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Abstract 

Recently several papers that model parasitic egg-laying by birds in the nests of 
others of their own species have been published. Whilst these papers are 
concerned with answering different questions, they approach the problem in a 
similar way and have a lot of common features. In this paper a framework is 
developed which unifies these models, in the sense that they all become special 
cases of a more general model.  This is useful for two main reasons; firstly in 
order to aid clarity, in that the assumptions and conclusions of each of the 
models are easier to compare. Secondly it provides a base for further similar 
models to start from. The basic assumptions for this framework are outlined and 
a method for finding the ESSs of such models is introduced. Some mathematical 
results for the general, and more specific, models are considered and their 
implications discussed. In addition we explore the biological consequences of the 
results that we have obtained and suggest possible questions which could be 
investigated using models within or very closely related to our framework. 
 
 
1. Introduction 

A common phenomenon amongst bird populations is brood parasitism; that is the  
laying of eggs in the nest of another individual without taking part in the 
subsequent processes of incubation and/or caring for the hatchlings. This 
behaviour takes two forms. Obligate interspecific brood parasitism is where a 
species specialises in laying eggs in the nests of birds of another species; in this 
case the parasite birds do not build a nest and lay all their eggs parasitically. 
Conspecific (or intraspecific) brood parasitism is where the host is from the bird’s 
own species.  Conspecific brood parasitism has been categorised into three 
types by Davies (2000). The first case involves individuals that attempted to nest 
normally but whose nest was destroyed, say by weather or predators. If such a 
female has begun the process of egg-laying, then she may not have time to 
rebuild the nest, and she may turn to parasitism to “make the best of a bad job”. 
In the second case, some individuals have made no attempt to nest themselves 
but instead choose pure parasitism as in the interspecific case.  
The final situation is one where parasitic individuals build nests that are not 
destroyed, and as well as laying eggs in their own nest, they lay some of their 
eggs parasitically. The advent of molecular techniques such as DNA 
fingerprinting has greatly aided field study of this behaviour. At the latest count 
(Eadie et al. 1998), conspecific brood parasitism behaviour has been recorded in 
185 species. 
 
There have been several attempts to model conspecific brood parasitism. 
Andersson (1984) and Eadie & Fryxell (1992) developed game-theoretic models 
of the second case, where parasitic birds are pure parasites. Later models have 
considered the third, more common, situation where parasitism is only part of a 
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bird’s behaviour and it forms its own nest as well. The first of these models was 
by Lyon (1998) and was followed by Robert and Sorci (2001), Broom and Ruxton 
(2002) and Ruxton and Broom (2002). Each of these models attempted to 
answer different questions about this parasitic behaviour, but there is a lot in 
common between them. The aim of this paper is to introduce an overall 
framework for the modelling of conspecific brood parasitism that incorporates the 
current models and can make general predictions about a wide range of possible 
behaviours. In particular it is of great interest under what conditions brood 
parasitism should occur at all, and what effect the presence of parasitism has on 
the number of host eggs and the total number of eggs laid. A description of each 
of the models and how they fit into the overall framework is given in Appendix B.   
  
We intend this paper to be of use to modellers by providing a flexible framework 
for describing a wide range of brood parasitic systems. If a specific system can 
be cast as a special case of our general model, then the paper will supply useful 
tools to ease the analysis of the system. We also intend it to be of interest to 
those seeking to compare the assumptions and predictions of previous models. 
Representing two models as special cases of our general model should greatly 
aid comparison. Lastly, and equally importantly, we intend it to be of use to those 
whose interest in brood parasitism is more empirical. Our model describes 
several key features which we believe are central to many brood parasitic 
systems and consequently of great biological interest. This should allow 
investigators to identify those features of either host or parasite behaviour of a 
particular system that must be measured (and the accuracy required) in order to 
gain an understanding of the mechanisms underlying aspects of parasitism in 
that system.    
 
