performed within a few seconds on a 486DX personal computer with 4MB 

RAM, CPU speed of 33MHz and which is equipped with a mathematical co-processor. 
When a pure gas was used on the former machine, the computation speed was comparable 

with that of the latter machine for the mixture of twelve substances. 

The QUANT software; produces a wide range of output thermodynamic and 
transport properties, but less than a dozen are relevant for the programmes developed in 
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this study. The properties are M, p, T, v, CP/R, K, y,, S� u, k. A big challenge was 

encountered in linking the QUANT programmes to the CFD programmes written during 

this study. The CFD programmes produced output in p, p (from which v can easily be 

calculated) and u. The ideal situation would be to use the values of p and v calculated by 

the CFD programmes as input properties to the QUANT programme, which in turn 

produces output data including T and the other properties required for further calculations. 

Either of the two ways of running the QUANT programme, which are discussed above, 

could be used. It is evident, from previous discussions, that the latter option in which 
QUANT is run for individual sets of input data is the most convenient. A procedure was 
designed for this method, whereby after registering the list of substances and units (both of 

which remain unchanged for a particular pipeline analysis), the set of input values i. e. p and 

v produced by the CFD programme are written in the form stipulated by QUANT to a 

random access file PARAS. USR which resides in the virtual disk. The QUANT programme 
is then called, only for doing calculation of properties and to produce output in a random 

access file PROPS. DAT in the same fashion as the input data file PARAS. USR. Another 

programme reads the binary data from the random access binary file PROPS. DAT and 

returns the data in ASCII form to the calling CFD programme. Both the programmes for 

writing and reading input and output data respectively, in the random access files have 

successfully been written in the C language. What remains to be done is to write a 

programme which could be called by the CFD programme, to invoke the QUANT 

programme to do the calculation of output properties and write the output data in the 

output file PROPS. DAT automatically. Either of the variant programmes QDB or QDF 

supplied with the QUANT software, on request, was used but manual execution was 

necessary due to the menu structure through which they operate. This made it impractical 

in this application where the call to QUANT programme needs to be done numerous times. 
Moreover, the procedure is very slow, and thus it results in very long execution time if the 

programmes are run using this method directly. 

The alternative method i. e. using ASCII data books produced by QUANT, also 
proved to be difficult. This is because the known properties produced by the CFD 

programmes are p and v, while the required input parameters for the QUANT data books 

are p and T. However, it is possible to use the values of p and v as input parameters, but 

the procedure is cumbersome and requires iteration because of the fact that the data books 

contain the output of v in the dimensionless form of Z. Efforts to develop a programme 
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which would invoke the QUANT programme to produce output data in the random access 

file PROPS. DAT automatically have yet to be completed. The task proved to be too 

difficult, especially because of incompatibility of the QUANT programme with compilers 

available, and insufficient information concerning the QUANT programmes. After some 

correspondence with the supplier, a different programme, QTS, which is designed to co- 

operate repetitively with any user's programme which delivers its input information as many 

times as necessary and handles the output information from each consecutive run was 

supplied. QTS was found not to be well suited for application in this study, where for each 

calculation point, both thermodynamic and input parameters vary independently. The QTS 

programme is limited to loops. Moreover, the programme is unnecessarily complicated and 

difficult to run with large user's programmes, of the kind developed in this study. Flatt 

(1993-1996) developed a programme RGAS 1 by modifying one of demonstration 

programmes (FODEMO) supplied together with the programme QTS. The programme is 

expected to be able to produce thermodynamic data for a given gas or mixture of gases, one 

thermodynamic parameter e. g. pressure being fixed and the other one being varied to 

convenience. The result of this loop is written in a formatted ASCII file and its contents 

may be displayed on the screen or sent to a printer. 

The most practical approach for CFD programmes for unsteady flow of gas in 

pipelines would be to include it as a programme unit containing tabulated values of all 

thermodynamic properties required, expressed as functions of p and p for the domain of the 

solution. This should include an interpolation procedure which for a given pair of values 

of p and p, would produce the thermodynamic values of the remaining parameter. A 

programme such as the one which was written by Flatt (1993-96) i. e. RGASI, would serve 

to prepare the required data tables. A substantial economy is achieved in computing time 
by using this approach, which was finally adopted for application in this study. The most 
ideal procedure is the one in which the input thermodynamic properties are written in the 

random access file PARAS. USR, in the virtual disk and the output data read by a 

programme written in C language. What is required now is a programme which will invoke 

the QUANT software to do the calculation for each set of input data automatically. The 

main disadvantage of this procedure is that it is very uneconomical in computing time. 

The task of incorporating the QUANT software with the CFD programmes has 

proved to be much more demanding than it had previously been anticipated. The QUANT 

software has proved to have some limitations as far as its application in modelling of high- 
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pressure gas linebreak is concerned. However, the implications of the limitations have been 

appreciated fully and the performance of the software is considered to be adequate. 

Constant communication with the supplier was necessary and proved to be very useful. 

Two major limitations of the QUANT software are lack of output at high pressures, typical 

of those encountered in high-pressure gas pipelines, and also lack of output at very low 

temperatures (minimum temperature at which QUANT delivers output is 200K for most 

natural gas mixtures). The software is constantly being improved by the suppliers and a 

later version which is expected to be released soon, but not soon enough for this 

programme of study, is expected to be capable of producing output at higher pressures, 

typical of those encountered in high-pressure gas pipeline applications. The substance 

coverage range of QUANT is adequate to represent most natural gas mixtures. 

4.6 COMPUTER CODES 

One of the reasons for keeping the basic equations of flow as simple as possible is to 

economise on computation labour, time and memory requirement. However, in the case 

of modelling transients in ruptured high-pressure gas pipelines, the potential for the 

realisation of the above is very limited. The reason for this is that, as seen in Section 4.1.1, 

the basic equations have to be used almost without any further simplifications in order to 

achieve the required accuracy criteria. On the other hand, Taylor (1992) stated that the 

general rule of thumb is that the value of software exceeds that of the associated hardware. 

Also since most engineering programming occurs in some group context, continuity and 

ease of maintenance are significant factors to be considered. A computer programme is 

therefore required to be easy to develop and maintain, as well as robust. 
Most computer programmes for engineering applications use FORTRAN-77, 

PASCAL and C. The latter two provide a richer programming environment, but 

FORTRAN is generally faster in compilation speed. Programmes may actually be using 

several languages, but many of the numerical utilities that are available are written in 

FORTRAN. Justification for using FORTRAN includes, for example, that FORTRAN is 

the acceptable language for the industry. Tiley (1989) used FORTRAN-77 to write her 

computer model for analysis of transients in ruptured high-pressure gas pipelines. The 

model consisted of two programmes, one performing the transient analysis and the other 

converting the required section of the numerical output of the first programme into a 
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graphical form. In this study, it is recommended that the C language be used and a pc based 

compiler adopted to compile and run the programme. The C language is efficient, compact 

and also flexible. C is considered to be more professional and user friendly than 

FORTRAN. The advantages of the C language over FORTRAN are even greater when 

using the UNIX system because C is the programming language for the UNIX system (99% 

of UNIX is in Q. Also due to the fact that the author had no previous knowledge of either 

FORTRAN or C, it is more profitable to learn C which is the most up-to-date language. 

When using other sub-routines, such as the QUANT software for thermodynamic and 

transport properties of the gas, problems may be encountered if these would be written in 

other languages than C. However, if data is output to an ASCII file, it can be picked up by 

programmes written in another language. QUANT is written in BASIC! and PREPROP 

in FORTRAN. The QUANT software could be linked with programmes written in any 

other language. Another aspect which needs to be considered is the computer hardware 

requirement. Most workers, Tiley (1989) in particular, have justified their simplifications 

of the basic equations with limitations in the computational labour, time and storage 

capacity which could be utilised economically. With the present state-of-the-art of 

computer hardware development (super computers), this may not be a big problem. 

However, the main problem is the present accessibility of such computers, not only to the 

author but also to most of the potential users of such programmes. If a computer 

programme is to have wider application therefore, it should be designed such that it can be 

handled by the type of computer hardware which is commonly available to the intended 

users. It is therefore intended that all computer programmes which are developed in this 

study, should be able to run on a pc. 

Tiley (1989) used a Gould PN 9005 main computer to run her programme. 
However, Richardson (1993-96) is using a 286 PC to run the BLOWDOWN programme. 
This has been possible after inclusion of a special card, Microway-i860 which can increase 

the RAM memory capacity to 8-32MB. The full size card costs about 12000.00., It is 

argued that the performance of these cards is at best using a 286 PC, compared to the later 

models such as 386 and 486 PC's, because the bigger box of the former allows for better 

cooling. This possibility enables such programmes to be run almost anywhere. The SHELL 

Group is presently using this technology. 

With the new generation of computers i. e. faster and higher capacity computers 
such as the PENTIUM series of personal computers and supercomputers, the size of 
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problems which can be solved is greatly increased. Application of these computers to 

engineering problems is increasing. Gathmann, Hebeker and SchöfFel (1991) reported on 

a new FORTRAN code called PICUS, which simulates shock wave propagation in complex 

geometries. Special emphasis was given to its implementation on modern supercomputers, 

which in this case was an IBM ES/3090 with a vector facility. The PICUS code has been 

developed to treat some more sophisticated effects; including three-dimensional geometry, 

non-equilibrium chemistry and coupling with external heat conduction material. Even for 

much simplified cases, the requirement for very fine computational grids for resolving the 

intended physical phenomena with sufficient accuracy underscores the need for 

supercomputers. The final version of PICUS is faster, by a factor of 20, than a previous 

code with related objectives in mind. However, it should be noted that these machines 

require a different computational approach to obtain the most effective results. The UNIX 

system can be operated as a supercomputer using the Convex OS facility. This facility is 

presently available at the University College, London (UCL) and it can be accessed through 

networking. At least one project in the Department of Mechanical Engineering and 

Aeronautics at City University is benefitting by networking with the UCL Convex OS- 

UNIX supercomputing. 

An Outline of the Main Features of TILEY'S Model 

The main features of the Tiley model, which was developed in the previous work at City 

University are listed in the following section. These will help to indicate improvements 

which have been included in the new model which is developed in this study. The main 
features of the Tiley model are as follows: 

(a) It allows the possibility of flow reversal downstream the break to be modelled. 
(b) Handling grid size reduction in the vicinity of the break is possible. 
(c) It can perorm transient analysis on a given shock tube or single pipe. 
(d) It gives numerical output for pressure, flow velocity and temperature at each time 

step. 

(e) A second programme converts the required section of the numerical output into 

graphical form. 

(f) Both programmes were written in FORTRAN 77 for use on a Gould PN 9005 

mainframe computer. 
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(g) The computer model consists of a transient analysis programme and a graphics 

programme. 

(h) The transient analysis programme consists of a main programme and sixteen 

subroutines 
The transient analysis programme (main programme) performs the following functions: 

(1) Prompting for gas and system data. 

(2) Grid formation. 

(3) Calling subroutines STEADI and STEAD2 to perform isothermal steady flow 

analyses upstream and downstream respectively, producing initial values (p, T and 

u) at every grid point. 

(4) Calculate p, Z and their partial derivatives with respect to T and p, (a, 0 and 
isentropic and isothermal wave speeds. 

(5) Maximum time step calculated on the basis of a stability criterion so that the 

required time step and run time may be entered. 
(6) Calling subroutines SUB1 to SUB6 and BREAKI and BREAK2 to perform method 

of characteristic calculation of new values of p, T and u at first time level. 

(7) Calculate p, Z and their partial derivatives with respect to T and p, w, 0 and 
isentropic and isothermal wave speeds for the points. 

(8) Calling subroutines SUBI to SUB6 and BREAKI and BREAK2 to perform method 

of characteristic calculation of new values of p, T and u at the next time level. 

(9) Procedure repeated until all time steps have been completed. 
(10) Calling subroutines SUBUP and DOWN 1 to calculate new values of p, T and u at 

upstream and downstream boundaries respectively. 
(11) Printing out these initial values at the specified grid points. 
(12) Initiate the pipe break. 

(13) Calculate the equalisation pressure at the break. 

(14) Determine the number of time steps over which the pressure drop occurs. 
(15) Calculate new values of pressure at the break one time step after the rupture occurs. 
(16) Calling subroutines BREAK3 and BREAK4 to calculate T and u at the break one 

time step after the rupture occurs. 
(17) Calling subroutines SUBI to SUB6 to calculate new values of p, T and u at each 

of the internal points. 
(18) Calling subroutines SUBUP and DOWNI to calculate values at the pipe ends: 
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(19) Continue looping. 

(20) Printing out results after each major time step until run time is reached. 

The flow chart for the Tiley's model is presented in Fig. 4.11 and a list of its subroutines 

is as follows: 

STEAD I- isothermal steady state flow analysis upstream 
STEAD2 - isothermal steady state flow analysis downstream 

SUBI - normal internal points upstream of the break 

SUB2 - internal boundary points between different grid sizes upstream of the break 

SUB3 - internal boundary points between different grid sizes downstream of the 

break 

SUB4 - normal internal points downstream of the break 

SUB5 - internal boundary points linking different grid sizes upstream of the break 

SUB6 - internal boundary points linking different grid sizes downstream of the break 

BREAKI - method of characteristics analysis at break point prior to the break 

BREAK2 - defines those values at the break downstream as the same as those upstream 
BREAK3 - calculates T and u at the break point, in the upstream section 
BREAK4 - calculates T and u at the break point, in the downstream section 
SUBUP - calculates new values of p, T and u at the upstream boundary 

DOWN1 - calculates new values of p, T and u at the downstream boundary 

GETFIL - opens data file 

DMINV - calculates the inverse of a matrix 

Programme Achitecture 

The new model which is developed in this study, was intended to be an improvement on the 

Tiley model. Therefore, the same approach as that used by They has been followed, as 

much as possilbe. However, in order to achieve the above objective, some significant 

changes have 

been made to the approach which was followed by Tiley. The main features of the new 

model, which are not present in the They model, are as follows: 

(a) A different form of the basic equations. 
(b) The QUANT software is used to calculate thermodynamic and transport properties 

of the fluid. 
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INPUT DATA 

GRID FORMATION 

STEAD I STEAD 2 

STEP CONTROL TIME 

CALCULATING p, z, öz/öp. Ozlöf, w 

BREAK 1 

SUB 1 

SUB 2 

SUB 3 

SUB UP 

PRINT 

INITIATE BREAK 

CALCULATE EQAULIZATION PRESSURE 

DETERMINE TIME STEP 

CALCULATE PRESSURE 

BREAK 31 

BREAK 2 

SUB4 

SUB5 

SUB 6 

DOWN 1 

BREAK 4 

Fig. 4.11 Flow Chart for Tiley's Computer Programme 
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(c) Various numerical methods of solution, including finite-difference methods of 

second- and third-order are used. 

(d) The C programming language has been adopted. 

(e) The programme has been devised for use on pc machines. 

(f) Validation with full-scale experimental data has been undertaken. 

(g) Fewer simplifications have been made on the basic equations. 

(h) Various models for steady state analysis, including incompressible and compressible 

adiabatic, isothermal and non-isothermal non-adiabatic flow models, have been 

considered. 
(i) Heat transfer models have been developed for both buried pipes and pipes exposed 

to the atmosphere. 
(j) Numerical output data is printed at the required distance and time intervals. 

The other features, which are also included in the Tiley model are as follows: 

(i) Transient analysis can be performed for a given shock tube or single pipe. 

(ii) Numerical output data is produced for p, u, T, p and a at each grid point. 

(iii) Allows the possibility of flow reversal downstream of the break. 

(iv) Grid size reduction in the vicinity of the break can be handled. 

(v) Graphical output is produced from numerical data, but in this case using 

commercially available graphics programmes. 

The layout and architecture of this programme is more complex and contains many 

more subroutines than the Tiley model. The advantages of the C programming language, 

including the possibility of writing many small subroutines have been fully exploited. The 

main programme consists of subroutines INITIAL (for initialising the execution of the main 

programme) and SYSDATA (for inputting the general system and gas data); and sub- 

programmes STEAD (for performing steady state analysis), TRANS (for performing 
transient analysis before the break) and BREAK (for performing transient analysis after the 
break has been initiated). Each of the three sub-programs prints numerical output in data 

files at the required interval. In addition, there are two other subroutines, GRIDGEN (for 

performing grid generation, in the case of variable grid size) and BRINC (for initiating the 
break and calculating the fluid properties at the break, on both the up and downstream 

sides). For each of the three sub-programmes, namely STEAD, TRANS and BREAK there 

exists the different combinations and permutations for all the different steady state models, 

numerical methods of solution and heat transfer models; programmes for analysis of the 
flow up and downstream the break; and uniform and variable grid size models. 
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The same programmes are used for transient analysis before and after the break. 

The only alterations made, are on the equations for calculating the fluid properties at the 

boundary points, which applies only for the method of characteristics. The uniform grid 

size programmes have been included because the procedure for developing this programme 

involved the use of a uniform grid size first. Otherwise the variable grid size programme 

takes care of this condition. The programme was compiled and run on a personal 

computer. An IBM compatible personal computer with a RAM memory of 8MB and CPU 

speed of 25MHz (486SX) performed as good as one with a RAM memory of 16MB and 

CPU speed of 33MHz (upgraded 486DX2). Personal computers are more convenient than 

mainframe computers, especially because of their portability which makes it possible for 

them to be used almost everywhere. This factor is very important, especially for this study, 

where sometimes it may be necessary to perform the analysis on site. In addition, the 

QUANT software for thermodynamic and transport properties of fluids is available for use 

only with personal computers. 

The main problem with personal computers is their relatively low computation 

speed, especially if a small time and distance mesh is used and or if the pipe section is long. 

The time used to complete the analysis for a one second run time could be as long as five 

to six days (120 to 150 hours). At the time when this simulation was performed, constant 

values for the thermodynamic and transport properties of the fluid were used. The 

inclusion of the QUANT data files reduced the execution speed to less than a half. Also, 

in order to be able to simulate the flow in a pipeline of say 10km, in the same way as above, 

a run time of around thirty seconds is required. With the same computing resources as 

above, such an analysis would last up to a total of five months. Obviously such CPU time 

is highly excessive and should be reduced by using either a bigger grid mesh or a faster 

computer. For example, by using Ox=1m, instead of Ax=O. lm which was used for the case 
described above, the CPU time would be reduced by a factor of ten. However, the increase 

in the in the grid size is limited by the stability criteria of the numerical methods and the 

accuracy required for the results. Whatever the case, the option of using a faster computer 

needs to be considered seriously. The use of chips such as the microway number smasher 

card containing an 1860 chip, which is presently being used at Imperial College [Richardson 

(1993-1996)], is strongly recommended. The card costs about two thousand Sterling 

pounds and it makes the personal computer 5 to 10 times faster than a 486 personal 

computer. The 1860 chip is to be found in Sun spark stations. The use of Sun spark 
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CALL SUB-ROUTINE INITIAL 14 i INITIAL 

CALL SUB-ROUTINE 
GRIDGEN GRIDGEN 

CALL SUB-ROUTE 
SYSDATA 

[-*-I 
SYSDATA 

CALL SUB-PROGRAMME STEAD 141 STEAD 

CALL SUB-PROGRAMME 
TRANS TRANS 

CALL SUB-PROGRAMME 
BRINC BRINC 

CALL SUB-PROGRAMME f 
BREAK (I BREAK 

Fig. 4.12 Flow Chart for the Main Computer Programme. 
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UPSTREAM SIDE 

STINADW 

STINAD VU 

STISODU 

STISOVU 

STAB IBUU 

STADIBW 

STAD IFUU 

STADIFVU 

STAD2UU 

STAD2VU 

A' 

ASK USER TO SELECT I DOWNSTREAM SIDE 
STEADY STATE ANALYSIS 

STINADV 

STISOUD 

STISOVD 

STAD I BUD 

STADIBVD 

STAD 1 FUD 

STAD 1FVD 

STAD2UD 

STAD2VD 

STNONAUD 

Fig. 4.13 Flow Chart for Sub-programme STEAD Call 
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ASK USER TO SELECT TRANSIENT ANALYSIS 
MODEL -TRANS/BREAK 

UPSREAM SIDE DOWNSTREAM SIDE 

: MOCAW TRMOCAUD 

W TRMOCAVD 

.W 
IBRMOCAVD 

IBRMCCAUD 

W ITRMCCAVD 

BRMCCAW BRMCCAVD 

WKLAW TRWKLAUD 

BRWKLAUU BRWKLAUD 

WKLAw ITRWKLAVD 

BRWKLAW BRWKLAVD 

NB: These sub-programmes are for the case of pipes exposed to the 
atmosphere. For buried pipes, "A" is replaced with "G". 

Fig. 4.14 Flow Chart for Sub-programes TRANS and BREAK Calls 
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READ DATA FOR PREVIOUS TIME STEP FOR 
DISTANCE POINT, FROM DATA FILE 

ICHECK STABILITY CRITERION I 

CALL SUBROUTINE SBMOCI TO PERFORM FIRST 
ORDER TRANSIENT CALCULATION OF - p, r, u. 

THE QUANT 
IS CHECK IF CONVERGENCE 

CONVERGENCE CRITERION MET? 
N IS MET: 

WARE 

NO 

NO 

CALCULATE FLUID NO 
YES 

PROPERTIES AT P 
INCLUDING T 

CALL SUBROUTINE SBMOC2 TO PERFORM SECOND 
ORDER TRANSIENT CALCULATION - p, p, u. 

CALCULATE SPEED 
OF SOUND ATP-S 

CHECK IF CONVERGENCE CRITERION IS MET: 
IS CONVERGENCE CRITERION MET? 

YE 

PRINT NUMERICAL OUTPUT FOR NEW TIME 
LEVEL IN DATA FILES - t, x, p, T, U, p, S 

GO TO THE NEXT DISTANCE POINT UNTIL END 
OF SECTION IS REACHED: IS END OF SECTION 

YES 

GO TO THE NEXT TIME STEP UNTIL RUN TIME 
IS REACHED: IS RUN TIME EXCEEDED? 

YES 

Fig. 4.15 Flow Chart for a Typical Method of Characteristic Programme. 

END 

INOI 

203 



............................................................................: ONLY FOR S.. AfOC. 2 
CALCULATE XQ, Xr & X. 

CALL FOR SUROUTINE SUBHTA OR 

....................................................... 
SUBHTG TO CALCULATE a. o) AND 12 AT P 

................................ 
T 

.... .......... CALL SUBROUTINE SUBHTA 
CALCULATE p. u. p (AND a FOR JOR SUBHTG TO CALCULATE 

.... 
AAS.. MOC.. 1)ATQ, RANDS 

"I 

at W ! 11\L if Al IVI I Iý 

ONLY FOR S.. MOC .1 ....................................................... .............................. .......................................... 
CALL SUBROUTINE SUBI-ITA OR SUBHTG 

TO CALCULATE a, o)ANDf2ATQ 

CALL SUBROUTINE SUBI-ITA OR SUBHTG 
TO CALCULATE a, w AND t2 AT R 

'; ONLY FOR SJ tOC.. 2 
..................... 

j 

......................................... 

