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The 20th 
entury has witnessed some of the largest and most widespread gains in human

longevity ever witnessed, whi
h show no sign of slowing down during the early years

of the 21st 
entury. The risk of further, higher than anti
ipated improvements in life

expe
tan
y - known as longevity risk - is now a major and growing �eld of study. This

thesis investigates a number of theoreti
al and pra
ti
al problems within the �eld of

longevity risk relating to the stru
ture and identi�ability issues within many of the most


ommon models used to study mortality rates, the 
onstru
tion of new mortality models,

the proje
tion of these models into the future, the impa
t of di�eren
es in the level and

evolution of mortality rates in di�erent populations (su
h as pension s
hemes) and the

market-
onsistent valuation and measurement of risk in longevity-linked liabilities and

se
urities.
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Chapter 1

Introdu
tion

The 20th 
entury has witnessed some of the largest and most widespread gains in human

longevity ever witnessed, whi
h show no sign of slowing down during the early years of

the 21st 
entury. Whilst this is overwhelmingly a sign of human progress, the extended

period people now expe
t to spend in retirement has profound �nan
ial 
onsequen
es

for those providing pensions and retirement annuities - governments, life assuran
e 
om-

panies and pension s
hemes. Therefore, this risk of further, higher than anti
ipated

improvements in life expe
tan
y � known as longevity risk � is now a major and growing

�eld of study.

Prior to starting my resear
h, I worked as a quali�ed pensions a
tuary in the UK. As

part of this, I was involved in advising 
ompanies and trustees on the options regard-

ing de-risking pension s
hemes and was se
onded to assist with the modelling of the

�rst multi-billion pound longevity swap deal. I have, therefore, seen �rst-hand that the

tools available to quantify and manage longevity risk in pension s
hemes and annuity

books were inadequate to the task. The standard proje
tions of mortality rates used

often 
ontained arbitrary and unrealisti
 assumptions, su
h as a tailing-o� of the rate

of improvement, whi
h has been often predi
ted but has yet to be observed. They were

also usually based on national populations with no indi
ation of how the experien
e of a

spe
i�
 sub-population would be di�erent. Most importantly however, they were deter-

ministi
, so were not able to give an indi
ation of the un
ertainty due to longevity risk

in the liabilities.

As a result, I was often unable to satisfa
torily answer many of the questions regarding

longevity risk I was asked during the 
ourse of my work. These were primarily pra
ti
al

in nature and involved the quanti�
ation of longevity risk and its �nan
ial impli
ations.

1



Introdu
tion

The topi
s 
overed in my resear
h have, therefore, attempted to shed light on some of

these pra
ti
al issues.

However, as a result of the dissertation for my MRes (the PhD-level training programme

whi
h 
omprises the �rst year of the do
toral programme, prior to starting resear
h in

earnest), I be
ame in
reasingly aware that many of the tools developed in a
ademia were

also inadequate to providing answers to these questions. Spe
i�
ally, I found that simple

models, su
h as the ben
hmark Lee-Carter and Cairns-Blake-Dowd models, were unable

to 
apture the observed behaviour of mortality rates in the histori
al data and, therefore,

would underestimate the potential longevity risk in future. However, more 
ompli
ated

models su�ered from a la
k of robustness when estimating parameters and 
ompli
ated

identi�ability issues within the models. Therefore, my resear
h also needed to enhan
e

the understanding of the issues whi
h limited the pra
ti
ality of more 
ompli
ated models

and to improve the range of models used to predi
t mortality rates, before investigating

the more pra
ti
al issues I had en
ountered in my work.

To a
hieve these aims for my resear
h, my thesis 
omprises of four broad parts, ea
h


ontaining 
hapters whi
h are linked themati
ally:

• Part I - Stru
ture, Identi�ability and Constru
tion of Age/Period/Cohort Mortality

Models

� Chapter 2 - Stru
ture and Classi�
ation of Mortality Models

� Chapter 3 - Identi�ability in Age/Period Mortality Models

� Chapter 4 - Identi�ability in Age/Period/Cohort Mortality Models

� Chapter 5 - A General Pro
edure for Constru
ting Mortality Models

• Part II - Proje
tion of Mortality Rates for Single or Multiple Populations

� Chapter 6 - Consistent Mortality Proje
tions Allowing for Trend Changes and

Cohort E�e
ts

� Chapter 7 - Identi�ability, Cointegration and the Gravity Model

� Chaprer 8 - Modelling Longevity Bonds: The Swiss Re Kortis Bond

• Part III - Modelling Mortality for Pension S
hemes

� Chapter 9 - Basis Risk and Pension S
hemes: A Relative Modelling Approa
h

� Chapter 10 - Transferring Risk in Pension S
hemes via Bespoke Longevity

Swaps
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• Part IV - Forward Mortality Models

� Chapter 11 - Forward Mortality Rates in Dis
rete Time I: Calibration and

Se
urities Pri
ing

� Chapter 12 - Forward Mortality Rates in Dis
rete Time II: Longevity Risk

Measurement and Management

These parts form a uni�ed whole and there exist numerous 
onne
tions between 
hapters

in di�erent parts of the thesis. For instan
e, all of the models used are from the 
lass of

age/period/
ohort (APC) mortality models and, therefore, the qualitative understanding

of this 
lass developed in Chapter 2 is fundamental to all of the other 
hapters in this

thesis.

During my MRes dissertation, I en
ountered problems with using the Plat (2009a) model

and, espe
ially, the estimation of the 
ohort parameters within it. In part, I found this

was be
ause the model was not fully identi�ed, namely that I needed to apply an addi-

tional identi�ability 
onstraint on the quadrati
 trend in the 
ohort parameters in order

to obtain a unique set of parameters when �tting the model to data. This need for an

additional identi�ability 
onstraint, whi
h was not mentioned in Plat (2009a), made me

think more generally about identi�ability issues in APC mortality models - both in terms

of why they are present and how we 
an ensure that a model is fully identi�ed. The re-

sult of this analysis developed into Chapters 3 and 4, espe
ially as a result of dis
ussing

the subje
t with Bent Nielsen who drew my attention to the impa
t of identi�ability on

proje
tions. Furthermore, I had attempted to extend the Plat (2009a) model to younger

ages in my MRes, in order to obtain more estimates of more re
ent 
ohort parameters.

However, my attempts to do so resulted in models whi
h la
ked robustness and had

terms added in an ad ho
 fashion, sin
e I la
ked a pro
edure for extending the model

based on the eviden
e of the data. Over
oming this 
hallenge resulted in the �general

pro
edure� of Chapter 5, whi
h was, itself, only possible on
e the identi�ability issues

in more 
ompli
ated APC models was understood. Thus, the work in Part I followed

dire
tly from the issues I en
ountered during my MRes, but laid the foundation for the

subsequent parts of my thesis.

Only on
e the fundamental stru
ture of APC mortality models was understood and a

method for 
onstru
ting 
ompli
ated but robust mortality models was devised 
ould I

begin on the more pra
ti
al aspe
ts of modelling longevity risk. This started with the

methods used to proje
t mortality rates in national populations, whi
h is dis
ussed in in

Part II. These 
hapters start by looking at a single population and then move on to look
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at two population modelling. Mu
h of this work also 
ame from a desire to over
ome the

modelling issues I had en
ountered in the MRes, where I had been for
ed to use to ad ho


��xes� in order to model the Kortis bond. For example, the development of the Bayesian

approa
h for modelling 
ohort parameters in Chapter 6 arose from �nding that 
ohort

parameters existing on the threshold between being estimated and being proje
ted were

poorly estimated and 
hanged dramati
ally if a di�erent range of the data was 
hosen,

whi
h had large impli
ations for my results. In addition, during my MRes, I has ex-

perien
ed issues with using the gravity model of Dowd et al. (2011b) to proje
t period

parameters in a �
oherent� fashion. The analysis of these led dire
tly to the dis
ussion

of identi�ability and 
ointegration in mortality models in Chapter 7. Putting these to-

gether, therefore, Chapter 8 represents an investigation of the same pra
ti
al issues I had

looked at in my MRes dissertation, but armed with the substantially more sophisti
ated

tools I needed to over
ome the problems I en
ountered previously.

This work, however, fo
used on mortality rates in national populations. My ba
kground

as a pensions a
tuary had made me aware that many studies of mortality rates in na-

tional populations had limited appli
ability for the far more data 
onstrained situation

fa
ed by a pension s
heme. It is this 
ontext whi
h informs the work performed in

Part III. One of the key questions for many pension s
heme a
tuaries is, assuming we

have good models for the proje
tion of mortality in a large national population, how


an we quantify the di�eren
es between what is observed nationally and the mortality

rates in a relatively small pension s
heme. Although there have been previous a
ademi


studies on this subje
t, in my opinion most of them were limited by using data for a

far larger sub-population than would be typi
al of a pension s
heme (e.g., the CMI As-

sured Lives dataset). From my work, I knew that the CMI had published data from

the Self-Administered Pension S
hemes study. In addition to being far more relevant

for the investigation of pension s
heme mortality rates, this dataset is also available for

a far more limited range of years than the datasets typi
ally used in previous studies.

It was, therefore, well suited to my purposes. Chapter 9 investigates this dataset us-

ing a �relative� modelling approa
h, and attempts to use this to quantify the potential

for �basis risk� (i.e., di�eren
es in the evolution of mortality rates in the referen
e and

sub-populations). Chapter 10 then uses this analysis to try to model a stylised pension

s
heme and so give insights into the value-for-money of bespoke longevity swaps. This

is an issue whi
h is of great pra
ti
al importan
e, but where I felt very little a
ademi


work had been done.

The �nal part, Part IV, of my resear
h fo
used on the questions of the measurement

and management of longevity risk. One question I was asked by investment professionals
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when I was working was what the value at risk of longevity risk was. On 
onsidering

this issue, I realised that many existing sto
hasti
 models were unable to answer the

question. This is be
ause the majority of the 
hange in the value of any liability or

se
urity linked to longevity relates to 
hanges in expe
tations of mortality rates beyond

the valuation date, rather than 
hanges in the observed rates themselves. To answer

this question required the use of forward mortality rates models. However, those whi
h

existed were extensions of the Heath-Jarrow-Morton framework for interest rates, whi
h

were not designed for mortality rates (and so unable to 
apture many of the observable

features of mortality rates su
h as 
ohort e�e
ts) and operated in 
ontinuous time (whi
h

is not 
ompatible with the majority of a
tuarial valuation te
hniques in use in pra
ti
e).

Chapters 11 and 12 attempt to revolve this by developing a new te
hnique in dis
rete

time based on expe
tations of the for
e of mortality from APC models, and use it for

various risk management problems.

This is a long thesis. I make no apologies for this, sin
e I think it attempts to ta
kle a

number of important questions of great pra
ti
al relevan
e. Although it is 
onstru
ted

as a series of stand-alone papers, the purpose of this introdu
tion is to illustrate the links

between the di�erent 
hapters and show that the thesis is a uni�ed whole, motivated by

a desire to develop and use enhan
ed modelling tools to understand longevity risk.

However, I am aware that a great deal of further work needs to be done in respe
t of the

modelling of longevity risk. For example, I believe there are interesting extensions to the

work in this thesis, su
h as developing the general pro
edure in Chapter 5 to allow for

heterogeneity in the underlying data, exogenous 
ausal variable su
h as smoking preva-

len
e or e
onomi
 fa
tors, or using it for other demographi
 phenomena (su
h as fertility

rates). I would also like to extend the forward mortality framework in Part IV to value

longevity options, in
orporate multi-population mortality proje
tions in Chapter 8 and

the relative model in Chapter 9 into the framework to allow for basis risk in valuation, and

allow for �re
alibration risk� (dis
ussed in Chapter 12). I also believe that identi�ability

in multi-population models, and espe
ially its impa
t on a
hieving 
oherent mortality

proje
tions, is a topi
 worthy of study beyond the relatively brief treatment in Chapter 7.

In summary, my thesis attempts to answer a number of pra
ti
al questions on the subje
t

to longevity risk, and in doing so has resulted in a better understanding of the framework

of the age/period/
ohort models and methods for 
onstru
ting new models. However,

there is mu
h whi
h still remains to be done, and plenty of other areas of resear
h whi
h
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may prove fruitful in future.

Below is a diagrammati
 representation of how the various 
hapters of this thesis depend

upon ea
h other, along with brief abstra
ts, presentation histories and a
knowledgements

for ea
h part and 
hapter, .

1.1 Stru
ture, Identi�ability and Constru
tion of Age/Pe-

riod/Cohort Mortality Models

Mu
h of the analysis of the histori
al evolution of mortality rates is made using models

whi
h de
ompose mortality rates a
ross the dimensions of age, period and 
ohort (or year

of birth). This in
ludes many of the most widely used mortality models, su
h as the Lee-

Carter, Cairns-Blake-Dowd and 
lassi
 APC models. However, APC mortality models

are not fully identi�ed, whi
h 
an lead to problems with estimating the parameters within

them robustly, and require arbitrary identi�ability 
onstraints to be imposed when �tting

them to data, whi
h 
an bias any proje
tions from the model. Part I of the thesis reviews

the fundamental stru
ture of APC mortality models, dis
usses the identi�ability issues

within them and proposes a �general pro
edure� for 
onstru
ting new mortality models

whi
h give a superior �t to the histori
al data.

1.1.1 Stru
ture and Classi�
ation of Mortality Models

I am grateful to Andrés Villegas, Steven Haberman, Bent Nielsen and Ana Debón for

their detailed 
omments regarding this 
hapter.

This 
hapter provides a holisti
 analysis of models whi
h examine the stru
ture of mortal-

ity rates a
ross the dimensions of age, period and 
ohort and examines their similarities

and di�eren
es. Spe
i�
ally, it investigates the stru
ture of APC mortality models, in-

trodu
es a 
lassi�
ation s
heme for existing models and lists the key prin
iples a model

user should 
onsider when 
onstru
ting a new model in this 
lass. This analysis is mainly

qualitative in nature and dis
usses the motivation for many of the subje
tive judgements

made subsequently in the 
ourse of the thesis. In addition, sin
e the models used in the

remainder of this thesis 
ome from this 
lass, a �rm understanding of the APC stru
ture

is vital for the development of more sophisti
ated mortality models and underpins mu
h

of the following work
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ture, Identi�ability and Constru
tion

of Age/Period/Cohort Mortality Models

Chapter 2

Stru
ture and Classi�
a-

tion of Mortality Models

Chapter 3

Identi�ability in Age/Pe-

riod Mortality Models

Chapter 4

Identi�ability in

Age/Period/Cohort

Mortality Models

Chapter 5

A General Pro
e-

dure for Constru
ting

Mortality Models

Part II

Proje
tion of Mortality Rates

for Single or Multiple Populations

Chapter 6

Consistent Mortality

Proje
tions Allowing

for Trend Changes

and Cohort E�e
ts

Chapter 7

Identi�ability, Coin-

tegration and the

Gravity Model

Chapter 8

Modelling Longevity

Bonds: The Swiss
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Part III

Modelling Mortality for

Pension S
hemes

Chapter 9

Basis Risk and Pension

S
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Modelling Approa
h

Chapter 10

Transferring Risk in

Pension S
hemes via

Bespoke Longevity Swaps

Part IV

Forward Mortality Rates

Chapter 11
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Figure 1.1: Dependen
e stru
ture of 
hapters in thesis
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1.1.2 Identi�ability in Age/Period Mortality Models

I am grateful to Andrés Villegas, Steven Haberman, Pietro Millossovi
h, Bent Nielsen

and Ana Debón for their detailed 
omments regarding this 
hapter.

As the �eld of modelling mortality has grown in re
ent years, the models used to analyse

and proje
t mortality rates have grown 
onsiderably more sophisti
ated. However, the

number and importan
e of identi�ability issues within mortality models has also grown in

parallel with this in
reased sophisti
ation. This has led both to robustness problems and

to di�
ulties in making proje
tions of future mortality rates. This 
hapter, therefore,

presents a holisti
 and 
omprehensive analysis of the identi�ability issues in age/period

mortality models (i.e., a subset of the 
lass of models dis
ussed in Chapter 2) in order

to both understand them better and to �nally resolve them. In this 
hapter, we dis
uss

how these identi�
ation issues arise, how to 
hoose identi�
ation s
hemes whi
h aid our

demographi
 interpretation of the models and how to proje
t the models so that our

fore
asts of the future do not depend upon the arbitrary 
hoi
es used to identify the

histori
al parameters estimated from histori
al data. In tandem with Chapter 4, this


hapter resolves many of the theoreti
al and pra
ti
al issues whi
h have hindered the

development of more 
ompli
ated APC mortality models, and thus is fundamental to

the general pro
edure developed in Chapter 5.

1.1.3 Identi�ability in Age/Period/Cohort Mortality Models

I am grateful to Andrés Villegas, Matthias Börger and Bent Nielsen for their detailed


omments regarding this 
hapter.

The addition of a set of 
ohort parameters to a mortality model 
an generate 
omplex

identi�ability issues 
aused by the 
ollinearity between the dimensions of age, period and


ohort, beyond those dis
ussed in Chapter 3. As many modern sophisti
ated mortality

models in
orporate 
ohort parameters, this 
hapter presents a 
omprehensive analysis

of these identi�ability issues and how they 
an be resolved. To a
hieve this, we dis
uss

the origin of identi�ability issues in general APC mortality models before applying these

insights to simple but 
ommonly used mortality models. We then dis
uss how to proje
t

mortality models so that our fore
asts of the future are independent of any arbitrary


hoi
es we make when �tting a model to data in order to identify the histori
al param-

eters. Sin
e the majority of models 
onstru
ted via the general pro
edure of Chapter 5
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and used in the remainder of this thesis in
lude 
ohort parameters, the analysis of the

identi�ability issues in APC mortality models is fundamental to mu
h of the following

work, espe
ially the studies in Chapters 6, 7 and 8.

1.1.4 A General Pro
edure for Constru
ting Mortality Models

This 
hapter has been published in the North Ameri
an A
tuarial Journal in 2014, vol-

ume 18, issue 1, pages 116-138.

Material in this 
hapter was presented at the Eighth International Longevity Conferen
e

in Waterloo, Canada in September 2012 and the Perspe
tives on A
tuarial Risks in Talks

of Young Resear
hers winter s
hool in As
ona, Switzerland, in January 2013. I am grate-

ful to parti
ipants at those 
onferen
es and the anonymous referee for their 
omments.

Many of the more 
ompli
ated APC mortality models proposed re
ently su�er from being

over-parametrised or are extensions of simpler models where terms have been added in

an ad ho
 manner whi
h 
annot be justi�ed in terms of demographi
 signi�
an
e. In ad-

dition, poor spe
i�
ation of a model 
an lead to period e�e
ts in the data being wrongly

attributed to 
ohort e�e
ts, whi
h results in the model making implausible proje
tions.

In this 
hapter, we present a general pro
edure for 
onstru
ting mortality models with

the 
lass of APC models dis
ussed in Chapter 2, using a 
ombination of a toolkit of fun
-

tions and expert judgement. By following the general pro
edure, it is possible to identify

sequentially every signi�
ant demographi
 feature in the data and give it a parametri


stru
tural form. We demonstrate using UK mortality data that the general pro
edure

produ
es a relatively parsimonious model that nevertheless has a good �t to the data.

The studies of Chapters 3 and 4 ensure that these models are fully identi�ed and do not

su�er from robustness issues when �tted to data. The general pro
edure is subsequently

used to 
onstru
t the models used in all of the following studies, Chapters 6, 8, 9, 10, 11

and 12, and so is fundamental to most of the following work.
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1.2 Proje
tion of Mortality Rates for Single or Multiple

Populations

For the majority of pra
ti
al purposes, we not only need to �t a mortality model to

histori
al data but also to use it to proje
t mortality rates into the future. When doing

so, it is important that these proje
ted mortality rates are 
onsistent with the mortality

rates observed in the histori
al data. Furthermore, it is essential that the proje
ted

mortality rates are independent of the arbitrary identi�ability 
onstraints whi
h were

imposed when �tting the model to data. This is an espe
ially large problem in multi-

population mortality models and may 
on�i
t with a desire for �
oheren
e� between

populations, namely that mortality rates in related populations do not diverge. Part II

of this thesis proposes new te
hniques for proje
ting mortality rates in a single population


onsistently with histori
al observations and dis
usses the issue of identi�ability in multi-

population mortality models. We then apply these results to the modelling of the �rst

�longevity trend bond�: the Kortis bond issues by Swiss Re in 2010.

1.2.1 Consistent Mortality Proje
tions Allowing for Trend Changes

and Cohort E�e
ts

Material in this 
hapter was presented at the 17th International Congress on Insuran
e:

Mathemati
s and E
onomi
s in July 2013 in Copenhagen, Denmark. I am grateful to

parti
ipants at that 
onferen
e and to Matthias Börger, Frank van Berkum, Mi
hele

Bergamelli and Andrés Villegas for their 
omments and to Robert Cowell for dis
us-

sions regarding the Bayesian approa
h to modelling 
ohort parameters.

The extrapolative approa
h to proje
ting mortality has the 
ore assumption that there

is 
onsisten
y between the evolution of mortality rates in the past and the future. When

using extrapolative mortality models, there is therefore a fundamental symmetry between

the pro
esses of �tting the model to histori
al observations to �nd parameter estimates,

on the one hand, and proje
ting parameter values to proje
t future observations, on

the other. Consequently, it is important that the models we use to proje
t mortality

genuinely a
hieve 
onsisten
y between the past and the future. This 
hapter proposes

a number of new te
hniques to proje
t mortality 
onsistently using the APC mortality

model developed in Chapter 5, both a
ross periods, by allowing for observed and future

trend 
hanges, and along 
ohorts, by allowing for the limited observations we have to

date for those 
ohorts that are still alive. Care is taken to ensure that these proje
tions

are independent of the arbitrary identi�ability 
onstraints imposed in order to resolve
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the identi�ability issues present in the models, dis
ussed in Chapters 3 and 4. When us-

ing these te
hniques, we obtain proje
tions whi
h are 
loser to observed mortality rates

when ba
ktested and are more biologi
ally reasonable in the long term 
ompared with

standard te
hniques. In addition, the approa
h used to model and proje
t the 
ohort

parameters is used in Chapter 8 and extended as part of the forward mortality framework

in Chapters 11 and 12.

1.2.2 Identi�ability, Cointegration and the Gravity Model

I am grateful to Bent Nielsen and Mi
hele Bergamelli for dis
ussions regarding identi�-

ability and 
ointegration, whi
h informs the material in this 
hapter.

For many purposes, it is ne
essary to be able to proje
t mortality rates in related pop-

ulations, maintaining any 
orrelations observed in the histori
al data in our proje
tions

of the future. As an example of this, the gravity model of Dowd et al. (2011b) was

introdu
ed in order to a
hieve 
oherent proje
tions of mortality between two related

populations. However, this model as originally formulated is not well-identi�ed, sin
e

it gives proje
tions whi
h depend on the arbitrary identi�ability 
onstraints imposed on

the underlying mortality model when �tting it to data. In this 
hapter, we dis
uss how

the gravity model 
an be modi�ed to give well-identi�ed proje
tions of mortality rates

and how this result 
an be generalised to more 
ompli
ated mortality models, su
h as

those used in Chapter 8.

1.2.3 Modelling Longevity Bonds: The Swiss Re Kortis Bond

This 
hapter has been published in Insuran
e: Mathemati
s and E
onomi
s in 2015, vol-

ume 63, pages 12-39.

Material in this 
hapter was presented at the Ninth International Longevity Conferen
e

in Beijing, China, in September 2013 and at an internal seminar at Cass Business S
hool

in April 2014. I am grateful to parti
ipants at those events, to Bent Nielsen and Mi
hele

Bergamelli for dis
ussions regarding identi�ability and 
ointegration, and to Daniel Har-

rison FIA at Swiss Re and the anonymous referee for their detailed 
omments .
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A key 
ontribution to the development of the traded market for longevity risk was the

issuan
e of the Kortis bond, the �rst longevity trend bond, by Swiss Re in 2010. We

analyse the design of the Kortis bond, develop suitable mortality models using the gen-

eral pro
edure of Chapter 5 and the proje
tion te
hniques developed in Chapters 6 and

7 to analyse its payo� and dis
uss the key risk fa
tors for the bond. We also investigate

how the design of the Kortis bond 
an be adapted and extended to further develop the

market for longevity risk.

1.3 Modelling Mortality for Pension S
hemes

Mu
h of the resear
h to date has been motivated by the impa
t of longevity risk on the

providers of retirement bene�ts, whi
h has be
ome espe
ially apparent for o

upational

pension s
hemes in the UK. However, many of the sophisti
ated mortality models de-

veloped in the previous parts of this thesis are not appropriate for use with a pension

s
heme, sin
e they generally possess far more limited data. Furthermore, it is not 
lear

that mortality rates in small sub-populations, su
h as a pension s
heme, will evolve in the

same manner as those in a larger referen
e population. Part III of this thesis, therefore,

develops a �relative� mortality modelling approa
h, whi
h 
an 
ombine the advantages

of using sophisti
ated mortality models for a referen
e population, with the need for

parsimony and robustness when investigating how mortality rates in a sub-population

di�er from this referen
e population. This is then applied to investigate the potential

e�e
tiveness of a bespoke longevity swap in hedging the mortality and longevity risks in

a stylised pension s
heme, typi
al of those found in the UK.

1.3.1 Basis Risk and Pension S
hemes: A Relative Modelling Ap-

proa
h

I am grateful to Andrés Villegas for many useful dis
ussions around the topi
 of relative

modelling and basis risk, whi
h informs the material in this 
hapter.

For many pension s
hemes, a shortage of data limits the ability to use sophisti
ated

sto
hasti
 mortality models su
h as those 
onstru
ted by the general pro
edure of Chap-

ter 5 to assess and manage their longevity risk. In this 
hapter, we develop a relative

model for mortality, whi
h 
ompares the evolution of mortality rates in a sub-population

with that observed in a larger referen
e population. We apply this relative approa
h to

data from the CMI Self-Administered Pension S
heme study, using UK population data

12
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as a referen
e, for whi
h we 
an use more sophisti
ated models. We then use the relative

approa
h to investigate the potential basis risk between these two populations and �nd

that, in many pra
ti
al situations, mu
h of the 
on
ern regarding basis risk is mispla
ed.

These results are then developed further in Chapter 10.

1.3.2 Transferring Risk in Pension S
hemes via Bespoke Longevity

Swaps

The pensions de-risking industry has grown enormously in re
ent years, with the fo
us

of mu
h of this on transferring the mortality and longevity risks of pension s
hemes to

third parties. Bespoke longevity swaps, tailored to the spe
i�
 
hara
teristi
s of the

transferring s
heme, have been developed to transfer these risks to insurers and rein-

surers and have proved very popular, with over ¿50bn of outstanding deals transa
ted

to Q4 2014. In this study, we present a modelling framework suitable for assessing the

various mortality and longevity risks within a stylised pension s
heme and use this to

give a 
omprehensive analysis of the mortality and longevity risks in a pension s
heme,

and hen
e the e�e
tiveness of a bespoke longevity swap. In parti
ular, we fo
us on the

possible intera
tions between the di�erent risk fa
tors that in�uen
e mortality rates.

This uses a model developed for the national population using the general pro
edure

of Chapter 5 to in
orporate systemati
 longevity risk, the relative model developed in

Chapter 9 to model basis risk between the national population and the s
heme and also

allows for individual mortality e�e
ts to give a more 
omplete analysis of the mortality

and longevity risks in a s
heme, and hen
e the e�e
tiveness of a bespoke longevity swap

in redu
ing the risk fa
ed by a pension s
heme.

1.4 Forward Mortality Models

When valuing longevity-linked liabilities and se
urities, we are interested in what our

expe
tations of future mortality rates are, 
onditional on the information we have to

date. Where market pri
es are available, these inform our expe
tations and ensure that

our values are 
onsistent with the values of traded se
urities existing in the market. To

do so e�
iently requires the use of a forward mortality model. Furthermore, to measure

longevity risk, we need a forward mortality model 
apable of assessing how the values

of longevity-linked liabilities and se
urities 
hange in response to new information. In

Part IV of my thesis, we develop a new forward mortality framework, whi
h builds
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on the stru
ture of APC mortality models. This framework is 
apable of valuing and

measuring the longevity risk present in longevity-linked liabilities and se
urities, whi
h

has appli
ations for the new Solven
y II regulatory standards and the hedging of longevity

risk using simple longevity-linked se
urities.

1.4.1 Forward Mortality Rates in Dis
rete Time I: Calibration and

Se
urities Pri
ing

Material in this 
hapter was presented at the 49th A
tuarial Resear
h Conferen
e in Santa

Barbara, USA, in July 2014, the Tenth International Longevity Conferen
e in Santiago,

Chile in September 2014, and the So
iety of A
tuaries Longevity Seminar in Chi
ago,

USA, in February 2015. I am grateful to parti
ipants at those 
onferen
es for their 
om-

ments.

Many users of mortality models are interested in using them to pla
e values on longevity-

linked liabilities and se
urities. Modern regulatory regimes require that the values of

liabilities and reserves are 
onsistent with market pri
es (if available), whilst the gradual

emergen
e of a traded market in longevity risk needs methods for pri
ing new types of

longevity-linked se
urities qui
kly and e�
iently. In this 
hapter and Chapter 12, we

develop a new forward mortality framework to enable the e�
ient pri
ing of longevity-

linked liabilities and se
urities in a market-
onsistent fashion. This approa
h starts from

the histori
al data on the observed mortality rates, i.e., the observed for
e of mortality.

Building on the dynami
s of models of the observed for
e of mortality, we develop models

of forward mortality rates and then use a 
hange of measure to in
orporate whatever

market information is available. This framework is appli
able for most models within

the 
lass of APC mortality models dis
ussed in Chapter 2, in
luding those 
onstru
ted

using the general pro
edure of Chapter 5 and uses the Bayesian approa
h to model and

proje
t the 
ohort parameters developed in Chapter 6.

1.4.2 Forward Mortality Rates in Dis
rete Time II: Longevity Risk

Measurement and Management

Material in this 
hapter was presented at the 49th A
tuarial Resear
h Conferen
e in Santa

Barbara, USA, in July 2014, the Tenth International Longevity Conferen
e in Santiago,

Chile in September 2014, and the So
iety of A
tuaries Longevity Seminar in Chi
ago,

USA, in February 2015. I am grateful to parti
ipants at those 
onferen
es for their 
om-

ments and to Robert Cowell for dis
ussions regarding the Bayesian approa
h to modelling
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ohort parameters.