2. The Model 
 
2.1 Laying Strategies 
 
Birds lay eggs in their own nest and in other nests as parasite eggs. There are 
various choices that the birds could make (including complex sequential ones 
depending upon the number of eggs in their own and other nests, time and so 
on) which could generate a wide range of possibly complicated payoff functions 
and egg distributions. We focus on the fundamental question of how many eggs 
a bird should lay in its own nest, and how many it should lay parasitically. To 
make progress we assume that birds make an initial choice of the number of host 
eggs that they lay x, and the number of parasite eggs y which they spread 
randomly among other nests. These numbers cannot be altered after laying has 
commenced so that sequential strategies, as mentioned above, do not occur.  
 
In such circumstances, what is the fitness of an individual playing a particular 
strategy (x,y)? This involves contributions from three different terms; the cost of 
laying the eggs, the value to a bird of eggs laid in its own nest and the value to it 
from parasite eggs. It is assumed that these three terms are additive and 
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independent. This is reasonable in the case of the cost function, which just 
depends upon the number of eggs laid, not when and where they were laid. The 
independence of the other two terms relies on a bird not being able to enhance 
success in its own nest at the expense of its parasite eggs, or vice versa, except 
by altering the values of x and y (e.g. by deciding to lay all its host eggs first). If 
this was possible then the range of strategies would be greatly increased as birds 
would have to choose the order in which they laid their eggs and what strategies 
would be effective would depend upon which ordering strategies other birds 
followed. We assume that all birds in a population will behave in a similar way in 
respect of the order of laying i.e. there is an evolutionarily stable ordering for any 
strategy (x,y),  if all birds play this strategy, and the birds adopt this laying order. 
When considering possible invading strategies, we in essence assume that they 
also adopt a similar ordering.  
 
A related assumption is that any parasite egg contributes an amount equal to the 
mean payoff of all parasite eggs in the population to the parasite i.e. no bird’s 
eggs do generally better than others (for example by laying fewer host eggs and 
so laying their parasite eggs earlier). The mechanism used can be one of many. 
Birds may lay parasite eggs completely at random, laying a single egg in each 
nest. This presupposes that nests are relatively easy to find; they may not be, 
and birds may have to lay eggs in nests as they find them. Alternatively birds 
may lay all their parasite eggs in a single nest. The assumption is that each bird 
uses the same method and that the expected value to each egg is the average of 
that for all parasite eggs in the population. 
 
2.2 Rewards, costs and distributions 
 
We proceed to outline the reward and cost functions, which contribute to the 
overall payoff to a bird playing a given strategy. This payoff also depends upon 
the distribution of clutch sizes and of eggs within the different nests, and the 
relevant functions are also given. 
 
(1) Birds pay a cost depending upon the number of eggs z that they lay, C(z). 
Clearly C(z) is an increasing function. It is assumed that egg production does not 
get any easier as extra eggs are laid (and may become more costly as resources 
diminish) so that the derivative of C(z), )(/ zC , is a non-decreasing function.  
 
(2) If a nest contains a total of t eggs then if the i th egg is laid by the owner of 
that nest (i.e. is a host egg) its value to its parent, measured by the probability 
that it hatches into a chick which survives to adulthood, is h(i,t) (see (5) for an 
explanation of the value of such an egg to its parent if it is a parasitic egg). It is 
often the case that the earlier laid eggs have an advantage, hence h(i,t) 
decreases with i. 
 
(3) f(x,t) is the probability that a randomly chosen nest contains a total of t eggs, 
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 x of which are host eggs. Thus, after the laying process is completed and 
assuming a large population, it is the proportion of such nests. The value of f(x,t) 
will depend upon the laying rules assumed. In particular we specify that 
f(x,t)=d(x) )(tg x  where d(x) is the probability that a random nest contains x host 
eggs and )(tg x  is the probability that given a nest contains x host eggs, it 
contains t eggs in total. 
 
(4) )(, ip tx is the probability that given a nest contains x host eggs and t eggs in 
total, the ith egg is a host egg. 
 
Terms (3) and (4) will depend upon the strategies adopted by the birds in the 
population, but also possibly on the times that birds start laying and the order that 
they lay in (parasite or host first, or some mixed order). 
 
