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Abstract

We explicitly construct the largest dataset to date of heterotic vacua arising from
stable vector bundles on Calabi-Yau threefolds. Focusing on elliptically fibered Calabi-
Yau manifolds with spectral cover bundles, we show that the number of heterotic models
with non-zero number of generations is finite. We classify these models according to
the complex base of their Calabi-Yau threefold and to the unification gauge group that
they preserve in four dimensions. This database of the order of 107 models, which includes
potential Standard Model candidates, is subjected to some preliminary statistical analyses.
The additional constraint that there should be three net generations of particles gives a
dramatic reduction of the number of vacua.
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1 Introduction

Heterotic string and M-theory remain promising approaches toward building phenomenologi-
cally realistic models of four-dimensional particle physics. Since the beginning of superstring
phenomenology in refs. [1, 2] two decades ago, much progress has been made. It is by now
well-established that compactification of the E8 × E8 heterotic string on Calabi-Yau three-
folds endowed with stable holomorphic SU(n) vector bundles leads to supersymmetric Grand
Unified Theories (GUT) in four dimensions. Furthermore, introducing Wilson lines can break
the GUT gauge group down to the Standard Model (SM) group.

The advantage of this method is that very precise and succinct mathematical quan-
tities, namely cohomology groups of the vector bundles, encode the particle spectrum and
interactions of the four-dimensional physics. A considerable amount of work has been de-
voted to developing techniques for constructing vector bundles and computing the associated
cohomology groups [3–20].
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Much of the literature has focused on finding specific vector bundles on select threefolds
which lead to realistic theories. However, given the multitudes of Calabi-Yau threefolds and
of potential vector bundles on them, it is important to have a view of the global picture,
analyze the space of models, and especially determine how many models are quasi-realistic.
Only recently has there been an effort to understand this heterotic landscape. In ref. [21], a
special corner has been found which tends to produce realistic models (see ref. [22–24]).

Indeed, with the advances of computing power and software in computational algebraic
geometry, a novel perspective on heterotic compactification has been proposed in ref. [13]. In
ref. [14], so-called monad bundles are constructed over a large dataset of Calabi-Yau threefolds
known as CICYs, or Complete Intersection Calabi-Yau manifolds [25]. One of the advantages
of this set is the embedding into a projective ambient space which facilitates standard tech-
niques for calculating the requisite bundle cohomology groups. However, proving stability in
general for these bundles requires separate treatment and is rather difficult; a comprehensive
procedure is still elusive [26].

Luckily, a systematic technique for creating stable vector bundles does exist for a wide
class of Calabi-Yau manifolds, constructed by elliptic fibration [27, 28]. These elliptically
fibered threefolds are tori fibered over a complex base surface which also have a zero section.
Such manifolds have been completely classified [29, 30]. Stable vector bundles can be conve-
niently constructed over them using the spectral cover method [27,28]. An initial attempt at
classifying such vector bundles over this dataset of Calabi-Yau threefolds was undertaken in
ref. [6].

The purpose of the current paper is to classify, as much as computer power allows,
the spectral cover bundles over elliptically fibered threefolds and to examine some of their
properties and statistical features in the light of basic physical constraints, such as the three-
generation constraint. It turns out that a tremendous number is readily found. This consti-
tutes the largest explicit dataset of stable vector bundles to date. For the Calabi-Yau manifolds
constructed from Hirzebruch base spaces we find about 50, 000 inequivalent cases. After im-
posing basic physical constraints this number is drastically reduced to about 1, 700. For the
Calabi-Yau manifolds based on del Pezzo surfaces, dPr, we find that the number of consistent
vacua increases dramatically with r, and we are able to perform a complete classification for
r ≤ 3 only. Particularly, for r = 3 we find over 11 million models, of which about 400, 000 are
still compatible with basic physical constraints. For Calabi-Yau manifolds based on higher
del Pezzo surfaces, the classification is limited by computational power. We perform some
statistical analysis of the models and discuss model-building prospects.
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The organization of the paper is as follows. In Section 2, we lay out the mathematical
construction of stable vector bundles over elliptically fibered Calabi-Yau threefolds and review
how physical aspects such as the number of generations, GUT gauge groups, and anomaly
cancellation are conveniently encoded. We summarize all requisite physical constraints as
explicit Diophantine inequalities in Section 3 and show that the number of solutions is finite.
In Section 4, we proceed to classify stable SU(n) vector bundles from the spectral cover
construction on the elliptically fibered Calabi-Yau threefolds. We conclude with discussions
and prospects in Section 5.

2 Heterotic Compactification

Let us begin with a brief review of the compactification of heterotic string theory and, in
the non-perturbative regime, heterotic M-theory. This section serves as a reminder of the
mathematical constructions and physical constraints involved. We begin by motivating the
need for stable holomorphic vector bundles on Calabi-Yau threefolds and then specialize to
a wide class of elliptically fibered Calabi-Yau threefolds. We then briefly review the spectral
cover method for constructing stable bundles on these manifolds.

2.1 Stable Bundles on Calabi-Yau Threefolds

The “traditional” way to relate the ten-dimensional string theory to a four-dimensional space-
time M4 is to start with the E8 × E8 heterotic string theory on a background

M10 = M4 ×X , (1)

where X is a compact six-dimensional manifold (for a review see ref. [31]). Historically, this
was the first approach toward string phenomenology [1, 2].