It is vital to be able to measure and manage the risk in longevity-linked liabilities and

se
urities reliably and 
onsistently, espe
ially in the 
ontext of the rapidly expanding

market for longevity risk transfer. In this 
hapter, we develop the forward mortality

framework of Chapter 11 and use it for the measurement of longevity risk in portfolios of

annuities and in various longevity-linked se
urities. This involves extending the method

used to model and proje
t the 
ohort parameters developed in Chapter 6 in order to

allow for the impa
t of new information on our re-estimation of the parameters. We

then apply the framework to the hedging of longevity risk using simple longevity-linked

se
urities and as an internal model for longevity risk for the 
al
ulation of the Solven
y

Capital Requirement and the Risk Margin under the forth
oming Solven
y II regulatory

standards.
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Chapter 2

On the Stru
ture and Classi�
ation

of Mortality Models

2.1 Introdu
tion

Re
ent years have witnessed a dramati
 in
rease in the attention paid to the study of the

evolution and proje
tion of mortality rates. Demographers, statisti
ians and a
tuaries

a
ross the world have woken up to the issues 
aused by rising longevity and an aging

population.

Mu
h of the analysis of the histori
al evolution of mortality rates is made using models

whi
h de
ompose mortality rates a
ross the dimensions of age, period and 
ohort (or

year of birth). These three variables form a natural way of analysing how mortality rates


hange for individuals as they age, the impa
t of medi
al and so
ial progress with time,

and the lifelong mortality e�e
ts whi
h follow individuals from birth. By proje
ting the

e�e
ts of period and 
ohort, we 
an also gain insights into the likely path mortality rates

might take in future.

Sin
e the number of age/period/
ohort (APC) models has in
reased rapidly in re
ent

years, we believe that the time has 
ome to undertake a more holisti
 analysis of APC

models. We do this in a series of studies, of whi
h this is the �rst. This present 
hap-

ter analyses the stru
ture of APC models and proposes a way of 
lassifying the models

proposed to date. It also seeks to assess the key prin
iples a model user should 
onsider

before sele
ting or 
onstru
ting a model appropriate to their aims. While most of the

issues raised in this study will be familiar to many model users, we believe that a proper
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understanding of the stru
ture of APC models is needed in order to avoid using a poorly

spe
i�ed model. As well as using models whi
h are not suitable for the task in hand, a

poorly 
hosen APC model might also su�er from problems both with the identi�ability

of parameters in-sample and with proje
tions out of sample. These issues are dealt with

in our se
ond and third studies, Chapters 3 and 4. Many of the issues raised and pitfalls

identi�ed in these studies were vital to the development of the �general pro
edure� for


onstru
ting APC mortality models, des
ribed in Chapter 5.

We dis
uss the basi
 stru
ture of the majority of APC models whi
h have been proposed

to date in Se
tion 2.2. The 
omponents of this stru
ture are further dis
ussed in terms

of

• the 
onne
tions between the data, the variables of interest and our predi
tor stru
-

ture in Se
tion 2.3;

• the in
lusion of a stati
 fun
tion of age in Se
tion 2.4;

• the potential forms for the dynami
 stru
ture a
ross ages in the model in Se
tion

2.5; and

• the issues raised by the in
lusion of parameters to 
apture the e�e
ts of year of

birth in the data and how these 
an be resolved in Se
tion 2.6.

Se
tion 2.7 o�ers a simple 
lassi�
ation of APC models that highlights the key de
isions

whi
h have to be made in order to sele
t the most suitable model for the task at hand.

Finally, we draw 
on
lusions in Se
tion 2.8.

2.2 Age/period/
ohort stru
ture

An APC mortality model is one whi
h links a response variable with a linear or bilinear

predi
tor stru
ture 
onsisting of a series of fa
tors dependent on age, x, period, t, and

year of birth (or 
ohort), y = t − x, for a population. APC models therefore �t into

the general 
lass of generalised non-linear models, with a general stru
ture whi
h 
an be

written as follows:

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t + β(0)

x γt−x (2.1)

This stru
ture has the following 
omponents:
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• A link fun
tion, ηx,t, to transform the response variable (whi
h will be some mea-

sure of mortality rates) at age x and for year t into a form suitable for modelling

and link it to the proposed predi
tor stru
ture.

• A stati
 age fun
tion, αx, to 
apture the general shape of mortality a
ross all ages

and features of the mortality 
urve whi
h do not 
hange with time.

• A set of N age/period terms, β
(i)
x κ

(i)
t , 
onsisting of period fun
tions, κ

(i)
t , de-

termining the evolution of mortality rates through time, and age fun
tions, β
(i)
x ,

determining the pattern of mortality 
hange a
ross ages. The 
hoi
e of suitable

forms for the age fun
tions is dis
ussed in Se
tion 2.5.

• An age/
ohort term, β
(0)
x γt−x, 
onsisting of a 
ohort term, γt−x, whi
h determines

the lifelong e�e
ts spe
i�
 to ea
h generation, denoted by their year of birth, and

an age fun
tion, β
(0)
x , whi
h modi�es the 
ohort term.

1

Ea
h of these 
omponent terms is dis
ussed in greater detail in the se
tions below. One

advantage of most APC mortality models is that the 
omponents in them 
an be inter-

preted in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges

in mortality rates whi
h generate them. We 
all su
h an interpretation the �demographi


signi�
an
e� of ea
h term. Demographi
 signi�
an
e is, by de�nition, subje
tive as it

relates to the interpretation of the parameters. However, it is still a useful 
on
ept as it

motivates many of the de
isions around the 
onstru
tion of mortality models and their

proje
tion into the future.

While this stru
ture is not exhaustive, it does en
ompass the vast majority of the dis-


rete time mortality models whi
h have been proposed to date. In parti
ular, it is worth

noting that we have assumed that the period fun
tions 
an vary freely for ea
h year and

are not 
onstrained to be smooth fun
tions. This is the key feature whi
h enables these

models to be proje
ted sto
hasti
ally and therefore generate probabilisti
 fore
asts of

future mortality rates.

In 
ontrast, some models, su
h as the P-splines model proposed by Currie et al. (2004)

and the model of Sithole et al. (2000), require that the period fun
tions be modelled

through a series of basis fun
tions (
ubi
 b-splines and Legendre polynomials, respe
-

tively) and so are proje
ted by extrapolating these deterministi
 fun
tions into the future.

This typi
ally restri
ts the appli
ation of these models to smoothing histori
al data or

1

Most APC mortality models have only one age/
ohort term for the reasons dis
ussed in Se
tion 2.6.

However, some models do in
orporate multiple terms, for instan
e, that proposed in Hatzopoulos and

Haberman (2011).
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short-term proje
tions of mortality. We therefore do not 
onsider these models further

in this 
hapter.

Re
ently, a number of studies, su
h as Mit
hell et al. (2013), Haberman and Renshaw

(2012) and Haberman and Renshaw (2013), have modi�ed the stru
ture in Equation 2.1

to model mortality improvement rates rather than the mortality rates themselves. The

di�erent interpretations pla
ed on the response variables of interest and terms within

the predi
tor stru
ture make mortality improvement models qualitatively di�erent from

the 
lass of models 
onsidered within this study, and so we do not dis
uss these models

further.

Finally, it is worth noting that the predi
tor stru
ture in Equation 2.1 
ould also be ex-

tended to in
lude a range of explanatory variables whi
h might in�uen
e mortality rates.

These regressors might in
lude variables relating to the health of the population (for

instan
e, smoking prevalen
e was 
onsidered in Wang and Preston (2009) and Kleinow

and Cairns (2013)) or ma
roe
onomi
 variables su
h as GDP growth or unemployment

(e.g., Rei
hmuth and Sarferaz (2008) and Hanewald (2011)). Su
h an approa
h is a nat-

ural way of modelling the underlying drivers of 
hanging mortality and highlights the

�exibility of the APC approa
h, but is again not 
onsidered further in this 
hapter.

2.3 Response variable and link fun
tion

When studying mortality, we typi
ally assume that members of the population of inter-

est experien
e the same instantaneous hazard rate of mortality, µx,t, at age x and time

t (also 
alled the �for
e of mortality�). In pra
ti
e, however, observed data is usually

grouped into dis
rete age and period bands and therefore modelling mortality is often


ondu
ted using dis
rete time models.

In order to use the 
ontinuous for
e of mortality in a dis
rete age/period setting, it is


ommonly assumed that mortality rates do not 
hange within ea
h age and period band.

Mathemati
ally, this means that µx,t is assumed to be 
onstant within ages and within

years:

µx+ξ,t+τ = µx,t (2.2)

x, t ∈ N

ξ, τ ∈ [0, 1)
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This assumption is generally reasonable for most ages of interest (typi
ally under age

100). Above this age, the populations under observation and 
orrespondingly the number

of deaths tend to be quite low, whi
h means that the pra
ti
al impa
t of this assumption

breaking down is quite small over most ages. With the assumption that the for
e of

mortality is 
onstant over ea
h age/period band, we therefore have that the probability

of survival over the period is px,t = 1− qx,t = exp(−µx,t) and that the 
entral mortality

rate is given by mx,t = µx,t. Almost all APC mortality models either use µx,t (or equiv-

alently mx,t) or qx,t as the response variable for mortality.

These two 
hoi
es for the response variable re�e
t the two models for the random number

of deaths, Dx,t, widely used in demography and a
tuarial s
ien
e. Under the binomial

assumption, the expe
ted number of deaths is given by E(Dx,t) = E0
x,tqx,t, the initial

number of people alive (or initial exposure to risk) multiplied by the probability of death

over the year. The probability of death 
an therefore be estimated as the observed num-

ber of deaths divided by the initial exposure to risk, q̂x,t =
dx,t
E0

x,t
.

2

Under the Poisson

assumption, the expe
ted number of deaths is given by E(Dx,t) = Ec
x,tmx,t, i.e., the 
en-

tral exposure to risk (the average number of people alive whi
h is used as a proxy for the

total number of person-years lived) multiplied by the 
entral mortality rate, m̂x,t =
dx,t
Ec

x,t
.

This leads to the 
on
lusion that the model for the response variable should be moti-

vated by the format of the available data. The use of the Poisson model requires 
entral

exposures to risk whi
h are widely available, for instan
e from the Human Mortality

Database.

3

The use of the binomial model requires initial exposures to risk whi
h are

less 
ommonly available for large populations (though may be more available for smaller

populations) but 
an be approximated from the 
entral exposures.

Asymptoti
ally, for large populations and low death rates, the two approa
hes give simi-

lar results. It has been argued

4

that the binomial approa
h works well at high ages, sin
e

it gives transformed mortality rates whi
h are 
loser to being linear at the highest ages.

However, it is also at these ages that the assumption of a 
onstant for
e of mortality

within ages and years in Equation 2.2 starts to break down. Sin
e this violates the 
ore

assumption underpinning the dis
rete time approa
h, it means that the validity of all

models be
ome questionable at these ages and hen
e makes 
omparisons between them

2

Where dx,t is the observation of the random death 
ount, Dx,t.

3

Human Mortality Database (2014).

4

For instan
e, in Cairns et al. (2006a).
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at these ages somewhat spurious.

5

In the Poisson and binomial models, the varian
es of the observations are also spe
i-

�ed along with the means. In pra
ti
e, however, observations typi
ally show a greater

variation than is predi
ted under either distribution - a phenomenon known as over-

dispersion. One way of dealing with this is by �tting the model using the quasi-Poisson

or quasi-binomial distributions, whi
h add additional parameters to a

ount for the over-

dispersion. Alternatively, heterogeneity and over-dispersion within the data 
an be al-

lowed for by using the negative binomial model for death 
ounts, as in Delwarde et al.

(2007b), Renshaw and Haberman (2008) and Li et al. (2009). These approa
hes do not


hange the model stru
ture in Equation 2.1, merely how it is �t to data. However, over-

dispersion (along with signi�
ant 
orrelation patterns within the �tted residuals) may

also be a sign that the predi
tor stru
ture is poorly 
hosen and so 
ould be dealt with

by sele
ting an alternative predi
tor stru
ture.

The link fun
tion, ηx,t, provides the 
onne
tion between the observed data and the as-

sume predi
tor stru
ture. In the generalised linear model framework, there are several

requirements whi
h should be met for a good 
hoi
e of link fun
tion. One of these is that

the data should be transformed to obtain an approximately linear predi
tor stru
ture (as

opposed to, say, a multipli
ative stru
ture). Early stati
 and dynami
 mortality models

used this as the sole requirement for the 
hoi
e of ηx,t, whi
h resulted in a range of 
hoi
es

being made, su
h as ηx = qx
1−qx

in Heligman and Pollard (1980), ηx,t = ln
(

qx,t
1−0.5qx,t

)

in

Wilmoth (1990) and ηx,t = ln(µx,t) in Lee and Carter (1992). These models were then

�tted using least squares estimation methods.

Least squares methods, however, do not a

ount for the underlying distribution for Dx,t

and assume that the varian
e of observations is independent of the underlying exposures.

However, this is not usually valid - observations are typi
ally more variable at ages with

low populations, su
h as those at high ages. More sophisti
ated methods of estimation,

based on maximising the likelihood (Brouhns et al. (2002a)) or, equivalently, minimising

the s
aled devian
e (Renshaw and Haberman (2003a)) allow for this dire
tly by making

expli
it referen
e to the underlying probability distribution of Dx,t. Although a number

of potential link fun
tions might be 
onsidered for either distribution of death 
ounts (for

instan
e, see Currie (2014)), pra
ti
al 
onsiderations motivate using the 
anoni
al link

fun
tion of the distribution Dx,t . The 
hoi
e of the 
anoni
al link fun
tion also ensures

5

One solution to this might be to assume a 
onstant for
e of mortality over shorter age and period

bands, for instan
e a
ross months as in Gavrilov and Gavrilova (2011). However, data limitations at

high ages often prevent this.

24



Stru
ture and Classi�
ation of Mortality Models

that �tted values of the response variable lie within the required range.

6

For a Poisson

model of the death 
ount, the 
anoni
al 
hoi
e for the link fun
tion ηx,t is

ηx,t = ln(µx,t) (2.3)

E[Dx,t] = Ec
x,te

ηx,t

Var(Dx,t) = Ec
x,te

ηx,t

whilst for the binomial model it is

ηx,t = logit(qx,t) ≡ ln(qx,t)− ln(1− qx,t) (2.4)

E[Dx,t] = E0
x,t

eηx,t

1 + eηx,t

Var(Dx,t) = E0
x,t

eηx,t

(1 + eηx,t)2

Using the 
anoni
al link fun
tion also has the desirable property that it simpli�es es-

timation by maximum likelihood on minimal devian
e 
onsiderably easier. For Poisson

death 
ounts using the log link fun
tion, the likelihood fun
tion is

L =
∑

x,t

Wx,t

(

dx,t ln(E
c
x,tµx,t)− Ec

x,tµx,t − ln(dx,t!)
)

(2.5)

whilst for binomial death 
ounts and the logit link fun
tion, the likelihood fun
tion is

L =
∑

x,t

Wx,t

(

dx,t ln(qx,t) + (E0
x,t − dx,t) ln(1− qx,t)

+ ln(E0
x,t!)− ln((E0

x,t − dx,t)!)− ln(dx,t!)
)

(2.6)

where Wx,t are {0, 1} weights. When using Newton-Raphson te
hniques to maximise

the likelihood, we need to 
al
ulate the �rst and se
ond derivatives of the log-likelihood

fun
tion with respe
t to the parameters (e.g., see Brouhns et al. (2002a)), the forms of

6

i.e., µx,t ≥ 0 or qx,t ∈ (0, 1).
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whi
h are

dL
dαx

=
∑

t

(dx,t − E[Dx,t])

d2L
d (αx)

2 = −
∑

t

Var(Dx,t)

dL
dβ

(i)
x

=
∑

t

(dx,t − E[Dx,t])κ
(i)
t

d2L
d
(

β
(i)
x

)2 = −
∑

t

Var(Dx,t)
(

κ
(i)
t

)2

dL
dκ

(i)
t

=
∑

x

(dx,t − E[Dx,t])β
(i)
x

d2L
d
(

κ
(i)
t

)2 = −
∑

x

Var(Dx,t)
(

β(i)
x

)2

dL
dγy

=
∑

x

(dx,x+y − E[Dx,x+y]) β
(0)
x

d2L
d(γy)2

= −
∑

x

Var(Dx,x+y)
(

β(0)
x

)2

These are simple to 
ompute qui
kly if the 
anoni
al link is used. Alternative link stru
-

tures require more 
ompli
ated algorithms

7

whi
h it may be desirable to avoid.

Any de
isions regarding the 
hoi
e of response variable and link fun
tion should take the

following into a

ount:

• The 
hoi
e of probability distribution should re�e
t the available data - the bi-

nomial distribution is the natural 
hoi
e with initial exposures to risk, whilst the

Poisson distribution is more natural for model users with 
entral exposures.

• The 
hoi
e of response variable follows naturally from the probability distribution

- µx,t is the variable of interest in the Poisson distribution and qx,t in the binomial

distribution.

• The appropriate 
anoni
al link fun
tion ηx,t follows naturally from the probability

distribution sele
ted. While other link fun
tions 
an be 
hosen, su
h a 
hoi
e would

probably require further justi�
ation.

7

See, for instan
e, the estimation of models in the CBD family using the LifeMetri
s 
ode in Coughlan

et al. (2007a), where a Poisson distribution of deaths is assumed with a logit link fun
tion.
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In pra
ti
e, most modellers use the ln(µx,t) approa
h, i.e., a log link fun
tion, and assume

the death 
ount is a Poisson random variable. These models in
lude those proposed in

Brouhns et al. (2002a), Renshaw and Haberman (2003b, 2006), Plat (2009a), Haberman

and Renshaw (2009) and O'Hare and Li (2012a). However, the reasons for this are

mainly histori
al, as they are based on the model of Lee and Carter (1992) where the

log link fun
tion was 
hosen simply to obtain a linear predi
tor stru
ture rather than

with referen
e to the underlying distribution of the death 
ounts or the available data.

The alternative logit(qx,t) approa
h has mainly been adopted by the Cairns-Blake-Dowd

(CBD) family of mortality models (Cairns et al. (2006a) and the extensions of this model

in Cairns et al. (2009)),

8

and also in Aro and Pennanen (2011)..

2.4 Stati
 age fun
tion

A stati
 age fun
tion, αx, has been used in many mortality models from Hob
raft et al.

(1982) and Lee and Carter (1992) onwards. By 
onstru
tion, this 
aptures the features

of the mortality 
urve a
ross the age range of the data whi
h do not 
hange with time. A

typi
al example of su
h a fun
tion, from the Lee-Carter (LC) model (see Se
tion 2.5.1)

�tted to male data from the USA (downloaded from the Human Mortality Database

(2014)) for the period 1933 to 2007, is shown in Figure 2.1. A
ross the full age range,

this shows features su
h as the ex
ess number of deaths due to infant mortality at very

low ages and a

idents at young adult ages, whi
h are 
ommon a
ross both time periods

and 
ountries.
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Figure 2.1: αx stati
 age fun
tion for the LC model �tted to US male data 1933-2007

Some models, most notably those in the CBD family of mortality models and that in

Aro and Pennanen (2011), dispense with the need for an expli
it stati
 age fun
tion

by impli
itly assuming that it 
an be approximated by a simpler fun
tion of age and

8

These models do not draw a dire
t link between the use of the logit fun
tion and binomial death


ounts. However, this 
onne
tion is made expli
it in Haberman and Renshaw (2011) and Currie (2014).
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ombining it into the age/period terms. To do this, the stati
 age fun
tion needs to be

a linear 
ombination of the other age fun
tions in the model, i.e.,

αx =

N
∑

i=1

α(i)β(i)
x

This 
an only be done when the age fun
tions β
(i)
x are known in advan
e of �tting the

model to data. For example, the model of Cairns et al. (2006a) impli
itly assumes that

mortality rates are approximately linear at the ages of interest and therefore 
an be


ombined with the other terms in the model.

Doing so improves the parsimony of the model by redu
ing the number of free parame-

ters 
onsiderably. However, it does so at the expense of limiting the model to only those

parts of the age range where this assumption is approximately valid, typi
ally at higher

ages.

It also means that the age/period terms in the model do two tasks simultaneously:


apturing the time-independent shape of mortality and des
ribing the stru
ture of the

deviations from this shape. In
luding a stati
 age fun
tion in the model therefore allows

ea
h term in the model to fo
us on doing one job optimally. The extent to whi
h this is

desirable will depend upon the modeller's preferen
e for a parsimonious �t to histori
al

data against the more detailed identi�
ation and proje
tion of evolving trends.

2.5 Age/period terms

The age/period terms in an APC model typi
ally 
apture the majority of the dynami


stru
ture present in the underlying data. They 
onsist of age fun
tions, β
(i)
x , des
ribing

how the parti
ular mortality e�e
ts are distributed a
ross ages, whi
h are multiplied by

period fun
tions, κ
(i)
t , whi
h explain how they evolve with time.

One of the key distin
tions between APC models is whether the age e�e
ts are modelled

using �non-parametri
� or �parametri
� age fun
tions. Some mortality models have age

fun
tions whi
h are �non-parametri
� in the sense that values of β
(i)
x at di�erent ages, x,

are �tted without imposing any a priori stru
ture. Age is treated as an unknown fa
tor

in the model rather than a regressor with a known stru
ture.

9

Other mortality models

9

For this reason, we 
ould alternatively refer to non-parametri
 age fun
tions as �fa
torial� age fun
-

tions.
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have age fun
tions whi
h are �parametri
�, sin
e they take a spe
i�
 fun
tional form that

is de�ned by an algebrai
 formula.

10

We should note that our de�nitions of the terms �non-parametri
� and �parametri
� dif-

fers from other de�nitions of these terms used in statisti
s and a
tuarial s
ien
e. For

the avoidan
e of doubt, we use the terms to spe
i�
ally refer to the stru
ture of the

age/period terms, and they have no impli
ation for the methods used to �t the model to

data. For example, Haberman and Renshaw (2009) and Haberman and Renshaw (2011)

used the term �parametri
� to refer to the predi
tor stru
ture for general APC mortality

models, and des
ribe any models within this 
lass as �parametri
 mortality models�. Al-

ternatively, �parametri
� 
an refer to the underlying distributional assumptions for the

model and the methods used to �t it to data � as su
h, the assumption of a Poisson

distribution of deaths and maximum likelihood estimation would lead to a �parametri


mortality model� under this de�nition. Our usage of these terms is restri
ted solely to

the form of the age e�e
ts.

2.5.1 Non-parametri
 age fun
tions

Most of the early mortality models used non-parametri
 age fun
tions, e.g., Lee and

Carter (1992) (whi
h had a single age fun
tion) and Wilmoth (1990) (whi
h had used a

parametri
 age fun
tion for the �rst age/period term but allowed for non-parametri
 age

fun
tions beyond this). Allowing β
(i)
x to be non-parametri
 means that it 
an take any

shape in order to maximise the goodness of �t to the data. Su
h models are ne
essarily

bilinear, as both age and period are unknown fa
tors.

The simplest model to use non-parametri
 age fun
tions was that proposed by Lee and

Carter (1992). It has a single age/period term of the form

ln(µx,t) = αx + βxκt (2.7)

More 
ompli
ated non-parametri
 approa
hes emerge naturally from model �tting te
h-

niques based prin
ipal 
omponent analysis (PCA), often based on singular value de-


omposition (SVD),

11

although they 
an easily be deployed in a generalised non-linear

10

For this reason, these age fun
tions 
ould also be 
alled �formulai
�.

11

As used in Lee and Carter (1992), Wilmoth (1990), Booth et al. (2002), Hatzopoulos and Haberman

(2009) and Yang et al. (2010) for example.

29



Stru
ture and Classi�
ation of Mortality Models

modelling or maximum likelihood framework.

12

The non-parametri
 approa
h also easily

extends to an arbitrary number of age/period terms as in Booth et al. (2002), Renshaw

and Haberman (2003b) and Hatzopoulos and Haberman (2009). The number of age/pe-

riod terms in the model is then sele
ted with referen
e to the data, rather than having

been pres
ribed in advan
e.

The main advantage of this approa
h is that the shapes of the age fun
tions are 
hosen to

maximise the �t to the data. This means that ea
h term extra
ts the maximum amount

of information from the data possible. For example, the terms produ
ed by PCA are

ranked in order of information extra
tion - as measured by the per
entage of the total

variability in the data explained - whi
h makes it possible to sele
t algorithmi
ally an

optimal number of terms in the model.

The non-parametri
 approa
h is also very �exible. It 
an be applied qui
kly and eas-

ily a
ross a variety of datasets, as des
ribed, for example, in Tuljapurkar et al. (2000)

who use the LC model to �t data from a number of developed nations. Similarly, the

non-parametri
 approa
h 
an be used a
ross the full age range, whilst parametri
 age

fun
tions are often only suitable for limited age ranges. It also avoids subje
tive judge-

ments in 
onstru
ting the model, as terms are �tted automati
ally to maximise the �t

to data. This ability to obje
tively pi
k out the most important stru
ture within the

data is used as the starting point for the �general pro
edure� for 
onstru
ting mortality

models outlined in Chapter 5.

However, non-parametri
 approa
hes have a number of downsides. Most importantly,

the form of the non-parametri
 age fun
tions generated usually la
k demographi
 sig-

ni�
an
e. For instan
e, Figure 2.2 shows the βx age fun
tion produ
ed by �tting the

LC model to the same data for men in the US used in Se
tion 2.4. It shows that, over

the period, improvements in mortality rates have been far faster at young ages (below

20, but espe
ially at age one) than at higher ages, where improvements have been more

evenly distributed a
ross ages. It is very di�
ult to think of an explanation for this shape

whi
h does not involve several drivers of 
hanging mortality rates over the period (su
h as

improved hygiene redu
ing mortality a
ross all ages, 
hildhood va

ination programmes

redu
ing the number of deaths amongst the very young, and improved treatment of

12

PCA assumes homogenous, normally distributed residuals and, therefore, is in
onsistent with the

underlying binomial or Poisson distribution for the death 
ount pro
ess. However, the estimates obtained

for the parameters using PCA 
an be used as the starting point for methods su
h as maximum likelihood

whi
h use the death 
ount pro
ess to allow for heterogeneity 
aused by di�eren
es in the underlying

exposures.
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ardio-vas
ular disease in later life).

0 20 40 60 80 100
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Age

 

 
β

x

Figure 2.2: βx age fun
tion for the LC model �tted to US male data 1933-2007

This has rami�
ations when we �t and proje
t the model. Drivers of mortality are


ombined into a single term if they are 
orrelated over the histori
al period of the data

(e.g., they go from a high level of mortality to a lower level over the period). How-

ever, these 
ombinations may not be appropriate over subsets of the period range. For

example, Carter and Prskawetz (2001) found that the form of βx 
hanges substantially

if the LC model is �tted to di�erent subintervals of the data, as di�erent medi
al and

so
io-e
onomi
 
auses of mortality be
ome more or less important.

These 
ombinations of drivers may also be inappropriate when we 
ome to making fore-


asts using the model. For instan
e, we may believe that the shape of βx in Figure 2.2

is due to a 
ombination of 
hildhood immunisation programmes and improved 
ardio-

vas
ular 
are for the elderly. When proje
ting mortality, we may wish to allow the latter

to 
ontinue to improve in future but believe that we are unlikely to see further redu
-

tions in mortality due to in
reased va

ination of 
hildren. Using a term whi
h 
ombines

both these 
auses 
an lead to proje
tions of mortality rates whi
h do not appear to be

plausible, e.g., when high rates of improvement in mortality are proje
ted at ages where

mortality rates are already very low.

In addition, the model does not require that the non-parametri
 forms are 
ontinuous.

13

This 
an lead to proje
tions whi
h have dis
ontinuous mortality rates and so are not

biologi
ally reasonable

14

if proje
ted far into the future. It is possible to smooth the

13

This 
an be seen with the sharp peak at β1 in Figure 2.2.

14

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.

Note that biologi
al reasonableness is a property of observable quantities su
h as life expe
tan
ies or

mortality rates, in 
ontrast to demographi
 signi�
an
e whi
h relates to our interpretation of the terms

in a model.
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non-parametri
 age fun
tions to prevent this, as dis
ussed in Delwarde et al. (2007a)

or Hyndman and Ullah (2007). However, this 
ompli
ates the stru
ture of the model

and introdu
es subje
tive de
isions regarding the degree of smoothing whi
h would need


areful justi�
ation.

2.5.2 Parametri
 age fun
tions

As dis
ussed earlier, a parametri
 age fun
tion takes a spe
i�
 fun
tional form, i.e.,

βx = f(x). The original APC model, given in Equation 2.8 and �rst used in the �elds

of demography, so
iology and medi
al statisti
s (for instan
e see Hob
raft et al. (1982)),

uses the parametri
 age fun
tions βx = f(x) = 1:

ln(µx,t) = αx + κt + γt−x (2.8)

More re
ently, the CBD model of Cairns et al. (2006a) shown in Equation 2.9 adopts

an expli
it parametri
 form (in
luding for the stati
 age fun
tion) for both its period

fun
tions, with β
(1)
x = f (1)(x) = 1 and β

(2)
x = f (2)(x) = (x− x̄):

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t (2.9)

Sin
e the publi
ation of the CBD model, models with in
reasingly 
omplex parametri


age fun
tions have been proposed, su
h as the extensions to the model in Equation 2.9 in

Cairns et al. (2009) and the models proposed in Plat (2009a), Aro and Pennanen (2011),

O'Hare and Li (2012a) and Börger et al. (2013).

