City Research Online

City, University of London Institutional Repository

Citation: He, Y-H. \& McKay, J.M. (2017). Moonshine and the Meaning of Life. Contemporary Mathematics, 694, pp. 1-2. doi: 10.1090/conm/694/13956

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12860/

Link to published version: https://doi.org/10.1090/conm/694/13956

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Moonshine and the Meaning of Life

Yang-Hui He^{1} \& John McKay ${ }^{2}$
${ }^{1}$ Dept. of Maths, City U., London, EC1V 0HB, UK; School of Physics, NanKai U., Tianjin, 300071, P.R. China;
Merton College, University of Oxford, OX14JD, UK
hey@maths.ox.ac.uk
${ }^{2}$ Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve West, Montreal, Quebec,H3G 1M8, Canada mckay@encs.concordia.ca

The elliptic modular function, j, invariant under $\operatorname{PSL}(2, \mathbb{Z})$, has Fourier expansion

$$
\begin{equation*}
j(q)=\frac{E_{4}(q)^{3}}{\Delta(q)}=\sum_{m=-1}^{\infty} c_{m} q^{m}=\frac{1}{q}+744+196884 q+21493760 q^{2}+\ldots, \tag{1}
\end{equation*}
$$

as $z \rightarrow i \infty$, where $q=e^{2 \pi i z}$ is the nome for $z . E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}$ is the theta series for the E_{8} lattice, $\sigma_{3}(n)=\sum_{d \mid n} d^{3}$ and

$$
\begin{equation*}
\Delta(q)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\sum_{m=1}^{\infty} \tau_{m} q^{m}=q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}+\ldots \tag{2}
\end{equation*}
$$

is the modular discriminant [\mathbf{S}. There are two new congruences

$$
\text { OBSERVATIONS: • [JM] }\left(\sum_{m=1}^{24} c_{m}^{2}\right) \bmod 70 \equiv 42 ; \quad \bullet[\mathrm{YHH}]\left(\sum_{m=1}^{24} \tau_{m}^{2}\right) \bmod 70 \equiv 42
$$

The vector $\omega=(0,1,2, \ldots, 24: 70)$ lives in the Lorentzian lattice $I I_{25,1}$ in 26 dimensions as an isotropic Weyl vector [C], allowing us to construct the Leech lattice as ω^{\perp} / ω. Watson's [D] unique non-trivial solution to $\sum_{i=1}^{n} i^{2}=m^{2}$ is $(n, m)=(24,70)$.

Indeed, the second author's observation 35 years ago that

$$
\begin{equation*}
196884=196883+1 \tag{3}
\end{equation*}
$$

sparked the field of "Monstrous Moonshine" B, CN, underlying so much mathematics and physics, relating, inter alia, modular functions, finite groups, lattices, conformal field theory, string theory and gravity (see [G] for a review of some of the vast subjects encompassed) in which the j-invariant and the Leech lattice are central. As we ponder the meaning of life, we should be aware of the prescient remarks of the author A , Douglas Adams:
"The Answer to the Great Question ...is ...Forty-two," said Deep Thought, with infinite majesty and calm.

References

[A] Douglas Adams, "The Hitchhiker's Guide to the Galaxy", London, 1979.
[B] R. E. Borcherds, "Vertex algebras, Kac-Moody algebras, \& the monster," Proc. Nat. Acad. Sci. 83, 3068 (1986); "Monstrous moonshine \& monstrous Lie superalgebras", Invent. Math. 109 (1992) 405-444.
[C] J. H. Conway, "The automorphism group of the 26-dim even unimodular Lorentzian lattice", J. Alg. 80, Vol. 1, (1983), 159-163.
[CN] J. H. Conway and S. P. Norton, "Monstrous Moonshine," Bull. LMS, 11, (1979), 308-339.
[G] T. Gannon, "Moonshine beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", CUP, 2006, ISBN 0-521-83531-3.
[L] E. Lucas, "Question 1180," Nouvelles Annales de Mathématiques., ser. 14 (1875), 336.
[S] J-P. Serre, "A Course in Arithmetic", GTM 7, Presses Universitaires de France, (1970), §VII.3.3, 4.5
[W] G. N. Watson, "The problem of the square pyramid," Messenger of Mathematics, 48, (1918-19), 1-22

