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Lévy processes induced by Dirichlet (B-) splines:

modelling multivariate asset price dynamics

Vladimir K. Kaishev∗

Cass Business School, City University London, UK

Abstract

We consider a new class of processes, called LG processes, defined

as linear combinations of independent gamma processes. Their distribu-

tional and path-wise properties are explored by following their relation

to polynomial and Dirichlet (B-) splines. In particular, it is shown that

the density of an LG process can be expressed in terms of Dirichlet (B-)

splines, introduced independently by Ignatov and Kaishev (1987, 1988,

1989a,b) and Karlin et al. (1986). We further show that the well known

variance-gamma (VG) process, introduced by Madan and Seneta (1990),

and the Bilateral Gamma (BG) process, recently considered by Küchler

and Tappe (2008) are special cases of an LG process. Following this LG

interpretation, we derive new (alternative) expressions for the VG and

BG densities and consider their numerical properties. The LG process

has two sets of parameters, the B-spline knots and their multiplicities,

and offers further flexibility in controlling the shape of the Levy density,

compared to the VG and the BG processes. Such flexibility is often desir-

able in practice, which makes LG processes interesting for financial and

insurance applications.

Multivariate LG processes are also introduced and their relation to multi-

variate Dirichlet and simplex splines is established. Expressions for their

joint density, the underlying LG-copula, the characteristic, moment and

cumulant generating functions are given. A method for simulating LG

sample paths is also proposed, based on the Dirichlet bridge sampling of
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Gamma processes, due to Kaishev and Dimitrova (2009). A method of mo-

ments for estimation of the LG parameters is also developed. Multivariate

LG processes are shown to provide a competitive alternative in modelling

dependence, compared to the various multivariate generalizations of the

VG process, proposed in the literature. Application of multivariate LG

processes in modelling the joint dynamics of multiple exchange rates is

also considered.

Keywords: LG (Lévy) process; (multivariate) variance gamma process; bi-

lateral gamma process; Dirichlet spline; B-spline; simplex spline; Dirichlet

bridge sampling; cumulants; FX modelling;

1 Introduction

An important strand of literature on financial modelling in recent years is de-

voted to developing more realistic stochastic models incorporating appropriate

Lévy processes as drivers of the price dynamics of financial assets. Examples

of such processes are the Variance Gamma (VG) process introduced by Madan

and Seneta (1990) (see also Madan et al. 1998) and the so called Bilateral

Gamma (BG) process considered recently by Küchler and Tappe (2008). The

three parameter VG process of Madan et al. (1998) is constructed by randomly

changing the time in a Brownian motion with certain drift and volatility pa-

rameters, following a Gamma process with unit mean rate and certain variance

rate parameter. The BG process is a generalization of the VG process and its

increments have a four parameter Bilateral Gamma distribution, which repre-

sents two Gamma distributions, one for the positive and one for the negative

half-lines, adjoined together at the origin. Both VG and BG processes are

pure jump, infinite activity, finite-variation, Lévy processes, that inherit these

properties from the Gamma processes underlying their construction. For an

excellent account on properties of Gamma processes which play an important

role throughout this paper, we refer to Yor (2007).

The exponential VG process has proved a successful alternative to Geometric

Brownian motion in a number of applications, for example in option pricing

(see Kaishev and Dimitrova 2009 and the references therein) and in credit risk
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modelling (see Schoutens and Cariboni 2009). The ability of the VG process

to capture both upward and downward jumps as well as very small movements

(jitters) in stock prices have been highlighted by Stein et al. (2007) who give an

extensive list of further references on the VG model and its applications.

Many real life financial applications require modelling the joint dynamics of

multiple, possibly dependent asset price processes. A typical example would

be the necessity to model the joint movement of foreign currencies exchange

rates. In such cases, developing models involving appropriate multivariate Lévy

processes, capable of capturing different dependence patterns is of utmost im-

portance. In order to meet such demands, attempts to extend the VG model to

more than one dimension have been undertaken in several directions. In their

seminal paper, Madan and Seneta (1990) propose a multivariate VG process,

defined through a multivariate correlated Brownian motion, subordinated by

a common Gamma process representing the common stochastic business clock.

There are two sources of dependence in this model, one is the common Gamma

clock and the second one is the correlation between the Brownian motions.

We refer to this model as Common Clock Variance Gamma (CCVG) model (cf.

Deelstra and Petkovic 2010). Luciano and Schoutens (2006) considered a special

case of a CCVG model with zero correlation between the univariate Brownian

motions. The level of dependence in this construction is controlled only through

the common Gamma variance rate parameter which imposes some limitations

on its flexibility (see the numerical illustration in section 4).

Further generalizations of this construction, due to Luciano and Semeraro

(2007) and Semeraro (2008), allow for a decomposition of the time change in

a common and idiosyncratic parts. Calibration to option pricing of CCVG

with non-zero correlation is performed in Leoni and Schoutens (2008). For an

overview of other constructions based on multivariate Lévy processes, in the

context of option pricing, see Deelstra and Petkovic (2010).

The univariate BG process with its four parameters offers somewhat ex-

tended flexibility, compared to the univariate VG. However, to the best of our

knowledge, no multivariate versions of the BG process have been considered in

the literature.

In this paper we propose a new class of Lévy processes defined as linear
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combinations of independent Gamma processes. In what follows, it will be

convenient to refer to such linear combinations as LG processes. It is directly

verified (see section 2) that both the Variance Gamma process and the Bilateral

Gamma process are special cases of an LG process represented as particular

linear combinations of two Gamma processes.

Our aim in this paper is to introduce univariate and multivariate LG pro-

cesses, explore their properties and illustrate how they can be applied in mod-

elling the joint behavior of empirical asset price processes. As the VG and

the BG, LG processes also preserve some of the nice features of the Gamma

processes used for their construction. They are pure jump Lévy processes of

finite variation which may jump infinitely many times on a finite time interval.

We show that LG processes are intrinsically related to the so called Dirichlet

splines and polynomial B-splines, and posses some of their interesting geometric

properties. In particular, we give explicit expressions, in terms of multivariate

Dirichlet (B-) splines, of the joint density of the LG distribution, generating

multivariate LG processes.

Dirichlet splines, which have been independently introduced by Karlin et al.

(1986) and by Ignatov and Kaishev (1987, 1988, 1989a,b) who call them gen-

eralized B-splines, are densities of linear transformations of Dirichlet random

variables. When the shape parameters of the underlying Gamma processes are

integer, the corresponding LG density is expressed in terms of multivariate sim-

plex splines, introduced by de Boor (1976). We give also some new expressions,

in terms of univariate Dirichlet (B-) splines, for the densities of the VG and

BG distributions. The proposed approach allows for the uniform treatment of

the wide class of LG processes in terms of multivariate Dirichlet (B-) splines for

which methods of their efficient numerical evaluation exist (see section 3).

The structure of the paper is as follows. In section 2, we introduce univariate

LG processes, note their relation to the Variance Gamma and Bilateral Gamma

processes, explore their distributional properties and give the Lévy triplet and

martingale conditions, which characterize them. In section 3, we introduce

the multivariate version of an LG process, establish expressions in terms of

multivariate Dirichlet (B-) splines for the joint density of its underlying joint

LG distribution, give its underlying LG copula, its characteristic, moment and
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cumulant generating functions.

We also provide a method of moments, based on expressing them in terms

of cumulants, for estimating the LG parameters. In Section 4, we illustrate

how the multivariate LG processes are applied in modelling the dynamics of the

joint movement of the exchange rates of a set of currencies. Section 5 provides

conclusions and some further comments.

2 Linear combinations of Gamma (LG-) pro-

cesses

Our aim here will be to consider a new class of stochastic processes, defined as

linear combinations of independent Gamma processes and explore their distri-

butional and path-wise properties.

For the purpose, denote by Gi (t;αi, λ), i = 0, . . . , n a collection of n + 1

independent Gamma processes, defined on a probability space (Ω, F,P), with

mean rate αi/ λ > 0 and variance rate αi/λ2 > 0, where αi > 0 and λ > 0,

i = 0, . . . , n. For a fixed t, t > 0, the density of Gi (t;αi, λ) is

fGi (x; αi, λ, t) =
λαit

Γ (αit)
xαit−1e−λx,

where x > 0. Let us recall that the Gamma process, Gi (t; αi, λ), is a pure

jump, finite variation process which jumps infinitely many times up to time t

and has independent, gamma distributed increments. It plays a central role in

contemporary financial modelling. For a detailed account on the properties of

Gamma processes and their application in finance and insurance, we refer to Yor

(2007), Fu (2007), Dufresne et al. (1991), Dickson and Waters (1993), Madan

et al. (1998). We will use the gamma processes, Gi (t;αi, λ), i = 0, . . . , n, as

building blocks and define the process of interest in this paper, as follows.

Definition 2.1 Given a set of real-valued parameters δ = {δ0, . . . , δn}, define

the process LG(t; δ, α, λ, n) as a linear combination of the independent gamma

processes, Gi (t;αi, λ), i = 0, . . . , n, i.e.,

(2.1) LG(t; δ, α, λ, n) = δ0G0 (t;α0, λ) + . . . + δnGn (t;αn, λ) ,
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where α = {α0, . . . , αn}. For the sake of brevity we call such linear combina-

tions, LG processes.

In Definition 2.1 we allow δi to coalesce. However, for notational convenience

and without loss of generality in the sequel we shall assume that δi, i = 0, . . . , n,

are pairwise distinct.

In what follows, we shall sometimes abbreviate LG(t; δ, α, λ, n) to LG(t) and

the two notations will be used interchangeably.