We 
an see that the models in Equations 2.8 and 2.9 have a linear predi
tor stru
ture,

rather than possessing any bilinear terms where the age fun
tion also needs to be �tted

to the data. This means that they are 
onventional generalised linear models and 
an

be �tted using standard te
hniques. However, the use of parametri
 age fun
tions does

not ne
essarily imply linearity. For instan
e, 
onsider the model

ηx,t = αx + κ
(1)
t + exp(−λx)κ

(2)
t

Here, f (2)(x) = exp(−λx) is parametri
 in our sense of having a pres
ribed fun
tional

form, but λ 
an be a free parameter set with referen
e to the data and so the age/period

term is bilinear and the model 
annot be estimated via a generalised linear model. Age

fun
tions in
luding free parameters are not widely used, as the higher order age fun
tions

in the models of Plat (2009a), Aro and Pennanen (2011), O'Hare and Li (2012a) and

Börger et al. (2013) have parameters whi
h are set a priori. In prin
ipal, however, these
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models 
ould be extended to allow these parameters to vary to best �t the data. In

addition, many of the age fun
tions used in the �general pro
edure� of Chapter 5 possess

free parameters and therefore are bilinear, parametri
 age/period terms.

One of the major advantages of using parametri
 age fun
tions is that they redu
e 
on-

siderably the number of free parameters needing to be �tted for ea
h age/period term,

leading to more parsimonious models. This, in turn, means that more parameters 
an

be devoted to dete
ting other features of interest within the data, su
h as additional

stru
ture a
ross time and year of birth.

Further, be
ause the shapes of the age fun
tions are known, ea
h term 
an be assigned a

spe
i�
 demographi
 signi�
an
e by the user. For instan
e, the �rst age/period term in

the models of Equations 2.8 and 2.9 are 
onstant a
ross all ages. This 
an be explained in

terms of spe
i�
 phenomena whi
h are universal a
ross the age range (su
h as improved

hygiene), in 
ontrast with the shape seen in Figure 2.2. It will also allow trends whi
h

are 
orrelated (su
h as improving levels of medi
al 
are for the elderly and the spe
i�


e�orts to ta
kle 
hildhood infe
tious diseases) to be given their own age/period terms

with appropriate parametri
 age fun
tions, whi
h is impossible with a non-parametri


approa
h.

However, this �exibility 
omes at a 
ost. Parametri
 age fun
tions are often only suit-

able over limited age ranges. While this is an advantage in that it allows for greater

interpretability of their demographi
 signi�
an
e, it means that models with parametri


age fun
tions are often not suitable over the full age range. For instan
e, even if the

CBD model were extended with a stati
 age fun
tion, it is unlikely that the two age/pe-

riod terms are su�
ient to 
apture the variability of mortality rates at younger ages. In

order to 
onstru
t a model appropriate a
ross the full age range, we would have to add

additional age/period terms to the model.

In addition, models with parametri
 age fun
tions often give a poorer �t to the data 
om-

pared to a model with the same number of non-parametri
 age/period terms, espe
ially

using measures of goodness of �t that do not (or only weakly) penalise the number of free

parameters in the model. This is be
ause the additional freedom in the non-parametri


age fun
tion 
an be used to 
apture more of the stru
ture in the data than if the form

of the age fun
tion is pres
ribed at the outset.
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These problems 
an be re
ti�ed, in part, through adding new terms to the model. How-

ever, we will need to de
ide on the appropriate form for these new terms, whi
h 
an

very often be di�
ult. One approa
h adopted for some of the extensions to the CBD

model in Cairns et al. (2009) is to sele
t age fun
tions from the same family � in this


ase polynomials of in
reasing order. Alternatively, more exoti
 fun
tions 
an be used

as in the models of Plat (2009a) and O'Hare and Li (2012a), but often there does not

appear to have any underlying rationale for their sele
tion. In the end, expert judge-

ment is needed to assess whether a new term added to the model genuinely represents

the remaining unexplained dominant trend in the data or merely re�e
ts the expe
tation

of the modeller as to what should be present.

2.6 Cohort e�e
ts

It is a widely held belief that the di�erent life histories of individuals should lead to

systemati
 di�eren
e between people in di�erent 
ohorts (as summarised by their year

of birth). These are often known as �
ohort e�e
ts�. As Hob
raft et al. (1982), Willets

(1999) and Murphy (2009) dis
ussed, the term �
ohort e�e
t� is largely des
riptive, and

some 
are needs to be taken in interpreting the 
ausal fa
tors spe
i�
 to 
ertain years of

birth whi
h might plausibly in�uen
e the mortality rate of a 
ohort a
ross their entire

life. We might, for instan
e, 
onsider an epidemi
 whi
h, in addition to raising mortality

rates at the time it is raging, had a sele
tive e�e
t on the survival of infants. This might

lead to systemati
 di�eren
es in mortality between those born during the epidemi
 and

those born shortly before or afterwards. However, the eviden
e from natural experiments

(summarised in Murphy (2009)) is equivo
al, whi
h means that the existen
e of true 
o-

hort e�e
ts is still 
ontroversial to some extent, as dis
ussed in Murphy (2010).

In pra
ti
e, however, observed data from a number of 
ountries appears to exhibit 
ohort

features and so it is prudent to allow for these when modelling mortality. In the UK,

apparent 
ohort e�e
ts have been identi�ed in the general population (spe
i�
ally in the

work of Willets (1999, 2004), Continuous Mortality Investigation (2002) and Ri
hards

(2008)) and models allowing for 
ohort parameters outperformed those whi
h did not in

Cairns et al. (2009).

Our subje
tive demographi
 signi�
an
e of a 
ohort e�e
t is one whi
h in
reases or re-

du
es mortality at all ages for individuals born in a spe
i�
 generation (typi
ally lasting

10-15 years or less). To 
onstru
t a mortality model, we need to translate this demo-

graphi
 signi�
an
e into a set of properties we desire the parameters in our model to
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possess. More spe
i�
ally, we 
an say that our intuition regarding the 
ohort e�e
ts

implies that they should:

• be small relative to the e�e
ts of age and period;

• not have any systemati
 trends in their expe
ted value or variability;

• have a mean a
ross 
ohorts of zero (i.e., 
ohort e�e
ts should represent deviations

from a typi
al hypotheti
al referen
e level);

• have some auto
orrelation: it is reasonable to believe that 
ohorts born in su

essive

years should experien
e similar life histories and so exhibit similar 
ohort e�e
ts,

unless there happen to be ex
eptional 
ir
umstan
es fa
ing a parti
ular birth year;

• not exhibit inde�nite persisten
e: the fa
tors in�uen
ing the spe
i�
 mortality of

the generation born today should be essentially independent of the spe
i�
 mor-

tality of their grandparents, for example;

• ideally be mean reverting (as a 
onsequen
e of the previous two points), as the

spe
i�
 events impa
ting one 
ohort wear o� in subsequent years of birth; and

• be demographi
ally signi�
ant, so we 
an relate features of a plot of 
ohort e�e
ts

to spe
i�
 so
io-e
onomi
 and medi
al in�uen
es on the population.

In a well-spe
i�ed mortality model, many of these properties emerge naturally from the

�tted parameters. Some, su
h as the level of the mean of the 
ohort parameters, 
an be

imposed via identi�ability 
onstraints, whi
h 
hange the values of the 
ohort parameters

but not the �t of the model to data. However, this is not always the 
ase, and we may

sometimes have to dis
ard some of our intuitive properties based on the eviden
e of the

model. For instan
e, we 
an see that in Plat (2009a), the histori
al 
ohort parameters

have a 
lear trend and may be non-stationary.

We would also like our 
ohort parameters to be robust, both a
ross di�erent models and

when 
omparing them with the residuals from the 
orresponding age/period mortality

model, as in Wilmoth (1990). For instan
e, the plots of 
ohort parameters for the same

datasets in Cairns et al. (2009) show that the features identi�ed are not robust between

di�erent models, whi
h weakens any demographi
 signi�
an
e we pla
e on them. How-

ever, there are a number of pra
ti
al problems that makes �nding 
ohort parameters

that are robust and well spe
i�ed a harder task than the estimation of age and period

parameters.
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First, be
ause age, period and 
ohort are linearly dependent (y + x = t), we 
annot

treat them in isolation for ea
h other.

15

Wilmoth (1990) argued that it is impossible to

apportion obje
tively low frequen
y (slowly varying) temporal dependen
e in mortality

data between age/period and 
ohort e�e
ts. We therefore are for
ed to make a subje
tive


hoi
e to give prima
y to two of the relevant dimensions. Be
ause we naturally observe


ross se
tions of mortality rates a
ross ages in di�erent 
alendar years, the data will

naturally form a re
tangular age/period grid. This means that the natural 
hoi
e is to

give prima
y to age and period e�e
ts and to try to explain as mu
h of the stru
ture

in the data with referen
e to these dimensions as possible before 
onsideration of e�e
ts

a
ross 
ohorts.

16

This then leads to the 
on
lusion that if the 
ohort e�e
ts are to be taken as of se
-

ondary importan
e, the stru
ture in the model in
luded to 
apture them should be as

simple as possible. Indeed, some have argued that 
ohort e�e
ts do not exist at all and

are merely the result of poorly spe
i�ed age/period e�e
ts.

17

A model user operating

under su
h a belief would therefore omit any age/
ohort terms from the model entirely.

A high standard of eviden
e for the in
lusion of an age/
ohort term is therefore desirable.

If an age/
ohort term is to be in
luded and if age/
ohort intera
tions are taken to be of

se
ondary importan
e, the desire for parsimony in the 
ohort terms leads to two further


on
lusions whi
h have been adopted by the majority of model users. First, the majority

of models only in
lude one 
ohort term on the grounds that it is hard to believe and

to demonstrate that one generation 
ould experien
e two di�erent independent lifelong

e�e
ts. Nevertheless, the model proposed in Hatzopoulos and Haberman (2011) allows

for multiple 
ohort e�e
ts.

Se
ond, many models set β
(0)
x = 1, leading to a more parsimonious model. This re-

stri
tion allows the 
ohort parameters to represent 
onsistently higher or lower mortality

rates a
ross all ages, whi
h a

ords with our demographi
 interpretation of 
ohort ef-

fe
ts. In parti
ular, while a 
ohort e�e
t whi
h is stronger at some ages than others does

not seem unreasonable in prin
iple, the notion of a 
ohort e�e
t that in
reases mortal-

ity rates at some ages but de
reases them at others 
on�i
ts with our interpretation of

the demographi
 signi�
an
e of a 
ohort e�e
t. This situation is possible with a non-

parametri
 form for β
(0)
x unless it is arti�
ially 
onstrained to be greater than zero. In

15

We also su�er from the problem that the parameters in the model may not be fully identi�ed. This

topi
 and its impli
ations for fore
asting are dis
ussed further in Chapter 4.

16

See Alai and Sherris (2012) for an example of a model whi
h gives prima
y to 
ohort parameters.

17

For instan
e, Cairns et al. (2011a) raised �the possibility that 
ohort e�e
ts might be partially or


ompletely repla
ed by well-
hosen age and period e�e
ts� and also see Murphy (2010)
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addition, issues have also been reported 
on
erning the robustness of �tting models su
h

as that of Renshaw and Haberman (2006) with a non-parametri
 β
(0)
x term, for instan
e

by Continuous Mortality Investigation (2007) and Cairns et al. (2009).

18

However, this

problem is not universal and a linear parametri
 form for β
(0)
x was proposed in model

M8 (an extension of the CBD model M5 of Equation 2.9) in Cairns et al. (2009) and has

been found to be robust and to �t the data well in van Berkum et al. (2014).

Cohort parameters also present spe
i�
 problems in estimation whi
h again suggests that

a parsimonious model stru
ture be used when in
luding them. Be
ause we naturally ob-

serve 
ross se
tions of mortality rates a
ross ages in di�erent 
alendar years, we will have

a limited numbers of observations for the earliest and latest birth 
ohorts. This makes

estimates of these 
ohort parameters more un
ertain. For instan
e, the last observed

year of birth will only have one observation for it, whi
h 
an therefore be �t perfe
tly by

the 
ohort term. This is undesirable and so in pra
ti
e, many modellers do not estimate


ohort parameters for a number of the earliest and latest years of birth in the data (for

instan
e in Renshaw and Haberman (2006) and Cairns et al. (2009)).

Related to this is the fa
t that the observations for early and late years of birth will

only 
over a subset of the age range. For instan
e, the most re
ent 
ohorts will only

have observations for the youngest ages. Any misspe
i�
ation of age/period terms af-

fe
ting these ages will therefore bias the estimation of these 
ohort parameters. This

is espe
ially important for the most re
ent 
ohorts, for whi
h we will only have a small

number of observations on their early-age mortality where most mortality models have

the greatest di�
ulty modelling the age/period patterns of mortality and where there

will be relatively few deaths. Any poorly spe
i�ed age/period terms at these ages will

therefore lead to stru
ture in the data being wrongly attributed to the 
ohort e�e
t for

the most re
ent years of birth.

As an example of this, there are spe
i�
 biologi
al fa
tors whi
h lead to mortality in the

�rst year of life evolving di�erently from mortality rates at subsequent ages. This e�e
t

is best 
aptured through an age/period intera
tion. In a poorly spe
i�ed age/period

mortality model, this 
annot be 
aptured adequately, leading to large residuals when

�tting mortality rates at this age. Adding a 
ohort term to su
h a model will mean that

the �tting pro
edure will try to use the extra parameters to �solve� this problem and so

will bias the 
ohort parameters in order to ��x� what is genuinely an age/period issue.

This bias will get more pronoun
ed for more re
ent years of birth, where observations of

18

See Hunt and Villegas (2015) for a dis
ussion and potential solution for this issue.
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the �rst year of life form an in
reasing proportion of the total observations for ea
h new


ohort.

In models whi
h give prima
y to age/period e�e
ts, it is therefore important to ensure

that the age/period stru
ture is fully spe
i�ed before an age/
ohort term is added. When

fore
asting mortality rates, it is of great pra
ti
al importan
e that the 
ohort parameters

in an APC model are well spe
i�ed and estimated robustly. Sin
e 
ohort e�e
ts represent

lifelong mortality e�e
ts, mis-spe
i�
ations of the 
ohort parameters at low ages will bias

fore
asts for these 
ohorts as they age.

In summary, the in
lusion of a 
ohort term in a mortality model presents the user with

a number of important issues whi
h need to be addressed. In some 
ases, the model

user may 
onsider that 
ohort e�e
ts are not signi�
ant and prefer a model whi
h does

not in
lude them. However, in other populations, there is eviden
e to support their

in
lusion. In su
h 
ases, it is ne
essary to ensure that the age/period stru
ture in the

model is well spe
i�ed and able to 
apture the majority of stru
ture in the data. A

simple and parsimonious 
ohort term 
an then be in
luded to 
apture the e�e
ts of year

of birth.

2.7 Classi�
ation of APC mortality models

Despite the re
ent rapid proliferation in the number of mortality models proposed, the

majority of mortality models in dis
rete time are part of the same APC family. This

then leads to the natural question of how mortality models 
an be 
lassi�ed.

When 
onstru
ting an APC mortality model we must ask a number of questions, but

espe
ially the following:

• What response variable and link fun
tion should we use?

• Should we in
lude an expli
it stati
 age fun
tion?

• Should we use parametri
 or non-parametri
 age fun
tions? If so, how many

age/period terms should we use?

• Should we in
lude a 
ohort term? If so, should it be modi�ed a
ross the age range

by a β
(0)
x age fun
tion?
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Unlike 
ategorising spe
ies of animal, however, our 
lassi�
ation of mortality models does

not relate to an
estry and so is not unique. What we o�er below is a simple 
lassi�
ation

of mortality models, based on what we 
onsider to be the most important di�eren
es in

stru
ture between them.

We believe that the �rst two questions above are straightforward. The modeller's 
hoi
e

for the response variable should depend on the data available to them rather than on

any more fundamental 
onsideration. This, in turn, leads to a natural 
hoi
e for the

link fun
tion, namely, the 
anoni
al link fun
tion for the 
hosen distribution of deaths.

Whilst it is possible to use 
ombinations of response variable and link fun
tion other

than the natural 
hoi
es, there is often no good reason to do this and pra
ti
al reasons

dis
ussed in Se
tion 2.3 why it should be avoided.

Se
ond, it 
an be argued that all mortality models use a stati
 age fun
tion; it is just that

models su
h as the CBD model of Cairns et al. (2006a) use it impli
itly with a distin
t

parametri
 stru
ture that enables it to be 
ombined with other terms on the model. Su
h

a 
hoi
e may be desirable for models limited to spe
i�
 se
tions of the age range where

the parametri
 stru
ture is appropriate in order to obtain greater parsimony. However,

it does not 
hange anything fundamental about the model.

We are then left with the two more substantive questions - the 
hoi
e between para-

metri
 and non-parametri
 age fun
tions and the in
lusion of a 
ohort term. Both of

these re�e
t fundamental di�eren
es in approa
h whi
h lead to important mathemati
al

and qualitative di�eren
es between the models. Histori
ally, however, 
ohort parameters

have often been seen as an optional addition to a pre-existing mortality model, espe
ially

be
ause the age/period terms are usually given prima
y due to the reasons dis
ussed in

Se
tion 2.6. We, therefore, see the most important division amongst APC models to be

between the use of parametri
 and non-parametri
 age fun
tions.

The optimum number of age/period terms will then depend on the nature of the age

fun
tions 
hosen to de�ne these terms. In models with non-parametri
 age fun
tions, it

is relatively simple of add additional age/period terms and optimise their number based

on a goodness of �t 
riteria. In models with parametri
 age fun
tions, however, the

number of age fun
tions needs to be de�ned a priori along with their fun
tional form.

If new terms are to be added to an existing model, it is a non-trivial task to sele
t an

appropriate form for them. To solve this problem, Chapter 5 introdu
es a �general pro
e-

dure� to both sele
t the form of the parametri
 age fun
tions and determine an optimum
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number of age/period terms in a new mortality model.

Based on this analysis, we propose the simple 
lassi�
ation of mortality models in Fig-

ure 2.3. Obviously this 
lassi�
ation is not exhaustive, as new models and variations of

existing models are 
ontinuously being proposed. It is also not unique, sin
e a di�er-

ent ordering of the questions asked when 
onstru
ting a mortality model would yield a

di�erent family tree. However, we have found it a useful framework when 
onsidering

the sele
tion of an existing mortality model or when 
onstru
ting a new one (su
h as in

Chapter 5).
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2.8 Con
lusions

The in
reasing number of age/period/
ohort models being used to study and proje
t

mortality rates has made a general 
onsideration of the APC stru
ture ne
essary. A

systemati
 and 
omplete understanding of this stru
ture allows us to sele
t or 
onstru
t

the most appropriate model for the dataset and the purpose. We have therefore set out

�ve prin
iples whi
h need to be 
onsidered before an APC mortality model 
an be used

or 
onstru
ted:

1. The response variable being modelled should mat
h the data available. The link

fun
tions should follow naturally from the nature of the response variable, e.g., a

Poisson distribution for the number of deaths should lead naturally to a log-link

fun
tion.

2. A stati
 age fun
tion should generally be in
luded and made expli
it in the model.

If a parametri
 stru
ture is assumed for the stati
 age fun
tion, this should be made

expli
it and the limitations this pla
es on the age range over whi
h the model is

suitable should be made 
lear.

3. The user should justify the 
hoi
e of a non-parametri
 or parametri
 stru
ture

for the age fun
tions. Both are appropriate in di�erent 
ir
umstan
es. However,

the user of a model should be expli
it in the trade-o�s they are making between

goodness of �t and demographi
 signi�
an
e.

4. The use of a 
ohort term is usually desirable to 
apture stru
ture a
ross year of

birth in the data. However, su
h a term 
an be omitted if the eviden
e does not

support its in
lusion.

5. When 
ohort terms are in
luded in a mortality model, they should be made as

simple as possible in order to give robust parameter estimates. This will often lead

to using a single 
ohort term and setting β
(0)
x = 1.

We therefore believe that the examination of the stru
ture of APC mortality models in

this study has dire
t pra
ti
al appli
ation when using and developing these models and

enables a natural 
lassi�
ation to be developed. A proper understanding of the models


an therefore help pra
titioners analyse how mortality has evolved in the past and how it

may evolve in future, whi
h is of great importan
e in the �nan
ial and so
ial management

of longevity risk in future.
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Chapter 3

Identi�ability in Age/Period

Mortality Models

3.1 Introdu
tion

As the �eld of modelling mortality has grown in re
ent years, the models proposed and

used have grown ever more 
ompli
ated. This has had the e�e
t of in
reasing the number

and importan
e of identi�ability issues within the models, whi
h 
an lead both to ro-

bustness problems when �tting the models to data and di�
ulties when proje
ting them.

As the demands of modern longevity-risk management te
hniques require sophisti
ated

models 
apable of 
apturing 
omplex and subtle relationships between mortality rates

a
ross di�erent ages and in di�erent populations, unresolved identi�ability issues have

important pra
ti
al 
onsequen
es. We therefore believe that the time has 
ome for a

holisti
 and 
omprehensive analysis of the 
lass of age/period/
ohort (APC) mortality

models and the identi�ability issues within them.

In Chapter 2, we analysed the stru
ture of APC mortality models and proposed a way

of 
lassifying the models proposed to date. This gave us a general framework in whi
h

our study of identi�ability issues operates. The existen
e of identi�ability issues means

that there are 
ertain features of the parameters in a model whi
h are not de�ned by

the data. Instead, these features are only determined by the arbitrary identi�ability


onstraints we impose upon the model when �tting it to data and, therefore, have no

independent meaning. Consequently, we must be 
areful to ensure that our results from

using mortality models do not depend upon these features of the parameters. In the


ontext of the age/period (AP) mortality models dis
ussed in this study, we �nd that

features su
h as the levels of and 
orrelations between the period terms, and the s
ale of
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the age fun
tions are unidenti�ed by the models. These features therefore do not possess

any meaning other than that imposed by our arbitrary identi�ability 
onstraints.

Identi�ability issues arise in these mortality models be
ause there exist di�erent sets of

parameters whi
h will give the same �tted mortality rates. These identi�ability issues


an lead to models whi
h la
k robustness when �tted to data, 
ause us to draw faulty

and erroneous 
on
lusions when analysing the histori
al data and 
an bias our proje
ted

mortality rates in future. It is essential that we understand and resolve these issues

when �tting models to data, as well as 
omprehend the impa
t these issues have on our

analysis of past and future mortality rates.

Identi�ability in mortality models is, therefore, a very important issue. While there are

prin
iples whi
h are 
ommon to the vast majority of mortality models, the impa
t and

impli
ations of these issues vary 
onsiderably depending on the spe
i�
s of the model

being used. To demonstrate these prin
iples in a
tion, we 
onsider a number of simple

models based on the 
lassi
 and widely used models proposed in Lee and Carter (1992)

and Cairns et al. (2006a), both of whi
h are members of the 
lass of AP models. In the

parti
ular 
ases 
hosen, the identi�ability issues 
an appear trivial, and their impa
t on

our analysis of histori
al and proje
ted mortality rates relatively minor. However, we

believe that it is vital to understand these issues fully in the 
ontext of simple models,

sin
e they be
ome 
onsiderably more important in more sophisti
ated models, su
h as

those 
onstru
ted using the �general pro
edure� of Chapter 5.

In addition, due to the s
ale of the topi
, this study deals only with the identi�ability

of AP mortality models. We leave the additional issues 
aused by the in
lusion of a


ohort term to Chapter 4. Allowing for the dependen
e of mortality on year of birth in a

model often 
reates new identi�ability issues, whi
h are fundamentally di�erent to those

a�e
ting simpler AP models and whi
h require a radi
ally di�erent approa
h to analyse.

We begin, in Se
tion 3.2, by revisiting the general stru
ture of AP models and how iden-

ti�ability issues arise in them. We then dis
uss, in Se
tion 3.3, how these issues were

dealt with in the model of Lee and Carter (1992), and how this has in�uen
ed their

treatment in more 
omplex models. The mathemati
al stru
ture of identi�ability issues

in the 
ontext of these more 
omplex mortality models is investigated in Se
tion 3.4. We

then 
onsider how these general issues relate to spe
i�
 models whi
h are more typi
al of

those used in pra
ti
e. Se
tion 3.5 dis
usses the appli
ation of the identi�ability issues

in the 
ontext of an extension to the Lee-Carter model. Se
tion 3.6 examines the general
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issues in models where the form of the age fun
tions has been 
hosen a priori. Se
tion

3.7 then 
onsiders models whi
h mix age fun
tions of di�erent types.

Identi�ability issues in AP mortality models also a�e
t their use in measuring risk and

un
ertainty in mortality rates. In Se
tion 3.8, we dis
uss the impa
t the identi�ability

issues have on measuring the un
ertainty in parameter estimates and on hypothesis test-

ing on the histori
al parameters. Se
tion 3.9 
onsiders the impli
ations of identi�ability

issues for proje
tion, and the importan
e of ensuring that 
onstraints imposed to iden-

tify histori
al parameters uniquely do not impa
t the proje
ted mortality rates in future.

Finally, Se
tion 3.10 
on
ludes.

3.2 Stru
ture and identi�ability in age/period mortality mod-

els

3.2.1 Stru
ture of age/period mortality models

An AP mortality model in dis
rete time is one whi
h assumes that mortality rates 
an

be modelled as a series of terms involving fun
tions of age, x, and period, t.1 In the

notation of Chapter 2, this 
an be written as

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t (3.1)

where ηx,t is a link fun
tion transforming the raw data, αx is a stati
 fun
tion of age,

2 κ
(i)
t

are N period fun
tions governing the evolution of mortality with time and β
(i)
x are age

fun
tions modulating the impa
t of this 
hange over the age range. This stru
ture does

not in
lude any allowan
e for the lifelong e�e
ts of di�erent birth years (
alled �
ohort�

e�e
ts) on mortality.

The stru
ture in Equation 3.1 as it is 
urrently written does not require any of the fun
-

tions to be known in advan
e of �tting the model to data. As su
h, it has what we refer

to as a �non-parametri
� stru
ture. We 
onsider this as the most general form of an AP

mortality model and dis
uss its identi�ability issues in Se
tion 3.4. We will also 
onsider

the �parametri
� 
ase where β
(i)
x is a parametri
 fun
tion of age, β

(i)
x = f (i)(x; θ(i)), in

1

In this 
hapter, for generality we assume that x ∈ [1, X] and t ∈ [1, T ]. In pra
ti
e, the ranges of x

and t will be given by the range of the data being used.

2

Identi�
ation issues in models without a stati
 age fun
tion, αx, are dis
ussed in Appendix 3.A.
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Se
tion 3.6, and models whi
h mix parametri
 and non-parametri
 age fun
tions in Se
-

tion 3.7. Whether β
(i)
x is parametri
 or non-parametri
 will a�e
t the interpretation of

the model, as dis
ussed in Chapter 2, and also lead to subtly di�erent identi�
ation issues.

The form given in Equation 3.1 is widely used and lends itself naturally to interpreting

the parameters as measuring either an age or a period feature of mortality rates. Al-

ternatively, when analysing this stru
ture, we may �nd it useful to 
onsider the stati


age fun
tion, αx, and the age fun
tions, β
(i)
x , as being 
olumn ve
tors in RX

instead of

fun
tions of age, and the period fun
tions, κ
(i)
t , as row ve
tors in RT

, rather than a time

series. Considering the parameters in this 
ontext, it is natural to de�ne inner produ
ts,

< ., . > on RX
and RT

, respe
tively, and use these to 
ompare the di�erent fun
tions.

For instan
e, we 
ould de�ne the �s
ale� of an age fun
tion by taking

‖β(i)
x ‖ =< β(i)

x , β(i)
x >

or the �angle�, θ, between age fun
tions as

cos θ =
< β

(i)
x , β

(j)
x >

√

‖β(i)
x ‖‖β(j)

x ‖

We 
an think of the inner produ
ts being the standard Eu
lidean inner produ
ts, i.e.

that < β
(i)
x , β

(j)
x >=

∑

x β
(i)
x β

(j)
x and < κ

(i)
t , κ

(j)
t >=

∑

t κ
(i)
t κ

(j)
t .

If the period parameters, κ
(i)
t , are interpreted as random variables then we also see that

this standard Eu
lidean inner produ
t 
an be interpreted in terms of their sample mean

and sample varian
e

κ̄(i) =
1

T

∑

t

κ
(i)
t =

1

T
< κ

(i)
t , 1 >

σ2
κ(i) =

1

T

∑

t

(

κ
(i)
t − κ̄(i)

)2
=

1

T
< κ

(i)
t − κ̄(i), κ

(i)
t − κ̄(i) >

=
1

T
‖κ(i)t − κ̄(i)‖
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Similarly, we see that the sample 
orrelation between two period fun
tions is given by

the angle between them

Corr(κ(i), κ
(j)
t ) =

∑

t

(

κ
(i)
t − κ̄(i)

)(

κ
(j)
t − κ̄(j)

)

√

σ2
κ(i)σ

2
κ(j)

=
< κ

(i)
t − κ̄(i), κ

(j)
t − κ̄(j) >

√

‖κ(i)t − κ̄(i)‖‖κ(j)t − κ̄(j)‖

= cos θκ−κ̄

Consequently, the standard Eu
lidean inner produ
t has a number of helpful interpre-

tations and is widely used.

3

However, we 
ould equally reasonably 
hoose other inner

produ
ts on RX
and RT

if these are more 
onvenient.

4

When proje
ting the period fun
tions using multivariate time series pro
esses, it is helpful

to de�ne ve
tors

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

The model therefore has the ve
tor stru
ture

ηx,t = αx + β⊤
x κt (3.2)

In order to proje
t the model, the ve
tor κt 
an be modelled using VARIMA pro
esses.

This is 
onsidered further in Se
tion 3.9.

We 
an also 
onstru
t matri
es for the age and period fun
tions as β = {β(1)
x β

(2)
x . . . β

(N)
x }

and κ = {κ(1)t ;κ
(2)
t ; . . . ;κ

(N)
t } and therefore re-write Equation 3.1 in matrix form

H = α1⊤ + βκ (3.3)

where

• H is the (X × T ) matrix of transformed data (i.e., H = {ηx,t}),

• α is a (X × 1) matrix of the stati
 age fun
tion,

3

For example, it is 
ommon to impose κ̄
(i)
t = 1

T
< κ

(i)
t , 1 >= 1

T

∑

t κ
(i)
t = 0 as an identi�ability


onstraint, as dis
ussed below.

