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Abstract

We consider an extension of the classical compound Poisson risk model, where

the waiting time between two consecutive claims and the forthcoming claim are

no longer independent. Asymptotic tail probabilities of the reinsurance amount

under ECOMOR and LCR treaties are obtained. Simulation results are provided

in order to illustrate this.

Keywords: Dependence, ECOMOR and LCR reinsurance, Long-tailed distribu-
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1 Introduction

Insurance companies often seek reinsurance to protect themselves against catastrophic

losses. Such reinsurance comes in many forms. Excess of loss and stop loss coverages are
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common, and the risks associated with these coverages have been thoroughly studied in

the literature. Two lesser-known reinsurances are ECOMOR (excédent du coût moyen

relatif) and LCR (largest claims reinsurance). This may be due to their mathematical

complexity. Under ECOMOR, the reinsurer pays the sum of the exceedances of the l

largest claims over the l + 1st largest claim. Under LCR, the reinsurer pays the sum

of the l largest claims. These forms of reinsurance were introduced to actuaries by

Thépaut (1950) and Ammeter (1964), respectively.

The purpose of this paper is to establish the asymptotic tail probabilities of the rein-

surance amount under ECOMOR and LCR. This problem is considered by Ladoucette

and Teugels (2006a and b) under the assumption that the claim amounts are iid and

independent of the claim arrival process. Kremer (1998) provides an upper bound for

the reinsurance premium when the claim amounts are not necessarily independent. In

this paper, we consider a different dependence assumption. That is, we assume that the

interarrival time and the forthcoming claim size are dependent. In the context of ruin

theory, similar risk models are discussed by Albrecher and Boxma (2004), Albrecher

and Teugels (2006) and Boudreault et al. (2006).

We consider a risk process for which the claim sizes Xi, i = 1, 2, . . . are assumed to

be positive iid rvs with common distribution function F . Moreover, the claim arrival

process {N(u), u ≥ 0} is assumed to be a homogeneous Poisson process with intensity

λ > 0. Let XN(t),1 ≥ XN(t),2, . . . be the order statistics corresponding to the claim sizes

occurring on the time horizon of interest, [0, t]. Then the reinsurance amounts under

ECOMOR and LCR are given by

El(t) =
l∑

i=1

(XN(t),i −XN(t),l+1)I{N(t)>l}, (1)

and

Ll(t) =
l∑

i=1

XN(t),iI{N(t)≥l}. (2)

As stated above, our primary objective is to obtain asymptotic tail probabilities for

the reinsurance amount under ECOMOR and LCR reinsurance treaties. These results

can be used in analyzing risk measures associated with these contracts.
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2 Preliminaries

2.1 Definitions

The dependence structure associated with the distribution of a random vector can be

characterized in terms of a copula. A two-dimensional copula is a bivariate distribution

function defined on [0, 1]2 with uniformly distributed marginals. Due to Sklar’s Theorem

(see Sklar, 1959), if F is a joint distribution function with continuous marginals F1 and

F2 respectively, then there exists a unique copula, C, given by

C(u, v) = F (F←1 (u), F←2 (v)),

where h←(u) = inf{x : h(x) ≥ u}. Similarly, the survival copula is defined as the copula

relative to the joint survival function and is given by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v).

A more formal definition and properties of copulas are given in Nelsen (1999).

There are many characterizations of heavy-tailed distributions, but one of the largest

families is the class L of long-tailed distributions. By definition, a df F = 1− F̄ belongs

to L if

lim
t→∞

F̄ (t+ x)

F̄ (t)
= 1, for all x ∈ ℜ.

Note that, the convergence is uniform on compact subsets of ℜ. One of the most

important subclasses is the class S of sub-exponential distributions. By definition, a df

F with positive support belongs to S if

lim
x→∞

Pr(X1 +X2 > x)

Pr(X > x)
= 2,

where X1 and X2 are independent copies of X. For more details on heavy-tailed distri-

butions, we refer the reader to Bingham et al. (1987) and Embrechts et al. (1997).

2.2 Assumptions and Examples

Let Wi be the time between the (i− 1)st and ith claims. This model relaxes the usual

assumption of independence between Wi and Xi. The following assumptions for the

underlying dependence structure are sufficient to establish our main results.
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Assumption 1 The random vectors (Xi,Wi), i = 1, . . . , N(t), are mutually indepen-

dent and identically distributed, and the generic pair (X1,W1) has absolutely continuous

copula C with corresponding survival copula Ĉ.