Let us note that the three parameter Variance Gamma process, introduced

by Madan et al. (1998), is a special case of an LG process. To see this recall

that the VG process, V G(t; θ, σ, ν) is defined as

V G(t; θ, σ, ν) = B

(
G

(
t;

1
ν

,
1
ν

)
; θ, σ

)
,

where B(t; θ, σ) is a Brownian motion with drift θ ∈ R and volatility σ > 0, and

G
(
t; 1

ν , 1
ν

)
is a Gamma process with mean rate 1 and variance rate ν > 0. It is

not difficult to see that the VG process admits the alternative, LG representation

(2.2) V G(t; θ, σ, ν) = δ0G0 (t; α0, 1) + δ1G1 (t; α1, 1) ,

where δ0 = −
√

θ2+2σ2/ν−θ

2 ν, δ1 =
√

θ2+2σ2/ν+θ

2 ν; α0 = α1 = 1
ν , which is a

special case of an LG(t; δ, α, λ, n) process with λ = 1 and n = 1.

Equality (2.2) follows from the fact that the characteristic function of the

VG process (see Madan et al. 1998), can be expressed as

φV G(t)(u) =
(

1
1− iθνu + 1

2σ2νu2

) 1
ν t

=
(

1
1 + iu |δ0|

)α0t (
1

1− iuδ1

)α1t

= E
[
eiu{δ0G0(t;α0,1)+δ1G1(t;α1,1)}

]
,

where |δ0| is the absolute value of δ0. Furthermore, it is straightforward to see

that a linear combination of say, p, VG processes is also a LG process.

It can be shown that the Bilateral Gamma(BG) process, recently considered

by Küchler and Tappe (2008), is also a special case of an LG process. The BG

processes are associated with the bilateral gamma distribution, Γ (α+, λ+, α−, λ−),
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with parameters α+, λ+, α−, λ− > 0, defined as the convolution

Γ
(
α+, λ+, α−, λ−

)
:=Γ

(
α+, λ+

) ∗ Γ
(
α−,−λ−

)
,

where Γ(α, λ) is a generalized Gamma distribution with parameters α > 0,

λ ∈ R\{0}. The density of Γ(α, λ) is given by

(2.3) fBG(x;α, λ) =
|λ|α
Γ(α)

|x|α−1e−|λ||x|
(
l{λ>0}l{x>0} + l{λ<0}l{x<0}

)
,

where x ∈ R and l{·} is the indicator function. As can be seen from (2.3), when

λ > 0, this is the well-known Gamma distribution, concentrating mass on R+,

whereas, for λ < 0, the generalized Gamma distribution is simply a Gamma

distribution on the negative half axis, R−. The corresponding bilateral gamma

process, BG (t; α+, λ+, α−, λ−) is a pure jump Lévy process, whose increments

have bilateral gamma distribution and in particular, for fixed t, t > 0,

BG
(
t; α+, λ+, α−, λ−

) ∼ Γ
(
α+t, λ+, α−t, λ−

)
.

For further properties of the BG distribution and processes, and some applica-

tions in finance, we refer to Küchler and Tappe (2008).

It is directly verified that, the BG process is a four parameter generalization

of the VG process and admits the following representation as an LG process

BG
(
t; α+, λ+, α−, λ−

)
= δ0G0 (t; α0, 1) + δ1G1 (t; α1, 1) ,

where δ0 = −1 /λ− ; δ1 = 1/λ+ ; α0 = α−, α1 = α+, λ = 1 and n = 1. As in

the case of VG, linear combinations of BG processes are also LG processes.

2.1 Distributional properties

From Definition 2.1, for fixed t, say t = 1, it is directly seen that the character-

istic function, φLG(z) = E
[
eizLG(t)

]
, of a LG process is given by

φLG(z) =
n∏

j=0

(
λ

λ− iδjz

)αj

, z ∈ R.
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The cumulant generating function, Ψ(u) = lnE
[
euLG(t)

]
, u ∈ R is

Ψ(u) =
n∑

j=0

αj ln
λ

λ− δju
,

where
λ

maxj∈D− {δj} < u <
λ

maxj∈D+ {δj} ,

D− = {i ∈ I : δi < 0} , D+ = {i ∈ I : δi ≥ 0} , I = {1, . . . , n}. The cumulants

κw = Ψ(w)(0) , where

Ψ(w)(u) = (w − 1)!
n∑

j=0

αjδ
w
j (λ− δju)−w, w = 1, 2, . . .

are then obtained as

(2.4) κw = (w − 1)!
n∑

j=0

αj

λw
δw
j , w = 1, 2, . . .

We can now use (2.4) and specify the mean, µLG, the variance, νLG, the Char-

liers skewness, χLG, and the kurtosis, τLG, of LG(t) as

E[LG(t)] = µLG = κ1 =
∑

i∈D+

αiδi

λ
−

∑

i∈D−

αi |δi|
λ

,

Var[LG(t)] = νLG = κ2 =
∑

i∈D+

αiδ
2
i

λ2
+

∑

i∈D−

αi |δi| 2
λ2

χLG = κ3/ (κ2) 3/2 =
n∑

j=0

2αjδ
3
j λ−3/




n∑

j=0

αjδ
2
j λ−2




3/2

τLG = 3 + κ4/ (κ2) 2 = 3 +
n∑

j=0

6αjδ
4
j λ−4/




n∑

j=0

αjδ
2
j λ−2




2

.

Let us now give an expression for the density of LG(t). For the purpose, we will

need some notation and background results. Denote by

Sn =

{
x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, for all i,

n∑

i=1

xi ≤ 1

}
,
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the standard n-simplex and recall that the random vector (θ0, . . . , θn), has

Dirichlet distribution D (α0, . . . , αn) on Sn, with (real) parameters α0 > 0,

. . . , αn > 0, i.e., (θ0, . . . , θn) ∈ D (α0, . . . , αn), if θ0 = 1− θ1 − . . .− θn and the

joint probability density of θ1, . . . , θn is

fθ1,...,θn
(x) =

Γ (α0 + . . . + αn)∏n
i=0 Γ (αi)

n∏

j=0

x
αj−1
j 1{x∈Sn},

where x0 = 1−x1−. . .−xn. We will use the shorter notation (θ0, . . . , θn) ∈ D(1)

if αj = 1, j = 0, . . . , n. We will now establish the following property of a LG

process, which will be used in the sequel.

Lemma 2.2 For a fixed t, t > 0, the process LG(t; δ, α, λ, n), defined in (2.1),

admits the representation

(2.5) LG(t; δ, α, λ, n) = B(t)Γ(t),

where Γ(t) =
∑n

i=0 Gi (t; αi, λ), B(t) = δ0θ0 + . . . + δnθn and the random vari-

ables θ0, . . . , θn, have Dirichlet distribution D (α0t, . . . , αnt) with (real) param-

eters α0t > 0,. . . , αnt > 0, i.e., (θ0, . . . , θn) ∈ D (α0t, . . . , αnt) and B(t) is

independent of Γ(t).

Proof: Representation (2.5) follows from the fact that, for fixed t, the r.v.s

θ0, . . . , θn, coincide in distribution with the random variables Gi (t; αi, λ)/ Γ(t),

i = 0, . . . , n (see e.g. Wilks 1962), and by the theorem of Sukhatme (1937), the

latter are independent of Γ(t) which yields the independence of B(t) and Γ(t). ¤

Lemma 2.2 is fundamental in the study of LG processes since it links their

underlying LG distribution to the classical polynomial splines and in general to

the so called, generalized B-splines (known also as Dirichlet splines). This link,

as will be demonstrated, provides a different, spline-approximation insight into

the distributional properties of LG processes. It is interesting, both from the

theoretical and numerical point of view, since the theory of polynomial spline

functions is well developed (see e.g. Schumaker 1981) and offers also numerically

efficient recurrence formulas for the evaluation of (B-)splines (see de Boor 2001)

which, as we will see, can be useful in dealing with LG distributions.
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In order to follow the link of the distribution of LG(t; δ, α, λ, n) to splines,

provided by Lemma 2.2, let us first note that, for integer values of the param-

eters α0t > 0,. . . , αnt > 0, the density, fB(t)(x), of the random variable, B(t),

coincides with a polynomial B-spline. This is an important probabilistic inter-

pretation of B-splines, established independently by Ignatov and Kaishev (1985,

1989a) and Karlin et al. (1986). In order to give a more precise formulation of

this result, which will be used in the sequel, let us recall some background prop-

erties of polynomial B-splines. Let δ = {δ0, . . . , δn} denote a set of pairwise

distinct real values δ0 < . . . < δn, called knots of the spline and denote by

α = {α0, . . . , αn} the set of their corresponding integer-valued multiplicities.

The multiplicity αi = 1, 2, . . . equals the number of repetitions of the knot δi in

the set of possibly coincident knots of the spline. Let us recall that the poly-

nomial B-spline M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
of order r = α0 + . . . + αn − 1 (degree r − 1)

with knots δ = {δ0, . . . , δn} of multiplicities α = {α0, . . . , αn} coincides with a

polynomial of degree r− 1 between its adjacent (pairwise distinct) knots and is

defined as the r-th order divided difference of the function f(y) = r(y − x)r−1
+ ,

i.e.,

M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
=

[
δ0,
α0,

. . . ,
...,

δn
αn

]
f(y)

where the notation
[
δ0,
α0,

. . . ,
...,

δn
αn

]
f(y) means that the arguments δ0, . . . , δn of the

divided difference are repeated α0, . . . , αn times, respectively.

The B-spline M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
has the following explicit representations. If

knots are pair-wise distinct and their multiplicities α0 = 1, . . . , αn = 1, then

M

(
x; δ0,

1,
. . . ,
...,

δn
1

)
= n

n∑

i=0

(δi − x)n−1
+ /

n∏

j=0,j 6=i

(δi − δj) n−1

If some of the knots coincide, i.e., α0 ≥ 1, . . . , αn ≥ 1, then

M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
=

n∑

i=0

Dαi−1ξi (δi) / (αi − 1)!,

where ξi(y) = r(y−x)r−1
+ /

∏n
j=0,j 6=i (y − δj) αj and Dαi−1 denotes the (αi − 1)-

th derivative.