4

For instan
e, in Chapter 5, we use the standard L(2) inner produ
t to de�ne orthogonality between

age and period fun
tions, but use the L(1) norm to de�ne a normalisation s
heme.
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• 1 is a (T × 1) matrix of ones, and

• β and κ are the (X ×N) matrix and (N × T ) matrix of age and period fun
tions


onstru
ted above, respe
tively.

When expressed in this form, AP models 
an be analysed through the prism of matrix

algebra and linear mathemati
s. Spe
i�
ally, we 
an see that an AP mortality model is

a mapping, Θ, from the spa
e of parameters to the model spa
e, M, of �tted mortality

rates.

Θ(αx, β
(i)
x , κ

(i)
t ) : RX × RNX × RNT → M ⊂ RX×T

(3.4)

Analysing AP mortality models as linear transformations 
an be very useful, and is pur-

sued in Se
tions 3.2.2 and 3.4 and in Appendix 3.B. However, whilst su
h an abstra
tion


an be useful for some purposes, it is important to remember that the parameters in the

model have spe
i�
 interpretations, for instan
e, that the period fun
tions are ordered


hronologi
ally, and so the problem of identi�ability should not be seen purely as an

exer
ise in linear mathemati
s.

3.2.2 Identi�ability in age/period models

An AP mortality model 
annot, in general, be estimated as it stands. This is be
ause

any parameter estimates would not be unique, sin
e Equation 3.3 is not, in general, fully

identi�able.

A model is fully identi�ed when all the parameters in it 
an be uniquely determined by

referen
e to the available data. In 
ontrast, most mortality models are not fully identi�ed

- there exist di�erent sets of parameters whi
h will give the same �tted mortality rates

and 
onsequently the same goodness of �t. Although this phenomenon is not unique

to mortality models, it is very widespread in mortality modelling and has signi�
ant

impli
ations when we 
ome to proje
t these models.

The models are not fully identi�able be
ause the spa
e of the parameters for the model,

RX ×RNX ×RNT
has a higher dimension than that of the model spa
e, M, as we show

later. Therefore, the mapping Θ in Equation 3.4 
annot be inje
tive,

5

sin
e we 
annot

�nd a one-to-one mapping from a higher dimension spa
e to a lower one. In pra
ti
e,

5

A transformation, Θ, whi
h maps set A to set B is inje
tive if ∀a1, a2 ∈ A, Θ(a1) = Θ(a2) ⇔ a1 = a2

(whi
h implies that di�erent points get mapped to di�erent points).
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this means that we 
an �nd transformations of the parameters

{αx, β
(i)
x , κ

(i)
t } → {α̂x, β̂

(i)
x , κ̂

(i)
t } (3.5)

su
h that

Θ(αx, β
(i)
x , κ

(i)
t ) = Θ(α̂x, β̂

(i)
x , κ̂

(i)
t ) (3.6)

We 
all the transformations of the parameters whi
h satisfy Equation 3.6 �invariant�, be-


ause the �tted mortality rates do not 
hange when they are applied to the parameters.

The additional degrees of freedom in these invariant transformations 
orrespond to the

additional dimensions of the parameter spa
e 
ompared with the model spa
e.

Be
ause {αx, β
(i)
x , κ

(i)
t } and {α̂x, β̂

(i)
x , κ̂

(i)
t } give identi
al �tted mortality rates and there-

fore �t observed data equally well, there is no statisti
al reason to 
hoose between them.

In pra
ti
e, in order to spe
ify a unique set of parameters, 
onstraints independent of

the data are imposed - so 
alled �identi�ability 
onstraints�. This has the e�e
t of redu
-

ing the number of degrees of freedom from the number of parameters. Mathemati
ally,

imposing 
onstraints restri
ts the original parameter spa
e, RX × RNX × RNT
, to a

subspa
e, P, whi
h has fewer dimensions. The aim is to sele
t a subspa
e, P, whi
h
has the same dimension as the model spa
e, M, whi
h allows for a one-to-one mapping

between the redu
ed parameter spa
e and the model spa
e. Redu
ing the dimension of

the parameter spa
e 
an also be a
hieved by reparameterising the model in a �maximally

invariant� form, as dis
ussed in Appendix 3.B.

It is important to know the number of dimensions of the model spa
e, not only to ensure

that our model is uniquely estimated, but also be
ause this value is used to penalise the

likelihood or devian
e fun
tions in measures of the goodness of �t, su
h as the Bayes

Information Criterion. A failure to 
orre
tly determine the number of free parameters

in a model may therefore distort tests of the goodness of �t, su
h as those performed in

Cairns et al. (2009) and Haberman and Renshaw (2011), and potentially leads to an in-


orre
t assessment about whi
h model gives a superior �t to data. One spe
i�
 example

of this is dis
ussed in Appendix 3.A.
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3.3 Identi�ability in the Lee-Carter model

This general la
k of identi�ability in mortality models has been re
ognised for a long

time. One of the �rst and most signi�
ant AP mortality models was introdu
ed in Lee

and Carter (1992) (referred to as the LC model). This has a single age/period term (i.e.,

N = 1 in Equation 3.1) and 
an be written as

ln(µx,t) = αx + βxκt (3.7)

The study of Lee and Carter (1992) was aware that these parameters are not unique as

they 
an be transformed in the following two ways

{α̂x, β̂x, κ̂t} =

{

αx,
1

a
βx, aκt

}

(3.8)

{α̂x, β̂x, κ̂t} = {αx − bβx, βx, κt + b} (3.9)

and the �tted mortality rates will be un
hanged. The existen
e of invariant transforma-

tions means that the model possesses identi�ability issues, sin
e no one set of parameters

is determined uniquely from the data.

We 
an see that Equation 3.8 implies that the �s
ales� of βx and κt are unidenti�ed sin
e

‖βx‖ 6= ‖β̂x‖ and similarly for κt. In addition, we 
an say that Equation 3.9 implies

that the �lo
ation� of κt is unidenti�ed.
6

The lo
ations and s
ales of the age and period

terms in the LC model therefore have no independent signi�
an
e, be
ause di�erent sets

of parameters, with di�erent lo
ations and s
ales, will give exa
tly the same observable

quantities, su
h as �tted mortality rates.

To over
ome this la
k of identi�ability, Lee and Carter (1992) imposed additional 
on-

straints on the parameters whi
h are unrelated to the underlying data.

7

As Equations

3.8 and 3.9 have two free parameters, a and b, we require an additional two arbitrary

identi�ability 
onstraints to uniquely spe
ify the model. Lee and Carter (1992) imposed

∑

x βx = 1 and

∑

t κt = 0. These identi�ability 
onstraints have subsequently be
ome

widely adopted by most model users. A general set of LC parameters (found from the

6

S
ale and lo
ation have their intuitive meanings that the �s
ale� of a set of parameters relates to

how spread out they are, whilst �lo
ation� refers to their position (i.e., what numeri
al values they take).

More pre
isely for βx, we 
ould de�ne the s
ale of a parameter set as S = max(βx) −min(βx) and the

lo
ation, L =
∑

x βx

XS
, where X is the number of ages in the range of x, with similar de�nitions for κt.

However, these formal de�nitions provide little by way of additional meaning.

7

We say that the transformations in Equations 3.8 and 3.9 
ause issues with the identi�ability of the

model. Identi�
ation of the model is a

omplished by imposing a set of identi�ability 
onstraints and

using the invariant transformations to satisfy these 
onstraints.
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data via some estimation method) 
an be transformed into the 
onstrained parameter

set using the transformation in Equation 3.8 and 
hoosing a =
∑

x βx and then by using

the transformation in Equation 3.9 with b = − 1
T

∑

t κt.

We 
an see that imposing any set of identi�ability 
onstraints is a
hieved by using these

transformations with spe
i�
 values of the free parameters a and b. Intuitively, we might

think of the imposition of the identi�ability 
onstraints as redu
ing the number of e�e
-

tive parameters in the LC model. The LC model has 2X + T parameters. However, the

invariant transformations of the model show that two of these degrees of freedom do not

have any impa
t on the �t to data. Imposing the identi�ability 
onstraints involves trans-

forming an arbitrary set of parameters to our 
hosen set by using the transformations

with spe
i�
 values of these parameters and so 
an be thought of as �using up� the de-

grees of freedom in a way that does not a�e
t the �tted mortality rates. We will therefore

have a total of 2X+T −2 parameters whi
h are determined by the data when �tting the

model, and another two whi
h are determined by imposing the identi�ability 
onstraints.

In the terminology of Se
tion 3.2.2, the un
onstrained parameter spa
e of the LC model

has dimension 2X + T , but the model spa
e, M, has dimension 2X + T − 2. The iden-

ti�ability 
onstraints therefore restri
t the parameters to the 2X + T − 2 dimensional

subspa
e, P, of the full parameter spa
e, RX × RNX × RNT
, allowing for an inje
tive

mapping between the restri
ted parameter spa
e, P, and the model spa
e, M ⊂ RX×T
.

We interpret the 
onstraints used in Lee and Carter (1992) as setting �rst the �normal-

isation� of βx in order to identify its s
ale and se
ond the �level� of κt to be 
entred on

zero to identify its lo
ation. However, the lo
ation and s
ale 
hosen still do not pos-

sess any independent meaning, sin
e they are wholly dependent upon the identi�ability


onstraints 
hosen. Be
ause they do not depend upon the data, these additional identi-

�ability 
onstraints are arbitrary. While they might allow us to interpret the parameters

in terms of their demographi
 signi�
an
e,

8

this interpretation nevertheless depends en-

tirely on the user's judgement, rather than on the underlying data.

For instan
e, the 
onstraint that

∑

t κt = 0 in the Lee-Carter model allows us to interpret

κt as representing deviations away from an �average� level of the �tted mortality rates

8

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of a model

in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in mortality rates

whi
h generate them.
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a
ross the histori
al period of interest, sin
e it has the 
onsequen
e that

αx =
1

T

∑

t

ηx,t (3.10)

The 
onstraint

∑

t κt = 0, therefore, means that αx 
an be interpreted as the average

mortality rate at ea
h age over the period of the data.

9

However, the 
onstraint κ1 = 0 is just as reasonably imposed in Renshaw and Haberman

(2003
), with the interpretation that the period fun
tions represent the falls in mortality

from an initial level.

10

Imposing this 
onstraint means that αx = ln(µx,1), i.e., it has

the demographi
 signi�
an
e that it is the �rst year of the �tted mortality surfa
e. A
-


ordingly, model users must be 
areful not to rely on a parti
ular interpretation for the

parameters when making mathemati
al statements about the model or when proje
ting

it. For instan
e, we should not dire
tly 
ompare values of κt for di�erent populations,

sin
e di�erent arbitrary identi�ability 
onstraints 
an result in very di�erent estimated

values of the parameters.

The use of arbitrary identi�
ation 
onstraints has be
ome almost universal amongst users

of the LC model. An alternative approa
h, proposed by Nielsen and Nielsen (2014), is

to reparameterise the model to give a set of �maximally invariant� parameters. These

will be 
hosen to avoid any identi�
ation issues, but 
onvey the same information and

a
hieve the same �t to data. This approa
h and its drawba
ks are dis
ussed in Appendix

3.B.

3.4 Identi�ability in models with non-parametri
 age fun
-

tions

We de�ne models with non-parametri
 age fun
tions in Chapter 2 as those where the

values of the age fun
tions β
(i)
x at di�erent ages x are �tted without any a priori shape

9

If ordinary least squares is used to estimate the parameters in the model, the estimator for αx is

1
T

∑

t ln
(

dx,t

Ec
x,t

)

, i.e., the unweighted average of observed mortality rates. However, this will not be true

if other estimation methods are used, where αx will be a weighted average, where the weights are related

to the exposure to risk over the period. Imposing

1
T

∑

t ln
(

dx,t

Ec
x,t

)

a priori onto a model will therefore

redu
e the goodness of �t to the data if alternative �tting pro
edures are used. The impa
t of this is

dis
ussed further in Appendix 3.A.

10

This would involve applying the transformation in Equation 3.9 with b = −κ1.
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a
ross ages. Age is treated as an unknown fa
tor in the model rather than as a re-

gressor with a known form.

11

It is important to re
ognise that this usage di�ers from

other de�nitions of �non-parametri
� employed in statisti
s and a
tuarial s
ien
e. For

the avoidan
e of doubt, we spe
i�
ally use the term to refer to whether we assume a

spe
i�
 shape for the age fun
tions in Equation 3.1 a priori.

All AP mortality models with non-parametri
 age fun
tions are extensions of the LC

model, as dis
ussed in Booth et al. (2002) and Renshaw and Haberman (2003b). The

number of age/period terms in the model is usually found by maximising the �t to data,

whilst their shape 
an be found through prin
ipal 
omponent analysis using singular

value de
omposition, as in Booth et al. (2002), Renshaw and Haberman (2003b), Hat-

zopoulos and Haberman (2009) and Yang et al. (2010).

We 
an see from 
onsideration of Equation 3.3 that models with non-parametri
 age/pe-

riod terms are not fully identi�ed, sin
e we 
an transform them using

{α̂, β̂, κ̂} = {α, βA−1, Aκ} (3.11)

{α̂, β̂, κ̂} = {α− βB, β, κ+B1

⊤} (3.12)

where A is an (N × N) matrix whose only 
onstraint is that it needs to be invertible,

and B is a (N × 1) matrix.

Theorem 3.1. The transformations in Equations 3.11 and 3.12 are the only invariant

transformations for the model in Equation 3.3.

Sket
h of Proof Assume, without loss of generality, that the matrix β has full 
olumn

rank N and κ is of full row rank N . If not, the model is poorly 
hosen and we 
ould use

a model with fewer age/period terms and a
hieve the same �t to data.

Further, assume that we have two sets of parameters giving the same �tted mortality

rates. Then

α1⊤ + βκ = α̂1⊤ + β̂κ̂

βκ− β̂κ̂ = (α̂− α)1⊤

= C1

⊤

11

For this reason, we 
ould alternatively refer to non-parametri
 age fun
tions as �fa
torial� age fun
-

tions.
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for C some arbitrary (X × 1) matrix. From this, we 
an multiply both sides by β̂⊤

β̂⊤βκ− β̂⊤β̂κ̂ = β̂⊤C1

⊤

and, as β̂ is of full 
olumn rank, β̂⊤β̂ is invertible and so

κ̂ = (β̂⊤β̂)−1β̂⊤βκ− (β̂⊤β̂)−1β̂⊤C1

⊤

De�ning A = (β̂⊤β̂)−1β̂⊤β and B = (β̂⊤β̂)−1β⊤C, we see this is of the same form as

the 
omposition of the transformations in Equations 3.11 and 3.12 on κ, with the forms

of β̂ and α̂ following dire
tly from this.

By analogy with the LC model, it should be 
lear that these transformations represent

the generalisation of Equations 3.8 and 3.9 for models with more than one non-parametri


age/period term. These are the general invariant transformations of the model. Again,

we 
an see that the existen
e of these invariant transformations means that the s
ales

and angles of the age and period fun
tions are not identi�able by the model (i.e., not

de�ned by the data), sin
e

‖β̂(i)
x ‖ = ‖β(i)

x A−1‖ 6= ‖β(i)
x ‖

< β̂(i)
x , β̂(j)

x >=< β(i)
x A−1, β(j)

x A−1 > 6=< β(i)
x , β(j)

x >

i.e., di�erent sets of identi�ability 
onstraints will give di�erent s
ales and angles be-

tween the age/period terms. In addition, from Equation 3.12 we see that the lo
ations

of the κ
(i)
t 's are unidenti�ed in the same way as in the LC model. Sin
e the s
ales, angles

and lo
ations of the parameters are not de�ned by the data, we are free to impose them

through our 
hoi
e of identi�ability 
onstraints.

This also has 
onsequen
es for any graphs of the di�erent parameters, with some aspe
ts

of any graph not being meaningful, sin
e they depend purely on the arbitrary 
hoi
e of

identi�ability 
onstraint. For example, in a graph of κ
(i)
t vs.t, the la
k of identi�ability

in the levels of κ
(i)
t due to be Equation 3.12 means that the position of the x-axis is not

meaningful, sin
e it is just a 
onsequen
e of an identi�ability 
onstraint on the level of

κ
(i)
t . Similarly, the s
ale on the y-axis is not meaningful, sin
e it depends on the normal-

isation s
heme 
hosen.

By interpreting the angle between di�erent period fun
tions as their 
orrelation, as dis-


ussed in Se
tion 3.2, we also see that the la
k of identi�ability issues in AP mortality
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model means that 
orrelations between di�erent period fun
tions are also not meaning-

ful, sin
e they too depend upon the arbitrary identi�ability 
onstraints. More generally,

the behaviour of any one period fun
tion has no obje
tive meaning unless it is also true

of any linear 
ombination of all of the period fun
tions. This has important 
onsequen
es

when performing graphi
al 
he
ks on the �tted parameters, and also when we 
ome to

proje
t a model, as dis
ussed in Se
tion 3.9.

In the terminology of Se
tion 3.2.2, we see that a general AP model of the form in

Equation 3.3 has X + N(X + T ) parameters, i.e., the parameter spa
e has dimension

X +N(X +T ). However, the invariant transformations in Equations 3.11 and 3.12 have

N(N+1) parameters whi
h implies that we need to impose N(N+1) identi�ability 
on-

straints in order to spe
ify a unique set of parameters. This means that the restri
ted

parameter spa
e, P, is an X + N(X + T ) − N(N + 1) dimensional subspa
e of RX ×
RNX ×RNT

, and, 
orrespondingly, the model spa
e M is an X +N(X +T )−N(N +1)

dimensional subspa
e of RX×T
.

The N(N + 1) 
onstraints imposed will still be arbitrary in the sense that they are en-

tirely the 
hoi
e of the model user. It is impossible to 
hoose between models with the

same stru
ture in Equation 3.1 and the same �tting pro
edure but di�erent identi�ability


onstraints by statisti
al methods. However, the di�erent terms in them may have dif-

ferent subje
tive demographi
 signi�
an
e depending upon the identi�ability 
onstraints

imposed.

3.5 Identi�ability in the LC2 model

In Se
tion 3.3, we saw how the di�erent identi�ability issues were solved in the simplest

and most 
ommonly used AP mortality model. We now take the intuition derived from

that model and also the theory dis
ussed in Se
tion 3.4 and apply them to the next

simplest AP mortality model with non-parametri
 age fun
tions. The two-term model

in Renshaw and Haberman (2003b) (whi
h we shall refer to as the LC2 model) is usually

written as

ln(µx,t) = αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t (3.13)

The LC2 model applies the same normalisation s
heme to the age fun
tions to set their

s
ale and the same level for the period fun
tions to set their lo
ation as in the original
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LC model. Doing so, however, 
an lead to identi�ability issues in this more 
ompli
ated

model as we now show.

3.5.1 Lo
ation

Be
ause the lo
ation of the period fun
tions is not identi�able, Renshaw and Haberman

(2003b) set their level by imposing

∑

t κ
(i)
t = 0 for i = 1, 2. As with the LC model,

this gives the stati
 age fun
tion the demographi
 signi�
an
e of representing �average�

mortality rates a
ross the period range of the data. This does not 
ause any additional

issues for the LC2 model, so long as it is imposed via an identi�ability 
onstraint on κt

and not by imposing the form of αx (as dis
ussed in Appendix 3.A).

3.5.2 S
ale

To set the s
ale of the age/period terms, Renshaw and Haberman (2003b) imposed the


onstraint

∑

x β
(i)
x = 1 for i = 1, 2, again, in order to be 
onsistent with the 
onvention

established by Lee and Carter (1992). However, the justi�
ation for this normalisation

s
heme makes most sense under the assumption that β
(i)
x ≥ 0 for all x - indeed, this is

imposed on the LC model in Haberman and Renshaw (2009) at the expense of goodness

of �t to the data. If β
(i)
x ≥ 0, then

∑

x β
(i)
x = 1 
onstrains the age fun
tion to be in

the range [0, 1]. The values of β
(i)
x therefore 
an be felt to represent a proportion of the

fa
tor κ
(i)
t impa
ting mortality at age x. In general, however, it may be the 
ase that

β
(i)
x < 0 at some ages, espe
ially in models with multiple age/period terms. If so, the

interpretation of the age fun
tions as measuring the proportion of the 
hange is no longer

appli
able.

Figure 3.1 shows the age fun
tions from the LC2 model �tted to data for men in the

UK

12

with the 
onstraint

∑

x β
(i)
x = 1 for i = 1, 2. We see that if β

(i)
x ≤ 0 for some x,

as is the 
ase for the se
ond age fun
tion, then the identi�ability 
onstraint on the age

fun
tion no longer limits it to a parti
ular range of values. Indeed, β
(i)
x1 
an take arbitrar-

ily high values, as long as there exists a 
orrespondingly low β
(i)
x2 to 
ompensate. This

is in 
ontrast to β
(1)
x , whi
h is greater than zero for all ages, and hen
e is 
omparatively


lose to zero a
ross the whole age range.

13

This undermines the rationale for sele
ting

12

Data for men aged 50 to 100 in the UK from 1950 to 2011 from the Human Mortality Database

(Human Mortality Database (2014)).

13

In Figure 3.1, 0.003 ≥ β
(1)
x ≥ 0.024, while −1.58 ≥ β

(2)
x ≥ 1.46, i.e., roughly two orders of magnitude

di�eren
e, with a 
orresponding impa
t on the period fun
tions.
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Figure 3.1: LC2 age fun
tions with

∑

x β
(i)
x = 1

a 
ommon normalisation s
heme for the age fun
tions, whi
h was to aid 
omparisons of

the relative importan
e of the di�erent age/period terms.

The identi�ability 
onstraint

∑

x β
(i)
x = 1 
an also, theoreti
ally, lead to numeri
al prob-

lems when �tting the model to data. In pra
ti
e, the 
onstraint is imposed by taking the

set of parameters generated by the �tting algorithm (whi
h do not have any identi�abil-

ity 
onstraints imposed) and using the transformation in Equation 3.8 with b =
∑

x β
(i)
x ,

i.e., β̂
(i)
x = 1

∑
ξ β

(i)
ξ

β
(i)
x . This gives an equivalent set of parameters (with the same �t to

the data), but where

∑

x β̂
(i)
x = 1 by 
onstru
tion. If, however,

∑

x β
(i)
x = 0 for whatever

reason, this pro
edure will fail as applying the transformation involves dividing by zero,

even if the age fun
tion �tted originally by the algorithm is reasonable. While this is

unlikely, it is far more 
ommon that we �nd

∑

x β
(i)
x ≈ 0, whi
h will then lead to the

revised parameters (with the 
onstraint imposed) being infeasibly large, and whi
h may,

in turn, generate problems with the �tting algorithm.

Both of these problems with the normalisation s
heme are 
aused be
ause simple sum-

mation over x is not a true norm. A true norm, ‖v‖, for a ve
tor spa
e, V, of a ve
tor,

v, is de�ned by the properties

1. ‖v‖ ≥ 0 ∀v ∈ V;

2. ‖v‖ = 0 ⇐⇒ v = 0;
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3. ‖av‖ = |a|‖v‖ ∀a ∈ R; and

4. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.

These properties mean that we 
an use a true norm to de�ne distan
es and s
ales within

the ve
tor spa
e and therefore make them useful when spe
ifying a normalisation s
heme.

However, we see that

∑

x β
(i)
x is not a true norm in RX

, sin
e we 
an have

∑

x β
(i)
x < 0

and

∑

x β
(i)
x = 0 does not mean that β

(i)
x = 0 ∀x. Therefore, we are not able to use

this normalisation s
heme to 
ompare s
ales for the age fun
tions, and 
annot assume

that

∑

x β
(i)
x > 0 in our �tting algorithms when we 
ome to impose the identi�ability


onstraints.

Normalisation s
hemes using true norms on RX
, su
h as

∑

x |β
(i)
x | = 1 or

∑

x(β
(i)
x )2 = 1,

will not su�er from these issues. When it 
omes to normalising the �tted age fun
tion,

a pro
edure using a true norm for the normalisation s
heme will never involve division

by zero if the transformation in Equation 3.8 is used with any non-trivial age fun
tions.

Therefore, in most 
ir
umstan
es, normalisation s
hemes based on true norms will be

preferable.

14

However, we note that normalisation s
hemes based on true norms are not perfe
tly

identi�ed, sin
e the transformation

{β̂(i)
x , κ̂

(i)
t } = {−β(i)

x ,−κ
(i)
t } (3.14)

is an invariant transformation of the parameters where the new parameters still satisfy

the identi�ability 
onstraints. In prin
iple, we 
ould solve this by 
hoosing alternative

sets of normalisation 
onstraints, for instan
e

sign

(

∑

x

β(i)
x

)

∑

x

(

β(i)
x

)2
= 1

whi
h are still based on using true norms but are not invariant to 
hanging the sign

of the age fun
tion. However, the spe
i�
 transformation 
ausing this problem has few

pra
ti
al 
onsequen
es when �tting the model, sin
e the transformation is not 
ontin-

uous. When �tting the LC or LC2 models using maximum likelihood te
hniques, for

instan
e, we make small adjustments to the parameters at ea
h iteration and so it is

not possible to move smoothly from one set of a

eptable parameters to another when

14

An obvious 
hoi
e would be a normalisation s
heme that is 
onsistent with the standard Eu
lidean

inner produ
t, i.e., the Eu
lidean norm on RX
, ‖β

(i)
x ‖ =

∑

x(β
(i)
x )2 = 1. However, this is not essential

and an alternative normalisation s
heme based on another true norm of RX
may be preferred if it is

more 
onvenient, as it is in Chapter 5.
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Figure 3.2: LC2 age fun
tions with

∑

x |β
(i)
x | = 1

�tting the model. In addition, the transformation in Equation 3.14 
an be applied to

any set of parameters after �tting the model and, hen
e, 
an be used to sele
t the sign of

the age fun
tion based on the judgement of the user when reviewing the �tted parameters.

To illustrate this, 
onsider the age fun
tions shown in Figure 3.2 whi
h �t the LC2

model to the same data as in Figure 3.1 with the normalisation s
heme

∑

x |β
(i)
x | = 1.

This normalisation s
heme gives a model with exa
tly the same �t to the data, but the

estimated parameters for the age and period fun
tions are now of the same order of

magnitude,

15

whi
h may make this model easier to proje
t. We also avoid the possibility

of any 
omputational problems when imposing the identi�ability 
onstraint, sin
e the

divisor,

∑

x |β
(i)
x |, will not be zero for any non-trivial age fun
tion.

3.5.3 Rotation

We established in Se
tion 3.4 that N(N + 1) 
onstraints were ne
essary to restri
t the

parameters in a general AP mortality model with non-parametri
 age fun
tions, due

to the number of free parameters in the transformations in Equations 3.11 and 3.12.

In the 
ontext of the LC2 model, this means that we would require six identi�ability


onstraints. However, only four identi�ability 
onstraints (two on the level of the two

period fun
tions, two on the normalisation of the two age fun
tions) were des
ribed

15

In Figure 3.1, 0.003 ≥ β
(1)
x ≥ 0.024, while −0.024 ≥ β

(2)
x ≥ 0.026, i.e., the same order of magnitude.
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in Renshaw and Haberman (2003b). We, therefore, have an additional two invariant

transformations of the parameters whi
h give the same �t to data and whi
h satisfy the


onstraints already expli
itly imposed by Renshaw and Haberman (2003b). These 
an

be written as

(

β̂
(1)
x

β̂
(2)
x

)

=

(

θ 1− θ

0 1

)(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

θ

(

1 θ − 1

0 θ

)(

κ
(1)
t

κ
(2)
t

)

(3.15)

and

(

β̂
(1)
x

β̂
(2)
x

)

=

(

1 0

1− φ φ

)(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

φ

(

φ 0

φ− 1 1

)(

κ
(1)
t

κ
(2)
t

)

(3.16)

These transformations 
an be thought of as �rotations� of the age/period fun
tions, be-


ause they 
hange the angle between age and period fun
tions, but the normalisation

s
heme

∑

x β̂
(i)
x = 1 still holds.

16

They also 
learly illustrate that we have an additional

two degrees of freedom, given by the free parameters θ and φ, whi
h do not 
hange the

�tted mortality rates but whi
h should be used to impose two more identi�ability 
on-

straints on the model.

This does not ne
essarily mean that the model in Renshaw and Haberman (2003b) was

poorly identi�ed, however. Although the authors did not expli
itly a
knowledge the exis-

ten
e of these additional identi�ability 
onstraints, their use of singular value de
omposi-

tion to �t the model imposed them impli
itly. By taking singular values (or equivalently,

prin
ipal 
omponents), age and period fun
tions are sele
ted so that

∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x = 0 for i 6= j. We 
all su
h age and period fun
tions �orthogonal� to ea
h

other as the angle between them de�ned earlier using the standard inner produ
t will

be

π
2 . This impli
it imposition of additional identi�ability 
onstraints leads to a fully

identi�ed model.

If alternative �tting methods are used, su
h as maximum likelihood (e.g., in Brouhns

et al. (2002a)) or minimal devian
e (e.g., in Renshaw and Haberman (2003a)), then

these 
onstraints must be imposed expli
itly in order to obtain a fully identi�ed model.

16

In some respe
ts, Equations 3.15 and 3.16 are more similar to shears than rotations. However, we

�nd that thinking of them as rotations with respe
t to the original set of parameters is 
on
eptually

more helpful.
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To impose these orthogonality 
onstraints for a general set of LC2 parameters, we would

therefore need to solve

∑

t κ̂
(i)
t κ̂

(j)
t = 0 and

∑

x β̂
(i)
x β̂

(j)
x = 0 with the transformed param-

eters de�ned by Equations 3.15 and 3.16 in order to �nd θ and φ.

We also note the spe
ial 
ase where A =

(

0 1

1 0

)

(i.e., θ = φ = 1 when Equations 3.15

and 3.16 are 
omposed), whi
h relates to the transformation

{β̂(1)
x , κ̂

(1)
t , β̂(2)

x , κ̂
(2)
t } = {β(2)

x , κ
(2)
t , β(1)

x , κ
(1)
t } (3.17)

This is an invariant transformation of the parameters where the new parameters still

satisfy the identi�ability 
onstraints. However, it amounts to simply re-labelling the

age/period terms and arises be
ause the identi�ability 
onstraints are the same for all

age/period terms. Similar to the 
ase in Equation 3.14, this situation 
ould, in prin
iple,

be solved by using di�erent identi�ability 
onstraints for the di�erent age/period terms,

for instan
e

∑

x

|β(1)
x | = 1

∑

x

(

β(2)
x

)2
= 1

whi
h breaks the symmetry between the di�erent age/period terms and, thus, prevents

them being relabelled. However, as with Equation 3.14, the transformation in Equation

3.17 has few pra
ti
al 
onsequen
es, sin
e it is not 
ontinuous and so it is not possible to

move smoothly from one set of a

eptable parameters to another when �tting the model.