The requirement of unbroken N = 1 supersymmetry in four dimensions further specifies
the construction. The standard solution is that the non-compact (and maximally symmetric)
space-timeM4 is flat Minkowski space while the compact manifoldX is a Calabi-Yau threefold,
that is, a complex Kähler manifold with a metric of SU(3) holonomy. Equivalently, by Yau’s
theorem, X is complex Kähler and has vanishing first Chern class of its tangent bundle,
c1(X) = 0.

It is common to declare one of the E8 gauge groups to be the “visible sector,” which is
to contain the particles of the SM, and the other E8 to be the “hidden sector.” Additional
hidden sectors can arise from the world-volumes of five-branes which may be included in the
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compactification. Throughout this paper we will not consider these hidden sectors explicitly
but we will ensure that a choice of data in the hidden sectors which leads to an overall
consistent model exists. In order to reduce the visible E8 group we allow a vector bundle V
on X with gauge group G. The low-energy gauge group H will then be the commutant of
G in E8. Moreover, we will focus on the cases G = SU(n) for n = 3, 4, 5, so that H is one
of the standard grand unification groups E6, SO(10), and SU(5), respectively. Subsequently,
one needs to introduce appropriate Wilson lines in order to break H to the Standard Model
gauge group. Because G is a special unitary group the vector bundle V satisfies the condition

c1(V ) = 0 . (2)

In order to preserve N = 1 supersymmetry, the gauge connection F on X must satisfy
the hermitian Yang-Mills equations Fmn = F m̄n̄ = gmn̄F

mn̄ = 0. These are rather difficult
equations to solve. Luckily, theorems by Donaldson, Uhlenbeck and Yau [32] state that a holo-
morphic vector bundle V on X will admit such a connection if and only if it is (poly-)stable. A
complicated set of partial differential equations is thereby translated to a problem of pure alge-
braic geometry. The proof of stability is still a difficult issue (see for example refs. [13,14,26]),
but fortunately the spectral cover construction used in the present paper will automatically
guarantee this.

Now, in order to be consistent at the quantum level, we need to impose Green-Schwarz
anomaly cancellation. This translates to a constraint on the second Chern classes of the
tangent bundle of the compact manifold X, the visible sector bundle V , the hidden bundle
Ṽ , and the holomorphic curve W wrapped by five-branes [33]. This constraint reads (see for
example [15,16])

c2(X)− c2(V )− c2(Ṽ ) = [W ], (3)

where [W ] is the homology class of W and provided that both V and Ṽ are vector bundles
with vanishing first Chern class. Since W is a holomorphic curve, its associated class [W ]
is effective, or, in other words, it is an element of the Mori cone of X. Given a Calabi-Yau
manifold X and a visible bundle V , a simple way to make sure that the anomaly condition
can be satisfied is to demand that

c2(X)− c2(V ) ∈ Mori cone of X . (4)

In this case, one can always find a five-brane curve W such that the anomaly condition (3) is
indeed satisfied for a trivial bundle Ṽ (although there may well be alternative choices which
involve a non-trivial hidden bundle Ṽ ). We will henceforth use the condition (4) for the
purpose of classifying spectral cover bundles.

5



2.2 Elliptic Fibration

As discussed above, the first object we need is a Calabi-Yau threefold X. In this paper, we
will focus on the rich data set of elliptically fibered Calabi-Yau threefolds since they allow for
a convenient construction of stable vector bundles.

An elliptically fibered Calabi-Yau threefold X is defined by a fibration

X
π→ B (5)

over a complex base surface B such that the fiber π−1(b) is an elliptic curve for each generic
point b ∈ B. We are referring to an elliptic curve rather than a torus because we require the
existence of a global section

σ : B → X, (6)

which associates to every point in B the zero element of the addition law on the elliptic curve.

The existence of a global section is a surprisingly strong constraint [29], and as a result
the complex base surface can only be one of the following [30] : Hirzebruch surfaces and their
blow-ups, del Pezzo surfaces, and Enriques surfaces. We will introduce these surfaces in detail
in Section 4.

One advantage of this fibered construction is that the Chern classes of X can be easily
expressed in terms of those of the base surface B as [28]

c1(X) = 0, (7)

c2(X) = c2(B) + 11c1(B)2 + 12σc1(B), (8)

c3(X) = −60c1(B)2 . (9)

These formulae will be useful later. We remark that the Euler number of X is simply

χ(X) =
∫
X
c3(X) = −60c1(B)2 . (10)

2.3 Spectral Cover Construction

As mentioned earlier, having background gauge fields which satisfy the hermitian Yang-Mills
equations is equivalent to choosing a stable holomorphic vector bundle. The greatest advan-
tage of elliptically fibered Calabi-Yau threefolds is that a systematic and relatively straight-
forward method has been developed to construct holomorphic vector bundles on them which
are guaranteed to be stable. This is the so-called spectral cover construction [27, 28].
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The idea is to first construct the bundles on individual elliptic fibers using a classic
result on stable bundles over elliptic curves due to Atiyah. Then these bundles over individual
fibers are patched together over the base. In summary, an SU(n) bundle V over X is given
by the spectral data, consisting of the following two pieces :

• The spectral cover CV : this is an n-fold cover of the base and is thus a divisor (a
linear combination of hypersurfaces) in X with degree n over B. This implies that the
cohomology class of CV in H2(X,Z) ' H4(X,Z) is of the general form

[CV ] = n σ + η , (11)

where σ is the class of the zero section, and η is a curve class in H2(B,Z). The class
η must be effective in B, which means that it must be possible to express it as a linear
combination of effective classes Si ∈ H2(B,Z) with non-negative coefficients :

η =
∑
i

aiSi, with ai ≥ 0. (12)

The subset of effective classes forms a cone in H2(B,Z) called the Mori cone.

