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Abstract

The examination of roots of constrained polynomials dates back at least to

Waring and to Littlewood. However, such delicate structures as fractals and

holes have only recently been found. We study the space of roots to certain

integer polynomials arising naturally in the context of Calabi-Yau spaces, no-

tably Poincaré and Newton polynomials, and observe various salient features

and geometrical patterns.
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Roots 7

2.1 Calabi-Yau Threefolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Calabi-Yau Fourfolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Non-Compact Calabi-Yau Geometries, Toric Diagrams and Newton

Polynomials 16

1 Introduction and Summary

The subject of roots of mono-variate polynomials is, without doubt, an antiquate one,

and has germinated an abundance of fruitful research over the ages. It is, therefore,

perhaps surprising that any new statements could at all be made regarding such roots.

The advent of computer algebra, chaotic phenomena, and random ensembles has, how-

ever, indeed shed new light upon so ancient a metier.

Polynomials with constrained coefficients and form, though permitted to vary ran-

domly, have constituted a vast field itself. As far back as 1782, Edward Waring, in

relation to his famous problem on power summands, had shown that for cubic polyno-

mials with random real coefficients, the ratio of the probability of finding non-real zeros

versus that of not finding non-real zeros is less than or equal to 2. Constraining the

coefficients to be integers within a fixed range has, too, its own history. It was realised

in [1] that a degree n random polynomial P (z) = 1 +
n∑
k=1

akz
k with ak = −1, 0, 1 dis-
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tributed evenly, the expected number νn of real roots is of order O(n1/2) asymptotically

in n. This was furthered by [2] to be essentially independent of the statistics, in that

νn has the same asymptotics†, as much for ak being evenly distributed real numbers,

in [−1, 1], or as Gaussian distributed in (−∞,∞).

Continual development ensued‡, notably by Littlewood [5], Erdős [6], Hammers-

ley [7] and Kac [8]. Indeed, a polynomial with coefficients only taking values as ±1

has come to be known as a Littlewood polynomial and the Littlewood Problem

asks for the the precise asymptotics, in the degree, of such polynomials taking values,

with complex arguments, on the unit circle. The classic work of Montgomery [10] and

Odlyzko [11], constituting one of the most famous computer experiments in mathe-

matics§, empirically showed that the distribution of the (normalized) spacings between

successive critical zeros of the Riemann zeta function is the same as that of a Gaus-

sian unitary ensemble of random matrices, whereby infusing our subject with issues of

uttermost importance.

Subsequently, combining the investigation of zeros and of random polynomials,

Odlyzko and Poonen [13] studied the zeros of Littlewood-type polynomials by setting

the coefficients to 0 and 1; they provided certain bounds as well as found interesting

fractal structures. Thus inspired and with the rapid advance of computational power,

Borwein et al. constructed various plots of zeros of constrained random polynomials and

many remarkable features were instantly visible [14, 15]. We can readily demonstrate

this with MathematicaR© [16], as is shown in Figure 1. In the figure, we take a sample

of 50000 random polynomials with coefficients −1, 0 or 1 up to various degrees, and

plot, on the complex plane, their zeros. Not only do we see fractal behaviour∗ near

the boundaries, the nature of the holes are intimately related [17] to the Lehmer-

Mahler Conjecture: that the Mahler measure M(P ) := exp
(

1
2π

∫ 2π

0
log
∣∣P (eiθ)

∣∣ dθ)
of any integral polynomial P (z) (which is not a multiple of cyclotomic polynomials)

†Cf. also [3, 4].
‡q.v. also [9].
§q. v. Section 3.1 of [12] for some recent remarks on the distributions.
∗Cf. discussions in [4, 49] on chaotic dualities in field theories
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should be bounded below by that of z10 − z9 + z7 − z6 + z5 − z4 + z3 − z + 1, which is

approximately 1.17.

(a) (b) (c)

Figure 1: The position, on the complex plane, of the zeros of 50000 random integer
polynomials with coeffcients −1, 0 or 1, for degrees upto 4, in part (a), 6, in part (b) and
10, in part (c).

High resolution variants of Figure 1 have been considered recently by Christensen

[18], Jörgenson [19] and Derbyshire [20], inter alia, and many beautiful pictures can be

found¶. Particular striking are the coloured density plots in [20].