The following theorem, due to Ignatov and Kaishev (1985, 1989a) establishes
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an important probabilistic interpretation of polynomial B-splines which we will

use to study the distributional properties of LG processes.

Theorem 2.3 (Ignatov and Kaishev 1985, 1989a). The polynomial B-spline

M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
of degree α0+. . .+αn−2 coincides with the probability density

function, fB(x), of the random variable

B = δ0θ0 + . . . + δnθn,

where the random variables θ0, . . . , θn have joint Dirichlet distribution with pa-

rameters, α0, . . . , αn, i.e., (θ0, . . . , θn) ∈ D (α0, . . . αn).

Let us note that the Dirichlet parameters α0, . . . , αn, may in general take

real values. In this case the density, fB(x), has been viewed by Ignatov and

Kaishev (1987, 1988, 1989b) as a generalized B-spline. Independently, Karlin

et al. (1986) have also considered similar generalization of B-splines. Later,

such densities have been named Dirichlet splines (see Neuman 1994; zu Castell

2002). Here and thereafter, we will use the two terms, generalized B-splines and

Dirichlet splines interchangeably. For consistency with the polynomial B-spline

notation, we will alternatively denote, fB(x) as Mg

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
, to stress its

interpretation as a generalized B-spline, i.e. a Dirichlet spline. We will make

use of the following properties of generalized B-splines.

Let δ = {δ0, . . . , δn} be the set of pairwise distinct knots, δi ∈ R, and

α = {α0, . . . , αn} be the set of (positive real) multiplicities of δ = {δ0, . . . , δn}.
Denote by α̂i the integer part of αi, and by ᾱi = αi − α̂i its fractional part.

Without loss of generality, assume that ᾱi > 0, i = 0, . . . , k, and that ᾱi = 0,

i = k + 1, . . . , k + m, (n = k + m).

The generalized B-spline can be expressed as the following divided difference

(see Ignatov and Kaishev 1988, 1989b)

Mg

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
=





[
δ0,
α̂0,

. . . ,
...,

δk,
α̂k,

δk+1,
αk+1,

. . . ,
...,

, δk+m
αk+m

]
H(u), if x ∈ [[D]];

0, otherwise.
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where

H(u) =
Γ (α0 + . . . + αk+m)

Γ(l − 1)Γ (ᾱ0) . . . Γ (ᾱk)

∫

Sk

(
u− x +

k∑

i=0

(δi − u) yi

)l−2

+

yᾱ0−1
0 . . . yᾱk−1

k dy0 . . . dyk,

l =
∑k+m

i=0 α̂i, (l ≥ 2), Sk = {(y0, . . . , yk) : 0 ≤ yi, i = 0, . . . , k, y0 + . . . + yk ≤ 1}
and D is the set of all δi’s for which α̂i ≥ 1, [[D]] denotes the convex hull of D.

The numerical evaluation of generalized B-splines is facilitated by their rep-

resentation in terms of classical polynomial B-splines, due to Kaishev (1991).

For further properties of generalized B-splines (i.e. Dirichlet splines) we refer

to Neuman (1994) and zu Castell (2002).

We can now formulate and prove the following proposition which expresses

the density of LG(t) in terms of Dirichlet splines.

Proposition 2.4 For fixed t, the density, fLG(t)(x), of LG(t; δ, α, λ, n) is given

by

(2.6)

fLG(t)(x) =
∫ +∞

0

λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)
y(α0+...+αn)t−2e−λyMg

(
x

y
; δ0,
α0t,

. . . ,
...,

δn
αnt

)
dy,

where Mg

(
x
y ; δ0,

α0t,
. . . ,
...,

δn
αnt

)
, is a Dirichlet spline with knots, δ0, . . . , δn, of (real)

multiplicities, α0t, . . . , αnt.

Proof: By Lemma 2.2, we have that LG(t; δ, α, λ, n) is expressed as a product

of two independent random variables with known densities. More precisely, the

random variable, Γ(t) =
∑n

i=0 Gi (t; αi, λ), is gamma distributed with parame-

ters (α0 + . . . + αn) t and λ, i.e., Γ(t) ∼ Gamma ((α0 + . . . + αn) t, λ), whereas,

by Theorem 2.3, the density fB(t)(x), of the random variable, B(t), coincides

with a generalized B-spline. We will denote the density of Γ(t), as fΓ(t)(x).

Thus, we have

fLG(t)(x) =
d

dx
P (B(t)Γ(t) ≤ x) =

d

dx
P

(
B(t) ≤ x

Γ(t)

)

=
d

dx

∫ +∞

0

P

(
B(t) ≤ x

y

)
fΓ(t)(y)dy

=
∫ +∞

0

fB(t)

(
x

y

)
fΓ(t)(y)

1
y
dy.

12



The result now follows, noting that

(2.7) fΓ(t)(y) =
λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)
y(α0+...+αn)t−1e−λy,

and that fB(t)(x/y) coincides with a generalized B-spline, Mg

(
x
y ; δ0,

α0t,
. . . ,
...,

δn
αnt

)
.

¤

Several properties of the process LG(t; δ, α, λ, n) easily follow from Proposi-

tion 2.4.

Corollary 2.5 If αit are integer valued, the density, fLG(t)(x), of LG(t; δ, α, λ, n)

is given by

(2.8)

fLG(t)(x) =
∫ +∞

0

λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)
y(α0+...+αn)t−2e−λyM

(
x

y
; δ0,
α0t,

. . . ,
...,

δn
αnt

)
dy,

where M

(
x
y ; δ0,

α0t,
. . . ,
...,

δn
αnt

)
, is a polynomial B-spline with knots, δ0, . . . , δn, of

multiplicities, α0t, . . . , αnt.

Corollary 2.6 The density of the increments, LG(t+h; δ, α, λ, n)−LG(t; δ, α, λ, n),

h > 0 is given by

∫ +∞

0

λ(α0+...+αn)h

Γ ((α0 + . . . + αn) h)
y(α0+...+αn)h−2e−λyMg

(
x

y
; δ0,
α0h,

. . . ,
...,

δn
αnh

)
dy.

Proof: We have

LG(t + h; δ, α, λ, n)− LG(t; δ, α, λ, n) =

δ0 [G0 (t + h; α0, λ)−G0 (t;α0, λ)]+. . .+δn [Gn (t + h;αn, λ)−Gn (t; αn, λ)] ,

which, for fixed t and h > 0, is a linear combination of gamma variates gi =

[Gi (t + h; αi, λ)−Gi (t;αi, λ)] with density

fgi (x; αi, λ, h) =
λαih

Γ (αih)
xαih−1e−λx.

13



Obviously, for fixed t and h > 0 we can write

LG(t + h; δ, α, λ, n)− LG(t; δ, α, λ, n) =

[
(δ0g0 + . . . + δngn) /

n∑

i=0

gi

][
n∑

i=0

gi

]
,

which is in the form of (2.5). Hence, the Corollary follows from Lemma 2.2 and

Theorem 2.3. ¤

We conclude this section by noting that the following proposition which is a

direct consequence of the scaling property of the gamma distribution provides

an alternative way of expressing the underlying LG distribution, as a linear

combination of n+1 gamma variates with different shape and scale parameters.

Proposition 2.7 The process LG(t; δ, α, λ, n) admits the representation

(2.9)

LG(t; δ, α, λ, n) = sgn (δ0)G0 (t; α0, λ/ |δ0|) + . . . + sgn (δn)Gn (t; αn, λ/ |δn|) .

It has to be noted that extensive literature exists which deals with the dis-

tribution underlying (2.9), in the special case when sgn (δj) = +1, j = 0, . . . , n.

In the latter case, an explicit formula for the density of LG(t; δ, α, λ, n) when t

is fixed, t > 0, is given by Moschopoulos (1985).

2.2 The Variance Gamma and the Bilateral Gamma spe-

cial cases

New expressions for the density of the Variance Gamma, V G(t; θ, σ, ν) and

the Bilateral Gamma processes directly follow from their LG representation,

Proposition 2.4 and Corollary 2.5. We have

Corollary 2.8 For fixed t, the density, fV G(t)(x; θ, σ, ν), of the Variance Gamma

process, V G(t; θ, σ, ν) is given by

(2.10) fV G(t)(x; θ, σ, ν) =

∫ +∞

0

1
Γ(2t/ν)

y2t/ν−2e−yMg


x

y
;−

√
θ2 + 2 σ2/ ν − θ

2
ν,

t/ν

√
θ2 + 2 σ2/ ν + θ

2
ν

t/ν


 dy,
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where Mg

(
x
y ; ·

t/ν
, ·
t/ν

)
coincides with a classical polynomial B-spline of degree

2t
ν − 2 if t

ν is integer.

Recall that a different expression for the density fV G(t)(x; θ, σ, ν), has been given

by Madan et al. (1998) as follows

fV G(t)(x; θ, σ, ν) =
∫ +∞

0

1
σ
√

2πy
e
− (x−θy)2

2σ2y
1

ν
t
ν Γ(t/ν)

yt/ν−1e−
y
ν dy.

For the density of the Bilateral Gamma process we have the following result.

Corollary 2.9 For fixed, t > 0, the density, fBG(t)(x), of the Bilateral Gamma

process, BG (t; α+, λ+, α−, λ−), is given by

(2.11)

fBG(t)(x) =
∫ +∞

0

1
Γ ((α− + α+) t)

y(α−+α+)t−2e−yMg

(
x

y
;− (

λ−
)−1

,
α−t

(
λ+

)−1

α+t

)
dy.

where Mg

(
x
y ; ·

α−t
, ·
α+t

)
coincides with a polynomial B-spline of degree α−t +

α+t− 2 if the parameters, α−t, α+t, are integer.