• The spectral line bundle NV : this is a line bundle on CV with first Chern class

c1(NV ) = n(
1
2

+ λ)σ + (
1
2
− λ)π∗η + (

1
2

+ nλ)π∗c1(B) . (13)

The parameter λ has to be either integer or half-integer depending on the rank n of the
SU(n) structure group :

λ =

{
m+ 1/2 if n is odd,

m if n is even,
(14)

where m ∈ Z. When n is even, we must also impose η = c1(B) mod 2, by which we
mean that η and c1(B) differ only by an even element of H2(B,Z).

The holomorphic SU(n) vector bundle V on X can be extracted from the above data
by a so-called Fourier-Mukai transformation : (CV ,NV ) FM←→ V (see refs. [34, 35] for some
applications of this transformation in string theory). The Chern classes of V are given in
terms of the spectral data as [18,19,28]

c1(V ) = 0, (15)

c2(V ) = ησ − n3 − n
24

c1(B)2 +
n

2

(
λ2 − 1

4

)
η · (η − nc1(B)) , (16)

c3(V ) = 2λση · (η − nc1(B)) . (17)
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One of the advantages of the spectral cover construction is that stability of V can be
guaranteed by fairly simple algebraic conditions : the vector bundle V is stable if CV is
irreducible. This will be the case if we impose the conditions (see for example [6])

the linear system |η| is base-point free in B, (18)

η − nc1(B) is an effective curve in B. (19)

We recall that the linear system |η| is the set of all effective curves linearly equivalent to η (that
is, which only differ from η by the divisor of a meromorphic function [36]). It is base-point
free if its members have no common intersection. We will make these two rather technical
conditions more explicit for the surfaces we will encounter in Section 4.

Finally, the five-brane class W can be split up into a curve class WB in the base surface
B and the fiber class F of the elliptic fibration, so that

W = WB + afF, (20)

with af some integer. For most of the base spaces that we will consider, the class W is effective
if and only if the following conditions hold :

WB is effective, (21)

af ≥ 0. (22)

There is an exception to this rule for Hirzebruch surfaces Fr with r ≥ 3 [16]; we will discuss
this exception in Section 4.1 and properly incorporate it into our classification.

We can simplify the expressions in eq. (21). Using eqs. (4), (7), and (16), we can write
WB and af in terms of the cohomology classes of the base B as

WB = 12c1(B)− η, (23)

af = c2(B) +
(

11 +
n3 − n

24

)
c1(B)2 − n

2

(
λ2 − 1

4

)
η · (η − n c1(B)). (24)

2.4 Number of Generations

A salient feature of heterotic compactification is that the low-energy particles are given in
terms of the vector bundle cohomology groups for V [31]; these are well-defined mathematical
quantities to compute. In particular, for SU(n) bundles, we can count the net number of
generations, N ′gen, in the resulting Grand Unified Theory. This is a topological number and
from the index theorem it can be expressed as

N ′gen =
1
2

∣∣∣ ∫
X
c3(V )

∣∣∣. (25)
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If we wish to further break the grand unified group to the Standard Model group, we
normally have to quotient the Calabi-Yau manifolds by a freely-acting discrete symmetry to
obtain a non simply connected space and then turn on Wilson lines. Typically the symmetry
group is a cyclic group Zk or a product thereof (for a recent discussion on potentially large
discrete symmetries, see ref. [37]). Let the order of this group be k. The net number of
generations on the quotient manifold, Ngen, is then reduced by the order of this group and
given by

Ngen = N ′gen/k . (26)

For elliptically fibered threefolds it is usually not easy to find freely acting discrete symmetries
and we will not explicitly attempt this in the present paper. Instead, we will use some basic
necessary conditions for the existence of such a symmetry. First of all, eq. (26) implies that
the “upstairs” number of generations, N ′gen, must be a multiple of three,

N ′gen = 3k , (27)

so that the order of a discrete symmetry group which leads to three generations “downstairs”
is given by k = N ′gen/3. For the Calabi-Yau manifold X to allow for such a discrete symmetry
its Euler number must, of course, be divisible by the order k, so

χ(X)/k ∈ N . (28)

Eqs. (27) and (28) are the two basic physical constraints which we will impose on the models
found in this paper. For practical calculations, they can be expressed in terms of the base
surface and the spectral data by using eqs. (17) and (9).

3 Summary of Constraints and Finiteness

In the previous section we have presented the rudiments of constructing stable, holomorphic
SU(n) vector bundles on an elliptically fibered Calabi-Yau threefold. The requirement of
anomaly cancellation for a consistent heterotic vacuum and the physical condition of three net
generations of low-energy particles lead to a set of constraints on these bundles. It is expedient
to summarize these, now phrased in a succinct mathematical manner. In the following section,
we will show how these constraints lead to a classification problem. For recent related work,
the reader is also referred to refs. [10] and [11]. Combining eqs. (18), (19), (21), (22), (27),
and (28), we gather the six following constraints.

