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Abstract

Supersymmetric gauge theories have an important but perhaps under-appreciated

notion of a master space, which controls the full moduli space. For world-volume

theories of D-branes probing a Calabi-Yau singularity X the situation is particularly

illustrative. In the case of one physical brane, the master space F ♭ is the space of

F-terms and a particular quotient thereof is X itself. We study various properties

of F ♭ which encode such physical quantities as Higgsing, BPS spectra, hidden global

symmetries, etc. Using the plethystic program we also discuss what happens at higher

number N of branes. This letter is a summary and some extensions of the key points

of a longer companion paper hep-th/0801.1585.
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1 Introduction

The vacuum of a quantum field theory is of vital physical significance. For N = 1 supersym-

metric gauge theories in four dimensions, the vacuum is obtained by the space of solutions

D♭ of D-terms, coming from the gauge and matter content and the solution space F ♭ of F-

terms, coming from the critical points of the superpotential. This vacuum moduli space M

is typically a high dimensional object of subtle structure and consists of many branches, such

as mesonic versus baryonic, and Higgs versus Coulomb, etc. Conceptually, M is a quotient

of F ♭ by the gauge symmetries prescribed by D♭. In this short summary of a companion

paper [1] we would like to emphasize the role played by F ♭ and present it as a critical object

in the study of supersymmetric gauge theories.

The study of F ♭ for a generic supersymmetric gauge theory is an important and a

long term project. Here, as a starter, we focus on a special class of supersymmetric gauge

theories where, in the context of string theory, the N = 1 gauge theory arises as the four

dimensional world-volume theory of a stack of N coincident D3-branes transverse to a Calabi-

Yau threefold singularity X . We look at the spectrum of chiral (BPS) operators in such

theories and divide them into two types of gauge invariant operators which are typically called

mesons (trace invariants) and baryons (determinant invariants). Correspondingly there are

two types of moduli spaces, mesonic and baryonic, respectively, along which operators of the

corresponding type admit a vacuum expectation value. The mesonic branch is referred to in

the literature as the N -th symmetrized product1 of X . We do not focus on this point but

give more attention on aspects of the baryonic branch and how it combines with the mesonic

moduli space into a bigger space.

For N = 1, a single D3-brane, the situation is particularly interesting: the mesonic

branch is simply X ; there are no gauge groups in the IR and M ≃ F ♭. F ♭ is called, in

accord with the standard mathematical parlance, the master space since its quotient is a

moduli space [3] and turns out to have some remarkable properties. This forms a convenient

starting point. Moreover, for simplicity, X is taken to be toric so that at least three U(1)

isometries are at hand. For N > 1, a great deal can be learned via the plethystic program

[4, 5, 6, 7, 8] despite the increasing subtlety in the structure of M.

This letter summarizes the key results of [1] and uses the language of (computational)

algebraic geometry (cf. [9]); hence it outlines the requisite terminology where necessary.

1 Cf. [2] for a consistency analysis of this identification.
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2 Theme and Variations in F ♭

For X an affine toric Calabi-Yau threefold and a single D3-brane, the gauge theory is a

U(1)g quiver theory with g nodes, E bi-fundamental fields and a number V of terms in

the superpotential2. Decoupling the Abelian factors in the IR, we are left with the space

of F-flatness F ♭ which is the principal object of our investigation. The first two important

properties of F ♭ are

1. F ♭ is a toric variety of complex dimension g+2. This is so because as mentioned in the

introduction, X ≃ F ♭//U(1)g, and an overall U(1) decouples; thus 3 = dim(F ♭)− (g−

1). It is toric since it is acted upon by exactly g + 2 C∗-actions corresponding to the

classical global symmetries of the gauge theory: one R and two flavor, coming from the

isometries of the toric threefold X , as well as g−1 baryonic, IR relic symmetries of the

non-trivial U(1) factors, some of which are anomalous. Specifically, we can define F ♭

as an affine algebraic variety in C[x1, . . . , xE ] with appropriate U(1) charges (weights)

to the variables xi under the g + 2 dimensional toric action.

