

City, University of London Institutional Repository

Citation: Zhu, P. (2010). Quantifying Information Flow with Constraints. (Unpublished

Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12101/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

City University London

Department of Computing

Quantifying Information Flow with

Constraints

Ping Zhu

A thesis submitted for the degree of

Doctor of Philosophy of City University London

October 2010

Abstract

Quantifying flow of information in a program involves calculating how

much information (e.g. about secret inputs) can be leaked by observing the

program’s public outputs. Recently this field has attracted a lot of research

interest, most of which makes use of Shannon’s information theory, e.g. mu-

tual information, conditional entropy, etc.

Computability entails that any automated analysis of information is nec-

essarily incomplete. Thus quantitative flow of analyses aim to compute upper

bounds on the sizes of the flows in a program. Virtually all the current quan-

titative analyses treat program variables independently, which significantly

limits the potential for deriving tight upper bounds.

Our work is motivated by the intuition that knowledge of the dependen-

cies between program variables should allow the derivation of more precise

upper bounds on the size of flows, and that classical abstract interpretation

provides an effective mechanism for determining such dependencies in the

form of linear constraints. Our approach is then to view the problem as

one of constrained optimization (maximum entropy), allowing us to apply

the standard technique of Lagrange multiplier method. Application of this

technique turns out to require development of some novel methods due to

the essential use of non-linear (entropy) constraints, in conjunction with the

linear dependency constraints.

Using these methods we obtain more precise upper bounds on the size of

information flows than is possible with existing analysis techniques.

2

Contents

1 Introduction 9

1.1 Quantitative Information Flow Analysis 12

1.1.1 Information Leakage Definition 13

1.2 Abstract Interpretation for Linear Constraints Detection . . . 16

1.3 Scope and Contributions . 18

1.3.1 Scope . 19

1.3.2 Contribution . 20

1.4 Organization of the Thesis . 21

2 Background of Information Theory 24

2.1 Probability . 24

2.2 Function . 27

2.2.1 Convex Function . 27

2.2.2 Concave Function . 29

2.3 Partition . 30

2.4 Information Theory . 31

2.4.1 Entropy . 32

2.4.2 Joint Entropy . 33

1

2.4.3 Conditional Entropy 35

2.4.4 Relative Entropy . 37

2.4.5 Mutual Information . 38

2.4.6 Chain Rules for Joint Entropy, Relative Entropy and

Mutual Information . 43

3 Literature Review: Motivation of Our Research 46

3.1 Quantitative Information Flow Analysis 47

3.1.1 The Origination of Quantitative Information Flow Anal-

ysis . 48

3.1.2 The Development of Quantitative Information Flow

Analysis . 50

3.1.3 The Framework of Quantitative Information Flow Anal-

ysis . 55

3.1.4 The Weakness of Quantitative Information Flow Analysis—

“Double Counting” . 61

3.2 Abstract Interpretation . 63

3.2.1 Intuition . 63

3.2.2 Formal Definition . 65

3.2.3 Application of Abstract Interpretation 67

3.2.4 Abstract Interpretation for Linear Constraints Detection 70

3.2.5 Algorithm for deriving linear constraints of assignment 72

3.3 Case study-Comparison With CHM’s Analysis 76

3.3.1 Program with Single Linear Constraint 76

3.3.2 Program with Multiple Linear Constraints 77

2

3.3.3 A While Loop . 78

4 Lagrange Multiplier Method and Convex Optimization 82

4.1 Lagrange Multiplier Method 82

4.1.1 Simple Example of Lagrange Multiplier Method 85

4.1.2 Entropy Example . 86

4.2 Convex Optimization . 87

4.2.1 Basic Definition . 87

4.2.2 Least-squares Problem and Linear Programming 88

4.2.3 Numeric Algorithms for Convex Optimization 89

4.2.4 Discussion . 92

5 Single Constraint Joint Entropy Maximization and Its Gen-

eralization 94

5.1 Introduction . 95

5.2 Quantity to Maximize . 96

5.3 Simple Problem . 98

5.3.1 Three High Variables Case of Simple Problem 105

5.4 General Case of Simple Problem 107

5.4.1 General Case of Three High Variables Case of Simple

Problem . 113

5.5 Generalization of Simple Problem 115

5.6 Case Study and Comparison with CHM’s Framework 124

5.6.1 Program with One Linear Constraint 124

5.6.2 Program with Multiple Linear Constraints 128

5.6.3 Program with While loop 134

3

6 Two Constraints Joint Entropy Maximization and General-

ization 140

6.1 Simple Problem . 141

6.1.1 Properties of H(X) and H(Y) 143

6.1.2 Three Variable Case of Simple Problem 149

6.2 General Case of Simple Problem 152

6.2.1 Properties of H(X) and H(Y) in General Case 154

6.2.2 Three Variable Case of Simple Problem 157

6.3 Generalization of Simple Problem 159

6.4 Case Study . 159

7 Conclusions 164

7.1 Summary . 164

7.1.1 Most General Case . 165

7.1.2 Limitation . 166

7.2 Future Work . 167

7.2.1 Scalability . 167

7.2.2 Effective Search Method for More Constraints Problem

and Complexity . 168

7.2.3 Implementation . 169

Bibliography 170

4

List of Figures

2.1 Example of Convex Function 28

2.2 Example of Concave Function 30

2.3 Concaveness of Entropy Function 34

2.4 Relationship between entropy and mutual information 41

3.1 Polyhedron for Example 3.3.2 with horizontal axis being X

and vertical axis being Y . 79

3.2 Polyhedron for Example 3.3.3 with horizontal axis being X

and vertical axis being Y . 80

4.1 Lagrange multiplier Method 83

5.1 Relationship between entropy and mutual information 97

5.2 Marginal Probability Distribution and Marginal Entropy in

terms of α . 103

5.3 Marginal Probability Distribution and Maximal Joint Entropy

in terms of α . 104

5.4 Marginal Probability Distributions of Different n: the bottom

one is n = 4, the top one is n = 10 109

5

5.5 Polyhedron for Example 5.7.2 with horizontal axis being X

and vertical axis being Y . 132

6.1 Concaveness of Entropy Function 160

6

List of Tables

2.1 Joint Probabilistic Distribution 35

3.1 Leakage inference: Expressions 59

5.1 Maximum information leakage for Example 5.7.1 with n = 5 . 127

5.2 Maximum information leakage for Example 5.7.1 with n = 10 . 129

5.3 Maximum information leakage for Example 5.7.2 with n = 5 . 134

5.4 Maximum information leakage for Example 5.7.2 with n = 10 . 135

5.5 Maximum information leakage for Example 5.7.3 with n = 5 . 138

5.6 Maximum information leakage for Example 5.7.3 with n = 10 . 139

6.1 Values of α and β for Maximum Joint Entropy 161

7

Acknowledgements

I have been very lucky to have Dr. Sebastian Hunt as my supervisor through-

out my whole Ph.D. His enthusiasm and attitude towards research, his rig-

orous methodology, his kind advice, encouragement and support all made a

great impression on me. Moreover he also helped me a lot in other aspects

which I really appreciate.

I want to thank Dr. David Clark and Dr. Pasquale Malacaria for all

their input and suggestions in every project meeting; and thank Dr. Darrell

Conklin and Prof. George Spanoudakis for useful feedback for my transfer.

I am also grateful to my friends: Marcus Andrews, Yan Chen, Gilberto

Cysneiros Filho, Tao Gong, Sheng Jing, Gang Li, George Lekeas, MD. Hongfen

Li, Tshiamo Motshegwa, Lu Ren, Jens Wissmann, Beibei Zhang, Shi Zhuo

and others, especially to Han Chen, Chunyan Mu, Zhi Quan who have en-

couraged me and shared happy time in London.

Finally and specially, I would like to thank my parents for their great love,

support, encouragement and patience through my up and downs during all

these years, without which I could never finished my studies.

8

Chapter 1

Introduction

With the ever faster development of computer systems and internet (both in

size and complexity) and society’s increasing dependence on them, the ques-

tion of how to protect information from being improperly leaked is of greater

and greater importance. This is because governments, military, corpora-

tions, financial institutions, hospitals and private businesses amass a great

deal of confidential, sensitive and private information about their employees,

customers, products, research, financial status etc. Besides these large orga-

nizations, for individuals, how to protect privacy is also of vital importance.

This is the topic of information security which is the broader area our work

belongs to.

There are three core principles to information security: confidentiality,

integrity and availability (known as the CIA triad). Basically speaking, con-

fidentiality prevents information flowing to inappropriate destinations, while

integrity requires that information is prevented from inappropriate sources

such as a person sneakily changing their own salary in the payroll database.

9

Integrity can be breached without any violation of confidentiality and also

strong enforcement of integrity usually requires proving program correct-

ness. Finally availability means that information must be available when it

is needed. We are mainly concerned with confidentiality here (in the follow-

ing, the uses of information flow policy, if without any special denotation,

mean confidentiality policy). Neither access control nor encryption provide

complete solutions for protecting confidentiality as they cannot control the

propagation once the secret information is released.

A complementary approach is to track and regulate the information flow

of the system to prevent confidential data from leaking to unauthorized par-

ties. This can be implemented statically by establishing some predefined

policy with respect to the data. Information flow policy is an example of

such a policy which enforces limits on how the information contained in the

confidential data might be revealed in subsequent computations.

The most well known policy is the non-interference [30], which requires

that any variation of the secret high input(s) to the system cannot result

in any variation of the observable low output(s). Non-interference is widely

pointed out to be overly strict as it requires an absolute independence of low

variable(s) on high variable(s) (if this holds, then the high variables may as

well be removed completely from the system) which is impossible in practical

systems. Thus far too many programs would be rejected as insecure by this

policy, such as the password checking program which is widely used in our

daily life for example an ATM machine, with high (secure) input password

10

and low (public) output output:

if guess==password

output:=pass;

else

output:=deny

fi

The value of output will vary according to the value of password therefore it

violates non-interference yet it is commonly assumed to be secure; moreover,

with the increasingly complexity of modern computer systems, not only do

high variables interfere with low variables all the time but high inputs are

interacting with each other among themselves, and the ways these variables

interact are becoming increasingly complicated. Therefore, non-interference,

although fairly rigorous and ideal, has a big gap in terms of feasible applica-

tion.

Over the years, there has been a lot of effort put into relaxing non-

interference, such as robust declassification [59, 58, 71, 42], delimited in-

formation release [65], flow-sensitive type systems [37] and abstract non-

interference [29].

Our work is to try to bridge this gap as well, however, through a different

way—via quantitative information flow analysis.

11

1.1 Quantitative Information Flow Analysis

Non-interference and the later work mentioned above that aims to make

it more practical are all qualitative, which means that it can only judge a

system as secure or insecure according to their own specifications. However,

sometimes only knowing this fact is not as informative as to what extent

the system is not secure. If the extent to which the system is considered

to be insecure is very low, then the system should still be considered safe

to use. As a result, researchers switched away from secure or insecure to

how secure. Thus, quantitative information flow analysis came into being

and is attracting more and more interest. It actually calculates how much

information is leaked by observing the low output(s) which may interfere with

the secret high input(s) and this makes more sense compared to qualitative

information analysis. Quantitative information flow analysis is what this

thesis is focused on.

Given any deterministic program, once the input is fixed, the output can

be determined. Thus the deterministic program can be viewed as a function

transforming its input into its output. Since the input of a program can take

many values according to a probability distribution, similarly, the program

can also be viewed as a function transforming the distribution of input into

the distribution of its output. In the context of quantitative information flow,

probability distributions are used by Shannon’s entropy definition to repre-

sent information. As the public input of the program is usually known, it is

considered to contain no information (with probability mass one). Therefore,

once the information contained in the secret input of the program and that

12

in the output of the program are accounted for respectively, the difference

between them is the information leaked by the program and this is the basic

idea of quantitative information flow analysis.

1.1.1 Information Leakage Definition

The first step towards quantitative information flow analysis is the definition

of information leakage. There have been quite a few versions of definitions

[25, 11, 51, 57, 43, 60, 4]. Of them, some use Shannon’s information theory

to define the leakage [25, 11], some use learning theory [57], some use process

algebra [4] and some use differences in processes [60].

The idea of applying Shannon’s information theory to quantify informa-

tion leakage is not new, as it was pioneered by Denning in the 1970’s [24,

25, 27, 26]. Later, Millen [51] built the first formal correspondence between

non-interference and mutual information, while in [50], McLean introduced

time into the analysis. Clark, Hunt and Malacaria (CHM) [15, 16, 14, 12, 11]

use conditional entropy to correct Denning’s measure of information leakage

(please refer to Page 50 for the deficiencies of Denning”s definition). Ap-

proaching from a different angle, recently, Clarkson, Myers and Schneider

have proposed to quantify information flow using beliefs [57]. Lowe’s defini-

tion of information flow [43] uses the process algebra CSP, and is based upon

counting the number of different behaviors of a high level user that can be

distinguished by a low level user.

A simple example (direct flow) to show how to actually calculate the

leakage using CHM’s definition is as follows:

13

Example 1.1.1. L := H

Suppose H is an uniformly distributed 4 bits variable, before the exe-

cution of this program, the low variable L contains 0 bits of information,

after the assignment it contains all 4 bits of H, hence there is an information

leakage of 4 bits.

The reader should note that unlike non-interference, there isn’t a standard

definition of information leakage in the information flow community, therefore

all the work mentioned above argues the validity and suitability for their own

definition of information leakage.

The next step is to develop a framework in which quantitative information

analysis can be readily automated. Such a framework should be practical,

sound, as accurate as possible and hopefully widely applicable. However,

not much effort has been put into the development of such a systematic

framework. The only work on such a framework, to the best of our knowledge,

is Clark, Hunt and Malacaria’s work [12, 11]. Their framework is based

on a set of inference rules defined for different commands and operations

which can be used to deduce an upper bound of information leakage after

the command’s execution. Details and examples are discussed in Chapter 3.

We must point out that (quantitative) flow analysis is not complete, and

this can be illustrated by a straightforward example:

Example 1.1.2. P ;Y := X

where P is any program not involving X, and X is a high variable and

Y is a low variable.

14

The amount of information leaked into Y is larger than 0 iff P terminates.

Thus a complete flow-analyzer would allow us to solve the halting problem.

Hence our work is not trying to make (quantitative) information flow

analysis complete. Instead, our work takes CHM’s work as a starting point

and tries to improve the accuracy of their framework while making sure it is

still sound.

The deficiency of CHM’s framework is that they analyze high variables

independently no matter what relationship may exist between them. The

basic idea of their analysis when it tries to determine an upper bound for the

total information leakage is just to add all the source information together,

no matter whether there is any duplicated information or not. A simple

example can demonstrate the problem:

Example 1.1.3.

X := Y ;

Z := X + Y

After X := Y , X and Y are actually equivalent to each other; they

contain exactly the same information as each other. Hence X + Y should

just contain as much information as either X or Y . However, CHM’s work

analyzes that Z contains double information of X (or Y) by simply adding

the information of X and Y together which are exactly the same as each

other, hence the problem is given the name of “double counting”. Examples

and discussion of the “double counting” problem are in Chapter 3.

In our work, the maximum information of each individual high variable

is known, and the problem of CHM’s framework is improved by taking lin-

ear constraints (captured by abstract interpretation) among high program

15

variables into account (in the simple example above, it is X == Y), and

transforms them into a constraint in our problem. Our idea is that the to-

tal amount of information that can be leaked is the joint entropy of all the

high program variables, instead of the sum of the information of all the high

variables, this can be worked out as a constrained optimization problem by

applying the Lagrange multiplier method. In the simple example above, the

joint entropy H(X, Y) of X and Y is the same as either H(X) or H(Y) given

that X == Y . More details are in Chapter 5. This piece of construction

is the effort to make the original framework of CHM’s more accurate as the

relationships between program variables are taken into account.

The result of our work is a quantity which is the maximum joint entropy

of linearly related program high variables. Although the aim of this thesis

is not to develop a specific information flow policy, our result can be useful

to help guide the design of such policy. For example, if when executing

a program, it always leaks the maximum amount of information, then the

policy can certainly rule it as insecure.

1.2 Abstract Interpretation for Linear Con-

straints Detection

As we mentioned before, abstract interpretation is used for automatic linear

constraints detection in our work.

The theory of abstract interpretation was developed by Patrick and Rad-

hia Cousot in the late 1970s [17]. An abstract interpretation is defined as

16

a non-standard (approximated) program semantics obtained from the con-

crete one by replacing the concrete domain of computations and its concrete

semantic operations with an abstract domain and corresponding abstract

semantic operations respectively. It is applied to program source code to

infer an approximation of the program’s run-time behavior by carrying out

a static analysis. The most important issue about abstract interpretation is

its soundness, which means that if a property holds in the concrete program,

it should also gets hold by the abstract interpretation of the program.

Let’s take the example of parity to see how abstract interpretation works.

In this case, the concrete domain is the set of integers and the abstract

domain is the set of {0, 1}.

All the even numbers are abstracted as 0 and all the odd numbers as 1,

the abstract semantics would be

0±] 0 = 0; 1±] 1 = 0; 1±] 0 = 0±] 1 = 1

0×] 0 = 0; 1×] 1 = 1; 0×] 1 = 1×] 0 = 0

where ±] denotes the abstract semantic operations of either + or −. For

example, if the program contains just one single assignment: X := X ∗ 2,

then the abstract analysis should give us the final result of X to be 0 because

the abstract semantics gives us both 0×] 0 = 0 and 1×] 0 = 0 .

The application of abstract interpretation for automatically capturing lin-

ear constraints was pioneered by Cousot and Halbwachs [22]. In this case,

the concrete domain is the set of stores (mapping from program variables to

integers) and the abstract domain is the set of linear constraints over the pro-

gram variables. Each kind of command,i.e. assignment, if statement, while

17

loop, has a particular abstract specification of how to derive the linear con-

straint(s) after the command’s execution given the input linear constraints.

For example, suppose the input assertion to an assignment is defined by

X2 ≥ 1,

X1 +X2 ≥ 5,

X1 −X2 ≥ −1

If the assignment is X2 := X1 + 1, the abstract interpretation of deriving

linear constraints for this type of assignment is to eliminates X2 in the input

constraints and adjoin the assignment itself in the resulting constraints, in

more detail, if we substitute X2 with X1 + 1 in each of the above three in-

equalities, we get X1 ≥ 2, together with the reformulated original assignment

X2 −X1 = 1, we get the following constraints after the assignment:

X1 ≥ 2,

X2 −X1 = 1

More details about it and other examples are presented in Chapter 3.

1.3 Scope and Contributions

In this section, the contribution of our work is highlighted, and the scope

and limitation of our work is discussed.

18

1.3.1 Scope

The core of this thesis is an improvement of the quantitative information

analysis framework originally proposed by Clark, Hunt and Malacaria [12,

11]. By comparing our work with theirs we show that our method can make

the analysis more precise. Also it can be built into the original analysis to

reason about programs written in the simple while language, and it should

also be able to apply to real languages such as Java or C++. However, it

has not been applied to large pre-existing programs (thousands of lines).

Our analysis is static, as opposed to [48, 49], which is dynamic and gives

an upper bound of information leakage of one particular execution under a

specified input provided by the user on pre-existing programs. Their upper

bound is only valid for that particular execution, and it is possible that

another run of the program will leak more information than this. By contrast,

our result is an universal upper bound, which is suitable for any input and

round of execution of the program.

Our work is useful for systems that satisfy some information flow policy,

i.e. allow certain portion of secret data to flow within the system.

However, please note that information leakage from other aspects are not

our concern, i.e. memory allocation, termination, running time and etc.

Also the type of linear constraints that we can make use of is a linear

inequality constraint (e.g. X ≤ Y), non-linear constraints between program

variables cannot be dealt with in [22], hence out of the scope of our work as

well.

19

1.3.2 Contribution

The main contributions of this thesis are as follows:

• We integrate abstract interpretation into quantitative information flow

analysis. More precisely, the linear constraints between program vari-

ables are explored and made advantage of to improve the precision of

the quantitative information flow analysis.

• We propose to use joint entropy of high variables to represent the max-

imum amount of information that a program can leak.

• We are able to provide an analytical formula of how to construct the in-

put probabilistic distribution that corresponds to the maximum amount

of the information leakage, given linear constraints and non-linear con-

straints. Although our work can be put into the area of convex opti-

mization, however, except least-squares problems and linear programs,

it is widely accepted that there is in general no analytical formula for

the solution of convex optimization. Thus, our result is both encour-

aging and promising.

• We extend the application of the Lagrange multiplier method to the

field of quantitative information flow, especially to the derivation of an

input probability distribution that has the largest possible information

leakage under given marginal entropy constraints. Although the idea of

the application of the Lagrange multiplier method has been introduced

in [45, 10, 9, 8], the only constraint they consider is a simplex constraint:

i.e. all the probabilities of an input sum up to one, thus the input

20

probability which can give rise to the maximum information leakage is

the uniform distribution, which is a very basic (and very old) result in

information theory. In contrast, we use the Lagrange multiplier method

to solve more complicated non-linear constraints (marginal entropy).

1.4 Organization of the Thesis

The reminder of this thesis is structured as follows:

• Chapters 2 to 4 constitute a reference to the underlying mathematical

background and the inspiration of our research.

– Chapter 2 is the introduction of Shannon’s information theory

with simple examples. The definitions of different entropies, mu-

tual information and chain rules are introduced, the relationship

among them is explored. These are the foundation of quantita-

tive information analysis as the information leakage calculation

is defined using one of the entropies (e.g. conditional entropy).

Moreover, as the joint entropy represents the sum of the infor-

mation that high variables can have, this is the total amount of

information that can ever be leaked, so in our work we try to place

an upper bound on this quantity.

– Chapter 3 reviews the developments of quantitative information

flow and abstract interpretation respectively. In particular, the

disadvantage of the current framework of CHM’s is illustrated by

a straightforward example and a possible solution, by taking into

21

account linear constraints among programs, is proposed. Since lin-

ear constraints can be nicely captured by abstract interpretation,

hence our research idea is to make use of it.

• Chapter 4 contains two parts: the first part is the main technique

we used in our work that is the Lagrange multiplier method, and the

theory and examples showing its application; the second part is the

introduction of convex optimization, since mathematically the problem

we try to solve belongs to this category. However, the speciality of our

problem is pointed out and discussed.

• Chapters 5 and 6 constitute the main body of this thesis.

– Chapter 5 discusses the maximization of joint entropy under one

single entropy constraint, together with linear constraint(s) be-

tween program variables. We show how the partition version of

entropy definition can be used to facilitate the derivation of the

Lagrange multiplier method; and finally a rigorous mathematical

formula is derived which constructs the probability distribution

that maximizes the joint entropy under those constraints. More-

over, we show that the problem can be boiled down to search for

a suitable α, which is a parameter taking positive real numbers.

– Chapter 6 extends Chapter 5 by considering two marginal en-

tropy constraints. The Lagrange multiplier method is still used

to deduce an analytical form for constructing the joint probability

distribution which gives the maximal joint entropy. The problem

22

is further broken down to search for feasible marginal probability

distributions which satisfy marginal entropy constraints, which

can be further broken down to search for a pair of parameters α

and β. In addition, we identify situations where there is no corre-

sponding α or β, and these are usually when one of the marginal

entropies (or both) hits its (their) maximum. We use examples to

compare our result with that of the original CHM’s framework.

• Chapter 7 concludes and provides some suggestions for future investi-

gations.

23

Chapter 2

Background of Information

Theory

This chapter covers some basic notions of probability distribution, informa-

tion theory and the Lagrange multiplier method. All of them are very broad

topics, especially information theory, so we only review the most relevant

concepts to this thesis. We introduce definitions of different entropies and

their relationship between each other, in more detail.

2.1 Probability

A discrete random variable takes values from a countable set of specific val-

ues, each with some probability greater than zero; a continuous random

variable takes values from an uncountable set, and the probability of any

subset of values is positive.

The classical definition of the probability of an event occurring is defined

24

as the number of favorable cases for the event, over the number of total

outcomes possible in an equiprobable sample space. The formal definition of

discrete probability is:

Definition 2.1.1. Suppose a random variable X which can take all its pos-

sible values in a sample space Ω = {x1, x2, . . . , xn} in the classical sense,

then for each x ∈ Ω, a probability value p(x) is attached, which satisfies the

following properties [23]:

• p(x) ∈ [0, 1] for all x ∈ Ω

•
∑

x∈Ω p(x) = 1

Thus, probability is a value between 0 and 1, and p(x) sums up to 1 over

all the values in the sample space. An event is defined as any subset S of the

sample space Ω. The probability of the event S is defined as

P (S) =
∑
x∈S

p(x)

The function p(x) mapping a point in the sample space to the probability

value is called a probability mass function.

When the sample space is continuous (this is just for completeness, we do

not consider continuous probability in this thesis), the probability is defined

as:

Definition 2.1.2. If the sample space of a random variable X is the set of

real numbers R or a subset, then a function called the cumulative distribution

function f exists, defined as f(x) = p(X ≤ x). That is, f(x) returns the

25

probability that X will be less than or equal to x. And it also satisfies the

following [23]:

• f is a monotonically non-decreasing, right-continuous function;

• limx→− inf f(x) = 0

• limx→inf f(x) = 1

Thus, the probability that X is between two points a and b is:

f [a ≤ x ≤ b] =

∫ b

a

f(x)dx

and ∫ inf

− inf

f(x) = 1

A probability distribution identifies either the probability of each value

of an unidentified random variable (when the random variable is discrete),

or the probability of the value falling within a particular interval (when the

variable is continuous).

There are many well known discrete probability distributions, e.g. Bernoulli

distributions, binomial distribution, uniform distribution, geometric distribu-

tion; continuous distributions are logarithmic distribution, Gaussian distri-

bution, continuous uniform distribution, etc. As these distributions are not

the focus of this thesis, here we just introduce the discrete uniform distribu-

tion which is most commonly used:

Uniform distribution assigns equal probability to each outcome of the

26

sample space Ω = {x1, x2, . . . , xn}, namely:

∀x ∈ Ω, p(x) =
1

n

2.2 Function

In mathematics a function is a relation between a given set of elements (the

domain) and another set of elements (the codomain), which associates each

element in the domain with exactly one element in the codomain.

A function f : X → Y is surjective (onto) if and only if for every y in

the codomain Y there is at least one x in the domain X such that f(x) = y.

A function is one-to-one if every element of its codomain is mapped to

by at most one element of its domain.

There are two types of functions that are of most interest to us, namely

convex and concave functions:

2.2.1 Convex Function

Definition 2.2.1. A real-valued function f defined on an interval is called

convex, if for any two points x and y in its domain D and any t in [0, 1], the

following condition holds [3]:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

Pictorially, a function is called convex if the function lies below the

straight line segment connecting two points, for any two points in the in-

27

terval, refer to Figure 2.1:

Figure 2.1: Example of Convex Function

A function is called strictly convex if

f(tx+ (1− t)y) < tf(x) + (1− t)f(y)

for any t ∈ (0, 1) and x 6= y.