• Stability of the vector bundle V :
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1.) |η| must be base-point free.

2.) η − nc1(B) must be effective.

• Anomaly cancellation with five-branes (effectiveness of W ) :

3.) WB = 12c1(B)− η must be effective.

4.) af = c2(B) +
(

11 + n3−n
24

)
c1(B)2 − n

2

(
λ2 − 1

4

)
η · (η − n c1(B)) ≥ 0,

where1 λ = m+ 1/2 if n is odd, and λ = m if n is even, with m ∈ Z.

• Three generations :

5.) N ′gen = |λ η · (η − n c1(B))| = 3k, with k ∈ N.

6.) k divides χ(X) : 60c1(B)2/k ∈ N.

We recall that the rank n of the structure group SU(n) equals 3, 4 or 5, corresponding
respectively to low-energy gauge groups E6, SO(10), or SU(5). Note that all the constraints
are conveniently expressed in terms of quantities on the base surface B. The Chern classes can
easily be computed for the various allowed base surfaces, and the curve η can be expanded into
a basis of second homology. A solution to these constraints will consists of a set of coefficients
that specify the effective class η in terms of the generators of the Mori cone, as well as the value
of the arbitrary integer or half-integer parameter λ. We note that the above set of conditions
really splits into two logically somewhat distinct parts. Conditions 1.) to 4.) guarantee the
existence of a consistent heterotic vacuum and our initial classification will, therefore, focus
on these first four constraints. Constraints 5.) and 6.), on the other hand, are constraints of
a “phenomenological” nature and will only subsequently be imposed on the set of consistent
vacua in order to filter out promising models. Hence, our classification problem can be stated
as follows.

Find all η (specified by non-negative integer coefficients of an expansion in the
basis of the Mori cone of B) and λ (integer or half-integer according to the rank
n) such that the above constraints 1.) to 4.) are satisfied. Within this set find all
cases which in addition satisfy constraints 5.) and 6.).

We can immediately make some observations. First, note that the intersection number
η · (η − nc1(B)) appears in both constraints 4.) and 5.). Models with a zero net number of

1With an exception for Fr≥3, in which case af ≥ 96 + ar − 2a− 2b, see Section 4.1.
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generations are not particularly interesting, and to exclude such cases we demand, in addition
to constraint 4.), that

λ 6= 0, η · (η − nc1(B)) 6= 0 . (29)

These will be included with constraints 1.) to 4.) in our actual initial classification. A
technical reason for demanding a non-zero number of generations has to do with the issue of
finiteness which we will address shortly. On the so-obtained data set we will then impose the
three-generation constraints 5.) and 6.).

Second, in all our constraints, λ only appears as a square or an absolute value; thus for
every solution with positive λ there is also a solution with negative λ. Since the third Chern
class of V depends explicitly on λ itself, as seen from (17), these two sets of solutions are
actually different bundles.

Finally, let us consider the issue of whether the number of solutions is finite or infinite.
Let us examine conditions 2.) and 3.). Crucially, we see that these two conditions have
opposite signs in front of η. Effectiveness is a positivity condition and this means that 2.)
and 3.) provide upper and lower bounds for the coefficients in the expression of η. If the
Mori cone is finitely generated, then this implies that there is only a finite number of possible
solutions of η. As we will see below, all of our base surfaces have a finite-dimensional Mori
cone, except the ninth del Pezzo surface. Luckily, this particular surface will be ruled out by
the requirement of a non-zero net number of generations, that is by the condition (29).

With a finite possible set of solutions for η, condition 4.) constitutes a quadratic in-
equality for λ if the coefficient η · (η − nc1(B)) does not vanish. This is precisely what we
have required in eq. (29) in order to have a non-vanishing number of families. As a result,
the number of possible λ values is finite. This finiteness result is the technical reason for the
non-vanishing condition (29). In our detailed calculations below, it will turn out that there
are some cases for which η · (η − nc1(B)) is indeed zero. They may lead to an infinite family
of stable vector bundles satisfying the anomaly constraints, although all of them with a zero
number of generations. We will not presently address these bundles.

Hence, since there is a finite number of solutions to our variables λ and η, we immediately
have a nice finiteness result.

There is a finite number of solutions to constraints 1.) to 4.), together with the
condition (29). That is, there is a finite number of spectral cover SU(n) vector
bundles on elliptically fibered Calabi-Yau threefolds which lead to anomaly-free het-
erotic vacua with a non-vanishing number of generations.
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From these we can select three-generation models by imposing constraints 5.) and 6.), which
will be done explicitly in the ensuing section.

An initial attempt at classifying these bundles was made in ref. [6]; however, at the time,
interest was more in the development of techniques of computing particle spectrum. Recently,
a complete classification was achieved for positive monad bundles over Complete Intersection
Calabi-Yau threefolds in refs. [13,14], and a similar finiteness result as above was encountered.

4 Classification of Stable Bundles

We have laid the foundation and presented the crux of our problem in the previous two
sections. Now, let us perform a systematic study of the solutions to the six constraints for
each of the allowed bases for the elliptic fibration. Enriques base spaces have been shown to be
ruled out by effectiveness (see Section 6.1 of ref. [6]). This leaves us with only three possible
choices : Hirzebruch surfaces, their blow-ups, and del Pezzo surfaces. We will address the
spectral cover bundles on them case by case.