An interesting query, in somewhat reverse direction to the above line of thought,

was posed in [22]: recalling that the Lee-Yang Circle Theorem placed severe constraints

on the generating function of the partition function of the Ising Model, the author asked

if one could statistically test whether a given Laurent polynomial could, in fact, be the

Jones polynomial of a knot. Using a landscape of knots generated by the programme

“knotscape” [23], the said work investigated many distribution properties of the zeros

of known Jones polynomials.

Enchanted by this motif which has threaded varying developments over the decades

while persistently generating new perspectives, a question immediately springs to mind.

One of the central topics of both modern mathematics and theoretical physics is un-

doubtedly that of Calabi-Yau geometries. A key feature is the super-abundance thereof.

In complex dimension one, there is only the torus; in dimension two, there are the 4-

torus and the K3-surface; however, for dimension three and above, no classification is

¶Cf. also a nice account in [21].
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known and already a plethora has been constructed. The first database was that of so

called CICYs, or, complete intersection Calabi-Yau threefolds in products of projective

spaces [24] as well as hypersurfaces in weighted CP4 [25], by Candelas et al. Then, over

more than a decade, Kreuzer and Skarke formulated and compiled an impressive list

of on the order of 1010 threefolds as hypersurfaces in toric varieties [26]. Finding new

patterns in this vast distribution of manifolds has seen some recent activity [27–29].

Indeed, the multitude of these geometries is at the core of the so-called vacuum degen-

eracy problem of superstring theory and constitutes a part of the landscape issue [30].

Along a parallel vein, the space of non-compact (singular) Calabi-Yau spaces (as

affine varieties) has also been extensively explored, notably by Hanany et al. over the

past decade [31–38], especially those which admit a toric description [32]; the discovery

of their intimate relation to dimer models and brane tilings [33,34,37] has also generated

some excitement. These supplant yet another corner in the landscape of geometries

and associated supersymmetric vacua.

Thus motivated, many tasks lend themselves to automatic investigation; we here

give a precis of some key points. In Section 2, we begin with the compact, smooth

Calabi-Yau manifolds. As mentioned above, there had been much effort in classifying

and constructing these, especially in complex dimensions three and four. An immediate

polynomial, of constrained form and integer coefficients, and yet succinctly encoding

some topological information, is the Poincaré polynomial, which can be readily written

in terms of the Hodge numbers. We take the “experimental data” of all the known

Hodge numbers of the threefolds and fourfolds spanning two decades of work and plot

the complex roots of the associated Poincaré polynomials in Figure 4 and Figure 8

respectively.

Much intricate structures are clearly visible. These are then contrasted with a

“standard background sample”, namely the roots of random integer sextic and octic

polynomials, with unit leading coefficient and vanishing linear term, drawn in Figure 2
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and Figure 7. From such collections are extracted the sub-class of those which admit−1

as a roots, which, by a theorem from differential geometry, correspond to spaces which

have more than one isometry. Interestingly, they correpond to self-mirror threefolds and

“quasi”-self-mirror fourfolds. We plot the roots for these in Figure 5 and Figure 10,and

see that they furnish certain substrata of the conglomerate plots mentioned above.

Thenceforth we move on to non-compact Calabi-Yau geometries in Section 3. There,

too, is a plenitude of examples, most notably those which are toric. We focus on toric

threefolds because these have planar toric diagrams as lattice points in Z2 due to the

Calabi-Yau condition. Once more, a natural polynomial invites itself: the Newton

polynomial. The Riemann surface corresponding to this bi-variate polynomial has

been a central subject to the gauge and brane theories in the context of string theory.

Moreover, the two important projections thereof, viz., the amoeba and alga projections,

have provided many beautiful Monte Carlo plots, illustrating deep algebraic geometry

as well as gauge theory. Because we are confronted with two complex variables, we

need to slightly deviate from our theme of complex roots; instead, we find it expedience

to regard the variables as real and consider the real projection of the Riemann surface.

Subsequently, we can study the ensemble of real turning (critical) points of these planar

curves.