Furthermore, using di�erent identi�ability 
onstraints for the di�erent age/period terms


on�i
ts with a desire for their s
ale to be 
omparable with ea
h other and, hen
e, we

do not believe that this issue is important in pra
ti
e.

If maximum likelihood methods are used to estimate the parameters in a model, it is use-

ful that these estimators are independent of ea
h other. This helps to give more e�
ient

�tting algorithms for estimation and is also useful when allowing for parameter un
er-

tainty using the te
hnique of Brouhns et al. (2002b) dis
ussed in Se
tion 3.8. Assuming

the 
anoni
al link fun
tion is used as dis
ussed in Chapter 2, the independen
e of the

estimators 
an be assessed by 
onsideration of the information matrix for the di�erent
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parameters

I(β(i)
x , β(j)

x ) = E

[

∂2L
∂β

(i)
x ∂β

(j)
x

]

= −
∑

t

Var(Dx,t)κ
(i)
t κ

(j)
t

I(κ
(i)
t , κ

(j)
t ) = E

[

∂2L
∂κ

(i)
t ∂κ

(j)
t

]

= −
∑

x

Var(Dx,t)β
(i)
x β(j)

x

Therefore, we see that orthogonal age and period fun
tions are independent of ea
h

other if Var(Dx,t) is 
onstant a
ross ages and years.This assumption is impli
itly made

when using singular value de
omposition or prin
ipal 
omponents analysis to estimate

parameters. However, the assumption is not 
onsistent with the use of the Poisson or

binomial distribution for death 
ounts, as dis
ussed in Chapter 2. Under these distribu-

tions, the varian
e of death 
ounts depends upon the exposure to risk at di�erent ages,

whi
h 
hanges 
onsiderably over di�erent ages and years and is more realisti
 in pra
ti
e.

In prin
iple, we 
ould impose independent parameter estimates using the transforma-

tions in Equations 3.15 and 3.16 with 
arefully sele
ted values of θ and φ to obtain an

equivalent set of parameters. Doing so would simply be 
hoosing an alternative (but

equally valid) set of identi�ability 
onstraints. However, in pra
ti
e, this would mean


onstraints that are both more di�
ult to impose than the traditional orthogonality 
on-

straints using the Eu
lidean inner produ
t, and whi
h lose the 
onne
tion between the

inner produ
t and the sample moments of κ
(i)
t . In pra
ti
e, imposing

∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x = 0 for i 6= j to obtain orthogonal age and period fun
tions is a 
onvenient

and useful set of identi�ability 
onstraints.

Whi
hever set of 
onstraints is imposed on the angles between di�erent period fun
tions,

the most important thing is, however, to impose some form of 
onstraint. A failure to

do so may result in the �tting routine failing to 
onverge or, alternatively, the �tting

routine may give model parameters whi
h depend upon the initial parameter estimates

used in the algorithm. Similarly, the angles between di�erent age fun
tions must also

be 
onstrained in order to fully identify the model. This has impli
ations for estimated

parameter un
ertainty, as dis
ussed in Se
tion 3.8.

We noted in Se
tion 3.2 that the 
orrelation between two di�erent period fun
tions de-

pends on the angle between them. This means that we see that the 
orrelations we
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Figure 3.3: Period fun
tions from the LC2 model

�nd between period fun
tions from our �tted parameters depends only on the identi-

�ability 
onstraints 
hosen, and so are not meaningful. For instan
e, the 
onstraint

∑

t κ
(i)
t κ

(j)
t = 0 imposes independen
e on the period fun
tions over the histori
al range

of the data when they are 
onsidered as time series. Figure 3.3 shows period fun
tions

for the LC2 model �tted to the same data as above, but with two di�erent 
onstraints on

the angles between them. In Figure 3.3a, the period fun
tions are orthogonal whereas,

in Figure 3.3b, they have a 
orrelation of -75%.

17

However, both sets of parameters give

identi
al �ts to the histori
al data. This will have important 
onsequen
es when we 
ome

to proje
t the model in Se
tion 3.9.

In situations su
h as Renshaw and Haberman (2003b), where orthogonality 
onstraints

on the age/period terms have been imposed impli
itly by the �tting me
hanism, we be-

lieve that it is important to re
ognise and state them 
learly. Not only will this 
larify

whi
h features of graphs of the age and period terms are meaningful, it also ensures

that we assess the dimension of P (i.e., the number of degrees of freedom in the model)


orre
tly. This is important when assessing the goodness of �t for the model.

As an example of this, in Haberman and Renshaw (2011), the LC2 model is 
ompared

against other mortality models using various measures in
luding the Akaike Information

Criterion, Bayes Information Criterion, and Hannan�Quinn Criterion. All of these mea-

sures use the number of degrees of freedom (i.e., dim(P)) of the model to penalise the

log-likelihood. By failing to expli
itly state the orthogonality 
onstraints pla
ed on the

age/period terms in the LC2 model and, therefore, failing to in
lude them in the 
ount

of restri
tions pla
ed upon the model parameters, the study overestimates the number

17

Although the period fun
tions in Figures 3.3a and 3.3b are very similar, the relative large negative


orrelation is due to the fa
t that κ
(1)
t is strongly trending over the period.
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of degrees of freedom in the model. This ex
essively penalises the LC2 model relative to

its 
omparators.

Using the invariant transformations to impose orthogonality on the age and period fun
-

tions generalises naturally to more 
ompli
ated models with N > 2. Identi�ability

in-sample in a model with non-parametri
 age/period terms is therefore not problemati


if �tting methods based on singular value de
omposition or prin
ipal 
omponent analysis

are used (ex
ept for setting the lo
ations of the κ
(i)
t and the s
ale for the β

(i)
x by imposing

an appropriate normalisation s
heme).

3.6 Identi�ability in models with parametri
 age fun
tions

In 
ontrast to the non-parametri
 age fun
tions 
onsidered above, we de�ne a �para-

metri
� age fun
tion to be one whi
h takes a spe
i�
 fun
tional form that is de�ned by

an algebrai
 formula, i.e., β
(i)
x = f (i)(x; θ(i)).18 In order to spe
ify a mortality model

with parametri
 age fun
tions, we need to de�ne these formulae. Mathemati
ally, AP

mortality models with parametri
 age fun
tions are similar to their non-parametri
 
oun-

terparts, ex
ept that the age fun
tions are �xed or sele
ted from a family with a small

number of free parameters rather than being allowed to vary freely a
ross RX
. This has

important 
onsequen
es for the identi�ability issues in the model.

To illustrate, let us 
onsider the following two pedagogi
al mortality models

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t (3.18)

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t (3.19)

where x̄ = 0.5(X+1). The �rst of these is similar to the widely used Cairns-Blake-Dowd

(CBD) model of Cairns et al. (2006a), but with the in
lusion of an expli
it stati
 age

fun
tion, and therefore we refer to it as the CBDX model. The se
ond model, whi
h

we refer to as the exponential model, uses an exponentially de
reasing fun
tion of age

as the se
ond age fun
tion, with the parameter λ being a free parameter of the model

determined by the data. Su
h a model has not been proposed to date, but similar terms

have been used within the �general pro
edure� of Chapter 5.

We say that the formulae used for the age fun
tions in Equations 3.18 and 3.19 �de�ne�

these models. Di�erent de�nitions for the age fun
tions give di�erent models. However,

18

For this reason, these age fun
tions 
ould also be 
alled �formulai
�.
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we also de�ne the 
on
ept of �equivalen
e� between models with parametri
 age fun
-

tions. Two models are equivalent in this sense if they have di�erent de�nitions for the

age fun
tions, but still give the same �tted mortality rates and hen
e the same �t to data.

We note that the CBDX model is linear in its parameters, and so 
an be �tted using gen-

eralised linear models, as dis
ussed in M
Cullagh and Nelder (1983) and Currie (2014).

However, sin
e λ is a free parameter of the model, the se
ond age/period term in the

exponential model is non-linear in the sense of M
Cullagh and Nelder (1983, Chapter

11), and so more 
ompli
ated methods for �tting the model are ne
essary. Therefore,

using parametri
 age fun
tions is not equivalent to using a linear model ex
ept in a few

simple 
ases. We will see below that it is these non-linear 
ases whi
h tend to have more


ompli
ated identi�ability issues.

Mathemati
ally, we 
an see that both models in Equations 3.18 and 3.19 are similar to

the LC2 model, but with spe
i�
 parametri
 fun
tions for β
(1)
x and β

(2)
x . One might

be tempted to believe that they have exa
tly the same identi�ability issues as those in

the LC2 model dis
ussed in Se
tion 3.5. However, the imposition of spe
i�
 fun
tional

forms for the age fun
tions has 
hanged whether the invariant transformations of the

LC2 model 
an be applied in pra
ti
e.

Be
ause the form of the age fun
tions de�nes the model being used, these forms 
annot


hange under invariant transformations, otherwise we would obtain a di�erent model.

Therefore, we require that any invariant transformations of the model also leave the age

fun
tions un
hanged, i.e., f̂ (i)(x; θ(i)) = f (i)(x; θ(i)). This restri
tion redu
es the num-

ber of invariant transformations, and therefore the number of identi�ability 
onstraints

whi
h need to be imposed when �tting the model to data. We dis
uss the impli
ations

of this on the di�erent identi�ability issues below.

3.6.1 Lo
ation

We noted in Se
tion 3.4 that the transformation in Equation 3.12 does not 
hange the

form of the age fun
tions. A

ordingly, it 
an still be applied to 
hange the levels of the

period parameters in exa
tly the same manner as des
ribed in Se
tion 3.4, whilst leaving

the �tted mortality rates and the fun
tional forms of the age fun
tions un
hanged. The

period fun
tions in models with parametri
 age fun
tions therefore still have unidenti�ed

lo
ations, and so we still need to impose levels on the period parameters in exa
tly the
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same manner as we did in Se
tion 3.5. Most users of su
h models impose

∑

t κ
(i)
t = 0,


onsistent with the 
hoi
e made for models with non-parametri
 age fun
tions and with

a similar interpretation. However, for models whi
h have a spe
i�
 form of the stati
 age

fun
tion imposed a priori, this is not ne
essary, as dis
ussed in Appendix 3.A.

3.6.2 S
ale

We see that the transformation in Equation 3.11 takes linear 
ombinations of the old age

and period fun
tions in order to 
reate new age/period terms. Therefore, these trans-

formations will 
hange the form of the age fun
tions in a model with parametri
 age

fun
tions. Sin
e the form of the age fun
tions de�nes the model being used, the trans-

formations in Equation 3.11 
annot be used in models with parametri
 age fun
tions.

In Se
tion 3.5, we saw that these transformations were useful in models with non-

parametri
 age fun
tions when it 
ame to imposing a normalisation s
heme on the age

fun
tions and orthogonalising them with respe
t to ea
h other. This was bene�
ial as it

enabled 
omparability and near-independen
e between di�erent age/period terms. It is

therefore desirable to also a
hieve the same properties for models with parametri
 age

fun
tions.

We also see that although using the transformations in Equation 3.11 in models with

parametri
 age fun
tions gives di�erent age fun
tions (and therefore di�erent models),

they do not a�e
t the �tted mortality rates: all the models obtained by using these

transformations are equivalent in the sense de�ned above. It therefore makes sense to


hoose, from the set of models equivalent to the one we are interested in, a model with

age fun
tions whi
h have the desirable properties of possessing a standard normalisation

s
heme and being orthogonal. We dis
uss how this 
an be done in this se
tion and Se
-

tion 3.6.3, respe
tively.

Most mortality models with parametri
 age fun
tions have the age fun
tions de�ned in

their simplest and most natural form. However, 
hoosing de�nitions for their simpli
ity

rather than for desirable statisti
al properties, su
h as having a 
ommon normalisation

s
heme, 
an lead to issues when 
omparing age and period terms within the same model

and between di�erent models. We show this below for the CBDX and exponential mod-

els in Equations 3.18 and 3.19, respe
tively. However, for ea
h of these models we also

show how this issue 
an be resolved by using alternative de�nitions of the age fun
tions
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to give models whi
h have far more 
omparable age and period terms.

First, let us 
onsider how a 
ommon normalisation s
heme for the age fun
tions 
an

be a
hieved in the CBDX model in Equation 3.18. In the LC2 model, Renshaw and

Haberman (2003b) imposed the normalisation s
heme

∑

x β
(i)
x = 1 on the age fun
tions

in the model, using the transformations in Equation 3.11. In 
ontrast, the age fun
-

tions in Equation 3.18 already have de�ned s
ales, i.e.,

∑

x f
(1)(x) =

∑

x 1 = X and

∑

x f
(2)(x) =

∑

x(x− x̄) = 0.

However, these de�ned s
ales 
ause problems when it 
omes to 
omparing the age/pe-

riod terms. The most important of these issues is that the s
ale of f (2)(x) is zero,

whi
h is not sensible for a fun
tions whi
h is not identi
ally equal to zero. This is a


onsequen
e of using a normalisation s
heme whi
h is not based on using a true norm.

In Se
tion 3.5, we saw that a more sensible 
hoi
e of normalisation s
heme was to use

∑

x |β
(i)
x | to de�ne the s
ales of the age fun
tions. Using this for the CBDX model, we

�nd

∑

x |f (1)(x)| =∑x 1 = X and

∑

x |f (2)(x)| =∑x |(x− x̄)| = 0.25X2
if X is even or

0.25(X − 1)(X + 1) if X is odd.

However, this fails to resolve the se
ond problem, whi
h is that di�erent s
ales are de�ned

for ea
h of the age/period terms, i.e., the s
ale of the �rst age fun
tion is proportional to

the number of ages, X, whilst the s
ale of the se
ond in proportional to X2
. This makes


omparisons di�
ult, both between the CBDX and LC2 models and between the �rst

and se
ond age/period terms within the CBDX model. The di�ering s
ales of the 
or-

responding period fun
tions 
an also lead to numeri
al problems when we try to proje
t

them using multivariate methods, as dis
ussed in Se
tion 3.9.

To ensure that the age fun
tions have the same s
ale, we need to de�ne a model equivalent

to that in Equation 3.18 where the age fun
tions have this property. Trivially, we see

that the model

ηx,t = αx +
1

X
κ
(1)
t +

4(x− x̄)

X2
κ
(2)
t (3.20)

(assuming X is even) is equivalent to the model in Equation 3.18.

19

All that di�ers be-

tween the models in Equations 3.18 and 3.20 is the pre
ise de�nition of the age fun
tions,

although the age fun
tions in both models have the same fun
tional form (i.e., a 
onstant

19

We 
an think of this model being obtained by using the transformation in Equation 3.11 on the

model in Equation 3.18 with A =

(

X 0
0 1

4
X2

)

.
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(a) Original de�nition of age fun
tions f (i)(x)
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(b) Revised de�nition of age fun
tions f (i)(x)

Figure 3.4: Period fun
tions from the CBDX model

and a linear fun
tion of age, x). In addition, we see that in the model in Equation 3.20,

∑

x |f (i)(x)| = 1 for both age fun
tions. In parti
ular, this has the advantage of greater


omparability between the age/period terms.

To illustrate the impa
t of ensuring that the age fun
tions have a 
ommon normalisation

s
heme, Figure 3.4 shows the period fun
tions from the two CBDX models in Equations

3.18 and 3.20, �tted to the same data as used for the LC2 model in Se
tion 3.5, with

both the original and the revised normalisation s
hemes. We see that the magnitude

of the di�erent period fun
tions �tted with the original model in Equation 3.18 di�ers

enormously.

20

This 
an be a problem as most numeri
al algorithms for analysing time

series are optimised to work best on series of 
omparable orders of magnitude. In 
on-

trast, the revised CBDX model in Equation 3.20 gives period fun
tions of 
omparable

magnitude.

21

The 
ommon s
ale also means that it is easier to 
ompare these period

fun
tions with those in Figure 3.3 from the LC2 model.

Turning now to the exponential model in Equation 4.17, we �nd similar issues for the

normalisation s
heme of the age fun
tions. In the exponential model,

∑

x |f (1)(x)| = X

as before for the CBDX model, whi
h 
an be dealt with in exa
tly the same manner.

In addition,

∑

x |f (2)(x;λ)| = ∑

x e
−λx = e−λ(1−e−λ(X+1))

1−e−λ ≈ e−λ

1−e−λ for the se
ond age

fun
tion. Not only will this be di�erent from the s
ale of the �rst age/period term, but

the s
ale is a fun
tion of the free parameter λ. Sin
e λ varies during the �tting pro
ess,

this will alter the s
ale of f (2)(x;λ). Hen
e, λ will be trying to ful�l two purposes si-

multaneously: �rst, des
ribing the shape of the age fun
tion and se
ond, determining its

s
ale, i.e., the relative importan
e of the age/period term. This 
onfusion of di�erent

20−0.70 ≥ κ
(1)
t ≤ 0.48 and −0.01 ≥ κ

(2)
t ≤ 0.05, i.e. they di�er by an order of magnitude.

21−70.5 ≥ κ
(1)
t ≤ 48.1 and −19.1 ≥ κ

(2)
t ≤ 11.5, i.e., they are the same order of magnitude.
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purposes 
an 
ause numeri
al instability in most �tting algorithms, whi
h may be one

reason why age fun
tions with free parameters have not been 
ommonly used in pra
ti
e.

For the CBDX model, we obtained a 
ommon normalisation s
heme for the age fun
tions

by 
hoosing slightly di�erent de�nitions for the age fun
tions, i.e., we de�ned alternative

age fun
tions whi
h were equal to the original ones, but res
aled by

∑

x |f (i)(x)|. For

the exponential model we do the same thing, to obtain

ηx,t = αx +
1

X
κ
(1)
t +

1− e−λ

e−λ(1− e−λ(X+1))
e−λxκ

(2)
t (3.21)

The only di�eren
e in this 
ase is that the se
ond age fun
tion is res
aled by a fun
tion of

the free parameter, λ, rather than a 
onstant in the 
ase of the CBDX model. Again, we

see that the age fun
tions have the same fun
tional forms (a 
onstant and an exponential

fun
tion of age) as before, but with the normalisation s
heme

∑

x |f (2)(x;λ)| = 1 ∀λ as

λ is varied when �tting the model. This 
ontrasts with the model in Equation 3.19, and

ensures that both age fun
tions have the same normalisation s
heme and so are more


omparable.

We 
all age fun
tions su
h as the revised f (2)(x;λ) in Equation 3.19 �self-normalising�, as

they have the property that our desired normalisation s
heme is imposed automati
ally

for all values of the free parameters in the age fun
tion (i.e.,

∑

x |f (i)(x; θ(i))| = 1 ∀θ(i)).
Self-normalisation is an important and useful property. Most importantly, the 
om-

mon normalisation s
heme allows for 
omparability between di�erent age fun
tions (po-

tentially with very di�erent fun
tional forms) in a model, independent of their shape.

Furthermore, by allowing the value of the free parameter to des
ribe the shape of the

age fun
tion, without impa
ting the s
ale of the age/period term, we �nd that self-

normalising age fun
tions are 
onsiderably more robust (in the sense of being likely to


onverge) and stable to small 
hanges in the data. For this reason, the age fun
tions

used in the �toolkit� in the Appendix of Chapter 5 are all self-normalising with respe
t

to the normalisation s
heme |f (i)(x; θ(i))| = 1.22 However, the trade-o� is that the nu-

meri
al routines are signi�
antly more 
ompli
ated to implement and may need to be

written spe
ially for the spe
i�
 
ir
umstan
es, rather than adapted from �o�-the-shelf�

22

We note that, for many age fun
tions, it is 
onsiderably simpler to �nd and use self-normalisation

age fun
tions when using the L1 normalisation s
heme,

∑

x |f
(i)(x; θ(i))| = 1, than the alternative L2

normalisation s
heme,

∑

x

(

f (i)(x; θ(i))
)2

= 1. This is why the L1 normalisation s
heme was sele
ted

for use in the general pro
edure in Chapter 5.
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statisti
al pa
kages.

23

In summary, we see that, when the age fun
tions in a mortality model are de�ned para-

metri
ally, a 
ommon normalisation s
heme for all of them 
an be a
hieved by de�ning the

age fun
tions 
arefully. For more sophisti
ated age fun
tions involving free parameters

estimated from the data, this means de�ning age fun
tions whi
h are self-normalising, so

that the normalisation s
heme holds for all values of these parameters as they are varied

during the �tting pro
edure.

3.6.3 Rotation

In Se
tion 3.6.2, we saw that for models with parametri
 age fun
tions, we 
ould ensure

that the age fun
tions had the same normalisation s
heme by 
arefully de�ning them to

have this property when we spe
i�ed the model. The same is also true if we want our

age fun
tions to be orthogonal to ea
h other.

Again, similar to Se
tion 3.6.2, we start from the fa
t that most mortality models have

their age fun
tions de�ned in the simplest form, su
h as in Equations 3.18 and 3.19.

These simple forms are not, ne
essarily, orthogonal. However, we 
an de�ne equivalent

models where the age fun
tions are orthogonal. Unlike the 
ase of ensuring a 
ommon

normalisation s
heme, however, we will see that orthogonality between age fun
tions is

not always a desirable property and may 
on�i
t with other desirable properties, su
h as

the terms in the model having distin
t demographi
 signi�
an
e. Therefore, the 
hoi
e

of whether to de�ne orthogonal age fun
tions or not will depend upon the model in

question and the aims of the model user.

For example, 
onsider the CBDX model of Equation 3.18 before normalisation. The

model already has orthogonal age fun
tions, sin
e

∑

x f
(1)(x)f (2)(x) =

∑

x(x − x̄) = 0.

However, we 
ould also 
onsider an equivalent model, with simpler de�nitions of the age

fun
tions of the form

ηx,t = αx + κ
(1)
t + xκ

(2)
t (3.22)

23

In pra
ti
e, there are many age fun
tions where

∑

x |f
(i)(x; θ(i))| 
annot be found in 
losed form,

but 
an be approximated by

∫

|f (i)(x; θ(i))|dx. In su
h 
ir
umstan
es, improvements in the stability

of the numeri
al optimisation routine 
an still be found through approximate normalisation by setting

f̂ (i)(x; θ(i)) = f(i)(x;θ(i))
∫
|f(i)(x;θ(i))|dx

and then imposing

∑

x |f
(i)(x; θ(i))| = 1 again dire
tly using Equation 3.8

with a = 1∑
x |f(i)(x;θ(i))|

.
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This model is more similar to the form of the original CBD model proposed in Cairns

et al. (2006a). However, we observe that the age fun
tions are not orthogonal, i.e.,

∑

x f
(1)(x)f (2)(x) =

∑

x x = 1
2X(X +1). It is easy to see that models in Equations 3.18

and 3.22 are equivalent, in that they give the same �tted mortality rates and are linked

through a transformation of the form in Equation 3.11. The form of the age fun
tions

in Equation 3.18 was introdu
ed in Cairns et al. (2009) and, in pra
ti
e, has proved far

more popular than the simpler age fun
tions in Equation 3.22, in part be
ause it is more

robust to �t to data due to the parameter estimates for the period fun
tions being nearly

independent of ea
h other. Consequently, we see that de�ning orthogonal age fun
tions


an be desirable, even if it 
omes at the expense of a slightly more 
ompli
ated de�nition

of the age fun
tions.

The age fun
tions in the CBDX model are of 
onstant and linear form, i.e., polynomials

of order zero and one, respe
tively. De�ning orthogonal age fun
tions, as in Equation

3.18, has not 
hanged this form, merely sele
ted the �rst two members of the orthogonal

family of polynomials, i.e., the Legendre polynomials.

24

The orthogonal age fun
tions

in Equation 3.18 have the same demographi
 signi�
an
e as the simpler age fun
tions in

Equation 3.22, but the additional desirable property of orthogonality. Generalising this,

we see that 
hoosing orthogonal age fun
tions does not 
hange their form and hen
e

does not a�e
t their demographi
 signi�
an
e when the age fun
tions 
ome from the

same fun
tional family (e.g., polynomials).

However, this is not the 
ase when the age fun
tions 
ome from di�erent fun
tional fam-

ilies. We see this by 
onsidering the exponential model on
e more. To de�ne orthogonal

age fun
tions for this model, we 
ould sele
t a model equivalent to that in Equation 3.19

with orthogonal age fun
tions, namely

f (2)(x;λ) = e−λx − e−λ(1− e−λ(X+1))

1− e−λ

We see that the age fun
tions in this model are orthogonal as

∑

x f
(1)(x)f (2)(x;λ) = 0 ∀λ.

This revised model is equivalent to that in Equation 3.19, as it gives the same �tted mor-

tality rates and the two models are linked by a transformation of the form of that in

Equation 3.11.

24

The Legendre polynomials have a long pedigree, �rst in mathemati
al physi
s, but more re
ently

in the graduation of mortality rates (for instan
e in Renshaw et al. (1996) and Sithole et al. (2000)).

We also note that the third (quadrati
) Legendre polynomial is used as an age fun
tion in one of the

extensions to the CBD model in Cairns et al. (2009).
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However, it is likely that we originally sele
ted an exponential fun
tion for its demo-

graphi
 signi�
an
e (e.g., a mortality e�e
t whi
h de
reases rapidly with age, su
h as that

asso
iated with the relatively high rate of infant mortality). The rede�ned f (2)(x;λ) will

not possess this demographi
 signi�
an
e, as it will start positive and then tend rapidly

to a negative 
onstant. This la
k of demographi
 signi�
an
e is unlikely to be desirable.

Therefore, orthogonal age fun
tions 
an 
on�i
t with a desire for ea
h age/period term to

have distin
t demographi
 signi�
an
e for models with parametri
 age fun
tions 
oming

from di�erent fun
tional families.

In summary, we �nd that orthogonality between age fun
tions makes most sense when

the age fun
tions 
ome from the same family, su
h as polynomials, and therefore 
an

be orthogonalised easily. For models with very di�erent fun
tional forms for the age

fun
tions, orthogonalisation is unlikely to be desirable as it will 
on�i
t with a desire to

give ea
h age/period term distin
t demographi
 signi�
an
e.

3.7 Identi�ability in mixed models

Some AP mortality models have mixed parametri
 and non-parametri
 age fun
tions,

su
h as the model of Wilmoth (1990) (ex
luding the 
ohort term) and the models used

to explore the data in Chapter 5. Other studies, su
h as Rei
hmuth and Sarferaz (2008),

have proposed extending the LC model with exogenous variables, su
h as e
onomi
 or

health indi
ators, whi
h take the form of period fun
tions with a pres
ribed form. The

identi�ability issues in su
h mixed models, however, are similar to those addressed in

Se
tions 3.5 and 3.4 above.

As with models with purely parametri
 age fun
tions, in mixed models, the pres
ribed

form of the age or period fun
tions means that we must restri
t the transformations

in Equations 3.12 and 3.11 so that they remain un
hanged. For instan
e, 
onsider the

model

ηx,t = αx + f(x)κ
(1)
t + βxκ

(2)
t (3.23)

This model has one parametri
 age fun
tion, f(x), and one non-parametri
 age fun
tion,

βx, while the two period fun
tions are freely varying. We see that the transformation

in Equation 3.12 is still appli
able, as it will not 
hange the form of f(x) and therefore

72



Identi�ability in Age/Period Mortality Models

we still need to de�ne the lo
ation of the period fun
tions via an identi�ability 
onstraint.

However, we see that the transformation

{f̂(x), κ̂(1)t , β̂x, κ̂
(2)
t } =

{

f(x), κ
(1)
t + abκ

(2)
t ,

1

a
βx − bf(x), aκ

(2)
t

}

(3.24)

is an invariant transformation of the model in Equation 3.23 and avoids 
hanging the

form of f(x). This is a spe
ial 
ase of the general transformation in Equation 3.11, with

the matrix, A, taking the restri
ted form A =

(

1 ab

0 a

)

. We 
an see that this trans-

formation 
orresponds to a redu
ed set of invariant transformations 
ompared with the

LC2 model, sin
e it only has two degrees of freedom, 
ompared with the four in the

unrestri
ted matrix, A.

The form of the restri
tions on A means that only the s
ale of βx (set by a) and the

angle between βx and f(x) (set by b) are unde�ned. In su
h a model, it therefore makes

sense to impose a standard normalisation s
heme on βx, for example,

∑

x |βx| = 1, and

an orthogonality 
onstraint between βx and f(x), i.e.,
∑

x βxf(x) = 0.

Next, 
onsider the alternative model

ηx,t = αx + β(1)
x K(t) + β(2)

x κt (3.25)

where K(t) is either a deterministi
 fun
tion, su
h as in Callot et al. (2014), or an ex-

ogenous variable su
h as real GDP or an indi
ator variable to a

ount for an epidemi
,

su
h as in Liu and Li (2015), or a war. We also note that this type of model is 
ommon

in multi-population models where the period fun
tion in one population is required to be

the same as that in another, for instan
e, those of Carter and Lee (1992) and Li and Lee

(2005). In this 
ase, we see that we 
an no longer use the unrestri
ted transformation

in Equation 3.12, sin
e the lo
ation of K(t) is set a priori. Therefore, we only need to

impose a 
onstraint on the level of the remaining period fun
tion, su
h as

∑

t κt = 0.

As with the model in Equation 3.23, we also have a restri
ted set of transformations of

the form in Equation 3.11 in order to avoid 
hanging K(t) in the transformation. In this


ase, the transformation of the parameters is

{β̂(1)
x , K̂(t), β̂(2)

x , κ̂t} =

{

β(1)
x +

b

a
β(2)
x ,K(t),

1

a
β(2)
x , aκt − bK(t)

}

(3.26)
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whi
h leaves K(t) un
hanged. In this 
ase, the restri
ted form of the matrix, A, in

Equation 3.11 is A =

(

1 0

−b a

)

, whi
h 
an be 
ompared to the restri
ted form for the

model in Equation 3.23.