(5) The fitness of parasite eggs is multiplied by a reduced survival parameter η, 
so that the value of a parasite egg in position i in a nest with a total of t eggs is 
ηh(i,t).This may be due to the possibility of an egg being rejected by its host, or 
factors other than egg rejection that impede the hatching or survival of the chick, 
or a combination of the two. We specify the probability that an egg is not rejected 
by the host, as γ. Thus we have that η≤γ≤1. 
 
2.3 The General Payoff Function 
 
The net reward to a bird playing ( *x , *y ), will be given by the general form  
 

)(),(),;()y,( ****** yxCyxWyyxxUxV +−+=                                         (1) 
 
where ),;( * yxxU  is the expected value of the bird’s own nest, depending upon 
the number of eggs it lays itself and the strategies of other birds. The mixture of 
strategies in the population is given by the probability vector of strategies played, 

yx, , indicated by a probability associated with each strategy (given by a single 
choice of x and y). Similarly ),( yxW  is the expected value of a parasite egg in 
this population. 
 
The three terms involved in the payoff function are as follows. 
 

(a) The cost that it pays for laying a total of *x + *y  eggs is C( *x + *y ), as 
above.  

 
(b) The value of the eggs in a bird’s own nest is found by finding the value to 

the host of its *x  eggs given that the total number of eggs is t and then 
finding the weighted average over all possible values of t, which gives us  
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(c) To find the expected value of a parasite egg we first find the conditional 
probability that an egg is in position i in a nest with x hosts and a total of t eggs 
(event A) given that it is a parasite egg (event B). 
 
P[A|B]=P[A∩B]/ P[B] 
 
P[A∩B] is the probability that a random egg is a parasite in position i in a nest 
with x host eggs out of a total of t, which is the ratio of the number of such eggs 
and the total number of eggs. Letting N be the (very large) number of nests this 
becomes 
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The value of a parasite egg in this position is η h(i,t). Summing over all possible 
positions gives the value of a random parasite egg as 
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A bird playing strategy ( *x , *y ) lays *y  such eggs. Combining this with the 
expected reward from its own nest and the cost of laying its eggs, the payoff to a 
bird playing ( *x , *y ) is thus 
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This provides us with a reward function for any distribution of other strategies; 
explicitly in the case of host strategies through the function d(x) but also implicitly 
for the different parasite strategies as long as the laying mechanisms are 
sufficiently well defined to work out the precise form of the other functions of the 
model; )(tg x is obtained from the distribution of the number of parasite eggs in 
hosts’ nests, and )(, ip tx from the ordering of these eggs within the nests. In 
practice, however, the actual strategies used in a population will only be those 
that are successful; in particular we shall restrict ourselves to finding ESSs of the 
model. 
 
2.4 The ESSs of the System 
 
To find the ESSs of this system, we assume that almost all birds play strategy 
( ex , ey ) and a small number (proportion ε) choose the alternative strategy 
( *x , *y ). Let  *)1( yyy em εε +−= , the average number of parasite eggs per nest. 
Since birds are assumed to use the same laying mechanism regardless of how 
many parasite eggs they lay, the parasite numbers only depend on the total my , 
and not on the particular contributions of the different birds. Further denote 

),( yxU  as the reward from its own nest to a bird which lays x eggs in this nest in 
a population where the average number of parasite eggs laid per bird (and so per 
nest) is y and ),( yxW  as the expected reward to a random parasite egg in a nest 
with x host eggs where the average number of parasite eggs laid per bird is y. 
Note that the payoff to parasite eggs is affected by which type of host is 
encountered, so the expected reward to a parasite is a weighted average of the 
two possible rewards. 
 The general expression for the payoff to a bird playing this alternative strategy in 
equation (1) now becomes 
 

)()),(),()1((),(),;y,( ******* yxCyxWyxWyyxUyxxV mmemee +−+−+= εε   (8) 
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We shall in fact simplify this expression further to become 
 

)(),(),(),;y,( ****** yxCyxWyyxUyxxV eeeee +−+=                                 (9) 
 
so that the vector of possible alternative strategies yx,  has been replaced by the 
specific strategy ( ex , ey ), on the assumption that the value of ε is negligible. 
This simplification has no effect on the ESS conditions, except in one particular 
case, which is analysed in Appendix A. The optimal strategy to play in such a 
population is the one that maximises the payoff ),;y,( ** ee yxxV . ( ex , ey ) is an 
ESS if it is the optimal strategy in a population playing ( ex , ey ). 
 