A function is midpoint convex on an interval D if

f

(
x+ y

2

)
≤ f(x) + f(y)

2

for all x and y in D.

This condition is only slightly weaker than convexity. However, a contin-

uous function that is midpoint convex will be convex.

A differentiable function of one variable is convex on an interval if and

28

only if its derivative is monotonically non-decreasing on that interval.

A continuously differentiable function of one variable is convex on an

interval if and only if the function lies above all of its tangents: f(y) ≥

f(x) + f ′(x)(y − x) for all x and y in the interval.

A twice differentiable function of one variable is convex on an interval if

and only if its second derivative is non-negative; this gives a practical test

for convexity. If the second derivative is positive then it is strictly convex,

but the converse does not hold.

Examples of convex functions include x2, |x|, ex, x log x(for x ≥ 0), etc.

2.2.2 Concave Function

Basically, a function f is concave if −f is convex. Formally,

Definition 2.2.2. A real-valued function f defined on an interval is called

concave, if for any two points x and y in its domain D and any t in [0, 1],

the following holds [3]:

f(tx+ (1− t)y) ≥ tf(x) + (1− t)f(y)

Pictorially, a function is called concave if the function lies above the

straight line segment connecting two points, for any two points in the interval,

refer to Figure 2.2:

Similarly, a function is called strictly concave if

f(tx+ (1− t)y) > tf(x) + (1− t)f(y)

29

Figure 2.2: Example of Concave Function

for any t in (0, 1) and x 6= y.

A continuous function on an interval D is concave if and only if

f

(
x+ y

2

)
≥ f(x) + f(y)

2

for any x and y in D.

A differentiable function f is concave on an interval if its derivative is

monotonically decreasing on that interval.

A twice differentiable function of one variable is concave on an interval if

and only if its second derivative is negative.

Examples of concave functions include log x and
√
x for x ≥ 0.

2.3 Partition

The mathematical definition of partition is as follows:

30

Definition 2.3.1. Let X be any set. P ⊆ ℘(X) (power set of X) is a

partition of X if

•
⋃
P∈P P = X

• for all P1, P2 ∈ P either P1 = P2 or P1 ∩ P2 = ∅

2.4 Information Theory

One of the most important feature of Shannon’s theory is the concept of en-

tropy, which lays the foundation for information theory [67]. In this section,

we will start from the very fundamental concept of entropy which measures

the uncertainty of a random variable. Then the definition of joint entropy

and conditional entropy which are extended notions of entropy are intro-

duced. Joint entropy measures the uncertainty of two or more variables in

combination while conditional entropy measures the remaining uncertainty

of one variable when knowing the other. Moreover, mutual information and

relative entropy are introduced based on joint entropy and conditional en-

tropy. Mutual information measures the amount of information one random

variable contains about the other. Relative entropy represents the difference

in the probability distributions between two random variables. All these con-

cepts are closely related, and we show how they can be deduced from each

other.

31

2.4.1 Entropy

In information theory, entropy is used to measure the uncertainty associated

with a random variable.

Definition 2.4.1. Given a discrete random variable X whose values are in

the set X = {x1, x2, . . . , xn}, entropy is defined as [67]

H(X) = −
∑
x∈X

p(x) log p(x)

where p(x) is the probability mass function of random variable X taking

value x. The log is to the base 2 and entropy is expressed in bits. The con-

vention is that 0 log 0 = 0 and 1 log 1 = 0 which can be justified as neither

‘zero’ probability (something guaranteed not to happen) or ‘one’ probability

(something guaranteed to happen) has any uncertainty. Also, it is very clear

from the definition that entropy doesn’t depend on the actual value that ran-

dom variable X may take, it only depends on the probability distributions

of X. Furthermore, entropy is a permutation invariant of probability distri-

bution, in other words, once the probability distribution is fixed, the entropy

is fixed, no matter which possible value of X takes which probability. Also

entropy is always non-negative.

Note that the expectation of X is EX =
∑

x∈X xp(x), if interpreted in

this way, the entropy of X can also be viewed as the expected value of the

random variable − log p(X). Thus,

H(X) = EP [− log p(X)]

32

Example 2.4.2. Let

X =

a with probability 1
2

b with probability 1
4

c with probability 1
8

d with probability 1
8

The entropy of X is

H(X) = −1

2
log

1

2
− 1

4
log

1

4
− 1

8
log

1

8
−−1

8
log

1

8
= 1.75 bits

Example 2.4.3. The entropy of a discrete random variable X which can take

n possible values achieves its maximum when its probabilistic distribution is

uniform:

H(X) = log n

We will prove the above conclusion using Lagrange multiplier method in

Chapter 4.

The entropy function is concave, Figure 2.3 demonstrates this property

using a binary random variable.

2.4.2 Joint Entropy

Joint entropy can be viewed as an extension of entropy of a single random

variable, as a pair of random variables (X, Y) (or more) can be considered

to be a single vector-valued random variable.

33

Figure 2.3: Concaveness of Entropy Function

Definition 2.4.4. The joint entropy H(X, Y) of a pair of discrete random

variables (X, Y) with a joint distribution p(x, y) where X taking values in the

set X = {x1, x2, . . . , xn} and Y taking values in the set Y = {y1, y2, . . . , yn}

respectively, is defined as [23]

H(X, Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

The expectation version of joint entropy can also be expressed as

H(X, Y) = E[− log p(X, Y)]

Example 2.4.5. Suppose a pair of discrete random variables (X, Y) have

the following joint distribution as shown in Table 2.1, then the joint entropy

34

HHH
HHHY

X
x0 x1 x2

y0 1/6 1/9 1/18
y1 1/9 1/9 1/9
y2 1/3 0 0

Table 2.1: Joint Probabilistic Distribution

H(X, Y) is:

H(X, Y) = −
∑

x

∑
y p(x, y) log p(x, y)

= −1
6

log 1
6
− 4

9
log 1

9
− 1

18
log 1

18
− 1

3
log 1

3

= 1.9641 bits

2.4.3 Conditional Entropy

Conditional entropy measures the remaining uncertainty of a random variable

given that another related variable Y is known.

Definition 2.4.6. Suppose two random variables X and Y with X taking

values in the set X = {x1, x2, . . . , xn} and Y taking values in the set Y =

{y1, y2, . . . , yn} respectively, if the conditional probability is denoted as p(x|y),

then the conditional entropy H(X|Y) is defined as [23]

H(X|Y) =
∑

y∈Y p(y)H(X|Y = y)

= −
∑

y∈Y p(y)
∑

x∈X p(x|y) log p(x|y)

= −
∑

x∈X ,y∈Y p(x, y) log p(x|y)

Example 2.4.7. Suppose the joint probabilistic distribution is still the one

shown in Table 2.1, then the marginal probabilities for X and Y are {11
18
, 2

9
, 1

6
}

35

and {1
3
, 1

3
, 1

3
}, the conditional entropy of H(X|Y) is:

H(X|Y) = −
∑

x, y p(x, y) log p(x|y)

= −1
6

log 1
2
− 4

9
log 1

3
− 1

18
log 1

6
− 1

3
log 1

= 1.0147 bits

similarly the conditional entropy of H(Y |X) is:

H(Y |X) = −
∑

x, y p(x, y) log p(y|x)

= −1
6

log 3
11
− 1

9
log 2

11
− 1

3
log 6

11
− 2

9
log 1

2
− 1

18
log 1

3
− 1

9
log 2

3

= 1.2524 bits

It is very clear from this example that

H(X|Y) 6= H(Y |X)

which means in general the uncertainty left for X knowing Y is not the same

as the other way around.

Both joint entropy and conditional entropy measures some kind of uncer-

tainty between two random variables, naturally one may wonder if there is

any relationship between them, and this is proved by the following theorem:

Theorem 2.4.8 (Chain Rule).

H(X, Y) = H(X) +H(Y |X)

H(X, Y) = H(Y) +H(X|Y)

36

Proof. We prove H(X, Y) = H(Y) +H(X|Y), and the other can be proved

in the same way.

H(X, Y) = −
∑

x∈X
∑

y∈Y p(x, y) log p(x, y)

= −
∑

x∈X
∑

y∈Y p(x, y) log p(y)p(x|y)

= −
∑

x∈X
∑

y∈Y p(x, y) log p(y)−
∑

x∈X
∑

y∈Y p(x, y) log p(x|y)

= −
∑

y∈Y p(y) log p(y)−
∑

x∈X
∑

y∈Y p(x, y) log p(x|y)

= H(Y) +H(X|Y)

2.4.4 Relative Entropy

The relative entropy is a measure of the distance between assuming proba-

bilistic distribution q while the true distribution is p.

Definition 2.4.9. The relative entropy between two probability mass func-

tions p(x) and q(x) is defined as [23]

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

In the above definition, we use the convention that 0 log 0
0

= 0, 0 log 0
q

= 0

and p log p
0

=∞. Thus, if there is any symbol x ∈ X such that p(x) > 0 and

q(x) = 0, then D(p||q) =∞. Relative entropy is always non-negative, and is

zero if and only if p = q. However, it is not symmetric and does not satisfy

the triangle inequality. Nonetheless, it is often useful to think of relative

entropy as a “distance” between distributions.

37

Example 2.4.10. Let X={0, 1} and consider two distributions p and q on

X . Let p(0) = 1− r, p(1) = r and let q(0) = 1− s, q(1) = s. Then

D(p||q) = (1− r) log
1− r
1− s

+ r log
r

s

and

D(q||p) = (1− s) log
1− s
1− r

+ s log
s

r

If r = 1
2
, s = 1

4
, we can calculate

D(p||q) =
1

2
log

1
2
3
4

+
1

2
log

1
2
1
4

= 0.2075 bits

whereas

D(p||q) =
3

4
log

3
4
1
2

+
1

4
log

1
4
1
2

= 0.1887 bits

2.4.5 Mutual Information

Mutual information is another important concept in information theory. It

measures the uncertainty shared between two random variables. It can also

be viewed as the relative entropy between the joint distribution p(x, y) and

the product distribution p(x)p(y).

Definition 2.4.11. Suppose two random variables X and Y which taking

values in sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} respectively

and associated with a joint probability mass function p(x, y) and marginal

probability mass functions p(x) and p(y). The mutual information I(X;Y)

38

is defined as [23]:

I(X;Y) =
∑

x∈X
∑

y∈Y p(x, y) log p(x,y)
p(x)p(y)

= D(p(x, y)||p(x)p(y))

Note that if X and Y are independent from each other, then

p(x, y) = p(x)p(y)

In this case log p(x,y)
p(x)p(y)

= log 1 = 0, therefore, mutual information I(X;Y) =

0. This makes sense as independent random variables don’t share any infor-

mation between each other.

Theorem 2.4.12. The relationship between mutual information and entropy

is:

I(X;Y) = H(X)−H(X|Y)

Proof.

I(X;Y) =
∑

x, y p(x, y) log p(x,y)
p(x)p(y)

=
∑

x, y p(x, y) log p(x|y)
p(x)

= −
∑

x, y p(x, y) log p(x) +
∑

x, y p(x, y) log p(x|y)

= −
∑

x p(x) log p(x)−
(
−
∑

x, y p(x, y) log p(x|y)
)

= H(X)−H(X|Y)

Thus, the mutual information I(X;Y) is the reduction in the uncertainty

39

of X due to the knowledge of Y . By symmetry, it also follows that

I(X;Y) = H(Y)−H(Y |X)

Thus, X contains as much uncertainty about Y as Y contains about X, in

other words,

I(X;Y) = I(Y ;X)

Proof.

I(X;Y) = H(Y)−H(Y |X)

= H(Y)−H(X, Y) +H(X)

= H(X) +H(Y)−H(X, Y)

= H(X)−H(X|Y)

= I(Y ;X)

Since H(X, Y) = H(X) +H(Y |X), as shown in Theorem 2.4.8, we have

I(X;Y) = H(X) +H(Y)−H(X, Y)

Collecting the above results, the following theorem holds:

40

Theorem 2.4.13 (Mutual Information and Entropy).

I(X;Y) = H(X)−H(X|Y)

I(X;Y) = H(Y)−H(Y |X)

I(X;Y) = H(X) +H(Y)−H(X, Y)

I(X;Y) = I(Y ;X)

I(X;X) = H(X)

Figure 2.4 shows the relationship between entropy and mutual informa-

tion more clearly.

Figure 2.4: Relationship between entropy and mutual information

41

Example 2.4.14. Suppose the joint probabilistic distribution is still the one

shown in Table 2.1, from the computation of conditional entropy, we know

that H(X|Y) = 1.0147 bits, and H(Y |X) = 1.2524 bits. The marginal

entropy for X and Y are {11
18
, 2

9
, 1

6
} and {1

3
, 1

3
, 1

3
}. Then

H(X) = H(11
18
, 2

9
, 1

6
) = 1.3472 bits

H(Y) = H(1
3
, 1

3
, 1

3
) = 1.5847 bits

Thus,

I(X;Y) = H(X)−H(X|Y)

= 1.347223− 1.014703

= H(Y)−H(Y |X)

= 1.584963− 1.252443

= 0.3325 bits

Like conditional entropy, there is conditional mutual information whose

definition is as follows:

Definition 2.4.15. The conditional mutual information of random variables

X and Y given Z is defined as [23]

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

=
∑

x, y, z p(x, y, z) log p(x,y|z)
p(x|z)p(y|z)

42

2.4.6 Chain Rules for Joint Entropy, Relative Entropy

and Mutual Information

It is interesting to see that the joint entropy of a collection of random variables

is the sum of the conditional entropies.

Theorem 2.4.16 (Chain Rule for Entropy). Let X1, X2, . . . , Xn be drawn

according to p(x1, x2, . . . , xn). Then

H(X1, X2, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , X1)

Proof. Applying the mathematical induction:

Base case - when n = 2:

H(X1, X2) = H(X1) +H(X2|X1) holds

Suppose that when n = k it also holds, namely:

H(X1, X2, . . . , Xk) =
k∑
i=1

H(Xi|Xi−1, . . . , X1)

When n=k+1:

H(X1, X2, . . . , Xn) = H(X1, X2, . . . , Xk, Xk+1)

= H(X1, X2, . . . , Xk) +H(Xk+1|X1, X2, . . . , Xk)

=
∑k

i=1H(Xi|Xi−1, . . . , X1) +H(Xk+1|X1, X2, . . . , Xk)

=
∑k+1

i=1 H(Xi|Xi−1, . . . , X1)

It also holds when n = k + 1, thus, it holds for all n.

43

There is also a chain rule for mutual information.

Theorem 2.4.17 (Chain Rule for Information). Let X1, X2, . . . , Xn and Y

all be random variables, then

I(X1, X2, . . . , Xn;Y) =
n∑
i=1

I(Xi;Y |Xi−1, Xi−2, . . . , X1)

Proof.

I(X1, X2, . . . , Xn;Y) = H(X1, X2, . . . , Xn)−H(X1, X2, . . . , Xn|Y)

=
∑n

i=1H(Xi|Xi−1, . . . , X1)−
∑n

i=1H(Xi|Xi−1, . . . , X1, Y)

=
∑n

i=1 I(Xi;Y |X1, X2, . . . , Xi−1)

Finally we show the chain rule for relative entropy.

Theorem 2.4.18 (Chain Rule for Relative Entropy). Suppose two random

variables X and Y and two different probability mass functions p and q:

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x))

44

Proof.

D(p(x, y)||q(x, y)) =
∑

x

∑
y p(x, y) log p(x,y)

q(x,y)

=
∑

x

∑
y p(x, y) log p(x)p(y|x)

q(x)q(y|x)

=
∑

x

∑
y p(x, y) log p(x)

q(x) +
∑

x

∑
y p(x, y) log p(y|x)

q(y|x)

= D(p(x)||q(x)) +D(p(y|x)||q(y|x))

45

Chapter 3

Literature Review: Motivation

of Our Research

This chapter explains the main motivation of our research, namely one of

the key weaknesses of the existing CHM’s framework—the “double count-

ing” problem, which will be explained in Section 3.1.4 and demonstrated by

some examples; then a feasible solution addressing the problem is proposed,

that is by adopting an abstract interpretation-based analysis to improve the

precision of quantitative information flow analysis.

Quantitative information flow analysis and abstract interpretation, by

themselves, are both very broad and active research areas although quanti-

tative information flow analysis is relatively new compared to abstract inter-

pretation. For the sake of completeness and to familiarize the reader with

the necessary basis and development of these two areas, brief introductions of

them are included before we discuss the weakness of the current quantitative

information flow analysis framework and explain how it can be improved us-

46

ing one specific kind of abstract interpretation analysis. However, we do not

want to make this chapter self-contained, so for more detailed information

about them, readers are advised to refer to wider literature on these two top-

ics. For quantitative information flow analysis, just naming a few, look at the

work of Clark, Hunt and Malacaria [11, 13, 12, 16, 14, 15, 37, 44]; while for

abstract interpretation, please start with the work of Cousot [18, 19, 22, 20],

Jones and Neilson [39].

The rest of this chapter is divided into two main parts: quantitative

information flow analysis and abstract interpretation. They are introduced

in turn.

3.1 Quantitative Information Flow Analysis

The traditional mechanism to protect secure information is access control,

however, it is well established that access control cannot control the prop-

agation of the secure information once it is released from the source when

access is granted in the first place.

Moreover, more and more information security breaches have the form

of transferring secrecy to unauthorized parties. A popular example is “spy-

ware”: you have received a program from an untrusted source, say M. M

promises to help you to optimize your personal financial investments, which

is the private information you have stored in a database on your home com-

puter. The software is free (for a limited time) under the condition that you

permit a log-file containing a summary of your usage of the program to be

automatically emailed back to the developers of the program (who claim they

47

wish to determine the most commonly used features of their tool). Is such

program safe to use? Can you ensure that M is not obtaining your sensitive

private financial information by cunningly encoding it in the contents of the

innocent-looking log-file [66, 40]? Note that the traditional access control

method fails here since the program M has legitimate access to the private

database. Actually, these are the situations which require a much stronger

policy, namely information flow control [64]. This policy should enable us to

track how information flows within the program; access control, while useful,

cannot identify these processes and hence isn’t suitable for information flow

control.

Thus researchers turn to information flow security to reason about how

information actually flows within the system.

Quantitative information flow analysis, as its name suggests, not only

confirms whether there is any information leakage at all, but also, if there is,

it calculates the amount of the information that can be or is leaked.

3.1.1 The Origination of Quantitative Information Flow

Analysis

Before quantitative information flow analysis, the analyses of information

leakage of computer program (system) were all qualitative, which means it

simply tells whether there is any information leaked or not. This is, most of

the time, not as useful as knowing how much information has been leaked.

Meanwhile, in order to enforce the absolute security of computer program

(system), non-interference policy was proposed by Goguen and Messeguer in

48

1982 [30] which states that confidential data may not interfere with (affect)

any public data. In other words, the public output cannot reflect any change

of the confidential data, they are totally independent from each other. This

policy is problematic, as it judges far too many programs to be “insecure”,

for example a password checking program does leak a small amount of infor-

mation:

if H==L then

access;

else

deny

fi

if the attacker observes deny, they will know his (her) guess of l is wrong.

The defect of non-interference policy is elegantly put in [62]:

In most non-interference models, a single bit of compromised information

is flagged as a security violation, even if one bit is all that is lost. To be

taken seriously, a non-interference violation should imply a more significant

loss. Even . . . where timing is not available, and a bit per millisecond is

not distinguishable from a bit per fortnight . . . a channel that compromises

an unbounded amount of information is substantially different from one that

cannot.

It is this inherent defect of qualitative information flow analysis — overly

strict, that leads to the origination of quantitative information flow analysis.

49

3.1.2 The Development of Quantitative Information

Flow Analysis

Quantitative information flow analysis can be dated back to Denning’s work

in the 1970’s [24, 25, 27, 28, 26], later other definitions continuously come

up [50, 31, 51, 11, 57, 43]. In [24], Denning pioneered the application of in-

formation theory to quantify the information leakage of programs, in which

she demonstrated the analysis of calculating leakage of a few particular as-

signments and if statements by using Shannon’s entropy. However, later her

definition of information leakage was demonstrated to be flawed and since

then quite a lot of work in the field of quantitative information flow analysis

focused on developing the “correct” definition for information leakage calcu-

lation, in such a way that either the new definition satisfies the requirement

of some particular situation, e.g. covert channel [43], while loop [44] etc;

or the new definition is claimed to be capable of sitting in more situations

than the existing ones [57]. Next, some typical definitions of quantitative

information leakage are introduced. We start from Denning’s definition.

Denning’s Definition

Denning’s work [24] defined the information flow as follows: given two pro-

gram variables x, y in a program P and two states s, s′ in the execution

of P , there is a flow of information from x at state s to y at state s′ if un-

certainty about the value of x at s given knowledge of y at s′ is less than

uncertainty about the value of x at s given knowledge of y at s, mathemati-

cally H(xs|ys)−H(xs|ys′) > 0. However, it is established that her measure,

50

although seeming quite natural, is arguably flawed, because the observation

of y at s′ does not necessarily contain more information of x than that at s

as the second term H(xs|y′s) accounts for the final observation of x but effec-

tively assumes that the initial observation of y has been forgotten. This is a

safe assumption only if we know that the observer has no memory. However,

we must assume that the observer knows both the initial and final values of

y in general [12].

McLean’s Definition

In [50], McLean introduced time into the analysis of the notion of secure

information flow. His model is highly abstract, and it states that a system is

secure if p(Lt|(Hs, Ls)) = p(Lt|Ls), where Lt describes the value taken by the

low system objects at time t while Ls and Hs are the sequences of values taken

by the low and high objects, respectively, at times preceding t. McLean’s

flow model provides the right security model for a system with memory.

However, his work is actually qualitative and there is not enough machinery

to implement an analysis based on it [12] since his work is intended to provide

a way for evaluating security models rather than a means of evaluating real

systems.

Gray’s Definition

The use of conditional mutual information in the context of information leak-

age was proposed by Gray [31], however, his work is not aimed at measuring

information leakage but to define it for a flow model. Such work also include

Volpano and Smith’s [70] which showed that well-typed programs cannot leak

51

confidential data in polynomial time.

Clark, Hunt and Malacaria’s (CHM’s) Definition

Clark, Hunt and Malacaria have done a lot of work quantifying the actual

information leakage [15, 14, 16, 12, 11] using information theory explicitly.

Their system model is essentially McLean’s [50], and the quantity they es-

timate was first defined by Gray [31] in the context of a channel capacity

theorem. For example, their analysis will give the information leakage of the

following programs as the maximum k bits and 1 bit respectively (suppose

H is a k (k is a positive integer) bit variable):

• L = H

• if H == 0 then L = 1; else L = −1; fi

More details of their definition and analysis will be discussed in the next

section.

Later Malacaria [44] gave a more precise quantitative analysis of loop

constructs. He defined an information theoretical formula for leakage of the

command while e M in which both the amount and the rate of leakage are

calculated. Following this work, Chen and Malacaria [7] recently presented

a mechanism for quantitative leakage analysis for multi-threaded programs.

The basic idea was based on program transformation: the multi-threaded

program with a probabilistic scheduler is transformed to a single-threaded

program with probabilistic operators, and then the leakage of the transformed

program can be computed using the formula of [44].

52

Other Definitions

Recently, some people proposed other definition of information leakage. Dif-

ferent from all the definitions above, Clarkson, Myers and Schneider have

proposed to quantify the information flow using beliefs [57]. Their idea is to

monitor how the attacker’s belief changes upon their observations of outputs

of a (probabilistic) program. If before executing the program, the attacker

believes the secret is overwhelming to be something, and when the program

is terminated and the observer finds out that the secret is something else,

then it is claimed that there is a large amount of information leaked to the

attacker. CMS’ definition of information as belief is objective which de-

pends on the initial guess of the attacker, so it seems that the more wrong

the attacker’s pre-belief is, the more information they would get from the

post-belief.

Other Related Work

Di Pierro, Hankin, and Wiklicky [61] used the notion of approximate nonin-

terference to conceptualize an “up to ε” noninterference. They introduced

a quantified measure of the similarity between two processes in a process

algebra. It is measured using the supremum norm of the difference matrix

of probabilistic state transition matrices the processes create. This quan-

tity, as they demonstrated, is linked with an attacker’s ability to distinguish

two processes. Finally, the paper showed an abstract interpretation that al-

lows approximation of the confinement of a process. Their more recent work

[60] generalized this to measure the confinement in probabilistic transition

53

systems and gave well-understood examples.

McCamant and Ernst [47] developed an approach to track the use of

data through arbitrary calculation in programs to determine how much in-

formation about secret inputs was revealed by the public outputs. It was

shown that an implementation of such techniques based on dynamic binary

translation on C, C++ and object-oriented programs can provide meaningful

security checks.

In another recent paper [69], Smith reviewed the existing definitions of

quantitative information flow, and refined the security bound given by Fano’s

inequality. He proposed a new conceptual foundation of “vulnerability” and

proposed to use the min-entropy in Renyi entropy instead of Shannon’s en-

tropy to measure the information leakage.

Discussion

While there is not an universally accepted definition of information leakage,

the application of entropy from information theory to quantify information

flow seems common. And there are still researchers investigate the advan-

tage and disadvantage of each definition mentioned above and propose new

definitions, however, in our research we will adopt the definition of CHM’s

because it is quite natural and objective when it comes to the real world

problem of information flow.

54

3.1.3 The Framework of Quantitative Information Flow

Analysis

Most of the work in the field of quantitative information flow analysis men-

tioned above only deals with the definition of information leakage which does

not provide a systematic, formal framework to analyze quantitative informa-

tion flow; however, Clark, Hunt and Malacaria developed a whole analysis

framework for quantifying information flow. Their analysis is presented as

a set of syntax-directed inference rules, and there is some attempt to auto-

mate it [56]. In the beginning, their framework worked for a simple language

without loops and there are also some constraints on the equality test (e.g.

it can only test against constants) [11]; later, they improved their analy-

sis framework by including while loops and made use of some mathematical

properties [12] to make the analysis more precise. This section introduces

the main ideas of their analysis framework.

The rules they present are intended to derive bounds on the leakage of a

variable at a program point, given only assumptions on the entropy of the

confidential variable at the entry point. Such assumptions actually give very

limited knowledge of the distribution of input values and this means that a

direct calculation of the leakage at a program point is usually impossible.

Main Idea

The ultimate aim of quantitative information analysis is to place an upper

bound on the amount of information that can be leaked through the program.