CALL SUBROUTINE SUBHTA OR SUBHTG 
TO CALCULATE a, uý AND Q AT S 

CALCULATE THE COEFFICIENTS OF THE 
THREE SIMULTANEOUS EQUATIONS 

CALCULATE p, u AND p AT P 

I RETURN p, u, p, TO CALLING I 
PROGRAMMMS 

Fig. 4.16 Flow Chart for the Sub-routines S.. MOC.: 1 and S.. MOC.. 2 
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stations could therefore be another option for increasing the CPU speed, especially if data 

files produced from the QUANT software are used rather than running the software to 

produce output at each grid point. The programme was compiled and run using a Borland 

C++ compiler version 2.1, which is based on the MS-DOS operating system. The compiler 
is compatible with the Unix version used in Sun spark stations, and the programmes require 

very minor alterations to enable them to run on the latter system. 
Fig. 4.12 through 4.16, illustrate the various subroutines and sub-programmes 

developed in this study. The listing of all subroutines and sub-programmes is given in 

Appendix E. 

4.7 PREPARATION OF GENERAL GAS AND SYSTEM DATA 

Before any of the programmes described in Section 4.6 can run, all the required general 
data about the system and the fluid must be obtained and stored in ASCII form in a data file 

called SYSTEM. DAT. The data is stored in the sequence shown in Table 4.2 and read as 

an array ID. Only the numeric values i. e. the column designated value is stored in the 
SYSTEM. DAT file. 

Pipe lengths: ID[0], ID[61, ID[7] and ID[81 

All the subroutines are based on the arrangement of the pipe shown in Fig. 4.17 below. The 

test section consists of a straight pipe of length ID[6], extending from a point at distance 

ID[O] to a point at distance ID[O]+ID[6]. Direction of flow before the break is to the right. 
The break occurs at a point at a distance ID[O]+ID[8] along the test section, which could 
be anywhere between the two ends or at one of the ends. Therefore the length from the 

upstream end of the section to the break point is ID[8], and that from the break point to the 
downstream end of the section is ID[7]. 

Unless otherwise specified, the distance to the point at the upstream end of the test 
section i. e. ID[O] is taken to be zero. Assuming the break takes place on a plane 
perpendicular to the axis of the pipe, and that no part of the pipe is lost during the break, 

the total length of the test section is the sum of the length of the section upstream the break 

and that downstream the break i. e. ID[6] = ID[8] + ID[7]. 
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No Array 
Element 

Description Value Units 

1 ID[0] Length of pipe at upstream end [m] 
2 ID[1] Outer pipe wall temperature at upstream 

end 
[K] 

3 ID[2] Thermal conductivity of pipe material [W/mK] 
4 ID[3] Thermal conductivity of surrounding 

medium 
[W/mK] 

5 ID[4] Pipe diameter [m] 
6 ID[5] Angle of inclination of pipe to horizontal [Rads. ] 
7 ID[6] Total length of pipe section [m] 
8 ID[7] Length of pipe section downstream the 

break 
[m] 

9 ID[8] Length of pipe section upstream the break [m] 
10 ID[9] Finest distance mesh [m] 
11 ID[10] Inner pipe wall surface roughness [m] 
12 ID[11] Pipe wall thickness [m] 
13 ID[12] Depth of the pipe below the surface [m] 
14 ID[13] Temperature of the surrounding atmosphere [K] 
15 ID[14] Pressure of the surroundings [MPa] 
16 ID[151 Initial temperature of gas at upstream end [K] 
17 ID[16] Initial pressure of gas at upstream end [MPa] 
18 ID[17] Mass flow rate of gas [kg/s] 
19 ID[18] Finest time step for transient analysis [s] 
20 ID[19] Run time for transient analysis [s] 
21 ID[20] Coefficient of dynamic viscosity of gas [Ns/m2] 
22 ID[21] Initial density of gas at upstream end [kg/m3] 
23 ID[22] Polytropic coefficient of gas [-] 
24 ID[23] Compressibility factor of the gas at 

initial conditions [-] 
25 ID[24] Starting time for transient analysis [s] 
26 ID 251 Density of gas at final conditions [kg1m3] 
27 ID[26] Temperature of gas at final conditions [KJ 
28 ID[27] Speed of sound of gas at final conditions [m/s] 
29 ID[28] Molecular weight of gas [g/mol. ] 
30 ID[29] Equivalent pipe diameter at the broken end [m] 
31 ID[30] Compressibility factor of gas at final 

conditions (-] 
32 ID[31] Ratio of specific heats of gas at final 

conditions [-] 

Table 4.2: General Gas and System Data Layout 
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Flow 

Directiori 
----------------------------------------- - 

tn(eý 
o(. ] m[o)týc (e] 

Fig. 4.17a Test Section of Pipe Before the ßreßlc. 

-- ------ ------ --- - ---- ----- [ý 

- 
t0[I] 

ID(of 

Fig. 4.17b Test Sectiori After the Drealc 

Pipe Diameters: ID[41 and ID[291 

The basic equations derived for this study can handle situations in which the cross-section 

area of the pipe varies with distance along the axis of the pipe. However, in this model it 

is assumed that the cross-section area and hence the diameter of the pipe is constant 

throughout the test section. This assumption is reasonable for typical gas pipeline systems. 

The diameter of the pipe is defined as ID[4]. Very often the break is not full-bore 

i. e. the cross-section area at the break is different from that at the rest of the pipe. This 

situation is taken care of by the equivalent diameter at the break (ID[29]). A typical 

arrangement for such a system is shown in Fig. 4.18. 

----------------------- 
r[-ý4 

------------------... 
[2fl] 

Hreak 

Fig. 4.18 Diameters of the Pipe at Test Section 

Angle of Inclination of the Pipe to the Horizontal: ID[51 

This is the angle which the pipe section forms with the horizontal. In most cases the angle 
is zero i. e. the pipe is horizontal or for the sake of simplicity, it is assumed to be horizontal. 
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Mesh Size: ID[9J and ID[181 

With the hybrid method of characteristics and the explicit finite-difference methods used in 

this model, a rectangular co-ordinate grid is required. To enable the grid mesh to be 

generated for both the uniform and variable size cases, only two parameters need to be 

specified, namely ID[9] and ID[18]. ID[9] is the finest distance mesh which in the cases 

of uniform grid size is the same throughout the length of the test section. In the case of 

variable grid size, the distance mesh size increases by a factor of two from one mesh size 

to the next and away from the break. Values of ID[9] smaller that 0.1m presented 
difficulties because of computer floating point error. It is therefore recommended that an 

ID[9] value of 0.1m be taken as the smallest. The finest time step ID[18], is determined in 

relation to the finest distance mesh, according to the Courant-Friedrich-Levy stability 

criterion. ID[18] also varies in a similar fashion as ID[9] away from the break. For typical 

high-pressure natural gas linebreak problems, the ratio between ID[9] and ID[ 18] is around 
1000. 

The decision on whether to use a uniform or variable grid size depends mainly on 
the length of the pipe section being modelled. The variable grid size model enables a much 
longer section to be analysed. The maximum number of grid points which can be handled 

depends on the capacity of computer used for the analysis. For a 486 personal computer 

with a RAM memory of 8MB, the maximum number of distance grids which could be 

handled is around 120. An optimum number is chosen that will ensure the required 

accuracy criterion and reasonable CPU time are met. The grid mesh for both the sections 

of the pipe i. e. upstream and downstream of the break are shown in Fig. 4.19. 

Starting and Run Times: ID[24] and ID[19] 

The run time for a particular transient analysis programme, ID[ 19], is the time during which 

the transient event is being modelled. In the case of transient analysis after the break, this 

is taken to be the time interval from when the break occurs until when the transient event 

stops. The starting time in this case is taken to be zero. 

For transient events taking place over long intervals of time, it may be convenient 
to do the analyses in batches. After each batch, the values of ID[ 19] and ID[24] should be 

changed in the SYSTEM. DAT file. ID[24] is given the value of ID[19] in the previous 
batch and ID[19] is given a new value, until the required run time is reached. Care should 
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be taken to ensure that the respective data files for the last time step of the previous batch 

are kept intact before starting the next batch analysis. 

Physical Properties of the Pipe Material: ID[21, ID[10J AND ID[11] 

ID[2] is the thermal conductivity of the pipe material and it is used in the non-isothermal 

non-adiabatic steady state analysis programmes and in the transient analysis programmes 

to calculate the heat transfer through the pipe wall. The pipe wall thickness (ID[ 11 ]) is also 

required and used in exactly the same way as ID[2]. The inner pipe wall roughness 
(ID[10]) is used by all the steady state and transient analysis programmes to calculate the 
frictional force. 

Physical Properties of the Surrounding Environment: ID[1], ID[31,1D[121, ID[13] 
and ID[141 

The outer pipe wall temperature and temperature of the surrounding atmosphere (ID[ 13]) 

are used by all the non-isothermal non-adiabatic steady state and transient analysis 

programmes to calculate the heat transfer through the pipe wall and from, the pipe to the 

surrounding environment. The pipe wall temperature needs to be specified only at the 
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upstream end. In situations where this data is not available, an estimated value is used. The 

estimated value should be based on the temperature of the surroundings or of the gas, and 

allow for a reasonable temperature drop. If the value of ID[1] estimated is not accurate 

enough and also for points other than the upstream end, the programmes will calculate the 

precise value through iterations. 

The thermal conductivity of the surrounding media (ID[13]) and the depth of the 

pipe below the surface (ID[12]) apply only in cases where the pipe is buried and for non- 
isothermal non-adiabatic programmes. They are used to calculate the heat transfer through 

the medium, from the pipe outer wall to the surrounding atmosphere. In most cases the 

pipes are buried either under ground or water. The surrounding media in these cases are 

the media in which the pipes are buried, and ID[ 12] is the depth of the pipe in the medium, 
below the atmosphere. 

Pressure of the surroundings (ID[14]) is the pressure of the place at which the 
broken pipe discharges. If the broken pipe is open to the atmosphere, the surrounding 

pressure will be the local atmospheric pressure. In some cases, for example pipes buried 

under water, the broken pipe would discharge the gas under water and the surrounding 

pressure will be higher than the atmospheric pressure. In such case, the surrounding 

pressure is given by the following equation: 

ID[14] = PA + (P,,. g. ID[12]) (4.298) 

where pAis atmospheric pressure and pw is density of the water and ID[12] is the depth of 
the pipe in the water. 

Physical Properties of the Gas: ID[15], ID[16], ID[17], ID[20], ID[21], ID[22], ID[23], 
ID[25], ID[26], ID[271, ID[281, ID[30] and ID[31] 

Among the above data the primary data which must be specified in all the steady state and 
transient analysis programmes is the initial temperature, pressure and density of the gas at 
the upstream end i. e. ID[15], ID[16] AND ID[21] respectively and mass flow rate of gas 
before the break (ID[17]). With programmes which use the QUANT software i. e. the non- 
isothermal non-adiabatic steady state and all transient analysis programmes it is not 
necessary to specify both T and p. The most practical way is to specify T and calculate p 
using the QUANT software, although the opposite could also be used. This applies only 

when the domain range of the parameters lies within the range in which the QUANT 

software delivers output. Otherwise both T and p have to be specified. 
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The fluid properties u (ID[20]), n (ID[22]), Z (ID[23]) all at the initial state of the 

gas and M (ID[28]) are not required for the non-isothermal non-adiabatic steady state and 

the transient analysis programmes. They are used by the other steady state analysis 

programmes, and the are not all required by each of the programmes. For the programmes 

using the QUANT software, all the fluid properties mentioned in this paragraph can be 

calculated from it and need not necessarily be specified in the data file SYSTEM. DAT. 

The fluid properties at the final conditions, are the properties of the gas at the state 
in which the gas is expected to be after the transient event has ended. The properties which 

need to be specified at the final condition are p (ID[25]), T (ID[26]), a (ID[27]), Z 

(ID[30]) and K (ID[31]). These together with the pressure and temperature of the 

surroundings (ID[14] and ID[15] respectively) are used by the programme for transient 

analysis after the break as the properties of the gas at the final state, and to which the 

programme must finally converge. 
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CHAPTER 5 

A REVIEW OF SOME EXPERIMENTAL 
AND NUMERICAL DATA 

5.1 INTRODUCTION 

Experiments on high-pressure gas pipeline rupture are commonly divided in two categories, 

namely laboratory experiments and full-scale pipeline experiments. Laboratory experiments 

have traditionally been performed using shock tubes although other variations are also used. 

Full-scale pipeline experiments represent more realistically the situation being modelled, but 

are very expensive, hazardous and entail significant practical problems. Data of this type 

is therefore very scarce compared with laboratory data, and is in most cases restricted. 

Laboratory experiments, on the other hand, are more practicable but do not accurately 

represent the full-scale situation. However, results from shock tubes tests, especially those 

using modified shock tubes (to include the effects of heat transfer, change in cross-sectional 

area, etc. ) are good enough and have been used in the absence of full-scale experimental 

data. 

Laboratory experiments have traditionally been performed using shock tubes 

although other variations are also used. An alternative to performing full-scale pipeline 

experiments would be to wait until a pipeline ruptures accidentally and collect the required 
data. But since accidents occur unexpectedly, are inherently unsafe, and often when people 

are ill prepared to collect the required data, it is not possible to collect all the required data. 

The other alternative data available, is results from other similar computer models. 
However, this type of data should be used with great caution. Experimental data on 
linebreak problems and especially full-scale -experimental data is becoming increasingly 

available. Very often, experimental data is available in a form which can not be used 
directly without modifications, assumptions, extrapolations and interpolations. 

Result of transient analysis in ruptured pipelines, whether produced by experiments 
or computer models, are normally presented in a set of graphs. The more commonly used 

are the p-x, T-x, u-x, p-t, T-t, u-t, I-t, m-t and p-a curves. A review of experimental data 

which is available on pipeline rupture has shown that it consists of data from shock tube 
tests; laboratory rupture experiments on short sections of pipes; linebreak simulation 
experiments on full-scale pipelines such as those reported by Bisgaard, Sorensen and 
Spangenberg (1987) and Van Deeen & Reintsema (1983); rupture and blowdown tests on 
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sections of full-scale pipeline such as the Foothills Pipelines (Yukon) Ltd. (1981); and 

measurements on full-scale pipeline system during accidental rupture such as the Piper 

Alpha disaster. 

One essential requirement before performing computer modelling of a given pipeline 

rupture is that the test data, specific gas data and pipeline system data must be prepared in 

the form required by the computer programme. Often this involves making a number of 

assumptions and simplifications, such as assuming some parameters to be constant for some 
interval. Computer software for calculation of thermophysical properties of fluids such as 
PPDS-IUPAC, QUANT, ASPEN PLUS and PREPROP are available and make the process 

much easier and accurate, while maintaining a sound computation speed. System data such 

as pipeline dimensions, is usually included in experimental data. However, some variables 

such as grid size, friction factor, Stanton number etc. need to be determined. A suitable 

grid size needs to be chosen in order to meet the required quality of results. Transient 

analysis in the vicinity of the break is very crucial. However, it is often not easy to obtain 

the required experimental data and with the required accuracy in this area. In that case, the 

only available option is to use computer models. Consequently, a review of the available 

computer models is made, from which suitable results are to be selected for comparison 

with the model being developed. 

5.2 LABORATORY EXPERIMENTS 

5.2.1 DESCRIPTION OF THE SHOCK TUBE TEST 

A simple shock tube consists of a tube of constant cross-section, in which a diaphragm 

initially separates two bodies of gas at different pressures. Rapid removal of the diaphragm 

generates a flow of short duration containing waves of finite amplitudes separated by quasi- 

steady regions. Initially, after diaphragm removal, a shock wave travels into the low 

pressure gas while an expansion or rarefaction wave travels into the high pressure gas. The 

quasi-steady flow regions induced behind these waves are separated by a contact surface 
across which pressure and velocity are equal, but density and temperature are in general 
different. The shock heating of the low pressure gas and the expansion cooling of the high- 

pressure gas, permit a very wide range of flow temperatures to be achieved. There is a very 
wide range of research applications of shock tubes, including the study of the propagation 
of pressure waves in unsteady fluid flow situations. A large number of results from shock 
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tube experiments exist and some of these are specifically on the modelling of unsteady fluid 

flow, similar to that occurring in ruptured high-pressure pipelines. 

Stronger shock waves can be produced with various modifications to the simple 

shock tube. These modifications include driver gas heating and area reduction from driver 

to driven sections. The theory and performance of simple shock tubes has been described 

by Glass (1958); and Hall (19580) covers modified shock tubes. 

5.2.2 REVIEW OF SOME LABORATORY EXPERIMENTS 

There is a wide range of experimental results from shock tubes available. These have been 

presented and discussed by Glass (1958), Issa (1970), Thorley & Tiley (1987) and Tiley 

(1989). There seems to be not much published recently, on shock tube modelling of 

ruptures in high-pressure gas pipelines. Most of the recent work is based on full-scale 

pipeline experiments, which are becoming increasingly available. 

Based on a three point criteria, described in Section 5.5, Tiley (1989) selected the 

Groves-Bishnoi-Wallbridge (1978) [referred to as the Groves data] shock tube data and the 

British Gas shock tube data [Jones and Gough (1981)]. The Groves data was also used by 

Cronje, Bishnoi and Svrcek (1980) to simulate gas pipeline rupture, with successful results. 
In using the Groves data, Tiley (1989) had to make various assumptions regarding shock 
tube material (in order to estimate the friction factor and Stanton number); the effective 

rupture time of the diaphragm and the accuracy and sensitivity of the measuring and 

recording devices. Therefore, no assessment could be made of the experimental errors 
incurred. No such problems were experienced with the British Gas data. 

Lyszkowski, Grimesey and Solbrig (1978) used experimental results from ideal gas 
shock tube tests and blowdown of an ideal gas from a 13ft (approximately 4m) long pipe. 
In the case of the shock tube tests, the length of the pipe was 20ft (approximately 6m) and 
the initial pressure ratio at the middle was 7.9 to 1 [114.7Ib/in' abs. to 14.7Ibrn'- abs. (7.9 

to 1 bar)]. The velocity was uniformly zero and the internal energy was uniformly 
80.62Btu/Ib (187.5kJ/kg) initially. A diatomic gas having a specific heat capacity ratio (K) 

of 1.4 was used. Results were presented in the form of graphs of pressure, velocity and 
internal energy; all as functions of the pipe length. The same gas was used in the 
blowdown experiment. The ratio of the initial pressure in the pipe to ambient pressure was 
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2.83 and the initial pressure was 1,000 Ib/in2 abs (69 bar). Results were presented in the 

form of closed end pressure and break velocity as functions of time after the break. 

Ilic (1987) determined experimentally the rate of transient mass discharge of a two- 

phase mixture through a short pipe. An initially stagnant and saturated column of Freon- 12 

liquid stored in a 0.25 litre glass vessel was used. Blowdown was initiated through a 

3.2mm bore brass tube, 50mm long by opening a quick acting ball valve located 

downstream from the pipe. Strain gauge pressure transducers with natural frequency of 

about 20kHz were used to measure vapour pressure in the space above the liquid in the 

glass vessel and the pressure of the liquid at the exit of the discharge pipe. A Bourdon tube 

compound pressure gauge was used to indicate the initial and final receiver pressures. The 

fluid temperature was measured at the exit plane of the pipe with a 0.2mm diameter 

chromel/alumel thermocouple whose bare hot junction was machined flush with the pipe 
bore and thermally insulated from the pipe wall by a resin plug (1.6mm diameter) in which 
the thermocouple wires were embedded. A similar thermocouple mounted on the discharge 

pipe wall showed that the temperature drop was insignificant throughout the blowdown 

period, except during the vapour stage. The pressure transducer and temperature signals 

were recorded on a high speed chart recorder. Results have been presented in terms of 

photographs taken at 0.33 seconds intervals, discharging vessel mass inventory variation 

with time and discharge tube exit characteristics and driving pressure history. An initial 

delay period was observed before the start of ebullition by the formation of vapour at the 
bottom of the vessel. Discrete bubbles eventually combined to form a slug of vapour which 
displaced the descending liquid surface and caused considerable mixing in its wake. At the 

end of blowdown, only vapour issued from the vessel. The criterion of choking was taken 

to be the independence of the pipe exit pressure from the receiver pressure changes. This 

condition was confirmed by the simultaneous measurement of the fluid exit temperature, 

which showed similar trends to the exit pressure. 
Haque, Richardson, Saville and Chamberlain (1990) reported on experiments 

conducted on rapid depressurisation of large pressure vessels at the Imperial College, 
London. The aim of the experiments was to enable understanding of the physical processes 
involved during blöwdown. The experiments involved the depressurisation of three vessels 

ranging in diameter from 5 to 110cm, with length to diameter ratios from 10 to 3 

respectively. Most of the measurements were made on vertical vessels blowndown from 

the top and from the bottom. However, measurements were also made on horizontal vessel 
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blowdown through an exit on the axis of the end closure of the vessel. Measurements 

recorded included pressure, temperature and composition; all as a function of time during 

the blowdown process. The vessels were instrumented with pressure transducers to 

measure the internal pressure and thermocouples to measure temperature within the gas 

space in the vessel and the surface temperatures of the vessel wall, both inside and outside. 

Pressurisation was with nitrogen at 150 bar and depressurisation was through an orifice 
down to atmospheric pressure. A data logger was used to record all the pressures and 

temperatures once every 3 seconds. 
Haque, Richardson, Saville, Chamberlain and Shirvill (1992) presented and 

discussed experimental measurements which were taken to validate their computer model, 
BLOWDOWN. The experiments were conducted using different sized vessels oriented 

vertically and horizontally; containing a range of different fluids; and with blowdown from 

the top, bottom and side through chokes of various sizes. The experiments were conducted 

using three vessels of different sizes, in order to check the effect of vessel size on the model 

predictions. The model showed that the predictions are scale-independent. The three 

vessels used were named as Vessel 1 to 3; and had lengths of 3.240m, 1.524m and 0.671 m; 
inside diameters of 1.130m, 0.273m and 0.040m; and thickness of 59mm, 25mm and 5mm 

respectively. Transducers were used to measure the pressure in the vessels to an estimated 

accuracy of 10.2 bar. Pressure gauges were also used to give direct measurements. Bare- 

wire thermocouples were used to measure the temperature of the fluid within the vessel and 

also of the inside and outside walls to an estimated accuracy of f0.5K. It was also possible 
to withdraw samples of the fluid from the top and bottom of the vessel at arbitrary stages 
during blowdown, and to measure the composition of the samples using a mass 
spectrometer and a gas chromatograph. In addition, a windowed port was attached to the 

upper part of the vessel and a mirror set at an angle of 45° to the vertical within the vessel. 
A video camera was then used to view the fluid within the vessel both horizontally, across 
the upper part of the vessel occupied by gas; and vertically downwards, from the part 
occupied by gas to the part occupied by liquid. In this way condensation in the gas and 
evaporation in the liquid could be monitored directly and continuously during the 
blowdown. All measurements were transmitted to data logging systems and thence to 

micro-computers for subsequent data reduction. The experiments were carried out at the 
Imperial College (for Vessel 2) and the British Gas test site at Spadeadam (for Vessel 1). 