Assumption 2 There exists a v0 ∈ (0, 1) and a function g such that

lim
u↓0

ĉ2(u, v)

u
= g(v), for all v ∈ [v0, 1],

where ĉ2(u, v) := ∂vĈ(u, v).

Below are some examples of copulas given in Nelsen (1999) which satisfy Assump-

tions 1 and 2.

Example 1 Independence

C(u, v) = uv,

with g(v) = 1.

Example 2 Ali-Mikhail-Haq

C(u, v) =
uv

1− θ(1− u)(1− v)
, θ ∈ [−1, 1],

with g(v) = 1 + θ(1− 2v).

Example 3 Clayton

C(u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ (0,∞),

with g(v) = (1 + θ)(1− v)θ.

Example 4 Farlie-Gumbel-Morgenstern

C(u, v) = uv + θuv(1− u)(1− v), θ ∈ [−1, 1],

with g(v) = 1 + θ(1− 2v).

Example 5 Frank

C(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ ℜ \ {0},

with g(v) = θeθ(1−v)/(eθ − 1).
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Example 6 Plackett

C(u, v) =
1 + (θ − 1)(u+ v)−

√
(1 + (θ − 1)(u+ v))2 − 4uvθ(θ − 1)

2(θ − 1)
, θ ∈ ℜ+ \ {1},

with g(v) = θ/(1 + (θ − 1)v)2.

Note that, while all six of the above examples involve a symmetric copula, this is not

necessary. In particular, Assumptions 1 and 2 are satisfied by the asymmetric copula,

Ck,l(u, v) = u1−kv1−lC(uk, vl),

for many of the well-known absolutely continuous symmetric copulas C given in Nelsen

(1999) and 0 < k, l < 1. This construction of an asymmetric copula was proposed by

Khoudraji (1995).

We also note that Assumptions 1 and 2 imply the existence of the limit

lim
x→∞

Pr(W1 ≤ w |X1>x).

This is a special case of the characterization of random vectors with one extreme com-

ponent given by Heffernan and Resnick (2007).

3 Main results

3.1 Order statistics

In the first part of this section, we derive the asymptotic behavior of the lth largest

order statistic XN(t),l. Recall that the joint pdf of the interarrival times conditioned on

the number of claims by time t is

fW1,...,Wn|N(t)=n
(w1, . . . , wn) =

n!

tn
, on Dn =

{
(w1, . . . , wn) : 0 <

n∑
j=1

wj < t, i = 1, . . . , n

}

(see, for example, Embrechts et al., 1997, p. 187), and the marginals are identically

distributed with common density

fW |N(t)=n
(w) =

n(t− w)n−1

tn
, 0 < w < t.
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Proposition 1 If Assumptions 1 and 2 are satisfied with v0 = e−λt, then for any integer

l ≥ 1 we have

Pr(XN(t),l > s) ∼ [Pr(X1 > s)]l K(l) as s → ∞,

where

K(l) =

∫ t

0

∫ t−ω1

0

· · ·
∫ t−

∑l−1
i=1 ωi

0

h(t−
l∑

i=1

ωi, l)
l∏

i=1

g(e−λωi) dw

and

h(x, l) = e−λtλl

∞∑
n=0

(λx)n

n!

(
n+ l

l

)
.

Proof. For simplicity, we focus on the case in which l = 1. Extensions to l > 1 follow

the same logic. We have

Pr(XN(t),1 > s) =
∞∑
n=1

e−λt
(λt)n

n!
Pr
(
XN(t),1 > s |N(t)=n

)
=

∞∑
n=1

e−λtλn

∫
Dn

Pr
(
XN(t),1 > s |W=w, N(t)=n

)
dw

=
∞∑
n=1

e−λtλn

∫
Dn

{
1−

n∏
i=1

[1− Pr(X1 > s |W1=wi
)]

}
dw. (3)

Now,

∞∑
n=1

e−λtλn

∫
Dn

{
n∑

i=1

Pr (X1 > s |W1=wi
)

Pr(X1 > s)

}
dw

=
∞∑
n=1

e−λt
(λt)n

n!
n2

∫ t

0

Pr (X1 > s |W1=w)

Pr(X1 > s)
× (t− w)n−1

tn
dw. (4)