There are four possible types of solution, namely ( ex >0, ey >0), (0, ey ), ( ex , 0), 
and (0,0).  
 
( ex >0, ey >0) is an ESS only if 
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which are the one dimensional stability conditions. Finally we need the two 
dimensional stability condition, given by 
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Note that although these conditions are necessary, whether they are sufficient for 
an ESS depends upon the type of evolution allowed by the system. In particular 
the conditions are sufficient if mutations can only lead to slightly differing 
strategies. If they can lead to large differences, then sufficiency is given if in 
addition, there is no other turning point of the payoff function. The same proviso 
applies to the boundary solutions. The solutions that we have found are the local 
ESSs of the system (see Pohley and Thomas, 1983). This is a somewhat weaker 
concept than an ESS and the implications of using this idea are discussed in 
Section 3. 
 
(0, ey ) is an ESS only if 
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which is the equilibrium condition, and 
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which are the stability conditions. 
 
( ex , 0) is an ESS if 
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which is the equilibrium condition, and 
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which are the stability conditions. 
 
(0,0) is an ESS if 
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which are both stability conditions. 
 
We now return to the general expression for the payoff function given in equation 
(9); in particular we find all the above derivatives and show that all equilibria are 
also ESSs. 
 

)(),(),;y,( // yxCyxU
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where ),(/ eyxU  is the first derivative of ),( eyxU with respect to x. 
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2

yxC
dxdy

yxxVd ee

+−=                                                                      (22) 

 
 
Now since ),( * eyxU is the reward to a nest-builder who lays *x eggs in its own 
nest and ey  is the number of parasite eggs laid by other birds, the fact of within-
nest competition means that ),( * eyxU  should decrease with ey  and while it may 
increase with *x it should do so at a decreasing rate. Thus ),( */ eyxU decreases 
with *x  which in turn implies that 0),(// <eyxU . Similarly, since ),( ee yxW  is the 
reward to a parasite egg in such a population it should decrease with both ex  and 

ey . Further, we have stated that 0)(// ≥zC . If 0)(// >zC for all z, then these 
conditions together ensure that any strategy that satisfies the equilibrium 
condition to be an ESS, also satisfies the stability conditions as well, whether it is 
an internal or a boundary strategy (subject to the sufficiency comments 
mentioned above; see Section 3). Similarly if 0)(// >+ ee yxC  then ( ex , ey ) is an 
ESS. In fact if 0)(// =+ ee yxC , as in Broom and Ruxton (2002) and Ruxton and 
Broom (2002), then the equilibrium ( ex , ey ) is still stable and thus an ESS, but 
more careful analysis is required to show this, and this is given in Appendix A. 
 
Note that in Broom and Ruxton (2002) and Ruxton and Broom (2002) it is 
assumed that this reward from a bird’s own nest always increases with the 
number of eggs, whereas Robert and Sorci (2001) generally have this 
decreasing for sufficiently large *x .  
 
For a non-boundary ESS we need 
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We return to our more explicit functional form and the reward function of equation 
(7). If almost all birds play ( ex , ey ), and the rest (a proportion ε) play the 
alternative strategy ( *x , *y ), then the value of the function )(xd is given by 

,1)( ε−=exd  ,)( * ε=xd and )(xd =0 for all x≠ *, xxe . As the number playing the 
alternative strategy becomes a vanishingly small proportion of the population, the 
value of )(xd is given by )( exd =1 and )(xd =0 for all x≠ ex . This gives the 
following expression for the payoff function 
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which yields ESS conditions 
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We thus have a formula for the payoff to any strategy against a population 
playing an alternative strategy in quite general terms and formulae which can be 
used to find the ESSs of any particular system provided that the form of the 
functions which make it up are known. See Appendix B for a discussion of 
particular models to see how this works in practice. 
 