216 



Experiments using Vessel 1 at Spadeadam were conducted on mixtures of methane, 

ethane and propane; together with some on nitrogen (for comparison with the Imperial 

College experiments). Some eighteen and fifteen sets of experiments, which were referred 

to as SI to S18 and 11 to 115 were conducted at Spadeadam and Imperial College 

respectively. The experiments covered a wide range of different fluid compositions, vessel 

orientation, blowdown directions and choke sizes. The experiments at Imperial College 

were, for safety reasons, confined to non-inflammable but representative fluids. Nitrogen 

was used as a representative gas phase since its critical properties are in the same range as 

those of methane; and carbon dioxide was used as a representative condensable phase such 

as propane. The initial pressure was, except in two cases 120 bar for the Spadeadam tests; 

and 50 bar for the Imperial College tests. Blowdown times were of the order of 1,500 

seconds for the Spadeadam experiments and 100 seconds for the Imperial College 

experiments. Three experiments, namely 11, S9 and S 12; all of which were conducted with 

a vertical orientation of the vessels and blowdown at the top position; were selected as 

representative comparisons for the BLOWDOWN model. However, in the case of the 

pipeline rupture model, experiments carried out at a horizontal orientation of the vessels are 

more representative. Richardson (1993-96) reports on further experimental blowdown tests 

on a 1.6m long, 0.3m diameter vessel at Imperial College; a 3. Om high, 1.3m diameter 

vessel conducted by SHELL at Spadeadam; and a 0.3m high, 0.15m diameter vessel at 
Imperial College for a number of flashing flow tests. 

5.3 REVIEW OF SOME FULL-SCALE PIPELINE EXPERIMENTS 

Perhaps the earliest full-scale pipeline rupture tests are those reported by Sens, Jouve & 

Pelletier (1970). The test was conducted on an 11,800m long 0.1065m internal diameter 

natural gas pipeline at a pressure of 31.4bar. The results in form of p-t and u-t curves were 
compared with calculated results and said to be identical. However, this is one of the 

simplest cases of natural gas flow, since the pressure was relatively low and measurements 
were taken away from the vicinity of the break. In most cases, the pressure would be so 
high that the modelling would involve handling of liquid and gas phases. In a test 

programme conducted by Alberta Petroleum Industry Government Environmental 

Committee (1979), an existing 168.3mm outside diameter pipeline which was typical of 
sour gas lines in the province was used. The test section, approximately 4.0km in length, 
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was burst at the midpoint. In addition, one rupture was performed on a pipeline of 

323.9mm diameter and approximately 7.1 km long. Of the results presented, only the p-t 

and m-t curves are relevant for this case. 

Tiley (1989) used results from some full-scale tests on high-pressure gas pipelines 

including those reported by Jones & Gough (1981) and Foothills Pipelines (Yukon) Ltd. 

(1981). As for the results presented by Jones and Gough (1981), the tests were conducted 

with natural gas and using short sections of pipe. Tests, sections were 1.22m diameter and 

approximately 50m long with reservoir sections at both ends. The pipe was pressurised to 

approximately 90bar and a crack was initiated at the centre of the test section. Pressure 

histories were recorded at points either side of the break, and results were presented as p-a 

curves. Similar results; for tests carried out by BMI, on behalf of British Gas; and for tests 

that British Gas conducted for SHELL; were also presented. In these cases, the initial 

pressures were 120 and 140 bar respectively. The experiments reported by Foothills 

Pipeline (Yukon) Ltd. (1981) were carried out between 1979 and 1981 at the Northern 

Alberta Test Facility. Short sections of about 120m long and 1.4m and 1.2m diameter pipe 

were charged with natural gas of known composition and pressurised to between 74bar and 

87 bar. Fracture was initiated at the centre of the test section and results were presented 

in the form of p-t and p-a curves. 

Van Deen & Reintsema (1983) used experimental data from GASUNIE to validate 

their theoretical model. In the experiment, a linebreak was simulated by rapidly opening a 

valve which connected the test pipe to a parallel pipe at a lower pressure. Another set of 

data from full-scale pipeline simulation of a rupture is that reported and used by Bisgaard, 

Sorensen and Spangenberg (1987), and which was carried out in 1979 on a 77.33km gas 

pipeline from Neustadt through Sörzen to Unterföhring in Germany. Gradle (1984) 

presented blowdown curves for natural gas i. e. graphs of blowdown time versus pipeline 

volume (t-V curves), for different types of pipeline and at line pressures ranging from 

13.8bar to 103.4bar. Knox, Atwell, Angle, Willoughby and Dielwart (1980) presented 

results of sour gas pipeline rupture experiments. Two pipelines of a 3.8km, 168mm 

diameter and a 7.1km, 323mm diameter were ruptured at the midpoints of the test sections. 

m-t curves were presented for the two pipelines at an initial pressure of 69bar and gas 

temperature of 10°C. The total mass of gas released was also measured. Wilson (1981) 

also reported on full-scale rupture tests performed in 1978 by Alberta Petroleum Industry, 

Government Environmental Committee (1979). Botros, Jungowski and Weiss (1989) used 
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the data obtained during the blowdown of a straight gas pipeline section and a three-unit 

compressor station for comparison with their models. Results were presented in the form 

of p-t curves. 

Richardson and Saville (1991) used experimental data from one of three ruptures 

of lines connected to the Piper Alpha platform, which was monitored sufficiently well to 

give useful validatory information; and also data from a line of length 100m and bore 

150mm, containing LPG. In the latter case, initial pressures of up to 21bar, and initial 

temperatures of about 293K were used. The blowdown was done through orifices ranging 
in equivalent diameter from 0.0im to 0.15m (full-bore). Results were presented in the form 

of p-t and p-T curves, at the intact end of the line; and m-t, M-p curves. Some of these 

results were also used by Chen, Richardson and Saville (1992). Chen, Richardson and 
Saville (1993) reported on a 100m long pipe with an internal diameter of 150mm, which 

was fully ruptured at one end. Pressure at the intact end and total mass in the pipeline were 

recorded as a function of time. The pipe was filled with 95% propane and 5% butane 

mixture at a pressure of l lbar and temperature of 20°C. Much more data resulting from 

laboratory experiments and also full-scale tests, but which has not been published, exist. 

However, the data was not available for this study. 
Mallinson (1996) reports of recent experimental data, which have been acquired by 

British Gas in addition to the ones reported by Jones and Gough (1981). The new data 

were obtained through full-scale pipeline tests, in collaboration with. several other 

companies. Mallinson (1996) further states that the cost of the experiments was very high, 

and as such the results are both valuable and also commercially sensitive. This data was 

therefore not available for this study. 
Morrow (1996) reports on other recent full-scale pipeline venting tests, which were 

performed by a gas transportation company, in order to evaluate leak detection systems. 
The pipeline system consisted of parallel pipelines with interconnections or cross-overs that 

could be opened or closed. The interconnections were spaced at regular intervals between 

compressor stations. A partial linebreak was simulated by venting gas through a smaller 
diameter branch line terminated by a remotely actuated quick acting relief valve. A full 

linebreak was not simulated. P and T data were recorded. This information was received 
too late to be able to follow up on the possibility of the data being made available. 
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5.4 REVIEW OF SOME NUMERICAL DATA 

Sens, Jouve and Pelletier (1970) claimed that results from their model was identical with 

their experimental results described in Section 5.3. Arrison, Hancox, Sulatisky and 

Banerjee (1977) compared predictions by their RODFLOW code with experimental data 

for blowdown of a recirculating water loop containing two pumps, two heated sections and 

two heat exchangers arranged in a figure-of-eight geometry. Results were presented as p-t 

and T-t curves at different sections of the loop and different break sizes. 

Groves, Bishnoi and Wallbridge (1978) developed a computer model to calculate 
decompression wave velocities in natural gas pipelines. The model was validated with the 

experimental data of Groves (1976). Results were presented as p-a curves. Cheng and 
Bowyer (1978) used their quasi-one-dimensional unsteady compressible fluid flow code to 

simulate two cases of transient flow. Transients caused by a sudden pipe rupture at the left 

hand side of a three duct steam system were predicted. Results were presented as p-t 

curves. Lyczkowski, Grimesey and Solbrig (1978) presented comparative results of their 

alternating gradient method with analytical results and also their experimental data 

described in Section 3.2. The results were presented as p-x, u-x and e-x in an ideal shock 
tube 5ms after the break; p-t and u-t at the closed end of the pipe for an ideal gas; and p-t 
for a blowdown of steam-water mixture pipe. 

A study by Alberta Petroleum Industry, Government Environmental Committee 
(1978) reported on existing two isopleth prediction models, one blowdown model and a 

simplified blowdown model developed during the study. Predictions from the blowdown 

models were presented as m-t curves and validated with experimental results in a 

subsequent study [Alberta Petroleum Industry Government Environmental Committee 

(1979)]. Knox, Atwell, Angle, Willoughby and Dielwart (1980), presented M-t curves 

resulting from their theoretical model and compared them with their experimental data 

reported in Section 5.3. Cronje, Bishnoi and Svrcek (1980) presented graphs of results 
from their adiabatic model and compared them with the experimental data of Groves 

(1976). Results were presented as p-a curves for pure methane and argon. Wilson (1981) 

presented an M-t and exit pressure ration against time for the full-scale pipeline rupture 

experiments described by Knox, Atwell, Angle, Willoughby and Dielwart (1980). 

Fannelop and Ryhming (1982) presented several graphs which model the pressure 
profiles and release rates following the rupture of a gas pipeline. No experimental data was 
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used, and in the simulation the break took place at the high pressure end. Van Deen and 

Reintsema (1983) compared results from their numerical model with full-scale pipeline 

experiments which were designed to simulated a linebreak. Graphs of pressure against time 

were presented for the two simulation experiments. Flatt (1985 and 1986), presented 

various graphs resulting from predictions of his model. However, no experimental data was 

used to validate his model predictions. The graphs presented include p-x, u-x, S-x, a-x and 

m-x; and m-t curves. 
Bisgaard, Sorensen and Spangenberg (1987) compared results from the linebreak 

simulation experiments reported in Section 5.3 with results of their numerical model. 

Results were presented as p-t curves for the above case and also for simulation of a rupture 
in a straight pipeline using their numerical model. Lang and Fannelop (1987) presented m-t 

curves, resulting from simulations with three different methods and compared them with 

those calculated by Fannelop and Ryhming (1982). They also presented p-x and u-x curves 
for various times after the rupture. 

Picard and Bishnoi (1988) compared results from their computer models with 

experimental data from the Northern Alberta Burst Tests [Foothills Pipeline (Yukon) Ltd. 

(1981)]. Graph of pressure ratio p/pL (where PL is the pressure at the initial condition) 

versus expansion wave velocity were presented. Picard and Bishnoi (1989) used their three 

models to demonstrate the importance of real-fluid behaviour in modelling of high pressure 

gas pipeline ruptures. A case was considered whereby after a sudden rupture of a 168.3mm 

diameter sour-gas pipeline, an upstream emergency shutdown valve closes, restricting the 

blowdown length to 1000m. Pressure of the gas was I lobar. Results were presented as 

m-t, p-t, u-t a-t, and T-t curves. 
They (1989) used the shock tube data used by Groves, Bishnoi & Wallbridge 

(1978) i. e. that of Groves (1976) and that of Jones & Gough (1981); and also the full-scale 

pipeline experimental results of Foothills Pipeline (Yukon) Ltd. (1981) to validate her 

computer model. Results were presented as p-a and p-t curves. Botros, Jungowski and 
Weiss (1989) presented a series of p-t profiles resulting from their models predictions. 
Comparisons were made with their field measurements reported in Section 5.3. Lang 

(1991) presented p-x, m-x and m-t curves, resulting from his numerical model. Kunsch, 

Sjeen and Fannelop (1991) presented m-t, I-t, u-t, p-t and p-x curves produced by their 

computer model for rupture of sub-sea pipeline connected to process equipment on the 

platform through a vertical segment. 
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Richardson and Saville (1991) presented a series of graphs comparing predictions 
from their model BLOWDOWN with experimental results. The results consist of p-t, T-t 

and I-t curves at the intact end of the pipe; m-t and mass efflux curves against time at the 

ruptured end; and mass flux through the orifice with upstream pressure. Chen, Richardson 

and Saville (1992) presented m-t, p-t curves at both the open and intact ends of the pipe. 

The graphs consist of results obtained from the BLOWDOWN model and from 

experiments. Haque, Richardson, Saville, Chamberlain and Shirvill (1992) presented p-t, 

T-t and m-t following blowdown of a gas vessel. The data calculated using the 

BLOWDOWN model was compared with experimental results. Chen, Richardson and 
Saville (1993) presented p-t curves at the intact end and m-t curves of the line predicted by 

their homogeneous two-phase model and also resulting from experiments. 

Olorunmaiye and Imide (1993) presented m-t curves, produced by their model and 

compared them with results calculated by Flatt(1986) and also Lang and Fannelop (1987). 

5.5 SELECTION OF TEST DATA 

In her selection of experimental data for comparison with the theoretical model, Tiley 
(1989) used the following criteria: 

(i) The variables required by the programme must either be given in the experimental 
data or be calculated from it. 

(ii) The experimental results must be of a form that can be directly compared with the 
theoretical computer output. 

(iii) Details of the apparatus and procedure are necessary in order to be able to assess 
the experimental error and evaluate the results obtained. 

The same criteria will be used in this study. All the recent data described in Section 5.3 was 
not available for this study, despite the big effort made to secure it. The discussion of the 
data which could be obtained and its screening for suitability in this study is covered in this 

section. 

When a break occurs in a high-pressure gas pipeline, the pressure of the gas drops 

virtually instantaneously at the break and rarefaction waves are transmitted up and down 
the pipeline and rapidly dissipated when the fluid in the pipe is a gas. A flow reversal 
occurs in the section of the pipe down stream the break. In order to model these waves 
properly, a reduced grid size is normally required in the vicinity of the break. Mass release 
rates from pipeline ruptures was studied by Wilson (1981). The behaviour of gas during 
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its initial release, expansion and plume rise was studied by carrying out an exact momentum 

analysis of the expanding jet outside the pipe rupture, and developing a more sophisticated 

model for both the mass release rate and the plume rise of the momentum jet. The most 
hazardous portion of the gas released during a pipeline rupture is emitted during the first 

10 to 20 seconds, when the high initial mass flow causes the largest downwind 

concentrations. There have been other but simpler models for predicting the initial release 

rates from high-pressure gas pipeline rupture, including those by Flatt (1986) and Kunsch, 

Sjoen and Fannelop (1991). Another factor which affects the release rates is the rupture 

mode. This was studied by Knox, Atwell, Angle, Willoughby and Dielwart (1980). In most 

cases a full bore rupture is assumed. Wilson (1981) also studied the heat transfer to the 

moving gas through the pipe walls and observed from experiments almost an isothermal 

condition throughout the length of the pipe, except for about the last 200 diameters during 

which the rapidly accelerating flow near the pipe exit was moving too quickly to gain heat 

from the pipe walls. 

To be able to produce comparable results, a model developed for such as above 
conditions and assumptions, should be validated with data obtained from experiments 

performed under similar conditions. Criteria such as the one used by They (1989), and 
listed in this section, is very useful in selecting experimental data for comparison with 
theoretical models. The review of experimental data available has revealed that the criteria 

are very seldom met, and consequently a number of test sets have to be used in order to 

validate a particular model. Also some assumptions have to be made for some data, thus 

reducing the accuracy of the data. For example, in using the Groves data, Tiley (1989) had 

to make various assumptions regarding shock tube material in order to estimate the friction 

factor and Stanton number; the effective rupture time of the diaphragm and the accuracy 
and sensitivity of the measuring and recording devices. Therefore, no assessment could be 

made of the experimental errors incurred. 

Four different categories of data for validating computer models have been review 
in this chapter. The main disadvantage of laboratory experimental data, including shock 
tube data, is that of its much smaller scale compared to full-scale pipelines. The small 
diameter effects observed by Groves, Bishnoi and Wallbridge (1978), thermal effects 
included by among others Tiley (1989) and frictional effects discussed by Flatt (1986) are 
some of the important factors against laboratory experiments data. Under such a situation, 
many of the assumptions such as frictionless, adiabatic flow etc. which would not normally 
apply to full scale pipelines, hold true. This means that a model developed under such 
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assumptions and validated with such data would produce comparable results, but it would 

not produce correct results when applied to a full-scale pipeline. However, one the positive 

aspects of laboratory experiments, is that high compression ratios could be used, thus 

producing strong shock waves. On the other side, simulated rupture experiments represent 

a more realistic presentation of all the effects encountered in a full pipeline rupture, but 

operate under very small pressure ratios. For example in the experiments used by Van Deen 

and Reintsema (1983) and Bisgaard Sorensen and Spangenberg (1987) the pressures varied 

by approximately 0.2bar in 400 second and 2.3bar in 2 hours. In a typical high-pressure gas 

pipeline rupture, the pressure at the break would be reduced to near ambient pressure within 

a fraction of a second. Simulated full-scale pipeline experiments therefore represent rather 

slower transients compared to actual rupture experiments. 

Full-scale pipeline rupture tests provide the most suitable data for validating 

numerical models. But even with full-scale pipeline experimental data, often measurements 
do not exist for the section of the pipeline in the vicinity of the break and at the time interval 

required to show all the important variations of the properties. Some models for simulating 

pipeline ruptures were claimed to have passed simply because the data used to validate them 

was based on laboratory experiments which could not represent all the effects existing in 

a full-scale pipeline. The claim by Haque, Richardson, Saville, Chamberlain and Shirvill 

(1992) that their model predictions were scale-independent, should be treated with great 

caution, since the study was on vessels and not pipelines. In such cases the effects 

mentioned above are not significant. Numerical results from other models are only useful 

as a qualitative comparison when developing a computer model and preliminary evaluation 

and comparison of results. They should not be regarded as final validatory evidence. 
Although as seen in this review, there is plenty of experimental data for validation 

of computer models, it is not easily available. When available, it is often in a form of 

printed graphs which requires one to translate it into numerical data. In some cases, the 

specification of the gas and test condition is not fully given and even when given, it is not 

always easy for workers to obtain the properties of such mixtures. All these are some of 
the factors that significantly affect the accuracy and validation of computer models for 

rupture in natural gas pipelines. Even with a working model, there is a need to regularly 

update the gas composition since as observed by Foothills Pipeline (Yukon) Ltd. (1981), 
it changes with time. 
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Computer models for simulation of transient flow of gas following a rupture in high- 

pressure pipelines must be validated with suitable experimental data. Although all types of 
data discussed in this paper are useful at some stage of development of a computer model, 
full-scale pipeline rupture tests provide the most suitable and reliable data for validating 

computer models for such events. Whenever possible this category of data should be used 

as the final and most reliable validatory test for computer models. The review of 

experimental data available has reveal that a number of test sets have to be used in order 

to provide all the necessary data required to fully validate a particular model. Also some 

assumptions have to be made for some data, thus reducing the accuracy of the data. 

Although as seen in this review, there is plenty of experimental data for validation of 

computer models, it is not easily available. 

Based on this review, four sets of experimental data are selected for validation of 
this computer model. The data is that reported by Jones & Gough (1981), Foothills 

Pipeline (Yukon) Ltd. (1981), Alberta Petroleum Industry Government Environmental 

Committee (1979) and Sens, Jouve and Pelletier (1970). The test data is referred to in this 

study as the British Gas, Foothills, API and SNGSO test data respectively. More details 

about the tests and the data is are presented in Chapter 6. 
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CHAPTER 6 

VALIDATION OF THE COMPUTER MODEL 

6.1 VALIDATION PROCEDURE 

It was decided in Chapter 5 that four sets of full scale pipeline experimental data on pipe 

sections of varying lengths, diameters and operating conditions will be used to validate the 

computer model predictions. The tests, which are referred to as British Gas, Foothills, APT 

and SNGSO; are briefly described in this chapter. The necessary gas and system data which 

was provided is presented in tabular form and the experimental and predicted results from 

the computer models are presented in graphical form. The results are discussed in Section 

6.3. The procedure used in validating the computer model is as follows: 

(i) All the data provided concerning the gas and the test system is stored in relevant 
files in the QUANT software and transient analysis programme. Data which is not 

provided, is estimated based on some known parameter of the system or of similar 

systems. 
(ii) A data file of thermodynamic and transport properties of the fluid which covers all 

the range of dependable variables (p, p and T) encountered during the transient 

event is produced using the QUANT software. 
(iii) Computer simulation is performed for the test sections described in section 4.6 and 

numerical results are stored in a data file at intervals for the dependant variables t 

and x sufficient to produce good graphical output. 
(iv) The computer programme DSORT is used to process the data generated in (iii) in 

to a form which can be used by standard graphical packages to plot the require 

graphs. 
(v) A commercial graphical software EXCEL is used to plot the required graphs, 

combining both the experimental data generated in (v) and the data predicted by the 

computer model, which is generated in (iv). Both sets of data are plotted in the 

same graph in order to provide good comparison. 
(vi) Experimental data which are available in graphical form are converted into 

numerical data and stored in ASCII files which can be used by standard graphical 

packages to plot graphs. If the experimental data is available in numerical form, in 

ASCII data files, then this step is not required. However, if the data file is too big, 
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then step (iv) may be applied also to the experimental data. In this study, all the 

data used to validate the computer models are available in the form of printed 

graphs. 
Four sets of experimental data have been selected to validate the computer 

model. Only data which is believed to represent rapid transient behaviour has been used. 

For all the four sets of data, the pipes are effectively horizontal, and are exposed to the 

atmosphere. Therefore only the heat transfer model based on pipes exposed to the 

atmosphere is used. 

6.2 COMPARISON OF COMPUTER MODEL PREDICTIONS WITH 
EXPERIMENTAL RESULTS 

6.2.1 FOOTHILLS TEST DATA 

The tests which were reported by Foothills Pipeline(Yukon)Ltd. (1981), were carried out 

between December 1979 and April 1981 at the Northern Alberta Burst Test Facility 

(NABTF). A total of six tests, which are denoted as NABTFI, NABTF3, NABTF4, 

NABTF5, NABTF6 and NABTF7, were carried out and were reported. The main purpose 

of the test was to examine the effect of gas composition on the fracture behaviour of the 

pipe. Shorts lengths of a total of 243m and diameters of approximately 1.2 and 1.4m were 

charged with natural gas of known composition and pressurised to between 74 and 87 bar. 