And since the inequality

n

∫ t

0

Pr (X1 > s |W1=w)

Pr(X1 > s)
× (t− w)n−1

tn
dw < eλt

n

λ

∫ t

0

(t− w)n−1

tn
dw = eλt/λ

holds for any s > 0, we can apply the Dominated Convergence Theorem to show that

(4) is asymptotically equivalent to

∞∑
n=1

e−λt
λn

(n− 1)!
n

∫ t

0

g(e−λw)(t− w)n−1 dw

= e−λtλ

∫ t

0

g(e−λw)
∞∑
n=0

(n+ 1)

n!
[λ(t− w)]n dw.
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Note that we used the fact that Pr (X1 > s |W1=w) ∼ Pr(X1 > s)g(e−λw), which is a

straightforward implication of Assumption 2. The interchange of the summation and

integral is due to Pratt’s Lemma (see Pratt, 1960). In a similar manner, the remaining

terms of (3) can be shown to be o(Pr(X1 > s)). The proof for the case l = 1 is now

complete. �
Some examples with a simple closed form for the asymptotic constant K(1) from

Proposition 1 are now given. In Example 1, the explicit form of the asymptotic constant

is K(l) = (λt)l/l!, which is the lth factorial moment of the counting process. That is,

K(l) = E
{
N(t)(N(t)− 1) . . . (N(t)− l + 1)

l!

}
.

Examples 2 and 4 imply that K(1) = λt− (1− e−2λt)θ/2. In the case of Example 6, we

have

K(1) = 1− θ

θ − 1 + eλt
− λt+ θ ln(θ)− θ ln(θ − 1 + eλt)

θ − 1
.

For other cases, including l > 1, if a closed form is obtainable it is long and complicated.

3.2 ECOMOR and LCR reinsurance

This section contains the main results of this paper. More specifically, the asymptotic

tail probability results for the ECOMOR and LCR reinsurances on finite horizon [0, t]

are obtained. Recall that we allow dependence between claim amount and interarrival

time and the number of claims process is assumed to be homogeneous Poisson. These

results are motivated by the work of Ladoucette and Teugels (2006a) which assumes

that the claim and number of claims processes are independent; the counting process is

assumed to be a mixed Poisson process. They provide explicit results for the ECOMOR

reinsurance when the horizon is finite. Specifically,

Pr(El(t) > s) ∼ Pr(XN(t),1 > s) as s → ∞,

for any l ≥ 1, provided that X1 ∈ L. We conclude that the same results follow under

our assumptions for both reinsurances and sub-exponential claim size.
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Theorem 1 If Assumptions 1 and 2 are satisfied with v0 = e−λt, and F ∈ S, then for

any integer l ≥ 1 we have

Pr(El(t) > s) ∼ Pr(Ll(t) > s) ∼ Pr(XN(t),1 > s) as s → ∞.

Proof. We first prove the LCR case. Clearly,

Pr(XN(t),1 > s) ≤ Pr(Ll(t) > s) = Pr(XN(t),1 > s) + Pr(Ll(t) > s,XN(t),1 ≤ s). (5)

Now, by following the steps as in the proof of Proposition 1, one may obtain that

Pr(Ll(t) > s,XN(t),1 ≤ s) (6)

≤
∞∑
n=l

e−λtλn

∫
Dn

∑
i1 ̸=i2 ̸=... ̸=il

Pr

( ∑
j=1,...,l

Xij > s, max
j=1,...,l

Xij ≤ s |W=w, N(t)=n

)
dw.

Recall that due to our assumptions the random variables Xi |Wi=wi
are independent

and Pr(Xi > s |Wi=wi
) ∼ F̄ (s)g(e−λwi). These and the fact that F ∈ S allow us to

apply Theorem 1 from Cline (1986) which gives that

Pr

( ∑
j=1,...,l

Xij > s, max
j=1,...,l

Xij ≤ s |W=w

)
= o(F̄ (s)),

holds for all distinct integers 1 ≤ i1, . . . , il ≤ n. The latter together with equations (5)

and (6) complete the proof for the LCR case, provided that the Dominated Convergence

Theorem can be applied to equation (6). From equation (6)

Pr(Ll(t) > s,XN(t),1 ≤ s)/F̄ (s)

≤
∞∑
n=l

e−λtλnnl

∫
Dn

Pr

(
n∑

i=1

Xi > s |W=w, N(t)=n

)
dw/F̄ (s)

≤
∞∑
n=l

e−λtλnnl

∫
Dn

Pr

(
n∑

i=1

Yi > s

)
dw/F̄ (s), (7)

where Y1, Y2, . . . are iid random variables with df G(s) = max
{
0, 1− eλt

λ
F̄ (s)

}
. Note

that the last inequality follows due to

Pr(Xi > s |Wi=wi
) ≤ eλt

λ
F̄ (s).
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Since F ∈ S and Pr(Y1 > s) ∼ eλt

λ
F̄ (s), Theorem 1 from Cline (1986) gives that G ∈ S.