2.5 Some questions and answers 
 
Firstly we shall consider the possibility of multiple ESSs, using our most general 
modelling form. Let us suppose that there are two solutions to equation (23), 

),( 11
ee yx  and ),( 22

ee yx .Since )(/ ee yxC + does not decrease with the sum of ex  
and ey , but ),( ee yxW  decreases with both of them it is not possible for 

eeee yyxx 2121 , <≤ or for eeee yyxx 2121 , ≤< so that any such pair of solutions must be of 
the form eeee yyxx 2121 , >< . A similar argument can also be used to show that this 
applies to boundary solutions as well as internal ones. Of course this does not 
rule out there being many such solutions. That such a pair of solutions can exist 
is easy to demonstrate, as is shown below, and the consequences of this is 
discussed briefly in Section 3. Consider the following (not necessarily realistic) 
functions 
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It is easy to show that there are precisely two ESSs to this system, namely 

4,2 11 == ee yx and 2,4 22 == ee yx .  
 
It is possible to show that there is a unique ESS under certain restrictions. The 
lack of a position effect ( ),( tih does not depend on i) in Robert and Sorci (2001) 
and Ruxton and Broom (2002) leads to considerable simplification. Following 
Robert and Sorci (2001) by setting )(),( tstih = , the general payoff function to a 
bird with strategy (x,y) in a population who play ( ex , ey ) is given by 
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Further simplification is yielded by the fact that every nest contains exactly the 
same number of parasite eggs, giving 
 

)()()()y,( yxCyxysyxxsxV e +−+++= ++ η                                                (29) 
 
where +y is the number of parasite eggs per nest and takes different values in 
the two models, namely eyy η=+  in Ruxton and Broom (2002) and eyy =+  in 
Robert and Sorci (2001). 
 
To find any non-boundary solution (neither ex nor ey  equal to zero), we set the 
two derivatives of )y,(xV equal to zero and x= ex , y= ey   giving 
 

)()()()( // +++ +=+=+++ yxsyxCyxsyxsx eeeeee η                                  (30) 
 
Boundary conditions: 
Following on from equations (13-17) the conditions for ESSs at the boundary are 
as follows.  

ex = ey =0 if )0()0( /Cs <  
ex >0, ey =0 if 0)()()( // =−+ eeee xCxsxsx  and )()( / ee xCxs <η  
ex =0, ey >0 can only occur if )()( / eyCys <+ and )()( / eyCys =+η . Since η cannot 

exceed 1, this is impossible. 
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If there is a non-boundary solution, this yields two equations for the number of 
eggs that should be laid as hosts and parasites. The total number of eggs in a 
nest is given by ++= yxT e . We can find the optimal value of ex  from this total 
using the equation (30), namely 

)(
)()1(

/ Ts
Tsxe

−
−= η                                                                                      (31) 

The second equality from (30) is  
 

)()(/ ++=+ yxsyxC eee η                                                                       (32) 
 
It is clear from these two equations that there is a unique solution to this system 
since we know that )(/ ee yxC + is non-decreasing with ex  and ey  and that 

)( ++ yxs e is decreasing with both of these terms (since ey is increasing with +y ), 
giving a unique value of ++= yxT e  and so a unique ex . There may be no such 
solution, which occurs when the optimal value of ex  from equation (31) is larger 
than T, which then gives a unique boundary solution with 0=ey  and ex  the 
solution of the single equation from the above boundary conditions. 
 
Although we provide conditions for three types of boundary ESS, two of these 
are of little biological interest. The condition where it pays birds to lay no eggs at 
all is clearly not relevant, and arises only because of the simplified nature of the 
model. Similarly the ESS where eggs are only laid parasitically, is of little interest, 
since it is plainly illogical for birds to invest in building a nest that they do not use 
themselves, and even less logical for them to bring up a brood that they can be 
certain contains none of their own offspring. Again, this ESS arises only from the 
simplified nature of our model. The boundary ESS where all eggs are laid in the 
bird’s own nest is of biological interest, as this condition can be used to explore 
the ecological conditions required for the evolution of parasitism. The fact that we 
provide a mechanism for deriving an analytic expression for the conditions 
required for parasitism to evolve should allow comparison of the predictions of 
this expression with the known distribution of intra-specific parasitism within the 
range of avian species. 
 