2. The moduli space of gauge theories is well-known to have many branches; this is

reflected by the fact that F ♭ is typically a reducible algebraic variety. Either directly or

using methods of toric ideals, we can perform primary decomposition [11] thereupon

to extract the irreducible pieces. We find that it contains a top-dimensional irreducible

component of the same dimension and degree, as well as many smaller dimensional

irreducible linear pieces, realised as coordinate hyperplanes. The top component is

usually dubbed the coherent component, which we denote as IrrF ♭. An interesting

aspect of it is being a Calabi-Yau manifold of dimension g + 2.

Now, one of the most fundamental quantities which characterizes an algebraic variety

X is the Hilbert series, which is the generating function for the number dim(Xi) of inde-

pendent polynomials at a given degree on X:

H(t; X) =

∞∑
i=0

dim(Xi)t
i = (1 − t)− dim(X)P (t) . (2.1)

2Recently it is realised that the most conducive way of thinking of toric quiver gauge theories is via

the language of dimer models/brane tilings [10]. This graphical method combines the matter content

(quiver diagram) and the interaction terms (superpotential) into a single object: a periodic tiling of the

2-dimensional plane. It follows, for example, that V − E + g = 0.
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In the above, P (t) turns out to be a polynomial with integer coefficients. We can readily

refine (2.1) by having a list t of dummy variables in which case the number of polynomials of

a given multi-degree would be counted. We can conveniently use [11] to compute the Hilbert

series, or, alternatively, use the Molien formula as given below in (2.3).

The Hilbert series turns out to be of fundamental importance to supersymmetric gauge

theories. Physically, the Hilbert series is the key to the Plethystic program [4, 6, 7]: the

dummy variables are naturally identified with chemical potentials associated to the multi-

degrees which are combinations of U(1)-charges and the object of counting is the spectrum

of mesonic and baryonic BPS operators. In (2.1), for example, t can be taken to be the

chemical potential3 for the R-charge. Plethystic exponentiation of the refined Hilbert series

then counts all chiral BPS operators.

Upon studying F ♭ for a wealth of illustrative examples, we discover that the master

space F ♭ and especially its coherent component IrrF ♭ enjoy many remarkable properties [1]:

1. Symplectic quotient description of IrrF ♭: The traditional approach in under-

standing the moduli space of toric gauge theories is to use Witten’s gauged linear

sigma model (GLSM) where the spacetime fields are parameterized in terms of the

latter [13]. We find an algebraic parameterization of the space of solutions of F-terms

in terms of c new fields pα, as xi =
∏c

α=1 pPiα

α where Piα turns out to be a matrix

with 0 and 1 entries. The fields pα are charged under c − g − 2 U(1) gauge groups.

In mathematical language, this is the symplectic quotient description of the coherent

component of our affine toric variety

IrrF ♭ = C
c//(C∗)c−g−2 , (2.2)

with the action specified by a c by c − g − 2 matrix of charges Q. The GLSM fields

can be associated with points in the toric diagram of X with multiplicities [13].

The GLSM description allows us to compute the Hilbert series using a localisation

formula based on the Molien integral, which projects onto (C∗)c−g−2 invariants [7]:

H(t; IrrF ♭) =

∮
|zi|=1

c−g−2∏
i=1

dzi

zi

c∏
α=1

1

1 − yα zqα , (2.3)

where qα is the vector of U(1)c−g−2 charges of the fields pα, given by the α-th column

of Q, and yα ≡ yα(t) is a monomial in t specifying the U(1) global charges of pα.

3To be precise t is identified with the “fugacity” of the R-charge and w = − log t is identified as the

chemical potential but we will call t the chemical potential by abuse of notation.
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Figure 1: (a) The quiver diagram for dP0 ≡ C3/Z3 with gauge group U(N)3 and nine fields with

superpotential W = ǫαβγX
(α)
12 X

(β)
23 X

(γ)
31 ; (b) The toric diagram, with the labeled multiplicity of

GLSM fields; (c) The perfect matchings for the corresponding dimer model, with pi the external

matchings and qi, the internal. There is only one linear relation −p1 −p2 −p3 + q1 + q2 + q3 = 0,

giving the GLSM description of IrrF ♭
C3/Z3

as C6//[−1,−1,−1, 1, 1, 1].

2. Dimer Model: The GLSM fields pα are now elegantly understood to be perfect

matchings in the associated dimer model [10] and the charge-matrix Q to be given by

the linear relations among these perfect matchings [1]. We illustrate with the example

for X = dP0 ≡ C3/Z3 as given in Figure 1. In accord with the dimer language, we see

that perfect matching generate the coherent component.