The information leakage they are concerned with is the information that may

55

be leaked from private variables to public ones. In other words, they are

modeling a situation in which the environment delivering high inputs to the

program is trusted, even though the program itself is not. This is appropriate

for example in the analysis of untrusted code which is to be downloaded and

run on a user’s computer, where the user is the owner of the confidential

data.

Their programs are written in while language, which contains just the

following control constructs: assignment, while statements, if statements

and sequential composition; the left hand side of assignment are variable

identifiers while the right hand side are integer or boolean expressions; while

loops and if statements involve boolean expressions in the standard way;

expressions in their language define total functions on stores. The syntax of

the while language is standard and hence omitted here.

The program they consider is deterministic, so for any given program P ,

the semantics induces a partial function [[P]] : Σ→ Σ, where Σ is the domain

of stores, which is a finite map from variable names to k-bit integers (in the

range −2k−1 ≤ n ≤ 2k−1) and booleans.

The variables of a program P are partitioned into two sets, H (high)

and L (low). High variables may contain confidential information when the

program is run, but these variables cannot be examined by an attacker at any

point before, during or after the program’s execution. Low variables do not

contain confidential information before the program is run and can be freely

examined by an attacker before and after (but not during) the program’s

execution.

The main idea of their analysis is: as they are interested in how much

56

of the information carried by the high inputs to a program can be learnt

by observation of the low outputs, assuming that the low inputs are known.

Since the language is deterministic, any variation in the outputs is a result of

variation in the inputs. Once the knowledge of the program’s low inputs is

accounted for, the only possible source of surprise in an output is interference

with high inputs.

Given a program variable (or set of program variables) X, let X l and Xw

be, respectively, the corresponding random variables on entry to and exit

from the program (termination is assumed), the measure of the amount of

leakage into X due to the program is:

L(X) =def H(Xw|Ll)

In order to systematically analyze the information leakage, at each pro-

gram point a random variable corresponding to observations of the low vari-

able at that point is defined. When it comes to while loop, the use-definition

graph (UDG), a directed graph whose nodes are program points, is used to

identify the source nodes of all possible information which flows into some

certain program point of the while loop, the details of how the identification

works is omitted here as it is not the scope of this thesis, however, please

refer to [12] for detailed explanation.

They also noticed that low program variables are hard to be counted for,

as either there will be little or no knowledge available for the low variables

or the distribution for low inputs may actually be in the control of attackers.

To cope with this problem, they work with an interval which is the bound

57

of the entropy representing the range of information that can be leaked to

the observable program variable at each program point, and the final in-

formation leakage from the high inputs to the low outputs can be obtained

automatically using their inference rules which are introduced in the next

sub-section.

Inference Rules

Here we gave a basic idea as how exactly the analysis framework of CHM’s

works. The following are some of their inference rules as shown in Table

3.1. Where B(q) = −q log q − (1− q) log(1− q) and Uk(q) = −q log q − (1−

q) log 1−q
2k−1

. The expression analysis rules have the form Γ ` E : [a, b] where

Γ is a partial function from Var to real-valued pairs (representing intervals)

of the form [a, b] with a ≤ b. The meaning of a rule Γ ` E : [a, b] is that

the expression E has information leakage in the interval [a, b] assuming that

the leakage of each variable x in E lies in the interval Γ(x). If [, b] is used,

it means the upper bound of information leakage of E is b (the lower bound

doesn’t matter), in other words, it means E leaks at most b bit(s) information

and similarly for [a,] which means the lower bound of information leakage

of E is a, namely at least a bit bit(s) information is leaked by E.

From the table we can see that no matter what the exact inference rule

it is, without any exception, it embodies the concept that the total amount

of information that can be leaked cannot exceed the information that has

flowed into the system.

We summarize how their analysis works for a whole program: their anal-

ysis calculates bounds on the best and worst cases for leakage over the com-

58

DP
n1 ` [E(n1)] ≤ b1, . . . , nk ` [E(nk)] ≤ bk

n ` [E] ≤
∑k

i=1 bk

EConj
Γ ` E : [a1, b1] Γ ` E : [a2, b2]

Γ ` E : [max(a1, a2),min(b1, b2)]

BConj
Γ ` B : [a1, b1] Γ ` B : [a2, b2]

Γ ` B : [max(a1, a2),min(b1, b2)]

k-Bits
Γ ` E : [0, k]

1-Bit
Γ ` B : [0, 1]

Const
Γ ` n : [0, 0]

Var
Γ, x : [a, b] ` x : [a, b]

And
Γ ` Bi : [, bi] i = 1, 2

Γ ` (B1 ∧B2) : [0, b1 + b2]
Neg

Γ ` B : [a, b]

Γ ` ¬B : [a, b]

Plus
Γ ` Ei : [, bi]

Γ ` (E1 + E2) : [0, b1 + b2]
Eq(1)

Γ ` E1 : [, b1] Γ ` E2 : [, b2]

Γ ` (E1 == E2) : [0, b1 + b2]

Eq(2)
Γ ` E1 : [a,] Γ ` E2 : [, b]

Γ ` (E1 == E2) : [0,B(q)]
1
2k
≤ q ≤ 1

2
, Uk(q) ≤ (a− b)

If
Γ ` e : [, b] Γ ` ci ↓ x : [, bi]

Γ ` if e then c1 else c2 ↓ x : [0, b+ b1 + b2]

Table 3.1: Leakage inference: Expressions

59

plete set of possible input values for the low variables, thus the leakage of

the program is within the range H−(Xw|Ll) ≤ H(Xw|Ll) ≤ H+(Xw|Ll)

where H−(Xw|Ll) is minH(XL=l) and H+(Xw|Ll) is maxH(XL=l) and then

the final information leakage by the program is obtained by applying the

corresponding inference rule at each program point.

Let’s take a look at an example:

Example 3.1.1.

if Y = 0 then

X := 0;

else

X := 1;

fi

with Y high-security variable and X low-security variable to see how the

inference rules work. Suppose Y is a 32-bit variable and the input distribution

makes Y uniform over its 232 possible values and independent of X. The

analysis can start with Γ0 = X : [0, 0], Y : [32, 32]. The rules presented above

are easily seen to derive: Γ0 ` Y = 0 : [ε, ε] (where ε = B(1\232) ≈

7.8× 10−7). Thus , using if , we can derive: Γ0 ` c ↓ X : [0, ε].

In later work [12, 15], more mathematical properties have been explored,

and hence more precise inference rules such as [ZeroMult] and [OddMult]:

ZeroMult
n ` [E1 ∗ E2] = 0

E2 = 0

OddMult
n ` [E1] ∼ a n ` [E2] ∼ a

n ` [E1 ∗ E2] ∼ a

60

where ∼ can be any of ≤, =, ≥. Please note that these rules together with

the inference rules above only work outside the while loops. They use UDG

to identify all the possible sources of information that flows into the while

loop with which their analysis is very conservative, which was later improved

further by Malacaria’s work [44].

3.1.4 The Weakness of Quantitative Information Flow

Analysis—“Double Counting”

Although Clark, Hunt and Malacaria’s framework is systematic, their anal-

ysis is too conservative in some sense. Let’s take a contradicting example to

demonstrate the problem:

X := Y ;

Z := X + Y

Suppose that both X and Y are high variables and Z is the low observable

variable. Suppose both H(X) = a and H(Y) = b hold before entering the

program, then after the execution of X := Y , using the [DP] inference rule

above, we can deduce that H(X) = H(Y) = b. Then by applying the [Plus]

inference rule, we can finally have H(Z) = H(X) +H(Y) = 2b.

Although this example is very straightforward and yet a little bit extreme,

it demonstrates the problem of “double counting” very clearly which exists

in the CHM’s analysis framework. Without any way of incorporating the

relationship between program variables together, the best that can be said

about the total amount of information that can be leaked by a program is

the sum of the information of all the possible sources (except in some very

61

special cases e.g. [ZeroMult]), even though some parts of this information

are exactly the same as each other, hence the name of “double counting”.

If we look at the above simple program again, it is not hard to notice

that actually X and Y become equivalent to each other, hence their infor-

mation is entirely shared. Adding them together doesn’t double the amount

of information as they contain exactly the same information as each other.

Therefore, Z does not contain twice the information as either X or Y , actu-

ally it contains exactly the same information as either of them.

A more general example would be:

X1 := X2 := . . . = Xn;

X :=
∑

iXi

If we apply CHM’s analysis framework without taking into account the fact

that Xis are all equivalent, it is ended up with X having n times the infor-

mation as that of Xi, when n is sufficiently large, it would deduce that X

has a very large amount of information (suppose the memory is sufficiently

large and X can contain infinite bits) which is clearly much too imprecise.

Thus, this simple example gives us the hint that relationships between

program variables can be used to deduce more precise quantitative informa-

tion leakage analysis. For example in the above program, if the relationship

of X1 == X2 == . . . == Xn can be successfully incorporated into the anal-

ysis, then no matter how large n is, the information content of X should be

determined to be equal to that of any single Xi.

Luckily there is a well developed framework to obtain this kind of relation-

62

ship (constraints) between program variables, namely abstract interpretation,

which will be introduced in the next section.

3.2 Abstract Interpretation

There are some specific techniques in the area of abstract interpretation which

can nicely approximate the linear relationship between program variables

[19, 6, 68]. Before we go into details about it, a simple introduction of the

basics of abstract interpretation is presented.

3.2.1 Intuition

Generally speaking, abstract interpretation refers to the name that applies

to quite a few techniques for reasoning about programs by evaluating them

over non-standard domains whose elements denote properties of the standard

domain. The intuition behind abstract interpretation is: when it comes to

program analysis, it is time-consuming and often impossible trying to analyze

programs running on all possible inputs of all possible paths; and also we

are only interested in some certain properties of the program which can be

abstracted, or these properties already can tell us everything we need to know

about the program. For example, instead of handling sets of integers, one

might want to over-approximate them using an interval. If all computations

are done monotonically, the result interval is necessarily a superset of the

exact set of possible values at the end of execution.

There are so many applications of abstract interpretation in real life, for

example the most common one of “the rule of sign” in which all the positive

63

numbers are denoted by “+”, all the negative as “-” and “?” as unknown

meaning it can be either positive or negative. And the abstract semantics

defines (+) +] (+) = +, (−) +] (−) = −, (+) +] (−) =?, (+) −] (−) =

+, (−)−] (+) = − and etc where +] means the abstract addition while −] is

the abstract subtraction. Next we use a little bit complicated example than

this to illustrate the usefulness of abstract interpretation in practice.

Example of Abstract Interpretation—the “Casting Out Nines”

We adopt the classical example of “casting out nines” (mod 9) from [1]

to illustrate how abstract interpretation can be used to check whether a

complicated calculation is correct or not within seconds of time. Consider

the following calculation:

123 ∗ 457 + 76543 =? = 132654

The abstract interpretation technique does the check in this way: the above

is checked by reducing 123 to 6, 457 to 7, and 76543 to 7, and then reducing

6*7 to 42 and so further to 6, and finally 6+7 is reduced to 4. This differs

from 3, the sum modulo 9 of the digits of 132654 so the calculation was

incorrect. The method abstracts the actual computation by only recording

values modulo 9. Even though much information is lost, useful results are

still obtained since this implication holds: if the alleged answer modulo 9

differs from the answer got by casting out nines, there is definitely an error.

The mathematical proof of this method is not hard, and we omit it for the

sake of space here.

64

More formally, here the abstraction is α(x) = x mod 9 and the corre-

sponding concretization is γ(a) = {x|x mod 9 = a}. The abstract operators

are x+] y = (x+ y) mod 9 and x ∗] y = (x ∗ y) mod 9.

Another thing we can see from the example is that abstract interpretation

simulates many computations at once. As an example, the abstract value 6

actually represents a set of integer numbers with the same property that their

module 9 is 6.

3.2.2 Formal Definition

Formally, abstract interpretation is a theory of sound approximation of the

semantics of computer programs, based on monotonic functions over ordered

sets. It has been formalized by Cousot and Cousot [17, 18] for flow-chart

language. Moreover their work has had a considerable impact on later work

in various areas, of which related to information flow analysis includes David

Monniaux’s work on abstract interpretation of probabilistic programs [54,

55, 53], Hunt and Mastroeni’s work on abstract non-interference [38, 46] and

etc.

First let’s introduce partially ordered set (poset) and monotone function.

Poset

A poset is a pair (P,≤) where P is a set, and ≤ is a partial order (a reflexive,

transitive and anti-symmetric relation) on P. That is ∀x, y, z ∈ P :

• x ≤ x (reflexive)

• x ≤ y ∧ y ≤ x ⇒ x = y (anti-symmetric)

65

• x ≤ y ∧ y ≤ z ⇒ x ≤ z (transitivity)

Monotone Function

Let A and B be posets. A map f : A → B is monotone if a ≤ a′ ⇒ f(a) ≤

f(a′).

Formal Definition of Abstract Interpretation

Let A and C be two posets, namely abstract domain and concrete domain

respectively.

A function α is called an abstract function if it maps an element x in the

concrete domain C to an element α(x) in the abstract domain A.

A function γ is called an concretization function if it maps an element x′

in the abstract domain C to an element γ(x′) in the concrete domain A.

Correctness of Abstract Interpretation

No matter how abstract the abstract domain is, correctness (soundness) of

the analysis is central. In other words we must be able to prove that the

properties resulting from the abstract analysis are satisfied by the values

that the standard semantics operates on.

For example, if we have an abstraction for the simple arithmetic operation

X := X ∗ 2 given that X is an integer, and each variable X is abstracted as

its parity (abstract domain of (even , odd or not known), then the correctness

of the abstract analysis will ensure a final abstract value of X even or not

known (either even or odd), but if the analysis give us X odd as the final

value, then it is wrong.

66

More precisely, the values obtained from the standard semantics should

be in the set of concretization of the corresponding abstract property. As

soundness is not the main topic of this thesis, it is only briefly mentioned

here although it is vital.

Let C1, C2, A
′
1 and A′2 be ordered sets. The concrete semantics f is a

monotonic function from C1 to C2. A function f ′ from A′1 to A′2 is said to

be a sound abstraction of f if for all x′ ∈ A′1, (f · γ)(x′) ≤ (γ · f ′)(x′).

3.2.3 Application of Abstract Interpretation

To make abstract interpretation of any use, first of all an abstract domain

has to be decided on which nicely identifies the property of interest. The

most common are numerical abstract domains, such as the simplest interval

[17], more complex convex polyhedron (linear (in)equality) [19, 35, 36, 32, 33]

and other domains [52].

The application of abstract interpretation usually consists of computing a

fixed point for the program on the abstract domain. This usually involves an

iterative process, generating a sequence of approximations to the post fixed

point of the program and checking for convergence on each iteration. Hence,

consideration must be given to the operations required to compute the fixed

point, or at least some useful approximation of the fixed point. Monotonicity

is a requirement of fixed point equations, therefore the structure of abstract

domains ranges from posets to complete lattices. When analyses are defined

over abstract domains with infinite or very long chains, they may require

a technique that either forces or accelerates convergence. The notion of

67

widening and narrowing were introduced to manage such situations and are

reviewed in [21].

Widening and Narrowing

A widening is an operator on two successive iterations in a fixed point calcu-

lation over increasing chains that approximate a post fixed point. The loss

in precision is compensated for by operational tractability, as in practice,

post fixed point can be easier to compute than fixed points. The following

definitions are due to [21].

Definition 3.2.1. A widening denoted
`

, on the posets 〈P,≤〉 is defined by
`

: P × P → P such that ∀x, y ∈ P. x ≤ x
`
y and ∀x, y ∈ P. y ≤ x

`
y

and for all increasing chains x0 ≤ x1 ≤ . . ., the increasing chain defined by

y0 = x0, . . . , yi+1 = yi
`
xi+1 is not strictly increasing, that is yl+1 ≤ yl for

some l.

For example, the widening operates on the abstract domain of integer

intervals works as follows:

[a1, b1]
h

[a2, b2] =

[if a2 < a1 then −∞ else a1,

if b2 > b1 then +∞ else b1]

Example 3.2.2.

[1, 10]
h

[1, 11] = [1,+∞]

68

[1,+∞]
h

[0, 12] = [−∞,+∞]

Narrowing, denoted
a

, is a similar technique that is applied to decreasing

chain.

Definition 3.2.3. A narrowing denoted
a

, on the posets 〈P,≤〉 is defined

by
a

: P × P → P such that ∀x, y ∈ P. (y ≤ x) ⇒ y ≤ (x
a
y) ≤ x

and for all decreasing chains x0 ≥ x1 ≥ . . ., the decreasing chain defined by

y0 = x0, . . . , yi+1 = yi
a
xi+1 is not strictly decreasing, that is yl+1 ≥ yl for

some l.

Similarly, narrowing operates on abstract domain of intervals:

[a1, b1]
i

[a2, b2] =

[if a1 == −∞ then a2 else MIN(a1, a2),

if b1 == +∞ then b2 else MIN(b1, b2)]

Example 3.2.4.

[−∞,+∞]
i

[−∞, 101] = [−∞, 101]

[−∞, 101]
i

[0, 100] = [0, 100]

[0, 100]
i

[0, 99] = [0, 99]

In the next section, how abstract interpretation can be used to easily

derive linear constraints between program variables is introduced. The cor-

rectness proof is omitted for the sake of space, however, it is guaranteed by

69

the soundness of general abstract interpretation.

3.2.4 Abstract Interpretation for Linear Constraints

Detection

The abstract domain of our analysis is integer polyhedra, the advantage of

this domain is that it contains the relationship between variables.

Now we introduce how abstract interpretation can be used to automat-

ically deduce linear constraints (convex polyhedron) between program vari-

ables. The work was first proposed by Cousot and Halbwachs [22]. Later, a

refined widening for polyhedra proposed in Cousot and Halbwachs’ paper is

reported in [32, 33]. They demonstrated that it is possible to lose less infor-

mation by reformulating the first polyhedron so that the number of common

constraints is maximized. More recent work on polyhedrons is that of Howe

and King [35, 36]. They proposed an abstract interpretation on finite do-

main of constraint logic programs. By allowing the propagation of linear

constraints at compile time as a program specialization that preserves the

semantics of the original program, the search space is reduced and problem

solving is expedited. Some of the analyzed programs exhibited a significant

execution time improvement. Other works directly on integer polyhedra are

[68, 6] of which the latest is [6].

In [68], set of finite sets of linear inequalities as abstract domain is pro-

posed where each inequality contains at most two variables with unrestricted

coefficients (e.g. coefficients ∈ R). This is the domain which is richer than

intervals as it is relational. They exploit a way to decompose the original set

70

into a series of projections, one for each two dimensional plane, by doing so,

all the operations can be expressed in terms of two dimensional case which

proves to be efficient. The set of linear inequality constraints our algorithm

can deal with don’t necessarily have to have this neat form, namely it can

contain more than two variables.

In [6], how to derive the most precise integer polyhedra of a system of

inequalities is discussed. The integer polyhedron is grown step by step, first

an integer solution satisfying the set of linear constraints are calculated, then

a distinct solution which has the maximal distance from the previous solution

is calculated. Then a convex hull of this point and the previous space is taken

and the process is iterated until it reaches the dimension of the final solution.

To avoid the problem of ending up with an unmanageably large number of

inequalities, a Monte Carlo approximation of the number of integer points

that a constraint bars from a polyhedron is calculated. The least contributing

constraints are relaxed.

In our analysis, we need to derive a new set of linear constraints from the

set of linear constraints before the assignment. [68, 6] don’t deal with the

transformation of the linear constraints directly. However, we can directly

apply [22] to get the linear constraints. [6] can be used on the linear constraint

set after the assignment to get the most precise integer polyhedron. In the

next subsection, how it works is detailed.

71

3.2.5 Algorithm for deriving linear constraints of as-

signment

In this section we specify how to derive linear constraints for assignments

based on the type of the assignment.

Basically, there are two types of assignments: invertible assignment and

non-invertible assignment. For example X2 := X1 +X2/2 + 1 (X1, X2 ∈ N)

is invertible as X2 can be recovered by subtracting X1 +1 and then times the

result by 2 while X2 := X1 + 1 is non-invertible as it can not be recovered in

the same way.

Suppose we have a system of linear constraints before the assignment:

c11x1 + . . .+ c1nxn ≥ b1

. . .

cm1x1 + . . .+ cmnxn ≥ bm

Where bi, ci,j ∈ R.

If the assignment is non-invertible, xi = c′1x1 + c′2x2 + . . . + c′i−1xi−1 +

c′i+1xi+1 + . . .+ c′nxn (c′i ∈ R).

The derivation of the linear constraints after this assignment would be:

to substitute each xi in the original constraints with c′1x1 + . . . + c′i−1xi−1 +

c′i+1xi+1 + . . .+ c′nxn, then put the assignment itself as one of the constraint

72

as well:

c11x1 + . . .+ c1i(c
′
1x1 + . . .+ c′i−1xi−1 + c′i+1xi+1 + . . .+ c′nxn) + c1(i+1)xi+1 + . . .+ c1nxn ≥ b1

. . .

cm1x1 + . . .+ c′mi(c
′
1x1 + . . .+ c′i−1xi−1 + c′i+1xi+1 + . . .+ c′nxn) + c1(i+1)xi+1 + . . .+ cmnxn ≥ bm

xi = c′1x1 + c′2x2 + . . .+ c′i−1xi−1 + c′i+1xi+1 + . . .+ c′nxn

And then simplify the above system to give the final result.

If the assignment is invertible, xi = c′1x1 + c′2x2 + . . . + c′ixi + . . . + c′nxn

The derivation of the linear constraints after this assignment would be: first,

rename each of the variable at the right hand side of the assignment, e.g.

x1 = x′1, xn = x′n, then replace each variable in the original constraints with

its renamed one, thus the constraints after the assignment are:

c11x

′
1 + . . .+ c1i(c

′
1x
′
1 + . . .+ c′ix

′
i + . . .+ c′nxn) + c1(i+1)x

′
i+1 + . . .+ c1nx

′
n ≥ b1

. . .

cm1x
′
1 + . . .+ cmi(c

′
1x
′
1 + . . .+ c′ix

′
i + . . .+ c′nx

′
n) + c1(i+1)x

′
i+1 + . . .+ cmnx

′
n ≥ bm

Simplification may be needed. Please note that the work of Chapter 5

and 6 are all based on this.

Here we adopt the example from [22] to demonstrate how to derive linear

constraints for assignment.

73

Example 3.2.5. suppose the input assertion to an assignment is defined by

X2 ≥ 1,

X1 +X2 ≥ 5,

X1 −X2 ≥ −1

if the assignment is non-invertible such as X2 := X1 +1, the output assertion

would be just getting rid of X2 from the original set of inequalities, add the

assignment itself to the new set as well:

X1 ≥ 2,

X2 −X1 = 1

if the assignment is invertible such as R2 := R1+R2/2+1, then the output

assertion is obtained by reformulating R1 as R′1 and R2 as 2R′2 − 2R′1 − 2

then substitute back to the original input assertion:

2X ′2 − 2X ′1 ≥ 3,

2X ′2 −X ′1 ≥ 7,

−2X ′2 + 3X ′1 ≥ −3

Thus, for our simple example of:

X := Y ;

Z := X + Y ;

74

either representation will easily give the result of:

• Before entering the program, no information is obtainable about the

linear constraint of either X or Y ;

• After the first assignment, it is {X − Y = 0};

• After the second assignment, it is {Z −X − Y = 0, X − Y = 0}.

This example is too simple to actually need to use abstract interpreta-

tion to work out the linear constraints between program variables. However,

abstract interpretation is very powerful, as it can identify those linear con-

straints among the variables that never appear explicitly in the program con-

text, and often escape the notice of anyone who is studying it. The following

is such an example [22]:

{P0} I := 2; J := 0;

{P1} L :

{P2} if . . . then

{P3} I := I + 4

{P4} else

{P5} J := J + 1; I := I + 2;

{P6} fi

{P7} go to L;

The inequality representation will give the approximation of linear re-

straints as:

• (0): no information

75

• (1): I=2, J=0

• (2), (3), (5): 2J+2≤I, J≥0

• (4): 2J+6≤I, J≥0

• (6): 2J+2≤I, J≥1

• (7): 2J+2≤I, 6≤I+2J, J≥0

3.3 Case study-Comparison With CHM’s Anal-

ysis

In this section we use some examples to show the usefulness of abstract

interpretation where CHM’s analysis falls short.

3.3.1 Program with Single Linear Constraint

Example 3.3.1.

X := Y ;

Z := X + Y ;

already demonstrates the point that abstract interpretation can provide

useful information which CHM’s analysis is not capable of. Basically the

CHM’s analysis can claim that the information leaked into Z is the sum

of that of X and Y , that is H(Z) = H(X) + H(Y) if both X and Y are

high program variables; while the abstract interpretation can infer the con-

straint X = Y which can then be used to establish H(X) = H(Y), and

the maximum joint entropy of X and Y is Hmax(X, Y) = H(X) = H(Y),

76

finally the maximum amount of information that can be leaked into Z is

H(Z) = H(X) = H(Y).

3.3.2 Program with Multiple Linear Constraints

The following program (Example 3.3.2) has more than one linear constraint

between high program variables X and Y (as shown in Figure 3.1). The

abstract interpretation is expected to derive the following linear constraints:

suppose there isn’t any other constraint of X and Y , then after the if state-

ment, abstract interpretation is expected to derive X + Y ≥ 5, X − Y ≥ −1;

after the assignment of Y := X + Y
2

+ 1, it is 2Y − 2X ≥ 3, 2Y − X ≥

7, −2Y + 3X ≥ −3. Suppose H(X) = a, we would expect the maximum

joint entropy of X and Y to be between a and the result of CHM’s simply be-

cause neither are X and Y independent from each other (as treated in CHM’s

framework) nor they have such a close relationship that they are equivalent

to each other as in Example 3.3.1; our analysis demonstrated in details in

Chapter 5 Section 5.7 confirms this while the best of CHM’s analysis can do

is still the same as claiming that the sum of information of X and Y will be

leaked into Z which is a+ log n (suppose Y can have n values) .

77

Example 3.3.2.

if X + Y ≥ 5 && X − Y ≥ −1 then

Z := 0;

else

X = 3;

Y = 4;

fi

Y := X + Y
2

+ 1;

Z := f(X, Y);

Where f(X, Y) is some linear function of X and Y . This program is

discussed in detail in Chapter 5 Section 5.7.

3.3.3 A While Loop

Now let’s use a simple While loop program to show the point again, and

the linear constraint between X and Y that can be obtained by abstract

interpretation is demonstrated in Figure 3.2.

Example 3.3.3.

while X ≤ Y

Z := 0;

Z := X + Y ;

X := X + 1;

end while

with X and Y , each can take integer values in the range of [1, . . . , n], and

78

Figure 3.1: Polyhedron for Example 3.3.2 with horizontal axis being X and
vertical axis being Y

the marginal constraint H(Y) = a.