The prediction that there may be multiple non-boundary conditions for a specific 
system may also be of biological importance. Different local populations of a 
species can display markedly different levels of intra-specific brood parasitism. 
Previously, this difference has been interpreted as indicative of between-
population differences in local ecological conditions. The possibility of multiple 
ESSs provides an alternative explanation for this phenomenon. It would be useful 
to explore the likelihood of multiple ESSs occurring in more specific cases of our 
general model.  
 
A possible special case of our framework involves the assumption that the value 
of an egg laid in a nest is independent of the number of eggs added to that nest 
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subsequently (i.e. ),( tih is independent of t), allowing considerable model 
simplification. It is highly unlikely that this assumption is reasonable for passerine 
species whose offspring require parental feeding for some time after hatching. 
However, it may be a reasonable assumption for some non-passerines that 
produce precocial young,which are able to feed themselves from the moment of 
hatching. Further development of the consequences of this assumption for model 
predictions may provide an insight into the apparently higher rates of intra-
specific brood parasitism among species with precocial young.  
  
 
 
3. Discussion 
 
In this paper we have developed a generalised model of conspecific brood 
parasitism that incorporates a range of already existing models as special cases. 
The framework that has been created is useful for two reasons. Firstly it helps 
when comparing existing models with each other and more clearly establishing 
the assumptions of the models, both explicit and implicit. Secondly, our work 
provides a basis for new models to start from. To fit into the framework, a new 
model will have to explicitly state a key set of assumptions in order to find the 
simpler versions of the general expressions introduced in Section 2 leading in 
turn to new versions of our equations, especially (7) and (24). In particular it is 
shown in this paper how to find the ESSs for models fitting into this framework 
thus providing a (possibly considerable) saving in effort. The approaches of the 
papers described in Appendix B to finding the ESSs were quite varied, and a 
common approach is useful for comparative purposes.   
 
Note that there have also been other models considering conspecific parasitism. 
For example the model of Ruxton et al. (2001) which was designed to test a 
hypothesis of (Yom-Tov,1980) about the use of pale eggs as a signal. This model 
introduced an asymmetry between host birds, which puts it outside of our 
framework. Another example is given in Yamauchi (1993), which describes how 
quantitative genetic modelling can be applied to the co-evolution of anti-
parasitism traits such as egg rejection along with parasitic traits. 
A further work (Yamauchi 1995) describes how this framework can be extended 
to consider both inter-specific and conspecific brood parasitism simultaneously.  
 
The equations and inequalities 10-17 define all the local ESSs of our model i.e. 
those strategies, which cannot be invaded by a mutant playing a strategy 
sufficiently close to the original, and are thus not necessarily actual ESSs. These 
will be the only solutions of interest if either new mutants only change their 
strategies by small amounts or if the payoff function to a mutant can have only a 
single turning point (this second criterion is certainly satisfied for some 
simplifications of the generalised model such as that described in Section 2.5). It 
should be noted that it is possible to have other more complex situations for 
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which this is not true. For a good overview of the issues raised by different types 
of stability see Hofbauer and Sigmund (1998). 
 
We have shown that there is not necessarily a unique ESS in our most general 
model, and it is not hard to produce a system with any specified number of ESSs. 
How realistic is it for there to be multiple solutions? None of the papers discussed 
in Appendix B have non-unique ESSs and it is shown in Section 2.5 that two 
recent papers (Robert and Sorci, 2001, and Ruxton and Broom, 2002) are 
examples of a specific subset of our new framework where there is always a 
unique ESS. However this may be due to the simplifying assumptions made, and 
more complicated interactions between x and y in the payoffs, egg positions and 
nest size distribution may generate multiple solutions in realistic cases. It will be 
interesting to see if new models of situations, which fit into our framework are 
developed that possess multiple ESSs. 
 