For comparison with (2.11), for t = 1, the density, fBG(t)(x) given by Küchler

and Tappe (2008) is

fBG(x) =
(λ+)α+

(λ−)α−

(λ+ + λ−)
α++α−

2 Γ (α+)
x

α0+α1
2 −1e−

x(λ+−λ−)
2 W (α+−α−)

2 ,
(α++α−−1)

2

(
x

(
λ+ + λ−

))
,

where Wω,µ(z) is the Whittaker function defined as

Wω,µ(z) =
zωe−z/2

Γ(µ− ω + 1/2)

∫ +∞

0

tµ−ω−1/2e−t

(
1 +

t

z

)µ+ω−1/2

dt

for µ− ω > − 1
2 .

In conclusion, let us note that expressions (2.6), (2.8) (2.10) and (2.11),

involving generalized or polynomial B-splines, are numerically appealing, due

to the recurrent computation of polynomial B-splines (see de Boor 1976) and

the cubature formula for generalized B-splines (i.e. Dirichlet splines) in terms

of polynomial B-splines, due to Kaishev (1991).
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2.3 The Lévy triplet and related properties

As known, (see e.g. Cont and Tankov 2004, section 3.4), the characteristic

triplet, (γ, A, κ), i.e., the Lévy triplet of a (multivariate) Lévy process, com-

prised by, a (real) vector γ, a positive definite (covariance) matrix A and a pos-

itive measure κ, related to its Lévy-Itô decomposition, uniquely determines its

distribution. Following the Lévy-Khinchin representation formula, it is possible

to express the characteristic function, φLG(z) = E
[
eizLG(t)

]
, of a LG process,

in terms of its corresponding Lévy triplet(γ, A, κ) and deduce some path-wise

properties. The following Proposition gives the Lévy triplet of an LG process.

Proposition 2.10 LG(t; δ, α, λ, n) is a Lévy process with characteristic triplet

(γ, 0, κLG), where the Lévy measure κLG(dx) is given by

(2.12) κLG(dx) =


 ∑

i∈D−

αie
−λ

|x|
|δi|

|x| 1x<0 +
∑

i∈D+

αie
−λ x

δi

x
1x>0


 dx

with D− = {i ∈ I : δi < 0}, D+ = {i ∈ I : δi ≥ 0}, I = {0, . . . , n} and

(2.13) γ =
1
λ


 ∑

i∈D+

αiδi

(
1− e

− λ
δi

)
−

∑

i∈D−

αi |δi|
(

1− e
− λ

|δi|
)

 < ∞.

Proof: Since LG(t; δ, α, λ, n) is defined as a linear combination of the gamma

processes, Gi (t; αi, λ), i = 0, . . . , n, which are Lévy processes, LG(t; δ, α, λ, n) is

also a Lévy process (see, e.g. Theorem 4.1 of Cont and Tankov 2004). Expression

(2.12) for the Lévy measure κLGdx follows from the additivity property of the

Lévy measure (see e.g. Proposition 5.3, Theorem 4.1 and Example 4.1 of Cont

and Tankov 2004) and representation (2.9), noting that the Lévy measure of

the process βi(t) = sgn (δi) Gi (t; αi, λ/ |δi|) is

κβi(dx) =
(

αi exp (−λ|x| /|δi| )
|x| 1{x<0,δi<0} +

αi exp (−λx/δi)
x

1x>0,δi>0

)
dx.

Clearly, there is no Brownian motion component in the definition of LG(t; δ, α, λ, n),

hence the second parameter of the characteristic triplet is 0.
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Due to the fact that, the drift parameter of the gamma process, Gi (t; αi, λ),

is 0, from Corollary 3.1 of Cont and Tankov (2004), we have that

(2.14) γ =
∫

|x|≤1

xκLG(dx),

and by substituting (2.12) in (2.14) we obtain (2.13). ¤

From the analytical properties of its characteristic triplet, (γ, 0, κLG), it is

straightforward to deduce that the LG process has piece-wise constant trajecto-

ries, is a process of finite variation and infinite activity (i.e., may have infinitely

many small jumps). These path-wise properties are in fact inherited from the

gamma processes, underlying the definition of an LG process (see Definition

2.1). Let us also note that, the LG process offers extended flexibility in con-

trolling its Lévy measure, κLG(dx), compared to the VG and BG processes. In

the case of an LG process, one can manipulate its parameters and alter its Lévy

measure, κLG(dx) so that the distribution of the size of only the positive jumps,

or only the negative jumps changes, (see Fig. 1, right panel). This may often

be desirable in practical applications, but is not possible for the VG process.

Changing the VG parameters, θ, σ and ν, affects both the positive and the

negative parts of its Lévy measure, which is illustrated in Fig. 1, left panel.

As known (see Proposition 3.18 of Cont and Tankov 2004), the exponent of

a (univariate) Lévy process with characteristic triplet (γ, A, κ) is a martingale,

if and only if
∫
|x|≥1

exκ(dx) < ∞ and

(2.15)
A

2
+ γ +

∫ +∞

−∞

(
ex − 1− x1|x|≤1

)
κLG(dx) = 0.

Based on this result, Propositions 2.11 and 2.12 establish conditions for the

exponent of an LG process to be a martingale, a property which is important

in financial applications.

Proposition 2.11 Given n ≥ 1, αi > 0,
∫
|x|≥1

exκLG(dx) < ∞ if and only if

λ > maxi∈D+ {δi}.
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Figure 1: left panel: Lévy measure of a VG process for the following four sets of

parameters θ = −0.29, σ = 0.19, ν = 0.25 (solid line); θ = −0.99, σ = 0.19, ν = 0.25,

(dashed); θ = −0.29, σ = 0.99, ν = 0.25 (dotted) and θ = −0.29, σ = 0.19, ν = 0.95

(dot-dashed); right panel: The LG Lévy measure for λ = 1, and the following three

sets of parameters δ0 = −0.11, δ1 = 0.04, α0 = α1 = 3.99 (solid line); δ0 = −1.13,

δ1 = 0.04, α0 = α1 = 3.99 (dashed); and δ0 = −0.11, δ1 = 0.04, α0 = 11.98, α1 = 3.99

(dotted);

Proof: It can be directly verified, substituting κLG(dx) from (2.12) that, for

x > 0,

(2.16)
∫

|x|≥1

exκLG(dx) =
∑

i∈D+

∫ +∞

1

αi exp [−x (λ/δi − 1)]
x

dx.

We have that,

∫ +∞

1

αi exp [−x (λ /δi − 1)]
x

dx =





αiE1 (λ /δi − 1) < ∞, if λ > δi

diverges, otherwise
,

where E1 (λ /δi − 1) denotes the Exponential Integral (defined in section 5.1.4

of Abramowitz and Stegun 1972), evaluated at λ /δi − 1 > 0, from where it can

be seen that, the sum in (2.16) will converge, if and only if λ > maxi∈D+ {δi}.
Similarly, it can be verified that, for x < 0, we have that

∫

|x|≥1

exκLG(dx) =
∑

i∈D−

∫ +∞

1

αi exp [−|x| (λ/ |δi|+ 1)]
|x| dx = −

∑

i∈D−

αiEi (λ /δi − 1) < ∞,

where Ei (λ /δi − 1) denotes the Exponential Integral function (defined in sec-

tion 5.1.2 of Abramowitz and Stegun 1972), evaluated at λ /δi − 1 < 0, from
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where it can be seen that in order for the sum in (2.16) to converge, no addi-

tional conditions on the parameters λ and δineed to be imposed. ¤

Proposition 2.12 The exponential LG process, exp(LG(t; δ, α, λ, n)) is a (lo-

cal) martingale, if and only if

(2.17)
∑

i∈D+

αi ln
(

1− δi

λ

)
= −

∑

i∈D−

αi ln
(

1 +
|δi|
λ

)
.

Proof: From (2.15) and (2.14), noting that, for a LG process, A = 0, it follows

that exp(LG(t; δ, α, λ, n)) is a martingale if and only if

(2.18)
∫ +∞

−∞
(ex − 1)κLG(dx) = 0.

We have

∫ +∞

−∞
(ex − 1)κLG(dx) =

∫ 0

−∞
x

∞∑

j=0

xj

(j + 1)!

∑

i∈D−

αi
e
−λ

|x|
|δi|

|x| dx +
∫ +∞

0

x

∞∑

j=0

xj

(j + 1)!

∑

i∈D+

αi
e
−λ x

δi

x
dx =

∑

i∈D+

αi

∞∑

j=0

∫ +∞

0

xj

(j + 1)!
e
−λ x

δi dx−
∑

i∈D−

αi

∞∑

j=0

∫ 0

−∞

xj

(j + 1)!
e
λ x

|δi| dx =

∑

i∈D+

αi

∞∑

j=0

(
δi

λ

)j+1 1
j + 1

−
∑

i∈D−

αi

∞∑

j=0

(−1)j

( |δi|
λ

)j+1 1
j + 1

=

−
∑

i∈D+

αi ln
(

1− δi

λ

)
−

∑

i∈D−

αi ln
(

1 +
|δi|
λ

)
,

(2.19)

where ln
(
1− δi

λ

)
is well defined, given that, λ > maxi∈D+ {δi}, as required by

Proposition 2.11. From (2.19) it follows that (2.18) is satisfied if and only if

(2.17) is satisfied. ¤

Remark 2.13 It is not difficult to see that the right-hand side of (2.19) vanishes
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if n ≥ 1, the sets D− and D+ have equal cardinality and

−αi− ln
(

1 +
|δi− |

λ

)
= αi+ ln

(
1− δi+

λ

)
,

where i− ∈ D− and i+ ∈ D+, which holds true if for example

(2.20) −αi− = αi+ , |δi− | = − δi+λ

δi+ − λ
and λ > max

i∈D+
{δi} .