3. Surgery: The Hilbert series for the various irreducible pieces in the primary decom-

position of F ♭ obey surgery rules [12] according to the intersection of the pieces.

4. Calabi-Yau property: The coherent component IrrF ♭ is affine Calabi-Yau4 of di-

mension g + 2. This easily follows from the dimer description as shown in [1].

5. Palindromic Hilbert series: An intriguing property of the Hilbert Series for IrrF ♭

is its symmetry. The numerator P (t) of H(t; IrrF ♭), which we recall to be an integer

polynomial of degree, say, n, has a palindromic symmetry for its coefficients aj=0,...,n,

viz., P (t) is invariant under the exchange aj ↔ an−j. This is a consequence of the

Stanley theorem [14] and the fact IrrF ♭ is toric Calabi-Yau.

4Recall that the symplectic quotient (2.2) is Calabi-Yau iff the vector of charges, given by the columns

of Q, each sums to zero.
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6. Invariance under Seiberg duality: We can perform the decomposition analysis

to various toric/Seiberg dual phases for the same geometry [15]. We find a suggestive

property and conjecture that for Seiberg dual phases, the coherent components of the

master space are isomorphic as expected from the fact that Seiberg dual theories should

have the same moduli space. However, the linear components differ, suggesting that

some of the smaller-dimension pieces may be lifted by quantum corrections.

7. Linear Components and Flows: Physically, we can interpret the coherent com-

ponent IrrF ♭ as the Higgs branch and the linear components, as the Coulomb branch of

the moduli space. An archetypal theory which exhibits the branch structure of moduli

spaces is the C2/Z2 orbifold theory, which has N = 2 supersymmetry. We find that

the acquisition of vacuum expectation values (VEV) of the fields parameterizing the

linear components induces flows in the gauge theory.

Indeed, a gauge theory coming from a toric singularity X can be Higgsed to another;

in the toric diagram, this is seen as the deletion of nodes [13, 16], or, geometrically, as

the partial resolution of X . Many examples of this phenomen are demonstrated in [1].

The affine cone F0 over the zeroth Hirzebruch surface, for example, has a toric diagram

which contains that of C2/Z2. We find that, upon primary decomposition of the

master space F ♭
F0

the linear pieces are coordinate hyperplanes and giving VEV’s to the

variables therein gives C2/Z2. We can also find chains of toric theories flowing by the

successive acquisition of VEV’s (i.e., deletion of nodes in the toric diagram) of fields

parameterizing the linear components of the master spaces, e.g., dP3 → dP2 → F0 →

C2/Z2, where dPn is the affine cone over the n-th del Pezzo surface.

8. Hidden Global Symmetries: The moduli space of a field theory may possess

symmetries beyond gauge or explicit global symmetries, which develop as the theory

flows to the IR. We call them hidden global symmetries since they are not manifest

in the UV Lagrangian.

For D-brane gauge theories, the UV symmetries of the Lagrangian are generically

Abelian: the three isometries of X are visible in the UV as flavor symmetries. The

Abelian gauge factors become weakly coupled in the IR and give rise to (possibly

anomalous) baryonic symmetries. In [17], additional symmetry structure of X was

investigated by grouping the fields according to representations of non-Abelian groups

and the terms in the superpotential to invariants.
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Such hidden global symmetries are surprisingly manifest in the Hilbert series of the

master space. As shown in the final Table, the full symmetry of IrrF ♭ is in many cases

non-Abelian. The lesson we learn is that the terms in the refined Hilbert series of F ♭

can be arranged according to the representations of the hidden global symmetry of the

gauge theory.

Let us illustrate with dP0 = C3/Z3. The quiver is shown in Figure 1. The master space

is irreducible and given by F ♭ ≃ IrrF ♭ = C6//[−1,−1,−1, 1, 1, 1]. We immediately see,

by grouping the three +1 and three −1 in the charge matrix, that the symmetry of F ♭ is

U(1)R ×SU(3)M ×SU(3)H . Here, U(1)R ×SU(3)M is an obvious (mesonic) symmetry

of the Lagrangian and corresponds to the symmetry of C3/Z3. On the other hand,

SU(3)H is a hidden symmetry enhancing the two anomalous baryonic symmetries.