4.1 Hirzebruch Surfaces

We begin with the Hirzebruch surfaces Fr, which are P1 fibrations over P1. We denote the class
of the base P1 by S and that of the fiber by E. These classes have the following intersection
numbers

E · E = 0, S · E = 1, S · S = −r . (30)

The self-intersection number r is an integer between 0 and 12 where the upper bound comes
from a theorem in ref. [29].2 Therefore, there are only 13 Hirzebruch surfaces to consider; we
note that this has not been thus far stressed in the literature.

The curves in Fr live in H2(B; Z), which is in fact spanned by S and E. Moreover, every
effective curve can be expressed as a linear combination of these generators with non-negative
integer coefficients, so we express our effective curve η as

η = aS + bE , a, b ∈ Z≥0 . (31)

Constraint 1.) requires that the linear system |η| be base-point free in Fr. This is the case if
η · S ≥ 0 (see ref. [6]) or, in terms of the coefficients,

2We thank Mark Gross for pointing this out to us.
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1.) b ≥ r a .

To compute the other constraints we need the Chern classes of Fr which are given by

c1(Fr) = 2S + (r + 2)E, (32)

c2(Fr) = 4. (33)

Combining our above condition for effectiveness, constraints 2.) and 3.) become

2.) a ≥ 2n, b ≥ n(r + 2) ,

3.) a ≤ 24, b ≤ 12(r + 2) .

Already, from these two conditions we see that the coefficients a, b are bounded and can only
have a finite number of solutions for η.

Next, constraint 4.) becomes

4.) 92+n3−n
3 −

n
2 (λ2−1

4)
(
2ab− 2na− 2nb+ nra− ra2

)
≥

{
0 if r < 3,

96 + ar − 2a− 2b if r ≥ 3,

The first case, for r < 3, corresponds to the standard situation, discussed in Section 2.3, where
a class W = WB+afF in X is effective iff WB is effective and af ≥ 0. However, for Hirzebruch
surfaces Fr with r ≥ 3, the condition af ≥ 0 is replaced by

af ≥ 96 + ar − 2a− 2b, (34)

and this leads to the more complicated constraint for this case. In any event, the above
condition 4.) becomes a quadratic inequality for λ which leads to a finite number solutions.

Finally, constraint 5.) amounts to

5.) N ′gen = |λ
(
2ab− 2na− 2nb+ nra− ra2

)
| = 3k,

and from the above expression for the Chern classes and the intersection numbers we have
that c1(Fr)2 = 8 (interestingly, both this and c2(Fr) are independent of r) so that the Euler
character (10) for X becomes −480. Hence constraint 6.) becomes

6.) 480/k ∈ N.
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In all, the six constraints have therefore become very concrete inequalities in a, b, λ, and
k, given r = 0, . . . , 12. Indeed, λ is integral or half-integral according to n, and a, b, and k are
positive integers. As discussed earlier, constraints 1.), 2.) and 3.) immediately give a finite
number of possibilities for a and b which are simply lattice points in a polygon. Furthermore,
condition 4.) restricts the possible values of λ. Hence, we have indeed a finite number of
solutions. On this set, we can then impose the phenomenological conditions 5.) and 6.). This
will typically lead to a large reduction of the number of viable models.

To explicitly solve the six equations is straightforward though tedious. A complete
lattice point search is implemented using Mathematica and C++. We present some illustrative
examples of spectral bundles over some of the surfaces in Table 1, and a tally of all the solutions
in Table 2.

The bundles in Table 1 are, according to Section 2.3, specified by the integers n, a, b,
and the (half-)integer λ. We see that we can produce quite small numbers of net generations.
This should be contrasted with the results in refs. [13,14]. One observation is that the smaller
Hirzebruch surfaces tend to produce models with fewer generations. Indeed, the minimum
possible number of generations achievable for each Hirzebruch Fr decreases with r.

Base n (a, b) λ # generations

F0 3 (7, 6) 1
2 3

F1 5 (13, 15) 1
2 3

F2 3 (6, 13) 1
2 3

F3 3 (6, 18) 1
2 9

F3 4 (8, 26) 1 48

Table 1: Some examples of stable vector bundles on elliptically fibered Calabi-Yau threefolds over the first

few Hirzebruch surfaces. The bundle is specified by integers n, a, b, and the integer or half-integer λ. We

show examples in which the net number of GUT particle generations is equal to 3k for some natural number

k, and such that k divides the Euler number of the Calabi-Yau threefold. We can think of k as the order of

a possible discrete group of symmetries.

Table 2 gives the number of solutions of SU(3), SU(4), and SU(5) bundles on the elliptic
threefolds fibered over each of the Hirzebruch surfaces. For comparison we have also included
two additional sets of results. The first three column represent solutions to the constraints 1.)
to 4.) only. Hence, these are stable bundles satisfying anomaly cancellation but their number
of generations is not necessarily a multiple of three. Interestingly, SU(4) bundles are the most
rare. The three middle columns count the number of solutions satisfying all six constraints.
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This leads to an order 10 reduction in the number of bundles. Finally, in the rightmost three
columns, we impose the extra condition that k ≤ 10. This is a reasonable constraint because
it is in general difficult to find discrete symmetries of very large order. A further reduction
is thus seen. We also find some solutions (shown in parentheses) which gives exactly three
generations without the need to quotient by any discrete group, that is k = 1. These are
solutions which correspond to three-generation Grand Unified Theories rather than Standard
Model-like theories. These are quite uncommon (only 20 out of the 246), and are concentrated
on the first three Hirzebruch surfaces.