Hence, for a fixed n ≥ 1, one can always chose a set {δi}, i ∈ D+ and

select values, λ, |δi− |, i− ∈ D−, and αi, i ∈ I, according to (2.20), so that

(2.19) vanishes and the model, exp(LG(t; δ, α, λ, n)), is a (local) martingale. In

contrast, it is not difficult to see from the LG representation, (2.2), of a VG

process that, there does not exist a set of VG parameters, (θ, σ, ν) for which

exp(V G(t; θ, σ, ν)) is a martingale. However, in applications, one will typically

consider VG processes with an additional linear drift in which case it is of course

possible to turn the exponential VG into a martingale, as illustrated by (2.22)

for the LG model with linear drift.

Remark 2.14 Let us note that the statements

(1) exp(LG(t; δ, α, λ, n)) is a martingale

(2) exp(LG(t; δ, α, λ, n)) is a local martingale

are equivalent. The equivalence, (1) ⇔ (2) follows from Proposition 1.47,

Chapter 1 of Jacod and Shiryaev (2003) and Lemma 4.4 (part 3.) of Kallsen

(2000). Therefore, if condition (2.17) is satisfied, the exp(LG(t; δ, α, λ, n)), is

in fact a local martingale. Furthermore, noting that exp(LG(t; δ, α, λ, n)) is

neither increasing nor decreasing, it directly follows from Theorem 4.6 (a) of

Cherny and Shiryaev (2002) (see also Jakubenas 2002) that the exponential LG

model, exp(LG(t; δ, α, λ, n)) satisfies the “No Free Lunch with Vanishing Risk”

property, introduced by Delbaen and Schachermayer (1994) as a continuous time

analogue of the no arbitrage condition.

We conclude this section by briefly indicating that the (univariate) LG pro-

cess can be used for modelling asset price dynamics. Define the (risk-neutral)

20



asset price process, S(t) as

(2.21) S(t) = S(0) exp((r − q + ω)t + LG(t; δ, α, λ, n))

where r - the (constant) risk-free rate, q - the dividend yield, and the constant

ω is chosen so that E(S(t)) = S(0) exp((r − q)t), i.e.

(2.22) ω =
∑

i∈D+

αi log
(

1− δi

λ

)
+

∑

i∈D−

αi log
(

1 +
|δi|
λ

)

which follows from Proposition 2.12. We therefore require λ > maxi∈D+ {δi}.
Note that, in the special case of the V G(t; θ, σ, ν) process, (2.22) yields

ω =
1
ν

log
(

1− θν − σ2ν

2

)
,

where 1 >

√
θ2+2σ2/ν+θ

2 ν (which implies 1 >
(
θ + σ2

/
2
)
ν).

The model given by (2.21) can be used in (exotic) option pricing and pricing

participating life insurance contracts. Due to volume limitations, details of how

this is done are outside the scope of this paper and will appear elsewhere.

3 Multivariate LG processes

In what follows we will consider the multivariate generalization of univariate

LG processes, defined in section 2, which, as we will illustrate in section 4, can

be very useful in modelling the joint dynamics of possibly dependent prices of

multiple assets. We start with the following definition.

Definition 3.1 Define the multivariate LG process, LG(t) = (LG1(t), . . . , LGs(t))
′,

(s ≥ 1) as

LG1(t) = δ1,0G0 (t;α0, λ) + . . . + δ1,nGn (t;αn, λ)
...(3.1)

LGs(t) = δs,0G0 (t;α0, λ) + . . . + δs,nGn (t; αn, λ) ,

where δj = (δ1,j , . . . , δs,j)
′, δj ∈ Rs, j = 0, . . . , n, are pairwise distinct, n ≥ s,
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λ > 0, α = {α0, . . . , αn}, αj > 0, j = 0, . . . , n and Gj (t; αj , λ), j = 0, . . . , n are

independent Gamma processes defined on a probability space (Ω, F,P).

From Definition 3.1, it can be seen that all coordinates, LGi(t), i = 1, . . . , s

jump together. It should also be noted that simulation of a multivariate LG

trajectory is straightforward since it requires simulating Gamma sample paths

which can be done very efficiently, applying the Dirichlet bridge sampling method,

recently proposed by Kaishev and Dimitrova (2009).

Before proceeding further, we will need to introduce the following notation.

For a given set A ⊂ Rs, 1A(x), [[A]], vols(A), dim(A) denotes the indicator

function, the closed convex hull, the s-dimensional Lebesgue measure and the

dimension respectively. By x, y, z, . . . we denote elements (vectors) in the

Euclidean space Rs (s ≥ 1), i.e., x = (x1, . . . , xs)
′ where, ′, means transposition

and we use subscripts to index vectors, i.e., xj = (x1,j , . . . , xs,j)
′, j = 0, 1, . . ..

We denote by x · y =
∑s

i=1 xiyi the inner product of x, y ∈ Rs.

3.1 Distributional properties

In what follows, we study distributional properties of multivariate LG processes

and establish their relation to multivariate splines. For the purpose we will need

to introduce multivariate B-splines, known also as simplex splines. A simplex

spline is a multivariate version of the univariate polynomial B-spline defined in

Section 2.1. Simplex splines, were first introduced by de Boor (1976) as follows.

Definition 3.2 (de Boor, 1976) Let S = [[y0, . . . , yr]] be any r-simplex in Rr,

Rr = Rs × Rr−s, such that yj |Rs = δj, j = 0, . . . , r, i.e., the first s coordinates

of yj agree with the vector δj ∈ Rs, s ≥ 1. The multivariate (simplex) spline

M (x; δ0, . . . , δr) is defined as

M (x; δ0, . . . , δr) = volr−s ({u ∈ S : u|Rs = x}) /volr(S).

Note that Definition 3.2 allows for coalescent knots, δ0, . . . , δr of which say,

n+1 < r+1 knots, δ0, . . . , δn may be pairwise distinct with corresponding mul-

tiplicities α0, . . . , αn, α0 + . . .+αm = r +1. If there are δ0, . . . , δn pairwise dis-

tinct knots with multiplicities α0, . . . , αn, M (x; δ0, . . . , δr), will be alternatively
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denoted as M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)
, v ∈ Rs and also as M

(
x1, . . . , xs; δ0,

α0,
. . . ,
...,

δn
αn

)
.

The simplex spline, M (x; δ0, . . . , δr) is a piecewise polynomial of total de-

gree not exceeding r − s with r − s− 1 continuous derivatives when the knots,

δ0, . . . , δr are in general position. The knots, δ0, . . . , δr, are said to be in general

position if for j = 1, . . . , s and for arbitrary, different indexes 0 ≤ i1, . . . , ij+1 ≤
r, we have

det




1 δ1,i1 . . . δj,i1

1 δ1,i2 . . . δj,i2

...
... . . .

...

1 δ1,ij+1 . . . δj,ij+1



6=0.

The numerical evaluation of multivariate simplex splines is facilitated by the

following recurrence relation, due to Micchelli (1980)

(3.2) M (x; δ0, . . . , δr) =
r

r − s

r∑

j=0

λjM (x; δ0, . . . , δj−1, δj+1, . . . , δr) ,

whenever r > s and the numbers, λj ∈ R, are such that, x =
∑r

j=0 λjδj ,
∑r

j=0 λj = 1.

For further properties of simplex splines see e.g., Neamtu (2001), Cohen et

al. (2001) and Prautzsch (2002).

We will now recall that simplex splines have a nice probabilistic interpreta-

tion established independently by Karlin et al. (1986) and Ignatov and Kaishev

(1985, 1989a) which we will exploit in studying the properties of multivariate

LG processes. Given the set of knots ∆ = {δ0, . . . , δr}, δj = (δ1,j , . . . , δs,j)
′,

δj ∈ Rs, j = 0, . . . , r, consider the random vector B = (B1, . . . , Bs)
′, defined

by

(3.3) B = δ0θ0 + . . . + δrθr,

with coordinates Bi = δi,0θ0 + . . .+δi,rθr, i = 1, . . . , s, where the random vector

θ = (θ0, . . . , θr)
′, is Dirichlet distributed with parameters α = {1, . . . , 1}, i.e.

(θ0, . . . , θr) ∈ D(1).

It will be convenient to view the vectors δ0, . . . , δr as points in Rs, s ≥ 1.

Note that in (3.3), we allow some of the points δ0, . . . , δr to coalesce. Let
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us assume that only n + 1 of them are pairwise distinct, say δ0, . . . , δn, each

repeated with multiplicity α0, . . . , αn, α0 + . . . + αn = r + 1. Then, given

the set of distinct knot parameters, ∆ = {δ0, . . . , δn}, following a well known

property of the Dirichlet distribution (see e.g. Wilks 1962), the random vector

B = (B1, . . . , Bs)
′, defined by (3.3), can be rewritten as

(3.4) B = δ0θ0 + . . . + δnθn,

with coordinates Bi = δi,0θ0+. . .+δi,nθn, i = 1, . . . , s, where the random vector

θ = (θ0, . . . , θn)′, is Dirichlet distributed with parameters α = {α0, . . . , αn}, i.e.,

(θ0, . . . , θn) ∈ D (α0, . . . , αn).

Assume also that the parameters α, ∆, and n, are such that the distribution

of the linear transformation B and its marginal distributions exist and are non-

degenerate. Denote by fB(x) the density of B. The following result establishes

the probabilistic interpretation of simplex splines.

Theorem 3.3 (Ignatov and Kaishev 1985, 1989a). Let δ0, . . . , δn be fixed pair-

wise distinct vectors in Rs, n ≥ s, with dimension dim ([[{δ0, . . . , δn}]]) = s,

then the density fB(x) with respect to the s-dimensional Lebesgue measure of

the random vector B, defined as in (3.4), coincides with the simplex spline

M

(
x; δ0,

α0,
. . . ,
...,

δn
αn

)

with knots δ0, . . . , δn having (integer) multiplicities, α0, . . . , αn.

As in the univariate case, the Dirichlet parameters α0, . . . , αn, may in gen-

eral take real values. In this case the density, fB(x), has been viewed by Ignatov

and Kaishev (1987, 1988, 1989b) as a multivariate generalized B-spline i.e., as

multivariate Dirichlet spline. Independently, Karlin et al. (1986) have also con-

sidered similar generalization of multivariate simplex splines. For some further

properties of multivariate Dirichlet splines see Karlin et al. (1986), Ignatov and

Kaishev (1987, 1988, 1989b) and Neuman (1994).