Similarly, these restri
ted transformations mean that only the s
ale of β
(2)
x (set by a) and

the angle between K(t) and κt (set by b) are unde�ned. Consequently, this transforma-

tion 
an be used to impose a normalisation s
heme on β
(2)
x and orthogonalise K(t) and

κt by means of additional identi�ability 
onstraints. In this 
ase, the orthogonalisation

of the period fun
tions has the 
lear interpretation that κt explains that part of the

variation that is independent of the fa
tor K(t). However, this was not done in Liu and

Li (2015), whi
h, in the 
ontext of that study, made it di�
ult to interpret the meaning

of κt for years when there was an epidemi
.

Hen
e, we see that mixed models a
t to impose restri
tions on the more general set of

invariant transformations present in a model with fully non-parametri
 age fun
tions.

These restri
tions are spe
i�
 to di�erent models, and depend upon the spe
i�
ation of

the model in question. This is espe
ially 
ommon in many multi-population mortality

models, su
h as some of those dis
ussed in Villegas and Haberman (2014), whi
h 
an

be interpreted as mixed models where the form of di�erent age and period fun
tions is


ommon to di�erent populations and hen
e restri
ted. Consequently, we must analyse

ea
h individual model in order to determine whi
h identi�ability issues it possesses and,

hen
e, a suitable set of identi�ability 
onstraints to impose.

3.8 Parameter un
ertainty and hypothesis testing

3.8.1 Parameter un
ertainty

Having obtained a set of parameters by �tting a model to data with some set of arbitrary

identi�ability 
onstraints, it is 
ommon to investigate the degree of un
ertainty asso
iated

with these estimated parameters. A number of te
hniques have been developed to do

this, for instan
e

• using the asymptoti
 normality of parameters estimated by maximum likelihood

methods, as in Brouhns et al. (2002b);

• using a �semi-parametri
� bootstrap based on Poisson (or binomial) death 
ounts,

as in Brouhns et al. (2005);
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• using a residual bootstrapping method, su
h as that developed in Koissi et al.

(2006) or the more 
ompli
ated te
hniques dis
ussed in D'Amato et al. (2011) and

Debón et al. (2008, 2010), and

• using Bayesian Markov 
hain Monte Carlo (MCMC) methods, as in Czado et al.

(2005).

All of these te
hniques were developed for the LC model, as the simplest and most widely

used mortality model. In the following se
tion, we follow this 
onvention and impli
itly

assume that we are dealing with the LC model. However, in prin
iple, they 
ould all be

used with any other AP mortality model.

The �rst three of these methods have been tested and 
ompared in Renshaw and Haber-

man (2008) and all four were 
ompared in Li (2014). It is important that any 
on
lusions

drawn from them do not depend upon the arbitrary identi�ability 
onstraints imposed

in the model. Sin
e the �tted mortality rates do not 
hange under the invariant transfor-

mations of the model, their variability due to parameter un
ertainty should not depend

on the identi�ability 
onstraints imposed either. Appropriate methods for determining

parameter un
ertainty should ensure this. Two users of a mortality model, using the

same data and method for investigating parameter un
ertainty, but using di�erent (but

equally valid) identi�ability 
onstraints should �nd the same degree of variability of mor-

tality rates under parameter un
ertainty.

It is therefore desirable to start from the di�eren
e between the observed and �tted mor-

tality rates, sin
e this will be independent of the identi�ability 
onstraints 
hosen from

them model and ensure that our results are 
onsistent with observations. For instan
e,

in Brouhns et al. (2005), Poisson-distributed random death 
ounts were generated at

ea
h age and year.

25

The distribution of the bootstrapped death 
ounts is therefore un-

a�e
ted by whi
h identi�ability 
onstraints are imposed. Likewise, the �tting residuals

used in Koissi et al. (2006) depend only on the a
tual and �tted death 
ounts and thus

not on the identi�ability 
onstraints used in �tting the model. Therefore, estimates of

the impa
t of parameter un
ertainty on observable quantities, su
h as �tted mortality

rates or life expe
tan
ies, will be independent of the arbitrary identi�ability 
onstraints.

25

In Brouhns et al. (2005), it was assumed that Dx,t ∼ Po(dx,t), i.e., the random death 
ounts follow

a Poisson distribution with mean equal to the observed death 
ount. This was modi�ed in Renshaw

and Haberman (2008) to Dx,t ∼ Po(Ec
x,tµx,t), i.e., mean equal to the �tted death 
ounts, whi
h is more


onsistent with other bootstrapping te
hniques.
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However, estimates for the variability of the model parameters will still only be valid


onditional on the 
hosen set of identi�ability 
onstraints. For instan
e, imposing the


onstraint κ
(i)
1 = 0 in a model will mean that κ

(i)
1 will trivially not show any variability

using the Brouhns et al. (2005) or Koissi et al. (2006) methods, but this will not be

the 
ase for other 
hoi
es of 
onstraints. Therefore, the observed parameter un
ertainty

should be seen only in the 
ontext of the identi�ability 
onstraints applied.

It is also important to ensure that the model is fully identi�ed when using these boot-

strapping approa
hes. If the model is not fully identi�ed, we may observe spurious

variation in the parameters whi
h does not lead to real variability in the �tted mortality

rates. This is of most pra
ti
al relevan
e with the orthogonality 
onstraints for models

su
h as the LC2 model in Equation 3.13, as these are often overlooked if maximum like-

lihood or minimum devian
e te
hniques are used to �t the model.

The alternative approa
h to starting from the di�eren
e between observed and expe
ted

mortality rates is to 
onsider the distribution of the model parameters dire
tly. How-

ever, methods whi
h generate new samples of parameters dire
tly, su
h as the asymptoti


method of Brouhns et al. (2002b) or the Bayesian te
hniques of Czado et al. (2005), must

be used with 
onsiderably more 
are.

First, 
onsider the asymptoti
 method of Brouhns et al. (2002b). This assumes that

the variation of the maximum likelihood parameters is given by the information matrix

(i.e., the se
ond derivative of the log-likelihood, L) with respe
t to the model parameters

evaluated at the sele
ted parameter estimates). The �rst thing to note here is that, in

order to identify the model, the likelihood being maximised is the 
onstrained likelihood.

Starting from the forms of the likelihood fun
tion in Chapter 2, this means that we use

Lagrangian multipliers to impose the 
onstraints. For example, to impose the Lee and

Carter (1992) model 
onstraints involves adjusting the likelihood fun
tion by

L(dx,t; {α, β, κ}) → L(dx,t; {α, β, κ}) − λ1

∑

t

κt − λ2

(

1−
∑

x

βx

)

Therefore, the information matrix is expli
itly dependent upon the identi�ability 
on-

straints imposed. For instan
e, we 
an see this by 
onsidering the se
ond derivative of

the likelihood with respe
t to the age fun
tion βx

∂2L
∂(βx)2

= −
∑

t

Var(Dx,t)(κt)
2
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if we use the 
anoni
al link fun
tion, as dis
ussed in Chapter 2. If we apply the trans-

formation in Equation 3.9, βx is un
hanged. However, we have

∂2L
∂(β̂x)2

= −
∑

t

Var(Dx,t)(κ̂t)
2

= −
∑

t

Var(Dx,t)(κt + b)2

=
∂2L

∂(βx)2
+ 2b

∑

t

Var(Dx,t)κt − b2
∑

t

Var(Dx,t)

In this 
ase, the form of the information matrix with respe
t to βx has 
hanged under a

transformation whi
h did not 
hange βx itself. This needs to be taken into 
onsideration


arefully, and may explain the variation in the un
ertainty in the �tted mortality rates

observed in Renshaw and Haberman (2008) when the identi�ability 
onstraints are al-

tered.

Next, we 
onsider Bayesian te
hniques, su
h as MCMC. As dis
ussed in Nielsen and

Nielsen (2014), these 
an often appear to solve identi�ability issues but in fa
t 
onfuse

and disguise them. The use of Bayesian methods often involves 
onsideration of the

posterior distribution, π, of the parameters given by

ln(π({α, β, κ})) = L(dx,t; {α, β, κ}) + ln(φ({α, β, κ})) + 
onstant

where φ is the prior distribution for the parameters. The log-likelihood fun
tion, L(dx,t; {α, β, κ}),
is un
hanged by the invariant transformations of the model parameters and so does not

depend upon the 
hosen identi�ability 
onstraints. However, in general, the prior dis-

tribution φ will 
hange under these transformations, unless it is very 
arefully 
hosen.

This, in turn, means that the posterior distribution will also vary under the invariant

transformations of the model, and so will depend impli
itly on any identi�ability 
on-

straints imposed.

A poorly 
hosen set of priors impli
itly imposes a set of identi�ability 
onstraints upon

the model. For example, a prior distribution that assumes κ
(i)
t follows an AR(1) pro-


ess around zero impli
itly imposes a level on the period parameters. These impli
it


onstraints may 
on�i
t with the expli
it 
onstraints subsequently imposed (su
h as a

subsequent 
hoi
e of the level of κ
(i)
t ). Even when there are no 
on�i
ts, this impli
it

sele
tion of identi�ability 
onstraints is opaque and it is not 
lear whi
h features of the

posterior distribution are meaningful and whi
h are mere artefa
ts of the identi�ability

77



Identi�ability in Age/Period Mortality Models

s
heme impli
it in the prior.

We therefore re
ommend that the prior distribution of the model parameters, φ, is se-

le
ted so that it is un
hanged by the invariant transformations of the model. This enables

a single set of identi�ability 
onstraints to be imposed upon the model without internal


on�i
ts, with these 
onstraints being 
lear and transparent to all other model users, and

with the posterior distribution being independent of the arbitrary 
hoi
e of identi�ability


onstraints (just as the likelihood is).

3.8.2 Hypothesis testing

Identi�ability issues also have important 
onsequen
es if hypothesis testing on the pa-

rameters is performed. In general, hypotheses 
annot be tested on the parameter values

dire
tly, sin
e they depend upon the identi�ability 
onstraints. For instan
e, testing

the hypothesis κT = 0 in the LC model is meaningless, sin
e we 
an impose κT = 0

(or any other value) by our 
hoi
e of identi�ability 
onstraint. We might be tempted

to �nd 
ombinations of the parameters whi
h are invariant to the transformations of

the parameters and test hypotheses based on these. For instan
e, we may wish to test

the hypothesis that mortality is de
lining faster at age x1 than at age x2 using the LC

model. To do this, we might note that the expe
ted value of B ≡ βx1
βx2

is invariant un-

der the transformation in Equation 3.11 and so does not depend on the identi�ability


onstraints, making it a suitable 
andidate for hypothesis testing. However, we would

have to take 
are when using a statisti
 su
h as this, sin
e it will be unde�ned in the


ase βx2 = 0, whi
h 
ould not be known before the model is �tted to data. In general,

therefore, any tests of hypotheses should be performed on observable quantities su
h as

the �tted mortality rates rather than the model parameters.

Dire
t hypothesis testing of the parameters in an AP model is not often performed in

the literature, and therefore this dis
ussion may appear to be of theoreti
al interest

only. However, it is 
ommon to use a variety of statisti
al tests when determining the

time series properties of the period fun
tions. For instan
e, in Lee and Carter (1992)

and Cairns et al. (2011a), Box-Jenkins methods were used to determine the preferred

time series pro
ess for the period fun
tions of di�erent models. Based on the 
on
lusions

above, in many 
ases, the results of these statisti
al tests will depend on arbitrary 
hoi
es

made when identifying the model. The properties typi
ally tested, su
h as stationarity,

lagged dependen
e and 
ross 
orrelation, will a�e
t our proje
ted mortality rates and
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so are matters of great pra
ti
al importan
e. We should therefore treat with extreme


aution the results of any su
h analysis. This subje
t is dealt with further in Se
tion 3.9.

In summary, not only do our estimates of the parameters of an AP model depend on the

identi�ability 
onstraints when �tting the model, so do our estimates of the un
ertainty

atta
hed to those parameter estimates. We should therefore avoid testing hypotheses on

these parameter estimates, as our results will be dependent on the arbitrary identi�
a-

tion s
heme imposed. In general, methods of estimating parameter un
ertainty whi
h

use bootstrapping te
hniques on the �tted mortality rates, whi
h are independent of our


hoi
e of identi�ability 
onstraints, are likely to be preferred over methods whi
h target

the parameters dire
tly. We must still ensure, however, that our models are fully identi-

�ed when testing parameter un
ertainty, as the parameters in a poorly identi�ed model

may show spurious di�eren
es in ways whi
h do not a�e
t the variability of the �tted

mortality rates.

3.9 Proje
tion

In the pre
eding se
tions, we have seen that AP mortality models are not uniquely iden-

ti�ed and that we need to impose arbitrary identi�ability 
onstraints on the parameters

in order �t them to histori
al data. Two di�erent modellers using the same data and

the same model but di�erent arbitrary identi�
ation 
onstraints will, 
onsequently, ob-

tain di�erent sets of parameters, but these will give identi
al �tted mortality rates and,

therefore, �ts to the data.

For the majority of pra
ti
al purposes, we not only need to �t a mortality model to his-

tori
al data but also to use it to proje
t mortality rates into the future. In order to make

proje
tions of future mortality rates, we typi
ally model the period parameters as being

generated by time series pro
esses and use these to proje
t the parameters sto
hasti
ally

into the future. However, the time series pro
esses generating the period parameters are

unknown. To �nd whi
h pro
esses to use, we typi
ally analyse the �tted parameters by

statisti
al methods, su
h as the Box-Jenkins pro
edure, to determine whi
h pro
esses

from the ARIMA family provide the best �t.

Nevertheless, when it 
omes to proje
ting mortality rates, we need to re
ognise that

there is a fundamental symmetry between the pro
esses of estimating a model and pro-

je
ting it. The former takes observations to 
alibrate the model, whilst the latter uses
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this 
alibration to produ
e proje
ted observations of the future. Due to this symmetry,

identi�
ation issues whi
h exist when �tting the model may also yield problems when

proje
ting it.

We formalise this by saying that:

Two sets of model parameters, whi
h give identi
al �tted mortality rates for

the past, should give identi
al proje
ted mortality rates when proje
ted into

the future.

We say that time series pro
esses whi
h satisfy this property are �well-identi�ed�.

In parti
ular, the invariant transformations of the parameters of the model whi
h leave

the �tted mortality rates un
hanged should also leave the proje
ted mortality rates un-


hanged and, hen
e, the time series pro
esses used to generate the proje
ted mortality

rates un
hanged. Consequently, we should use the same time series pro
esses for all sets

of parameters from a model whi
h give the same �tted mortality rates. If this is not

the 
ase, di�erent pro
esses will be used for di�erent arbitrary identi�ability 
onstraints,

giving di�erent proje
ted mortality rates. A well-identi�ed time series pro
ess should be

equally appropriate for all equivalent sets of parameters. For example, we should use

the same time series pro
esses to proje
t the period parameters shown in Figure 3.3a for

the LC2 model as those shown in Figure 3.3b. Similarly, we should use the time series

pro
esses to proje
t the period parameters in the CBDX models in Equations 3.18, 3.20

and 3.22, sin
e all three of these models are equivalent. To 
on�rm this, we need to


he
k that applying the invariant transformations to the parameters, whi
h leave the

�tted mortality rates un
hanged, do not also a�e
t the time series pro
esses used to

proje
t the parameters.

Current pra
ti
e is to:

1. �t the 
hosen model to data, imposing any arbitrary identi�ability 
onstraints

needed to spe
ify the parameters uniquely;

2. sele
t time series pro
esses for proje
ting the parameters based on either using

a statisti
al method (su
h as the Box-Jenkins pro
edure to sele
t the preferred

pro
esses from the ARIMA 
lass of models) or by dire
tly 
hoosing the time series
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pro
esses to ensure biologi
ally reasonable

26

proje
tions by making an appeal to

the demographi
 signi�
an
e of the parameters.

However, su
h an approa
h often leads to proje
tions of mortality rates whi
h are not

well-identi�ed. This is be
ause the se
ond step in the pro
ess assumes that the parame-

ters found at the �rst step are known, rather than merely estimated up to an arbitrary

identi�ability 
onstraint. This means that 
urrent pra
ti
e builds the arbitrary identi�a-

bility 
onstraint into the proje
tion pro
ess, ensuring that the proje
ted mortality rates

are also arbitrary.

In order to obtain well-identi�ed proje
tions, we need to sele
t our proje
tion methods


arefully. This means that the time series model we estimate based on the �tted param-

eters and proje
t into the future should not 
hange form under the transformations in

Equations 3.11 and 3.12. However, we saw in Se
tion 3.4 that we 
annot use the trans-

formation in Equation 3.11 in models with non-parametri
 age fun
tions. Therefore our

sele
tion of well-identi�ed proje
tion methods in su
h models has to be subtly di�erent,

as dis
ussed below.

3.9.1 Models with non-parametri
 age fun
tions

Consider the 
ase of proje
ting an AP mortality model with non-parametri
 age fun
-

tions, whi
h has been �tted using data over the period [1, T ] to give mortality rates at

time τ > T . From Equation 3.2, we 
ould write this as

ηx,τ = αx + β⊤
x κτ

We 
an also see that the proje
ted mortality rates for the future are un
hanged by the

use of the invariant transformations of the parameters in Equations 3.12 and 3.11, just

as the �tted mortality rates were for the past, i.e.,

ηx,τ = α̂x + β̂
⊤
x κ̂τ

26

The 
on
ept of biologi
al reasonableness was introdu
ed in Cairns et al. (2006b) and de�ned as �a

method of reasoning used to establish a 
ausal asso
iation (or relationship) between two fa
tors that is


onsistent with existing medi
al knowledge�.
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where

κ̂τ = Aκτ +B

β̂
⊤
x = β⊤

xA
−1

α̂x = αx − β⊤
xA

−1B

Unlike the �tted parameters, however, the proje
ted κτ will be some random variable,

whose distribution is a fun
tion of the �tted parameters, i.e., κτ = Pκ(τ ; {κ}). We said

previously that we should use the same method of proje
tion for all sets of parameters

as a �rst step in ensuring that the proje
ted mortality rates do not depend upon the

identi�ability 
onstraints. However, for di�erent identi�ability 
onstraints, these pro-


esses will be estimated from di�erent sets of �tted parameters, e.g., if we use Pκ(τ ; {κ})
to proje
t the untransformed period parameters, we must use Pκ(τ ; {κ̂}) to proje
t the

transformed period parameters. If we 
ombine this with the invarian
e of the proje
ted

mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) = α̂x + β̂

⊤
x Pκ(τ ; {κ̂})

αx + β⊤
x Pκ(τ ; {κ}) = αx − β⊤

xA
−1B + β⊤

xA
−1Pκ(τ ; {Aκ +B})

β⊤
x Pκ(τ ; {κ}) = β⊤

xA
−1 [Pκ(τ ; {Aκ +B})−B]

Pκ(τ ; {κ}) = A−1 [Pκ(τ ; {Aκ +B})−B]

Pκ(τ ; {Aκ +B}) = APκ(τ ; {κ}) +B (3.27)

for general βx, i.e., that the time series pro
esses we use to proje
t the period fun
tions

are lo
ation and s
ale preserving. This is also dis
ussed in Nielsen and Nielsen (2014).

One 
ommon pra
ti
e is to use univariate time series pro
esses to proje
t the period

fun
tions, on the grounds that they are un
orrelated over the histori
al sample. For

example, in Hyndman and Ullah (2007, p. 4948), when 
onsidering the sele
tion of

suitable time series pro
esses for proje
ting a model with non-parametri
 age fun
tions,

it was stated

27

For N > 1 this is a multivariate time series problem. However, be
ause of

the way the basis fun
tions β
(i)
x have been 
hosen, the 
oe�
ients κ

(i)
t and

κ
(j)
t are un
orrelated for i 6= j. Therefore it is likely that univariate methods

will be adequate for fore
asting ea
h series κ
(i)
t , for i = 1, . . . , N .

27

Notation has been adjusted to re�e
t that used in the 
urrent study.
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This logi
 was reiterated in Hyndman et al. (2013) for a related model, as �There is no

need to 
onsider ve
tor models be
ause the κ
(i)
t 
oe�
ients are all un
orrelated by 
on-

stru
tion�.

However, we saw in Se
tion 3.5 that the la
k of 
orrelation between the di�erent period

fun
tions is a produ
t of the 
hoi
e of identi�ability 
onstraints, and that we 
ould �nd

alternative parameters whi
h gave identi
al �tted mortality rates whi
h had non-zero 
or-

relation. Choosing univariate time series pro
esses will therefore not give well-identi�ed

proje
tions, but instead will give proje
ted mortality rates whi
h are dependent upon

the identi�ability 
onstraints 
hosen.

The �rst 
on
lusion we 
an draw is that we should always use multivariate pro
esses

to proje
t mortality models with more than one age/period term. Using a multivariate

framework allows us to 
onsider the period fun
tions together and so en
ourages a uni�ed

approa
h to modelling them, rather than fo
using on ea
h period fun
tion separately. It

also allows the invariant transformations in Equations 3.11 and 3.12 to be applied to the

time series pro
esses dire
tly to 
he
k whether they are well-identi�ed.

The use of multivariate pro
esses means that the order of integration of ea
h of the

time series pro
esses should be the same. We should only 
onsider the stationarity of

the ve
tor pro
ess as a whole, rather than of its individual 
omponents. It is 
ommon

pra
ti
e to use the highest order of integration for any of the individual period fun
tions

(usually �rst order) as the order of integration for all of them to avoid identi�
ation issues.

We 
an see this by taking a general multivariate time series pro
ess for κt from the 
lass

of VARIMA(p,d,q) pro
esses

∆dκt = µ+

p
∑

s=1

Φs∆
dκt−s +

q
∑

r=0

Ψrǫt−r (3.28)

and applying the transformations in Equation 3.11 and 3.12 to give

∆dκ̂t = Aµ+∆dB −
p
∑

s=1

AΦsA
−1∆dB +

p
∑

s=1

AΦsA
−1∆dκ̂t−s +

q
∑

r=0

AΨrǫt−r

= µ̂+

p
∑

s=1

Φ̂s∆
dκ̂t−s +

q
∑

r=0

Ψ̂rǫ̂t−r
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We therefore see that all general VARIMA(p,d,q) pro
esses are lo
ation and s
ale invari-

ant in the sense of Equation 3.27, and so are well-identi�ed.

However, we also see from this that any spe
i�
 stru
ture we impose a priori on µ, Φs

and Ψr will not be invariant under these transformations. Our se
ond 
on
lusion is,

therefore, that we should not assume any pre-spe
i�ed lo
ations, s
ales or 
orrelations

between our period fun
tions by assuming a prior stru
ture for the matri
es governing

the time series pro
esses that drives them.

In pra
ti
e, in order to be invariant to transformations of the form in Equation 3.11,

we should always allow for the possibility of both 
ross-lags between the time series

and 
ontemporaneous 
orrelations between the innovations, even if these are not evident

from inspe
tion of the �tted time series. In situations where our arbitrary identi�
ation


onstraints set some of these time series parameters to zero, this will emerge naturally

from their estimation and do not need to be imposed by the model user.

Finally, we observe that all VARIMA time series models are invariant to simple res
al-

ings of the period fun
tions, i.e., using the transformation in Equation 3.11, the matrix

A being diagonal. Therefore, all time series pro
esses are invariant under alternative


hoi
es of normalisation s
heme. However, having a 
onsistent s
ale for all period fun
-

tions is desirable as it assists with the numeri
al estimation of the time series parameters.

In summary, the use of multivariate time series pro
esses means that we should not treat

the period fun
tions di�erently when proje
ting them, as the invariant transformation

in Equation 3.11 means that the age/period terms are inter
hangeable, whi
h, in turn,

means that we 
an rotate them without 
hanging the �t to data or the demographi


signi�
an
e of any of the parameters.

3.9.2 Proje
ting the LC2 model

As a pra
ti
al example of this, 
onsider proje
ting the LC2 model in Se
tion 3.5. Tests

on the �tted time series pro
esses from Figure 3.3a show that they are un
orrelated,

whi
h is a dire
t result of the identi�ability 
onstraint

∑

t κ
(1)
t κ

(2)
t = 0. However, we saw

that the model period fun
tions given in Figure 3.3b had a 
orrelation of -75%, but gave

exa
tly the same �tted mortality rates. We should therefore use multivariate pro
esses
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for both set of parameters.

Testing these parameters for stationarity, we �nd that both of the period fun
tions in

Figure 3.3 are non-stationary. We would therefore be justi�ed in using a multivariate

random walk for both sets of period fun
tions (i.e., those from both Figure 3.3a and from

Figure 3.3b).

We 
an see dire
tly that this time series pro
ess is well-identi�ed, sin
e if

κt = κt−1 + µ+ ǫt

then

κ̂t = κ̂t−1 +Aµ+Aǫt

after applying the transformations in Equations 3.12 and 3.11. We see that integrated

time series are un
hanged by 
hanges in the level of the period fun
tions, and so are

automati
ally invariant to the transformation in Equation 3.12.

At this point, it is also worth noting an important side e�e
t of imposing orthogonality

on the period fun
tions in the LC2 model. κ
(1)
t is usually found to be linear to quite a

good approximation; so mu
h so that this was 
alled the �universal pattern of mortality

de
line� in Tuljapurkar et al. (2000). By 
onstru
tion, therefore, κ
(2)
t 
annot be roughly

linear if we impose orthogonality, whi
h makes proje
ting it tri
kier. We believe that this


ould be one of the reasons why the LC2 model is not more widely used, despite being

a natural extension of the 
lassi
 LC model. Often, the se
ond term appears quadrati


to quite a good approximation.

28

Various authors (su
h as Renshaw and Haberman

(2003b) and Yang et al. (2010)) have suggested using break points or �hinges� in order to


ontinue to use linear proje
tion pro
esses. However, this is a 
ase of sele
ting a time se-

ries pro
ess spe
i�
ally be
ause of a feature of the period fun
tions that is present solely

be
ause of the parti
ular identi�ability 
onstraints imposed, and therefore the resulting

proje
tions will not be well-identi�ed.

Using a multivariate random walk with drift for the time series pro
esses in Figures

3.3a and 3.3b gives the proje
ted κ
(2)
t period fun
tions in Figure 3.5a.

29

While these

28

For instan
e in Renshaw and Haberman (2003b), Hatzopoulos and Haberman (2009) and Yang et al.

(2010) as well as in Figure 3.3a.

29

As seen in Figure 3.3, the di�eren
e between the two κ
(1)
t parameters is very small.
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Figure 3.5: Proje
tions from the LC2 model

proje
tions appear quite di�erent, the proje
ted mortality rates from them at age 65,

shown in Figure 3.5b are identi
al, thereby demonstrating that we have, indeed, 
hosen

a well-identi�ed proje
tion method for the LC2 model.
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3.9.3 Models with parametri
 age fun
tions

In Se
tion 3.6, it was shown that models with parametri
 age fun
tions have subtly

di�erent identi�ability issues when �tting them to data to those with non-parametri


age fun
tions. This is due to the transformations in Equation 3.11 not being allowed,

sin
e they 
hanged the de�nition of the age fun
tions and hen
e gave a di�erent, but

equivalent, model. However, we saw that this meant we 
ould sele
t between equivalent

models, whi
h had di�erent de�nitions of the age fun
tions, but gave identi
al �tted mor-

tality rates. This was done in order to 
hoose models with desirable properties su
h as

a 
ommon normalisation s
heme and orthogonal age fun
tions. These subtle di�eren
es

are also present when proje
ting the model.

First, the transformations in Equation 3.12 are used to impose a level on the period

fun
tions through identi�ability 
onstraints in models with parametri
 age fun
tions

in exa
tly the same manner as for models with non-parametri
 age fun
tions. Conse-

quently, we need to ensure that the time series pro
esses used to proje
t the period

fun
tions are identi�able under 
hanges in lo
ation in exa
tly the same way as des
ribed

for non-parametri
 age/period terms above. This means either using integrated time

series pro
esses or allowing for mean reversion to a non-zero level.

However, the transformations in Equation 3.11 are not needed in models with paramet-

ri
 age fun
tions, sin
e applying them would fundamentally 
hange the model. Sin
e we


annot normalise the age fun
tions during the �tting pro
ess, we must instead de�ne

normalised (or self-normalising) age fun
tions in advan
e. We 
annot impose orthogo-

nality on the age fun
tions, although we 
ould de�ne orthogonal age fun
tions a priori.

In addition, we 
annot impose orthogonality on the period fun
tions, as was done for the

LC2 model, and therefore the period fun
tions in models with parametri
 age fun
tions

will be 
orrelated in general. This means that it is natural to proje
t the period fun
tions

in su
h models using multivariate time series pro
esses, just as we should in models with

non-parametri
 age fun
tions. However, be
ause the transformations in Equation 3.11

are not appli
able in models with parametri
 age fun
tions, if we use a VARIMA(p,d,q)

time series pro
ess for the period fun
tions, as in Equation 3.28, we only have to ensure

that the time series pro
ess is invariant to the transformation in Equation 3.12. To do
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this, we substitute the transformed parameters, κ̂t = κy +B, into Equation 3.28 to �nd

∆dκ̂t = µ+∆dB −
p
∑

s=1

Φs∆
dB +

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

= µ̂+

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

Although the drift term, µ has 
hanged as a result of this transformation, the matri
es

Φs and Ψr have not. Consequently, we see that any stru
ture we impose a priori upon

the moving average and auto
orrelation of the time series pro
ess is also un
hanged by


hanges in the identi�ability 
onstraints in models with parametri
 age fun
tions. This

means that, in theory, it is possible to give ea
h term distin
t stru
ture, su
h as di�erent

orders of integration or numbers of lags. This may be felt to be desirable if doing so

gives proje
tions with greater demographi
 signi�
an
e.

For example, 
onsider the exponential model in Equation 3.19. In this, we interpret κ
(2)
t

as representing the 
omponent of mortality 
hange spe
i�
 to very young ages, in ex
ess

of the 
hanges in general mortality rates governed by κ
(1)
t . If we had a strong prior belief

that these should mean-revert to a natural level (for instan
e, be
ause we believed that

infants should not re
eive systemati
ally better or worse medi
al 
are than the general

population), we might 
hose to allow our subje
tive demographi
 signi�
an
e for the

term to overrule a purely statisti
al evaluation of the time series pro
ess in this 
ase.