As re-writing of the refined Hilbert series reveals that it organizes and decomposes

according to the representation of the full group U(1)R × SU(3)M × SU(3)H :

g1(t; C
3/Z3) = (1 − [0, 1, 1, 0]t2 + ([1, 1, 0, 0] + [0, 0, 1, 1])t3 − [1, 0, 0, 1]t4 + t6) PE [[1, 0, 0, 1]t]

=
∞∑

n=0

[n, 0, 0, n] tn ,

(2.4)

where [m, n, p, q] denotes the character of the product representation with weights

[m, n] under SU(3)M and [p, q] under SU(3)H . The nine fundamental fields, whose

plethystic exponential we are taking in (2.4), transform as [1, 0, 0, 1].

Therefore, we see that the hidden global symmetry of the theory is encoded in the

generating function which counts the BPS spectrum, viz., the refined Hilbert series

organizes according to the representations of the global symmetry. This phenomenon

persists for a host of illustrative and non-trivial geometries [1]. In particular, for

dPn=1,...,8, the symmetry is the exceptional Lie group En as conjectured in [17]. We

present some of the results in the table at the end of this letter.

It is an interesting question to understand when the symmetry for one brane extends

to a general number N of branes and thus to a hidden symmetry of the theory for

some or all values of N . This is shown in a set of examples in [1]. The structure of

the master space for an arbitrary number of branes also becomes subtle: The moduli

space is given as a quotient of the space of F-terms by the non-Abelian factors of the

gauge group since the Abelian U(1) factors decouple in the IR. A further quotient by

U(1)g−1 leads to the mesonic moduli space which for N -branes is conjectured to be

7



the symmetrized product of the Calabi-Yau singularity X . The master space thus has

dimension 3N + g − 1.

One of the salient features of the Plethystic program is that it addresses many prop-

erties of arbitrary number of branes with ease and without explicit knowledge of the

actual space: the generating function for one brane g1(t) = H(t; IrrF ♭) determines the

generating function for arbitrary N . One can explictly check that the SU(4)H sym-

metry for the conifold persist only up to N = 2 (since it mixes mesonic and baryonic

symmetries and it enters in conflict with the plethystic exponential which is performed

in the sector with definite baryonic charge) while the hidden symmetries of C3/Z3 and

F0 extend to arbitrary N . We summarize some of the above discussions with Table 1.
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X dim(F ♭) IrrF ♭ H(t; IrrF ♭) Global Symmetry

C3 3 C3 (1 − t)−3 U(3)

C 4 C4 (1 − t)−4 U(1)R × SU(4)H

(C2/Z2) × C 4 C × C
1+t

(1−t)4
U(1)R × SU(2)R × U(1)B × SU(2)H

C3/Z2 × Z2 6 − 1+6t+6t2+t3

(1−t)6
U(1)R × U(1)2 × SU(2)3

H

SPP 5 C × C2 1+t
(1−t)5

U(1)R × U(1)M × SU(2)3
H

dP0 5 ≃ F ♭ 1+4t+t2

(1−t)5
U(1)R × SU(3)M × SU(3)H

F0 6 C × C
(1+t)2

(1−t)6
U(1)R × U(1)B × SU(2)2

M × SU(2)2
H

dP1 6 − 1+4t+7t2+4t3+t4

(1−t)6(1+t)2
U(1)R × SU(2)M × U(1)3 × SU(2)H

dP2 7 − 1+2t+5t2+2t3+t4

(1−t)7(1+t)2
U(1)R × SU(2)H × U(1)5

dP3 8 − 1+4t2+t4

(1−t)8(1+t)2
(SU(2) × SU(3))H × U(1)5

Table 1: The toric Calabi-Yau threefold X is exemplified by the list in the left-most column, where

C is the conifold, SPP, the suspended pinched points, F0, the cone over P
1 × P

1 and dPn the cone

over the n-th del Pezzo surface. For these we tabulate the dimension of the single-brane master

space F ♭. The top component thereof, IrrF ♭ is always of the same dimension and is Calabi-Yau; we

present, where possible, what this space is explicitly, as well as its Hilbert series. We also record

the global symmetry of the respective theories: the subscript R denotes R-symmetry, M denotes

the symmetry of the mesonic branch, B is the baryonic charge, and H denotes the hidden global

symmetry. Note that the rank of the global symmetry group is equal to the dimension of F ♭.
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