Fracture was initiated at the centre of the test section by detonating an explosive cutter. 

Results were presented in the form of pressure histories and timing wire data showing the 

crack tip position. The data is presented for each section of the broken pipe which are 

denoted as West and East. In relation to the computer model they are referred to as 

downstream and upstream sections respectively. 
Out of the results presented, of relevance to this study are the p-t and a-p curves. 

Although the data can be used to some extent to validate computer models for linebreak 

analysis, it was not intended for that purpose. The major reason which makes this data 

unsuitable for validating line break models is the fact that the fracture was designed to 

propagate along the axial direction of the pipe covering some considerable lengths. This 

makes it difficult to model the break boundary, especially using this model where the break 

boundary is assumed to be fixed in the x-t plane. The shorter the axial distance covered by 

the fracture propagation the more suitable the results are for validating the computer model. 
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Two major weaknesses have been observed in the FOOTHILLS data. The first is 

that of p-t curves crossing each other. The is second that of non-identical curves for the 

two identical halves of the broken pipe section. During the depressurisation of a broken 

pipe, the pressure at the intact end remains higher than that at the broken end and the 

pressure gradient follows the same direction throughout the depressurisation process. 

Therefore, it is not possible for the pressure at a point in the pipe which is further away 

from the break to be lower than that of a point which is nearer to the broken end, during 

the first transient of the pressure wave following the break. The fact that this rule is not 
followed by the FOOTHILLS tests results, indicates that the data presented in this report 

must be used with extreme caution. 

The state of the gas inside the pipe was stationary before the break. Assuming a 

uniform temperature throughout the length of the pipe, there is a symmetry in all the 

properties of the fluid and the geometry of the pipe about the cross section at the middle 

of the pipe. The symmetry should be maintained even after the break, if the fracture 

propagation is the same on both sections of the pipe, unless if there are strong external 
factors such as wind which would affect the out flow of gas from the broken ends. In the 
FOOTHILLS results, this condition is also not well followed. 

Outer diameter (mm) 1422 1219 1219 1422 1219 1219 
Wall thickness 13.71 15.24 13.71 13.71 15.24 13.71 
P[kPa]] 7446 8687 8687 74446 8697 8143 
T [C] 23-26 (-3)-(-4) 18.5 1819 (-4)-(-5) (-5)-(-6) 
Pipe Material Gr. 483 Gr. 483 Gr. 483 Gr. 483 Gr. 483 Gr. 483 
Gas composition [%] 
CH4 86.59 85.36 85.36 84.7 85.19 85.71 
C2H6 6.8 8.22 7.68 8.21 8.07 7.94 
C, H= 4.03 4.34 4.46 4.38 4.4 4.27 
i-C4H, 0 0.262 0.182 0.238 0.201 0.203 0.214 
n-C4H, o 0.421 0.278 0.331 0.235 0.3 0.311 
i-C5H12 0.057 0.029 0.032 0.029 0.029 0.033 
n-C5H12 0.034 0.028 0.032 0.03 0.029 0.03 
n-C, H14 0.008 0.013 0.011 0.008 0.01 0.009 
CO2 0.076 1.56 0.049 2.212 1.177 1.1409 
N2 1.71 1.56 1.804 2.212 1.177 1.1409 
Ar 

lo, 
0.016 
0016 

_ 

1.56 0.013 
0011 

2.212 
2212 

1.177 
1 1-177 

1.1409 
1 1-1409 

Source: Foothills Pipeline (Yukon) Ltd (1981) 

Table 6.1: Foothills Test General Data 
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Two test results, namely NABTFI EAST and NABTF7 WEST, are selected for 

validation of the computer model. The result NABFTI EAST are used to validate the 

model for flow reversal in the downstream section of the broken pipe and the NABFT7 

WEST results are used for the upstream section. Both the NABTFI and NABTF7 tests 

were performed with relatively short axial fracture propagation (approximately 5m and 
18m respectively). The length of the axial fracture propagation is more than three times 

higher in NABFT7 test than in the NABFTI test. The test results produced for test 

NABTF7 WEST seem to be more promising for validating of the model. Two main 

reasons for this are the lower timing wire velocity used for NABFT7 compared to that used 
for NABFT 1; and the long distance away from the broken end (18.28m compared with 
4.2m for NABTFI)used as the shortest distance to present the results. The shematic of the 

Foothills test NABTFI and NABTF7 are presented in Figs. 6.1 and 6.2 respectively. 

+ GAS I FILL SECTION OF PIPE UPSTREM OF THE BREAK BROKEN END 
UNE 

UPSTREAM END 

BROKEN END 

A PRESSURE TRANSDUCER POSITIONS 

DISTANCE or PRESSURE TRANSDUCER 
FROM UPSTREAM END 

Fig. 6.1 Schematic of Foothills Test NABTFI 
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Fig. 6.2 Schematic of Foothills Test NABTF7 

Sufficient data was provided concerning the test gas, to enable determination of 

the rest of the required fluid properties using the QUANT software. The former are 

summarised in Table 6.1. The average composition of the gas used in the seven test which 

is given in Table 6.2 is used as the input data to the QUANT software. A data file 

FLUID. DAT is generated using the routine DFGEN, to cover the whole range of the 

dependent variables(p, T and p) which will be covered by the transient event. 

Results produced by the computer model are summarised in Figs. 6.7 to 6.11. 

together with the experimental results presented by Foothills Pipelines (Yukon) Ltd. (1981). 

A grid spacing of Ox = 0.1m and At=0.0001s, at the broken end is used in the numerical 

model and a variable grid spacing is used. 

230 

SECTION OF PIPE DOWNSTREAI OF THE BREAK 



Chemical Formula TSM H FS 0 

CH4 0 0 85.10 
CA 0 0 8.00 
C3Hg 0 0 4.40 
i-C, H, o 1 0 0.20 
n-C4HIO 2 0 0.30 
i-C5H12 1 0 0.03 
n-CSH12 2 0 0.03 
n-C6H14 1 0 0.01 
CO2 0 0 0.07 
N2 0 0 1.70 
Ar 0 0 0.08 

Table 6.2 Average Gas Composition for Foothills Test 

6.2.2 BRITISH GAS TEST DATA 

The tests referred to as British Gas Tests are those which were reported by Jones and 

Gough (1981). They include a series of experiments which were carried out using short 

pipe sections of 120ft (36.6m) length and 4in (0.1016m) diameter, with a bursting disc at 

one end. The aim of the tests was to validate a theoretical model developed by British Gas. 

The computer model, DECAY, could be used to predict the decompression behaviour of 

any gas mixture from any starting conditions of pressure and temperature. 

Three gas mixtures, namely methanelethane, methane/propane and a typical rich gas 

mixture, were used. The decompression was performed from pressures ranging from 70 

to 125 bar (7. OMPa to 12.5MPa) and temperatures ranging from 13 to 30°C. Gas of 

known composition was pumped into the pipe until the required conditions (p and T) were 
attained. The bursting disc was explosively ruptured and the resulting decompression 

behaviour was recorded by pressure transducers at a number of locations along the pipe. 

p and T curves together with the appropriate details on the gas composition, initial 

conditions of p and T were presented. The curves include both the experimental results 

and predictions by the British Gas DECAY model. 
Also presented in the report, are four sets of experimental p-a curves which were 

obtained from BMI using a 20 ft (6.1m) long 4in (0.1016m) diameter pipe; full-scale 

fracture tests carried out by British Gas for Shell and North America sponsors; and full- 

scale fracture tests carried out by BMI for Artic Gas Pipeline companies.. For these tests, 

only the p-a data is presented together with predicted results using the British Gas DECAY 
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model and two other existing computer models. The other models were developed by the 

Exxon Production Research Company and the University of Calgary, and were based on 

a similar theoretical approach to the one used in developing the British Gas model. 

No further details were given on the full-scale tests, apart from the gas compositions 

and the initial conditions of p and T. The full-scale results cannot therefore be used to 

validate this computer model. The pattern of the experimental results presented by Jones 

and Gough (1981) is in general more consistent than that presented by Foothills Pipelines 

(Yukon) Ltd (1981). The problem of p-t curves for different positions on the pipe 

crossing each other, which was reported in Section 6.2.1, is not so present in the data 

described in this section. The three tests performed by British Gas using a multi-constituent 

(typical) natural gas mixture are used to validate this computer model. The initial pressures 

for the test were 70bar, 100bar and 125bar, and the initial temperatures were 29°C , 25°C 

and 25°C respectively. The three tests are referred to as British Gas Test 1,2 and 3 

respectively. These results are used to validate the computer model only in relation to the 

p-t curves. As for the p-a curves, only the BMI (PRUDHOE BAY 1), BMI (PRUDHOE 

BAY 2) and the University of Calgary tests are used. These tests are referred to as BMI 1, 

BM12 and UCT respectively. There are two main reasons for this selection of data, apart 
from that of availability of all the necessary data to enable computer modelling. The two 

reasons are: firstly, the fact that the multi-constituent gas mixture represents more closely 

a typical natural gas mixture. The second reason is one which is of convenience. The 

procedure used to prepare the fluid property data file using the QUANT software, (refer 

to Sections 4.5 and 6.1.1) has the major deficiency in that manual operation is necessary 
for each set of input data. Consequently, this procedure is very tedious and time 

consuming. Test data on gas with compositions which are closest to that of the Foothills 

tests (refer to Section 6.2.1), is selected so that the same fluid property data file could be 

used. 
The composition data used for the gas mixtures in all the tests selected is presented 

in Table 6.2 and results produced by the computer model together with their corresponding 

experimental data, are presented in Figs. 6.9 to 6.21. The same grid spacing at the break 

is used as for- the Foothills tests, including a variable grid spacing. A grid spacing of 
Ax=0.1m and it ß. 0001s is used for all the tests, at the broken end. The Schematic of 
the British Gas tests is presented in Fig. 6.8. 
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6.2.3 SNGSO TEST DATA 

mmm 

BURSTING DISC 

The experimental data used to validate this model so far, were carried out using rather 

short pipe sections. The significance of using full-scale pipeline experimental data was 
discussed in Chapter 5. In this section, and also the one which follows full-scale pipeline 

experiments are used in order to obtain a better validatory evidence for the model. In this 

section the test results which were reported by Sens, Jouve, and Pelletier (1970) are used 
The test was carried out on a 11,800m long 0.1065m internal diameter natural gas 

pipeline, at a pressure of 3.14MPa, on the S. N. G. S. O gas system. A section of a pipe was 
duplicated and taken out of service temporarily. One end of the pipe could be connected 
to the system or isolated, while the other end was equipped with a venting assembly with 

a cylindrical passage of 0.1 m diameter. The assembly permitted venting of the pipe to the 

atmosphere by either bursting a disc or by rapid operation of a stop-cock. It was observed 
that the two methods of venting the pipe were indistinguishable from one another when the 
decompression behaviour at a point 6.159m from the broken end were considered. 
However, substantial differences were observed at the broken end during the first few milli 
seconds instants after the break occurred. No details were provided regarding the gas 
composition, but it is assumed that the gas used was a typical natural gas mixture of 
composition close to that of the Foothills tests (refer to Table 6.2). Consequently, the same 
data file for the fluid properties as used for the Foothills test is used. 

Comparative model prediction and experimental results are presented in Figs. 6.23, 
6.24 and 6.25. A much bigger grid spacing at the break (ten times that used for the 
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Foothills and British Gas Test) is used. The reason for using such a big spacing is to 

minimise CPU time. The analysis in this case is performed for a much longer time (25s) 

compared with the hundreds and tens of milliseconds used in the Foothills and British gas 

tests respectively. No problems were experienced with the numerical algorithm due to the 

selection of this large grid spacing at the broken end (Ax=1m, At=0.0001s). A variable 

grid spacing is used and the largest ix=512m. 

IA 100mm t 

GAS FlU. BURSTING DISC 
UNE 

PRESSURE TRANSDUCER POSITIONS 

DISTANCE OF PRESSURE TRANSDUCER 
FROM THE BURSTING DISC 

Fig. 6.22 Figure 6.22 Schematic of SNGSO Test 

6.2.4 API TEST DATA 

The second set of full-scale experimental data is that which was reported by the Alberta 

Petroleum Industry, Government Environmental Committee (1979). The tests were 

performed as the second phase for a field verification programme of isopleth prediction 

techniques. It involved a full-scale field programme to investigate, among other things, the 

behaviour of gas emissions resulting from a pipeline rupture. The rupture mode was the 

most critical variable examined. Two tests setups were used at the test site, which is 

located in the Western gas field in Southwestern Alberta. The first and second tests are 

referred to here as APIT1 and APIT2. The tests were carried out using an existing 
168.3mm outside diameter pipeline which was typical of sour gas pipelines in the province 

at pressures of 6.9 and 3.45MPa respectively. The tests section was approximately 4.0km 

long. It was burst at the mid point. The third test is referred to in the report as APIT3. It 

was performed on a 323.9mm outside diameter and approximately 7.1km long pipeline. 
Also in this test the pipeline was pressurised to 6.9MPa pressure and ruptured at the middle. 
The specification of the pipes used in the two tests was provided. As with SNGSO test, no 
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data was provided for the gas composition. The same data which was used in the previous 

sections is used for the fluid properties. Due to the long run times required, a coarse grid 

spacing is used in order to reduce the CPU time. A grid spacing of Ox=5m and At=0.005s 

is used for APIT1 and APIT2 tests, and a grid spacing Ax=1Om and Ot=0.01s is used for 

APIT3 test. A variable grid spacing is used in all the computer predictions. 

It was observed [Alberta Petroleum Industry, Government Environmental 

Committee (1979)] that the rupture mode was unpredictable and difficult to control. It was 
found that under similar test conditions any of three different rupture modes could occur. 
The three rupture modes are bell opening, ring-off and a combination of the two in which 

one end is bell and the other ring-off. In bell rupture, the fracture is propagated a short 
distance along the longitudinal axis with the pipe remaining intact. In ring-off rupture, the 
fracture is propagated a short distance along the longitudinal axis and then turned 

circumferential around the pipe. The rupture section would either be blown completely out 

of the line or remain attached to the pipe by a small tab at either end. 
A pressure sensor was placed within 1m of the rupture point in order to ensure that 

the measurements * obtained were in the critical flow zone. It was observed that the 
instruments were subjected to extreme forces by the exiting gas jet and often they were 
blown off the line if, the rupture mode was a ring-off. When the rupture mode was a bell 

opening, the instruments were unaffected. A total of eleven experiments were conducted 
for measuring flow rate data, six of which could not provide complete data because the 
instrument to measure the critical flow were lost during the blowdown. The remaining five 

tests produced sufficient data to validate the computer models. Data from three tests (two 

bottom ring-off and one side bell) were combined to form a set of experimental data for the 
168.3mm diameter pipe at an initial pressure of 6.9MPa (APIT1). Another test, in which 
the rupture was top ring-off was used for the same pipeline but pressurised to 3.45MPa 
(APIT2). The last of the five good tests was carried on with the 323.9mm diameter pipe. 
The line was pressurised to 6.9MPa and the rupture mode was bottom bell. This provided 
the data for test APIT3. The data for tests APIT 1, APIT2 and APIT3, which is described 
in this section and the corresponding prediction from the computer model developed in this 

study, are presented in Figs 6.28 to 6.33. 
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6.3 DISCUSSION OF VALIDATION RESULTS 

GENERAL DISCUSSION 

Fannelop and Ryming (1982) defined the different time regimes following a linebreak, each 

requiring a different method of solution. These are described in Section 3.3.2. Also Knox, 

Atwell, Willoughby and Dielwart (1980) discussed the different rupture modes, which 

require different modelling approaches. In this study, both the early and late time regimes, 

which were defined by Fannelop and Ryming (1982), are modelled using the various data 

presented in this chapter. The same theoretical and numerical models are used for both 

time regimes. Unless the pipe diameter and/or cross-section area is specified differently at 
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broken end, full bore rupture mode is assumed. The model is limited to analysis of the flow 

following a linebreak in a straight section of pipeline. Various aspects of the model and 

the predicted results are discussed, based on results obtained from the computer modelling 

which is described in sections 6.2.1 to 6.2.4 and previous trial runs. The symbols used in 

the graphs are defined as follows: 

- MOC-1 First-order method of characteristics 

- MOC-2 Second-order method of characteristics 

- MCC-1 MacCormack method using alternative 1 

- MCC-2 MacCormack method using alternative 2 

- MCC-3 MacCormack method using alternative 3 

- WKL Warming-Kutler-Lomax method 
Two sets of experimental data which were used by Tiley (1989), have been used in 

this study. These are the British Gas test data and [Jones and Gough (1981)] and the 

Foothills test data [Foothills Pipeline (Yukon) Ltd. (1981)]. A better comparison has been 

achieved in this study with the two sets of data than in the study by Tiley (1989). In the 

study by They (1989), the length of the time step, grid size and break conditions were 

varied for each simulation, in order to optimize convergence towards a stable solution. In 

this study, the ratio between the time step and the distance grid is selected such that the 

Courant-Friedrichs-Levy stability criterion is satisfied. In this uniform grid spacing, the time 

step varies proportionally as the distance grid varies. For the test data used in this study, 
the maximum value of speed of sound and hence the maximum flow velocity was above 
400m/s, but never it never reached 500m/s. Therefore, in order to ensure that the stability 

criterion is satisfied, a constant ratio of ix/At=1000m/s was used. This ratio could handle 

situations in which the flow velocity and wave speed are each 500m/s, without failing the 

stability criterion. In every calculation step the programme checks to ensure that the 
Courant-Friedrichs-Levy stability criterion is satisfied. If the stability criterion is not 

satisfied, the programme stops automatically. Under no circumstance did the programme 
stop during the simulations reported in this study due to failure of the stability criterion. 

In most of the simulations, the grid sizes used at the break boundary were coarser 
than those which were used by Tiley. They used a grid size of 0.0254m for the British Gas 

tests but she could not achieve stable results for some of the tests. Tests for which stable 
results could not be achieved are those for which the initial pressure was high and the initial 
flow rate was zero. No such problems were encountered in this study, even with grid size 
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of up to 0. Im for the British Gas tests. The only problem encountered for such tests was 

that the execution speed of the programme was very slow and the boundary conditions, in 

some cases, were not properly modelled. This condition is explained further in the 

discussion of the method of characteristics. 
Tiley (1989) also noticed that the theoretical p-t curves tended to begin their 

pressure drop too early. This effect was more noticeable the further the transducer was 

from the break. She attributed this phenomenon to the response time of pressure 

transducers, which causes a delay in recording the pressure drop. In this study, only the 

transducers which are close to the break have been investigated. The same phenomenon 

as was observed by They was repeated. However, a comparison of the pressure wave 

speeds predicted by the computer model, with those obtained from the BMI and University 

of Calgary tests show a good agreement. Since there were no p-t curves provided for the 

latter two test, it was not possible to compare the pattern of the p-t curves: Also since 

there are no pressure wave curves for the British Gas test which have been used in this 

study, it was not possible to compare the pressure wave speed. However, the fact that the 

pressure waves predicted by the model compare favourably with experimental values from 

the BMI, University of Calgary and Foothills tests indicate that there is a problem with the 

British Gas test data. They (1989) did contact the British Gas in order to ascertain the 

accuracy of their data. She reported that they could not ascertain the accuracy of their data, 

but they indicated that they were not entirely satisfied with it. Although not conclusively 

confirmed, they believed that one of their transducers, PT2, was malfunctioning. 

They noticed inconsistency in the final pressure reached after the break. In some 
cases the pressure was higher and in some cases lower. She attributed this condition to 
inaccuracies incurred in the calculation of equalization pressure at the break. No such 

problems were encountered in this study due to the accurate model developed for 

calculating equalization pressure. It should be noted that the data for the curve PTI in the 
British gas test BGTI are those obtained from predictions using the British Gas theoretical 

model and not from experiments. 
In simulating the Foothills test, They (1989) used a grid spacing of 0.01 m at the 

break. This spacing is much finer than that which is used in this study (0.1 m to 0.5m, and 
it would be expected to produce better results. However, They used time steps varying 
from 0.65 to 0.75ms (quoted as s in her thesis). This time step is too big for the value of 
Ax used and fails the Courant-Friedrichs-Levy stability criterion. The ratio Ax/At used by 
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Tiley was between 13.33 and 15.39m/s, which is much less than 1000m/s which is used in 

this study. This gross error in the time step is probably the main reason for the instability 

problems encountered by Tiley. The argument by Tiley that decreasing the time step could 

have lead to an increase in the accumulative round-off error in the results is not valid. 
Simulation results produced in this study using the method of characteristics 

compare very well with the experimental data, as the p-t curves and the pressure wave 

speeds are modelled correctly. They argued that a possible reason for her model's 

overestimation of the wave speeds was the second-order approximation used near the 

break. This argument is not correct because the second order approximation has an 

opposite effect i. e. producing lower wave speeds than those produced using the first order 

approximation. As was the case with Tiley's simulations, the final pressures calculated for 

the Foothill tests were slightly higher than the experimental values. The reason for this is 

that the theoretical models did not account for the crack propagation along the length of 

the pipe. The crack propagation has the effect of moving the point at which the 

equalization would occur along the pipe. In this study, this effect was more severe with test 

NABTF7 than with test NABTFI because of the long crack propagation in the former test 

(18.28m in NABTF7 compared with 4.21m in NABTF 1). The crossing of the p-t curves, 

which was attributed to temperature related zero drift during testing [Foothills Pipeline 

(Yukon) Ltd. (1981)] does not exist in prediction obtained using the method of 

characteristics and the Warming-Kutter-Lomax methods. However, this phenomenon was 

observed when the MacCormack method, indicating that the method is not suitable for 

analysis of transient flow following a break in a high-pressure gas pipelines. 
The two other sets of data, namely the SNGSO and the Alberta Petroleum Industry 

data, were not used by Tiley. Both sets involved relatively long pipes and the data seem 
to be consistent and satisfactory. A good agreement was obtained between the 

experimental data and the prediction results, even with the big grid size used. The major 

weakness of the data is that they do not contain sufficient information about the gas used, 
some specifications of the testing system and accuracy of measurements recorded. The 
intact end pressure which was calculated using the Alberta Petroleum Industry data differ 
from the experimental and their model prediction data considerably. The second-order 

method results show the biggest discrepancy. Also the mass flow rates calculated using the 

second order-method are higher. The values produced with the first-order method compare 
much better with the experimental data than those obtained using the second-order method. 
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The values mass flow rates produced by the first-order method of characteristics are lower 

than the experimental values. The reasons for this discrepancy are errors in calculating the° 

gas density and the big grid spacing used. The results obtained from this simulation give 

an indication that the first-order method of characteristics is the most suitable in situations 

where a big grid spacing is used. 