Be
ause we do not use the transformation in Equation 3.11 to enfor
e a 
onstraint when

�tting the model, we do not have to ensure that our proje
tion pro
ess is robust to its

appli
ation when the model is proje
ted.

We may also feel that su
h a restri
tion will give proje
ted mortality rates with greater

biologi
al reasonableness. For example, we may have biologi
al reasons for believing that

infant mortality rates should always be higher than those for young 
hildren at age �ve,

say. However, using a non-stationary time series pro
ess for κ
(2)
t allows there to be s
e-

narios with non-zero probability where this is violated, and therefore we might wish to

use a stationary time series pro
ess for κ
(2)
t to avoid any s
enarios felt to be biologi
ally

unreasonable.

30

However, su
h arguments ignore the fa
t that, for any model with parametri
 age fun
-

tions, there are a range of equivalent models whi
h give identi
al �tted mortality rates

and so, ideally, should be proje
ted using the same time series pro
esses to give identi
al

30

Similar arguments were 
onsidered in Cairns et al. (2006a) and Plat (2009a).
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proje
ted mortality rates.

31

There may also be features, su
h as 
hanges in trend, whi
h

are present in the period fun
tions for one model but absent in an equivalent model, and

so are not obje
tive features of the data. Sin
e these equivalent models are linked by the

transformation in Equation 3.11, it is still highly desirable to use general VARIMA pro-


esses, with no a priori stru
ture pla
ed on them, just as for models with non-parametri


age fun
tions.

In pra
ti
e, it is not often that the demographi
 signi�
an
e of a term in an AP mortal-

ity model leads to spe
i�
 requirements about how it should be proje
ted. For instan
e,

while we may seek to rule out any possibility of mortality rates being lower at birth than

at age �ve in the exponential model, this is highly unlikely to o

ur even if non-stationary

time series pro
esses are used for κ
(2)
t , sin
e it is in
onsistent with the histori
al data.

We therefore re
ommend that general, well-identi�ed, multivariate VARIMA pro
esses

are used to proje
t the period fun
tions in models with parametri
 age fun
tions, un-

less these are shown experimentally to give biologi
ally implausible proje
ted mortality

rates.

32

3.9.4 Summary

In summary, we 
an say that in order to obtain proje
tions whi
h are well-identi�ed

from an AP model, we need to work ba
kwards from our desire for time series pro-


esses whi
h do not 
hange form under the invariant transformations in Equations 3.11

and 3.12. This means that we should always use multivariate time series pro
esses, as

these support a uni�ed approa
h to proje
tion and allow us to 
he
k identi�ability easily.

Identi�ability also means, in general, that we should not treat the di�erent period fun
-

tions di�erently. In pra
ti
e, this means assuming as little stru
ture a priori for the time

series pro
esses as possible and using the same order of integration for ea
h period fun
-

tion. In models with parametri
 age fun
tions, however, there may be 
on�i
ts between

31

As these are distin
t models, this is a weaker requirement than is ne
essary to be well-identi�ed

under our de�nition above.

32

In some 
ir
umstan
es, there are 
lear 
on�i
ts between the need for biologi
al reasonableness in

proje
ted mortality rates and the desire to use the same time series pro
esses for all period fun
tions and

in all equivalent models. These 
ir
umstan
es do not often arise in AP mortality models, but are more


ommon in models with a 
ohort term whi
h generates additional identi�ability issues, and examples of

su
h 
ases are dis
ussed in Chapters 4 and 6. In su
h 
ir
umstan
es, it is usually preferable to 
hoose

pro
esses whi
h give biologi
ally reasonable proje
tions rather than identi�ability under transformations

whi
h are not relevant in �tting the model.
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a
hieving this and the biologi
al reasonableness of the proje
ted mortality rates. Treat-

ing the di�erent period fun
tions in the same manner is still highly desirable, however,

as it avoids using di�erent pro
esses to proje
t equivalent models, and often emerges

naturally out of a statisti
al analysis of the �tted period fun
tions. These 
on
lusions

are summarised in Table 3.1 below.

Property of time series Non-parametri
 Parametri


pro
ess used in proje
tion age fun
tions age fun
tions

Multivariate Essential Essential

Invariant to 
hanges in s
ale Automati
 Automati


Invariant to 
hanges in level

Essential Essential

(i.e., integrated or no preset level of mean reversion)

Correlation between period fun
tions Essential Highly desirable

Have same order of integration Essential Highly desirable

In
ludes 
ross lags between period fun
tions

Essential Highly desirable

(if autoregressive)

Table 3.1: Requirements for identi�able proje
tion methods in AP mortality models

3.10 Con
lusions

Most AP mortality models are not fully identi�ed, sin
e di�erent sets of parameters will

give identi
al �ts to the observable data. This la
k of identi�ability requires us to impose

additional 
onstraints upon the parameters, whi
h may help us interpret them and give

them demographi
 signi�
an
e. However, these additional 
onstraints are 
hosen by the

model user and therefore are subje
tive and arbitrary.

When using mortality models, it is important to be aware of all of the identi�
ation issues

present and also how they need to be resolved. In many 
ases, this is done expli
itly,

su
h as in the model of Lee and Carter (1992). In others, it is done impli
itly through

the use of parti
ular �tting pro
edures (e.g., Renshaw and Haberman (2003b) or Yang

et al. (2010)). In 
ases where it is done impli
itly, the identi�ability 
onstraints should

still be 
learly stated. This ensures that users of the model 
an 
orre
tly identify features

of the �tted parameters whi
h relate to the data (and so are worthy of investigation) and

those whi
h are merely artefa
ts of the identi�
ation s
heme (su
h as the independen
e

of the period fun
tions in the LC2 model) and so are not. It also allows goodness of �t

tests whi
h use penalties based on the number of degrees of freedom in a model to be

used reliably.
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In addition, in parametri
 models, it is often desirable to sele
t the age fun
tions so that

they have a 
onsistent normalisation s
heme based on a true norm, as this will allow


omparisons to be made between the di�erent age/period terms and will aid in the ro-

bustness of the proje
tions. For models where the age fun
tions have free parameters

that are set with referen
e to the data, it is desirable to use self-normalising age fun
tions

to improve the stability of the numeri
al algorithms used to estimate the parameters and,

hen
e, the model's robustness. However, these are properties of the age fun
tions whi
h

are sele
ted in advan
e of �tting the model, rather than being imposed during the �tting

pro
ess via identi�ability 
onstraints.

These identi�
ation issues also have 
onsequen
es when proje
ting the models. In gen-

eral, in order to obtain identi�able proje
tions, we should 
hoose to proje
t the model

using multivariate pro
esses whi
h do not treat the period fun
tions di�erently. It is also

advisable to leave any ve
tor representation of the time series as unstru
tured as possible

(i.e., using general time series parameter matri
es rather than imposing any stru
ture

on them a priori) in order for the representation to be robust a
ross all identi�
ation

s
hemes. Stru
ture imposed through the arbitrary identi�ability 
onstraints will emerge

when estimating these parameters. In models with parametri
 age fun
tions, however,

the use of identi�able proje
tion methods is often desirable and natural, but may be

subordinated to our desire for biologi
al reasonableness in the proje
tions.

In short, identi�
ation in AP mortality models is a non-trivial exer
ise whi
h requires


areful 
onsideration and has 
onsequen
es when we use the models to 
ompare datasets

or proje
t future mortality rates. A la
k of understanding of this 
an lead to proje
tions

whi
h depend upon the arbitrary de
isions made by the model user rather than the data.

By understanding these issues, we 
an build more 
omplex mortality models, for instan
e,

via the �general pro
edure� of Chapter 5, and be 
on�dent that they are founded on a

se
ure knowledge of the underlying mathemati
al stru
ture of AP models. The subje
t

of identi�ability be
omes 
onsiderably more 
ompli
ated when we move beyond the AP

stru
ture to in
lude the e�e
ts of year of birth (or 
ohort) as dis
ussed in Chapter 4.

3.A Models without a stati
 age fun
tion

As dis
ussed in Chapter 2, a number of AP mortality models have been proposed whi
h

do not have an expli
it stati
 age fun
tion, αx. These in
lude the CBD model of Cairns

et al. (2006a) and the model of Aro and Pennanen (2011), along with extensions of these.

In order to a
hieve this, the age fun
tions in the model must be parametri
 and therefore
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known in advan
e of �tting the model to data. The stru
ture of the AP model in this


ase is therefore

H = βκ

where H = {ηx,t} as in Se
tion 3.2.

In this 
ase, we see that the identi�ability issues in the model are simpli�ed relative to

the full stru
ture in Equation 3.3. In parti
ular, we see that the transformation in Equa-

tion 3.12 is no longer relevant and so the lo
ation of the period fun
tions is no longer

unidenti�ed. Instead, the lo
ations of the period fun
tions are determined by the data

and we no longer need to set them through identi�ability 
onstraints. Further, in the


ase where the age fun
tions in the model are parametri
, the transformation in Equation

3.11 is also no longer appli
able, meaning that the model is fully identi�ed. This is why

no additional 
onstraints are required for the models in Cairns et al. (2006a) and Aro

and Pennanen (2011).

When proje
ting these models, we do not need to ensure that the time series pro
esses

are invariant to 
hanges in the lo
ations of the period parameters. However, sin
e the

�tted period parameters will have levels set by the data and these will typi
ally be signif-

i
antly di�erent from zero, we need to allow for this possibility in our 
hoi
e of time series

pro
esses. Consequently, in pra
ti
e, time series pro
esses whi
h are either integrated or

have the level of the period fun
tions as a free parameter are often used to proje
t the

period fun
tions. For instan
e, Cairns et al. (2006a) and Aro and Pennanen (2011) both

used multivariate random walks with drift, whi
h are invariant to 
hanges in level even

though this property is not stri
tly required.

Alternatively, some studies impli
itly dispense with a stati
 age fun
tion by �xing it in

advan
e. For instan
e, Renshaw and Haberman (2003b) imposed

αx =
1

T

∑

t

ln

(

dx,t

Ec
x,t

)

(3.29)

before estimating the other terms in the model. This sets the stati
 age fun
tion as the

average of observed mortality rates in the period. The value of the stati
 age fun
tion is

not subsequently revised when estimating the model.
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In this 
ase, the stru
ture of the model be
omes

H̃ = βκ

where H̃ =
{

ηx,t − 1
T

∑

τ ln
(

dx,τ
Ec

x,τ

)}

.

This means that Equation 3.12 is not an invariant transformation of the model and,


onsequently, the lo
ations of the period fun
tions are identi�able (i.e., de�ned by the

data). Consequently, we do not need to then impose a 
onstraint on the level of the

period fun
tions and, indeed, 
annot do so without a�e
ting the �tted mortality rates.

This is important when it 
omes to assessing the number of degrees of freedom in the

mortality model, for instan
e, for the purposes of 
omparing the goodness of �t. For

models where the level of the period fun
tions is set via identi�ability 
onstraints, the

model has X +N(X + T ) parameters and impose N level 
onstraints and N2
s
ale and

orthogonality 
onstraints on the model. In 
ontrast, for models with a �xed stati
 age

fun
tion, the model has N(X + T ) free parameters and requires only the N2
s
ale and

orthogonality 
onstraints. Therefore, models with a �xed stati
 age fun
tion have X−N

fewer free parameters than might otherwise be expe
ted. This was not allowed for in

Haberman and Renshaw (2011) when 
omparing the goodness of �t for di�erent models,

whi
h brings some of the 
on
lusions of that study into question.

We also note that, in 
ommon with most statisti
al models with a two-stage estimation

pro
ess (as dis
ussed in Murphy and Topel (2002)), parameters estimated at the se
ond

stage may be biased and have distorted asymptoti
 distributions, 
ompared with those

estimated by a one-stage pro
ess. This is be
ause of the hierar
hi
al stru
ture of the

model: the se
ond-stage parameters are only estimated 
onditional on the estimates of

the �rst-stage parameters previously obtained, whi
h are not known with 
ertainty. To

avoid this, we must either use a one-stage estimation pro
ess or use a bootstrapping

pro
edure, su
h as those proposed in Brouhns et al. (2005) or Koissi et al. (2006) dis-


ussed in Se
tion 3.8.1. These will allow fully for the un
ertainty in both the parameters

estimated at the �rst and se
ond stages.

One reason for imposing the parti
ular form of the stati
 age fun
tion in Equation 3.29

is to give it approximately the same demographi
 signi�
an
e as that whi
h 
omes from

using the 
onstraint

∑

t κ
(i)
t = 0, i.e., that the stati
 age fun
tion should represent the

average mortality rate at ea
h age over the period of the data, as shown in Equation
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3.10. We might, therefore, expe
t to �nd

∑

t

κ
(i)
t 6= 0

for su
h a model. The di�eren
e between imposing the form of the stati
 age fun
tion

in Equation 3.29 and the estimate of the stati
 age fun
tion found by maximising the �t

to data and applying the identi�ability 
onstraint will depend on whether there are any

systemati
 di�eren
es a
ross periods between the �tted and observed mortality rates.

We might, therefore, expe
t the di�eren
e between the two to be small if the model is a

good �t to the data. Hen
e, for a model where the stati
 age fun
tion is imposed, how

di�erent the value of

∑

t κ
(i)
t is from zero is a measure of whether there are systemati


di�eren
es between the observed and �tted mortality rates (i.e., whether there is stru
-

ture remaining in the residuals from the model).

33

For models whi
h do not provide an

adequate �t to the data, there are likely to be systemati
 di�eren
es between the �tted

and observed mortality rates and, hen
e, we will observe a value of

∑

t κ
(i)
t further from

zero if the stati
 age fun
tion is imposed.

Nevertheless, even for a well-�tting model, it should be borne in mind that the period

fun
tions do possess an identi�able level when proje
ting them, even if this is small. It

is therefore re
ommended that a non-zero level is allowed for in the time series pro
esses

used to proje
t the period fun
tions. In parti
ular, we should not assume that any of

the period fun
tions mean-revert around zero, but, instead, allow them to mean-revert

around an unspe
i�ed level. Nevertheless, this level would probably be 
lose to zero, if

the model is a good �t to the data, and 
ould be tested for statisti
al signi�
an
e (sin
e

it does not depend on an identi�ability 
onstraint).

In summary, models whi
h either impose the value of the stati
 age fun
tion a priori or

whi
h do not in
lude an expli
it stati
 age fun
tion, have a redu
ed set of identi�ability


onstraints 
ompared with otherwise similar AP models where the stati
 age fun
tion

is unrestri
ted. Su
h models have levels for the period fun
tions whi
h are set with

referen
e to the data rather than via an identi�ability 
onstraint. It is therefore ne
essary

to in
lude the period fun
tion levels when making proje
tions from these models, even

if the levels that have been estimated are 
lose to zero. In most 
ir
umstan
es, they

should therefore be treated in the same fashion as models with an expli
it stati
 age

fun
tion. In 
ontrast, models with no expli
it age fun
tion but with a 
ohort term

33

Indeed, if least squares methods are used to �t the model, the two are identi
al sin
e this �tting

pro
edure assumes that the residuals are independent and identi
ally distributed.
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possess di�erent identi�ability issues to 
omparable models with an expli
it stati
 age

fun
tion, as dis
ussed in Chapter 4.

3.B Maximal invariants

An alternative approa
h to using an arbitrary identi�
ation s
heme was suggested by

Nielsen and Nielsen (2014). This is to 
hange the parameterisation of the model to an

equivalent form with redu
ed dimensionality whi
h does not su�er from identi�ability

issues. We 
an think of this reparameterisation as mapping the old parameters to a new

set

g(α, β, κ) = {α̃, β̃, κ̃}

The new parameters are 
hosen so that the new parameter spa
e has the same dimension

as the model spa
e, M, and so the mapping

Θ̃(α̃, β̃, κ̃) = Θ(g(α, β, κ))

is inje
tive (and so will not su�er from identi�
ation issues). The new parameters,

{α̃, β̃, κ̃}, are known as �maximal invariant� parameters, sin
e they are the set with the

largest number of parameters (i.e., are �maximal�), and are inje
tive and give the same

�tted mortality rates as the original model in Equation 3.1 (i.e., the reparameterisation

is �invariant�).

As all of the maximally invariant parameters are freely varying (i.e., un
onstrained)

and dim({α̃, β̃, κ̃}) = dim(M) = X + N(X + T ) − N(N + 1), we see that there are

X+N(X+T )−N(N +1) parameters in the maximally invariant parameterisation. We


an think of this as �nding a parameterisation of the model whi
h gives the same �t to

data, but where every possible degree of freedom in the model is fully utilised in �tting

the data.

Nielsen and Nielsen (2014) showed that one way that maximal invariant parameters 
an

be used in the LC model in order to remove the la
k of identi�ability under the transfor-

mation in Equation 3.9 is through the use of the orthogonal 
omplement to 1 (the T × 1


olumn ve
tor of ones de�ned in Se
tion 3.2). This is a T × (T − 1) matrix, 1⊥, used in

Se
tion 3.4, where every 
olumn is orthogonal to 1, i.e., 1

⊤
1⊥ = 0 .
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Using the identity I = 1(1⊤1)−1
1

⊤+1⊥(1
⊤
⊥1⊥)

−1
1

⊤
⊥, we 
an de
ompose Equation 3.3 as

H = α1⊤ + βκ(1(1⊤1)−1
1

⊤ + 1⊥(1
⊤
⊥1⊥)

−1
1

⊤
⊥)

= (α+ βκ1(1⊤1)−1)1⊤ + β(κ1⊥(1
⊤
⊥1⊥)

−1)1⊤⊥

= α̃1⊤ + βκ̃1⊤⊥ (3.30)

where κ̃ is now a N × (T − 1) matrix. We 
an see that if we transform the original

parameters using Equation 3.12 we obtain

˜̂κ = κ̂1⊥(1
⊤
⊥1⊥)

−1

= (κ+B1

⊤)1⊥(1
⊤
⊥1⊥)

−1

= κ1⊥(1
⊤
⊥1⊥)

−1

= κ̃

i.e., the la
k of inje
tivity in the model is now between the mapping from the old pa-

rameterisation to the new, but the transformation of the new parameters to the �tted

mortality rates is inje
tive. This has expli
itly redu
ed the number of parameters in the

model from X+N(X+T ) to X+N(X+T−1) and means that the revised κ̃ parameters

have identi�able lo
ation. However, the parameters are still not fully identi�ed under

the transformations in Equation 3.11, and therefore the maximally invariant reparame-

terisation has not 
ompletely solved the identi�ability issues in the model.

It is also apparent that this te
hnique does not depend on the form of the matrix β.

Spe
i�
ally, if we use parametri
 age fun
tions, then we 
an still use the same analysis

to remove the la
k of identi�ability in the level of the period fun
tions.

Mathemati
ally, the approa
h suggested in Nielsen and Nielsen (2014) is very elegant.

However, in pra
ti
e, the approa
h has hidden rather than removed the la
k of identi�-

ability to the transformations in Equation 3.12. This is be
ause 1⊥ is not unique, but


an be 
hosen by the model user. The model user's 
hoi
e does not have any statisti
al


onsequen
es and is equivalent to 
hoosing a basis in the (T −1) dimensional orthogonal

subspa
e of RT
spanned by 1⊥. Nonetheless , this 
hoi
e will have 
onsequen
es when we


ome to interpret the demographi
 signi�
an
e and proje
t the parameters in the model.
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For instan
e, we might 
hoose

1⊥ =





















−1 0 0 · · ·
1 −1 0

0 1 −1

0 0 1
.

.

.

.

.

.





















(3.31)

This 
hoi
e means that (κ1⊥)
(i)
t 
orresponds to ∆κ

(i)
t = κ

(i)
t − κ

(i)
t−1, the �rst di�eren
es

between su

essive period parameters, whi
h is invariant to 
hange in the level of κ
(i)
t .

This has a natural interpretation and is related to modelling �mortality improvement

rates� as was done in Haberman and Renshaw (2012) and Mit
hell et al. (2013). Alter-

natively, we 
ould 
hoose

1⊥ =





















−1 −1 −1 · · ·
1 0 0

0 1 0

0 0 1
.

.

.

.

.

.





















(3.32)

This 
hoi
e implies that (κ1⊥)
(i)
t 
orresponds to κ

(i)
t − κ

(i)
1 , the 
hanges in the period

fun
tion from its initial value. This is also invariant to 
hange in the level of κ
(i)
t , but

will have a very di�erent pattern from that of the �rst di�eren
es used previously (and

be proje
ted using di�erent methods). We 
ould 
onsider these 
hoi
es as analogous to

the imposition of the identi�ability 
onstraints

∑

t κ
(i)
t = 0 and κ

(i)
1 = 0, respe
tively.

Most statisti
al pa
kages will sele
t a 1⊥ matrix using a numeri
al algorithm and so

κ1⊥ will not have a natural interpretation, limiting the demographi
 signi�
an
e of any

maximally invariant parameters.

When we 
ome to proje
t the model, we will need to extend 1⊥ as well as κ̃t. For in-

stan
e, to proje
t τ years into the future, we will need to generate a ((T+τ)×(T+τ−1))

matrix 1̃⊥. However, in order to be 
onsistent with the �tted mortality rates, we will

also need to ensure that the (T × (T − 1)) upper left submatrix of 1̃⊥ is identi
al to

the matrix 1⊥ used when �tting the model. This may not be the 
ase when using some


ommon algorithms to generate these orthogonal matri
es, leading to in
onsisten
ies be-

tween the �tted and proje
ted mortality rates, and so it is important that we understand

the method used to generate orthogonal matri
es in order to ensure 
onsisten
y.
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Even more problemati
, our 
hoi
e of 1⊥ might not preserve the time ordering of κt. For

instan
e, we 
an re-order the 
olumns of the 1⊥ matrix in Equation 3.31, so that (κ1⊥)
(i)

is still a row ve
tor of the �rst di�eren
es in κ
(i)
t but not in 
hronologi
al order. Sin
e it

is the time-ordering of κ
(i)
t whi
h allows us to interpret it as a time series and proje
t it

into the future in order to fore
ast mortality rates, this is highly undesirable.

Furthermore, we have not removed the la
k of identi�ability under the transformations

in Equation 3.11. We therefore will still need to impose a normalisation s
heme on

the age/period terms and 
an sele
t orthogonal age fun
tions using this transformation.

Hen
e, mu
h of the dis
ussion in Se
tion 3.9 is still relevant, even using a 
hoi
e for 1⊥

whi
h preserves the time ordering of κt.

In summary, the use of maximal invariants in AP mortality models has a number of

elegant mathemati
al properties. However, moving to this framework involves losing

mu
h of the demographi
 signi�
an
e asso
iated with the parameters in a standard AP

mortality model and does not solve many of the key issues with proje
ting su
h models.

It is, therefore, unlikely that su
h an approa
h will be suitable for the purposes of most

users of mortality models.
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Chapter 4

Identi�ability in Age/Period/Cohort

Mortality Models

4.1 Introdu
tion

Many modern models of mortality in
lude parameters to 
apture the impa
t of lifelong

mortality e�e
ts whi
h follow individuals from birth, building on the �ndings of studies

su
h as Wilmoth (1990) and Willets (1999, 2004). Understanding su
h �
ohort� e�e
ts


an be of 
riti
al importan
e, espe
ially for those interested in understanding the mor-

tality experien
e of a spe
i�ed group of lives, su
h as members of a pension s
heme or

poli
yholders in an annuity book. Examples of models in
orporating 
ohort parameters

in
lude those proposed in Renshaw and Haberman (2006), Cairns et al. (2009), Plat

(2009a), O'Hare and Li (2012a), Börger et al. (2013) and Chapter 5.

In Chapter 2, we argued that the time has 
ome to undertake a more holisti
 analysis of

the 
lass of age/period/
ohort (APC) models and began this analysis by outlining their


ommon stru
ture. In Chapter 3, we fo
used on the subset of this 
lass without a 
ohort

term, namely on age/period (AP) models, and examined their identi�ability issues.

We found that, for AP models, there are a number of �invariant transformations� whi
h


hange the parameters, but not the �tted mortality rates. The existen
e of these trans-

formations lead to identi�ability issues, meaning that there are 
ertain features of the

parameters in a model whi
h are not de�ned by the data. Instead, they are only de-

termined by the arbitrary identi�ability 
onstraints we impose, and therefore have no

independent meaning. Consequently, we must be 
areful to ensure that our results from
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using mortality models do not depend upon these features of the parameters. These

issues with identi�ability 
an lead to models whi
h la
k robustness when �tted to data,


ause us to draw faulty and erroneous 
on
lusions when analysing the histori
al data,

and bias our proje
ted mortality rates in future. We also found that, unless we 
hoose

our proje
tion methods 
arefully, our proje
tions of mortality 
an depend upon the ar-

bitrary 
hoi
e of identi�ability 
onstraint. This should be avoided, so we dis
ussed how

to 
hoose proje
tion methods whi
h give �well-identi�ed� proje
tions of mortality rates.

The addition of a set of 
ohort parameters to a mortality model 
an generate additional

identi�ability issues whi
h are fundamentally unlike anything present in otherwise sim-

ilar AP models. These are 
aused by the 
ollinearity between age, period and 
ohort.

In the 
ontext of the APC mortality models dis
ussed in this study, we �nd that 
er-

tain deterministi
 trends found within the �tted parameters are unidenti�able by the

models, and therefore do not possess any meaning other than that imposed by our ar-

bitrary identi�ability 
onstraints. This, in turn, means that it is both more important

and more di�
ult to ensure that proje
tions from these models are well-identi�ed, as

we must separate these unidenti�ed trends (whi
h depend entirely upon the identi�a-

bility 
onstraints) from the variation around the trends, whi
h is meaningful and needs

to be proje
ted 
onsistently with what has been observed in the past. Thus, although

the present study extends the work of Chapter 3, it is ne
essary to view the underlying

identi�ability issues in a fundamentally di�erent way and, 
onsequently, develop a new

set of tools to solve them.

In this 
hapter, we study the identi�ability issues present in some of the simplest APC

models in order to demonstrate the problems in a
tion and their potential resolution. In

these simple 
ases, the identi�ability issues 
an appear trivial, and their impa
t on our

analysis of histori
al and proje
ted mortality rates relatively minor. However, we believe

that it is vital to fully understand these issues in the 
ontext of simple models, sin
e they

be
ome 
onsiderably more important in more 
ompli
ated models. Indeed, re
ognising

these issues and solving them was vital to the development of the �general pro
edure�

for 
onstru
ting APC mortality models, des
ribed in Chapter 5, and appropriately pro-

je
ting su
h models, as we dis
uss in Chapters 6, 7 and 8.

The outline of the 
hapter is as follows. Se
tion 4.2 reviews the stru
ture of general

APC mortality models des
ribed in Chapter 2. Se
tion 4.3 introdu
es the 
on
ept of

identi�ability in the 
ontext of the simplest and most widely used APC model and

develops our understanding of how 
ohort e�e
ts 
reate fundamentally new identi�
ation
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issues in this model 
ompared with the simpler AP model. Se
tion 4.4 generalises this

by examining the issue of identi�ability in more general APC models with parametri


age fun
tions. Se
tion 4.5 investigates the 
onsequen
es of identi�
ation for proje
tion,

�rst by looking at the model dis
ussed in Se
tion 4.3 and then in a more general 
ase.

Finally, Se
tion 4.6 
on
ludes.

4.2 Stru
ture of age/period/
ohort models

An APC mortality model is one whi
h assumes that mortality rates 
an be modelled as

a series of terms involving fun
tions of age, x, period, t, and year of birth, y = t − x.1

This 
an be written as

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t + γt−x (4.1)

where

• ηx,t is a link fun
tion to transform the response variable into a form suitable for

modelling and linking it to the proposed predi
tor stru
ture;

• αx is a stati
 fun
tion of age;

2

• κ
(i)
t are period fun
tions governing the evolution of mortality with time;

• β
(i)
x are age fun
tions modulating the impa
t of the period fun
tion dynami
s over

the age range; and

• γy is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon a 
ohort's

year of birth and follow that 
ohort through life as as it ages.

We also note that the general APC mortality model in Equation 4.1 
an be re-written

as

ηx,t = αx + β⊤
x κt + γt−x (4.2)

where

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

1

In this study, we assume that x ∈ [1, X] and t ∈ [1, T ] and hen
e that years of birth, y, are in the

range (1−X) to (T − 1). In pra
ti
e, x and t will be given by the range of the data being used.

2

We 
onsider models of the form of Equation 4.1 but without a stati
 age fun
tion in Appendix 4.B.
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This form is useful when proje
ting these models, as dis
ussed in Se
tion 4.5.

The general stru
ture of APC models was dis
ussed in detail in Chapter 2. In parti
ular,

we found that APC mortality models have di�erent demographi
 signi�
an
e

3

depending

on whether the age fun
tions β
(i)
x are non-parametri


4

or parametri
.

5

In Chapter 3, we used linear algebra to analyse the stru
ture of AP mortality models

as mappings from a spa
e of parameters to a model spa
e, and found that in order for

these mapping to be unique, the spa
es had to have the same dimension. In addition,

AP models 
an be sub-divided into those with parametri
 age fun
tions and those where

the age fun
tions are non-parametri
. While the two families have similar identi�ability

issues, these needed to be solved using di�erent methods in order to preserve the demo-

graphi
 signi�
an
e of the parametri
 age fun
tions.

6

It is important to note that AP

mortality models are nested within the 
lass of APC models, and, therefore, all of the

issues raised in Chapter 3 are still appli
able for APC mortality models.

APC models have additional identi�ability issues whi
h are fundamentally di�erent from

anything present in otherwise similar AP models, hen
e alternative methods are ne
es-

sary to analyse them. They are 
aused by the 
ollinearity between the dimensions of

age, period and 
ohort, be
ause period = year of birth + age. This gives us the free-

dom to re-write fun
tions of 
ohort as fun
tions of age and period, or vi
e versa. The

additional identi�ability issues generated by the 
ohort term depend fundamentally on

the de�nition of the age fun
tions within the model, and so are spe
i�
 to the model

in question. We �nd that APC models with non-parametri
 age fun
tions do not have

any extra identi�ability issues beyond those dis
ussed for AP models in Chapter 3, as

shown in Appendix 4.A. Models with 
ertain types of parametri
 age fun
tions require

additional identi�
ation as dis
ussed in Se
tion 4.4.