The following proposition gives for fixed t > 0 an expression for the joint

density of the multivariate LG process in terms of multivariate Dirichlet splines.
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Proposition 3.4 Let δ0, . . . , δn, δj ∈ Rs, n ≥ s, be pairwise distinct and let

dim [[{δ0, . . . , δn}]] = s, then for fixed t the density of LG(t) is

(3.5) fLG(t) (x1, . . . , xs) =
∫ +∞

0

λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)
y(α0+...+αn)t−(s+1)e−λyMg

(
x1

y
, . . . ,

xs

y
; δ0,
α0t,

. . . ,
...,

δn
αnt

)
dy,

where Γ(·) is the gamma function and Mg

(
x1
y , . . . , xs

y ; δ0,
α0t,

. . . ,
...,

δn
αnt

)
is a multi-

variate Dirichlet spline with knots ∆ = {δ0, . . . , δn}, of multiplicities {α0t, . . . αnt}.

Proof: For fixed t > 0, we have that the multivariate LG process can be

represented as

(3.6) LG(t;∆, α, λ, n) = B(t)Γ(t)

where B(t) is defined as in (3.4) and has a joint density fB(t)(x), which, by

Theorem 3.3, coincides with a generalized B-spline, and where the random vari-

able, Γ(t) =
∑n

i=0 Gi (t; αi, λ), independent of B(t), is gamma distributed with

parameters (α0 + . . . + αn) t and λ. Thus, we have

fLG(t) (x1, . . . , xs) =
∂

∂x1 . . . ∂xs
P (B1(t)× Γ(t) ≤ x1, . . . , Bs(t)× Γ(t) ≤ xs)

=
∂

∂x1 . . . ∂xs
P

(
B1(t) ≤ x1

Γ(t)
, . . . , Bs(t) ≤ xs

Γ(t)

)

=
∫ +∞

0

∂

∂x1 . . . ∂xs
P

(
B1(t) ≤ x1

y
, . . . , Bs(t) ≤ xs

y

)
fΓ(t)(y)dy

=
∫ +∞

0

fB(t)

(
x1

y
, . . . ,

xs

y

)
fΓ(t)(y)

1
ys

dy.

The result now follows, in view of (2.7) and noting that, by Theorem 3.3,

fB(t)

(
x1
y , . . . , xs

y

)
coincides with a multivariate Dirichlet spline, Mg

(
x1
y , . . . , xs

y ; δ0,
α0t,

. . . ,
...,

δn
αnt

)
.

¤

In case αit, i = 0, . . . , n, are integers then Mg(·) is a classical multivariate

polynomial simplex spline, given by Definition 3.2 and its evaluation can be

successfully performed using e.g. Michelli’s recurrence (3.2). When the mul-

tiplicities αit, i = 0, . . . , n are non-integer, to the best of our knowledge, the
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evaluation of multivariate Dirichlet splines has not been sufficiently explored.

Recurrence formulas for the moments of multivariate Dirichlet splines and sim-

plex splines have been established by Neuman (1994).

In order to provide some insight into the dependence properties of multivari-

ate LG processes, next we give its underlying copula.

Proposition 3.5 The copula CLG (u1, . . . , us), is given as

(3.7) CLG (u1, . . . , us) =
∫ F−1

LG1
(u1)

−∞
. . .

∫ F−1
LGs

(us)

−∞

∫ +∞

0

λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)

y(α0+...+αn)t−(s+1)e−λyMg

(
x1

y
, . . . ,

xs

y
; δ0,
α0t,

. . . ,
...,

δn
αnt

)
dydxs . . . dx1,

where ui ∈ [0, 1], and

FLGi(x) =
∫ x

−∞

∫ +∞

0

λ(α0+...+αn)t

Γ ((α0 + . . . + αn) t)
y(α0+...+αn)t−2e−λyMg

(
z

y
; δj,0,

α0t,

. . . ,
...,

δj,n
αnt

)
dydz,

i = 1, . . . , s.

Proof: Expression (3.7) follows from Sklar’s Theorem and expressions (3.5)

and (2.6).¤
Let us note that the LG copula CLG (u1, . . . , us) is related to the (new) class

of the so- called Dirichlet (B-) spline copulas, introduced by Kaishev (2006b).

Both B-spline copulas and LG copulas are quite flexible, and by controlling

the knots, ∆, of the Dirichlet spline, and their multiplicities, α, one can model

and reproduce a wide range of dependence structures arising in financial ap-

plications. This is illustrated in section 4, on the example of multivariate FX

modelling. For further results and applications of B-spline copulas see Kaishev

(2006b).

The next proposition gives the characteristic function of a multivariate LG

process, which will be needed in order to develop a method of moments for

estimating the LG parameters.

Proposition 3.6 For fixed t, say t = 1, the characteristic function, φ(z), of
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the multivariate LG process, LG(t), is

(3.8) φLG(z) =
n∏

j=0

(
λ

λ− i (δj · zzz)

)
αj

where δj = (δ1,j , . . . , δs,j)
′ ∈ Rs, j = 0, . . . , n , z = (z1, . . . , zs)

′ ∈ Rs and

λ > 0.

Proof: From Definition 3.1, for fixed t, say t = 1 and z = (z1, . . . , zs)
′ ∈ Rs, it

is directly seen that the characteristic function

φLG(z) = E
[
ei(z·LG(t))

]
= E

[
ei(∑n

j=0 δj ·zGj(t;αj ,λ))
]

=
n∏

j=0

E
[
eiδj ·zGj(t;αj ,λ)

]
=

n∏

j=0

(
λ

λ− i (δj · z)

)αj

,

which completes the proof of the asserted expression for φLG(z). ¤

In order to develop a method of moments for estimating the LG parameters,

we will give here the moment generating function (mgf)

MLG(z) = E
[
ez·LG(t)

]
=

n∏

j=0

(
λ

λ− δj · z
)αj

,

and the cumulant generating function (cgf)

(3.9) KLG(z) = log MLG(z) =
n∑

j=0

−αj log
(

1− 1
λ

δj · z
)

of the LG random vector.

3.2 LG parameter estimation: method of moments

There are two sources of difficulty related to estimating the parameters of a

multivariate LG process, given an appropriate data set. Firstly, it is the curse of

dimensionality, i.e., the dimension s may be very high which is typically the case

in some credit risk modelling applications. Secondly, the underlying dependence

pattern may be rather complex, requiring significant number, n + 1 > s of knot

parameters in each coordinate with corresponding multiplicities, and hence a
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large number of parameters overall.

Due to the latter difficulties, maximum likelihood estimation of LG param-

eters, utilizing expression (3.5), is not so straightforward and may require de-

veloping a special purpose optimization algorithm, using exhaustive numerical

optimization methods such as, adapted simulated annealing. Development of

such methods is outside our scope and will be a subject of another paper. Here

we will develop a method of moments for the estimation of the LG parameters,

which is simpler to implement and as will be illustrated in section 4, serves well

the purpose of calibrating an FX model driven by a multivariate LG process.

In order to develop a method of moments for the estimation of LG param-

eters, we will need the following piece of general multivariate cumulant theory,

provided by McCullagh (2008). In what follows we shall somewhat depart from

the notation used so far and use the notationally convenient, Einstein’s sum-

mation convention in order to denote scalar products. Thus, zrXr denotes the

linear combination z1X1 + . . . + zsXs, where Xi, i = 1, . . . , s are the coordi-

nates of a random vector X = (X1, . . . , Xs). The square of a linear combination

(zrXr) 2 = (zr1Xr1) (zr2Xr2) = zr1zr2Xr1Xr2 is a sum of s2 terms and for higher

powers, (zrXr) l = zr1 . . . zr2Xr1 . . . Xrl
is the sum of sl terms. Following Mc-

Cullagh (2008), we denote κr = E (Xr) the components of the mean vector,

κr1r2 = E (Xr1Xr2), r1, r2 = 1, . . . , s the components of the matrix of second

moments, κr1r2r3 = E (Xr1Xr2Xr3), r1, r2, r3 = 1, . . . , s, the elements of the

third moment matrix and so on, for the elements of the matrices of higher order

moments.

The Taylor expansions of the moment generating function, MX(z) = E
[
ezrXr

]
,

and the cumulant generating function, KX(z) = log MX(z), are then given as

MX(z) = 1 + zr1κr1 +
1
2!

zr1zr2κr1r2 +
1
3!

zr1zr2zr3κr1r2r3 + . . .

and

(3.10) KX(z) = zr1κr1 +
1
2!

zr1zr2κr1,r2 +
1
3!

zr1zr2zr3κr1,r2,r3 + . . . ,

where κr1 denotes simultaneously first order moments and first order cumulants.

The coefficients κr1,r2 , κr1,r2,r3 , . . . in the expansion of KX(z) are the corre-
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sponding second third and higher order cumulants. Note that, the latter are

distinguished notationally from the corresponding moments, κr1r2 , κr1r2r3 , . . .

by the commas separating subscripts. Equating the coefficients in the expansion

of

KX(z) = log
(

1 + zr1κr1 +
1
2!

zr1zr2κr1r2 +
1
3!

zr1zr2zr3κr1r2r3 + . . .