A comparison of the model prediction and experimental data for the SNGSO test 

show a reasonably good agreement. The pressure starts to drop at the same time (Figs. 

6.23 and 6.24), which indicate that the wave speeds predicted by the computer model are 

correct. However, the magnitudes of the pressure drop and flow velocity predicted by the 

computer model are less than experimental values. This discrepancy is caused by 

interpolation error and the big grid spacing used. Data which was obtained using a smaller 

grid spacing (Ax=1m) and the second-order method of characteristics could not be used 
for validation because the interpolation error and round-off error of the computer affected 
the results very much. This effect is explained in detail in the grid size discussion. 

THE QUANT SOFTWARE FOR THERMODYNAMIC AND TRANSPORT 
PROPERTIES OF FLUIDS 

The fluid property data, which are used by the programmes, are calculated using the 
QUANT Software. Heat transfer is calculated using the recovery factor and adiabatic wall 
temperature method and therefore the values of Pr, thermal conductivity of the fluid and 
CAR are not required. However, the three values listed above are used in other variations 

of the computer model. Three main limitations of the QUANT software are unavailability 
of Pr, kf and t at some low temperatures, unavailability of all output values at much lower 

temperatures and temperatures below 200K and lack of all outputs at high pressures. The 

composition of the gas mixture used in this study is given in Table 6.2. The highest 

pressure for which output is available, but only for part of the temperature range required, 
is around 7MPa. This limitation has been overcome by using the fluid properties which are 
available at the closest state of the fluid and additional data for the gas mixture which was 
provided by the suppliers of the QUANT software on request [Silberring (1995)]. The 

additional data was calculated using a later version of QUANT which is still being 
developed. The later version of QUANT is expected to be able to produce output at 
higher pressures, similar to those encountered in high-pressure natural gas pipelines. 
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It is observed that the temperature of the gas near the break boundary drops to 

values below the 200K minimum limit of the QUANT. This situation occurs when the 
initial pressure of the gas in the pipeline is sufficiently high and the initial temperature of the 

gas is relatively low. This means that in order for QUANT software to be able to cover all 
linebreak events in high-pressure natural gas fully, its range of temperature coverage has 

to be extended to temperatures lower than the present minimum limit of 200K. Silberring 

(1993-95) and Flatt (1993-96) argued that the temperatures could never drop below the 

200K limit. 

The routine FLDPROPV calculates the fluid properties from the data file 

FLUID. DAT, using an interpolation procedure. When used with the transient analysis 

programmes problems were encountered due to the limited computer memory available. 
An alternative procedure in which the closest properties are used, produced satisfactory 

results. However the alternative procedure requires that a close spacing of the input 

parameter be used. A spacing of 0.1MPa and 5K was used for pressure and temperature 

respectively. A comparison of execution times when constant fluid properties were used 

and when the procedure described above was used, revealed that the biggest proportion 

of the execution time is spent in calculating the fluid properties from the data file generated 
by QUANT. As explained in Section 4.5, the procedure which is used in this study is the 

fastest option available. 

INITIAL CONDITIONS BEFORE THE BREAK 

In all the analyses reported in this chapter, calculation of the initial conditions of the gas 
is greatly simplified by the fact that the initial flow velocity is zero. Any of the different 

steady state analysis models presented in Section 4.2.2 would have produced the same 
results. However, the non-adiabatic non-isothermal steady state analysis model is used. 

Also since the flow velocity is zero, transient analysis before the break would 
produce the same results as those produced by steady state analysis. An application of the 
transient analysis before the break are presented in section 7.4. 

CONDITIONS AT THE BREAK BOUNDARY 

The method of characteristics is used for solution at the boundary nodes, in all the transient 

analysis programmes. In the case ofthe break boundary the initial break conditions are 
calculated as described in Section 4.2.3. The initial conditions calculated, enabled results 
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which are numerically stable be attained. Using this procedure, the pressure at time t=0 

drops to its equalisation value which is calculated as described in Section 4.2.3. The 

temperature drop is small at first but keeps on falling as time passes. Also the density of 

the gas drops during the decompression process. The speed of sound at the break remains 

the same at t=Os, but drops as the temperature drops. The pressure drop at the break 

boundary, below the equalisation pressure is natural. There is no time dependent curve 

such as the one used by They (1989) to model the pressure drop at the broken end. The 

time dependent curve may lead to in incorrect results because the exact rate of pressure 

drop is not known. 

When using the MacCormack second-order method, solution at the node next to 

the boundary node produced an overshoot in the velocity. This has been controlled by 

limiting the magnitude of flow velocity from exceeding its corresponding speed of sound. 

NUMERICAL METHODS OF SOLUTION 

(i) The Method of Characteristics 

Tiley (1989) used the second-order method because the first-order method did not meet the 

required accuracy and stability criteria. Even with the second-order method, she 

encountered problems of numerical instability and accuracy of results. For certain grid 

points and initial conditions, the solution became unstable at random points along the 

pipeline. She recommended that the problem could be alleviated totally by using an 

alternative numerical method. The same problems were encountered by Picard and bishnoi 

(1989). Flatt (1989) encountered similar problems which he called singularity. Problems 

such as those encountered by Flatt (1986) and Tiley (1989), do not exist with this model. 

A convergence tolerance of ± 5% and ±1% is used for the first and second-order 

calculations, respectively. The number of iterations required is very small. In most 

calculations, one or two iterations for each order are sufficient. The fluid properties used 
for calculation of the coefficients of the three simultaneous equations, in the first-order step, 

are those at position M in Fig. 4.4. The use of the fluid properties at position M rather 

than those at positions Q, R and S was made in order to reduce the size of the programme. 

However, a significant error could be introduced due to this simplification, especially if the 

fluid properties vary considerably between two grid points, such as is the case in ruptured 
high-pressure natural gas pipelines. Since in this case the first-order method is used as a 
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rough estimate for the second-order calculation, the error introduced by the first-order 

calculation is corrected by the second-order method. In the case that only the first-order 

method is used for the complete solution, then values of the fluid properties at respective 

positions Q, R and S should be used in the first iteration, and their averages with values at 

position P for the previous iteration should be used in the subsequent iterations. For the 

second-order method, the fluid properties used to calculate the coefficients of the 

simultaneous equations are averages between the newly established position of Q, R and 

S and those previously calculated at position P. 

It was observed in this study that in situations were there are sharp changes in the 

fluid properties, such as during the first few At's in the region around the break, the 

second-order step fails numerically. For such cases, the first-order method is used 

throughout the calculation. 
When the method of characteristics was used to model the flow reversal in the 

section of the pipeline downstream of the break, it produced results which tend to lean on 

the values at the intact end of the pipeline section. This directional bias results in a very 

slow pressure drop in the broken section of the pipeline, including the broken boundary. 

The problem of directional bias does not exist either in the programme based on the 

MacCormack method, nor the one based on the method of characteristics for the section 

of the pipeline upstream of the break. An investigation into the problem did not reveal any 

error in the calculation procedure or computer coding. In fact the values calculated at 

various stages are comparable in magnitude with those calculated by the programme for the 

pipeline section upstream of the break and the characteristic curves are positioned 

correctly. The problem of directional bias with the method of characteristics was observed 

only when the second-order approximation was used. Both the upstream and downstream 

models produce comparable results, when the first-order method is used. 
It was observed that the second-order method of characteristics is more accurate 

than the first-order method, especially if the simulation involves the area in the vicinity of 
the break and very small grid size. The second-order method produces outputs which are 
beyond the range of maximum and minimum output around the leading edge of the of the 
decompression wave. This causes severe problems with the numerical algorithm. The 

situation is controlled by using the first-order approximation. The computer programme 
includes a provision to check if the condition is encountered and calls the programme for 

the first-order approximation to correct the situation. It was also observed that the use of 
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a smaller grid size helps to minimize the problem to some extent. Computation speed of 

the first-order method is over twice as fast as that of the second-order method. For some 

boundary conditions and initial conditions of the gas, the second-order method becomes 

slower. For example, when modelling the British Gas test BGT3 (initial pressure and 

temperature are 12.4MPa and 273K respectively and Ax=O. OIm), the second-order method 

was ten times slower that the first-order method. Also the second-order method failed to 

handle the choking boundary condition well. The first-order method was used in this case 

and produced satisfactory results. When a larger grid size (Ax=O. lm) was used, the 

problem with the second-order method was minimal and computational speed was the same 

as with the other Brirish Gas test data. The problem of modelling the choking condition was 

caused by the failure of the numerical procedure to model properly the temperature drop 

and therefore increase in density, which follows the initial decompression. The situation 

was corrected by tuning in the temperature drop and also increasing the convergence 

interval of the second-order method. 

The major difference between the first- and second-order methods is that the 

pressure drops predicted by the second-order method are smaller than those predicted by 

the first-order method. Also the speed of propagation of the pressure waves is slightly 
faster with the first-order method. However, both results compare well with experimental 
data. The main reason for the discrepancy in the first- and second-order methods is the 

different convergence criteria use (1% and 5% for the first- and second-order methods 

respectively). The two values were selected, firstly because they are thought to correspond 

with relative accuracies of the two methods, and secondly because the first-order method 
is also used as a rough approximation of the second-order method. Ideally, a more accurate 

criterion should be used if the first-order method is used on its own to calculate the final 

'solution. However, it is thought that a value which is smaller than 5% would not too fine 

in relative to the overall accuracy of the first-order approximation. Unfortunately, the 

pressure wave propagation speeds of the two methods could not be compared at further 

positions from the broken boundary and for a longer run time. A comparison of the 

predicted mass flow rates and pressure at the intact end, using the first- and second-order 

methods and the Alberta Petroleum Industry data, shows a better agreement with the first- 

order method than with the second-order method. This result was achieved even though 

a finer grid spacing was used with the second order method. An explanation for the 
discrepancy is given under the general discussion. 
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(ii) The MacCormack Second-order Method 

Beauchemin and Marche (1992) concluded that the MacCormack method is superior to 

the method of characteristics when Cn differs appreciably from unity. When C. is much 

smaller than unity, the MacCormack method produces results with a precision that could 

not be attained with any reasonable number of computation nodes, when the method of the 

characteristic is used. They also concluded that the use of the alternatives 1 and 2 which are 

described in Section 3.31, in succession on time steps could introduce significant 

oscillations in the solution, especially where the basic equations are poorly approximated. 

Directional bias could be avoided by using exclusively one of the two calculation 

alternatives. The directional bias is important only when working with two space 

dimensions, in which case it was recommended that the average of both methods 

(alternative 3) be used. Beauchemin and Marche (1992) claimed that doing so did seem 

to smear the shock slightly and the computation time was doubled. 

In this study the computer programme is written in a way that any of the three 

alternatives could be used. This is despite the fact that it is recommended in Section 3.3.1 

that alternative I be used exclusively. Results from the three alternatives are presented in 

Fig. 6.12,6.13 and 6.14, for British Gas BGT2. Due to limited computer memory, only the 

first-order calculation of the method of characteristics could be used at the boundary 

points, when using alternative 3. The MacCormack method is extremely simple to 

programme, compared with the method of characteristics. The execution speed of the 

MacCormack method is faster than that of the method of characteristics. But in this case, 

where the time used to calculate the fluid properties from the QUANT software constitutes 

the biggest proportion of the CPU time, the two methods have execution speeds which do 

not differ much. The same argument applies for the difference which is to be expected 
between alternative 3 and the other two alternatives of the MacCormack method. 

It is stated in Section 3.2.2.2 that in the presence of shocks, explicit finite-difference 

methods of higher than first order produce considerable overshoot and oscillatory systems. 
Results obtained from the MacCormack method are oscillatory especially near the broken 

end. The oscillations are more severe for smaller L/D values. Also an overshoot was 

observed in the flow velocity, at the node next to the boundary node at the break. The 

overshoot was controlled by limiting the magnitude of the flow velocity to that of the 

corresponding speed of sound. These problems were not encountered with the method of 
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characteristics. With the MacCormack method the problem of directional bias which was 

encountered with the method of characteristics, in the section of the pipeline down stream 

the break, does not exist. 

The three alternatives of using the MacCormack method were compared using the 

British Gas test BGT2 data. Results are presented in Figs. 6.12,6.13 and 6.14. 

Alternatives I and 3 produced similar results. Alternative 2 produced the worst results, 

with much bigger oscillations and pressures falling fastest. The computation speed of 

alternative 1 is higher than that of alternative 3. 

(iii) The Warming -Kutler - Lomax Method 

The computer programme for the Warming-Kutler-Lomax method was written and 

compiled successfully, but it could not run fully because of the limited computer memory. 
Even in the main frame computer, the memory of 20MB which was allocated is not 

enough. In order to simplify the programme, the method of characteristics was used both 

for the boundary node and the node next to the boundary. Bhallamudi and Chaudhry 

(1990) recommended that the MacCormack second-order method be used for solution at 

the node next to the boundary node. Even this did not make it possible to run the 

programme on a pc. However, by using constant values for the thermodynamic and 

transport properties of the fluid, it was possible to run the programme for the third-order 

Warming-Kutler-Lomax method on a PENTIUM P75 pc. 
The method failed to produce good results in the region of sharp changes in fluid 

properties. Results produced in this region included negative velocities (while all other 

velocities were positive) and pressures which are higher than the initial pressure before the 
break. The first-order method of characteristics was used to smoothen the sharp edge of 
the decompression wave, and also the flow velocity and pressure were limited to above zero 

and within the initial pressure before the break. The British Gas test BGT3, whose run time 
is 35ms, was used to test the Warming-Kutter-Lomax method. The first-order method of 

characteristics was used during the first lOms, but this was not enough to smoothen the 

sharp edge of the pressure profile so that the Warming-Kutler-Lomax method could be 

applied. Finally the initial 20ms of the run time were found to be sufficient, for "smoothing" 

by the method of characteristics and the Warming-Kutler-Lomax method was used for the 

remaining 15ms. Under this condition, good and stable results were obtained. No 

oscillations or overshoot, such as those observed with the MacCormack method were 
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present. Results produced with the Warming-Kutler-Lomax method are compared with 

those produced by the second-order method of characteristics, the MacCormack method 

and experimental data. The results are presented in Figs. 6.16 to 6.19. 

(iv) Comparison of the Different Numerical Methods 

The transient analysis models based on the method of characteristics, the MacCormack 

method and the Warming-Kutler-Lomax method are compared based on accuracy, stability 

of results and computational economy. The main reason for including the MacCormack 

and Warming-Kutler-Lomax methods in this study was to confirm whether the two methods 

are suitable for modelling the transient flow following a break in high-pressure gas 

pipelines. The literature review which was conducted during this study and summarized in 

Chapter 3, indicated that these methods could be more suitable for high-pressure gas 

linebreak applications than the method of characteristics. Tiley (1989) used the second- 

order method of characteristics, but concluded that better results could be obtained by using 

an alternative numerical method of solution. In a previous publication [Thorley and They 

(1987)], the MacCormack method was recommended as the most suitable for linebreak 

problems. 

Based on the comparison made in this study, it is concluded that the method of 

characteristics is the best of all the three methods investigate, for linebreak applications. 

The criteria used in comparing the three model is accuracy and stability of results, computer 

memory and CPU time requirements. The third-order Warming-Kutler-Lomax method, in 

combination with the method of characteristics, produced results which are close to those 

produced by the second-order method of characteristics. The computer memory 

requirement of the latter method was too big. The MacCormack method was found to be 

unsuitable for modelling transient flow following a linebreak in high-pressure natural gas 

pipelines. It produced oscillating results in the low pressure region, which resulted in p-t 

curves crossing each other. It predicts the wave speeds reasonably well in the low pressure 

region, but it underestimates it in the high pressure region. The magnitude of equalization 

pressure is slightly higher than that calculated with the method of characteristics. The 

computation speed of the MacCormack method is one and a half time faster than that of the 

second-order method of characteristics, when the first or second alternatives are used. 

When the third alternative is used, the computation speed of the MacCormack method is 

the same as that of the second order-method of characteristics 
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GRID SIZE 

The factor of two which is used between one grid spacing and the next, and the second- 

order polynomial interpolation using the Taylor's theorem, produce good results. A 

problem was encountered with the variable grid method, when modelling the flow in long 

pipelines. The round-off error of the computer results in some node points whose next time 

level for calculation has not been reached, being included in the calculations. 

The error occurs because of the big difference between the grid spacing at the break 

boundary and nodes which are nearer to the intact end. Even when a value of Ax=1m is 

used at the broken end, for a pipeline which is 11.8km long (Ax = 512m at the intact end), 

the error still affects the programme. Although this error does not seem to affect the 

pressure predictions much, it has a significant negative effect on the flow velocity 

predictions. In some cases negative velocities are obtained at some internal boundaries 

between different grid sizes, while the rest of the velocities are positive. The net effect is 

an underestimation of the magnitudes of the flow velocity. An example of a case where this 

error affected the prediction results is shown in Fig 6.23. For simulations involving shorter 

pipelines, this error does not affect the programme and the variable grid model produces 

good results. 
A bigger grid spacing, of Ax=10m at the break, was used for the SNGSO data. 

Simulation results are presented in Figs. 6.23 to 6.25. The computer round-off error did 

not cause serious problems in the solution. The first-order method of characteristics was 

used. The biggest grid size (at the intact end) was ix=320m. Better results than those 

produced with the second-order method and Ax=1m, at the break, were obtained. With 

the first-order method and the bigger grid spacing, the equalization pressure reached the 

ambient value within a few tens of milliseconds, while with the second-order method and 

the smaller grid spacing, ambient pressure was not reached during the 25s run time. This 

illustrated the significance of the grid size on the predicted decompression behaviour. This 

is one of the parameters which were investigated in this study. It was observed that for 

tests in which the positions of the transducers were very close to the broken end, such as 

the British Gas tests, a finer grid size was required. For tests in which the transducers are 

positioned further away from the broken end, such as the Foothills tests a coarser grid size 

produced sufficiently accurate results. A grid size of 0.1 m at the broken end was adequate 
for the Foothills tests, where most transducers were positioned tens of metres away from 

the break. For the British Gas tests, where the transducers were positioned within two 

metres away from the broken end, a grid spacing of 0.1m was not adequate. As seen in 
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Fig. 6.21, the wave speeds produced by the grid spacings of 0.01 and 0.1 m are almost the 

same. However, Figs. 6.17 to 6.19 show that the time taken for the pressure to start falling 

is longer when a smaller grid spacing is used. With test where the results are required 

thousands of metres away from the break, Ox values of up to 10m, at the broken end, 

produced satisfactory results. This was the case even for the Alberta Petroleum Industry 

tests, where the mass flow rate was calculated at a position which is Im away from the 

break. 

A simple rule of thumb is recommended for selection of grid sizes. If the result is 

required at a position which is a few metres away from the break and/or the length of the 

pipe section is less than 100m long, a value of Ax ranging between 0.01 and 0.1 should be 

used. If the result is required at a position which is tens of metres away from the break 

and/or the pipe is hundreds of metres long, a value of Ax ranging between 0.1 and l. Om 

should be used. For longer pipe sections and/or if the result is required further that 100m 

away from the break, values of Ax of up to 10m could be used. 

EXPERIMENTAL DATA 

All the experimental data used to validate the computer model were available in the form 

of printed graphs. The data was converted into a numerical form in order to enable plotting 

of the predicted results together with the experimental data on the same graph. In order 

to simplify the conversion of the data and also to minimize errors, the graphs were scanned 

and the necessary coordinates required to reproduce the graphs were read using the 

Autocad graphics software. The accuracy of the data obtained is just as good as that of the 

original graphs. 

PRESSURE 

Both the method of characteristics and the MacCormack method predict the pressure 

following a break reasonably well. With the MacCormack method predictions, the pressure 

flattened faster than with the method of characteristics. This is because of the higher speeds 

of sound which are obtained from the MacCormack method predictions. Unlike with the 

MacCormack method, the method of characteristics results are not oscillatory and a 

consistent pattern is maintained, whereby the pressure decreases as the broken boundary 

is approached and for any particular position in the pipeline it decreases with time. 

The pressure plateau which was demonstrated by Jones and Gough (1981), 

signifying the two-phase region, was not observed. The reason is that the QUANT 
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software data does not produce output for the liquid phase and for the transition region 

from liquid to gas phases. 

TEMPERATURE 

Temperature variations in a gas undergoing decompression from a high-pressure pipeline, 

is one of the parameters which has not been studied much. Experimental data for 

temperature variations is very scarce and none were obtained for validation of the computer 

model. 
It is obvious that the temperature drops after the pipeline breaks. There is a debate 

over the uncertainty which exists regarding the relative magnitude of maximum temperature 

drops resulting from high-pressure pipeline breaks. Richardson (1993-96) argues that the 

temperature drop could be as high as 50K at the break. In this study temperatures fell to 

below the 200K minimum limit of output for the QUANT software (drops of up to 100K) 

in the region near the break, when the method of characteristics was used. With the 

MacCormack method, the temperature drops were much lower. Flatt (1993-96) and 

Silberring (1993-95) argue that the temperature drop could not be that big and should not 

fall below the minimum limit of the QUANT software. 

The temperature drops predicted using the method of characteristics are much 

higher than those predicted using the MacCormack method. In some cases the 

temperatures fell below 200K when using the method of characteristics, but stayed well 

above 200K when using the MacCormack method. For the same initial conditions of the 

gas, the temperature drop was higher when pipes of smaller Ud were used. Also in some 

cases, for example the Foothills test NABTF7, the temperature at the broken boundary fell 

below 200K just when the break condition was introduced i. e. t= Os. It was not possible 

to know exactly what the temperature was, in cases where it fell below 200K. For such 

cases, the value of 200K was used for temperature and the values at the 200K temperature 

were used for the other fluid properties required from the QUANT software. An error 

would be introduced in the calculation especially in the heat transfer. However, the error 
introduced is small because the pressure in such situations is low and therefore variations 
in temperature would cause a small variations in the thermodynamic and transport 

properties of the gas. 
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FLOW VELOCITY 

The flow velocity at the broken end at time t= Os after the break is equal to the speed of 

sound before the break. The flow velocity at the break falls as the speed of sound falls 

when flow the is choked (M, = 1) according to the choking condition Jul = a. When the 

pressure at the broken end falls to ambient pressure, the choking condition no longer exists 

and the magnitude of the flow velocity will be lower than the speed of sound. The flow in 

this low pressure regime is not investigated because of the long time required for the 

condition to be attained and the limited time which is available to test the model. 
The flow velocity predicted using the MacCormack method is higher than that 

predicted using the method of characteristics. Also when using the former method, the flow 

velocity increases faster and spreads out faster than with the latter method. As a result, the 

velocity gradient is much less with the MacCormack method than with the method of 

characteristics. 