Constraints 1.) – 4.) 1.) – 6.) 1.) – 6.) and k ≤ 10

Base SU(3) SU(4) SU(5) SU(3) SU(4) SU(5) SU(3) SU(4) SU(5)

F0 756 74 458 104 18 34 48(4) 6 18

F1 878 108 602 140 32 58 56(6) 20 (4) 38 (4)

F2 740 40 454 68 10 24 24 (2) 4 10

F3 666 16 352 66 4 14 12 0 2

F4 650 4 306 36 2 10 6 0 0

F5 660 0 280 40 0 2 2 0 0

F6 682 0 266 28 0 8 0 0 0

F7 710 0 258 30 0 8 0 0 0

F8 740 0 252 16 0 6 0 0 0

F9 774 0 250 24 0 8 0 0 0

F10 810 0 250 18 0 6 0 0 0

F11 846 0 250 22 0 4 0 0 0

F12 882 0 250 18 0 4 0 0 0

Total 9794 242 4228 610 66 196 148(12) 30(4) 68(2)

Table 2: The number of stable SU(n) vector bundles from the spectral construction over Calabi-Yau

threefolds fibered over the Hirzebruch surfaces and satisfying anomaly cancellation for n = 3, 4, 5 (corre-

sponding respectively to gauge groups E6, SO(10), or SU(5)) are given in the first three columns. The

middle three columns tally those which also give rise to a number of net GUT particle generations divisible

by three (that is, they satisfy all our six constraints). The right-most three columns represent the bundles

which also require k, the order of a possible discrete symmetry, to be less or equal to 10. The numbers in

parentheses indicate models with exactly three net generations where they exist.
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(a) (b)

(c) (d)

Figure 1: Histograms of the net number of GUT particle generations (such that the number equals 3k

for some natural number k and such that k divides the Euler number) for the elliptic Calabi-Yau threefold

fibered over the first Hirzebruch surface F1 for stable SU(n)-bundles at respectively (a) n = 3, (b) n = 4,

(c) n = 5, and (d) combined. The vertical axis is the number of bundles, and the horizontal one the net

number of generations.

As a further illustration, let us examine the first Hirzebruch surface, which has a good
population of solutions, and is also the only case which admits exactly three generations for all
n = 3, 4, 5. To illustrate the distribution of the number of net generations, we plot a histogram
in Figure 1. We see that most of the models arise at a small number of generations although
models with a large number of generations do exist.

To get an idea of the distribution over the entire family, we plot some three-dimensional
histograms in Figure 2. As before, on the vertical axis we plot the number of solutions,
and on the horizontal ones we plot the number of generations and the number r = 0, . . . , 12
characterizing the Hirzebruch surface.
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(a) (b)

(c) (d)

Figure 2: Histograms of the net number of GUT particle generations (such that the number equals 3k

for some natural number k and such that k divides the Euler number) for the elliptic Calabi-Yau threefolds

fibered over all the Hirzebruch surfaces F0,...,12 for stable SU(n)-bundles at respectively (a) n = 3, (b)

n = 4, (c) n = 5, and (d) combined. The vertical axis is the number of bundles, and one of the horizontal

axes is the net number of generations while the other, from 0 to 12, labels the specific Hirzebruch surfaces.

Note that, from (b), there are no stable SU(4) bundles with a number of generations divisible by 3 for the

fifth and higher Hirzebruch surfaces.
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4.2 Blow-ups of Hirzebruch Surfaces

Our next family of base surfaces is obtained by blowing up a point on the curve E of a
Hirzebruch surface Fr for r = 0, 1, 2, 3 [29]. Such a blow-up is customarily denoted as F̂r.

The second homology is easy to describe. In addition to E and S described in eq. (30),
there is now a new exceptional class G, corresponding to the blow-up. Now, if we define
F +G = E, the intersection numbers are given by [36]

E · E = 0, S · S = −r, S · E = 1, (35)

F · F = G ·G = −1, S · F = 1, S ·G = 0, G · F = 1. (36)

Here, an effective curve can be expressed as

η = aS + bF + cG, (37)

with a, b, c ∈ Z≥0 but not all 0, and the Chern classes are given by [17]

c1(F̂r) = 2S + (r + 2)F + (r + 1)G, (38)

c2(F̂r) = 5. (39)

The base-point freeness condition can now be guaranteed by 3

b ≥ a, b ≥ c, c ≥ b− a. (40)

The remaining conditions are straightforward and so without much ado, we can explicitly
summarize the six constraints as

1.) b ≥ ra and b ≥ a, b ≥ c, c ≥ b− a,

2.) a ≥ 2n, b ≥ (r + 2)n, c ≥ (r + 1)n,

3.) a ≤ 24, b ≤ 12(r + 2), c ≤ 12(r + 1),

4.) 82 + 7
24(n3 − n)− n

2 (λ2 − 1
4)(−ra2 + 2ab− b2 + 2bc− c2 + (r − 2)na− nb− nc) ≥ 0,

5.) |λ(−ra2 + 2ab− b2 + 2bc− c2 + (r − 2)na− nb− nc)| = 3k,

6.) 420/k ∈ N.