CHM’s analysis will first conduct a dependence analysis which is very

conservative, and just tells that Z depends on X and Y , hence the maximum

information that can be leaked into Z is the sum of the largest amount of

information of X and Y ; our analysis, on the other hand, can use the result

of abstract interpretation of X ≤ Y , although it is not precise, to derive

79

a better upper bound of information leakage which is smaller than CHM’s.

Our analysis can be improved if the abstract interpretation is able to derive

tighter linear constraints. Detailed discussion is also in Chapter 5 Section

5.7.

Figure 3.2: Polyhedron for Example 3.3.3 with horizontal axis being X and
vertical axis being Y

Discussion

From above, it is clear that abstract interpretation is a very powerful method

to obtain linear constraints between program variables; moreover, it can also

be automated to detect such properties. As has been demonstrated in the

last section, a more precise information leakage may be obtained if linear

constraints between program variables is considered during the quantitative

information analysis. Therefore, our idea is to use abstract interpretation to

get approximate linear constraints between program variables and then use

this information to improve the analysis framework of quantitative informa-

80

tion flow proposed by Clark, Hunt and Malacaria which starts from Chapter

5.

81

Chapter 4

Lagrange Multiplier Method

and Convex Optimization

This chapter introduces the key technique that is used to derive the maximum

joint entropy in our work, the Lagrange multiplier method, which is a very

powerful mathematical tool to solve constrained optimization problem. Then

convex optimization is discussed, since the problem we are trying to solve

belongs to this special category of constrained optimization, however, the

speciality of our problem is pointed out.

4.1 Lagrange Multiplier Method

Lagrange multiplier method is a very popular and useful mechanism for con-

strained mathematical optimization. It provides a strategy for finding the

maximum (minimum) of a function subject to constraints. The basic idea

behind it can be seen from geometric point of view: the contour of the objec-

82

tive function we want to maximize(minimize) should touch the boundary of

the constraint function in such a way that they are tangent to each other at

one point which is exactly the maximum (minimum). This is demonstrated

in Figure 4.1 [2].

Figure 4.1: Lagrange multiplier Method

Mathematically, suppose we want to maximize the function f(x, y) sub-

ject to the constraint h(x, y) = b. The method of Lagrange multiplier works

by first introducing an auxiliary function Λ(x, y, λ) to incorporate the con-

straint into one equation:

Λ(x, y, λ) = f(x, y)− λ (h(x, y)− b)

and solve the partial derivatives of Λ(x, y, λ) in terms of x, y, λ respectively:

Ox,y,λΛ(x, y, λ) = 0

83

Formally, let Λ(x∗, λ) (x∗ is a vector of variables) be the Lagrangian of a

function f subject to a family of constraints C1≤i≤m (where Ci ≡ hi(x) = bi),

i.e.

Λ(x∗, λ) = f(x∗)−
∑

1≤i≤m

λi(hi(x
∗)− bi)

The Lagrange multiplier method is justified by the following theorem:

Theorem 4.1.1. Assume the vector x∗ = (x1, . . . , xn) maximizes (or mini-

mizes) the function f(x) subject to the constraints (hi(x) = bi)1≤i≤m. Then

either

1. the vectors (Ohi(x∗))1≤i≤m are linearly dependent, or

2. there exists a vector λ∗ = (λ1, . . . , λm) such that

OΛ(x∗, λ∗) = 0, i.e.

(
∂Λ

∂xi
(x∗, λ∗) = 0

)
1≤i≤n

,

(
∂Λ

∂λi
(x∗, λ∗) = 0

)
1≤i≤m

where O is the gradient.

The theorem also applies to functions with more than one variable.

For the technique of Lagrange multiplier method to work, the domain

of f should be an open set containing all points satisfying the constraints.

Furthermore, f and the gi must have continuous first partial derivatives and

the gradients of the gi must not be zero on the domain.

84

4.1.1 Simple Example of Lagrange Multiplier Method

Here is an example of how exactly Lagrange multiplier method works, which

can be found in mathematics textbooks involving the subject, such as [2]:

Suppose we want to maximize

f(x, y) = 10− (x− 5)2 − (y − 3)2

under the constraint g(x, y)

x+ y = 1

First we rewrite the constraint as

g(x, y)− c = x+ y − 1 = 0

Then we construct the Lagrangian:

Λ(x, y, λ) = f(x, y)−λ(g(x, y)−c) = 10− (x−5)2− (y−3)2−λ(x+y−1)

Note that λ may be either added or subtracted although we choose to use

subtraction in this thesis.

Partial derivatives of Λ of x, y, λ respectively are taken which gives us

the following set of equations:

∂Λ

∂x
= −2x+ 10− λ = 0 (4.1)

∂Λ

∂y
= −2y + 6− λ = 0 (4.2)

85

∂Λ

∂λ
= x+ y − 1 = 0 (4.3)

solving above equations: max(f(x, y)) = f(x = 3
2
, y = −1

2
) = −14.5.

4.1.2 Entropy Example

It is well known that uniform distribution gives the maximum entropy and

this can also be easily derived by applying Lagrange multiplier method:

The objective function is entropy:

f(p1, p2, . . . pn) = −
n∑
i=1

pi log pi

And there is one simple constraint that

g(p1, p2, . . . pn)− c =
n∑
i=1

pi − 1 = 0

The Lagrangian is constructed as follows:

Λ(p1, p2, . . . , pn, λ) = f(p1, p2, . . . , pn)−λ(g(x, y)−c) = −
n∑
i=1

pi log pi−λ(
n∑
i=1

pi−1)

For each pi, partial derivative of the Lagrangian gives:

(
1

ln 2
+ log pi) + λ = 0

Thus all the pi are equal to 1
n
.

86

4.2 Convex Optimization

Convex optimization is a special kind of non-linear optimization. In this

section we introduce the definitions of convex optimization followed by a

discussion of why our problem cannot be solved using traditional convex

optimization algorithms or techniques although it is in the form of convex

optimization.

4.2.1 Basic Definition

A set C is convex if the line segment between any two points in C lies in C,

i.e., if for any x1, x2 ∈ C and any 0 ≤ λ ≤ 1, we have

λx1 + (1− λ)x2 ∈ C.

A convex optimization problem is one of the form

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, . . . ,m; hi(x) = 0, i = 1, . . . , p

where the functions f0, . . . , fm : Rn → R are convex.

The set of points for which the objective and all constraint functions are

defined,

D =
m⋂
i=0

domfi ∩
p⋂
i=1

domhi

is called the domain of the optimization problem. A point x ∈ D is feasible if

it satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,m, and hi(x) = 0, i = 1, . . . , p.

87

The optimization problem is said to be feasible if there exists at least one

feasible point, and infeasible otherwise.

The optimal value p∗ of the problem is defined as

p∗ = inf{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}.

x∗ is an optimal point or solves the problem, if x∗ is feasible and f0(x∗) =

p∗. The set of all optimal points is the optimal set, denoted

Xopt = {x|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p, f0(x) = p∗}

Note that the optimal set can be infinite, however in practice, it is enough

to just find one such optimal point.

A feasible point x is locally optimal if there is an R > 0 such that

f(x) = inf{f0(z)|fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p, ||z−x||2 ≤ R},

or in other words, x solves the optimization problem

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, . . . ,m hi(z) = 0, i = 1, . . . , p ||z − x||2 ≤ R

4.2.2 Least-squares Problem and Linear Programming

Of convex optimization, the most well known and mature techniques are the

least-square problem and linear programming. Unfortunately, our problem

88

doesn’t fall into any of the two categories. Here, we basically introduce the

definition of each of them.

Least-square Problem

A least-square problem is a special subclass of convex optimization with no

constraints and an objective which is a sum of squares of terms of the form

aTi x− bi:

minimize f0(x) = ||Ax− b||22 =
k∑
i=1

(aTi x− bi)2

Here A ∈ Rk×n(with k ≥ n), aTi are the rows of A, and the vector x ∈ Rn is

the optimization variable.

Linear Programming

Linear programming is another important class of convex optimization prob-

lems, in which the objective and all constraint functions are linear:

minimize cTx

subject to aTi x ≤ bi, i = 1, . . . ,m.

Here the vectors c, a1, . . . , am ∈ Rn and scalars b1, . . . , bm ∈ R are problem

parameters that specify the objective and constraint functions.

4.2.3 Numeric Algorithms for Convex Optimization

In this section, we introduce some of the most popular numeric algorithms

for solving convex optimization. Let’s first start with the most popular one.

89

Newton’s Method

Newton’s algorithm is the most well-known and popular method for solving

unconstrained or equality constraint convex optimization. Here we introduce

how the algorithm works:

Given a starting point x ∈ domf , tolerance ε > 0.

repeat:

1. Compute the Newton step decrement.

4xnt := f ′′(x)−1f ′(x); λ2 := f ′(x)Tf ′′(x)−1f ′(x).

2. Stopping criterion. quit if λ2/2 ≤ ε.

3. Line search. Choose step size t by backtracking line search.

4. Update. x := x+ t4xnt.

When working with equality constraint(s), it is necessary that the initial

point also satisfies the constraint(s) in addition to belonging to the domain

of the objective function f .

Interior-point Method

Interior-point method is a relatively new algorithm to solve the convex op-

timization problem with inequality constraints. It also makes use of New-

ton’s method in its centering step. Here we introduce one particular kind

of interior-point method, namely the barrier method, whose convergency

90

property is proved in [5]. The algorithm works by incorporating inequal-

ity constraints implicitly into the objective function, and then working on a

sequence of equality constraint problem.

Suppose we want to minimize f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m

and Ax = b, where f0, . . . , fm : Rn → R are convex and twice continuously

differentiable, and A ∈ Rp×n with rank A = p < n.

The barrier method works by first introducing the logarithmic barrier

function Îu = −(1/t) log(−u), then the original problem is approximated as:

minimize f0(x) +
∑m

i=1−(1/t) log(−fi(x)) subject to Ax = b.

Then the algorithm works as follows:

Given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ε > 0, φ > 0.

repeat

1. Centering step.

Compute x∗(t) by minimizing tf0 +φ, subject to Ax = b, starting at x.

2. Update. x = x∗(t).

3. Stopping criterion. quit if m/t < ε.

4. Increase t. t := µt.

where strictly feasible means that x∗(t) satisfies the constraints Ax∗(t) = b

and fi(x
∗(t)) < 0, i = 0, . . . ,m, and f0(x∗(t))− p∗ ≤ m/t. When the initial

strictly feasible point is unknown, the algorithm is extended with phase 1

method in order to find such point to start the algorithm with. For more

details please refer to [5].

91

4.2.4 Discussion

Most of the work in convex optimization is concentrated on how to transfer

the original problem to convex optimization, hence it can be solved using

the corresponding algorithms. These transformations work by introducing

new variables or reformulating the original optimization problem, eliminating

constraints and etc.

Our problem doesn’t need to be transformed as it is already in the form

of convex optimization. However, in convex optimization when dealing with

multi-variables, usually the constraints treat each variable as independent

from each other, which is not the case in our problem. Thus, our problem

cannot be solved using traditional convex optimization, or in other words, as

far as we know in convex optimization, there hasn’t been much research into

the type of our problem.

With equality constrained convex optimization, the most popular numeric

algorithm is Newton’s method. However, it depends on providing a feasible

start point which for our problem is quite difficult, sometimes even impossi-

ble. Although there is an algorithm coping with infeasible starting points, it

is only for linear constraints such as Ax = b where A is a m× n matrix, x is

a vector of length n, b is a value. Hence our problem is outside the scope of

Newton’s method.

For the barrier method to work, in addition to the problem of providing

feasible initial point, the type of inequality constraint must be of the form

−H + b ≤ 0, namely we can only work with the lower bound of marginal

entropy constraint, which is usually not the case as we either work with

92

equality constraint or upper bound of marginal entropy constraint.

Our algorithm, on the other hand, doesn’t require any initial feasible

points with which the algorithm iteration starts. Instead, our algorithm

searches for a parameter with which the marginal probability distribution

satisfies the marginal entropy constraint. Once the parameter is found, the

maximal joint entropy is obtained thereafter. From the next chapter we

demonstrate how our analytical algorithm works step by step.

93

Chapter 5

Single Constraint Joint

Entropy Maximization and Its

Generalization

In previous chapters we summarized the current work on quantitative infor-

mation flow analysis, introduced the background of information theory, ab-

stract interpretation and convex optimization. Most importantly, we demon-

strate how Lagrange multiplier method can solve constrained optimization

problems using some examples.

This chapter starts an analytical discussion on maximizing information

leakage under a single constraint. Here, single constraint means there is only

one non-linear constraint (i.e. marginal entropy constraint). It doesn’t mean

there is one and only one constraint, as the precondition that all probabil-

ities sums up to one is always counted as one constraint. Although it is

always safe to say that the total amount of information that can be leaked

94

by program variables will not exceed the sum of their self information (en-

tropy), upper bound as precise as possible is always desired. Constrained

information leakage poses new challenges to quantitative information flow

analysis.

Facing the challenge, we propose a fundamental rigorous algorithm based

on Lagrange multiplier method to quantify the maximum possible informa-

tion that can be leaked by the program. The constraints we consider in this

chapter are of four types, linear and non-linear, equality and non-equality. It

is a very difficult problem, as it is well known that even if it is a convex op-

timization, usually there is no analytical form for the maximization problem

with non-linear constraint [5]. Investigating the single constraint, we found

that by applying the partition version of entropy definition, the derivation

can be made much simpler. This enables us to tailor our algorithm to a much

easier-to-understand procedure.

5.1 Introduction

Our work is based on CHM’s framework of quantitative information flow

analysis. As discussed in Chapter 3, it suffers from the weakness of “double

counting” because it treats programs variables as independent from each

other. Recall the simple extreme example from Chapter 3:

X := Y ;

Z := X + Y ;

95

Without noticing X is just a copy of Y , duplicated information is counted

twice in Z.

Therefore, we are inspired by the fact that relationships between program

variables can be used to deduce a more precise upper bound of information

leakage. With the increasing complexity of computer systems, the relation-

ships between program variables are very complicated, not only between high

and low variables, but between high and high, low and low variables as well.

Hence, it is unreasonable to ignore their relationship and treat them as in-

dependent from each other.

Hence, we make the first attempt to look into this problem which will be

explained in the next few sections.

5.2 Quantity to Maximize

Before going into the details of the technique, we first explain the quantity

we choose to maximize—the joint entropy.

As demonstrated by Figure 5.1, joint entropy counts for all the informa-

tion among variables, including the mutual information they share. There-

fore, in quantitative information flow analysis, the joint entropy of all the

secret inputs stands for the total amount of information that may be leaked.

Moreover, the situations we consider here are those when there are more

than one high program variables and they interact with each other via vari-

ous ways. The joint entropy seems to be a quite natural quantity to fit into

this situation.

However, there is no conspiracy to choose to maximize joint entropy.

96

Figure 5.1: Relationship between entropy and mutual information

Others may want to maximize the conditional entropy of observable variable

based upon high variables. They are basically two sides of the same coin, as

H(X, Y) = H(Y)+H(X|Y) (just take two variables as an example), and the

marginal entropy H(Y) (or H(X)) is fixed in our problem, thus maximizing

either of the two terms left will maximize the other one.

In the next section, we first use a concrete example to demonstrate how

our algorithm finds out the probability distribution that maximizes the joint

entropy under certain constraints before we move on to the more general

case.

97

5.3 Simple Problem

Let’s consider:

Example 5.3.1.

if X ≤ Y then

Z := X + Y ;

else

Z := 0;

fi

with both X and Y being non-negative integers.

The abstract interpretation analysis is expected to give the following

derivation of linear constraints between programs variables:

Suppose before the if statement there isn’t any constraint on the secret

inputs X and Y , then in the truth branch after the non-invertible assignment

of Z := X + Y , it is {X ≤ Y ; Z = X + Y }, and {X ≥ Y + 1, Z = 0} for

the false branch as the assignment is also non-invertible.

The total amount of information leakage would be the sum of three parts

together: the information leakage from the guard if X ≤ Y , from the then

branch, together with that from the else branch.

Suppose Z is the observable output, what is the possible maximum infor-

mation leakage given the constraints obtained from abstract interpretation

analysis? As the maximum leakage of the guard is 1 bit, and Z := 0 has

information leakage zero, thus we only need to consider the maximum infor-

mation that can be leaked through Z := X + Y under constraint X ≤ Y ,

and this is the type of information leakage that this thesis concerns.

98

To make derivations as simple as possible in the beginning, let’s assume

that each of them can only take integer values in the range of [1, 3]. Now

let’s add a single marginal entropy constraint H(Y) = a (it is more or less

the same if the constraint is H(X) = a since X and Y are symmetric in this

case). Then the question is, what is the maximum possible value for their

joint entropy?

In this chapter we use P to denote probability distribution. Let pi,j =

P (X = i, Y = j), qi = P (Y = i). Note that, since X ≤ Y , we may restrict

attention to pi,j such that i ≤ j. Therefore, the objective function we want

to maximize is:

H(X, Y)X≤Y, X,Y ∈[1, 3] = −
∑

i, j∈[1, 3], i≤j

pi,j log pi,j (5.1)

Before constructing the Lagrangian, let’s first introduce the partition ver-

sion of entropy:

Given a distribution P over a set S = {s1,1, s1,2, . . . , sn,m} and a

partition of S into sets (Si)1≤i≤n:

H(P (s1,1), P (s1,2), . . . , P (sn,m)) = H(P (S1), P (S2), . . . , P (Sn))

+
∑n

i=1 P (Si)H(
P (si,1)

P (Si)
,
P (si,2)

P (Si)
. . .

P (si,m)

P (Si)
)

Note that the marginal probability distribution of Y actually imposes a

partition on the original set of (X, Y) according to the values of Y , therefore,

we can rewrite the objective function to embody this:

H(X, Y)X≤Y, X,Y ∈[1, 3] = H(q1, q2, q3) +
3∑
i=1

qiH(
p1,i

qi
, . . . ,

pi,i
qi

) (5.2)

99

In the above equation, as the marginal entropy for Y is fixed (which is a in

this case), in order to get maximal joint entropy, we only need to maximize∑3
i=1 qiH(

p1,i
qi
, . . . ,

pi,i
qi

). It is well known that uniform distribution maximizes

entropy (refer to the example of applying Lagrange multiplier method to

entropy in Section 4.1.2), thus for our problem, uniform distributions in each

part of qi maximizes the joint entropy. As a result the above equation can

be further reduced to:

H(X, Y)X≤Y, X,Y ∈[1, 3] = a+
3∑
i=1

qi log i (5.3)

Thus it is suffices to maximize equation 5.3 subject to the following two

constraints:

H(Y)− a = 0 (5.4)
3∑
i=1

qi − 1 = 0 (5.5)

Now apply the Lagrange multiplier method and define the Lagrangian Λ

as

Λ = a+
3∑
i=1

qi log i− λ1(H(Y)− a)− λ2(
3∑
i=1

qi − 1) (5.6)

which gives rise to the following family of partial derivative equations,

100

1 ≤ i ≤ 3:

∂Λ

∂q1

= log 1 +
λ1

ln 2
(ln q1 + 1)− λ2 = 0 (5.7)

∂Λ

∂q2

= log 2 +
λ1

ln 2
(ln q2 + 1)− λ2 = 0 (5.8)

∂Λ

∂q3

= log 3 +
λ1

ln 2
(ln q3 + 1)− λ2 = 0 (5.9)

By subtracting equation 5.7 from equation 5.8 and 5.9 respectively, we can

derive the following:

log 2 = log 1 +
λ1

ln 2
(ln q1 + 1)− λ1

ln 2
(ln q2 + 1) (5.10)

log 3 = log 1 +
λ1

ln 2
(ln q1 + 1)− λ1

ln 2
(ln q3 + 1) (5.11)

hence

log 2 =
λ1

ln 2
(ln q1 + 1− ln q2 − 1) = −λ1 log

q2

q1

(5.12)

log 3 =
λ1

ln 2
(ln q1 + 1− ln q3 − 1) = −λ1 log

q3

q1

(5.13)

Let α = − 1
λ1

(λ1 6= 0). Then we have:

log
q2

q1

= log(2α) (5.14)

log
q3

q1

= log(3α) (5.15)

101

hence

q2 = 2αq1 (5.16)

q3 = 3αq1 (5.17)

Then from
∑3

1 qi = 1 we derive:

q1 =
1

Z(α)
(5.18)

q2 =
2α

Z(α)
(5.19)

q3 =
3α

Z(α)
(5.20)

where Z(α) = 1 + 2α + 3α.

We only need to vary α to find suitable a solution satisfying H(Y) = a

as illustrated in Figure 5.2.

There are two values of α for one given marginal entropy, one positive,

the other negative, however, we only need the positive α, as shown in Figure

5.3, positive α gives larger joint entropy than the corresponding negative one:

Figure 5.2 also shows that marginal entropy monotonically decreases

when positive α increases, which is a very useful observation as it allows

a very simple search for a suitable α for a given marginal entropy constraint

in this region, i.e. a binary search does the job very well.

Now let’s prove the monotonically decreasing property with positive α in

this simple case where Y ∈ [1, 2, 3]:

102

Figure 5.2: Marginal Probability Distribution and Marginal Entropy in terms
of α

Proposition 5.3.2. Suppose Y ∈ [1, 2, 3] and the probability P (Y) of Y

is { 1
Z(α)

, 2α

Z(α)
, 3α

Z(α)
}, if 0 ≤ α < α′, then H(Y (α′)) < H(Y (α)) where

Z(α) = 1 + 2α + 3α.

One way of proving that a function monotonically decreases is to show

that its first derivative is less than zero, and we take this approach in our

proof:

103

Figure 5.3: Marginal Probability Distribution and Maximal Joint Entropy
in terms of α

Proof.

H(Y (α)) = − 1
Z(α)

log(1
Z(α)

)− 2α

Z(α)
log(2α

Z(α)
)− 3α

Z(α)
log(3α

Z(α)
)

= 1
Z(α)

log(Z(α))− 2α

Z(α)
(log 2α − logZ(α))− 3α

Z(α)
(log 3α − logZ(α))

= 1
Z(α)

log(Z(α))− 2α

Z(α)
log 2α + 2α

Z(α)
logZ(α)− 3α

Z(α)
log 3α + 3α

Z(α)
logZ(α)

= logZ(α)− α2α

Z(α)
− α3α log 3

Z(α)

104

Its first derivative of α is:

H′(Y (α)) = Z′(α)
Z(α) ln 2

− (α2α)′Z(α)−α2αZ′(α)
(Z(α))2

− (α3α log 3)′Z(α)−α3α log 3Z′(α)
(Z(α))2

= Z′(α)
Z(α) ln 2

− 2α+α2α ln 2+3α log 3+α3α ln 3 log 3
Z(α)

+ (α2α+α3α log 3)Z(α)′

Z(α)2

= Z′(α)
Z(α) ln 2

− 2α ln 2+α2α(ln 2)2+3α ln 3+α3α(ln 3)2

Z(α) ln 2
+ α(Z(α)′)2

(Z(α))2 ln 2

= Z′(α)
Z(α) ln 2

− Z′(α)+α2α(ln 2)2+α3α(ln 3)2

Z(α) ln 2
+ α(Z(α)′)2

(Z(α))2 ln 2

= α(Z(α)′)2−α(2α(ln 2)2+3α(ln 3)2)Z(α)
(Z(α))2 ln 2

As α > 0, we only need to compare (Z(α)′)2−(2α(ln 2)2+3α(ln 3)2)Z(α)
(Z(α))2 ln 2

and zero:

= (2α ln 2+3α ln 3)2−(2α(ln 2)2+3α(ln 3)2)(1+2α+3α)
(Z(α))2 ln 2

= 22α(ln 2)2+32α(ln 3)2+22α3α ln 2 ln 3−2α(ln 2)2−3α(ln 3)2−22α(ln 2)2−2α3α(ln 3)2−2α3α(ln 2)2−32α(ln 3)2

(Z(α))2 ln 2

= 22α3α ln 2 ln 3−2α(ln 2)2−3α(ln 3)2−2α3α(ln 3)2−2α3α(ln 2)2

(Z(α))2 ln 2

= −2α(ln 2)2−3α(ln 3)2−2α3α(ln 2−ln 3)2

(Z(α))2 ln 2

< 0

The first derivative is less than zero, hence the marginal entropy is monoton-

ically decreasing in the range α ∈ [0,+∞).

5.3.1 Three High Variables Case of Simple Problem

In last section, there are only two high variables involved, in this section, we

show how more than two variables can also be derived using our analysis:

In this section, we use X1, X2 and X3 to represent three high variables

such that X1 ≤ X2 ≤ X3 and all of them ∈ [1, 3], pi, qi, rk to represent

P (X1 = i), P (X2 = j), P (X3 = k) respectively, and with single constraint

H(X2) = a (it can be either H(X1) or H(X3)).

105

By using the partition version of the entropy definition, we can get:

H(X1, X2, X3) = H(X2) +
3∑

i=1, i≤j, j≤k

qjH(
p1,j,j

qj
, . . . ,

pj,j,3
qj

) (5.21)

Similarly as the two high variable case, the uniform distribution in each

part of qj maximizes the joint entropy. As a result the above equation can

be further reduced to:

H(X1, X2, X3) = a+
3∑
j=1

qj log j(4− j) (5.22)

Now together with the constraints of H(X2)−a = 0 and
∑3

j=1 qj−1 = 0,

the Lagrangian is:

Λ = a+
3∑
j=1

qj log j(4− j)− λ1(H(X2)− a)− λ2(
3∑
j=1

qj − 1) (5.23)

which gives rise to the following family of partial derivative equations,

1 ≤ j ≤ 3:

∂Λ

∂q1

= log 3 +
λ1

ln 2
(ln q1 + 1)− λ2 = 0 (5.24)

∂Λ

∂q2

= log 4 +
λ1

ln 2
(ln q2 + 1)− λ2 = 0 (5.25)

∂Λ

∂q3

= log 3 +
λ1

ln 2
(ln q3 + 1)− λ2 = 0 (5.26)

106

Then we can derive:

q1 =
3α

Z(α)
(5.27)

q2 =
4α

Z(α)
(5.28)

q3 =
3α

Z(α)
(5.29)

where Z(α) = 3α + 4α + 3α.

Therefore, it ends up searching for a suitable α, the same as the two high

variable case.

The derivation of more high variables is more or less the same as above,

hence the result is also similar.

5.4 General Case of Simple Problem

Now let’s generalize the three-value case in the last section to n values:

More or less the same as above, let X, Y be random variables, each with

range {1, . . . , n} and such that X ≤ Y and pi,j = P (X = i, Y = j) and let

qi = P (Y = i). Since X ≤ Y , we may restrict attention to pi,j such that

i ≤ j only.