Again, we resort to “actual data” and focus on the most well-known affine toric

threefold geometries - as shown in Figure 11 - corresponding to local Calabi-Yau singu-

larities, including, of course, the famous conifold. To each space, we find the collective

of critical points in R2 as we vary the integer coefficients - commonly known as multi-

plicities in the dimer model interpretation - of the Newton polynomial, and plot them

in Figure 13. We see a sensitive dependence of the emergent subtle structures upon

the choice of toric data.

In many respects we have taken a very pragmatic and empirical approach toward the

data accumulated over many years of theoretical research, of quantity large enough to

justify experimentation. To this philosophy of “experimental mathematics” we adhere
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throughout, observe wherever we should and infer wherever we may. Without much to

do, therefore, let us delve into the details of the issues summarized above.

To the occasion of the happy Installation of Professor Sir Martin Taylor as the Fiftieth
Warden of Merton College, Oxford, on the Second Day of the Month of October, in the Year
of Our Lord Two Thousand and Ten, and to the noble retirement of Professor Dame Jessica
Rawson, this humble brief note is dedicated.

Vivat Custos, vivat Collegium, & Stet Fortuna Domus!

2 Compact Calabi-Yau Manifolds, Poincaré Poly-

nomials and Complex Roots

An important quantifying polynomial for a smooth compact manifold X is the Poincaré

polynomial, which is a generating function for topological invariants of X (say of di-

mension n) :

P (t;X) =
n∑
i=0

bit
i , (2.1)

with the bi being the i-th Betti number. Indeed, this seems a more natural candidate

for our present studies than some because other famous polynomials such as the Hilbert

polynomial or the numerator of the Hilbert series (which of late have been instrumental

in counting BPS operators [39–41]) are not topological invariants and depend on the

specific projective embedding. Furthermore, by definition, at t = −1, the polynomial

evaluates to the Euler characteristic; this will be of significance shortly.

The zeros of the Poincaré polynomial have rather remarkable properties. It was

conjectured that [43] that if the rank of the manifold X is greater than 1, where rank

is defined to the the maximal number of everywhere independent, mutually commuting,

vector fields on X, i.e., the number of isometries, then −1 is a multiple root of the

Poincaré polynomial of X. Unfortunately this conjecture was shown to be false [44].

Nevertheless, it still holds that the rank of X exceeds unity if and only if −1 is a
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multiple root of P (t;X).

Moreover, of number theoretic and arithmo-geometric significance is the fact that

certain Poincaré polynomials exhibit Riemann Hypothesis behaviour [45], in analogy

to the the Hasse-Weil zeta local zeta functions. Recently, alignment of zeros of Hilbert

polynomials have been studied by [46] in relation to zeta functions.

2.1 Calabi-Yau Threefolds

Our focus will be on Eq. (2.1). First, let us study the case of Calabi-Yau three-

folds, which have been of the greatest interest, at least historically. Because we are

dealing with complex (Kähler) manifolds, Hodge decomposition implies that bi(X) =∑
p,q

hp,q(X), with hp,q(X) = dimHp,q

∂̄
(X) the dimensions of the Dolbeault cohomology

groups. Indeed, for (compact, smooth, connected) Calabi-Yau threefolds, the Hodge

diamond, and subsequently the Betti numbers and the Poincaré polynomial, can be

written as:

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(b0 = b6, b1 = b5, b2 = b4, b3) = (1, 0, h1,1, 2 + 2h2,1);

P (t;X) = 1 + h1,1t2 + (2 + 2h2,1)t3 + h1,1t4 + t6 .

(2.2)

That the Poincaré polynomial is palindromic is obvious and follows from Poincaré

duality.

Therefore, our first constraint is palindromicity to which we shall presently restrict.

We recall the roots of a completely random sample of integer polynomials with co-

efficients in [−1, 1] up to the sextic in part (b) of Figure 1. In Figure 2, we plot,
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in part (a), a sample of 50000 random integer sextic polynomials with coefficients in

[0, 1000] (making sure that the highest coefficient at degree 6 is not 0) as a compara-

tive norm. Next, in part (b), we plot the same, but for monic palindromic sextics, i.e.,

P (t) = 1 + b1t+ b2t
2 + b3t

3 + b2t
4 + b1t

5 + t6. Then, in (c), we restrict once more, with

some foresight, so that the linear term vanishes, i.e., P (t) = 1 + b2t
2 + b3t

3 + b2t
4 + t6.