FLUID DENSITY 

After the break, the density of the fluid falls in a similar manner as the pressure but by a 
lesser proportion. With the MacCormack method density predictions are lower than those 

predicted using the method of characteristics. 

PRESSURE WAVES PROPAGATION SPEED 

The value of the speed of sound in the fluid (a), at the break, remains the same at t= Os as 
it was before the break (Refer to Fig. 4.3). Due to the temperature drop which continue 

to take place thereafter, the density of the fluid at the break increases slightly. The increase 

in density results in a drop on the speed of sound, according to equation (A-11), and hence 

a drop in the flow velocity according to the chocking condition Jul = a. Since the drop in 

pressure is higher in proportion than the drop in density, the speed of sound drops as the 

pressure drops. This pattern is transmitted towards the intact end of the pipe as time goes 
and is less rapid away from the break and as time passes. 

The predicted output of "a" differs significantly from the pressure wave speeds 

presented in experimental data. However, the predicted output values of "a" compare well 

with those presented in other data such as the additional data provided by Silberring (1995) 

and the data presented by Straty (1974) and Tsumura and Straty (1977). The reason for 
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the discrepancy between experimental wave speeds and predicted values of "a" is that the 

values of the speed of sound measured in the experiments is not surprising. The value given 
in experimental data is the speed at which a pressure wave propagates in the fluid i. e. it is 

calculated by measuring the time it takes for a particular pressure wave to travel from one 

known position to another known position in the pipe. The values of "a", which are 

calculated using equation (A-11), refer to the leading edge of the pressure wave front. This 

will be faster than a mean value calculated from the p-t curves. The pressure wave speed 
is influenced by both the values of a and u as explained by the theory of characteristics in 

Section 4.3.1. The value of the pressure wave propagation speed calculated from the p-t 

curves resulting from the computer simulation were compared with experimental data for 

the Foothills NABTF 1 and NABTF7 tests, the BMI tests and the University of Calgary test. 

The results are presented in Figs. 6.5,6.7,6.20 and 6.21. Only the method of 

characteristics and the MacCormack methods were used. It could be seen from the graphs 

that apart from the University of Calgary test, the method of characteristics produces results 

which are very close to the experimental data. The wave speeds calculated using the 

second-order method of characteristics are slightly lower than those calculated using the 

first-order method. The MacCormack method underestimates the wave speeds at higher 

pressures and produces values which are slightly higher than experimental value at lower 

pressures. 

Data which was obtained using the second-order method of characteristics for the 
Foothills NABTF7 test could not be used for validation because a wrong value was used 
for the initial density. The wave speeds obtained were very much lower than the 

experimental values. A finer grid spacing Ax=0.01m was used for the University of Calgary 

test, in an attempt to obtain a better agreement with experimental data. The result obtained 
is almost the same as with the grid spacing of Ax--0.1m. It has been confirmed that further 

reduction of the grid spacings would not produce more accurate results. Also since the 

computer model has produced good results for all the other tests, it is believed that the 
discrepancy between the two sets of data in the University of Calgary test is caused by 

experimental error. 

COMPUTING RESOURCES 

The biggest constraint, as far as the computer memory requirement and computation speed 
are concerned, was introduced when non-constant fluid property data were used. Initially, 
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the programmes were run with constant fluid property data, which were obtained from the 

QUANT software. Even though the basic equations are used almost without any 

simplifications, the computation was very fast. The introduction of varying fluid data 

greatly reduced the computation speed. 
In situations where the initial pressure before the break is low and temperature 

output is not required, the use of constant fluid property data will greatly increase the 

computation speed while maintaining a reasonably good accuracy of results. When the 

programmes were run in this manner, it was possible to use a 486 pc with a RAM memory 

of 8MB. When varying fluid property data was used the 486 pc could not cope and a 
PENTIUM P75 was sufficient to run all the programmes based on the method of 

characteristic and the MacCormack method. The programmes based on the third-order 

Warming-Kutler-Lomax method was successfully compiled but could not run on the 
PENTIUM pc because of insufficient memory. 

The problem of insufficient memory could be solved by either using a bigger pc or 

a mainframe computer. The UNIX based C++ compilers run the programmes which are 

using pc based Borland C++ (in this case Version 2.1) compilers with very few alterations, 

namely adding an "include file" stdlib. h and changing the commands in the "system()" 

statements to correspond with those used by the UNIX operating system. 
A user memory of 20MB on the mainframe computer could only perform as well 

as the 486 pc. Even by using the "temporary" directory in the mainframe computer, which 

should have more capacity available, did not improve the situation. The remaining options 

are therefore to use either a more powerful pc than PENTIUM P75 or the mainframe 

computer with more memory allocation than the present 20MB. Computation speed of the 

pc could be increased by installing a chip similar to the Microway-i860 which is being used 

at present on a 286 pc, at the Imperial College [Richardson (1993-96)]. 

DISCUSSION OF ERRORS 

Three main categories of error in validating computer models for linebreak analysis, with 
experimental data were discussed by Tiley (1989). The three categories are 

(i) Calibration, measurement and recording of experimental data. 
(ii) Assumptions and simplifications made in the basic theoretical equations. - 
(iii) Errors inherent in the numerical modelling procedure. 

269 



The error in experimental data also includes the error in converting graphical data 
into numerical data. Regarding the error in preforming the experiments and recording 

experimental data, the best one could do is obtain an estimate of the error so that it could 
be accounted for in the simulation No error estimate was provided with the experimental 
data. Even the rupture time was not provided and in some cases not all parameters required 
by the computer model e. g. gas composition, pipe materia etc were provided. Through 

private communication with British Gas, Tiley (1989) was informed that the pressure 

measuring system as a whole, in the British Gas tests was believed to be within 5%. The 

error in converting experimental data which is provided in graphical form into numerical 
data has been reduced significantly by employing the scanning techniques and Autocad. 

With this procedure, the accuracy of the results is as good as those of the computer 

software used, which is much better than using a manual technique such as the one which 

was used by Tiley. Tiley (1989) quoted an accuracy of±0.01 and 5m/s for pressure ratio 

and wave speed respectively. 

The error due to assumptions and simplifications in the theoretical model has greatly 
been minimized in this model, compared with Tiley's. This model still contains some 

simplifications such as one-dimensional flow, single-phase flow, non-elastic pipe, no fluid 

structure interaction and neglecting minor losses. However, the error introduced by these 

assumptions should be minimal since in this study, only straight horizontal pipes with 

constant cross-section area have been used. The error due to inaccurate fluid properties 
has also been minimized by using the QUANT software for thermodynamic and transport 

properties of fluids. There still remains some possible error in calculating the fluid 

properties due to the limitations of the QUANT software. These have been discussed under 
the discussion of the QUANT software. The error is significant in simulations where the 
initial gas pressure exceeds 5 to 6MPa and temperatures after the break fall below the 200K 

minimum limit of QUANT. The errors in estimating the friction factor and heat transfer 
have been minimized by using flow dependent values, which are specific for each calculation 
step. They assumed that the friction factor and Stanton number (used to calculate heat 
transfer) were constant along the length of the pipe. 

The errors inherent in the numerical modelling procedure include smearing, when 
a fixed grid is used; round-off error incase of iterative methods; and computer round-off 
error. Tiley (1989) argued that the smearing error is minimized by using a smaller grid size, 
while the round-off error is increased by reducing the grid size. There seems to be a 
contradiction in this argument and the whole idea of using a fine grid spacing. The round- 
off error of iterative methods depends on a predetermined accuracy criteria (as long as the 
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solution converges) rather than the grid size. In the model developed in this study, an 

accuracy of 5% and 1% was specified for the first- and second-order methods of 

characteristics., It has been observed in this study that interpolation error is not necessarily 

reduced by using higher-order approximations. In actual fact, approximations of higher 

order than one produce wrong results for rapidly varying flows. first-order approximation 

has proved to be the most popular in modelling transient flow following linebreak in high- 

pressure gas pipelines. Tiley's model contained an additional error because of the method 
used to obtain the final result at the required positions along the length of the pipe. The 

method used by Tiley was to approximate the result to the values at the nearest grid point. 
Such approximation could introduce a very big error in the solution, especially if the 

position concerned is close to the broken boundary and in the early time regime where the 
fluid properties vary rapidly. The approximation could also introduce significant error at 

positions far from the break because of the bigger grid size. In the model developed during 

this study, linear interpolation is used to calculate the final result at the required positions. 
It is not possible to establish the magnitude of the accuracy of the computer model 

developed in this study, with certainty, because of the poor quality of the experimental data 

which has been used for validation. However, in most cases the predicted results are in 

good agreement with the experimental data used. 
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CHAPTER 7 

CASE STUDY: 
THE SONGO SONGO-DAR ES SALAAM 

NATURAL GAS PIPELINE 

7.1 A BRIEF OVERVIEW OF TANZANIA'S ENERGY SECTOR 

The United Republic of Tanzania is located on the Eastern Coast of Africa, just south of 

the Equator. The country has a total area of 945000 square kilometres, 6% of which is 

covered by water. Nearly half of the land is covered by forest reserves, which explains the 

great overdependence of Tanzania on woodfuel as a source of energy. The present 

population of Tanzania is about 29 million, with a population growth of 2.55% per annum. 
Dar es Salaam is the capital of Tanzania and its population is about 5% of the total 

population. The economy of Tanzania is predominantly agricultural. Other economic 

activities include manufacturing and processing industries, mining and tourism. Most of 

the industries are concentrated in urban centres and in particular Dar es Salaam. 

Tanzania's indigenous energy resources are large and diverse, although they have 

not yet been exploited to an appreciable extent. At present, the major energy sources are 

woodfuel, imported petroleum, hydroelectricity and indigenous coal. Tanzania's 

hydroelectric power potential is in excess of 4700MW of installed capacity, but only about 
10% of it has actually been developed. Coal reserves are estimated at about 1900 million 
tonnes, of which 304 million tonnes are considered proven. Exploration activities for 

petroleum based fuels have taken place in Tanzania for several decades, with the resulting 
discovery of natural gas. No oil discoveries have been made yet and exploration is still 

under way, with prospects of finding more natural gas and possibly oil. The proven natural 

gas resource is 20.7 million tonnes oil equivalent (toe), but it is estimated to increase to 47 

million toe. 

The total energy consumption in Tanzania in 1990 was just over 17 million tonnes 

of oil equivalent (toe) which came from woodfuel (88.5%), biomass (6%), electricity 
(0.6%), imported crude oil and refined petroleum products (5%) and coal (0.1%). More 

than 70% of Tanzania's electricity is generated from hydropower. In the past six years, 
Tanzania's electricity demand has been growing at an average of 12% per annum. The 

present electricity demand is estimated at 400MW, but the demand is suppressed due to the 

shortage of generation capacity. The demand is estimated to double by the turn of this 
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century. A twenty five year (1985-2010) investment and development programme was set. 

The programme is aimed at reducing dependence on hydropower and cutting the oil import 

bill that consumes about 60% of the country's foreign currency earnings each year. During 

the early years of the 1990's, Tanzania suffered serious power problems, as a result of 

prolonged drought which reduced water levels in the reservoirs of hydropower plants. 

Power rationing had to be imposed and as a result industrial production fell drastically and 

people had to change their lifestyles to adjust to the situation. 

The Tanzanian government is implementing an Emergency Power Project (EPP). 

A 40MW diesel powered plant has been commissioned in Dar es Salaam. Electricity from 

the plant, which could also use natural gas as a fuel, is linked to the national power grid 

thereby boosting its output. On the longer term, there are other projects including the 

construction of a 200MW hydropower plant at Kihansi, development of the coal resource . 

and the Songo Songo Natural Gas Development Project, which is the focus of this study. 

The project is described in detail in Section 7.2. 

7.2 DESCRIPTION OF THE SONGO SONGO GAS DEVELOPMENT 
PROJECT 

7.2.1 BACKGROUND INFORMATION 

Natural gas was discovered at Songo Songo, which is a tiny island off the Tanzanian coast, 
in the Indian ocean south of Dar es Salaam, in 1974. Apart from the Songo Songo gas 

reserve, there are other smaller reserves, including one at Mnazi Bay. The discovery was 

followed by proving between 1976 and 1983 and subsequent pre-feasibility and feasibility 

studies. Several options for developing the resource were considered, including export of 

the gas to earn foreign exchange, production of ammonia and urea fertilizer and uses in the 
domestic markets. The latter option includes power generation; pipeline to local markets; 

and fertilizer, methanol and compressed natural gas facilities. It was considered that, 

although the gas pool was large, it was not large enough to warrant the development of a 

major compressed natural gas export facility. The remaining options are being 

implemented and in addition, there are plans to export some of the gas to neighbouring 
Kenya. 

The Songo Songo Gas Development Project features development of five existing 

gas wells, of which three are offshore and two are onshore; tying these wells to a central 
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gas processing plant in Songo Songo island; constructing a pipeline (25km marine and 

207km onshore) to transport the gas to Dar es Salaam; building a 60MW power plant in 

Dar es Salaam to generate electricity, and supplying gas to the 40MW dual fuel power plant 

described in Section 7.1, which is already operational in Dar es Salaam and also to other 

users. Another, but different, project is being implemented for the Mnazi Bay reserve. 

The Songo Songo project is being implemented jointly by the Ministry of Water 

Energy and Minerals, which plays a coordinating role for all stake holders in the project; 

Ocelot Tanzania Inc.; and TransCanada Pipelines Limited. The Tanzania Petroleum 

Development Corporation (TPDC)is a partner in the project and the Tanzania Electric 

Supply Company (TANESCO) will be the major consumer of the gas. The project is 

anticipated to be in service in 1997. 

7.2.2 GAS PROPERTIES 

Natural gas is found naturally in rock reservoirs below the ground. In its pure state 

(methane) it is a non-toxic, colourless and odourless gas. Methane is lighter than air. The 

Songo Songo gas is almost pure natural gas, containing no sulphur compounds and only 

small amounts of heavy hydrocarbons. Only minimal processing is required to make the gas 

suitable for pipeline transport and subsequent application by the end users. 
The Songo Songo gas field underlies Songo Songo island. The proximity of the 

field Fig. 7.3 to the island is very convenient in that the shore based facilities can be located 

on the island and the wells drilled onshore or in very shallow water. Three wells have been 

drilled onshore and a further six have been drilled in the shallow waters around the island. 

The nine wells are named as SS 1 to SS9. Five of the wells have proven reserves in various 

parts of the field structure. Of the remaining four wells, three have provided disappointing 

results in satellite structures and one did not reach the main reservoir objective as a result 

of blowout and fire. 

The main area of the field has been appraised by the five wells which have proven 

the gas volumes in the main block i. e. wells SS3, SS4, SS5, SS7 and SS9. The reservoir 
fluid properties were determined in a study by Scientific Software-Intercomp (1990), for 

simulation purposes. The data includes the relevant physical properties of gas and water. 
A total of2l analyses of samples obtained from wells SS5, SS7 and SS9 were conducted. 
The samples were very consistent in composition, exhibiting a high methane content of 
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about 97% and a low fraction of condensate and heavy hydrocarbons. The average 

compositions of the gas is shown in Table 7.1. 

The initial reservoir pressure and temperature were specified in order to process the 

fluid properties data. Given the average gas composition data in Table 7.1 and reservoir 

pressure of 2755psi (19MPa) and temperature of 203 °F (368K), the gas properties were 
determined. In calculating the gas properties Scientific Software-Intercomp (1990) used 
their own equation of state. The gas properties which are relevant to this study are 

presented in Table 7.2 and compared with values calculated using the QUANT software for 

thermodynamic and transport properties, which is used in this study. 

7.2.3 PRELIMINARY PIPELINE DESIGN 

The pipeline system includes the transmission pipeline from Songo Songo to Dar es Salaam 

and the distribution network in Dar es Salaam. However, it should be noted that the 

pipeline design described in this section is based on the preliminary design done by Hardy 
BBT Ltd. (1989). The gas distribution system consists of a pipeline network which would 
deliver gas from the city gate station to each individual consumer. The design is in 

accordance with Canadian Standard CSA Z184. M Code. Three demand scenarios namely 
low, medium and high were considered. The three scenarios are based on a 20 year life 

time of the project and projections for power generation by TANESCO. The 20 year life 

time is based on the design of a fertilizer plant at Kilwa Masoko (refer to Fig. 7.3). 
According to the design, the proven gas reserve of 20.53bcm (726bcf) was to be drawn at 
a rate of 0.56bcm/year (19.75bcf/year), by the fertilizer plant, so that its allocation of 
11.18bcm (395bco is consumed in 20 years. The operation of the gas gathering facilities, 
dehydration plant and marine pipeline to Kilwa Kivinje was to be under one management 
to supply gas to the fertilizer plant and the Dar es Salaam pipeline. Therefore, since the Dar 

es Salaam pipeline was to be dependent on the fertilizer plant operating, all design and 
economic studies were based on a 20 years of operation only. However, in the likely event 
that the proven reserves were to be enlarged as production proceeded, the pipeline was 
sized based on growth through the year 2016. 

The design based conditions were a pressure of 101kPa (14.65psig), a temperature 
of 15°C and a specific gravity of 0.60. The maximum allowable operating pressures were 
set at 7.93MPa for the low demand scenario and 9.65MPa for both the medium and high 
demand scenarios. The maximum allowable gas temperature is 49°C, while the maximum 
design gas temperature was set at 38°C. The design gas volume took into consideration 
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the average and the peak flow requirements to the year 2016. The projected gas demands 

under the three scenarios for the years 2011 and 2016 are presented in Table 7.3. 

GAS SS9 SS5 SS7 MEAN ISM NO. S VAR 
2 0.860 0.68 0.600 0.713 0.000 0.000 
02 0.47 0.350 0.290 0.370 0.000 0.000 
H4 96.820 97.193 97.440 97.151 0.000 0.000 
2H6 1.050 1.100 0.940 1.030 0.000 0.000 
3H8 0.320 0.300 0.310 0.310 0.000 0.000 

-C4H IO 0.070 0.070 0.073 0.070 1.000 0.000 

-C4HIO 0.090 0.089 0.088 0.089 2.000 0.000 

-C51112 0.030 0.025 0.028 0.027 1.000 0.000 

-C5H12 0.030 0.026 0.030 0.029 2.000 0.000 
6H14 0.040 0.030 0.025 0.032 1.000 0.000 
7H16 0.150 0.075 0.100 0.109 1.000 0.000 
8H18 0.060 0.044 0.053 0.052 1.000 0.000 
91-120 0.010 0.018 0.023 0.017 1.000 0.000 
OTAL 100.000 100.000 100.000 100.000 

Source of Gas Composition Data: Scientific Software-Intercomp [1990] 

Table 7.1 Average [Mol. %] Composition of Songo Songo Gas 

Pipe sizes and flow capacity of the pipeline were determined using the Panhandle 
formula, which considers gas pressure, temperature and velocity. Steel, plastic and 
aluminium were all considered as possible materials for construction of the pipeline. 
However, it was later decided that only a steel pipe would be able to carry the volumes and 
pressures required for the transmission line. The gas velocities in the pipeline, for each 
scenario and pipe size, were estimated as shown in Table 7.4. The pipe sizes allow 
fluctuations which may occur between the peak day demand and the average flow, and the 

expected velocities are well below the target velocity for the pipeline design. In this 

particular case flow velocities of 457m/min and 610m/min were given as target and 
maximum velocities respectively. 

Initial Pressure [psia] 
Reservoir Temperature [°F] [K] 
Molecular weight 
Specific Gravity 
Density (Reservoir) [Ib/ft3] [Kg/m3] 
Density (Surface) [Ib/ft3] [Kg/m3] 
Viscosity (reservoir) [cp] 

-1 

2755 
203 

16.746 
0.579 
7.1007 
0.0441 
0.018 

4 

Source: Scientific Software-Intercomp (1990) 

Table 7.2 Songosongo Gas Properties 
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Pipe sizes were chosen for the three scenarios, based on the initial pressure of 

4.80MPa available at Kilwa Kivinje and a minimum terminal pressure of 2.07MPa (300psig) 

at the city gate station in Dar es Salaam. For both the medium and high demand scenarios, 

compression must be added at Kilwa Kivinje. The selected pipe sizes, compressor and 

resulting capacity are summarized in Table 7.5. 

DEMAND 
YEAR201 2016 YEAR 2011 YEAR 2016 

LOW 
MEDIUM 
HIGH 

0.56 
1.21 
2-31- 

0.68 
1.33 
*2 43 

0.7 
2.37 
3-47 

0.85 
2.49 
5-59 

Source: Hardy BBT Ltd (1989) 

Table 7.3 Projected gas demand for three scenarios for year 2011 and 2016 

Predicted pressure profiles for the line for all the three scenarios are presented in 

Figs. 7.5,7.6 and 7.7. For each scenario there are three curves representing maximum 

sustainable flow consistent with a discharge pressure of 2.07MPa (300psig), design flow 

rate similar to maximum average daily demands for the three scenarios and flow rate of 

70% of the above design flow rate. The distribution system is comparatively small so that 

while it serves to smooth out local variations in demand, it can not be considered as a major 

component of storage. The major storage in this case is provided by on-line storage in the 

transmission pipeline. 

SCENARIO VELOCITY NOMINAL PIP F SIZF 
[mix/min] [fi/min] [M4 [ial 

LOW 198 
MEDIUM 235 
IHIGH 256 

650 254 
770 254 

. 840,305 

10 
10 

. 12. 

Source: Hardy BBT Ltd (1989) 

Table 7.4: Estimated Gas Velocities and Pipe Sizes 

Three block valve locations were proposed in the preliminary pipeline design. These 

would permit each section of the transmission line between the valves to be isolated and 
blown down during repair, maintenance or in an emergency situation. Operation of the 

block valves would be in the manual mode. Automatic linebreak control was not 

considered in the preliminary design. It was suggested that additional block valves could 
be added to the system during the final stage of the project depending on operational 

considerations. The three block valve locations are presented in Fig. 7.7. The 
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sectionalizing block will be full-bore valves in order to facilitate pigging of the line. The 

blowdown valves will be sized to deplete the line section in less than 4 hours. The block 

valve parameters and blowdown time for each of the three demand scenarios are 

summarized in Table 7.6. However, it was not specified to which of the pipeline sections 

in Fig. 7.7 or demand scenarios the blowdown times in Table 7.6 refer. 