The latter and Lemma 1.3.5 from Embrechts et al. (1997) implies that there exists a

finite constant C such that for all s

Pr (
∑n

i=1 Yi > s)

F̄ (s)
≤ C2nmin

{
1,

eλt

λ

}
,

which together with equation (7), allow us to conclude that the Dominated Convergence

Theorem can be applied to equation (6). The proof is now complete for the LCR case.

It is easy to get

Pr(XN(t),1 > s)− Pr(El(t) ≤ s,XN(t),1 > s) ≤ Pr(El(t) > s) ≤ Pr(Ll(t) > s),

which implies that

Pr(El(t) ≤ s,XN(t),1 > s) = o(F̄ (s)) (8)

is sufficient to prove in order to conclude the ECOMOR case.

Again, as in the proof of Proposition 1 the following holds

Pr(El(t) ≤ s,XN(t),1 > s) ≤
∞∑

n=l+1

e−λtλn

∫
Dn

∑
i1 ̸=i2 ̸=... ̸=il+1

(9)

Pr

(
Xi1 > s,

l∑
j=1

(Xij −Xil+1
) ≤ s,Xi1 ≥ Xi2 ≥ . . . ≥ Xil+1

|W=w, N(t)=n

)
dw.

We first prove that each summation term is o(F̄ (s)). Let Zi = Xi |Wi=wi
. Now,

Pr

(
Z1 > s,

l∑
j=1

(Zi − Zl+1) ≤ s, Z1 ≥ Z2 ≥ . . . ≥ Zl+1

)

= Pr

(
Z1 > s ≥ Z2 ≥ . . . ≥ Zl+1,

l∑
j=1

(Zi − Zl+1) ≤ s

)
+ o(F̄ (s)). (10)

The remaining term from the above equation is bounded by∫
· · ·
∫

{lyl+1−
∑l

i=2 yi≥0}

Pr

(
s < Z1 ≤ s+ lyl+1 −

l∑
i=2

yi, (Z2, . . . , Zl+1) ∈ dz

)
= o(F̄ (s)), (11)

where the last step is a consequence of the Dominated Convergence Theorem and the

fact that the df of rvs Zi belong to the class L.
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From equation (9), for any s we have

Pr(El(t) ≤ s,XN(t),1 > s)

F̄ (s)

≤
∞∑

n=l+1

e−λtλn

∫
Dn

∑
i1 ̸=i2 ̸=... ̸=il+1

Pr
(
Xi1 > s |W=w, N(t)=n

)
F̄ (s)

dw

≤
∞∑

n=l+1

λn−1nl+1 t
n

n!
.

This allows us to apply the Dominated Convergence Theorem in equation (9), which

together with equations (10) and (11) we get (8). This completes the proof for the

ECOMOR case. �

3.3 Another Dependence Model

Boudreault et al. (2006) consider a risk process for which each claim amount is depen-

dent on the waiting time until the claim as follows:

Pr(X1 > x |W1=w) = e−βwF̄1(x) + (1− e−βw)F̄2(x),

where F1 = 1 − F̄1 and F2 = 1 − F̄2 are distribution functions of positive random

variables such that F2 has a heavier tail than F1. It follows that

Pr(X1 > x |W1=w)

Pr(X1 > x)
∼ λ+ β

β
(1− e−βw), x → ∞. (12)

Therefore, Proposition 1 holds with g(e−λw) replaced by the right hand side of (12), and

Theorem 1 holds. This illustrates that, even when we cannot explicitly characterize the

dependence structure of W1 and X1 via the copula, we can still obtain the asymptotic

results as long as the limit of Pr(X1 > x |W1=w)/Pr(X1 > x) exists.