We see that upon the condition of palindromicity, there is a marked emergence of

roots on the unit circle; this of course arises from the symmetric terms of the form

eit combining to give (co)sines whose reality then facilitates the addition to zero. The

symmetry about the x axis is simply that all roots appear in conjugate pairs because

our polynomials have real coefficients.

(a) (b) (c)

Figure 2: (a) The position, on the complex plane, of the zeros of 50000 random integer
degree six polynomials with coefficients between 0 and 1000. (b) The same, but with monic
palindromic sextics. (c) Monic palindromic sextics, and with linear term vanishing.

For our amusement, seeing the form of the semi-unit-circular shape being promi-

nent, we are reminded of the conformal map z → z
z−1

which takes the unit circle to the

critical strip of the Riemann Hypothesis, as shown in detail by part (a) of Figure 3.

We take the space of roots of monic palindromic sextics with vanishing linear/quintic

terms from part (c) of Figure 2, apply the inverse map z → z
z+1

to map to the critical

strip and re-do the plot in part (b) of Figure 3. We see that the plot resembles the

zero-free region of the Riemann zeta function inside the critical strip.

Founded upon these above discussions, we are ready to approach “actual data”. We

now collect all known Calabi-Yau threefolds, which come from three major databases,

viz., the aforementioned CICYs, the hypersurfaces in toric varieties, as well as the col-

lection of individually tailored ones of small Hodge numbers (cf. [27,28]). These total,
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(a) (b)

Figure 3: (a) The conformal map z → z
z−1

takes the left half of the critical strip to the
inside of the unit disk, with the boundaries mapped as shown by the arrows. It takes the
mirror image, in the right half of the critical strip, to the complement of the unit disk.
The inverse map is given by z → z

z+1
. (b) The position of 50000 randomly integer monic

palindromic sextic polynomials with vanishing linear/quintic terms and with coefficients
ranging in [0, 1000], applying apply the map z → z

z+1
.

respectively, 30108, 266 and 54 distinct pairs of Hodge numbers (h1,1(X), h2,1(X)). In

all, there are 30237 distinct pairs (of course, each with much degeneracy) of Hodge

numbers; to our present knowledge, these are all the ones circulated in the literature.

We plot‖ these, with h1,1 as the abscissa and h2,1, ordinate, in part (a) of Figure 4,

the largest amongst these is (491, 11). Note that because of mirror symmetry, there

is a symmetry interchanging the two coördinates. It is still an open question whether

there exists any Calab-Yau threefold whose either Hodge number exceeds 491, a bound

which has defied constructions so far. This is why in our random standard background

sample in Figure 2, we have conveniently selected the largest integer coefficient to be

1000 ∼ 2 · (491 + 1). In part (b) of the said Figure, we plot, on the complex plane, the

roots of the Poincaré polynomials of all these known threefolds. Because we are dealing

with polynomials of non-negative coefficients, there should be many generic roots with

negative real parts. Comparing with the random sample in part (c) of Figure 2, we see

a beautiful clustering of points in the first quadrant (and, by complex conjugation, the

fourth).

‖Traditionally, the now-famous plot, first appearing in [25], is done with χ = 2(h1,1 − h2,1) as
abscissa and h1,1 + h2,1 as ordinate.
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(a) (b)

Figure 4: (a) The Hodge numbers, with h1,1 as the abscissa and h2,1, the ordinate, of all
the known Calabi-Yau threefolds. (b) The position, on the complex plane, of the zeros of
their Poincaré polynomials.

Next, let us test for how many Poincaré polynomials −1 is a root; these, as men-

tioned above, would correspond to manifolds which have more than one isometries.

Interestingly, of the some 30000, only 148 pass the test. These turn out to be only

the 148 known self-mirror manifolds; we plot their Hodge numbers in Part (a) of Fig-

ure 5 (the values of Hodge numbers range from (1, 1) to (251, 251), skipping many high

values, as well as the number 13). Indeed, this is a simple consequence of palindromic-

ity as one sees that, upon substituting t = −1 into P (t;X) in Eq. (2.2), we obtain

P (−1;X) = 2(h1,1 − h2,1) = χ(X), the Euler characteristic. In Part (b), we plot all

the other roots as well, and see that these constitute a portion of the small crescent

around the origin.