Demand Scenario Pipe size Pressure Compressor Size Capacity Flow 
Actual sizexWall thickness 

mm MP M IMC M/da 
Low 273.1 x4.78 - - 0.78 
Medium 

-High 

273.1x5.20 
323-9x6-35 

9.65 
9-65 

2.16 
3-39 

1.83 
285 

Source: Hardy BBT Ltd (1989) 
Table 7.5 Pipe Parameters 

The original design of the pipeline, as presented by Hardy BBT Ltd. (1989), was 

for the pipeline to pass through Kilwa Kivinje and also to be tied to the project for the 

fertilizer plant at Kilwa Masoko. Recent information, including a brochure published by the 

Ministry of Water, Energy and Minerals and the two Canadian companies involved in the 

implementation of the project, indicate that a new pipeline route is being followed. The 

new route is shown in Fig. 7.4. According to the new route, the pipeline is from Songo 

Songo directly to Dar es Salaam, through Somanga Funga and not Kilwa Kivinje. The new 

pipeline route does not seem to be tied to any other project apart from the power station 

and other users in Dar es Salaam. Although it is expected that design details for the new 

route have been finalised, it was not possible to get them for this study. However, since the 

pipeline length does not differ much from the one in the proposed old route, and assuming 

that the gas demand scenarios in Dar es Salaam remain the same, the same data which was 
proposed for the old pipeline design is used. 

DEMAND SCENARIO Block Valve Size Blowdown Stack Blowdown Time 

LOW 
MEDIUM 

IHIGH 

254 
254 
305 

102 
102 
152 

3.5 
4.0 
13 

Source: Hardy BBT Ltd (198 

Table 7.6 Block Valves 
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7.3 COMPUTER SIMULATION OF A LINEBREAK IN THE 
SONGO SONGO DAR ES SALAAM GAS PIPELINE 

In this section, the information and data presented in the preceding sections of this report 

and the computer model developed in this study are used to simulate a linebreak in the 

Songo Songo Dar es Salaam natural gas pipeline. It is known that a more recent study was 

conducted by Hardy BBT Limited in 1994, to assess the environmental impact of the 

pipeline. However, the study report could not be made available for this study. Also as 

pointed out in the previous section, no further details on the new pipeline route could be 

obtained. Due to these constraints, it was decided that the data given in the preliminary 

pipeline design by Hardy BBT Ltd. (1989), which are presented in Section 7.2.3, be used 
for this simulation exercise. 

The main reasons for this analysis are firstly, to simulate the flow following a 
linebreak in the Songo Songo Dar es Salaam pipeline and secondly to test if the computer 

programme is capable of handling such a long pipeline as the pipe sections between the 
block valve location shown in Fig. 7.7 (73.2km). Pipelines are equipped with block valves 

at different locations along their lengths. The valves enable parts of the pipeline to be 

isolated for maintenance and in the event of a leak, blowdown or accidental rupture. The 

valve locations serve as boundary points when performing the computer analysis. Even in 

situations where such valves are not provided and the pipeline is considerably long, it is 

convenient to impose boundary conditions in such a way that the length of the pipeline 
between the boundary points could be handled with the computer programme. 

Two main parameters are of interest, namely the time it takes for a pressure wave 
to be transmitted from the break point to the nearest block valve location and the time 

taken for the section of the pipeline between the two valves on each side of the break to be 

emptied. The former parameter determines how quickly the valve operation would be 

initiated. The limited time available for this study does not permit simulation of the flow 

until all the gas has escaped from the pipeline, because of the very long CPU time required 

to carry out the simulation. The simulation is performed only for the early time regime. 
Referring to Fig. 7.7, it is assumed that a rupture occurs at Marendego, just next to the 
block valve, on the side of Kilwa Kivinje. The interest is to determine how long it takes for 

the initial pressure wave to reach Kilwa Kivinje, which is 68.0km away, and initiate the 

operation of a block valve situated at the exit of the compressor station. The high demand 

scenario and maximum sustainable flow (the bottom curve in Fig. 7.8) are used. 
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The average composition of the Songo Songo gas, which is presented in Table 7.1, 

is used as input data to the QUANT software. A data file to be used by the CFD model is 

generated from the QUANT software. The initial pressure and mass flow rate of the gas 

at Kilwa Kivinje are as presented in Fig. 7.8 i. e. 141Opsi (9.65MPa) and 100.79MMCFD 

(25kg/s). The maximum operating temperature of the gas is 311K. The rest of the gas 

properties at the initial conditions at Kilwa Kivinje are calculated using the QUANT 

software. A minimum grid spacing of Ax= 10m and At= 0.01 s at the broken end and the 

variable grid model are used. This rather coarse grid spacing is chosen in order to minimise 

the CPU time required for the simulation and also to minimise the effect of the computer 

round off error, which is explained in Section 6.3, when applying the variable grid model 

on long pipelines. Results from the computer simulation are presented in Figs. 7.9 and 
7.10. 

Ki1wa Mar4-- radego Buingo Mbezi Dar ea Salasm 1C1v111, A 681cm 141.2km 199.8km 
0 krra 

Fig. 7.7 Block Valve Location 

The Hardy BBT prediction data which is presented in Figs. 7.8 are used for 

comparison with the data calculated using the non-isothermal non-adiabatic steady state 

analysis model presented in Section 4.2.2 and also the transient analysis, before the break, 

using the method of characteristics. The prediction results obtained are included in Figs. 

7.8. All the rupture tests whose data are used, in Chapter 6, to validate the linebreak model 

were carried out using pipelines in which the gas was initially stationary. As a result of this 

situation, transient analysis before the break was not necessary. In the case of the Songo 
Songo-Dar es Salaam pipeline, the initial flow velocity before the break is not zero. 
Transient analysis before the break was performed in order to establish the initial unsteady 
flow condition. Results are presented in Fig. 7.8. In both the steady state and transient 

analyses before the rupture, the variable grid spacing programmes are used. The heat 

transfer model which was used is that for buried pipeline. 
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7.4 DISCUSSION OF SIMULATION RESULTS 

Simulation results for the pressure profile using the steady state analysis (SSA) and transient 

analysis (TA) models before the break are presented in Fig. 7.8, together with the original 
data provided by Hardy BBT Ltd. (1989). The pressure profiles for steady state analysis 

and transient analysis before the break are also presented in Fig. 7.9, together with the 

pressure profile 60s after the break. The mass flow rate variation is presented in Fig. 7.10. 

In calculating the pressure profile using the steady state analysis model problems 

were encountered when the pipe diameter of 0.305m, which was, specified was used. 
Using this pipe diameter and gas flow rate of 25kg/s, which were given, resulted in a much 
bigger pressure drop in the pipeline. The pressure predicted at Marendego (68km from 

Kilwa Kivinje) was around 4MPa, which is less than a half of the pressure presented by 
Hardy BBT Ltd. Transient analysis using the second-order method of characteristics was 
performed, in order to confirm whether the problem was with the steady state analysis 
model or the design data provided by Hardy BBT Ltd. When a boundary condition 
corresponding with the pressure presented in the Hardy BBT curves (8.2MPa) was imposed 

negative velocities were obtained at the low pressure end. The negative velocities indicate 

that the pressure imposed at the boundary was higher than the actual pressure for the 

parameters given. The mass flow rate was reduced by a half in order to see if the pressure 
drop would decrease to the required value, but the pressure drop remained higher. When 

the pipe diameter was increased to 0.5m, the same pressure profile as that presented by 

Hardy BBT was obtained. Transient analysis was then performed and produced the same 
pressure profile as the steady state analysis. However, after the transient analysis, the flow 

velocity was slightly higher than that obtained using the steady state analysis model, but 

within the limit specified by Hardy BBT. This result indicates that the pipe diameter of 
0.305m which was specified is too small. The first-order method of characteristics failed 

to produce good results in the transient analysis before the break. Consequently, the 
second-order method was used. 

There was no output from the QUANT software for Pr, p and kr for all the range 
of pressure and temperature used. Of the three missing properties, only p is required by the 
computer programme. A constant value was used throughout the range of pressure and 
temperature encountered. In the fluid data used for validation of the model in Chapter 6, 
a maximum variation in p was 36.5% within the range of p and T used. The constant value 
was chosen such that it is in the middle of the range, therefore reducing the error in 

estimating p to a maximum of 18.25%. The error introduced is not significant. 
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The first-order method of characteristics was used in order to minimize on CPU 
time. The pressure profile after the break, which is shown in Fig. 7.9, indicates that the 
leading edge of the pressure wave had not reached the compressor station at Kilwa Kivinje 

60s after the break. It had reached a position which is 43.52km from Kilwa Kivinje 

(24.48km from the break). Due to the limited time available for this study, no further 

simulations could be performed. The mass flow rate variation is presented in Fig. 7.10. 

The initial mass flow rate at time tos after the break is less than the peak flow rate. The 
increase in mass flow rate is caused by increase in the gas density, which occurs after the 
break because of drop in temperature. During the period of 60s which the flow was 

simulated, most of the rapid variations in gas outflow took place. The mass flow rate 
would continue to decay exponentially. The flow rate of around 300kg/s, which was 
reached after the 60s is comparable in magnitude with the initial flow rate in Alberta 

Petroleum Industry test APIT3. Assuming that the time taken for the pipe to be emptied 
is directly proportional to the length of the pipeline and that the flow rate would continue 
to fall at the same rate as in test APIT3, the time required for the section of the pipe to be 

emptied is 2.6hours. However, since the flow rate of 300kg/s, in this case is reached when 
the decay rate is much smaller than in the initial flow after the break in test APIT3, a 
blowdown time which is longer than 2.6hours is expected. Therefore the 3.3hours 
blowdown time presented by Hardy BBT Ltd is probably correct. 
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CHAPTER 8 

RECOMMENDATIONS FOR FURTHER WORK 

In the previous study by Tiley (1989), further work was recommended in four areas namely 

investigation of the wave speed error, further testing of the model, improvement of the 

stability of solution and further refinement of the model. Through the different approach 

which has been used in this model, all the four areas of investigation recommended by Tiley 

(1989), have been successfully covered. The method of characteristics model which has 

been developed in this study is sufficiently accurate and reliable for simulating linebreak 

situations in full-scale pipelines. The only weakness of the model is the directional bias 

which occurs when modelling the flow reversal in the section of the pipe downstream of 

the break. This is the only area recommended for further investigation in the model based 

on the method characteristics. In the meantime, the programme for analysing the flow in 

the section of the pipeline upstream of the rupture, could be used for the downstream 

section after the necessary adjustment of the input data. Alternatively, either the 

programmes based on the MacCormack or Warming-Kutler-Lomax methods could be used. 

Two numerical models in addition to the method of characteristics, which is the only 

one covered by Tiley(1989), have been used in this study. Both the MacCormack and 
Warming-Kutler-Lomax models, have successfully been developed. What remains to be 

done is to test further the models. Specifically, the problems of overshoot and oscillating 

results, which are associated with the MacCormack numerical method, need to be 

investigated. 

Another numerical problem which needs to be solved, is that of round-off error, 
when modelling flow in long pipelines using the variable grid spacing method and with 

very small Ax at the broken end. 
The QUANT software, in its present version and with all its limitations, provides 

a sufficiently accurate and optimum means of incorporating real gas properties into the 

model. However, better results are expected if the current limitation of the software is 

overcome. The limitations are lack of output for some values of input parameters and for 

some gases and lack of output at high pressure and temperatures lower than 200K. The 
former limitation of lack of output at high pressures has already been overcome [Silberring 
(1993-95)]. But the version of the updated software is not yet available commercially. 
It is important to follow up on further updates of the software, which would improve the 

performance of the model. 
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A great deal of time was devoted to exploring, acquiring and developing an 

optimum method of incorporating the data produced by the software into the numerical 

programmes. The method adopted in this study [refer to Section 4.5] provides a 

compromise as far as accuracy and economy in computational resources are concerned. 

Two areas are recommended for further work in the application of the QUANT software. 

The first area is in relation to the routine DFGEN for generating the fluid property data 

file FLUID. DAT. A programme for automatic execution of the QDB programme of the 

QUANT software is required, in order to make the process simpler and less time 

consuming. A detailed explanation of this procedure is given in Section 6.3. The second 

area, which is also described in section 6.3, concerns the retrieval of data from the file 

FLUID. DAT. An interpolation procedure has proved to be impossible due to the limited 

computer memory, when running the transient analysis programmes. The alternative 

method i. e. generating fluid property data in which the input parameters (p & T) are so 

close such that the values which are closest to the parameters for which fluid data is 

required are used. The latter method is less practical with the presently available computing 

resources. In this study a spacing of 0. IMPa in pressure and 5K in temperature was used. 
A finer spacing could be used if the domain for the particular analysis is smaller. Further 

investigation of the possibility of using interpolation procedures is required especially if 

bigger computing resources are available. 

The biggest challenge in developing and also applying the computer programmes 
in this study, has been that of limited computing resources available. It was decided from 

the beginning (refer to Section 4.6) that the computer codes developed in this study should 
be capable of being run on personal computers. The best computer which could be used 

was the best that was available at the time. But even this requirement could not be met due 

to limited financial resources which were available for acquiring such computers and also 
the high speed at which computer technology advances. At first it was thought that a 
486DX personal computer would be sufficient. This was true even for the transient 

analysis including the variable grid method before varying fluid property data was 
introduced. A PENTIUM P75 is sufficient to run the complete programmes for transient 

analysis at a speed which is much faster than the one which could be achieved using the 
486DX personal computer for the simpler version for the transient analysis programme i. e. 
with constant fluid property data. Better performance is expected if a more powerful pc 
such as a PENTIUM P166, is used. It is also thought that such a powerful pc's could 

1 
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handle a larger number of grid points on one section of pipeline being modelled, than the 

present maximum number of grid points of around 120. This could eliminate the problem 

of round-ofd' error experienced when modelling long pipelines with the variable grid 

programmes. It is therefore recommended that a more powerful pc than the PENTIUM P75 

be used to test the programmes. Also the possibility of incorporating a chip similar to the 

Microway-i860 [refer to Section 4.6], into the present series of personal computers in 

order to increase their computational speed is worth exploring. 

A detailed presentation of experimental data which exist for validating linebreak 

models is given in Chapter S. Sufficient experimental data, which covers both short and 
long pipelines sections were acquired and used in this study. However, it was not possible 

to get data which are recent and consequently rather old data were used. The data which 

are used in this study were gathered using tests which were conducted during the past 16 

to 20 years. It is expected that in such a long time, there would be a considerable 
improvement in instrumentation and experimental techniques which could result in more 

accurate experimental data. Some of the tests reported in Chapter 5, were carried out 

within the past two years. Data from such tests are therefore expected to be more accurate 

than the one used in this study and should if possible be used. Unfortunately, it was not 

possible to have access to this data because of commercial sensitivity. 
The model developed in this study assumes that the fluid is a homogeneous gas 

mixture and that the flow is one-dimensional. These assumptions are adequate for practical 

linebreak modelling. Better results could be obtained if the simplifications of homogenous 

and one-dimensional flow are not used. In terms of priority, investigation into these aspects 

should come as the last step. In order of preference , multiphase effects including frictional 

forces are probably the most significant, and should be investigated first. The gamdeleps 

method [Flatt and Trichet (1995)] which is briefly described in section 2.7, is recommended. 
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CHAPTER 9 

CONCLUSIONS 

After a critical review of the previous study by Tiley (1989), a theoretical model has been 

developed for analysis of the transient flow following linebreak in high-pressure natural gas 

pipelines. An improvement has been made in many aspects of the model which was used 

by Tiley (1989). These include derivation of the basic equations of flow and subsequent 

simplifications; calculation of frictional force, thermodynamic and transport properties of 

the fluid, heat transfer to the fluid and numerical method of solution. The basic equations 

of flow are based on the gamma delta method which was developed by Flatt (1989). The 

three partial differential equations of flow are derived for unsteady quasi-one-dimensional 
flow of a real gas through a non-rigid non-constant cross-sectional area pipe. Two further 

simplifications are made on the basic equations of flow before applying them in the 

development of the computer model for analysis of the flow following a linebreak. The 

QUANT software for thermodynamic and transport properties of the fluids is used. The 

flow dependent explicit equation which was developed by Chen (1979) is used to calculate 
frictional force. The heat transfer through the pipe is calculated using a formula which is 

based on the adiabatic wall temperature and recovery factor. The heat transfer is also flow 

dependent; and the calculation procedure includes both pipes exposed to the atmosphere 

and buried pipes. An improved and more accurate equation for calculating the initial break 

conditions at the break is used. This improved equation avoids the problem of 

underestimating the flow velocity at the outlet end and overestimating the temperature 
drop at the break. 

A non-uniform grid spacing which is very similar to that used by Tiley (1989) is 

used, in order to be able to handle long pipelines, to produce stable results and to also 

adequately model the physical behaviour of the gas, following a rupture. This method 
involves the use of a fine grid spacing in the vicinity of the break and a coarser spacing as 

one moves away from the break. A possibility of modelling the flow reversal in the section 

of the pipeline downstream of the break, similar to the one developed by Tiley (1989) is 

provided. Four different models for calculating the initial steady-state conditions, before 

the break have been developed. The four models, all of which are viscous flow models are 
based on the assumptions of incompressible flow and compressible isothermal, adiabatic 

or non-isothermal non-adiabatic flow. Three different numerical methods for solution of 
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the theoretical models have been developed. The three numerical methods are a first-order 

backward method, a first-order forward method and a second-order method. The numerical 

and theoretical models have been compared with predictions made for the proposed Songo 

Songo Dar es Salaam Natural Gas Pipeline [Hardy BBT Ltd. (1989)]. 

The theoretical transient analysis model is developed into a pc based computer code 

using the C programming language and three different numerical methods of solution. The 

three numerical methods are the method of characteristics, which was used by Tiley 

(1989); the two-step second-order explicit finite-difference method of MacCormack; and 

the third-order Warming-Kutler-Lomax explicit finite-difference method. Predictions using 

the three numerical methods of solution have been compared with data obtained through 
both full-scale pipeline and laboratory experiments. The test sections vary from 6.1 m to 

11.8km in length and 0.1 to 1.4m in diameter. 

The transient analysis models, based on the method of characteristics, produce 

results which are in agreement with experimental data. Also the steady-state analysis 
models prediction are in good agreement with the predictions made for the Songo Songo 

Dar es Salaam pipeline. A PENTIUM P75 is just adequate to run the transient analysis 

programmes which are based on the method of characteristics and the second-order 
MacCormack method. The programmes based on the third-order Warming-Kutler-Lomax 

method require a computer with a greater capacity. They could be run on the PENTIUM 

P75 pc available, when constant fluid properties were used. The Warming-Kutler-Lomax 

method produced good results, when it was used in cooperation with the method of 

characteristics in order to smoothen the rapid variations the flow. The predictions which 
are made using the MacCormack method are not satisfactory (refer to section 6.3). 

The QUANT software for thermodynamic and transport properties of fluids 

contains enough substances to cover all natural gas mixtures at pressure of up to around 
6MPa and temperatures of 200K and above. In most high-pressure natural gas pipelines 
the pressures are much higher than 6MPa and during a linebreak the temperature of the gas 

near the break falls below the 200K lower limit of QUANT. Additional data were 
provided at high pressures, for the particular natural gas mixture used for validation. The 

present version of QUANT together with the additional data have successfully been 

incorporated with the numerical programmes. An updated version of the QUANT which 

covers the high-pressure zone was not available in time for this study. The optimum way 

of incorporating the QUANT software into the numerical programmes is by producing 
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data files for each particular gas mixture and range of parameter and using an interpolation 

procedure to obtain the fluid properties at each required state of the gas. Due to limitations 

in computer memory the interpolation procedure could not be used and instead the nearest 
data are used. 

Sufficient and suitable experimental data were secured and used to validate the 

model. Both full-scale pipeline experimental data and data obtained from experiments on 

short pipeline sections of up to 243m have been used. All the data used were obtained from 

experiments carried out within the past 16 to 26 years. There is plenty of more recent 

experimental data but its availability for application in this study has proved to be too 

difficult. 

It was stated in Section 1.3 that one of the objectives of this study was to 
investigate further the linebreak phenomenon, especially at the broken boundary in order 
to understand it better. The other objective was to develop a computer model for 

analysis of linebreak in high-pressure natural gas pipeline, based on the previous model 

which was developed by Tiley (1989). Both these objectives have been implemented 

satisfactorily. The theoretical decompression a-p curve Fig 4.3 at the broken boundary, 

has been confirmed by computer the predictions. 
The computer model, which is based on the numerical method of characteristics, 

is very stable numerically, unlike the Tiley (1989) and Picard and Bishnoi (1989) model and 

also does not suffer singularity problems such as those experienced by Flatt (1986). 

Predictions from this model compare better with experimental results than the Tiley's 

model and the wave speeds are correctly estimated. The model developed in this study 

contains the additional feature of being able to model heat transfer for cases where the 

pipeline is buried under water, ground or any other medium whose thermal conductivity, 

and also the depth of the pipe in the medium are known. In addition to the method of 

characteristics model, computer models based on two other numerical methods have been 

developed. These two methods were not used by Tiley (1989). The model based on the 
MacCormack method does not seem to be suitable for high-pressure linebreak applications. 
The Warming-Kutter-Lomax method produces results which are comparable with the 

method of characteristics prediction. However, the former methods depends too much on 
the latter method, in order to be able to produces those results. Further testing of the 

models is necessary before making a definite judgement on the suitability and merits of 

each of these models. 
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It has been confirmed in this study that for typical high-pressure gas pipeline 

ruptures, the lowest gas temperature at the break could sometimes drop below the 200K 

minimum limit of the QUANT software. This is contrary to the argument by Silberring 

(1993-95) and Flatt (1993-96) that the temperature can never drop to such low values. The 

model based on the MacCormack method predicts lower temperature drops than the 

method of characteristics model. The former model also predicts higher flow velocities than 

the latter. 

The comparison which was made between the first-order methods and the second- 

order method for solution of the steady-state flow equations reveals that the second-order 

method produces results which are significantly different and more accurate than the first- 

order methods. In this study the steady-state analysis results are used just as initial 

estimates, and are later improved by a transient analysis. Therefore the first-order 
backward method is sufficient. In cases where more accurate steady-state analysis results 
are required, the second-order method should be used. Comparison between the first-order 

and the second-order method of characteristics results indicate that the second-order 
method is significantly more accurate than the first-order method, only when the flow in the 

vicinity of the break is considered. However, the second-order method fails to handle the 

rapid variations of fluid properties at the initial At's near the break. In such situations the 
first-order method is used. 

A major weakness, which is yet to be explained, was discovered when the method 

of characteristics was used to model the flow reversal on the downstream section of the 
broken pipeline (negative flow velocity and x increasing away from the break). The model 

calculates accurately the fluid properties and the positions on the t-x plane for the 
intersections of the characteristics curves with the time level t line (Refer to Fig. 4.4). 
However it produces results which always tend to be biased to the values at the intact end. 
This directional bias has the overall effect of predicting a decompression process which 
is extremely slow. No such problems were experienced with the other numerical methods. 