3We are grateful to Antonella Grassi for pointing this out to us.
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We proceed as before in solving these Diophantine inequalities by lattice-point search
and tally the solutions in Table 3. Again, we see that SU(4)-bundles are the most rare. As
before we show three data sets, those satisfying only constraints 1.) to 4.) , those satisfying
all six constraints, and those satisfying all six constraints and in addition having the order of
the symmetry group k ≤ 10. A dramatic reduction is seen in the number of solutions with
the imposition of these constraints.

1.) – 4.) 1.) – 6.) 1.) – 6.) and k ≤ 10

Base SU(3) SU(4) SU(5) SU(3) SU(4) SU(5) SU(3) SU(4) SU(5)

F̂0 2544 386 1654 322 70 144 162 (14) 48 (8) 86 (8)

F̂1 8872 922 6344 882 174 500 384 (32) 124 (20) 266 (20)

F̂2 6882 512 5008 530 108 322 206 (18) 80 (12) 152 (12)

F̂3 5576 148 3504 328 16 124 76 (2) 2 20

Total 23874 1968 16510 1062 368 1090 828 (66) 254 (40) 504 (40)

Table 3: The number of stable SU(n) vector bundles from the spectral construction over Calabi-Yau

threefolds fibered over the blow-ups of Hirzebruch surfaces and satisfying anomaly cancellation for n = 3, 4, 5

(corresponding respectively to gauge groups E6, SO(10), or SU(5)) are given in the first three columns.

The middle three columns tally those which also give rise to a number of net GUT particle generations

divisible by three (that is, they satisfy all our six constraints). The right-most three columns represent the

bundles which also require k, the order of a possible discrete symmetry, to be less or equal to 10.

4.3 Del Pezzo Surfaces

We are finally left with the del Pezzo family of surfaces. It will turn out that, because some
higher members of this family have a large number of generators for the Mori cone, these give
rise to the most number of bundles. Indeed, elliptic fibrations over specific del Pezzo surfaces
have been favorable in constructing realistic models for the past few years [7, 8].

Let us begin by introducing the geometry. The del Pezzo surfaces dPr is given by P2,
the complex projective plane, blown-up at r generic points. There are only ten del Pezzo
surfaces, with r = 0, . . . , 9, for which elliptic fibration is allowed. The first member, dP0, is
just P2, and the second, dP1, is isomorphic to the first Hirzebruch surface, F1.

Again, we need the second homology group H2(dPr,Z) to describe the curve classes.
The generators are easy to obtain : they are simply the hyperplane class l in P2 as well as
the exceptional blow-up divisors Ei with i = 1, . . . , r. They have the following intersection
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r Generators (i < j < . . . ≤ r) Number

0 l 1

1 E1, l − E1 2

2 Ei, l − Ei − Ej 3

3 Ei, l − Ei − Ej 6

4 Ei, l − Ei − Ej 10

5 Ei, l − Ei − Ej , 2l − Ei − Ej − Ek − El − Em 16

6 Ei, l − Ei − Ej , 2l − Ei − Ej − Ek − El − Em 27

7 Ei, l − Ei − Ej , 2l − Ei − Ej − Ek − El − Em,
3l − 2Ei − Ej − Ek − El − Em − En − Eo 56

8 Ei, l − Ei − Ej , 2l − Ei − Ej − Ek − El − Em,
3l − 2Ei − Ej − Ek − El − Em − En − Eo, . . . 240

9 . . . ∞

Table 4: Generators of the Mori cone (of effective curves) for del Pezzo surfaces dPr.

numbers (see for example ref. [6]) :

l · l = 1, l · Ei = 0, Ei · Ej = −δij . (41)

The Chern classes are given by

c1(dPr) = 3l −
r∑
i=1

Ei, (42)

c2(dPr) = 3 + r. (43)

The Mori cone for the del Pezzo surfaces is not as simple as the one for the previous
cases; its generators are listed in Table 4. Every effective class can be written as linear
combinations of these generators with non-negative integer coefficients. It is a concern that
dP9 has an infinite dimensional Mori cone. This may contradict our finiteness result. Luckily,
as discussed in Section 6.2 of ref. [6], the generic dP9 surface is ruled out by the requirement
of a non-zero number of generations, eq. (29). The basic reason is that this surface is itself an
elliptic fibration over P1 with fiber class f . From effectiveness, η must be proportional to f
and as a result the number of generations is zero. Therefore we need not consider this surface.

However, we must point out that special dP9 surfaces, where additional isometries are
found in special points of moduli space, are allowed. Indeed, all the successful models in the
literature based on this surface are special dP9 [7, 8]. We will not consider these special cases
here.
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1.) – 4.) 1.) – 6.) 1.) – 6.) and k ≤ 10

Base SU(3) SU(4) SU(5) SU(3) SU(4) SU(5) SU(3) SU(4) SU(5)

dP0 62 10 44 12 2 6 4 0 2

dP1 878 108 602 140 32 58 56(6) 20 (4) 38 (4)

dP2 8,872 922 6,344 882 174 500 384(32) 124(20) 266 (20)

dP3 4,564,124 399,446 6,080,464 291,282 82,622 529,102
101, 204
(5, 306)

62, 098
(5, 198)

247, 724
(8, 738)

dP4 . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5: The number of stable SU(n) vector bundles from the spectral construction over Calabi-Yau

threefolds fibered over the first four del Pezzo surfaces and satisfying anomaly cancellation for n = 3, 4, 5

(corresponding respectively to gauge groups E6, SO(10), or SU(5)) are given in the first three columns.