2.2 Calabi-Yau Fourfolds

Having explored the space of Calabi-Yau threefolds, it is automatic to proceed onto the

space of fourfolds, a relative terra incognita. We again resort to the wonderful database

compiled by Kreuzer-Skarke [26,47]. Now, there are, totaling the hypersurfaces in toric

fivefolds, 14598161 manifolds, with 3015056 distinct triplet of Hodge numbers. To
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(a) (b)

Figure 5: (a) The Hodge number of self-mirror Calabi-Yau threefolds; these have −1 as a
root of the Poincaré polynomial. (b) All of the roots of the Poincaré polynomial of these
self-mirrors.

explain this triplet notation, we remind the reader of the Hodge diamond of compact,

connected, smooth Calabi-Yau fourfolds, adhering to the nomenclature and explanation

of [48]:

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

h2,2 = 44 + 4h1,1 − 2h2,1 + 4h3,1;

(b0 = b8, b1 = b7, b2 = b6, b3 = b5, b4) =

(1, 0, ;h1,1, 2h2,1, 2 + 2h3,1 + h2,2) =

(1, 0, h1,1, 2h2,1, 46 + 4h1,1 − 2h2,1 + 6h3,1)

(2.3)

We note that though seemingly there are four degrees of freedom, owing to topological

constraints in complex dimension four or higher, as exhibited by the above relation of

h2,2 with the others, there are really only three independent Hodge numbers, which

we choose as (h1,1, h2,1, h3,1); in terms of this triplet we express the Betti numbers,

as shown above. Consequently, we can write the Poincaré polynomial of the fourfold,
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from the Betti numbers in Eq. (2.3), as

P (t;X) = 1+h1,1t2 +2h2,1t3 +(46+4h1,1−2h2,1 +6h3,1)t4 +2h2,1t5 +h1,1t6 + t8 . (2.4)

Following [48], we plot h1,1 + h3,1 as ordinate versus h1,1 − h3,1 as abscissa, which

demonstrates mirror-like behaviour∗∗. We also plot h1,1+h2,1 versus h1,1−h2,1, showing

that the behaviour in the applicate direction is rather trivial. These are shown in

Figure 6.

(a) (b)

Figure 6: (a) The Hodge numbers, with h1,1 − h3,1 as the abscissa and h1,1 + h3,1, the
ordinate, of the fourfolds from Kreuzer-Skarke’s database. (b) The same, but with h1,1−h2,1

as the abscissa and h1,1 + h2,1 as the ordinate.

We now repeat the experiment undertaken for threefolds. First, we plot the space

of generic roots, and present them in Figure 7. In part (a), a sample of 50000 random

integer octic polynomials with coefficients in [0, 2500000] (making sure that the highest

coefficient at degree 8 is not 0) as a comparative basis: octic, since we will be contrasting

with degree 8 Poincaré polynomials, upper bound of 2500000, since we can see from

Figure 6 and Eq. (2.3), that the Min and Max of the Hodge numbers are respectively

(h1,1, h2,1, h3,1) ∈ ([1, 303148], [0, 2010], [1, 3030148]), so that the upper bound to the b4

term is 2425228. Next, in part (b), we plot the same, but for monic palindromic octics,

i.e., P (t) = 1+b1t+b2t
2+b3t

3+b4t
4+b3t

5+b2t
6+b1t

7+t8. Finally, in (c), we restrict once

∗∗Though in cit. ibid., only the hypersurfaces in weighted CP5 were considered, whereas here we
plot the entirety of the known fourfolds.
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more, so that the linear term vanishes, i.e., P (t) = 1+b2t
2 +b3t

3 +b4t
4 +b3t

5 +b2t
6 + t8.

(a) (b) (c)

Figure 7: (a) The position, on the complex plane, of the zeros of 50000 random integer
polynomials with coeffcients between 0 and 2500000. (b) The same, but with monic
palindromic octics. (c) Monic palindromic octics, and with linear term vanishing.

