Up a level |

Group by: Publication Type | No Grouping

Jump to: Article

Number of items: **9**.

Zhu, R. ORCID: 0000-0002-9944-0369, Dong, M. and Xue, J-H. (2018).
Learning distance to subspace for the nearest subspace methods in high-dimensional data classification.
*Information Sciences*, 481,
pp. 69-80.
doi: 10.1016/j.ins.2018.12.061

Zhu, R. ORCID: 0000-0002-9944-0369, Wang, Z., Ma, Z., Wang, G. and Xue, J-H. (2018).
LRID: A new metric of multi-class imbalance degree based on likelihood-ratio test.
*Pattern Recognition Letters*, 116,
pp. 36-42.
doi: 10.1016/j.patrec.2018.09.012

Zhu, R., Zhou, F., Yang, W. and Xue, J-H. (2018).
On Hypothesis Testing for Comparing Image Quality Assessment Metrics [Tips & Tricks].
*IEEE Signal Processing Magazine*, 35(4),
pp. 133-136.
doi: 10.1109/MSP.2018.2829209

Wang, Z., Zhu, R. ORCID: 0000-0002-9944-0369, Fukui, K. and Xue, J-H. (2018).
Cone-based joint sparse modelling for hyperspectral image classification.
*Signal Processing*, 144,
pp. 417-429.
doi: 10.1016/j.sigpro.2017.11.001

Zhu, R. ORCID: 0000-0002-9944-0369, Zhou, F. and Xue, J-H. (2018).
MvSSIM: A quality assessment index for hyperspectral images.
*Neurocomputing*, 272,
pp. 250-257.
doi: 10.1016/j.neucom.2017.06.073

Zhu, R. ORCID: 0000-0002-9944-0369 and Xue, J-H. (2017).
On the orthogonal distance to class subspaces for high-dimensional data classification.
*Information Sciences*, 417,
pp. 262-273.
doi: 10.1016/j.ins.2017.07.019

Wang, Z., Zhu, R., Fukui, K. and Xue, J-H. (2017).
Matched Shrunken Cone Detector (MSCD): Bayesian Derivations and Case Studies for Hyperspectral Target Detection.
*IEEE Transactions on Image Processing*, 26(11),
pp. 5447-5461.
doi: 10.1109/TIP.2017.2740621

Zhu, R. ORCID: 0000-0002-9944-0369, Fukui, K. and Xue, J-H. (2017).
Building a discriminatively ordered subspace on the generating matrix to classify high-dimensional spectral data.
*Information Sciences*, 382,
pp. 1-14.
doi: 10.1016/j.ins.2016.12.001

Zhu, R. ORCID: 0000-0002-9944-0369, Dong, M. and Xue, J-H. (2014).
Spectral non-local restoration of hyperspectral images with low-rank property.
*IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 8(6),
pp. 3062-3067.
doi: 10.1109/JSTARS.2014.2370062