Suppose H(Y) = H(~q) = a. What is the maximum possible value for

H(X, Y) = H(~p)?

Suppose that a joint distribution satisfies H(~q) = a and maximizes H(~p).

The same reasoning as above shows that pi,j = pi′,j for all i, i′ ≤ j and hence

107

that H(~p) = f(~q), where:

f(~q) = a+
n∑
i=1

qi log i (5.30)

Thus it suffices to maximize f(~q) subject to the constraints:

H(~q)− a = 0 (5.31)
n∑
i=1

qi − 1 = 0 (5.32)

Define the Lagrangian Λ as

Λ(~q) = f(~q)− λ1(H(~q)− a)− λ2(
n∑
i=1

qi − 1) (5.33)

giving rise to the following family of equations, 1 ≤ i ≤ n:

∂Λ

∂qi
= log i+

λ1

ln 2
(ln qi + 1)− λ2 = 0 (5.34)

For 2 ≤ i ≤ n we derive by subtracting partial derivative equation of qi from

that of q1:

log i = log 1 +
λ1

ln 2
(ln q1 + 1)− λ1

ln 2
(ln qi + 1) (5.35)

hence

log i =
λ1

ln 2
(ln q1 + 1− ln qi − 1) = −λ1 log

qi
q1

(5.36)

Let α = − 1
λ1

(λ1 6= 0). Lagrange multiplier method, for 2 ≤ i ≤ n

log
qi
q1

= log(iα) (5.37)

108

hence

qi = iαq1 (5.38)

Then from
∑n

1 qi = 1 we derive, for 1 ≤ i ≤ n:

qi =
iα

Z(α)
(5.39)

where Z(α) = 1 + 2α + . . .+ nα.

Figure 5.4 shows the shape of marginal entropy with different n:

Figure 5.4: Marginal Probability Distributions of Different n: the bottom
one is n = 4, the top one is n = 10

Now the same as above, let’s prove the property of monotonically de-

creasing in this general case:

109

Proposition 5.4.1. Let Y (α) be a distribution for [1, 2, . . . , n] such that

P (Y (α) = i) = iα

Z(α)
, where Z(α) =

∑
i i
α. If 0 ≤ α < α′, then H(Y (α′)) <

H(Y (α)).

We also show that the first derivative of marginal entropy of Y is less

than zero as in the specific three-value case above, before our formal proof,

let’s prove another proposition which our proof relies on:

Proposition 5.4.2. Suppose 0 < α, then (
∑n

i=1 i
α ln i)2 <

∑n
i=1 i

α(ln i)2
∑n

i=1 i
α

We use mathematical induction to prove this proposition:

Proof. When m = 2:

(
2∑
i=1

iα ln i)2 = (1 ln 1 + 2α ln 2)2 = 22α(ln 2)2

2∑
i=1

iα(ln i)2

2∑
i=1

iα = 2α(ln 2)2(1 + 2α) = 22α(ln 2)2 + 2α(ln 2)2

It is clear that

(
2∑
i=1

iα ln i)2 <
2∑
i=1

iα(ln i)2

2∑
i=1

iα

Thus the conclusion holds when m = 2.

Suppose it also holds when m = k, that is

(
k∑
i=1

iα ln i)2 <

k∑
i=1

iα(ln i)2

k∑
i=1

iα

110

When m = k + 1:

(
∑k+1

i=1 i
α ln i)2 =

(∑k
i=1 i

α ln i+ (k + 1)α ln(k + 1)
)2

=
(∑k

i=1 i
α ln i

)2

+ 2(k + 1)α ln(k + 1)
∑k

i=1 i
α ln i+ (k + 1)2α(ln(k + 1))2

∑k+1
i=1 i

α(ln i)2
∑k+1

i=1 i
α =

∑k+1
i=1 i

α(ln i)2
(∑k

i=1 i
α + (k + 1)α

)
=

∑k+1
i=1 i

α(ln i)2
∑k

i=1 i
α + (k + 1)α

∑k+1
i=1 i

α(ln i)2

=
∑k

i=1 i
α(ln i)2

∑k
i=1 i

α + (k + 1)α(ln(k + 1))2
∑k

i=1 i
α

+(k + 1)α
∑k+1

i=1 i
α(ln i)2

Since (
∑k

i=1 i
α ln i)2 <

∑k
i=1 i

α(ln i)2
∑k

i=1 i
α:

(
∑k+1

i=1 i
α ln i)2 <

∑k
i=1 i

α(ln i)2
∑k

i=1 i
α + 2(k + 1)α ln(k + 1)

∑k
i=1 i

α ln i+ (k + 1)2α(ln(k + 1))2

Therefore, we only need to prove that:

2(k + 1)α ln(k + 1)
∑k

i=1 i
α ln i+ (k + 1)2α(ln(k + 1))2

< (k + 1)α(ln(k + 1))2
∑k

i=1 i
α + (k + 1)α

∑k+1
i=1 i

α(ln i)2

2(k + 1)α ln(k + 1)
∑k

i=1 i
α ln i+ (k + 1)2α(ln(k + 1))2

= (k + 1)α
(

2 ln(k + 1)
∑k

i=1 i
α ln i+ (k + 1)α(ln(k + 1))2

)

(k + 1)α(ln(k + 1))2
∑k

i=1 i
α + (k + 1)α

∑k+1
i=1 i

α(ln i)2

= (k + 1)α
(∑k

i=1 i
α(ln(k + 1))2 +

∑k+1
i=1 i

α(ln i)2
)

= (k + 1)α
(∑k

i=1 i
α(ln(k + 1))2 +

∑k
i=1 i

α(ln i)2 + (k + 1)α(ln(k + 1))2
)

111

Since

∑k
i=1 i

α(ln(k + 1))2 +
∑k

i=1 i
α(ln i)2 − 2 ln(k + 1)

∑k
i=1 i

α ln i

=
∑k

i=1 i
α (ln(k + 1)− ln i)2

> 0

Thus

2(k + 1)α ln(k + 1)
∑k

i=1 i
α ln i+ (k + 1)2α(ln(k + 1))2

< (k + 1)α(ln(k + 1))2
∑k

i=1 i
α + (k + 1)α

∑k+1
i=1 i

α(ln i)2

holds.

Therefore, the conclusion holds when n = k + 1, which is:

(
k+1∑
i=1

iα ln i)2 <
k+1∑
i=1

iα(ln i)2

k+1∑
i=1

iα

As a result, the proposition holds for all n.

Now let’s prove Proposition 5.4.1 by showing that the first derivative of

marginal entropy is less than zero:

Proof.

H(Y (α)) = −
∑

i
iα

Z(α)
log iα

Z(α)

= −
∑

i
iα

Z(α)
(log iα − logZ(α))

= −
∑

i
iα

Z(α)
log iα +

∑
i

iα

Z(α)
logZ(α)

= logZ(α)−
∑

i
αiα log i
Z(α)

112

Its first derivative of α is:

H(Y (α))′ = Z(α)′

Z(α) ln 2
−
P
i(i
α+αiα ln i)Z(α) log i−αiαZ(α)′ log i

(Z(α))2

= Z(α)′

Z(α) ln 2
−
P
i i
α log iZ(α)+

P
i αi

α ln i log iZ(α)−
P
i αi

α log iZ(α)′

(Z(α))2

= Z(α)′

Z(α) ln 2
−
P
i i
α ln iZ(α)+

P
i αi

α(ln i)2Z(α)−
P
i αi

α ln iZ(α)′

(Z(α))2 ln 2

=
Z(α)′Z(α)−Z(α)′Z(α)+α((Z(α)′)2−

P
i i
α(ln i)2Z(α))

(Z(α))2 ln 2

=
α((
P
i i
α ln i)2−

P
i i
α(ln i)2

P
i i
α)

(Z(α))2 ln 2

< 0(as α > 0)

which is just Proposition 5.4.2, hence the proof completes.

5.4.1 General Case of Three High Variables Case of

Simple Problem

Now let’s generalize the three high variable case in the last section to n values

instead of 3:

Similarly, let X1, X2 and X3 be three high variables such that X1 ≤ X2 ≤

X3 and all of them ∈ [1, . . . , n], pi, qi, rk to represent P (X1 = i), P (X2 =

j), P (X3 = k) respectively, and with single constraint H(X2) = a (it can be

either H(X1) or H(X3)).

By using the partition version of the entropy definition, we can get:

H(X1, X2, X3) = H(X2) +
n∑

j=1, i≤j, j≤k

qjH(
p1,j,j

qj
, . . . ,

pj,j,n
qj

) (5.40)

Similarly as the two high variable case, the uniform distribution in each

part of qj maximizes the joint entropy. As a result the above equation can

113

be further reduced to:

H(X1, X2, X3) = a+
n∑
j=1

qj log j(n+ 1− j) (5.41)

Now together with the constraints of H(X2)−a = 0 and
∑n

j=1 qj−1 = 0,

the Lagrangian is:

Λ = a+
n∑
j=1

qj log j(n+ 1− j)− λ1(H(X2)− a)− λ2(
n∑
j=1

qj − 1) (5.42)

which gives rise to the following family of partial derivative equations,

1 ≤ j ≤ n:

• When n is odd

∂Λ

∂q1

= log n+
λ1

ln 2
(ln q1 + 1)− λ2 = 0 (5.43)

∂Λ

∂q2

= log 2(n− 1) +
λ1

ln 2
(ln q2 + 1)− λ2 = 0 (5.44)

... (5.45)

∂Λ

∂qn−1
2

= log
n− 1

2

n+ 3

2
+

λ1

ln 2
(ln qn−1

2
+ 1)− λ2 = 0 (5.46)

∂Λ

∂qn+1
2

= log
n+ 1

2

n+ 1

2
+

λ1

ln 2
(ln qn+1

2
+ 1)− λ2 = 0 (5.47)

... (5.48)

∂Λ

∂qn
= log n+

λ1

ln 2
(ln qn + 1)− λ2 = 0 (5.49)

114

• When n is even

∂Λ

∂q1

= log n+
λ1

ln 2
(ln q1 + 1)− λ2 = 0 (5.50)

∂Λ

∂q2

= log 2(n− 1) +
λ1

ln 2
(ln q2 + 1)− λ2 = 0 (5.51)

... (5.52)

∂Λ

∂qn
2

= log
n

2

n

2
+

λ1

ln 2
(ln qn

2
+ 1)− λ2 = 0 (5.53)

∂Λ

∂qn+2
2

= log
n+ 2

2

n+ 1

2
+

λ1

ln 2
(ln qn+1

2
+ 1)− λ2 = 0 (5.54)

... (5.55)

∂Λ

∂qn
= log n+

λ1

ln 2
(ln qn + 1)− λ2 = 0 (5.56)

In both cases we can derive :

qi =
(i(n+ 1− i))α

Z(α)
(5.57)

where Z(α) =
∑n

j=1 (j(n+ 1− j))α.

Therefore, it ends up searching for a suitable α, the same as the two high

variable case.

The derivation of more high variables is more or less the same as above,

and hence the result.

5.5 Generalization of Simple Problem

The further generalization of the problem is to generalize the linear con-

straints between program variables Xi as Xi−1 ≤ aiXi + bi (ai, bi ∈ R, i ∈

115

N). The linear inequality constraint(s) between them can be derived using

abstract interpretation, more precisely integer polyhedron. If we consider all

the possible tuple of values of X1, X2, . . . , Xm as a set, we can divide it into

a set of subsets according to the values of Xi. Then recall the definition of

partition in Chapter 2, this is just a partition on the set according to the

values of Xi. Let’s assume that the sizes of each part of the partition are

n1, n2, . . . , nk respectively.

In other words, suppose X and Y are two random variables. Let pi,j =

P (X = i, Y = j) and qi = P (Y = i), the problem is: suppose H(Y) = a,

what is the maximum possible value for H(X, Y) = H(~p)?

More formally,

Definition 5.5.1. Let A be a finite set and let P be a set of distributions on

A. We write Hmax(P) to mean the maximum entropy of all distributions in

the set: Hmax(P) = supP∈P H(P).

Theorem 5.5.2. Let A = {1, . . . , n} and let {Qj}j∈J be a partition of A.

Given a distribution p = {p1, . . . , pn} on A, let q[p] be the distribution induced

on J by the partition: q[p]j =
∑

i∈Qj pi; call this the marginal distribution for

p. Given 0 ≤ a ≤ log |J |, let Pa be the set of all distributions whose marginal

distribution has a as its entropy: Pa = {p|H(q[p]) = a}. Let k be the size of

the largest part of the partition (k = maxj∈J |Qj|) and let m be the number

of parts having size k (hence 1 ≤ m ≤ |J |). Then there are two cases:

1. if a ≤ logm then Hmax(Pa) = a+ log k

2. if a > logm then there exists a unique α ∈ [0;∞) such that H(q(α)) =

116

a, where

q(α)j =
|Qj|α

Z(α)

with Z(α) =
∑

j∈J |Qj|α; in this case

Hmax(Pa) = a+
∑
j∈J

q(α)j log |Qj|

In this general case, we need to consider the range of the value of marginal

entropy constraint, which didn’t come up in the last two sections. This is

simply because in the special case of three-value and its generalized n-value

situation above, there is only one part having the largest size (actually each

part in the partition has different size), therefore m = 1 → logm = 0, as

marginal entropy cannot be less than zero, we do not need to consider the

range of its values.

We can observe from the special cases that the larger the size of the part

is, the greater the contribution it makes to the joint entropy. Thus if there

is any part(s) having zero probability, that should be of the smallest size(s).

However, in the current more general case, there is possibility that there

are several parts having the same largest size of the partition. Suppose

the number of such parts is m, then if marginal entropy of the probability

distribution of such partition is less than or equal to logm, which is the break

point when all the largest size parts have equal probability while all the other

smaller parts having zero probability (in this case the marginal entropy is

exactly logm). If the marginal entropy is less than logm, this means that

there are even some largest size part(s) (not all) have zero probability.

117

Or from a purely mathematical point of view, when λ1 is zero, there is no

α such that α = − 1
λ1

. However, actually under such circumstance, α → ∞

makes the largest size part having non-zero probability; if there are m such

parts then they all have the same probability of 1
m

. In terms of marginal

entropy, it is exactly the breaking point of logm.

Thus we need to treat this case separately. Luckily in this case, the proof

when a ≤ logm is quite simple, and the partition version of the joint entropy

(refer to Section 5.3) is all that is needed:

Proof.

Hmax(Pa) = a+
∑

j∈J q(α)j log |Qj|

≤ a+
∑

j∈J q(α)j log k

= a+ log k

This is actually an upper bound for any partition although it can be

viewed as a special case of our conclusion.

The whole proof procedure for the second situation is more or less the

same as that for the special cases in the last two sections:

Suppose that a joint distribution satisfies H(~q) = a and maximizes H(~p).

The original Lagrangian is as follows:

Λ = −
∑
i,j

pi,j log pi,j−λ1(−
∑
j

q(α)j log q(α)j−a)−λ2(
∑
i,j

pi,j−1) (5.58)

Partial derivative of pi,j respectively gives the following family of equa-

118

tions:

1

ln 2
+ log pi,j + λ1(

1

ln 2
+ log q(α)j)− λ2 = 0 (5.59)

Therefore, for ∀i, i′ such that pi,j, pi′,j belong to the same part of the

partition, pi,j = pi′,j. Using the partition version of entropy we can rewrite

our objective function as H(Y) +
∑

j q(α)j log |Qj| = a +
∑

j q(α)j log |Qj|.

Now applying the lagrange multiplier technique to this deduced function:

Λ = a+
∑
j

q(α)j log |Qj| − λ1(−
∑
j

q(α)j log q(α)j − a)− λ2(
∑
j

q(α)j − 1)

(5.60)

Partial derivative of each q(α)j gives rise to the following set of equations:

log |Qj|+ λ1(
1

ln 2
+ log q(α)j)− λ2 = 0 (5.61)

subtracting equations can result in:

log
|Qj|α

|Qj−1|α
= log

q(α)i
q(α)i−1

(5.62)

where α = − 1
λ1

(λ1 6= 0). Hence

q(α)j =
|Qj|α

Z(α)
(5.63)

with Z(α) =
∑k

j=1 |Qj|α.

In this case, the proof for the property of monotonically decreasing of

marginal entropy with positive α, is more or less the same as that in the

last section. Thus, a binary search also works for finding suitable α for

119

maximum joint entropy in this general case. We now give the formal proof for

the property of monotonically decreasing of marginal entropy in this general

case:

Proposition 5.5.3. Suppose 0 < α, then (
∑m

i=1 n
α
i lnni)

2 ≤
∑m

i=1 n
α
i (lnni)

2
∑m

i=1 n
α
i

where ni is the size of the ith part of the partition.

We use mathematical induction to prove this proposition the same as

above, but first we prove the proposition that our proof will relies on:

Proof. When m = 2:

(
2∑
i=1

nαi lnni)
2 = n2α

1 (lnn1)2 + 2nα1n
α
2 lnn1 lnn2 + n2α

2 (lnn2)2

∑2
i=1 n

α
i (lnni)

2
∑2

i=1 n
α
i = (nα1 (lnn1)2 + nα2 (lnn2)2) (nα1 + nα2)

= n2α
1 (lnn1)2 + nα1n

α
2 (lnn2)2 + nα1n

α
2 (lnn1)2 + n2α

2 (lnn2)2

As

nα1n
α
2 (lnn2)2 + nα1n

α
2 (lnn1)2 − 2nα1n

α
2 lnn1 lnn2 = nα1n

α
2 (lnn1 − lnn2)2 ≥ 0

(with equality only when n1 = n2), thus

(
2∑
i=1

nαi lnni)
2 ≤

2∑
i=1

nαi (lnni)
2

2∑
i=1

nαi

holds.

As a result, the proposition holds when m = 2.

120

Now suppose it also holds when m = k, that is

(
k∑
i=1

nαi lnni)
2 ≤

k∑
i=1

nαi (lnni)
2

k∑
i=1

nαi

When m = k + 1:

(
∑k+1

i=1 n
α
i lnni)

2 =
(∑k

i=1 n
α
i lnni + nαk+1 lnnk+1

)2

=
(∑k

i=1 n
α
i lnni

)2

+ 2nαk+1 lnnk+1

∑k
i=1 n

α
i lnni

+n2α
k+1(lnnk+1)2

∑k+1
i=1 n

α
i (lnni)

2
∑k+1

i=1 n
α
i =

∑k+1
i=1 n

α
i (lnni)

2
(∑k

i=1 n
α
i + nαk+1

)
=

∑k+1
i=1 n

α
i (lnni)

2
∑k

i=1 n
α
i + nαk+1

∑k+1
i=1 n

α
i (lnni)

2

=
∑k

i=1 n
α
i (lnni)

2
∑k

i=1 n
α
i + nαk+1(lnnk+1)2

∑k
i=1 n

α
i

+nαk+1

∑k+1
i=1 n

α
i (lnni)

2

Since (
∑k

i=1 n
α
i lnni)

2 ≤
∑k

i=1 n
α
i (lnni)

2
∑k

i=1 n
α
i :

(
∑k+1

i=1 n
α
i lnni)

2 ≤
∑k

i=1 n
α
i (lnni)

2
∑k

i=1 n
α
i + 2nαk+1 lnnk+1

∑k
i=1 n

α
i lnni

+n2α
k+1(lnnk+1)2

Therefore, we only need to prove that:

2nαk+1 lnnk+1

∑k
i=1 n

α
i lnni + n2α

k+1(lnnk+1)2

≤ nαk+1(lnnk+1)2
∑k

i=1 n
α
i + nαk+1

∑k+1
i=1 n

α
i (lnni)

2

121

2nαk+1 lnnk+1

∑k
i=1 n

α
i lnni + n2α

k+1(lnnk+1)2

= nαk+1

(
2 lnnk+1

∑k
i=1 n

α
i lnni + nαk+1(lnnk+1)2

)

nαk+1(lnnk+1)2
∑k

i=1 n
α
i + nαk+1

∑k+1
i=1 n

α
i (lnni)

2

= nαk+1

(∑k
i=1 n

α
i (lnnk+1)2 +

∑k+1
i=1 n

α
i (lnni)

2
)

= nαk+1

(∑k
i=1 n

α
i (lnnk+1)2 +

∑k
i=1 n

α
i (lnni)

2 + nαk+1(lnnk+1)2
)

Since

∑k
i=1 n

α
i (lnnk+1)2 +

∑k
i=1 n

α
i (lnni)

2 − 2 lnnk+1

∑k
i=1 n

α
i lnni

=
∑k

i=1 n
α
i (lnnk+1 − lnni)

2

≥ 0

Thus

2nαk+1 lnnk+1

∑k
i=1 n

α
i lnni + n2α

k+1(lnnk+1)2

≤ nαk+1(lnnk+1)2
∑k

i=1 n
α
i + nαk+1

∑k+1
i=1 n

α
i (lnni)

2

holds.

Therefore, the conclusion holds when m = k + 1, which is:

(
k+1∑
i=1

nαi lnni)
2 ≤

k+1∑
i=1

nαi (lnni)
2

k+1∑
i=1

nαi

As a result, the proposition holds for all n. Equality only when n1 =

. . . = nm.

Now let’s prove the property of monotonically decreasing:

Proposition 5.5.4. Suppose Y is an integer variable and the probability

122

P (Y = i) of Y is { nαi
Z(α)
}, if 0 ≤ α < α′, then H(Y (α′)) ≤ H(Y (α)) where ni

is the size of the ith part of the partition and Z(α) =
∑

i n
α
i .

Proposition 5.4.1 is proved by showing that the first derivative of marginal

entropy is less than or equal to zero:

Proof.

H(Y (α)) = −
∑

i
nαi
Z(α)

log
nαi
Z(α)

= −
∑

i
nαi
Z(α)

(log nαi − logZ(α))

= −
∑

i
nαi
Z(α)

log nαi +
∑

i
nαi
Z(α)

logZ(α)

= logZ(α)−
∑

i
αnαi logni
Z(α)

Its first derivative of α is:

H(Y (α))′ = Z(α)′

Z(α) ln 2
−
P
i(n

α
i +αnαi lnni)Z(α) logni−αnαi Z(α)′ logni

(Z(α))2

= Z(α)′

Z(α) ln 2
−
P
i n
α
i logniZ(α)+

P
i αn

α
i lnni logniZ(α)−

P
i αn

α
i logniZ(α)′

(Z(α))2

= Z(α)′

Z(α) ln 2
−
P
i n
α
i lnniZ(α)+

P
i αn

α
i (lnni)

2Z(α)−
P
i αn

α
i lnniZ(α)′

(Z(α))2 ln 2

=
Z(α)′Z(α)−Z(α)′Z(α)+α((Z(α)′)2−

P
i n
α
i (lnni)

2Z(α))

(Z(α))2 ln 2

=
α((
P
i n
α
i lnni)

2−
P
i n
α
i (lnni)

2
P
i n
α
i)

(Z(α))2 ln 2

≤ 0(as α > 0)

which is just Proposition 5.5.3, hence the proof completes. Equality only

holds when all the parts of the partition are of the same size.

123

5.6 Case Study and Comparison with CHM’s

Framework

Besides the simple example of X := Y ; Z := X + Y ; which already demon-

strates that our algorithm is capable of deducing more precise upper bounds

of information leakage, in this section we give detailed analyses of some other

programs and compare them with CHM’s framework.

5.6.1 Program with One Linear Constraint

Consider the program in Section 5.3 again with X and Y both high program

variables where each has a positive integer domain of [1, . . . , n] and Z is the

low observable variable, that is:

Example 5.6.1.

if X ≤ Y then

Z := X + Y ;

else

Z := 0;

Suppose H(Y) = a, what is the possible maximum leakage that can be

leaked by Z := X + Y ?

124

CHM’s Analysis

Using CHM’s framework, only the [If](2) reference rule can apply, which

states that

If(2)
Γ ` B : [0, 0] ` Γ{Ci}x : [ai, bi]

` Γ{if B C1 C2}x : [min(a1, a2),max(b1, b2)]

As neither the guard X ≤ Y nor the else branch Z := 0 leaks any informa-

tion, all the information that can be leaked by this if statement is via its

then branch, therefore, the maximum information that can be leaked by the

above example is maximum H(Z) in the then branch.

Now by using the [Plus] inference rule:

Plus
Γ ` Ei : [,bi]

Γ ` (E1 + E2) : [0, b1 + b2]

Given Hmax(Y) = a, as there is no other constraint on the maximum entropy

of X, its maximum of log n can be assumed, thus Hmax(X + Y) = a+ log n

which universally holds.

Finally by applying the assignment inference rule [Ass]:

Ass
Γ ` E : [a, b]

` Γ{x := E}x : [a, b]

we can infer that the maximum leakage into Z is the same asHmax(X+Y)

which is a+ log n.

125

Our Analysis

If we build our analysis into the framework of CHM’s, we can derive a much

more precise upper bound, and here is how to do it:

First the abstract interpretation is expected to give the following linear

constraints (although this example is so simple that even without abstract

interpretation we can still derive the right linear constraints):

Suppose there isn’t any constraint of X and Y before the if statement,

in the then branch, it is X ≤ Y, Z = X + Y while in the else branch it is

X ≥ Y + 1, Z = 0.

Now just as above, using CHM’s inference rule [If](2), the maximum

information that can be leaked by the above example is 1 +Hmax(Z), thus

we only need to find out maximum H(Z) in the then branch. Using our

algorithm which is explained in detail in Section 5.1-5.5 of this chapter, if

we divide the set of (X, Y) according to the values that Y takes, then it is a

partition of sizes {1, 2, . . . , n}.