In contradistinction to these generic results, we can now find all the complex roots

of the Poincaré polynomials of all known Calabi-Yau fourfolds. The three million or

so distinct Hodge data now presents a heavy computational challenge, on which a

Quadra-core MacPro with 40Gb of memory laboured for a week, to produce some 23

million complex roots. We present a scatter plot of these roots in part (a) of Figure 8.

In part (b) of the same figure, we magnify it slightly to emphasize the same range as

the random plots in Figure 7.

(a) (b)

Figure 8: (a) The position, on the complex plane, of the some 23 million zeros of the
Poincaré polynomials of the approximately 1 million smooth Calabi-Yau fourfolds arising as
hypersurfaces in toric five-folds. (b) A slightly magnified area emphasizing the ordinate in
the range [−1, 1].
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The theorem that −1 being a root of the Poincaré polynomial of X implies X has

rank exceeding unity is generally applicable. Hence, we can continue with this analysis.

Now, Eq. (2.4) implies that††

P (−1, X) = 48 + 6(h1,1 − h2,1 + h3,1) = χ(X) . (2.5)

However, the relation between χ and being self-mirror, or even the concept of the

latter, is obviously not as clear in complex dimension greater than three. Be that as it

may, we can still examine Eq. (2.5) in the the space of fourfolds. Of the some 3 million

distinct triplets, there are only 61 with vanishing Euler number, which we demonstrate

in Figure 9: in part (a), h1,1 + h3,1 against h1,1 − h3,1, and in part (b), h1,1 + h2,1

against h1,1 − h2,1. We see that these are all of relatively small Hodge numbers, and

in part (b), we see that in spite of the general linear behaviour seen in part (b) of

Figure 6, there is some sub-structure. In part (c), we plot the interesting shape of the

roots of the Poincaré polynomials for these 61 members. In retrospect to Figure 6, we

(a) (b) (c)

Figure 9: (a) The Hodge numbers, with h1,1 − h3,1 as the abscissa and h1,1 + h3,1, the
ordinate, of the fourfolds which have vanishing Euler number, and hence rank exceeding
unity. (b) The same, but with h1,1 − h2,1 as the abscissa and h1,1 + h2,1 as the ordinate.
(c) The position of the roots, on the complex plane, of the Poincaré polynomial of these
61 spaces out of the some 3 million.

see that perhaps the closest notion to mirror symmetry in complex dimension four is

the interchange of h1,1 and h3,1. Of the circa 3 million, we find 5009 which have the

property that h1,1 = h3,1. We plot the pairs (h1,1 = h3,1, h2,1) in part (a) of Figure 10

††Of course, the last equality follows directly for the definition of the the Euler characteristic χ(X).
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and the roots of their Poincaré polynomials in part (b).

(a) (b)

Figure 10: (a) The Hodge numbers, with h1,1 = h3,1 as the abscissa and h2,1, the ordinate,
of the “self-mirror” Calabi-Yau fourfolds. (b) The position of the roots of the Poincaré
polynomials of these 5009 spaces.

3 Non-Compact Calabi-Yau Geometries, Toric Di-

agrams and Newton Polynomials

Having indulged in an excursion into the space of compact smooth Calabi-Yau three-

folds and fourfolds, as well as their Poincaré polynomials, proceeding to the space of

non-compact Calabi-Yau geometries is almost a perfunctory next step. These are affine

varieties such as flat space Cd and singularities which locally admit Gorenstein resolu-

tions, and are central to McKay Correspondence and generalizations in mathematics as

well as AdS/CFT and branes in string theory. A rich tapestry on this subject has been

woven over the past few decades, whereby augmenting the relevance of our present

investigation.

The most important family of non-compact Calabi-Yau geometries is indubitably

those which afford toric description, as mentioned in the introduction. In complex

dimension three, the Calabi-Yau condition compels the toric diagram to be co-planar,

whence each is characterized by a (convex) lattice polygon D = {vi}, with each vi ∈ Z2.
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Therefore, a polynomial which instantly springs to mind is the Newton polynomial

D = {(xi, yi)} ⇒ P (z, w;X) =
∑
i

aiz
xiwyi ∈ C[z, w] , (3.1)

where we have inserted potential coefficients ai for generality. This is not a frivolous

act; indeed, when ai ∈ Z≥0, they are the so-called “multiplicities” first defined in [32]

and play a vital rôle in comprehending the dimer model/brane tiling interpretation of

toric gauge theories [33,34,42].