The middle three columns tally those which also give rise to a number of net GUT particle generations

divisible by three (that is, they satisfy all our six constraints). The right-most three columns represent the

bundles which also require k, the order of a possible discrete symmetry, to be less or equal to 10. The

numbers in parentheses indicate those, where possible, with exactly three net generations.

Finally, we need conditions for the linear system |η| to be base-point free. On dPr for
2 ≤ r ≤ 7, this is the case if the divisor η is such that η · E ≥ 0 for every curve E which
satisfies the two properties E ·E = −1 and E · c1(dPr) = 1. Therefore, this condition is again
translated into constraints on intersection numbers.

Now we are ready to write our six constraints in terms of coefficients of η expanded
into the Mori cone, as well as λ and k. Indeed, from Table 4 we see that there is a very
rapidly increasing number of generators as r increases. Thus we have increasing numbers of
coefficients to deal with and this complicates our algorithmic computations. We treat each
case of r separately.

As an example, let us discuss dP2 explicitly. There are three generators of the Mori cone
and we can write

η = aE1 + b(l − E1 − E2) + cE2 . (44)

Subsequently, the six constraints become :

1.) b ≥ a, a+ c ≥ b, b ≥ c,

2.) a ≥ 2n, b ≥ 3n, c ≥ 2n,

3.) a ≤ 24, b ≤ 36, c ≤ 24,
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(a) (b)

(c) (d)

Figure 3: Histograms of the net number of grand unified particle generations (such that the number equals

3k for some natural number k and such that k divides the Euler number) for the elliptic Calabi-Yau threefold

fibered over the third del Pezzo surface dP3 for stable SU(n)-bundles at respectively (a) n = 3, (b) n = 4,

(c) n = 5, and (d) combined. The vertical axis is the number of bundles, and the horizontal one the net

number of generations.

4.) 82 + 7
24(n3 − n)− n

2 (λ2 − 1
4)(−a2 + 2ab− b2 + 2bc− c2 − na− nb− nc) ≥ 0,

5.) N ′gen = |λ(−a2 + 2ab− b2 + 2bc− c2 − na− nb− nc)| = 3k,

6.) 420/k ∈ N.

Again, we can find all solutions via an exhaustive lattice-point search.

In Table 5 we record the tally of solutions for the first four del Pezzo surfaces. We see
that the number of solutions grow exponentially, and dPr for 4 ≤ r ≤ 8 exceeds what we can
perform with present computer power.

We see that there is an enormous number of stable bundles which satisfy our physical
constraints. As an illustration, let us plot the results for dP3, the richest so far, in Figure 3.
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5 Conclusion and Prospects

In this paper, inspired by recent advances in applying computer algebra and computational
algebraic geometry to string phenomenology [13,38], we initiated the construction and statis-
tical analysis of the largest set of explicit stable bundles to date. We carried out a classification
of spectral cover vector bundles, compatible with heterotic model-building constraints, over
elliptically fibered Calabi-Yau manifolds. For both Hirzebruch and blown-up Hirzebruch base
spaces we obtained a complete classification of anomaly-free bundles with about 30, 000 SU(3)
cases, 20, 000 SU(5) cases, and only about 2, 000 SU(4) cases. It is interesting to note the
difference in numbers between SU(4) and the other two structure groups; this is related to a
case distinction for the parameter λ in the spectral cover construction.

We then imposed two physical constraints on these bundles, namely the three-generation
constraint and the requirement that the order of a possible discrete symmetry group is at most
10. This led to a dramatic reduction in the number of viable models to about 1, 700, most of
them concentrated on blown-up Hirzebruch base spaces.

For del Pezzo base spaces the situation was somewhat different due to the large number
of Mori cone generators for the higher del Pezzo surfaces. In practice, we could only perform a
complete classification up to dP3, where we found over 11 million anomaly-free stable bundles.
As before, the number of SU(4) bundles is relatively small with about 400, 000 cases. We
should stress that among all these bundles the number of those that have different second
and third Chern classes is smaller by a factor 100 approximately. They could still however be
genuinely different bundles, given that they have different coefficients for the expansion of η
in terms of Mori cone generators or different values of λ.

Imposing the physical constraints led to a reduction of the number of models by a factor
of more than 10 but we are still left with about 400, 000 viable models at this stage. We
did not explicitly classify bundles on del Pezzo surfaces dPr with r > 3, as this task exceeds
current computer power.

For Hirzebruch base spaces our approach led to a relatively small number of about 1, 700
viable models which can now be studied in detail. For del Pezzo base spaces, on the other
hand, we clearly need more physical constraints which can be systematically imposed in order
to filter out the presumably small number of physically promising examples. A systematic
search for discrete symmetries of elliptically fibered Calabi-Yau manifolds and spectral cover
bundles over them would likely lead to very tight constraints, but performing such a search is
a very challenging tasks indeed.
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In addition, by methods similar to the one employed in this paper, one could classify
spectral cover bundles with U(n) structure groups over elliptically fibered Calabi-Yau man-
ifolds. Discrete symmetries and Wilson lines are not required for such models and system-
atically imposing detailed physical constraints might be a more straightforward task. These
issues are currently under investigation.
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