Our model framework could be logically extended to represent more than one 
species. We have in mind a situation where the options open to bird are to lay an 
egg in its own nest, in a nest of another bird from its own species, or in the nest 
of a different species. Some birds (mainly of the cuckoo and cowbird families) are 
obligate brood parasites that do not build nests themselves but lay eggs in the 
nests of other species. Our expended model framework would allow evaluation of 
the conditions required for such inter-specific brood parasitism to evolve from the 
intra-specific case. It could also help seek an answer for why no species seems 
to parasitise both its own species and another species simultaneously. 
 
Our framework demonstrates the importance of the costs of egg production for 
an understanding of brood parasites, and particularly identified the importance of 
understanding how this cost changes with the number of eggs produced. Further 
empirical work to resolve the likely shape of the function C(z) would be very 
useful. Similarly, further empirical work on the temporal arrangement of host and 
parasitic eggs laid in a nest would be useful, as well as measurement of the 
hatching (or, better yet, fledging) success of individuals from different positions 
within the temporal sequence.  
 
It seems likely that bird’s mechanisms for rejecting parasitic eggs have a non-
zero probability of leading to the mistaken rejection of one of a bird’s own eggs 
rather than the parasitic egg. This probability would have been substantial during 
the initial evolution of such ejection mechanisms. Our model framework could be 
modified in order to explore the feasibility of the evolution of egg rejection in the 
face of costs generated by such errors. Similarly, the model framework could 
easily cope with exploration of consequences of plausible trade-offs such as a 
trade-off between position on the temporal sequence of eggs in the nest and 
likelihood that a parasitically laid egg will be rejected. One option to a host bird is 
to desert a nest that it suspects has been parasitised in order to build another 
nest and begin laying again. As the breeding season is finite, this tactic becomes 
less attractive to hosts as time goes on, hence this provides selection pressure 
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for parasites to delay parasitism in order to reduce the risk of desertion by the 
hosts. However, there is a counter-acting selection pressure since delaying 
laying means that parasitic eggs will be laid later in the temporal sequence of 
eggs added to the nest, and will have reduced fitness because of this. The 
resolution of this and other trade-offs can be effectively explored using only slight 
modifications to the framework presented here.  
 
 
 
 
Appendix A  – Stability of equilibria    
 
We proceed to show that all equlibria of the model are ESSs in the case when 

0)(// =+ ee yxC .  We begin by finding revised expressions for the five derivatives 
of equations (18-22) using the precise reward function in equation (8). These are, 
respectively,  
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It is clear that all the equilibrium conditions are as in the simplified equations and 
that the only stability conditions that may be affected are those that involve 
equations (36) and (37), since the leading terms are of order ε. Thus the only 
equilibria that could be affected are  (0, ey ) and ( ex , ey ). Since ),( me yxW is 
decreasing with y expression (36) is negative and so if (0, ey ) satisfies its 
equilibrium conditions it will be stable. Since both expressions (35) and (37) are 
negative their product is positive, and is of order ε. The square of expression (37) 
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is also positive but of order 2ε , and so condition (12) is satisfied and whenever 
( ex , ey ) is an equilibrium it is also an ESS. 
 
Appendix B - Specific Models 
 
We consider four models of conspecific brood parasitism which have been 
published recently. It is shown that all are sub-models of our more general 
model. In particular we show how the parameters of these models relate to the 
more general model. Note that the parameters in the papers referred to 
sometimes have different labels and we have converted them into our standard 
format for ease of understanding.    
 