Recall that the marginal entropy constraint of Y can be achieved by

constructing a marginal probability distribution P (Y = i) = qi which is only

based on the sizes of the parts and a parameter α:

qi =
iα

Z(α)

where Z(α) =
∑

i i
α and using the partition version of entropy (refer to

Section 5.3), the maximum entropy that Z can have is:

H(Z) = H(Y) + qi log i

126

H(Y) α P (Y) Hmax(Z) H(Y) + log n
0.2 15.5386 {0.0000, 0.0000, 0.0003, 0.0302, 0.9694} 2.5119 2.5219
0.4 11.4449 {0.0000, 0.0000, 0.0027, 0.0720, 0.9253} 2.6968 2.7219
0.6 8.9541 {0.0000, 0.0002, 0.0090, 0.1183, 0.8725} 2.8769 2.9219
0.8 7.1533 {0.0000, 0.0012, 0.0210, 0.1648, 0.8130} 3.0518 3.1219
1 5.7495 {0.0001, 0.0039, 0.0397, 0.2076, 0.7488} 3.2206 3.3219

1.2 4.6085 {0.0004, 0.0100, 0.0647, 0.2436, 0.6813} 3.3817 3.5219
1.4 3.6568 {0.0017, 0.0215, 0.0945, 0.2705, 0.6118} 3.5329 3.7219
1.6 2.8472 {0.0055, 0.0399, 0.1264, 0.2868, 0.5414} 3.6709 3.9219
1.8 2.1411 {0.0150, 0.0661, 0.1574, 0.2915, 0.4700} 3.7899 4.1219
2 1.4931 {0.0358, 0.1006, 0.1845, 0.2835, 0.3956} 3.8785 4.3219

2.1493 1 {0.0667, 0.1334, 0.2000, 0.2666, 0.3333} 3.9068 4.4712
2.3219 0 {0.2, 0.2, 0.2, 0.2, 0.2} 3.7033 4.6439

Table 5.1: Maximum information leakage for Example 5.7.1 with n = 5

Thus, instead of adding the upper bounds of entropies of X and Y to-

gether, the maximum information that can be leaked to Z is the maximum

joint entropy of X and Y which equals a +
∑n

i=1
iα

Z(α)
log i and it is strictly

< a+ log n.

Here we don’t have to explicitly using separate [Plus] and [Ass] rules,

as our algorithm unifies the assignment whose right hand side can involve

addition, subtraction, multiplication and division.

Concrete Results

Now we give some concrete numerical results for different marginal entropy

H(Y) for given n, Table 5.1 is when n = 5, note in this case the sizes of parts

are {1, 2, 3, 4, 5}; Table 5.2 are for n = 10.

In this table, the column of H(Y) is the value of the marginal entropy

constraint, we choose to start from 0.2 and increase to 2 on an interval of

0.2 (please note that there is nothing special to choose these values, other

127

values can also be chosen as well). The last two values (2.1493 and 2.3219)

are chosen on purpose, as one (2.1493) gives the largest value of Hmax(Z) and

the other corresponding to the maximum marginal entropy H(Y), however,

as shown in the table, it won’t give us the maximum information leakage of

Z.

The column α is the value of α that is computed using our algorithm,

under the corresponding marginal entropy constraint value of H(Y) and the

linear constraint of X ≤ Y in this example, for example, if H(Y) = 0.2,

then according to our analysis, the probability distribution which satisfies

this marginal entropy value and the constraint that X ≤ Y is: qi = iα

Z(α)
,

as here n = 5 which means Y ∈ [1, . . . , 5], the problem we need to solve is

0.2 =
∑5

i=1−qi log qi, we use binary search to solve α, starting from range

[0, 20] (with precision 10−4), we stop by when |H(Y)− 0.2| ≤ 10−3.

Once the α value is known, the column of P (Y) (the probability of Y

which gives the maximum entropy) is just the calculation of iα

Z(α)
.

The column Hmax(Z) is the value of H(Y) +
∑

i qi log i where qi are the

corresponding value under P (Y) and i ∈ [1, . . . , 5].

The column H(Y) + log n = H(Y) + log 5 thus it varies with H(Y).

The explanation for Table 5.2 is exactly the same as for 5.1 except that

here n = 10 not 5.

5.6.2 Program with Multiple Linear Constraints

Now let’s consider programs with more complex linear constraints (Section

3.3):

128

H(Y) α P (Y) Hmax(Z) H(Y) + log n
0.1 41.2661 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0001, 0.0128, 0.9871}
3.4200 3.4219

0.4 24.6453 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0001, 0.0038, 0.0691, 0.9270}

3.7101 3.7219

0.7 17.6469 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0001, 0.0016, 0.0166, 0.1323, 0.8494}

3.9956 4.0219

1 13.1881 {0.0000, 0.0000, 0.0000, 0.0000, 0.0001,
0.0009, 0.0069, 0.0402, 0.1899, 0.7620}

4.2758 4.3219

1.3 9.9873 {0.0000, 0.0000, 0.0000, 0.0001, 0.0007,
0.0041, 0.0190, 0.0722, 0.2340, 0.6701}

4.5496 4.6219

1.6 7.5598 {0.0000, 0.0000, 0.0001, 0.0006, 0.0031,
0.0122, 0.0390, 0.1069, 0.2605, 0.5777}

4.8150 4.9219

1.9 5.6617 {0.0000, 0.0001, 0.0005, 0.0027, 0.0096,
0.0271, 0.0648, 0.1380, 0.2689, 0.4882}

5.0690 5.2219

2.2 2.9228 {0.0000, 0.0005, 0.0027, 0.0090, 0.0228,
0.0485, 0.0919, 0.1600, 0.2608, 0.4037}

5.3070 5.5219

2.5 2.1411 {0.0004, 0.0029, 0.0096, 0.0223, 0.0429,
0.0731, 0.1147, 0.1695, 0.2391, 0.3254}

5.5208 5.8219

2.8 1.9092 {0.0031, 0.0117, 0.0254, 0.0440, 0.0673,
0.0954, 0.1280, 0.1652, 0.2069, 0.2530}

5.6940 6.1219

3.1036 1 {0.0182, 0.0364, 0.0545, 0.0727, 0.0909,
0.1091, 0.1273, 0.1455, 0.1636, 0.1818}

5.7813 6.4255

3.3219 0 {0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1}

5.5010 6.6438

Table 5.2: Maximum information leakage for Example 5.7.1 with n = 10

129

Example 5.6.2.

if X + Y ≥ 5 && X − Y ≥ −1then

Z := 0;

else

X := 3; Y := 4;

fi;

Y := X + Y/2 + 1;

Z := f(X, Y);

Where X and Y are both high variables with positive integer domains

[1, . . . , n] and [1, . . . , 2n] respectively (the reasoning is exactly the same if

both of them are k-bit two’s complement variables, which means these vari-

ables are k bits binary and they represent two’s complement numbers, e.g.

8-bit two’s complement 11111111 = −110, not 25510), for simplicity and eas-

ier to understand, we use positive integer domains in the following analysis,

Z is a low program variable and f(X, Y) is some linear function of X and

Y , i.e. addition, subtraction and etc.

CHM’s Analysis

Their analysis is pretty much the same as the reasoning for Example 5.6.1

and would end up with a maximum amount of a + log 2n of information

leaking into Z given that H(X) = a.

130

Our Analysis

First the abstract interpretation is expected to derive the following linear

constraints at each program point:

Suppose there isn’t any other constraint of X and Y , then after the if

statement it is {X + Y ≥ 5, X − Y ≥ −1, Y ≥ 0} (the merge of {X + Y ≥

5, X−Y ≥ −1} and X := 3; Y := 4 is {X+Y ≥ 5, X−Y ≥ −1}), after the

assignment it is {2Y−2X ≥ 2, 2Y−X ≥ 7, −2Y +3X ≥ −3, Z = f(X, Y)}.

Please refer to Figure 5.5 for the polyhedron corresponding to the con-

straints before and after assignment, refer to section 3.2.4 for detail.

As above, if we divide the set of (X, Y) according to the values that X

can take, we can have a partition of sizes {2, 2, 3, 3, . . . , n
2
, n

2
} when n is even;

{2, 2, 3, 3, . . . , n−1
2
, n−1

2
, n+1

2
} when n is odd.

Recall Theorem 5.5.2, let k be the size of the largest part of the parti-

tion and m be the number of parts having size k, then if a ≤ logm then

Hmax(Pa) = a + log k, otherwise we can use our method of searching for

suitable α to obtain the maximal leakage.

Hence there are two cases to consider when n is even:

• if H(X) = a < log 2 = 1, then we can have that Hmax(Z) = a+ log 2 =

a+ 1;

• otherwise, the maximum leakage into Z isHmax(X, Y) = a+
∑n

i qi log |Qi|

where qi is the probability P (X = i) which can be derived based on

the sizes of parts of the partition as qi = |Qi|α/Z(α) and Z(α) =

2(2α + 3α + . . . + (n
2
)α). As the maximum |Qi |= n

2
in this case, hence

Hmax(X, Y) = a+
∑n

i qi log |Qi| < a+ log n
2

hence strictly < a+ log n.

131

Figure 5.5: Polyhedron for Example 5.7.2 with horizontal axis being X and
vertical axis being Y

When n is odd, it is the same as the second situation above.

Concrete Result

Here are some concrete numerical results for different marginal entropyH(Y)

for given n,

Table 5.3 is when n = 5, note in this case the sizes of parts are {2, 2, 3};

132

the other table is for n = 10, in this case, there are two parts having the

same largest size, hence different ranges of marginal entropy of X will have

different type of maximum leakage as shown in Table 5.4:

In more detail, in Table 5.3, the column of H(X) is the value of the

marginal entropy constraint, we choose to start from 0.2 and increase to 1.4

on an interval of 0.2 (please note that there is nothing special to choose these

values, other values can also be chosen as well). The last two values (1.5567

and 1.5850) are chosen on purpose, as one (1.5567) gives the largest value

of Hmax(Z) and the other (1.5850) corresponding to the maximum marginal

entropy H(X), however, as shown in the table, it won’t give us the maximum

information leakage of Z.

The column α is the value of α that is computed using our algorithm,

under the corresponding marginal entropy constraint value of H(X) and

the linear constraint in this example, for example, if H(X) = 0.2, then

according to our analysis, the probability distribution which satisfies this

marginal entropy value and the constraint is: qi = |Qi|α
Z(α)

, as here n = 5

which means we have a partition of {2, 2, 3}, the problem we need to solve is

0.2 = −2 2α

Z(α)
log 2α

Z(α)
− 3α

Z(α)
log 3α

Z(α)
where Z(α) = 22α + 3α, we use binary

search to solve α, starting from range [0, 20] (with precision 10−4), we stop

by when |H(Y)− 0.2| ≤ 10−3.

Once the α value is known, the column of P (Y) (the probability of X

which gives the maximum entropy) is just the calculation of iα

Z(α)
.

The column Hmax(Z) is the value of H(X) +
∑

i qi log |Qi| where qi are

the corresponding value under P (X).

The column H(X) + log n = H(X) + log 5 thus it varies with H(X).

133

H(X) α P (X) Hmax(Z) H(X) + log n
0.2 10.6429 {0.0000, 0.0000, 0.0130, 0.0130, 0.9740} 1.7697 2.5219
0.4 8.3858 {0.0000, 0.0000, 0.0313, 0.0313, 0.9374} 1.9484 2.7219
0.6 6.9279 {0.0000, 0.0000, 0.0538, 0.0538, 0.8924} 2.1220 2.9219
0.8 5.7680 {0.0000, 0.0000, 0.0809, 0.0809, 0.8382} 2.2904 3.1219
1 4.7298 {0.0000, 0.0000, 0.1136, 0.1136, 0.7728} 2.4521 3.3219

1.2 3.6993 {0.0000, 0.0000, 0.1543, 0.1543, 0.6914} 2.6045 3.5219
1.4 2.5150 {0.0000, 0.0000, 0.2095, 0.2095, 0.5810} 2.7398 3.7219

1.5567 1 {0.0000, 0.0000, 0.2858, 0.2858, 0.4284} 2.8073 3.8786
1.5850 0 {0.0000, 0.0000, 0.3333, 0.3333, 0.3334} 2.7800 3.9069

Table 5.3: Maximum information leakage for Example 5.7.2 with n = 5

When H(X) ≤ 1 as we discussed earlier, Hmax(Z) = H(X) + log 2, there

is no need to calculate either α or P (X), so we use − to skip the calculation.

Note that in this example, even if n = 10, X can only take 8 values,

and this can be captured by the abstract interpretation, however, traditional

quantitative information flow analysis (e.g. CHM’s framework) has no way

to know it hence cannot utilize it.

5.6.3 Program with While loop

Now let’s look at an example of while loop and how our analysis deals with

it:

134

H(X) α P (X) Hmax(Z) H(X) + log n
0.1 - - 1.1 2.4219
0.4 - - 1.4 2.7219
0.7 - - 1.7 3.0219
1 - - 2 3.3219

1.3 13.1693 {0.0000, 0.0000, 0.0000, 0.00000.0006,
0.0006, 0.0251, 0.0251, 0.4743, 0.4743}

3.6049 4.6219

1.6 8.9540 {0.0000, 0.0000, 0.0001, 0.0001, 0.0045,
0.0045, 0.0592, 0.0592, 0.4362, 0.4362}

3.8769 4.9219

1.9 6.4094 {0.0000, 0.0000, 0.0011, 0.0011, 0.0148,
0.0148, 0.0935, 0.0935, 0.3906, 0.3906}

4.1370 5.2219

2.2 4.5834 {0.0000, 0.0000, 0.0051, 0.0051, 0.0327,
0.0327, 0.1222, 0.1222, 0.3400, 0.3400}

4.3815 5.5219

2.5 3.1167 {0.0000, 0.0000, 0.0163, 0.0163, 0.0578,
0.0578, 0.1417, 0.1417, 0.2841, 0.2841}

4.6023 5.8219

2.8 1.7208 {0.0000, 0.0000, 0.0449, 0.0449, 0.0901,
0.0901, 0.1479, 0.1479, 0.2171, 0.2171}

4.7752 6.1219

2.9242 1 {0.0000, 0.0000, 0.0714, 0.0714, 0.1071,
0.10710.1429, 0.1429, 0.1786, 0.1786}

4.8074 6.4255

3 0 {0.0000, 0.0000, 0.1250, 0.1250, 0.1250,
0.1250, 0.1250, 0.1250, 0.1250, 0.1250}

4.7267 6.6438

Table 5.4: Maximum information leakage for Example 5.7.2 with n = 10

135

Example 5.6.3.

Z := 0;

while X ≤ Y

Z := 0;

Z := X + Y ;

X := X + 1;

end while

with X and Y each can take integer values in the range of [1, . . . , n], and

the marginal constraint H(Y) = a. Z is initialized to 0 and can be only

observed as the output, it cannot be observed during the program.

This example is partially equivalent to the simple program of X := Y +

1; Z =: X + Y − 1 if the body of the while loop is executed at least once

and the program terminates.

CHM’s framework

CHM’s analysis towards while loop first conducts a dependence analysis

to establish all the sources of information that flows into the loop. In this

example, it is quite clear that Z depends on X and Y , X depends on Y ,

namely [Z 7→ {X, Y }], [X 7→ {Y }]]. Thus, there are two information sources

X and Y , since the only place where information will be leaked is at Z :=

X + Y . According to the general data processing rule, it is easy to derive

that the maximum amount of information that can be leaked is a+ log n.

Our analysis

There are two cases to consider:

136

• X ≥ Y + 1 before the loop:

In this case, there is no information leakage as the while loop will not

be executed.

• X ≤ Y before the loop:

In this case, the abstract interpretation is expected to give X ≤ Y ,

using our analysis, we can have Hmax(Z) = a + qi log i, where P (Y =

i) = qi = iα

Z(α)
the same as Example 5.6.1. This result is the best we

can get based on current abstract interpretation analysis.

Thus in both situations, the maximum leakage does not exceed Hmax(Z).

However, the actual upper bound of information into Z should be a as

when while loops terminates, X is always equal to Y , hence actually Z :=

2Y . If abstract interpretation can provide more precise linear constraint such

as it can capture that fact that when the above loop terminates, X = Y + 1

is always held, then our analysis will, in turn, give more precise result as

Hmax(Z) = a.

Concrete Result

The concrete results are shown in Table 5.5 for n = 5 and as Table 5.6 for n =

10, note that the most precise upper bound should be Hmax(Z) = H(Y) = a.

137

H(Y) α P (Y) Hmax(Z) H(Y) + log n
0.2 15.5386 {0.0000, 0.0000, 0.0003, 0.0302, 0.9694} 2.5119 2.5219
0.4 11.4449 {0.0000, 0.0000, 0.0027, 0.0720, 0.9253} 2.6968 2.7219
0.6 8.9541 {0.0000, 0.0002, 0.0090, 0.1183, 0.8725} 2.8769 2.9219
0.8 7.1533 {0.0000, 0.0012, 0.0210, 0.1648, 0.8130} 3.0518 3.1219
1 5.7495 {0.0001, 0.0039, 0.0397, 0.2076, 0.7488} 3.2206 3.3219

1.2 4.6085 {0.0004, 0.0100, 0.0647, 0.2436, 0.6813} 3.3817 3.5219
1.4 3.6568 {0.0017, 0.0215, 0.0945, 0.2705, 0.6118} 3.5329 3.7219
1.6 2.8472 {0.0055, 0.0399, 0.1264, 0.2868, 0.5414} 3.6709 3.9219
1.8 2.1411 {0.0150, 0.0661, 0.1574, 0.2915, 0.4700} 3.7899 4.1219
2 1.4931 {0.0358, 0.1006, 0.1845, 0.2835, 0.3956} 3.8785 4.3219

2.1493 1 {0.0667, 0.1334, 0.2000, 0.2666, 0.3333} 3.9068 4.4712
2.3219 0 {0.2, 0.2, 0.2, 0.2, 0.2} 3.7033 4.6439

Table 5.5: Maximum information leakage for Example 5.7.3 with n = 5

138

H(Y) α P (Y) Hmax(Z) H(Y) + log n
0.1 41.2661 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,

0.0000, 0.0000, 0.0001, 0.0128, 0.9871}
3.4200 3.4219

0.4 24.6453 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0001, 0.0038, 0.0691, 0.9270}

3.7101 3.7219

0.7 17.6469 {0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0001, 0.0016, 0.0166, 0.1323, 0.8494}

3.9956 4.0219

1 13.1881 {0.0000, 0.0000, 0.0000, 0.0000, 0.0001,
0.0009, 0.0069, 0.0402, 0.1899, 0.7620}

4.2758 4.3219

1.3 9.9873 {0.0000, 0.0000, 0.0000, 0.0001, 0.0007,
0.0041, 0.0190, 0.0722, 0.2340, 0.6701}

4.5496 4.6219

1.6 7.5598 {0.0000, 0.0000, 0.0001, 0.0006, 0.0031,
0.0122, 0.0390, 0.1069, 0.2605, 0.5777}

4.8150 4.9219

1.9 5.6617 {0.0000, 0.0001, 0.0005, 0.0027, 0.0096,
0.0271, 0.0648, 0.1380, 0.2689, 0.4882}

5.0690 5.2219

2.2 2.9228 {0.0000, 0.0005, 0.0027, 0.0090, 0.0228,
0.0485, 0.0919, 0.1600, 0.2608, 0.4037}

5.3070 5.5219

2.5 2.1411 {0.0004, 0.0029, 0.0096, 0.0223, 0.0429,
0.0731, 0.1147, 0.1695, 0.2391, 0.3254}

5.5208 5.8219

2.8 1.9092 {0.0031, 0.0117, 0.0254, 0.0440, 0.0673,
0.0954, 0.1280, 0.1652, 0.2069, 0.2530}

5.6940 6.1219

3.1036 1 {0.0182, 0.0364, 0.0545, 0.0727, 0.0909,
0.1091, 0.1273, 0.1455, 0.1636, 0.1818}

5.7813 6.4255

3.3219 0 {0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.1, 0.1}

5.5010 6.6438

Table 5.6: Maximum information leakage for Example 5.7.3 with n = 10

139

Chapter 6

Two Constraints Joint Entropy

Maximization and

Generalization

In the last chapter, the single constraint joint entropy maximization problem

is discussed in details, however the more common situation is with multiple

constraints, e.g. H(X) = a and H(Y) = b. Although it looks like that there

is just only one more marginal constraint compared with the single constraint

problem, the complexity of the two constraints problem is more than double

of that of the single one. This is mainly because the two constraint problem

is three dimensional which is difficult to analyze in the first place, and the

second is the complexity of the entropy function itself. This chapter shows

some investigation into the problem.

140

6.1 Simple Problem

Let’s still consider the example of the simple program 5.6.1 from the last

chapter, from which the relationship between program variables X and Y is

the same as X ≤ Y,X ≥ 0. To make the induction as simple as possible in

this problem, let’s assume that X and Y are both binary variables. Together

with two marginal entropy constraintsH(X) = a andH(Y) = b, the question

is the same: what is the maximal value for the joint entropy H(X, Y) of X

and Y ?

Let pi,j = P (X = i, Y = j) and let ri = P (X = i), qj = P (Y = j). Note

that, since X ≤ Y , we may restrict attention to pi,j such that i ≤ j.

Mathematically, the objective function we want to maximize is:

H(X, Y)X≤Y, X,Y ∈[0, 1] = −
∑

i, j∈[0, 1], i≤j

pi,j log pi,j (6.1)

Subject to the following constraints:

H(~r)− a = 0 (6.2)

H(~q)− b = 0 (6.3)∑
i≤j, i,j∈[0,1]

pi,j − 1 = 0 (6.4)

Now define the Lagrangian Λ as

141

Λ = −pi,j log pi,j − λ1(H(X)− a)− λ2(H(Y)− b)− λ3(
∑
i,j

pi,j − 1) (6.5)

which gives rise to the following family of partial derivative equations,

i ≤ j, i, j ∈ [0, 1]:

∂Λ
∂p0,0

= −(log p0,0 +
1

ln 2
) + λ1(log r0 +

1
ln 2

) + λ2(log q0 +
1

ln 2
)− λ3 = 0 (6.6)

∂Λ
∂p0,1

= −(log p0,1 +
1

ln 2
) + λ1(log r0 +

1
ln 2

) + λ2(log q1 +
1

ln 2
)− λ3 = 0 (6.7)

∂Λ
∂p1,1

= −(log p1,1 +
1

ln 2
) + λ1(log r1 +

1
ln 2

) + λ2(log q1 +
1

ln 2
)− λ3 = 0 (6.8)

By subtracting the above equations from each other, we can get the fol-

lowing:

log p0,1 − log p0,0 = λ2(log q1 − log q0) (6.9)

log p1,1 − log p0,1 = λ1(log r1 − log r0) (6.10)

hence

log
p0,1

p0,0

= λ2(log
q1

q0

) (6.11)

log
p1,1

p0,1

= λ1(log
r1

r0

) (6.12)

Let α = λ1 and β = λ2. Then we have:

142

p0,0 =

(
q0

q1

)β
p0,1 (6.13)

p1,1 =

(
r1

r0

)α
p0,1 (6.14)

Substitute them into the constraint of
∑
pi,j = 1:

((
q0

q1

)β
+

(
r1

r0

)α
+ 1

)
p0,1 = 1 (6.15)

qβ0 r
α
0 + rα1 q

β
1 + rα0 q

β
1

qβ1 r
α
0

p0,1 = 1 (6.16)

thus

p0,0 =
rα0 q

β
0

Z(α, β)
(6.17)

p0,1 =
rα0 q

β
1

Z(α, β)
(6.18)

p1,1 =
rα1 q

β
1

Z(α, β)
(6.19)

Where Z(α, β) =
∑

i,j r
α
i q

β
j = rα0 q

β
0 + rα0 q

β
1 + rα1 q

β
1 .

6.1.1 Properties of H(X) and H(Y)

We now show that H(X) is a concave function in terms of α, and the same

of that for H(Y) in terms of β.

143

Proof for H(X)

We first show the concaveness of H(X) in terms of α. The proof is conducted

to show that there is a zero point in the first derivative of H(X), beyond this

point, the first derivative is either larger or less than zero.

Proof. As pi,j =
rαi q

β
j

Z(α,β)
and X ≤ Y ,

r0 =
rα0 (qβ0 + qβ1)

Z(α, β)
, r1 =

rα1 q
β
1

Z(α, β)

Thus,

H(X) = − rα0 (qβ0 +qβ1)

Z(α,β)
log

rα0 (qβ0 +qβ1)

Z(α,β)
− rα1 q

β
1

Z(α,β)
log

rα1 q
β
1

Z(α,β)

= − rα0 (qβ0 +qβ1)

Z(α,β)

(
log rα0 (qβ0 + qβ1)− logZ(α, β)

)
− rα1 q

β
1

Z(α,β)

(
log rα1 q

β
1 − logZ(α, β)

)
= logZ(α, β)− rα0 (qβ0 +qβ1)

Z(α,β)
log rα0 (qβ0 + qβ1)− rα1 q

β
1

Z(α,β)
log rα1 q

β
1

= logZ(α, β)− rα0 (qβ0 +qβ1)

Z(α,β)

(
α log r0 + log(qβ0 + qβ1)

)
− rα1 q

β
1

Z(α,β)

(
α log r1 + log qβ1

)
= logZ(α, β)− αrα0 (qβ0 +qβ1)

Z(α,β)
log r0 − rα0 (qβ0 +qβ1)

Z(α,β)
log(qβ0 + qβ1)

−α rα1 q
β
1

Z(α,β)
log r1 − rα1 q

β
1

Z(α,β)
log qβ1

144

partial derivative of α is:

∂H(X)
∂α = Z ′(α,β)α

Z(α,β) ln 2 −
((rα0 +αrα0 ln r0)Z(α,β)−αrα0Z ′(α,β)α)(qβ0 +qβ1) ln r0

(Z(α,β))2 ln 2

− (rα0 ln r0Z(α,β)−rα0Z ′(α,β)α)(qβ0 +qβ1) ln(qβ0 +qβ1)
(Z(α,β))2 ln 2

− ((rα1 +αrα1 ln r1)Z(α,β)−αrα1Z(α,β)′α)qβ1 ln r1
(Z(α,β))2 ln 2

− (rα1 ln r1Z(α,β)−rα1Z ′(α,β)α)qβ1 ln qβ1
(Z(α,β))2 ln 2

= Z ′(α,β)α
Z(α,β) ln 2 −

(rα0 +αrα0 ln r0)Z(α,β)(qβ0 +qβ1) ln r0
(Z(α,β))2 ln 2 − rα0 ln r0Z(α,β)(qβ0 +qβ1) ln(qβ0 +qβ1)

(Z(α,β))2 ln 2

− (rα1 +αrα1 ln r1)Z(α,β)qβ1 ln r1
(Z(α,β))2 ln 2 − rα1 ln r1Z(α,β)qβ1 ln qβ1

(Z(α,β))2 ln 2

+αrα0 (qβ0 +qβ1) ln r0Z ′(α,β)α
(Z(α,β))2 ln 2 + rα0 (qβ0 +qβ1) ln(qβ0 +qβ1)Z ′(α,β)α

(Z(α,β))2 ln 2

+αrα1 q
β
1 ln r1Z ′(α,β)α

(Z(α,β))2 ln 2 + rα1 q
β
1 ln qβ1Z

′(α,β)α
(Z(α,β))2 ln 2

= −(rα0 (qβ0 +qβ1)(ln rα0 (qβ0 +qβ1)) ln r0+rα1 q
β
1 (ln rα1 q

β
1) ln r1)(rα0 (qβ0 +qβ1)+rα1 q

β
1)

(Z(α,β))2 ln 2

+
(rα0 (qβ0 +qβ1)(ln rα0 (qβ0 +qβ1))+rα1 q

β
1 (ln rα1 q

β
1))((rα0 (qβ0 +qβ1)) ln r0+rα1 q

β
1 ln r1)

(Z(α,β))2 ln 2

= −rα0 (qβ0 +qβ1)rβ1 q
β
1 (ln rα1 q

β
1 ln r1+ln rα0 (qβ0 +qβ1))

(Z(α,β))2 ln 2

+
rα0 (qβ0 +qβ1)rβ1 q

β
1 (ln rα1 q

β
1 ln r0+ln rα0 (qβ0 +qβ1) ln r1)

(Z(α,β))2 ln 2

=
rα0 (qβ0 +qβ1)rβ1 q

β
1 ln

rα1 q
β
1

rα0 (q
β
0 +q

β
1)

ln r0
r1

(Z(α,β))2 ln 2

as rα0 (qβ0 + qβ1)rβ1 q
β
1 > 0, when the partial derivative equals zero, it is

ln
rα1 q

β
1

rα0 (qβ0 + qβ1)
ln
r0

r1

= 0

(
α ln

r1

r0

+ ln
qβ1

qβ0 + qβ1

)
ln
r0

r1

= 0

145

If r0 6= r1, hence , ln r0
r1
6= 0:

α =
ln

qβ0 +qβ1
qβ1

ln r1
r0

Please note that r0 > r1 and this can be argued simply as r0 = p(0, 0) +

p(0, 1), r1 = p(1, 1). In order to let joint entropy gets as large as possible,

p(0, 0), p(0, 1), p(1, 1) should go towards uniform as much as possible, which

will definitely make r0 > r1.