)

to the corresponding coefficients in the expansion (3.10), it can be seen that each

of the moments κr1r2 , κr1r2r3 , . . . can be expressed, as a sum over partitions of

the subscripts, where each term in the sum is a product of cumulants, as follows

(3.11) κr1r2 = κr1,r2 + κr1κr2

κr1r2r3 = κr1,r2,r3 + κr1,r2κr3 + κr1,r3κr2 + κr2,r3κr1 + κr1κr2κr3

= κr1,r2,r3 + κr1,r2κr3 [3] + κr1κr2κr3

(3.12)

(3.13)

κr1r2r3r4 = κr1,r2,r3,r4+κr1,r2,r3κr4 [4]+κr1,r2κr3,r4 [3]+κr1,r2κr3κr4 [6]+κr1κr2κr3κr4 ,

where the numbers in the square brackets indicate a sum over distinct partitions

of the subscripts, having the same block sizes. Note that there are s equations

κr1 = κr1 relating the first order moments to the first order cumulants. In

general, there are sk equations for the moments of order k = 1, 2, . . . however,

there are only
(
s+k−1

k

)
distinct equations which coincides with the number of

distinct moments of order k. Equations, (3.11) - (3.13), have been given by

McCullagh (2008). Here, we further give the sets of equations, relating the fifth

and the sixth order moments with the corresponding cumulants

(3.14) κr1r2r3r4r5 = κr1,r2,r3,r4,r5 + κr1,r2,r3,r4κr5 [5] + κr1,r2,r3κr4,r5 [10]+

κr1,r2,r3κr4κr5 [5]+κr1,r2κr3,r4κr5 [15]+κr1,r2κr3κr4κr5 [10]+κr1κr2κr3κr4κr5 ,
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(3.15)

κr1r2r3r4r5r6 = κr1,r2,r3,r4,r5,r6 + κr1,r2,r3,r4,r5κr6 [6] + κr1,r2,r3,r4κr5,r6 [15]+

κr1,r2,r3,r4κr5κr6 [15]+κr1,r2,r3κr4,r5,r6 [10]+κr1,r2,r3κr4,r5κr6 [60]+κr1,r2,r3κr4κr5κr6 [20]+

κr1,r2κr3,r4κr5,r6 [15]+κr1,r2κr3,r4κr5κr6 [45]+κr1,r2κr3κr4κr5κr6 [15]+κr1κr2κr3κr4κr5κr6 .

In what follows we will derive expressions for the cumulants of the random vector

LG(t), in terms of the unknown parameters, ∆, α, λ and n. By substituting

these expressions in the right-hand side of equations (3.11)-(3.15) and equating

the theoretical moments, κr1 , κr1r2 , κr1r2r3 , . . . to their corresponding empirical

counterparts, one can solve the appropriate set of equations and obtain estimates

of the unknown parameters. In what follows we will elaborate further on the

details related to this method. The following proposition gives an expression

for the cumulants of LG(t) in terms of the unknown parameters, ∆, α, λ and

n.

Proposition 3.7 The cumulant, κr1,...,rw of the random vector LG(t) is

(3.16) κr1,...,rw = (w − 1)!
n∑

j=0

αj

λw
δr1,jδr2,j . . . δrw,j ,

where w = 1, 2, . . ., ri = 1,. . .,s, i = 1, . . . , w.

Proof: The cgf of the random vector, LG(t) can be expressed as in (3.10). On
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the other hand, from (3.9), we have

(3.17) KLG(z) =
n∑

j=0

αj

(
− log

(
1− 1

λ
δj · z

))

=
n∑

j=0

αj

(
1
λ

δj · z +
1
2

(
1
λ

δj · z
)2

+
1
3

(
1
λ

δj · z
)3

+ . . .

)

=
n∑

j=0




(αj

λ
δj

)
· z +

1
2

((
α

1/2
j

λ
δj

)
· z

)2

+
1
3

((
α

1/3
j

λ
δj

)
· z

)3

+ . . .




=
n∑

j=0

((αj

λ

)
δr1,jzr1 +

1
2

(
α

1/2
j

λ

)
δr1,jzr1

(
α

1/2
j

λ

)
δr2,jzr2+

1
3

(
α

1/3
j

λ

)
δr1,jzr1

(
α

1/3
j

λ

)
δr2,jz2

(
α

1/3
j

λ

)
δr3,jzr3 + . . .

)

= zr1

n∑

j=0

(αj

λ

)
δr1,j +

1
2!

zr1zr2

n∑

j=0

(
α

1/2
j

λ

)
δr1,j

(
α

1/2
j

λ

)
δr2,j+

1
3!

zr1zr2zr32!
n∑

j=0

(
α

1/3
j

λ

)
δr1,j

(
α

1/3
j

λ

)
δr2,j

(
α

1/3
j

λ

)
δr3,j + . . .

Hence, comparing the coefficients of the corresponding terms zr1 , zr1zr2 , zr1zr2zr3 ,. . .

in (3.10) and (3.17) we have

κr1,...,rw = (w − 1)!
n∑

j=0

(
α

1/w
j

λ

)
δr1,j

(
α

1/w
j

λ

)
δr2,j . . .

(
α

1/w
j

λ

)
δrw,j

= (w − 1)!
n∑

j=0

αj

λw
δr1,jδr2,j . . . δr3,j ,

which coincides with the asserted expression (3.16). ¤

We can now use (3.16) in order to express the cumulants on the right hand

side of equations (3.11)-(3.15) and therefore, express the theoretical moments,

κr1...rw in terms of the unknown parameters, ∆, α, λ and n. Then, equate the

theoretical moments, κr1...rw to their empirical counterparts and solve with

respect to ∆, α, λ, assuming n is appropriately chosen. It will be instructive to

make the definition of the moments, κr1...rw a bit more precise.

Definition 3.8 For β = (β1, . . . , βs)
′ ∈ Ns, define the moment, E

(
Xβ1

1 Xβ2
2 . . . Xβs

s

)
,
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of order |β|, (|β| = (β1 + . . . + βs)) of the random vector LG(t) as

E
(
Xβ1

1 Xβ2
2 . . . Xβs

s

)
=

∫

Rs

xβfLG(x)dx = κr1...rβ1rβ1+1...rβ1+β2 ...rβ1+...+βs−1+1...r|β| ,

where xβ = xβ1
1 xβ2

2 . . . xβs
s and r1 = . . . = rβ1 = 1, rβ1+1 = . . . = rβ1+β2 = 2,

. . ., rβ1+...+βs−1+1 = . . . = r|β| = s.

The empirical moments of LG(t) can now be defined as follows.

Definition 3.9 For β = (β1, . . . , βs)
′ ∈ Ns, define the empirical moment κ̂r1...r|β|

of order |β|, as

κ̂r1...r|β| =
1
N

N∑

l=1

xβ1
1,l . . . x

βs

s,l,

where {x1,l, . . . , xs,l}N
l=1 is a sample of N i.i.d observations on LG(t).

In order to estimate the parameters (∆, α, λ), based on {x1,l, . . . , xs,l}N
l=1,

we apply the method of moments and solve the system

(3.18)
{

κr1...r|β|(∆, α, λ) = κ̂r1...r|β| , |β| = 1, 2, 3, . . .

with respect to (∆, α, λ).

Remark 3.10 Note that there are
(
s+k−1

k

)
distinct moments of order |β| = k =

1, 2, 3, . . . . In an application, one would need to select the number of equations,

p, in (3.18), to be equal to the number, (s + 1) × (n + 1) + 1, of unknown

parameters, (∆, α, λ), starting from moments of order 1 and increasing up to a

maximum order k∗, where k∗ = inf
{

k : p ≤ ∑k
j=1

(
s+j−1

j

)}
.

The method of moments described here is illustrated in section 4 on the

example of FX modelling.

4 Modelling the joint dynamics of exchange

rates

Let S1(t), S2(t),. . . , Ss(t), t ≥ 0, be the exchange rates of a set of s currencies

against a common reference currency. We are interested in modelling the joint
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dynamics of S1(t), S2(t), . . . , Ss(t), over a finite time interval [0, T ]. We view

Sj(t), as the price of a risky asset with dynamics

Sj(t) = Sj(0) exp {Xj(t)} , j = 1, . . . , s,

where Xj(t), j = 1, . . . , s are the coordinates of an appropriate s-variate stochas-

tic process driving the joint FX dynamics. In what follows, we will compare

the modelling results we obtain under two alternative choices for the processes

Xj(t), j = 1, . . . , s. Under the first choice, we implement the multivariate VG

model with correlated Brownian motions and a common Gamma clock, proposed

by Madan and Seneta (1990). We consider also its special non-correlated case

considered by Luciano and Schoutens (2006). As an alternative, we implement

the multivariate LG process, given in Definition 3.1.

In Fig. 2, we give the (historic) joint co-movement of the exchange rates

of three currencies (s = 3), the Euro (EUR), the GB Pound (GBP) and the

Japanese Yen (JPY) to the US Dollar as the reference (domestic) currency for

the period 30.06.2008− 30.06.2009. As can be seen, examining Fig. 2 visually,

there are different degrees of inter-dependence in the three FX trajectories. The

exchange rates GBP/USD and EUR/USD exhibit stronger mutual correlation

while at the same time, each of them is less correlated with the JPY/USD

exchange rate. This is confirmed also if one analyses Fig. 3-4 which provide

scatter plots and histograms of the corresponding log returns at unit time inter-

vals, ln (Sj(t)/Sj(t− 1)) = Xj(t)−Xj(t−1), t = 1, 2, . . .. Examining Fig. 4 one

can see that the (marginal) distributions of the corresponding (historic) daily log

returns seem to exhibit heavier tails than in the normal case, which is a bit more

expressed for the EUR/USD and JPY/USD. As has been noted by Daal and

Madan (2005), a univariate VG density is an appropriate choice for fitting empir-

ical FX data. The two dimensional scatter plots of the three pairs of log returns

given in Fig. 3, show that the pair GBP/USD versus EUR/USD exhibits posi-

tive dependence with stronger upper tail dependence, the pair JPY/USD versus

EUR/USD looks evenly scattered around the origin, while the pair JPY/USD

versus GBP/USD looks somewhat negatively correlated.