The computer models for transient analysis have been validated with experimental 
data involving linebreak of pipelines which are as long as 11.8km. It has also been used 
to simulate the flow following a rupture in a pipeline which is 68km long. Due to the big 
difference between the grid spacings at the broken and the intact ends, the round off error 
of the computer results in a failure of the variable grid method to function properly. This 

error does not result in failure of the programme to run. But the model produces results 

which are wrong at some grid points. The net effect is to underestimate the flow 

velocity. For shorter pipe sections, such a problem does not exist. 
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Since the method of characteristics is iterative while the explicit finite-difference 

method are not, it is expected that the computation time of the method of characteristics 

would be much longer than those of the explicit finite-difference methods. In this study 
the method of characteristic and explicit finite-difference have computation speeds which 
do not differ much. The reasons for this situation are the extremely quick convergence of 

the method of characteristics model and comparatively long time taken to retrieve the 

variable thermodynamic and transport fluid data from the data file produced using the 

QUANT software. 
The main sources of error in the model prediction and validation results include 

round off error of the computer and its related errors especially those caused on the 

variable grid method, which were explained earlier. More errors result from interpolation 

and also conversion of experimental data from graphical into numerical form. The latter 

error has been minimised by using the scanning technique and graphics Autocad software. 
The other errors are caused by the use of estimated fluid properties, and some other 
parameters such as gas composition, initial temperature etc. Estimated values were used 
because of lack of output from the QUANT software and also because some parameters 

necessary for the computer model are not provided with experimental data. 

The previous model by They (1989) had two major weaknesses, namely 
overestimating the wave speeds and instability if the solution. Both these weaknesses have 

been eliminated in this study. The method of characteristics, which was also used by Tiley 
has proved to be the most suitable numerical of solution for analysis of transient flow 
following linebreak in high-pressure gas pipelines. The first- and second-order methods 
produce results that are very close together, with the second-order method producing 

slightly lower wave speeds than the first-order method. The first-order method is over two 
times faster than the second-order method in computation speed and in some cases the 
former method handles the boundary conditions better than the latter method. At positions 
which are further away from the break, the first order method seems to produce better 

results than the second-order method. The first order method is therefore preferred if the 
results are required for positions which are further away from the break, and the analysis 
involves long pipelines. The first-order approximation has proved to a very important tool 
in modelling of transient flow following linebreak in high-pressure gas pipelines. It is the 

only numerical method, out of those studied, which can handle all the initial gas conditions, 
flow variation and grid sizes best. It produces sufficiently accurate results, with the least 
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computational resources. It therefore provides a practical method for simulating the flow 

in long pipelines. Except for the problem of directional bias in the second-order method of 

characteristics when modelling the flow in the section of the pipeline downstream of the 

break, this study has produced an accurate computer programme, based on the method of 

characteristics, for analysis of the flow following a break in high-pressure gas pipelines. 

The MacCormack second-order method was previously thought of as being 

potentially better for linebreak problems than the method of characteristics. In contrast, this 

study has confirmed that the MacCormack method is completely unsuitable for modelling 

of the flow following linebreak in high-pressure gas pipelines. The third-order Warming- 

Kutler-Lomax method produces results which are comparable with those produced by the 

second order method of characteristics. However, it depends too much on the method of 

characteristics, to smoothen the rapid flow following a break. This makes one wonder 

whether the results are produced by the Warming-Kutler-Lomax method or the method of 

characteristics. Due to this over-dependence on the method of characteristics, it was not 

possible to determine the execution speed of the Warming-Kutler-Lomax method. It 

requires a lot more computer memory than the second-order method of characteristics. 
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APPENDICES 

A GENERAL EQUATIONS 

Cross-section area of the pipe: 
Ad (A-I) 

Flow velocity of fluid: 
A (A-2) 
pA 

Friction factor calculated using the Chen's explicit equation: 
1" 

-2.0 lo c-5.0452 lo IE1.1098 
+ 

5.8506 

fD 
g 

3.7065 d Re 
g(2.82577 )D 

Re 0.8911 
(A -3 ) 

Frictional force per unit length of the pipe: 
AdP fo u2 (A-4) 

Reynold's number: 
Re - 

Pud (A-5) 
µ 

Heat transfer across the pipe calculated by the Stanton number method: 

0= nd pu Cp St(T, v - T) (A-6) 

Stanton number: 
St . 

Nu h 
(A-7) 

Pr Re puCp 

St - f(Pr , Re) (A-8) 

Static pressure: 

p= Zips (A-9) 
Speed of sound/wave speed for a perfect gas: 

apKKZRT (A-10) 
P 

and for a real gas: 
P Y, 

a"y, ZR T (A-11) 
P 

I 
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Prandtl number 

Nussetl number: 

Grasshoff number: 

Pr - (A-12) 
k 

Nit "hd (A-13) 
k 

Gr .ßg 
P2 d3 &T (A-14) 

µ2 

Mach number: 
Ma -u (A-15) 

a 

B EXPRESSIONS FOR EQUATION OF STATE 

The equation of state for a perfect gas is 
p" pRT (B-1) 

The general equation of state for a real-gas is 

P- ZpRT (B-2) 

Van Der Waal equation of state (1873) 

p 
NRT NSA (B-3) 
V-NB V2 

Where N Is the number of molts 

Dietrici equation of state (1899) 
RT 

CXP 
(-. A (B-4) jr V-B RTV 

Berthelot equation of state (1903) 
RT 

-A P (B-5) 
V-B yy ý 

where A and B in equation (B-3) to (B-5) are constants. 

Redlich-Kwong equation of state (1949) 

PR 0 
TA 

_ 
0.42748 

ZC(VR-0.08664 /Z, ) TR . $Z. 2 VR(VR. 0.08664 /Zý2 
(B-6) 
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Soave-Redlich-Kwong (SRK) equation of state (1972) 

p. 
RT Jr 

(B-7) 
ä-b v"(v". b ) 

where 
b"0.08664 

RT 

PC 
ä(T) " a(T,, )ä(Trw) 

J(T) - 0.4247747 
R 2Tc 2 

PC 

ä(T,. w) " [1"rn(1-T; s)]2 

m-0.480 1.574 W-0.176 W2 

Peng-Robinson (PR) equation of state (1976) 

f, - 
RT 

_ 
ä(T) (B-g) 

v-, v"(v". b). b(v'-b) 

where 

RT 
c b"0.077780 

PC 

J(7) - ä(Tc)&(Tr. w) 

R2T2 
ä(TC) " 0.45724 r 

PC 

ä(T,, w) " [1. n(1-Ti's)] 

ni " 0.377464 . 1.54226 w-0.26992 w2 

Martin equation of state (1949) 

RT A2'B2T. C2eý A3'B3T'C3e A4"B4T"C4e 
p. ... 

v-b (v-b)2 (v-b)3 (v-b)4 

As'b5T. Cse-xr A6. B6T. C6e-kr A7. B7T. C7e. kr 
(B-9) 

(v-b)s e ov e -2ov 

where a, b, K, A, to A,, B, to B7 and Cl to C7 are constants. 

The two parameter thermal equation of state of Martin based on the principle of 
corresponding states is 

T, 9(4-T) 
Pf " 

Z, ' v, 0.085 64(Z, v, 0.04)2 
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where 

P, .LT, "T VP " 
PQ Ze " 0.28366 

pc T` p 

Note Z. is the pseudo-critical real gas factor 

The Martin equation solved explicitly with respect to T, is 

Tr - 
(Z, * v, - 0.085)[36#64(Z. " v, 0.04 )2P, ] 

(B-11) 
9(Z, * v, 0.085). 64(ZcO yr 0.04)2 

Van Reet-Skogman equation of state (1987) 
1- 1r- P (B-12) 
z rY 

where y Is a constant . 

Clausius equation of state (1930) 

p(v-b) - RT (B-13) 

Benedict-Webb-Rubin equation of state 

RTB ö Aö 
CO 

P- 
RT T2 RD -a as C 

(1" to )e (B-14) 
0 ;3 ;6 ; 3'. 2 ;2 

where Aa, B0, Co, a, b, c. a, ca are empirical constants 

Redlich-Kwong equation of state 

P 
RT 

-a (B-15) 
v-b v(v. b)TO*5 

where 

a"0.427 
(48R Tc512 

b"0.086 
(64 RTC) 

PC PC 

Beattie-Bridgeman equation of state (1928) 

p- RT 
(-) 

(v. ) -v (B-16) 

where A" Ao(1-a), B" Bo(1-b), c"C 
vv vT3 

The values of the five constants A� a, Bo, b, are in literature for some gases. 

Kamerlingh-Onnes equation of state (1902), in the virial form: 

pv -NRT (1 "B. 
C........ 

) (B-17) 
v v2 

An expression in terms of powers of the pressure may be used as shown below; 

pv " NRT " Bp . Gip 2 "......... ) (B.. 18) 
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Saville-Szczepanski methane-based equations of state 

p- pRT . p24 1T . A2T'12 . A3 . AIT . ASIT2) 

. p3(f6T. A7T"n. As: AylT2) 

. p4(A10T . All " A121T) 

' pSA13 " p6 ,1T. A15/T2). p7A1JT 

' p'cif , /T . AI=/T2) 

" P9A19IT2 . P3 e'YP2[ (A2jT2 " A211T3) 

" P2(A2JT2 . A2IT4). p442/T2. AdT3) 

" P642/T2 . A2/T 4) 
" Pe42, /T2 " A2dT3) 

" P1003dT2 . A21/T3 . A3JT4)1 (A2.19) 

p- pRT. p2(61T. B2Tin. B3. B41T. BSIT2 

" p3(B6T . B7IT 3) . p4(8g . BVT " B101T 3) 

ps(11T2 . B12/T2 ` p6B131T2 

` p8B141T ' p9B15/T ' p11B1a/T2 

p3C. YP2E(17/T2 ' B11/T 4) 
. p2B19/T4 

'p 4B20/T 2. p 6B21/T 2"p oý22/T 2. B, /T 4)J (A2.20) 
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C EXPRESSIONS FOR FRICTION FACTOR 

C-1 LAMINAR FLOW: Re < 2100 

Hagen-Poiseuille equation 
64 ID - Re (C-1) 

C-2 TRANSITION ZONE 

C-2.1 Implicit Equations 

Colebrooke equation (1938) 
d 

Valid up 
E"0.01 

(Re f) 

1"2.0 lo E+2.5226 

fD 
g 

3.7065 d Re ID 

Oliemans expression for two-phase flow (1976) 
1" 

-2.0 log 2c 
* 

18.7 
. 1.74 

FD deff Reff p 

(C-2) 

(C-3) 

Re is a two-phase Reynolds number and doff is the effective diameter for the two, - phase 
mixture. 

Colebrooke-White (1938-39) or Prandtl-Colebrooke equation 
1- 

-2.0 log 2.53 
(C-4) 

FD 3.7d Re lv 

1"2 log E. 1.14 -2 log (I . 9.35d) 

fD d eRe fD 

C-2.2 Explicit Equations 

Chen equation (1979 : All values of Re and e/d 
1e_5.0452 E 1.1098 5.8506 

fD - -2.0 log 
3.7065 d Re 

log 
2.82577 D Re 0.2911 

(C-5) 

Churchill equation (1977) : For all Re and e/d 
/1 12 11 

AD-8 
1Rel 3 

12 (C-6) 

(A. B) 2 
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where 

A- 2.4547 In 
1 16 

B- 
r 37530 16 

0.9 

1 

r Re J C 

Re 

) 
0.277 Id 

Wood equation (1966): Re > 10,000 and 105 < e/d < 0.04 

AD -a. bRe' (C-7) 

b- 88.0 Ec-1.62 
(. 

1)0.134 0.225 0.44 
where a-0.094 

E+0.53 £ 
dddd 

Swamee-Jain equation (1976): 5000 s Re s 10' and 10-6 s e/d s 10'2 

1=2 log e 5.74 (C-8) 
fD 3.7d . 

Re 0.9 

AD . 
1.325 

2 
e 5.74 In 

37d ReO9 

Generalised Haaland equation (1983): n=3 recommended for gas transmission lines 

1.1.8 lo -6 
9RfE1.11N C. 9) 

d fD ng Re 3.7d 

Shacham equation (1980) 
1" 

-2.0 log 
ID 

Simple Zigrang-Sylverster equatior 
1" 

-2.0 log 
ID 

e 14.5 (C-10) 
3.7d Ra 

(1982) 

e 13 (C-11) 
3.7d Re 

Moody equation (1976) 

6 
fD " 0.0055 1.20.000 () 

. 
Rc 3 (C-12) 

Jain equation (1947) 

(C-13 ) 1-1.14 
-2 log E, 11,25 

Fd Re o. 9 
D 

Simple equation of Chen (1979) 

IE1.11 7.15 0.9 

(C-14 ) " -2.0 log 
2.549 d Re ID 
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Simple equation of Serghides (1984) 

t- 
-2.0 log c. 12 

I (C-15) 
fD 3.7d Re 

Intermediate Zigrang-Sylverster equation (1982) 

1-2.0 log e-5.02 log c. 13 (C-16) 
jD 3.7d Re 3.7d Re 

Intermediate Zigrang-Sylverster equations (1985) 

1 
-2.0 

e-2.51 e 21.25 
log 1.14 - 21og (C-17) 

fD 3.7d Re d Re o"9 

1) 

1. 
-2.0 lo E-4.518 lo 6_9 1_5__r. 11p 

FD 
g 

3.7d Re 
8 

Re 3.7d 
iC"18) 

Zigrang-Sylverster equation of highest precision (1982) 
1 

-2. Olog e_ 5.02 log e 5.02 loge 13 (C-19) -"- 3.7d Re 

C 

3.7d Re 3.7d Re ID 

Serghides equations of highest precision (1984) 
1 

_L_. 
1.02 

__E_1.02 
E 5.02 E 13 

-2. Olog log log log - (C-20) 
XD 

(3.7d 

Re 3.7d Re 3.7d Re 3.7d Re 

Zigrang-Sylverster equation of highest precision (1985) 

(C A)2 fD "A- (C-21) 
C-2B. A 

and 
.z 

AD " 4.781 - 
(A - 4.781)2 (C-22) 

B- 2A . 4.781 

where 
12) 

e 
(C-22 a) A" -2 log 

3.7d .R 

B" -2 log IE*2.51 A1 (C-22 b) 
` 3.7d Re J 

C" -2 log E 2.51 Bl (C-22c) 
3.7d Re 

) 
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C-2.3 PARTIALLY DEVELOPED TURBULENCE 

Chaudhry equation (1979) : IR, > 2000 
JD - 0.046 Re -0.2 (C-23) 

Panhandle 'A' equation 
1-3.39 Re 0.0773 E (C-24) 

ID 

where E is the efficiency of the system and is an adjustable parameter which allows for the 

effects of the minor losses and variation in pipe roughness. 

Uhl equation (1965) 
1" 

-2 F log 4 
fD 

fD Re 
(C-25) 

Where F is the drag factor to account for the effect of bends and fittings. 

Smith equation (1956) 

1"2 log Re 
2D 

" 0.3 
lD 

Blasius equation (1911) : Re> 10' 
fD - 0.3160 Re , 0'25 

C-2.4 FULLY DEVELOPED TURBULENCE 

Smith equation (1956) 
1"2 log 3.7d 
FD E 

. 2.2773 

(C-26) 

(C-27) 

(C-28) 

Nikuradse equation (1932) : Smooth pipe and 3000 < Re < 3.4x 106 
1-2.0 tog (Re lD . 0.8 (C-29) 
AD 

Von Karman equation (1932): Rough pipe and (d/e)/(Re�f1) > 0.01 
1-2 logt E. 1.74 (C-30) 
lo ` 
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D LIST OF PROGRAMMES AND SUB-ROUTINES 

BREAK driver routine for transient analysis after the break 

BRINC driver routine for initiating the break and calculating initial fluid properties 

at the break 

BRINCU routine for calculating initial break conditions in both upstream and 

downstream sections with uniform grid size. 

BRINCV routine for calculating initial break conditions in both upstream and 

downstream sections with variable grid size. 
BRMCCAUD transient analysis downstream after the break with uniform grid size and pipe 

exposed to the atmosphere 

BRMCCAUU transient analysis upstream after the break with uniform grid size and pipe 

exposed to the atmosphere 

BRMCCAVD transient analysis downstream after the break with variable grid size and pipe 

exposed to the atmosphere 
BRMCCAVU transient analysis upstream after the break with variable grid size and pipe 

exposed to the atmosphere 
BRMOCAUD transient analysis downstream after the break with uniform grid size and pipe 

exposed to the atmosphere 

BRMOCAUU transient analysis upstream after the break with uniform grid size and pipe 

exposed to the atmosphere 
BRMOCAVD transient analysis downstream after the break with variable grid size and pipe 

exposed to the atmosphere 

BRMOCAVU transient analysis upstream after the break with variable grid size and pipe 

exposed to the atmosphere 
BRWKLAUD transient analysis downstream after the break with uniform grid size and pipe 

exposed to the atmosphere 
BRWKLAUU transient analysis upstream after the break with uniform grid size and pipe 

exposed to the atmosphere 
BRWKLAVD transient analysis downstream after the break with variable grid size and pipe 

exposed to the atmosphere 
BRWKLAVU transient analysis upstream after the break with variable grid size and pipe 

exposed to the atmosphere 
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CALCQDB execution of MS-DOS commands for automatic execution of QDB 

programme in the QUANT software 
CLEARSCR clearing the screen 

CTWORK prompting the user to indicate whether or not he wishes to continue running 

the programme 

DFGEN Creating ASCII data books from the QUANT programme for the domain 

of fluid parameter 

FLDPARAS writing input parameters in binary random access file paras. usr for running 

the QUANT programme 

FLDPROPB Reading output data from binary random access file props. dat produced by 

the QUANT programme 

FLDPROPS Reading output data from ASCII file produced by the FLDPROPB 

FLDPROPV Reading output data from ASCII data book produced by the subroutine 

and interpolating for the required input parameters 
GRIDGEN sub-programme for grid generation 
HEATATM Calculation of heat transfer through a pipe exposed to the atmosphere 
HEATGR Calculation of heat transfer through a buried pipe 
INIQDB execution of MS-DOS commands to call the programme QDB in the 

QUANT software, for manual inputting of the input parameters and 

execution of calculation 

INITIAL initiating the execution of the main programme 
MCC sub-programme for second-order analysis using the MacCormack method 
MOCD sub-programme for second-order method of characteristics analysis 

downstream the break 

MOCU sub-programme for second-order method of characteristics analysis 

upstream the break 

MTRANS main/driver routine 
SBMOCAU1 first-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with uniform grid size and pipe exposed to the 

atmosphere 
SBMOCAU2 second-order calculation of new dependent parameters p, u and p using the 

method of characteristics and with uniform grid size 
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SBMOCAV 1 first-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with variable grid size and pipe exposed to the 

atmosphere 
SBMOCAV2 second-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with variable grid size and pipe exposed to the 

atmosphere 

SBMOCGUI first-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with uniform grid size and buried pipe 

SBMOCGU2 second-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with uniform grid size and buried pipe 

SBMOCGV 1 first-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with variable grid size and buried pipe 

SBMOCGV2 second-order calculation of new dependent parameters p, u and p using the 

method of characteristics, with variable grid size and buried pipe 
SBMOCVUI first-order calculation of new dependent parameters p, u and p using the 

method of characteristics and with variable grid size and without 

interpolation 

SDMOCAV2 second-order calculation of new dependent parameters p, u and p for the 

downstream section, using the method of characteristics, with variable grid 

size and pipe exposed to the atmosphere 
SDMOCGV2 second-order calculation of new dependent parameters p, u and p for the 

downstream section, using the method of characteristics, with variable grid 

size and pipe exposed to the atmosphere 

STADIBUD adiabatic compressible downstream with backward difrerencing and uniform 

grid size 
STADIBUU adiabatic compressible upstream with backward dif%rencing and uniform 

grid size 
STADIBVD adiabatic compressible downstream with backward differencing and variable 

grid size 
STADIBVU adiabatic compressible upstream with backward differencing and variable 

grid size 

STADIFUD adiabatic compressible downstream with forward difFerencing and uniform 
grid size 
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STADIFUU adiabatic compressible upstream with forward dilTerencing and uniform grid 

size 

STAD 1 FVD adiabatic compressible downstream with forward differencing and variable 

grid size 

STAD 1 FVU adiabatic compressible upstream with forward difTerencing and variable grid 

size 

STAD2UD adiabatic compressible downstream with second-order difi'erencing and 

uniform grid size 

STAD2UU adiabatic compressible upstream with second-order difTerencing and uniform 

grid size 
STAD2VD adiabatic compressible downstream with second-order ditTerencing and 

variable grid size 

STAD2VU adiabatic compressible upstream with second-order dif erencing and variable 

grid size 
STEAD driver routine for steady state analysis routines 

STINADUD adiabatic incompressible downstream of the break with uniform grid size 

STINADUU adiabatic incompressible upstream of the break with uniform grid size 

STINADVD adiabatic incompressible downstream of the break with variable grid size 

STINADVU adiabatic incompressible upstream the break with variable grid size 

STINISUD isothermal incompressible downstream of the break with uniform grid size 

STINISUU isothermal incompressible upstream of the break with uniform grid size 

STINISVD isothermal incompressible downstream of the break with variable grid size 
STINISVU isothermal incompressible upstream the break with variable grid size 

STISOUD isothermal compressible downstream with uniform grid size 
STISOUU isothermal compressible upstream with uniform grid size 
STISOVD isothermal compressible downstream with variable grid size 
STISOVU isothermal compressible upstream with variable grid size 
STNONAUD non-adiabatic non-isothermal compressible downstream with uniform grid 

size and pipe exposed to the atmosphere 
STNONAUU non-adiabatic non-isothermal compressible upstream with uniform grid size 

and pipe exposed to the atmosphere 
STNONAVD non-adiabatic non-isothermal compressible downstream with variable grid 

size and pipe exposed to the atmosphere 
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STNONAVU non-adiabatic non-isothermal compressible upstream with variable grid size 

and pipe exposed to the atmosphere 

SUBHTA Calculation of frictional force and heat transfer through a pipe exposed to 

the atmosphere 
SUBHTG Calculation of frictional force and heat transfer through a buried pipe 

SYSDATA inputting general system and gas data 

TRANS driver routine for transient analysis before the break 

WKL sub-programme for third-order analysis using the Warming-Kutter-Lomax 

method 

XSVBKSB driver routine for solution of linear simultaneous equations 

XZRHQR4 driver routine for solution of fourth-order polynomial. 

YESNO prompting the user to answer YES (Y) or NO (N) 

NOTE: 

(i) The names of the subroutines used for first- and second-order approximations in the 

method of characteristics, for transient analysis before the break are obtained by 

replacing the first two letters of those used after the break, i. e. SB with letters SN. 

(ii) The names of routines used for transient analysis are obtained by replacing the first 

two letters of those used after the break, i. e. BR with letters TR. 

(iii) The names of sub-routines and routines used in the case of buried pipeline are 

obtained by replacing the letter A in the names of those used for pipeline which are 

exposed to the atmosphere, by the letter G. 
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