Thus when α >
ln
q
β
0 +q

β
1

q
β
1

ln
r1
r0

, the above partial derivative is always < 0 while

when α <
ln
q
β
0 +q

β
1

q
β
1

ln
r1
r0

, the above partial derivative is always > 0.

If r0 = r1, then in this case where X and Y can only take [0, 1], we can

know that r0 = r1 = 0.5, then the problem can be transferred back to the

single constraint problem with marginal constraint of H(Y).

Proof for H(Y)

We can conduct the partial derivative of β based on the same reasoning:

Proof. As pi,j =
rαi q

β
j

Z(α,β)
and X ≤ Y ,

q0 =
rα0 q

β
0

Z(α, β)
, q1 =

(rα0 + rα1)qβ1
Z(α, β)

146

Thus,

H(Y) =
rα0 q

β
0

Z(α,β)
log

rα0 q
β
0

Z(α,β)
− (rα0 +rα1)qβ1

Z(α,β)
log

(rα0 +rα1)qβ1
Z(α,β)

= − rα0 q
β
0

Z(α,β)

(
log rα0 q

β
0 − logZ(α, β)

)
− (rα0 +rα1)qβ1

Z(α,β)

(
log(rα0 + rα1)qβ1 − logZ(α, β)

)
= logZ(α, β)− rα0 q

β
0

Z(α,β)
log rα0 q

β
0)− (rα0 +rα1)qβ1

Z(α,β)
log(rα0 + rα1)qβ1

= logZ(α, β)− rα0 q
β
0

Z(α,β)
(log rα0 + β log q0)− (rα0 +rα1)qβ1

Z(α,β)
(log(rα0 + rα1) + β log q1)

= logZ(α, β)− rα0 q
β
0

Z(α,β)
log rα0 −

βrα0 q
β
0

Z(α,β)
log q0

− (rα0 +rα1)qβ1
Z(α,β)

log(rα0 + rα1)− β(rα0 +rα1)qβ1
Z(α,β)

log q1

147

partial derivative of β is:

∂H(Y)
∂β =

Z ′(α,β)β
Z(α,β) ln 2 −

((qβ0 +βqβ0 ln q0)Z(α,β)−βqβ0Z ′(α,β)α)rα0 ln q0
(Z(α,β))2 ln 2

−(qβ1 ln q1Z(α,β)−qβ1Z ′(α,β)β)(rα0 +rα1) ln(rα0 +rα1)
(Z(α,β))2 ln 2

−((qβ1 +βqβ1 ln q1)Z(α,β)−βqβ1Z ′(α,β)β)(rα0 +rα1) ln q1
(Z(α,β))2 ln 2

−(qβ0 ln q0Z(α,β)−qβ0Z ′(α,β)β)rα0 ln rα0
(Z(α,β))2 ln 2

=
Z ′(α,β)β
Z(α,β) ln 2 −

(qβ0 +βqβ0 ln q0)Z(α,β)rα0 ln q0
(Z(α,β))2 ln 2 − qβ1 ln q1Z(α,β)(rα0 +rα1) ln(rα0 +rα1)

(Z(α,β))2 ln 2

− (qβ1 +βqβ1 ln q1)Z(α,β)(rα0 +rα1) ln q1
(Z(α,β))2 ln 2 − qβ0 ln q0Z(α,β)rα0 ln rα0

(Z(α,β))2 ln 2

+
βqβ0 r

α
0 ln qβ0Z

′(α,β)β
(Z(α,β))2 ln 2 +

qβ1 (rα0 +rα1) ln(rα0 +rα1)Z ′(α,β)β
(Z(α,β))2 ln 2

+
βqβ1 (rα0 +rα1) ln q1Z ′(α,β)β

(Z(α,β))2 ln 2 +
qβ0 r

α
0 ln rα0Z

′(α,β)β
(Z(α,β))2 ln 2

= −(rα0 q
β
0 ln q0 ln rα0 q

β
0 +(rα0 +rα1)qβ1 ln(rα0 +rα1)qβ1 ln q1)(rα0 q

β
0 +(rα0 +rα1)qβ1)

(Z(α,β))2 ln 2

+
(rα0 q

β
0 ln rα0 q

β
0 +(rα0 +rα1)qβ1 ln(rα0 +rα1)qβ1)((rα0 q

β
0 ln q0+(rα0 +rα1)qβ1 ln q1)

(Z(α,β))2 ln 2

= −rα0 q
β
0 (rα0 +rα1)qβ1 (ln rα0 q

β
0 ln q0+ln(rα0 +rα1)qβ1 ln q1)

(Z(α,β))2 ln 2

+
rα0 q

β
0 (rα0 +rα1)qβ1 (ln rα0 q

β
0 ln q1+ln(rα0 +rα1)qβ1 ln q0)

(Z(α,β))2 ln 2

=
rα0 q

β
0 (rα0 +rα1)qβ1 ln

rα0 q
β
0

(rα0 +rα1)q
β
1

ln q1
q0

(Z(α,β))2 ln 2

as rα0 q
β
0 (rα0 + rα1)qβ1 > 0, when the partial derivative equals zero, it is

ln
rα0 q

β
0

(rα0 + rα1)qβ1
ln
q1

q0

= 0

(
β ln

q0

q1

+ ln
rα0

rα0 + rα1

)
ln
q1

q0

= 0

148

If q0 6= q1, hence , ln q1
q0
6= 0:

β =
ln

rα0 +rα1
rα0

ln q0
q1

Please note that r0 > r1 and this can be argued simply as r0 = p(0, 0) +

p(0, 1), r1 = p(1, 1). In order to let joint entropy gets as large as possible,

p(0, 0), p(0, 1), p(1, 1) should go towards uniform as much as possible, which

will definitely make r0 > r1.

Thus when β >
ln
q
β
0 +q

β
1

q
β
1

ln
r1
r0

, the above partial derivative is always < 0 while

when β <
ln
q
β
0 +q

β
1

q
β
1

ln
r1
r0

, the above partial derivative is always > 0.

Same as before, if q0 = q1, the problem can be simplified as single con-

straint problem which has been discussed in Chapter 5.

Then the only task left is to find suitable α and β to make the marginal

entropy satisfy H(X) = a and H(Y) = b simultaneously. For X and Y only

taking two values each, the search is more or less direct as for each value of

entropies of X and Y , there are only two marginal distributions satisfying

them, hence, there are only four situations to consider in total which will be

discussed later in this chapter. However, once X and Y can take more values

each, the situation will become more and more complicated.

6.1.2 Three Variable Case of Simple Problem

In last section, there are only two high variables involved, in this section, we

show how more than two variables can also be derived using our analysis:

149

In this section, we use X1, X2 and X3 to represent three high variables

such that X1 ≤ X2 ≤ X3 and all of them ∈ [0, 1], ri, qi, pi,j,k to represent

P (X1 = i), P (X2 = j), P (X1 = i,X2 = j,X3 = k) respectively, and with

constraints H(X1) = a and H(X2) = b (it can be entropies of any two of the

three). Please note that because X1 ≤ X2 ≤ X3, we only interested in pi,j,k

such that i ≤ j ≤ k.

The Lagrangian is:

Λ = −
∑
i,j,k

pi,j,k log pi,j,k − λ1(H(X1)− a)− λ2(H(X2)− b)− λ3(
∑
i,j,k

pi,j,k − 1)

(6.20)

which gives rise to the following family of partial derivative equations,

i ≤ j ≤ k, i, j, k ∈ [0, 1]:

∂Λ

∂p0,0,0

= −(log p0,0,0 +
1

ln 2
) +

λ1

ln 2
(ln r0 + 1) +

λ2

ln 2
(ln q0 + 1)− λ3 = 0

∂Λ

∂p0,0,1

= −(log p0,0,1 +
1

ln 2
) +

λ1

ln 2
(ln r0 + 1) +

λ2

ln 2
(ln q0 + 1)− λ3 = 0

∂Λ

∂p0,1,1

= −(log p0,1,1 +
1

ln 2
) +

λ1

ln 2
(ln r0 + 1) +

λ2

ln 2
(ln q1 + 1)− λ3 = 0

∂Λ

∂p1,1,1

= −(log p1,1,1 +
1

ln 2
) +

λ1

ln 2
(ln r1 + 1) +

λ2

ln 2
(ln q1 + 1)− λ3 = 0

Then we can derive:

p0,0,0 = p0,0,1 (6.21)

log
p0,1,1

p0,0,1

= λ2(log
q1

q0

) (6.22)

log
p1,1,1

p0,1,1

= λ1(log
r1

r0

) (6.23)

150

Let α = λ1 and β = λ2:

p0,0,0 = p0,0,1 (6.24)

p0,1,1 =

(
q1

q0

)β
p0,0,1 (6.25)

p1,1,1 =

(
r1

r0

)β
p0,1,1 (6.26)

Thus:

p0,0,0 = p0,0,1 =
rα0 q

β
0

Z(α, β)
(6.27)

p0,1,1 =
rα0 q

β
1

Z(α, β)
(6.28)

p1,1,1 =
rα1 q

β
1

Z(α, β)
(6.29)

(6.30)

where Z(α) = 2rα0 q
β
0 + rα0 q

β
1 + rα1 q

β
1 .

Therefore, it also ends up searching for a suitable α and β, the same as

the two high variable case with two constraints.

The same derivation can be applied to the situation where X1 ≤ X2 ≤

X3; X1, X2, X3 ∈ [1, . . . , n].

The derivation of more high variables with two marginal entropy con-

straints is more or less the same as above, hence the result is also similar.

151

6.2 General Case of Simple Problem

As in the case of single constraint problem, the further generalization is

to generalize the linear constraints between program variables X and Y as

0 < X ≤ aY +b (a, b ∈ R). Again, our abstract domain in integer polyhedra.

And for simplicity, we still assume that X, Y ∈ [1, . . . , n].

The same as above, let pi,j = P (X = i, Y = j), ri = P (X = i) and

qj = P (Y = j). Since 0 < X ≤ aY + b, we may only concern pi,j such that

i ≤ aj + b ∧ i, j ∈ N .

Suppose H(X) = H(~r) = a and H(Y) = H(~q) = b, what is the maximum

possible value for H(X, Y) = H(~p)?

Define the Lagrangian Λ as

Λ(~p) =
n∑

i,j aj+b≥i

−pi,j log pi,j−λ1(H(X)−a)−λ2(H(Y)− b)−λ3(
n∑
i,j

pi,j−1)

(6.31)

Partial derivative of each pi,j gives rise to the following equations, i ≤ aj +

b, i, j ∈ {1, . . . , n}:

∂Λ

∂pi,j
= −(log pi,j+

1

ln 2
)+λ1(log ri+

1

ln 2
)+λ2(log qj+

1

ln 2
)−λ3 = 0 (6.32)

More or less the same reasoning as before gives us the following proportion

152

equations:

log
pi,j
pi,j′

= λ2

(
log

qj
q′j

)
(6.33)

log
pi,j
pi′,j

= λ1

(
log

ri
r′i

)
(6.34)

Then,

pi,j
pi,j′

=
qβj

q′βj
(6.35)

pi,j
pi′,j

=
rαi
r′αi

(6.36)

Suppose pi,j =
rαi q

β
j

Z(α,β)
where Z(α, β) =

∑n
i,j q

α
i r

β
j , it clearly satisfies the

requirements of Equations 6.35; then we only need to show that there exists

λ1, λ2, λ3 such that the partial derivative of pi,j holds. Substitute into

Equation 6.32:

∂Λ
∂pi,j

= −(
rαi q

β
j

Z(α, β)
+ ln 2) + λ1(ri + ln 2) + λ2(qj + ln 2)− λ3 = 0

−(α log ri + β log qj − logZ(α, β) +
1

ln 2
) + λ1(log ri +

1
ln 2

) + λ2(log qj +
1

ln 2
)− λ3 = 0

(λ1 − α) log ri + (λ2 − β) log qj + logZ(α, β) +
λ1 + λ2 − 1

ln 2
− λ3 = 0

Thus,

α = λ1

β = λ2

λ3 = logZ(α, β) + α+β−1
ln 2

.

Therefore, pi,j =
rαi q

β
j

Z(α,β)
is the correct form for joint probability distribu-

tion.

153

6.2.1 Properties of H(X) and H(Y) in General Case

Similarly, in this sub-section, we prove the concaveness of H(X) and H(Y)

using the same reasoning as the last section.

Proof for H(X)

Proof.

H(X) = −
∑n

i=1

rαi
Pn
aj+b≥i q

β
j

Z(α,β)
log

rαi
Pn
aj+b≥i q

β
j

Z(α,β)

= −
∑n

i=1

rαi
Pn
aj+b≥i q

β
j

Z(α,β)

(
log rαi

∑n
aj+b≥i q

β
j − logZ(α, β)

)
= logZ(α, β)−

∑n
i=1

rαi
Pn
aj+b≥i q

β
j

Z(α,β)

(
log rαi

∑n
aj+b≥i q

β
j

)
= logZ(α, β)−

∑n
i=1

rαi
Pn
aj+b≥i q

β
j

Z(α,β)

(
α log ri + log(

∑n
aj+b≥i q

β
j)
)

= logZ(α, β)−
∑n

i=1

αrαi
Pn
aj+b≥i q

β
j

Z(α,β)
log ri −

∑n
i=1

rαi
Pn
aj+b≥i q

β
j

Z(α,β)
log(

∑n
aj+b≥i q

β
j)

partial derivative of α is:

∂H(Y)
∂α

= Z′(α,β)α
Z(α,β) ln 2

−
∑n

i=1
(rαi +αrαi ln ri)Z(α,β)−αrαi Z′(α,β)α

(Z(α,β))2 ln 2

∑n
aj+b≥i q

β
j ln ri

−
∑n

i=1
rαi ln riZ(α,β)−rαi Z′(α,β)α

(Z(α,β))2 ln 2

∑n
aj+b≥i q

β
j ln

∑n
aj+b≥i q

β
j

= −
∑n

i=1
αrαi ln riZ(α,β)−αrαi Z′(α,β)α

(Z(α,β))2 ln 2

∑n
aj+b≥i q

β
j ln ri

−
∑n

i=1
rαi ln riZ(α,β)−rαi Z′(α,β)α

(Z(α,β))2 ln 2

∑n
aj+b≥i q

β
j ln

∑n
aj+b≥i q

β
j

= −
∑n

i=1

rαi ln ri
Pn
aj+b≥i q

β
j ln rαi

(Z(α,β))2 ln 2
Z(α, β)−

∑n
i=1

rαi ln ri
Pn
aj+b≥i q

β
j ln

Pn
aj+b≥i q

β
j

(Z(α,β))2 ln 2
Z(α, β)

+
∑n

i=1

rαi
Pn
aj+b≥i q

β
j ln rαi

(Z(α,β))2 ln 2
Z ′(α, β)α +

∑n
i=1

rαi
Pn
aj+b≥i q

β
j ln

Pn
aj+b≥i q

β
j

(Z(α,β))2 ln 2
Z ′(α, β)α

= −
∑n

i=1

rαi
Pn
aj+b≥i q

β
j ln ri ln(rαi

Pn
aj+b≥i q

β
j)
Pn
i=1 r

α
i

Pn
aj+b≥i q

β
j

(Z(α,β))2 ln 2

+
∑n

i=1

rαi
Pn
aj+b≥i q

β
j ln(rαi

Pn
aj+b≥i q

β
j)
Pn
i=1 r

α
i (ln ri)

Pn
aj+b≥i q

β
j

(Z(α,β))2 ln 2

154

As rαi
∑n

aj+b≥i q
β
j = ri, thus the above equation can be simplified as:

= −
∑n

i=1
ri ln ri ln(rαi

∑n
aj+b≥i q

β
j)
∑n
i=1 ri

(Z(α,β))2 ln 2 +
∑n

i=1
ri ln(rαi

∑n
aj+b≥i q

β
j)
∑n
i=1 ri ln ri

(Z(α,β))2 ln 2

= −
∑n

i=1
ri ln ri(α ln ri+ln

∑n
aj+b≥i q

β
j)
∑n
i=1 ri

(Z(α,β))2 ln 2

+
∑n

i=1
ri(α ln ri+ln

∑n
aj+b≥i q

β
j)
∑n
i=1 ri ln ri

(Z(α,β))2 ln 2

A careful calculation can get when the above equation is zero, the value of

α is:

α =

∑n−1
i6=j, aj+b≥i, i=1 rirj ln

rj
ri

ln
∑n
m=i q

β
m∑n

l=j q
β
l∑n−1

i6=j, aj+b≥i, i=1 rirj

(
ln

rj
ri

)2

Thus when α >

Pn−1
i 6=j, aj+b≥i, i=1 rirj ln

rj
ri

ln
Pn
m=i q

β
mPn

l=j
q
β
lPn−1

i 6=j, aj+b≥i, i=1 rirj

“
ln
rj
ri

”2 , the above partial derivative is

always < 0 while when α <

Pn−1
i 6=j, aj+b≥i, i=1 rirj ln

rj
ri

ln
Pn
m=i q

β
mPn

l=j
q
β
lPn−1

i 6=j, aj+b≥i, i=1 rirj

“
ln
rj
ri

”2 , the above partial

derivative is always > 0.

Proof for H(Y)

Proof.

H(Y) = −
∑n

i=1

qβi
P
j≤ai+b r

α
j

Z(α,β)
log

qβi
P
j≤ai+b r

α
j

Z(α,β)

= −
∑n

i=1

qβi
P
j≤ai+b r

α
j

Z(α,β)

(
log qβi

∑n
j≤ai+b r

α
j − logZ(α, β)

)
= logZ(α, β)−

∑n
i=1

qβi
Pn
j≤ai+b r

α
j

Z(α,β)

(
log qβi

∑n
j≤ai+b r

α
j

)
= logZ(α, β)−

∑n
i=1

qβi
Pn
j≤ai+b r

α
j

Z(α,β)

(
β log qi + log(

∑n
j≤ai+b r

α
j)
)

= logZ(α, β)−
∑n

i=1

βqβi
Pn
j≤ai+b r

α
j

Z(α,β)
log qi −

∑n
i=1

qβi
Pn
j≤ai+b r

α
j

Z(α,β)
log(

∑n
j≤ai+b r

α
j)

155

partial derivative of β is:

∂H(Y)
∂β

=
Z′(α,β)β
Z(α,β) ln 2

−
∑n

i=1
(qβi +βqβi ln qi)Z(α,β)−βqβi Z

′(α,β)β
(Z(α,β))2 ln 2

∑n
j≤ai+b r

α
j ln qi

−
∑n

i=1
qβi ln qiZ(α,β)−qβi Z

′(α,β)β
(Z(α,β))2 ln 2

∑n
j≤ai+b r

α
j ln

∑n
j≤ai+b r

α
j

= −
∑n

i=1
βqβi ln qiZ(α,β)−βqβi Z

′(α,β)β
(Z(α,β))2 ln 2

∑n
j≤ai+b r

α
j ln qi

−
∑n

i=1
qβi ln qiZ(α,β)−qβi Z

′(α,β)β
(Z(α,β))2 ln 2

∑n
j≤ai+b r

α
j ln

∑n
j≤ai+b r

α
j

= −
∑n

i=1

qβi ln qi
Pn
j≤ai+b r

α
j ln qβi

(Z(α,β))2 ln 2
Z(α, β)−

∑n
i=1

qβi ln qi
Pn
j≤ai+b r

α
j ln

Pn
j≤ai+b r

α
j

(Z(α,β))2 ln 2
Z(α, β)

+
∑n

i=1

qβi
Pn
j≤ai+b r

α
j ln qβi

(Z(α,β))2 ln 2
Z ′(α, β)β +

∑n
i=1

qβi
Pn
j≤ai+b r

α
j ln

Pn
j≤ai+b r

α
j

(Z(α,β))2 ln 2
Z ′(α, β)β

= −
∑n

i=1

qβi
Pn
j≤ai+b r

α
j ln qi ln(qβi

Pn
j≤ai+b r

α
j)
Pn
i=1 q

β
i

Pn
j≤ai+b r

α
j

(Z(α,β))2 ln 2

+
∑n

i=1

qβi
Pn
j≤ai+b r

α
j ln(qβi

Pn
j≤ai+b r

α
j)
Pn
i=1 q

β
i (ln qi)

Pn
j≤ai+b r

α
j

(Z(α,β))2 ln 2

As qβi
∑n

j≤ai+b r
α
j = qi, thus the above equation can be simplified as:

= −
∑n

i=1

qi ln qi ln(qβi
Pn
j≤ai+b r

α
j)
Pn
i=1 qi

(Z(α,β))2 ln 2
+
∑n

i=1

qi ln(qβi
Pn
j≤ai+b r

α
j)
Pn
i=1 qi ln qi

(Z(α,β))2 ln 2

= −
∑n

i=1

qi ln qi(β ln qi+ln
Pn
j≤ai+b r

α
j)
Pn
i=1 qi

(Z(α,β))2 ln 2

+
∑n

i=1

qi(β ln qi+ln
Pn
j≤ai+b r

α
j)
Pn
i=1 qi ln qi

(Z(α,β))2 ln 2

A careful calculation can get, when the above equation is zero, the value of

β is:

β =

∑n−1
i 6=j, j≤ai+b, i=1 qiqj ln

qj
qi

ln
∑i
m=1 r

α
m∑j

l=1 r
α
l∑n−1

i6=j, j≤ai+b, i=1 qiqj

(
ln

qj
qi

)2

Thus when β >

Pn−1
i 6=j, j≤ai+b, i=1 qiqj ln

qj
qi

ln
Pi
m=1 r

α
mPj

l=1
rα
lPn−1

i 6=j, j≤ai+b, i=1 qiqj

“
ln
qj
qi

”2 , the above partial deriva-

156

tive is always < 0 while when β <

Pn−1
i 6=j, j≤ai+b, i=1 qiqj ln

qj
qi

ln
Pi
m=1 r

α
mPj

l=1
rα
lPn−1

i 6=j, j≤ai+b, i=1 qiqj

“
ln
qj
qi

”2 , the above

partial derivative is always > 0.

6.2.2 Three Variable Case of Simple Problem

In this section, we extend the discussion above to three variable case.

We still use X1, X2 and X3 to represent three high variables such that

c′X1 + d′ ≤ X2 ≤ cX3 + d and all of them ∈ [1, n], ri, qi, pi,j,k to represent

P (X1 = i), P (X2 = j), P (X1 = i,X2 = j,X3 = k) respectively, and with

constraints H(X1) = a and H(X2) = b (it can be entropies of any two of the

three). Please note that because c′X1 +d ≤ X2 ≤ cX3 +d, we only interested

in pi,j,k such that c′i+ d′ ≤ j ≤ ck + d.

The Lagrangian is:

Λ = −
∑
i,j,k

pi,j,k log pi,j,k − λ1(H(X1)− a)− λ2(H(X2)− b)− λ3(
∑
i,j,k

pi,j,k − 1)

(6.37)

which gives rise to the following family of partial derivative equations,

c′i+ d′ ≤ j ≤ ck + d, i, j, k ∈ [0, 1]:

∂Λ

∂pi,j,k
= −(log pi,j,k +

1

ln 2
) +

λ1

ln 2
(ln ri + 1) +

λ2

ln 2
(ln qj + 1)− λ3 = 0

157

Then we can derive:

pi,j,k = pi,j,k′ k 6= k′ (6.38)

log
pi,j,k
pi,j′,k

= λ2(log
qj
q′j

) (6.39)

log
pi,j,k
pi′,j,k

= λ1(log
ri
r′i

) (6.40)

Let α = λ1 and β = λ2:

pi,j,k = pi,j,k′ k 6= k′ (6.41)

pi,j′,k =

(
q′j
qj

)β
pi,j,k (6.42)

pi′,j,k =

(
r′i
ri

)β
pi,j,k (6.43)

Thus:

pi,j,k = pi,j,k′ =
rαi q

β
j

Z(α, β)
(6.44)

where Z(α) =
∑

i,j,k pi,j,k.

Therefore, it also ends up searching for a suitable α and β, the same as

the two high variable case with two constraints.

The derivation of more high variables with two marginal entropy con-

straints is more or less the same as above, hence the result is also similar.

158

6.3 Generalization of Simple Problem

The further generalization is to generalize the linear constraints between

program variables X and Y to an arbitrary system of 0 < a′iY + b′i < X ≤

aiY + bi, (ai, a
′
i, bi, b

′
i ∈ R). And X, Y ∈ [1, . . . , n].

The whole derivation procedure is exactly the same as the last section

which is omitted for the sake of space. The only thing which changes is that

in stead of considering pi,j such that i ≤ aj + b, now we consider pi,j such

that a′ij + b′i < i ≤ aij + bi.

Please note that if i ≤ aj + b1 and i ≤ aj + b2 where b1 ≤ b2, then

the constraint i ≤ aj + b2 will not be considered, similarly for other cases.

The work of [6] can be used to derive a most precise integer polyhedra from

the system of constraints. Therefore, in our analysis, we always assume

that we work on the smallest integer polyhedra derived from the system of

constraints.

The result pi,j =
rαi q

β
j

Z(α,β)
still holds, where Z(α, β) =

∑n
i,j q

α
i r

β
j .