3.1 Model A – Lyon (1998) 
 
The model of Lyon (1998) argued that the “worth” of an egg to its parent can be 
thought of in terms of a “fitness increment” defined as survival of offspring from 
that egg minus the costs to producing it and any negative impact that the egg or 
its hatchling has on the survival of siblings because of competition for limited 
parental care. Thus every egg laid in the home nest yields a lower fitness 
increment than the last. Assuming that the average fitness increment that a 
parent can obtain from a parasitic egg is some positive value (P), after the clutch 
has reached a given size the increment falls below P and it is optimal to switch to 
laying parasitic eggs. Lyon’s key prediction was that the number of eggs laid in a 
bird’s own nest should be greater under parasitism than in the absence of 
parasitism. There were no explicit functional forms in the model, so that we 
cannot completely specify it in our terminology. However it is clear that it falls 
within our more generalised structure; there is a clear laying sequence (hosts 
before parasites), the number of eggs a bird chooses to lay is governed by some 
global average parasite reward so that birds do not alter their behaviour using 
their own immediate experience. It is also recognised in Lyon (1998) that the 
parasite eggs will have a negative impact on both the host eggs and other 
parasites and so the author is thinking in similar terms to the later papers. In 
particular parameters are given in terms essentially of the form of equation (9), 
where it can be shown that eeee yyCyxWP /)(),( −=  and the increment of the jth 
egg laid is )()1(),1(),( jyCjyCyjUyjU eeee +−−++−− . 
To analyse such a model more fully requires more precision as to the model 
components, but this was not needed in the original paper.   
 
3.2 Model B – Broom &  Ruxton (2002) 
  
This paper modelled intraspecific brood parasitism, finding the optimal laying 
patterns and the effects of certain key features of the environment such as the 
probability of egg rejection, the within-brood competition and the position effect 
(earlier laid eggs were considered to have some advantage over later ones). It 
was assumed that all host eggs were laid first after which parasite eggs were 
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laid, with nests chosen at random, so that the number of parasite eggs in each 
nest follows a Poisson distribution with parameter eyγ . There was a fixed cost to 
lay each egg. The parameters used were as follows: 
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Increasing the effect of position, within-brood competition or the cost of egg 
production all lead to a greater tendency to parasitise. The effect of increasing 
the host’s ability to reject eggs reduces parasitism, but not to the level 
anticipated. 
 
3.3 Model C – Robert &  Sorci (2001) 
 
The model developed in this paper is intended to show how interspecific brood 
parasitism might begin from intraspecific parasitism. The paper develops a 
relatively simple model of intraspecific brood parasitism, finding the evolutionarily 
stable laying strategy and showing when this should lead to an abandonment of 
nest building. There are no formal costs to laying eggs, but birds have a 
maximum number that they can lay (and so they always lay this number). 
Parasites (implicitly) have a general idea of how many eggs are in a nest, and it 
is assumed that all nests end up with the same number of parasite eggs and the 
position of eggs within the nest is irrelevant. 
 

1),(),(,1)(,
0

)( =  =  =+  




>  
≤   

= γtstihyxg
nzM
nz

zC e
x  

 
where M is some large positive number. 
Two example functions of )(ts  are given )/1(  1)(    ,)( atattsets rt <−== − . The 
value of )(, ip tx is irrelevant due to the fact that ),( tih is independent of i, so that 
rewards do not depend upon an egg’s position in the nest. Conditions are found 
when it is optimal to lay no host eggs and so abandon making a nest (note that 
this occurs only because of the discontinuity in C(z) above).  
 
3.4 Model D – Ruxton &  Broom (2002) 
 
This paper has a specific question to consider, that of whether the threat of 
parasitism should be met by the host reducing the number of eggs it lays to make 
room for them (as has been widely suggested) or whether there are times when 
the reverse strategy is true. Thus the model has been made as simple as 
possible, and in some ways is very similar to Robert and Sorci (2001). In 
particular the number of parasite eggs per nest is constant and there is no effect 
of position. There is a fixed cost per egg, as in Broom and Ruxton (2002).  
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ηγγ = =  =+  = ),(),(,1)(,)( tftihyxgCzzC e

x  
 
An example function of )(tf  is given, α−= Attf )( . The value of )(, ip tx is again 
irrelevant since there is no position effect. The paper shows that for any 
reasonable functional form of )(tf  (i.e. that 0)(/ <tf ) the total number of eggs 
that a bird may lay is greater if there is parasitism than if there is not, and that a 
bird should lay more eggs in its own nest if parasitism occurs, for at least some 
values of C. The paper finds the conditions when egg laying should be reduced, 
and also when it should be increased (to deter parasites). 
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