First, we model the co-movement of the three FX rates, EUR/USD, GBP/USD

and JPY/USD, indexed by j = 1, 2, 3 respectively, applying the multivariate VG
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EURUSDGBPUSD JPYUSD*100

Figure 2: Joint co-movement of the exchange rates of GBP/USD, EUR/USD, and

JPY/USD, viewed from top to bottom.
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Figure 3: Bilateral scatter plots of the empirical log returns EUR/USD, GBP/USD

and JPY/USD.
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process, with correlated Brownian motions, and a common Gamma clock, pro-

posed by Madan and Seneta (1990) and referred to by Deelstra and Petkovic

(2010) as CCVG. For the vector of FX rates, we have the following specification

of the CCVG model

Sj(t) = Sj(0) exp {mjt + θjG(t) + Bj (G(t))} , j = 1, 2, 3,

where m = (m1,m2,m3)
′ are drift parameters, Bj(G(t)) are the coordinates of

a 3-dimensional (correlated) Brownian motion with variance-covariance matrix

Σ = (σij), G(t) is a common Gamma process with mean rate 1 and variance

rate ν and θ = (θ1, θ2, θ3)
′ are the drift parameters of the VG part. There are

13 unknown parameters in total in this model and this is the maximum possible

number of parameters for a three dimensional application (s = 3). Denote by

Zj = ln (Sj(t)/Sj(t− 1)), the corresponding log returns. Then, applying the

formula of total probability, conditioning on the gamma clock, (see Deelstra

and Petkovic 2010) it is not difficult to derive the following expression for the

density of the 3-dimensional CCVG

(4.1) fZ1,Z2,Z3(z) =
2e(z−m)′Σ−1θ

(2π)
3
2 |Σ| 12 ν

1
ν Γ

(
1
ν

)
(

(z −m)′Σ−1(z −m)
2
ν + θ′Σ−1θ

) 1
2ν− 3

4

K 1
ν− 3

2

(√
((z −m)′Σ−1(z −m))

(
2
ν

+ θ′Σ−1θ

))
,

where K 1
ν− 3

2
() is the modified Bessel function of the second kind of order 1

ν − 3
2 .

In order to illustrate the CCVG model, we first implement its special case of

no correlation between the Brownian motions (Σ = I3), referred to below as

non-correlated CCVG. Such a special case has been considered by Luciano and

Schoutens (2006). We have fixed ν = 1 and estimated the unknown parameters,

mj , θj , σj j = 1, 2, 3, via marginal probabilities, as suggested by the authors. In

Fig. 4, we give the histograms of (historic) daily log returns and fitted marginal

VGj (t; θj , σj , ν) densities and, as can be seen, they fit reasonably well the data.

In the upper panel of Fig. 5, we give the two dimensional scatter plots simu-

lated from the corresponding fitted non-correlated CCVG. As can be seen from

the upper panel of Fig. 5, comparing it with the corresponding empirical scat-
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ter plots of Fig. 3, the non-correlated CCVG model considered by Luciano and

Schoutens (2006) fails to capture the underlying dependence in the data, espe-

cially for the EUR/USD, GBP/USD pair of currencies. In order to improve the
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Figure 4: Marginal VG densities fitted to (histograms of) historic daily log returns of

the exchange rates of EUR/USD, GBP/USD and JPY/USD.
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Figure 5: Bilateral scatter plots of 2540 simulated three dimensional CCVG log returns

EUR/USD, GBP/USD and JPY/USD, upper panel: from the 10 parameter, non-

correlated CCVG; lower panel: from the 13 parameter, correlated CCVG.

performance of the CCVG model we have implemented its correlated version,

with 13 unknown parameters. Unfortunately, their estimation, applying the
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method of maximum likelihood using (4.1), turns out to be a formidable task, at

least for the optimization routines of Mathematica 8, which we have attempted

for the purpose. This is not surprising, given the complexity of the density in

(4.1). Instead, we have used the method of moments on the marginal data in

order to estimate the marginal parameters, mj , θj , σjjj = 1, 2, 3. As estimates

of the covariances, σ12, σ13 and σ23, we have used the corresponding empirical

covariances. Scatter plots illustrating the correlated CCVG model are given in

the lower panel of Fig. 5. As can be seen, the introduction of the correlations

σ12, σ13 and σ23, has substantially improved the performance of the CCVG,

it captures well the existing positive correlation of the pair GBP/USD versus

EUR/USD. However, it seems not to capture so well the somewhat stronger

upper tail dependence in the data for that pair due to its conditional normality.

The pair JPY/USD versus EUR/USD looks evenly scattered around the origin

as does the data, while the pair JPY/USD versus GBP/USD is somewhat neg-

atively correlated as the corresponding scatter plot of the data in Fig. 3 seems

to suggest.

Alternatively, we model the co-movement of the three FX rates, EUR/USD,

GBP/USD and JPY/USD, applying the proposed multivariate LG process, as

follows

(4.2) Sj(t) = Sj(0) exp (LGj (t; δj,0, . . . , δj,n, α, λ, n)) ,

where j = 1, 2, 3, n = 3, λ = 1, α = {1, 1, 1, 1} and δj,0, . . . , δj,n, are the 12 knot

parameters. Note that 12 is the minimum possible number of knot parameters,

since n + 1 = 4 is the minimum number of knots which span a volume in R3

(s = 3). For the purpose of estimating, δj,0, . . . , δj,3, j = 1, 2, 3, we consider

the joint distribution of the corresponding log returns, Zj , j = 1, 2, 3, which

is a three dimensional LG distribution. We have used the method of moments,

developed in section 3.2, in order to estimate δj,i, j = 1, 2, 3, i = 0, 1, 2, 3, by

equating the first, second and third order theoretical moments, κr1 , r1 = 1, 2, 3,

κr1r2 , r1 = 1, 2, 3, r2 = 1, 2, 3, r1 < r2, κr1r2r3 , r1 = r2 = r3 = 1, 2, 3, of

the random vector (Z1, Z2, Z3), given by (3.11) and (3.12), to their empirical

counterparts, following (3.18). The LG marginal densities fit well the empirical

data, which is illustrated in Fig. 6. In the upper panel of Fig. 7, we give the two
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Figure 6: Marginal LG densities fitted to (histograms of) historic daily log returns of

the exchange rates of EUR/USD, GBP/USD and JPY/USD.
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Figure 7: Bilateral scatter plots of 2540 simulated LG log returns EUR/USD,

GBP/USD and JPY/USD, upper panel: from a 12 parameter (4 knots) LG model,

lower panel: from a 18 parameter (6 knots) LG model.
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dimensional scatter plots simulated from the corresponding fitted 12 parameter

three dimensional LG distribution.

Comparing the scatter plots from the upper panel of Fig. 7 with the cor-

responding empirical scatter plots of Fig. 3, the 12 parameter, LG model cap-

tures the underlying dependence in the data, both for GBP/USD, EUR/USD

and GBP/USD, JPY/USD pairs of exchange rates. As can be seen from the

upper panel of Fig. 7, the multivariate LG vector can take any value in R3

but the scatter plots reveal a triangular shape inherited from the domain of the

three dimensional Dirichlet spline, namely the triangular pyramid (tetrahedron)

configuration defined by its four knots, δj , j = 0, 1, 2, 3 in R3. In contrast to

the correlated CCVG model, for which the number of parameters is limited to

a maximum of 13, it is possible to increase the number of LG parameters, say

to six knots δj j = 0, 1, 2, 3, 4, 5, (which configures an octahedron in R3), and

use the method of moments in order to get a better estimate of the underlying

dependence structure. The improvement of the LG performance is illustrated in

the lower panel of Fig. 7, where scatter plots from an 18 parameter (six knots)

LG model are given.

In Fig. 8, we give sample paths simulated from the three dimensional LG

model (4.2) which illustrates the higher correlation between the EUR/USD and

GBP/USD which has also been empirically observed (see Fig. 2).
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Figure 8: Joint co-movement of the exchange rates of GBP/USD, EUR/USD and

JPY/USD, viewed from top to bottom, simulated from the LG model.
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5 Comments and conclusions

The proposed (univariate) LG process is a more flexible generalization of the

well-known VG process and the BG process since it allows to use any number of

parameters according to the requirements of a particular application and control

both the positive and the negative parts of the corresponding Lévy measure.

An enlightening link between the LG distribution, and (univariate) B-splines

and Dirichlet splines is established and alternative formulas for the density of

the VG and BG are given. The use of a LG process, as the driver of a stock price

dynamics, in pricing exotic options and participating life insurance contracts is

briefly indicated.

The proposed multivariate generalization of the LG process is very flexible,

since it allows to incorporate any required number of parameters and to model

complex dependence patterns between asset price processes. It is a competitive

alternative to multivariate Lévy copulas and other multivariate generalizations

of the VG process, based for instance, on a common random time change in a

multivariate (correlated) Brownian motion.

We have also explored some of the properties of multivariate LG processes

in terms of multivariate simplex B-splines and Dirichlet splines. In particular,

we have given explicit expressions of the joint LG density and the underlying

LG copula function in terms of Dirichlet splines, and also the LG characteris-

tic, moment and cumulant generating functions. The latter have been used in

section 3.2 to develop, a reasonably simple method of moments, based on their

relation to cumulants, for the purpose of estimating the LG model parameters.

We have also illustrated the modelling power of a multivariate LG process

on the example of FX modelling of the exchange rates of three currencies, the

EUR the GBP and the JPY to the US Dollar. Results demonstrate that the

LG process is a competitive alternative to the CCVG model with or without

correlation in the Brownian motions. The LG model offers extended flexibility,

which can prove important in handling more complex empirical dependence

structures, e.g. exhibiting tail and directional dependencies.

Ongoing research is related to exploring market consistent LG parameter

calibration and properties of the LG copula, which is a new promising member of

the relatively limited family of multivariate copulas, richly enough parametrized
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so as to capture complex dependence patterns in truly multivariate financial

and insurance applications. It is worth mentioning that yet another new class

of copulas, related to the LG copulas, called Dirichlet (B-) spline copulas have

been proposed and explored by Kaishev (2006b).
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