6.4 Case Study

In this section, the case of X and Y taking two values each is explored, some

interesting properties have been discovered. We choose this as a demonstra-

tion also because it is not too difficult to verify.

Recall the entropy of binary variable (Figure 6.1), we can see that for

each value of entropy, there are only two corresponding possible probability

distributions. Thus there are at most four joint probabilities from which to

159

choose the one with maximum joint entropy.

Figure 6.1: Concaveness of Entropy Function

The following Table 6.1 shows the values of α and β for the maximum

joint entropy given different values of marginal entropy constraints.

Column H(X) is the value of the marginal constraint of X, we start from

0.4690 and increase it to its maximum 1, other values can be chosen freely

as well.

Similarly, Column H(Y) is the value of the marginal constraint of Y ,

we start from 0.4690 and increase it to its maximum 1, other values can be

chosen freely as well. Together withH(X), they work as a pair of constraints.

Column α and column β are the corresponding values for α and β that

gives us the maximum joint entropy under two marginal constraints, where

− means such α or β don’t exist.

As we can see from Table 6.1, there are cases when there are no suitable

160

H(X) H(Y) α β Hmax(X,Y) H(X) +H(Y) P (X, Y)
0.4690 0.4690 0 -0.9464 0.9219 0.9380 (0.1,0.8,0.1)
0.4690 0.7219 0.8856 0.9037 1.1568 1.1909 (0.2,0.7,0.1)
0.4690 0.8813 0.8155 0.8181 1.2955 1.3503 (0.3,0.6,0.1)
0.4690 0.9710 0.7325 0.5503 1.3610 1.4400 (0.4,0.5,0.1)
0.4690 1 - - 1.3610 1.4690 (0.5,0.4,0.1)
0.7219 0.4690 0.9037 0.8856 1.1568 1.1909 (0.1,0.7,0.2)
0.7219 0.7219 0.7925 0.7925 1.3710 1.4438 (0.2,0.6,0.2)
0.7219 0.8813 0.6610 0.6029 1.4855 1.6032 (0.3,0.5,0.2)
0.7219 0.9710 0.5 0 1.5219 1.6929 (0.4,0.4,0.2)
0.7219 1 - - 1.4855 1.7219 (0.5,0.3,0.2)
0.8813 0.4690 0.8181 0.8155 1.2955 1.3503 (0.1,0.6,0.3)
0.8813 0.7219 0.6029 0.6610 1.4855 1.6032 (0.2,0.5,0.3)
0.8813 0.8813 0.3395 0.3395 1.5710 1.7626 (0.3,0.4,0.3)
0.8813 0.9710 0 -0.7095 1.5710 1.8523 (0.4,0.3,0.3)
0.8813 1 - - 1.4855 1.8813 (0.5,0.2,0.3)
0.9710 0.4690 0.5503 0.7325 1.3610 1.4400 (0.1,0.5,0.4)
0.9710 0.7219 0 0.5 1.5219 1.6929 (0.2,0.4,0.4)
0.9710 0.8813 -0.7095 0 1.5710 1.8523 (0.3,0.3,0.4)
0.9710 0.9710 -1.7095 -1.7095 1.5219 1.9420 (0.4,0.2,0.4)
0.9710 1 - - 1.3610 1.9710 (0.5,0.4,0.1)

1 0.4690 - - 1.3610 1.4690 (0.1,0.4,0.5)
1 0.7219 - - 1.4855 1.7219 (0.2,0.3,0.5)
1 0.8813 - - 1.4855 1.8823 (0.3,0.2,0.5)
1 0.9710 - - 1.3610 1.9710 (0.4,0.1,0.5)
1 1 - - 1 2 (0.5,0,0.5)

Table 6.1: Values of α and β for Maximum Joint Entropy

161

α or β, this situation usually happens when one of the marginal entropy

hits its maximum, which means that in the case where X and Y are binary,

there is only one joint probability distribution that satisfies both marginal

entropies, hence there is only one joint entropy which is also the maximum

joint entropy.

Proposition 6.4.1. Let X and Y be binary variables such that X ≤ Y , let

H(X) = a and H(Y) = b, suppose α and β corresponding to the maximum

joint entropy H(X, Y) exist, then given two other binary variables X ′ and Y ′,

if H(X ′) = b and H(Y ′) = a, α′ and β′ for maximum joint entropy H(X ′, Y ′)

also exist, then α′ = β and β′ = α.

Proof. Because X and Y are binary variables, given their marginal entropies,

there are at most four possible joint entropies, let’s denote the corresponding

probabilities as P (X = 0) = x, P (X = 1) = 1 − x, P (Y = 0) = y, P (Y =

1) = 1− y, thus the following holds:

P (X = 0, Y = 0) = y =
xα ∗ yβ

Z(α, β)

P (X = 0, Y = 1) = x− y =
xα ∗ (1− y)β

Z(α, β)

P (X = 1, Y = 1) = 1− x =
(1− x)α ∗ (1− y)β

Z(α, β)

where Z(α, β) =
∑

i,j P (X = i)α ∗ P (Y = j)β

Now since the values of two marginal entropies are the same if we don’t

consider which one takes which value, if the above joint distribution is the

one with maximum joint entropy for X and Y , it also should be the joint

162

distribution with maximum joint entropy for X ′ and Y ′. In order to get the

same joint distribution (don’t consider which number takes which probabil-

ity), we can construct the probabilities as P (X ′ = 0) = 1−y, P (X ′ = 1) = y,

P (Y ′ = 0) = 1− x and P (Y ′ = 1) = 1− y, thus the following holds:

1− x =
(1− y)α

′ ∗ (1− x)β
′

Z(α′, β′)

x− y =
(1− y)α

′ ∗ xβ′

Z(α′, β′)

y =
yα
′ ∗ xβ′

Z(α′, β′)

where Z(α, β) =
∑

i,j P (X ′ = i)α
′ ∗ P (Y ′ = j)β

′
.

Comparing with the joint distribution for X and Y , it is not difficult to

see that α′ = β and β′ = α.

163

Chapter 7

Conclusions

This chapter summarizes the contributions of this thesis and outlines some

directions for possible future work.

7.1 Summary

Focused on the problem of quantifying maximum information leakage in pro-

grams, this thesis connects information security with Shannon’s information

theory and mathematical techniques such as Lagrange multiplier.

Noticing the intrinsic issues (i.e. double counting problem) that exist

against current framework of quantitative information flow analysis (CHM’s),

this thesis looks to improve the accuracy of maximum information leakage.

More precisely, we concern quantifying maximum information leakage under

certain constraints, maximum entropy of individual high program variable,

which is non-linear.

The improvement of accuracy is achieved by using joint entropy as the

164

quantity of maximum information leakage instead of the sum of entropies of

high program variables; then the Lagrange multiplier method is applied to

obtain the maximum information leakage under constraints. For the single

marginal entropy constraint problem, the partition version of joint entropy is

applied (Section 5.3) to further simplify the derivation. We have shown that

for the single marginal constraint problem, the maximum joint entropy prob-

lem can be brought down to search for a parameter α which when applied

to the structure of probability distribution derived from our analysis, guar-

antees the maximum information leakage. For the two marginal constraints

problem, it turns out that a search for a pair of parameters α and β gives us

the result.

As a matter of fact, our analysis is general enough to be applied to ar-

bitrary number of high program variables with an arbitrary system of linear

constraints under arbitrary number of marginal entropy constraints. How-

ever, please note that in order to get the maximum information leakage as

precise as possible, the system of linear constraints is required to be as small

as possible, in other words, for example if there are both X ≤ cY + d and

X ≤ cY + d′ in the set, where d ≤ d′ then X ≤ cY + d′ is discarded. There-

fore in our work, we always assume that the linear constraint set is the most

precise, and hence the integer polyhedron derived from it that we work on is

also the smallest.

7.1.1 Most General Case

Therefore, the most general case would be:

165

Suppose we have n variables X1, . . . , Xn ∈ N , and a system of linear

constraints S (Xi ≤ a1X1 + . . . + anXn + bi, ai, bi ∈ R) between these

variables, together with m marginal entropy constraints, let’s denote the

variables which have marginal entropy constraints as Xl1 , . . . , Xlm and of

course m ≤ n. pi1,...,in denotes the joint probability of P (X1 = x1, . . . , Xn =

xn), and plito represent the probability of Xli = xli .

By following the exact derivation process, it is not too difficult to obtain

the general form of probability distribution which gives the maximum joint

entropy:

pi1, ..., l1,..., lm, ...,in = pi′1, ..., l1,..., lm, ...,i′n =
pα1
l1
· · · pαmlm

Z(α1, . . . , αm)

Where Z(α1, . . . , αm) =
∑

i1,...,in
pi1,...,in .

7.1.2 Limitation

Although theoretically our analysis is very general, and an analytical formula

is provided to construct the probability distribution which gives the maxi-

mum joint entropy. However, only the single constraint problem is feasible,

a search for a single parameter α which a binary search does the job.

For more than one marginal entropy constraint, tuple of parameters

needed to obtain the probability distributions, and we haven’t found an

efficient method to search for such tuple of parameters yet, and it is also

possible that some parameters don’t exist, nevertheless the probability dis-

tribution can still be obtained without these parameters sometimes as shown

in Chapter 6.

166

7.2 Future Work

The future work from ours may include the following:

7.2.1 Scalability

Tables 5.1 to 5.6 show that when the number n of values that X and Y can

take increases in the single constraint problem, the ratio of our result and

CHM’s result keeps increasing as well.

This is mainly due to the fact that when n → ∞, and suppose that we

do the partition according to Y (or X), no matter what linear constraint

that may exist between X and Y , the size of largest part in the partition

goes towards ∞ as well. By adopting our analysis, the marginal probability

distribution qi of Y which purely depends on the sizes of the parts will lean

towards 0, 0, . . . , 1. Then our analysis whose result is Hmax(X, Y) = H(Y) +∑
i qi log i, will becomeH(Y)+log∞ which is∞. And CHM’s analysis which

is H(Y) + log n, also has the same result of ∞. Therefore in this extreme

case, our result doesn’t have any advantage over CHM’s.

Hence it seems that our analysis only has a significant superiority when

n is small. When n increase, the maximum joint entropy also increases, thus

a completely new way to deal with large n with the aim to make the result

more precise than that of our current analysis is needed.

167

7.2.2 Effective Search Method for More Constraints

Problem and Complexity

Our analysis is theoretically quite general in terms of the system of linear

constraints and marginal entropy constraints. And it all has the nice property

such that in the end only tuple of parameters are needed to construct the

probability distribution which gives the maximum joint entropy. Therefore,

it is worth investigating how to effectively search for such tuple of suitable

parameters.

For the two marginal entropy constraints problem, as we cannot derive the

structure of either marginal probability of X or Y at the moment, this makes

the search of suitable α and β extremely difficult. One possible area for future

investigation is to transform the question into a single constraint problem,

and search for α and β alternatively. In more detail, two random marginal

probability distributions (except uniform distribution) can be chosen, one

for X the other for Y . First we fix β to 1, and substitute these two original

distributions into the formula:

pi, j =
rαi q

β
j

Z(α, β)

then do a binary search, as in the single constraint problem, to look for a

marginal distribution for X such that it satisfies the marginal entropy H(X)

constraint. Then this new marginal probability P (X) is substituted into ri,

and α is fixed to 1, together with the original marginal probability distri-

bution P (Y), a new binary search for β which to make the new probability

168

distribution satisfy the marginal entropy constraint H(Y) is conducted the

same way as that for H(X) constraint, then the new marginal probability

distribution of P (Y) is substituted into qj.

This whole process is, thereafter, iterated, until α and β converges, in

other words, the two marginal probability distributions calculated from joint

probability distribution converge. However, investigation into the conver-

gence issue of this proposed thought algorithm will be needed first which

itself can be a very difficult problem.

The investigation of more constraint problem can be more difficult and

complicated.

The complexity of search algorithm can grow exponentially with the num-

ber of marginal entropy constraints, methods to reduce the complexity is also

worth working on.

7.2.3 Implementation

The ultimate goal would be to implement our analysis into a practical analysis

tool, which automatically bounds the maximum information leakage that

certain programs or systems may have.

The automation for the single constraint problem can be straightforward,

breaks the problem into automation for three parts: linear constraints (in-

teger polyhedron) obtained by abstract interpretation, a partition based on

the integer polyhedron, and a search for α. The automation of first part is

already been implemented in [22]; while the automation of the second part

can be turned into solve a system of linear inequalities for which automatic

169

algorithms exist; while for the third part a binary search algorithm satisfies

our needs.

However, for the problems with more marginal constraints, the automa-

tion has to search for tuple of parameters simultaneously, hence it is very

likely that some new algorithm would be needed to solve the problem.

170

Bibliography

[1] S. Abramsky and D. M. Gabbay and T. S. E. Maibaum. Handbook of

logic in computer science: semantic modeling. Handbook of logic in com-

puter science (vol. 4): semantic modeling, ISBN: 0-19-853780-8. Oxford

University Press, Oxford, UK, 1995.

[2] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier

Methods, ISBN:1-886529-04-3. Academic Press, 1996.

[3] D. P. Bertsekas, A. Nedic and A. E. Ozdaglar. Convex Analysis and

Optimization, ISBN: 1-886529-45-0. Athena Scientific, April 2003.

[4] M. Boreale. Quantifying information leakage in process calculi. Infor-

mation and Computation, 207(6): 699-725, 2009.

[5] S. Boyd and L. Vandenberghe. Convex optimization. ISBN: 978-

0521833783. Cambridge University Press. March, 2004.

[6] P. J. Charles and J. M. Howe and A. King. Integer Polyhedra for Pro-

gram Analysis. In Proceedings of the 5th International Conference on

Algorithmic Aspects in Information and Management, San Francisco,

CA, USA, 2009.

171

[7] H. Chen and P. Malacaria. Quantitative analysis of leakage for multi-

threaded programs. In PLAS ’07: Proceedings of the 2007 workshop

on Programming languages and analysis for security, pages 31-40. San

Diego, California, USA, 2007.

[8] H. Chen and P. Malacaria. The optimum leakage principle for analyzing

multi-threaded programs. In Proc. of the 4th International Conference

on Information Theoretical Security, pages 177-193, Shizuoka, Japan,

2009.

[9] H. Chen and P. Malacaria. Quantifying maximal loss of anonymity in

protocols. In ASIACCS ’09: Proceedings of the 4th International Sympo-

sium on Information, Computer, and Communications Security, pages

206-217, Sydney, Australia, 2009.

[10] H. Chen and P. Malacaria. Studying maximum information leakage us-

ing Karush-Kuhn-Tucker conditions. In Proceedings of 7th International

Workshop on Security Issues in Concurrency, pages 1-15, Bologna, 2009.

[11] D. Clark and S. Hunt and P. Malacaria. Quantitative analysis of the

leakage of confidential data. QAPL’01, Quantitative Aspects of Pro-

gramming Languages (Satellite Event of PLI 2001), Electronic Notes in

Theoretical Computer Science, 59(3):238-251, Firenze, Italy, 2001.

[12] D. Clark and S. Hunt and P. Malacaria. Quantified interference: infor-

mation theory and information flow. Presented at Workshop on Issues

in the Theory of Security (WITS’04), 2004.

172

[13] D. Clark and S. Hunt and P. Malacaria. Quantified interference for

a while language. Electronic Notes in Theoretical Computer Science,

112:149-166, 2005.

[14] D. Clark and S. Hunt and P. Malacaria. Quantitative information flow,

relations and polymorphic types. Journal of Logic and Computation,

Special Issue on Lambda-calculus, type theory and natural language,

18(2):181-199, 2005.

[15] D. Clark and S. Hunt and P. Malacaria. A static analysis for quantifying

information flow in a simple imperative language. Journal of Computer

Security, 15(3):321-371, 2007.

[16] D. Clark and S. Hunt and P. Malacaria. Quantified interference for a

while language. Technical Report TR-03-07, Department of Computer

Science, King’s College London, King’s College London, 2003.

[17] P. Cousot and R. Cousot. Static determination of dynamic properties

of programs. In Proceedings of the Second International Symposium on

Programming, pages 106-130. Dunod, France, 1976.

[18] P. Cousot and R. Cousot. Abstract interpretation: an unified lattice

model for static analysis of programs by construction or approxima-

tion of fixpoints. In Conference Record of the Fourth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pages 238-252, 1977.

[19] P. Cousot and R. Cousot. Automatic synthesis of optimal invariant asser-

tions: Mathematical foundations. In Proceedings of the 1977 symposium

173

on Artificial intelligence and programming languages, pages 1-12, New

York, USA.

[20] P. Cousot and R. Cousot. Systematic design of program analysis frame-

works. POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, pages 269-282, New

York, USA, 1979.

[21] P. Cousot and R. Cousot. Comparing the Galois connection and widen-

ing/narrowing approaches to abstract interpretation, invited paper. In

Proceedings of the International Workshop Programming Language Im-

plementation and Logic Programming, PLILP’92, LNCS 631: 269-295.

Leuven, Belgium, 1992.

[22] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints

among variables of a program. In Conference Record of the Fifth An-

nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages. Tucson, Arizona, 1978.

[23] T.M. Cover, J.A. Thomas. Elements of Information Theory. Wiley-

Interscience, ISBN: 0-471-24195-4. New York, NY, USA, 2006.

[24] D. E. R. Denning. Secure information flow in computer systems. PhD

thesis, Purdue University. West Lafayette, IN, USA, 1975.

[25] D. E. R. Denning. A lattice model of secure information flow. Commu-

nications of the ACM, 19(5): 236-243, 1976.

174

[26] D. E. R. Denning. Cryptography and data security, ISBN: 0-201-10150-

5. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

1982.

[27] D. E. R. Denning and P. J. Denning. Certification of programs for secure

information flow. Communications of the ACM, 20(7): 504-513, 1977.

[28] D. E. R. Denning and P. J. Denning. Data security. ACM Computing

Surveys, 11(3): 227-249, 1979.

[29] R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameter-

izing non-interference by abstract interpretation. Annual Symposium on

Principles of Programming Languages, Proceedings of the 31st ACM

symposium on Principles of programming languages, pages 186-197,

Venice, Italy, 2004.

[30] J. A. Goguen and J. Meseguer. Security Policies and Security Models.

In IEEE Symposium on Security and Privacy, pages 11-20. 1982.

[31] J. W. Gray III. Towards a mathematical foundation for information flow

security. In Proc. of IEEE Symposium on Security and Privacy, pages

21-34. IEEE Computer Society Press, 1991.

[32] N. Halbwachs. Determination automatique de relations linear verifiees

par les variables d’un programme. PhD thesis, OCLC, 1979.

[33] N. Halbwachs, Y. E. Proy and P. Raymond. Verification of linear hybrid

systems by means of convex approximation.SAS, pages 223-237, 1994.

175

[34] C.Hankin, A. Di Pierro and H. Wiklicky. Measuring the confinement

of probabilistic systems. Theoretical Computer Science, 340(1): 3-56,

Essex, UK, 2005.

[35] J. M. Howe and A. King. A semantic basis for specialising domain con-

straints. In the International Workshop for Object-oriented and Con-

straint Programming for Time Critical Applications, Lisbon, Portugal,

1999.

[36] J. M. Howe and A. King. Specialising finite domain programs using

polyhedra. LOPSTR , pages 118-135, Venezia, Italy, 1999.

[37] S. Hunt and D. Sands. On flow-sensitive security types. In Proc.

Principles of Programming Languages, 33rd Annual ACM Symposium

(POPL’06), pages 79-90. Charleston, South Carolina, USA, 2006.

[38] S. Hunt and I. Mastroeni. The PER model of abstract non-interference.

Proc. Static Analysis, 12th International Symposium (SAS’05), LNCS

3184: 100-115. Springer-Verlag, 2005.

[39] N. D. Jones and F. Nielson. Abstract Interpretation: A Semantics-Based

Tool for Program Analysis. Handbook of logic in computer science (vol.

4): semantic modeling, pages 527-636, Oxford University Press, Oxford,

UK, 1995.

[40] R. Joshi and K. R. M. Leino. A semantic approach to secure information

flow. Science of Computer Programming, 37(1-3): 113-138, 2000.

176

[41] Moritz Kuhn. The Karush-Kuhn-Tucker theorem. Wireless and mobile

communication (electrical and electronic engineering), issue: November,

pages 1-14, 2006.

[42] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterfer-

ence. In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium

on Principles of programming languages. ACM SIGPLAN Notices 40(1):

158 - 170. New York, NY, USA, 2005.

[43] G. Lowe. Quantifying Information Flow. Computer Security Foundations

Workshop, IEEE, pages 18-27, 2002.

[44] P. Malacaria. Assessing security threats of looping constructs. In POPL

’07: Proceedings of the 34th annual ACM symposium on Principles of

programming languages, pages 225–235, Nice, France, 2007.

[45] P. Malacaria and H. Chen. Lagrange multipliers and maximum informa-

tion leakage in different observational models. In PLAS ’08: Proceedings

of the third ACM SIGPLAN workshop on Programming Languages and

Analysis for Security, pages 135-146, Tucson, AZ, USA, 2008.

[46] I. Mastroeni. Abstract Non-Interference: An Abstract Interpretation-

based approach to Secure Information Flow. Ph.D. Thesis, Department

of Informatics, University of Verona, 2005.

[47] S. McCamant and M. D. Ernst. Quantitative Information-Flow Tracking

for C and Related Languages. MIT Computer Science and Artificial In-

telligence Laboratory Technical Report, MIT-CSAIL-TR-2006-076, 2006.

177

[48] S. McCamant and M. D. Ernst. A simulation-based proof technique

for dynamic information flow. In PLAS ’07: Proceedings of the 2007

workshop on Programming languages and analysis for security, pages

41-46, San Diego, California, USA, 2007.

[49] S. McCamant and M. D. Ernst. Quantitative information flow as net-

work flow capacity. In PLDI 2008, Proceedings of the ACM SIGPLAN

2008 Conference on Programming Language Design and Implementa-

tion, pages 193-205, Tucson, AZ, USA, 2008.

[50] J. Millen. Security models and information flow. In Proc. of IEEE Sym-

posium. on Security and Privacy, pages 180-187, Oakland, Canada,

1990.

[51] J. K. Millen. Covert channel capacity. IEEE Symposium on Security and

Privacy, pages 60-66, 1987.

[52] A. Miné. A new numerical abstract domain based on difference-bound

matrices. In PADO ’01: Proceedings of the Second Symposium on Pro-

grams as Data Objects, pages 155-172, London, UK, 2001.

[53] D. Monniaux. An abstract Monte-Carlo method for the analysis of prob-

abilistic programs (extended abstract). In 28th Symposium on Principles

of Programming Languages (POPL ’01), pages 93-101, 2001.

[54] D. Monniaux. Abstract interpretation of probabilistic semantics. In SAS

’00: Proceedings of the 7th International Symposium on Static Analysis,

LNCS 1824: 322-339, 2000.

178

[55] D. Monniaux. Backwards abstract interpretation of probabilistic pro-

grams. In European Symposium on Programming Languages and Sys-

tems (ESOP ’01), LNCS 2028: 367-382, 2001.

[56] C. Mu and D. Clark. Quantitative Analysis of Secure Information Flow

via Probabilistic Semantics. International Conference on Availability,

Reliability and Security (ARES), pages 49-57. IEEE Computer Society,

Los Alamitos, CA, USA, 2009.

[57] A. C. Myers, M. R. Clarkson and F. B. Schneider. Belief in Informa-

tion Flow. In CSFW ’05: Proceedings of the 18th IEEE workshop on

Computer Security Foundations, pages 31 - 45. IEEE Computer Society,

Washington, DC, USA, 2005.

[58] A. Myers, A. Sabelfeld and S. Zdancewic. Enforcing robust declassifica-

tion. In CSFW ’04: Proceedings of the 17th IEEE workshop on Computer

Security Foundations, IEEE Computer Society, page 172, Washington,

DC, USA, 2004.

[59] A. Myers, A. Sabelfeld and S. Zdancewic. Enforcing robust declassifi-

cation and qualified robustness. Journal of Computer Security, Special

issue on CSFW17, 14(2): 157-196. , Amsterdam, The Netherlands, 2006.

[60] A. D. Pierro and R. D. Pierro and C. Hankin and H. Wiklicky. On

approximate non-interference. Journal of Computer Security, 12(1): 1-

17. IEEE Computer Society Press, 2002.

179

[61] A. D. Pierro and R. Di Pierro and H. Wiklicky and C. Hankin. Approxi-

mate Non-Interference. In Proceedings of 15th IEEE Computer Security

Foundations Workshop, pages 1-17, IEEE Computer Society Press, 2002.

[62] P. Ryan and J. McLean and J. Millen and V. Gligor. Non-Interference:

Who Needs It? In CSFW ’01: Proceedings of the 14th IEEE workshop

on Computer Security Foundations, IEEE Computer Society, pages 237-

238, Cape Breton, Novia Scotia, Canada, 2001.

[63] P. Naur. Checking of operand types in algol compilers. BIT Numerical

Mathematics, 5(3): 151-163, 1965.

[64] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Secu-

rity. IEEE Journal on Selected Areas in Communications, special issue

on Formal Methods for Security, 21(1):519, 2003.

[65] A. Sabelfeld and A. C. Myers. A model for delimited information re-

lease. In Proceedings of International Symposium on Software Security

(ISSS’03), LNCS 3233: 174-191, 2004.

[66] A. Sabelfeld and D. Sands. A Per model of secure information flow in

sequential programs. In Higher-Order and Symbolic Computation, 14(1):

59-91, Kluwer Academic Publishers, Hingham, MA, USA, 2001.

[67] C. E. Shannon. A mathematical theory of communication. ACM Mobile

Computing and Communications Review, SPECIAL ISSUE: Special is-

sue dedicated to Claude E. Shannon, 5(1): 3-55, ACM New York, NY,

USA, 2001.

180

[68] A. Simon and A. King and J. M. Howe. Two variables per linear in-

equality as an abstract domain. In Proceedings of the 12th international

conference on Logic based program synthesis and transformation. LNCS

2664: 71-89, 2002.

[69] G. Smith. On the foundations of quantitative information flow. Proceed-

ings of the 12th International Conference on Foundations of Software

Science and Computational Structures: Held as Part of the Joint Eu-

ropean Conferences on Theory and Practice of Software, ETAPS 2009,

LNCS 5504: 288-302, York, UK, 2009.

[70] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In An-

nual Symposium on Principles of Programming Languages, Proceedings

of the 27th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, pages 268-276. Boston, MA, USA, 2000.

[71] S. Zdancewic. A type system for robust declassification. In Proceedings

of the Nineteenth Conference on the Mathematical Foundations of Pro-

gramming Semantics. Electronic Notes in Theoretical Computer Science,

2003.

181