The most famous toric diagrams for affine Calabi-Yau threefolds are depicted in

Figure 11, with the endpoints at the self-explanatory lattice points in Z2; these include

the reflexive polytopes in dimension two, and are commonly known as (a) C3, (b)

the conifold, (c) the suspended pinched point (SPP), (d) affine cone over the zeroth

Hirzebruch surface F0 = P1 × P1, (e) dP0 = C3/Z3, the affine cone over P2, and (f,g,h)

dPn, cones over respectively the first, second and third del Pezzo surfaces which are P2

blown up at n = 1,2,and 3 generic points.

Figure 11: The most popular affine Calabi-Yau threefold toric diagrams, corresponding
respectively to (a) C3, (b) conifold, (c) SPP, (d) F0, and (e,f,g,h) dP0,1,2,3. The end points
are at the standard lattice points in Z2.
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An immediate difficulty with Eq. (3.1) is, of course, that the polynomial is bi-variate,

whereby describing, algebraically, Riemann surfaces. Even though such surfaces are

crucial in the understanding of the gauge theory constructed on branes probing these

affine toric Calabi-Yau spaces‡‡, the notion of zeros is not obvious. We could, for

example, set one of the coördinates to a fixed value, and consider the roots of the

resulting uni-variate projection. This, however, does not seem particularly natural.

Nevertheless, for illustrative purposes, we include a few examples in Figure 12, wherein

we have set z to 1, varied the coefficients ai randomly and integrally in [−5, 5], and

plotted the roots of the resulting polynomial in w for 5000 samples.

Figure 12: The roots of the Newton polynomials P (z, w) at z = 1, for (a) the conifold,
(b) F0, (c) dP1 and (d) dP3.

A much more natural and, as it turns out, interesting direction to take is to consider

Eq. (3.1) not as a complex, but as a real, curve. For comparative purposes, we should

be mindful of the “amoebae” and so-dubbed “algae” projections proposed in [42], which

are, respectively the (natural log of the) real and imaginary projections of the Newton

polynomials of the associated toric Calabi-Yau threefold.

In this regard, perhaps the most significant quantity for our complex Newton

polynomials is the set of turning points in R2, viz., the set of real critical points of

P (z, w) ∈ R[z, w]. In other words, we find the simultaneous real solutions to

∂zP (z, w) =
∑
i

aixiz
xi−1wyi = 0 , ∂wP (z, w) =

∑
i

aiyiz
xiwyi−1 = 0 , (3.2)

with ai randomly sampled and discard the imaginary solutions. This, indeed, brings

‡‡Cf. [42] for discussion on a web of inter-relations and various projections and spines of these
Riemann surfaces.
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us back to Waring’s original considerations on non-real roots.

In Figure 13, we take a fixed toric diagram corresponding to a given Calabi-Yau

geometry, and consider the Newton Polynomial in Eq. (3.1). Then, we sample 50000

random integer coefficients ai in an appropriate range, here taken to be [−10, 10]. For

each, we find the real critical points, and collectively plot them. We note that C3

does not that any real critical points and is thus left out. This is because the Newton

polynomial is simply a + bz + cw for a, b, c ∈ Z. Thus, Eq. (3.2) gives b = c =

0, independent of (z, w) coödinates. Similarly, the case of (b), the conifold, can be

considered a reference point. The Newton polynomial is a + bz + cw + dzw, whence,

the critical points are given by the solutions of b+dw = c+dz = 0, or, w0 = −b/d, z0 =

−c/d. Hence, given that each of b, c, d is independently randomly evenly distributed,

the turning points (z0, w0) are then distributed as quotients of even random samples,

and whence the clustering nearer to the lower values as seen in the darker region in

the figure.

(b) (c) (d)

(e) (f) (g) (h)

Figure 13: In reference to the toric diagrams in Figure 11, for each Calabi-Yau threefold
geometry, we find the corresponding Newton polynomial as a real algebraic curve. We
sample over 50000 random integer coefficients in the range [−10, 10], and isolate the real
critical points in R2, which are then plotted collectively for (b) conifold, (c) SPP, (d) F0,
and (e,f,g,h) dP0,1,2,3.
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