4 Simulation Study

To explore the results given in Proposition 1 and Theorem 1, a simulation study was

performed. It was assumed that claim amounts have a Pareto distribution with distri-

bution function

FX1(x) = 1− (1 + x)−α, x ≥ 0
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with α equal to 1 and 2. The dependence of the claim amount and the waiting time

until the claim is given by the Ali-Mikhail-Haq copula given in Example 2 with values

of θ equal to -0.9, 0.1 and 0.9.

Each analysis consists of 1,000,000 simulations of the risk process with λ = 1 and

time horizon t = 50. For each simulation, the values of XN(50),1, L2(50) and E1(50)

were calculated. Probabilities associated with these three random variables were then

estimated from the empirical distributions arising from the simulated samples of size

1,000,000. Probabilities associated with the random variable X1, were estimated from

the empirical distribution of all simulated claim amounts. These estimates were used

to obtain the ratios presented in Tables 1, 2, 3 and 4.

For the ratios in Tables 1 and 2, the speed of convergence increases with θ, the

strength of dependence. For α = 2 the ratios converge quickly to 1.

Table 1: Estimated probability ratios, Pr(XN(50),1 > s)/K(1) Pr(X1 > s), when α = 1
and θ ∈ {−0.9, 0.1, 0.9}.

s −0.9 0.1 0.9
500 0.9413 0.9533 0.9623
1000 0.9654 0.9772 0.9852
2000 0.9782 0.9884 0.9978
2500 0.9806 0.9908 0.9997
4000 0.9843 0.9942 1

Table 2: Estimated probability ratios, Pr(XN(50),1 > s)/K(1) Pr(X1 > s), when α = 2
and θ ∈ {−0.9, 0.1, 0.9}.

s −0.9 0.1 0.9
50 0.9815 0.9924 0.9999
150 0.9907 0.9997 1.0074
250 0.9912 0.9998 1.0088
500 0.9912 1.0010 1.0088
1000 0.9912 1.0010 1.0088

The probabilities involving L2(50) and E1(50) are compared with those involving

XN(50),1 in Tables 3 and 4 for θ ∈ {−0.9, 0.1, 0.9} and α = 1, α = 2, respectively. For
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both cases, there does not appear to be an effect from θ, indicating that unlike the

maximum, LCR and ECOMOR are not affected by the strength of dependence. In

addition, when α = 2, the rate of convergence is faster than when α = 1.

Table 3: Estimated probability ratios, Pr(L2(50) > s)/Pr(XN(50),1 > s) and
Pr(E1(50) > s)/Pr(XN(50),1 > s), when α = 1 and θ ∈ {−0.9, 0.1, 0.9}.

LCR ECOMOR

s\θ −0.9 0.1 0.9 −0.9 0.1 0.9

500 1.2169 1.2155 1.2165 0.8394 0.8401 0.8395
1000 1.1456 1.1443 1.1422 0.8931 0.8928 0.8944
2000 1.0906 1.0853 1.0876 0.9334 0.9590 0.9332
2500 1.0740 1.0750 1.0755 0.9389 0.9402 0.9461
4000 1.0535 1.0509 1.0533 0.9563 0.9613 0.9594

Table 4: Estimated probability ratios, Pr(L2(50) > s)/Pr(XN(50),1 > s) and
Pr(E1(50) > s)/Pr(XN(50),1 > s), when α = 2 and θ ∈ {−0.9, 0.1, 0.9}.

LCR ECOMOR

s\θ −0.9 0.1 0.9 −0.9 0.1 0.9

50 1.5466 1.5630 1.5508 0.7270 0.7268 0.7269
150 1.1964 1.1744 1.1797 0.8787 0.8873 0.8820
250 1.1023 1.0966 1.1006 0.9223 0.9136 0.9301
500 1.0506 1.0598 1.0276 0.9545 0.9620 0.9585
1000 1 1.0189 1.0204 0.9821 0.9783 1
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Embrechts, P., Klüppelberg, C. and Mikosch, T. 1997. Modelling Extremal Events for Insur-

ance and Finance. Springer-Verlag, Berlin.

Heffernan, J.E. and Resnick, S.I. 2007. “Limit laws for random vectors with an extreme

component,” Annals of Applied Probability, 17(2), 537-571.

Kremer, E. 1998. “Largest Claims Reinsurance Premiums under Possible Claims Depen-

dence,” ASTIN Bulletin, 28(2), 257-267.
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