In Chapter 2, we also found that di�
ulties with estimating and assigning demographi


signi�
an
e to the 
ohort parameters mean that, in pra
ti
e, most models use only one

3

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of the model

being explainable in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in

mortality rates.

4

The values of the age fun
tions β
(i)
x at di�erent ages x are �tted without any a priori stru
ture or

fun
tional form. See Chapter 2.

5

The age fun
tions β
(i)
x take a spe
i�
 fun
tional form β

(i)
x = f (i)(x; θ(i)), de�ned in advan
e of

�tting the model to data. For simpli
ity, the dependen
e of the age fun
tions on θ(i) is suppressed in

the remainder of this 
hapter.

6

These di�erent methods are not germane to the arguments in this study. Interested readers should


onsult Chapter 3.
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ohort term (without any modulating age fun
tion) and do not involve any age/
ohort

intera
tions for reasons of both simpli
ity and robustness. We follow the same approa
h

in this 
hapter, and so do not 
onsider models su
h as that proposed in Renshaw and

Haberman (2006) or Model M8 in Cairns et al. (2009).

4.3 Identi�ability in the 
lassi
 APC model

The simplest APC model (referred to here as the �
lassi
 APC model�) has a long history

and is widely used in the �elds of medi
ine, epidemiology and so
iology as well as in

demography and a
tuarial s
ien
e.

7

It has the following form

ln(µx,t) = αx + κt + γt−x (4.3)

It 
an be seen that the 
lassi
 APC model has one age/period term with f(x) = 1, whi
h

is parametri
 in the sense de�ned in Chapter 2.

A model is fully identi�ed when all the parameters in it 
an be uniquely determined by

referen
e to the available data. In 
ontrast, the 
lassi
 APC model (as with most APC

models) is not fully identi�ed, be
ause there exist di�erent sets of parameters whi
h

will give the same �tted mortality rates and 
onsequently the same goodness of �t for

any data set. This phenomenon is not unique to APC mortality models. However, it is

very widespread in su
h models and has signi�
ant impli
ations when we 
ome to make

proje
tions using them.

The issue of identi�ability in the 
lassi
 APC model also has a very long history.

8

It is,

therefore, a good starting point to determine whether the issues raised in identifying the

parameters in Equation 4.3 
an be generalised to the more 
omplex APC models used

in mortality modelling. We 
an see that this model is not fully identi�ed, sin
e if we use

the transformations in Equations 4.4, 4.5 and 4.6 to obtain new sets of parameters, we

7

For instan
e, see Hob
raft et al. (1982), Osmond (1985), O'Brien (2000), Carstensen (2007) and

Kuang et al. (2008b).

8

For instan
e, see Glenn (1976), Fienberg and Mason (1979), Rodgers (1982), Holford (1983), Clayton

and S
hi�ers (1987), Wilmoth (1990), Yang et al. (2004), Kuang et al. (2008a) and O'Brien (2011).
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do not 
hange the �tted mortality rates and hen
e the �t to the data

{α̂x, κ̂t, γ̂y} = {αx − a, κt + a, γy} (4.4)

{α̂x, κ̂t, γ̂y} = {αx − b, κt, γy + b} (4.5)

{α̂x, κ̂t, γ̂y} = {αx + c(x− x̄), κt − c(t− t̄), γy + c(y − ȳ)} (4.6)

where a bar denotes the arithmeti
 mean of the variable over the relevant data range.

9

We 
all su
h transformations �invariant� for this reason. The existen
e of invariant trans-

formations means that the model possesses identi�ability issues, be
ause no one set of

parameters is determined uniquely from the data.

The transformation in Equation 4.6 is fundamentally unlike any of the transformations

present in AP models dis
ussed in Chapter 3, sin
e it involves fun
tions of age, period

and year of birth rather than 
onstants. It is a 
onsequen
e of the 
ollinearity between

these dimensions, y = t − x, whi
h enables us to de
ompose a linear fun
tion of year

of birth into linear fun
tions of age and period, and vi
e versa. This transformation

generalises for many, more 
omplex APC models with parametri
 age/period terms, as

we dis
uss in Se
tion 4.4.

We say that linear trends in the data are �unidenti�able� by the model, that is, they 
an-

not be uniquely apportioned to either age, period or year of birth (as was dis
ussed in

Wilmoth (1990)). The linear trends observed in the parameters of the 
lassi
 APC model

therefore have no independent meaning, as di�erent sets of parameters, with di�erent

linear trends will give exa
tly the same observable quantities su
h as �tted mortality

rates.

The existen
e of unidenti�able linear trends in the 
lassi
 APC model is of pra
ti
al as

well as theoreti
al importan
e. This is be
ause we often see features of the (transformed)

mortality rates whi
h are approximately linear in age and time. For instan
e, the shape

of the age fun
tion, αx, is approximately linear at high ages,

10

whilst κt is often approx-

imately linear.

11

The stru
ture of the model means that we are fundamentally unable

to separate these linear trends from a linear trend in the 
ohort parameters.

9

e.g., x̄ = 1
X

∑

x x = 0.5(X + 1).
10

If ηx,t = ln(µx,t), this is the Gompertz model, whilst if ηx,t = logit(qx,t), this is the Perks model for

mortality.

11

See, for instan
e, Tuljapurkar et al. (2000), who went so far as to 
all this the �universal pattern of

mortality de
line�.
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Be
ause di�erent sets of parameters give the same �t to the data, we 
annot use the data

to apportion the linear trend to either the age, period or 
ohort terms. One method of

solving this issue is to move to a �maximally invariant� set of parameters, as dis
ussed in

Kuang et al. (2008a) and Nielsen and Nielsen (2014), whi
h involves reparameterising the

model in an equivalent form with redu
ed dimensionality, whi
h avoids the identi�ability

issues. This approa
h is dis
ussed in Appendix 4.C.

An alternative and mu
h more 
ommon approa
h is to impose additional identi�ability


onstraints on the parameters in order to spe
ify them uniquely.

12

These 
onstraints

manually apportion the linear trend between the di�erent terms in the model. Imposing

suitable 
onstraints on the model involves the sele
tion of a single set of parameters

from the family of equivalent parameter sets, all of whi
h give identi
al �tted mortality

rates. In this sense, the manual apportionment is arbitrary - it does not depend upon

any observable property of the data, but is a produ
t of the model user's subje
tive

interpretation of the demographi
 signi�
an
e of the parameters.

For example, one set of identi�ability 
onstraints is

∑

t κt = 0,
∑

y nyγy = 0 and

∑

y nyγy(y − ȳ) = 0.13 These identi�ability 
onstraints allow us to impose our interpre-

tation of the demographi
 signi�
an
e of the parameters onto the model. For example,

the �rst two of the 
onstraints above mean that αx 
an be interpreted as an �average�

level of mortality at age x, over the period, with κt and γy representing deviations from

this average level. The third 
onstraint requires that there are no deterministi
 linear

trends within the �tted 
ohort parameters, sin
e any linear trend in these parameters

will be arbitrarily assigned to the age and period e�e
ts by using the transformation in

Equation 4.6. This is in line with the demographi
 signi�
an
e we assign to the 
ohort

parameters in Chapter 2.

However, it is important to note that these additional identi�ability 
onstraints are ar-

bitrary. For instan
e, the 
onstraints

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0

(used later in Se
tion 4.5.2) 
ould also be imposed and would give di�erent estimated

parameters with exa
tly the same �t to data and have the same demographi
 signi�-


an
e. Further, the 
hoi
e of having no linear trend in the 
ohort parameters does not

have any independent meaning, sin
e it is entirely dependent upon the identi�ability


onstraints 
hosen. While these 
onstraints might allow us to interpret the demographi


12

We say that the transformations in Equations 4.4, 4.5 and 4.6 
ause issues with the identi�ability

of the model.Identi�
ation of the model is a

omplished by imposing a set of identi�ability 
onstraints

and using the invariant transformations to a
hieve these 
onstraints.

13

Here ny is the number of observations of 
ohort y in the data and so

∑

y nyγy =
∑

x,t γt−x.
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signi�
an
e of the parameters, this interpretation nevertheless depends entirely on the

user's judgement rather than on the underlying data. For instan
e, a di�erent 
hoi
e of

identi�ability 
onstraints 
ould be used to impose that the period parameters, κt, had

no linear trend, whi
h would give the parameters a di�erent demographi
 signi�
an
e

but leave the �tted mortality rates un
hanged. We must, therefore, take 
are to ensure

that our proje
tions of observable quantities su
h as mortality rates do not depend on

our arbitrary identi�
ation s
heme, as dis
ussed in Se
tion 4.5.

4.4 Identi�ability in APC models with parametri
 age fun
-

tions

Many of the more 
omplex APC mortality models being proposed 
ontain 
ohort param-

eters in the same form as in the 
lassi
 APC model (i.e., without an age modulating β
(0)
x

fun
tion). Cairns et al. (2009) and Haberman and Renshaw (2011) found that models

with a 
ohort term �t the data better than otherwise similar AP models, espe
ially for

the UK population, where a strong 
ohort e�e
t has been observed by Willets (1999,

2004) and others. It is therefore natural to ask whether the additional issues with identi-

�ability present in the 
lassi
 APC model are also present in these more 
omplex models.

In Appendix 4.A, we show that APC models with non-parametri
 age fun
tions do not

possess any additional, non-trivial identi�
ation issues, beyond those found in similar

AP models dis
ussed in Chapter 3. We have already seen, however, that in the simplest


ase of the 
lassi
 APC model, the additional stru
ture in the model 
aused by having

a parametri
 age fun
tion 
ombined with the 
ollinearity of age, period and 
ohort 
an

yield new identi�
ation issues.

For a general model with parametri
 age fun
tions

ηx,t = αx +

N
∑

i=1

f (i)(x)κ
(i)
t + γt−x (4.7)

we 
an try to generalise Equation 4.6 to look for invariant transformations of the form

{α̂x, f̂
(i)(x), κ̂

(i)
t , γ̂y} = {αx − a(x), f (i)(x), κ

(i)
t − k(i)(t), γy + g(y)} (4.8)
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where a(x), k(i)(t) and g(y) are smooth fun
tions.

14

Be
ause the formulae used for the

age fun
tions de�ne the model being used, in the sense of Chapter 2, we desire that they

do not 
hange under the invariant transformations, i.e., f̂ (i)(x) = f (i)(x). Transforma-

tions whi
h 
hanged the age fun
tions in the model would give a fundamentally di�erent

model, albeit one whi
h gave the same �t to the data. In Chapter 3, we 
alled di�erent

models, with di�erent de�nitions of the age fun
tions, that gave identi
al �ts to the data

�equivalent models�.

In order for the transformation in Equation 4.8 to leave Equation 4.7 un
hanged, we

require

g(t− x) = a(x) +

N
∑

i=1

f (i)(x)k(i)(t) (4.9)

If this is true, we say that the deterministi
 trends k(i)(t) and g(y) are �unidenti�able�,

sin
e the model is unable to apportion them between the age/period and 
ohort terms,

in the same way as with the unidenti�able linear trends in the 
lassi
 APC model. In-

stead, we must manually apportion these trends by means of additional identi�ability


onstraints. These deterministi
 trends in the �tted parameters, therefore, la
k any

obje
tive meaning, sin
e they are entirely dependent on the 
hoi
e of identi�ability 
on-

straints. Nevertheless, they must be allowed for when proje
ting the APC mortality

model, as dis
ussed in Se
tion 4.5, even if they appear to be 
omparatively small.

The �rst thing to note from Equation 4.8 is the trivial 
ase where Equation 4.9 holds,

i.e., g(y) = a(x) = b, a 
onstant, and k(i)(t) = 0, ∀t. This is simply a transformation of

the form in Equation 4.5. It does not involve any age/period terms and so holds for all

APC models, in
luding those with non-parametri
 age fun
tions.

To �nd less trivial transformations, we take a Taylor expansion of g(y) around −x,

assuming that it is an in�nitely di�erentiable fun
tion of year of birth

g(t− x) = g(−x) +
∞
∑

j=1

1

j!
tj

djg

dyj

∣

∣

∣

∣

y=−x

(4.10)

Comparing this to Equation 4.9, we 
an set a(x) = g(−x) and k(j)(t) = 1
j!t

j
if f (j)(x) =

djg
dyj

∣

∣

∣

y=−x
, i.e., the derivatives of g are a subset of the age fun
tions of the model. Models

14

While, αx and κt are only de�ned for integer x and t, the parametri
 age fun
tions f (i)(x) are de�ned
for 
ontinuous x and so it make sense to look for transformations whi
h also use 
ontinuous fun
tions,

as in the 
lassi
 APC model in Se
tion 4.3.
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of the form in Equation 4.7 have a �nite number, N , of age/period terms and, therefore,

we require that g(y) has a �nite series of derivatives. There are two 
ases when g will

have a �nite sequen
e of derivatives, either

1. the derivatives terminate after M ≤ N terms say, or

2. the form of the derivatives is 
y
li
al so that

dj+M g
dyj+M

∣

∣

∣

y=−x
= K djg

dyj

∣

∣

∣

y=−x
for some

integer M ≤ N and 
onstant K.

4.4.1 Polynomial age fun
tions

For the Taylor series to terminate in a �nite number of terms, we require that

djg
gyj

=

0, ∀j > M , and therefore that g(y) must be a polynomial in y of order M .

Theorem 4.1. APC mortality models of the form in Equation 4.1 and age fun
tions

spanning the polynomials to order M − 1 possess invariant transformations whi
h add a

polynomial of order M to the 
ohort fun
tion.

Sket
h of Proof Take g(y), a general polynomial of order M , and expand as a

fun
tion of x and t. This 
an then be regrouped into an equivalent form that 
orresponds

to the age/period terms in the model, in order to see how g(y) 
an be absorbed into the

age/period stru
ture

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =
M
∑

n=0

an(t− x)n

=

M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=
M
∑

n=0

an

[

(−x)n +
n
∑

m=1

(

n

m

)

tm(−x)n−m

]

=

M
∑

n=0

an(−x)n +

M
∑

n=1

n−1
∑

l=0

an

(

n

l

)

tn−l(−x)l

=
M
∑

n=0

an(−x)n +
M−1
∑

l=0

(−x)l
M
∑

n=l+1

an

(

n

l

)

tn−l

=

M
∑

n=0

an(−x)n +

M−1
∑

l=0

(−1)lf (l)(x)

M
∑

n=l+1

an

(

n

l

)

tn−l

= a(x) +
M−1
∑

l=0

f (l)(x)k(l)(t)
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If there are age fun
tions in the model of the form f (j)(x) = xj of j = 0, 1, . . . M −1, the

expression above 
orresponds to Equation 4.9 with a(x) =
∑M

n=0 an(−x)n and k(j)(t) =

(−1)j
∑M

n=j+1 an
(

n
j

)

tn−j
. More generally, we only require that the age fun
tions span

the �rst M − 1 polynomials, be
ause these are equivalent to a model with f (j)(x) = xj

su
h as that in the derivation above.

We 
an think of the transformation as expanding the polynomial g(y) into terms in x and

t, grouping these and then 
ombining them with the appropriate age/period terms. A

model with age fun
tions spanning the �rstM−1 polynomials therefore has an additional

M +1 degrees of freedom (represented by the 
oe�
ients, an, of the general polynomial)

whi
h do not a�e
t the �t to the data. This is similar to the analysis in Wilmoth (1990),

whi
h argues that higher order polynomial trends in the 
ohort parameters will 
ause

identi�ability problems in a mortality model if su�
ient age/period terms of suitable

form exist within the model. These additional degrees of freedom mean that we need to

impose an additional M +1 identi�ability 
onstraints, whi
h assign the M +1 unidenti-

�able polynomial trends between the di�erent age/period and 
ohort terms in the model.

The simplest example of this is the transformation of the 
lassi
 APC model des
ribed

in Se
tion 4.3. This has a single parametri
 age fun
tion f(x) = 1 whi
h spans the

polynomials to order 0. The model will then allow �rst order polynomials (i.e., linear

terms) to be added to the 
ohort parameters with o�sets made to the stati
 life fun
tion

and the period term without 
hanging the �tted mortality rates. These are exa
tly the

invariant transformations des
ribed in Equations 4.5 and 4.6. Consequently, we impose

two additional identi�ability 
onstraints for the 
ohort parameters in the model to iden-

tify their level and linear trend.

4.4.1.1 The Plat models

In Plat (2009a), two new APC mortality models were introdu
ed. These 
an be written

15

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (4.11)

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (4.12)

The se
ond of these models was introdu
ed as a simpli�
ation of the �rst, with the expe
-

tation that it would be more suitable for modelling mortality at high ages. We 
all the

model in Equation 4.11 the �Plat model� and the model in Equation 4.12 the �redu
ed

15

We de�ne x+ ≡ max(x,0).
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Plat model� for this reason.

16

The �rst point to note is that both the Plat and redu
ed Plat models nest the 
lassi


APC model, and therefore the invariant transformations in Equations 4.4, 4.5 and 4.6

are also appli
able for both models.

The se
ond point to note is that these models also nest simple AP mortality models,

17

and therefore the results of Chapter 3 are still appli
able. This means that the �lo
ations�

of the period fun
tions are unde�ned and need to be identi�ed by imposing a 
onstraint

on their levels. Usually this is of the form

∑

t

κ
(i)
t = 0

These invariant transformations were noted by Plat (2009a) and used to impose suitable

identi�ability 
onstraints.

However, the third point to note is that both of these models have age fun
tions f (1)(x) =

1 and f (2)(x) = (x− x̄) whi
h span the polynomials to linear order. Using the result of

Theorem 4.1, we should be able to �nd a transformation of the parameters whi
h adds a

quadrati
 polynomial in y to the 
ohort parameters, but leaves the �tted mortality rates

un
hanged. Indeed, we �nd that the transformation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − d(x− x̄)2,

κ
(1)
t − d(t− t̄)2, κ

(2)
t + 2d(t− t̄), γy + d(y − ȳ)2} (4.13)

leaves the �tted mortality rates un
hanged for both the Plat and redu
ed Plat models.

We say that these models have unidenti�able quadrati
 trends, whi
h have to be manu-

ally allo
ated between the di�erent parameters via identi�ability 
onstraints.

Hen
e, we require three identi�ability 
onstraints on the 
ohort parameters in the Plat

and redu
ed Plat models, i.e., to apportion the level, linear trend and quadrati
 trend

between the di�erent age/period and 
ohort terms, plus identi�ability 
onstraints on the

levels of the period fun
tions. This means that for full identi�
ation of the models, we

require an additional identi�ability 
onstraint to those dis
ussed in Plat (2009a).

16

This model 
an also be thought of as an extension to model M6 in Cairns et al. (2009), with a stati


age fun
tion, or as an extension to the �CBDX� model dis
ussed in Chapter 3 with a 
ohort term.

17

In parti
ular, both models nest the �CBDX� model dis
ussed in Chapter 3.
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If the model user fails to allo
ate the quadrati
 trend between the di�erent terms via

an additional identi�ability 
onstraint, then the �tting algorithm will make an appor-

tionment in order to a
hieve 
onvergen
e. However, this apportionment will not be

based on any parti
ular desired demographi
 signi�
an
e and will depend on the spe
i�


details of �tting algorithm, su
h as the starting parameter values used. To illustrate,

instead of removing quadrati
 trends from the 
ohort parameters and apportioning them

to the age/period terms, the �tting algorithm may split any quadrati
 trends between

the 
ohort parameters and the age/period terms, giving values of γy with an apparent

quadrati
 trend in y. Not only is this 
ontrary to our desired demographi
 signi�
an
e, it


an make 
omparing parameters a
ross datasets di�
ult due to the presen
e or absen
e

of quadrati
 trends whi
h do not have any meaning independent of the data.

In addition, a failure to fully identify the model 
an lead to ine�
ient �tting algorithms,

whi
h take a long time to 
onverge to a solution, as dis
ussed in Hunt and Villegas

(2015). Furthermore, they 
an also give parameter estimates whi
h are not robust to

small 
hanges in the data (e.g., an additional year of data), sin
e su
h 
hanges 
an 
ause

the �tting algorithm to abruptly 
hange the allo
ation of the unidenti�able trends. For

these reasons, it is very important to ensure that the APC mortality models we use are

fully identi�ed by imposing su�
ient identi�ability 
onstraints to uniquely estimate all

the parameters in the model.

Following the same approa
h as used for the 
lassi
 APC model, we might 
hoose to

impose the 
onstraints in Se
tion 4.3 and extend these to impose

∑

y ny(y− ȳ)2γy = 0 to

remove quadrati
 trends in the 
ohort parameters and apportion them to the age/period

terms. However, as with the 
lassi
 APC model, this 
hoi
e is arbitrary and a di�erent


hoi
e of 
onstraints will make no di�eren
e to the �tted mortality rates, only to the

interpretation we give to the parameters.

In Se
tion 4.3, we saw that the la
k of identi�ability of the linear trends in the model,

due to the transformation in Equation 4.6, was of pra
ti
al as well as theoreti
al im-

portan
e be
ause linear trends were often observed in both the age and period terms.

Similarly, the transformation in Equation 4.13 is of pra
ti
al importan
e when �tting

the Plat model, be
ause we usually see some 
urvature in αx at high ages and also sys-

temati
 departures from the linearity of the period fun
tions.

18

These quadrati
 trends

will, therefore, not be distinguishable from a quadrati
 trend in the 
ohort parameters

18

For instan
e, see Booth et al. (2002), who 
urtailed the use of the data in the Lee and Carter (1992)

model based on when a linear assumption for κt is no longer appropriate.
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in the Plat model. However, be
ause the observed magnitude of su
h trends is typi
ally

smaller than the linear trends observed in the age/period terms, failure to fully identify

the quadrati
 trend in the data will typi
ally have a lower, though still important, impa
t

than a failure to identify the linear trend.

It is worth noting that the transformation in Equation 4.13 does not treat the di�erent

period fun
tions equally, i.e., a term whi
h is quadrati
 in t is added to κ
(1)
t , a term linear

in t is added to κ
(2)
t , whilst κ

(3)
t is un
hanged by the invariant transformation for the

Plat model. However, this is true only for the parti
ular de�nition of the age fun
tions

shown. To illustrate, instead of the Plat model in Equation 4.11, we 
ould instead have


hosen an equivalent model of the form

ln(µx,t) = αx + κ
(1)
t + (x− x̄)+κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (4.14)

Su
h a model will trivially give the same �tted mortality rates as that in Equation

4.11 and has the same number of parameters, and so will have the same number of

identi�ability issues. However, the transformation 
orresponding to Equation 4.13 for

this model will now add terms linear in t to both κ
(2)
t and κ

(3)
t . Spe
i�
ally, for this

model, we have the invariant transformation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx − d(x− x̄)2, κ

(1)
t − d(t− t̄)2,

κ
(2)
t − 2d(t− t̄), κ

(3)
t + 2d(t − t̄), γ + d(y − ȳ)2} (4.15)

in 
ontrast to the transformation in Equation 4.13. Spe
i�
ally, we note that whilst the

transformation in Equation 4.13 did not involve κ
(3)
t , the transformation in Equation

4.15 does. The invariant transformations of the model are therefore spe
i�
 to the age

fun
tions present, and may be di�erent in di�erent models, even if those models give an

equivalent �t to data.

4.4.2 Exponential and trigonometri
 age fun
tions

The other 
ase where Equation 4.10 potentially yields invariant transformations of the

parameters o

urs when the derivatives of g(y) are 
y
li
al with period M ≤ N .

Theorem 4.2. APC mortality models of the form in Equation 4.1 with exponential or

trigonometri
 age fun
tions possess invariant transformations whi
h add similar expo-

nential or trigonometri
 fun
tions to the 
ohort parameters.
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Sket
h of Proof In order for the derivatives of g(y) to be 
y
li
al with period M , we

require

dMg

dyM
= Kg (4.16)

for some non-zero 
onstant K. Substituting this into Equation 4.10 and 
omparing with

Equation 4.9 gives

g(t− x) =

M−1
∑

j=0

djg

dyj

∣

∣

∣

∣

y=−x

∞
∑

k=1

1

(j + kM)!
tj+kM

=
M−1
∑

j=0

f (j)(x)k(t)

This is of the form of Equation 4.9 if we set k(t) =
∑∞

k=1
1

(j+kM)!t
j+kM

and have M age

fun
tions f (j)(x) = djg
dyj

∣

∣

∣

y=−x
present in the model. It is interesting to note, therefore,

that transformations of this form do not involve the stati
 age fun
tion, as there is no

term in the Taylor expansion of g(t− x) 
orresponding to a(x).19

Equation 4.16 has solutions of the form

g(y) =

M
∑

i=1

ℜ[ai exp(kiy)]

where ℜ[z] is the real part of the expression z, and the ki are the M roots of the equation

kMi = K. In general, these roots will be 
omplex, and, therefore, g(y) will be exponential,

trigonometri
 or a 
ombination of the two. In addition

f (j)(x) =
djg

dyj

∣

∣

∣

∣

y=−x

=
M
∑

i=1

ℜ[aikji exp(−kix)]

and so the age fun
tions present in the model will also be exponential or trigonometri
.

Exponential age/period terms 
an be in
luded in models 
onstru
ted using the �general

pro
edure� of Chapter 5, where they are typi
ally used to explain infant mortality. As

19

This means that they are also present in models without a stati
 age fun
tion, as dis
ussed in

Appendix 4.B.
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an example, 
onsider a model of the form

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t + γt−x (4.17)

This is an extension of the �exponential� model of Chapter 3, with an additional 
ohort

term. We typi
ally require λ > 0 to give the age fun
tion the demographi
 signi�
an
e

of governing rates of mortality at low ages. This model will allow the parameters to be

transformed using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx, κ

(1)
t , κ

(2)
t − a eλt, γy + a eλy} (4.18)

This means that exponential trends in time within the (transformed) data are not

uniquely identi�able as either age/period or 
ohort e�e
ts.

20

This transformation gives

us an extra degree of freedom in the model whi
h 
ould be used to impose an additional

identi�ability 
onstraint.

In this 
ase, however, the imposition of an identi�ability 
onstraint will be of little pra
-

ti
al importan
e. In Se
tion 4.3, we said that in order to be pra
ti
ally important, the

unidenti�able deterministi
 trends must be present in both the age and period dimen-

sions of the transformed data. Whilst exponentially in
reasing trends in the age fun
tion

are frequently observed in the data (due to low age mortality e�e
ts), exponential trends

in the period fun
tions are not.

21

We therefore do not experien
e problems when �tting

the model to data as a result of any failure to be able to assign uniquely su
h a trend to

the either age/period or the 
ohort terms.

As another example, 
onsider a model with trigonometri
 age fun
tions of the form

ηx,t = αx + κ
(1)
t + cos(θx)κ

(2)
t + sin(θx)κ

(3)
t + γt−x (4.19)

For this model, we 
an transform the parameters using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx, κ

(1)
t ,

κ
(2)
t − a cos(θt)− b sin(θt),

κ
(3)
t + a sin(θt) + b cos(θt),

γy + a cos(θy) + b sin(θy)} (4.20)

20

Note that this transformation has g(y) = a exp(λy) and therefore

dg

dy
= λg as per Equation 4.16.

21

An exponential in
rease or de
rease in the period fun
tion will typi
ally 
orrespond to super-

exponential growth or de
line in the observed mortality rates if either ηx,t = ln(µx,t) or ηx,t = logit(qx,t).
Super-exponential growth in mortality rates are not typi
ally observed.
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This means that periodi
 patterns are not uniquely identi�able as either age/period or


ohort e�e
ts.

22

As with the exponential fun
tions, the presen
e of unidenti�able trigonometri
 trends

in the model will be of little pra
ti
al importan
e. Whilst the (transformed) data often

exhibits periodi
 behaviour in the 
ohort and period e�e
ts, it is rare to see periodi


behaviour a
ross ages.

23

Again, we do not have the unidenti�able deterministi
 trends

for the model in both the age and period dimensions and 
onsequently do not experien
e

pra
ti
al di�
ulties when �tting the model to data as a result of any failure to be able

to assign uniquely su
h trends to the either age/period or the 
ohort terms.

4.4.3 Other age fun
tions

Other parametri
 age fun
tions do not admit any additional invariant transformations

involving the 
ohort parameters, ex
ept in the 
ase where they are a
tually rede�ned

polynomials, exponentials or trigonometri
 fun
tions. For instan
e, the third age/period

term in the Plat model did not generate any extra intera
tions with the 
ohort param-

eters, beyond those of the redu
ed Plat model. This simpli�es the identi�ability issues

of more 
omplex mortality models with di�erent types of age fun
tions, su
h as those

produ
ed by the �general pro
edure� of Chapter 5, 
ompared with what would otherwise

be ne
essary, were, for instan
e, only polynomial age fun
tions to be used.

4.4.4 Summary

In summary, issues with the identi�ability of APC models relate to fun
tions of year of

birth whi
h 
an be de
omposed into purely age/period terms. However, this is only true

in models where the age fun
tions take spe
i�
 parametri
 forms - namely polynomial,

exponential and trigonometri
 fun
tions. In su
h models, 
ertain deterministi
 trends


annot be uniquely allo
ated between the age/period and 
ohort terms in the model

and so require the imposition of arbitrary identi�ability 
onstraints in order to uniquely

spe
ify the model.

24

This is summarised in the �ow 
hart in Figure 4.1.

22

Note that this transformation has g(y) = a cos(θy) + b sin(θy) and therefore

d2g

dy2 = −θ2g as per

Equation 4.16.

23

The la
k of periodi
 stru
ture a
ross ages also explains why trigonometri
 age fun
tions are not

widely used in pra
ti
e.

24

As dis
ussed in Appendix 4.B, APC mortality models with non-parametri
 age fun
tions will not

have any additional transformations that leave the �tted mortality rates exa
tly un
hanged. However,
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4.5 Proje
tion

In the pre
eding se
tions, we have seen that APC mortality models are not fully iden-

ti�ed and that we 
an impose arbitrary identi�ability 
onstraints on the parameters in

order to �t them to the histori
al data. Two di�erent modellers using the same data and

the same model but di�erent arbitrary identi�
ation 
onstraints will obtain di�erent sets

of parameters, but these will give identi
al �tted mortality surfa
es and, therefore, �ts

to the data.

For the majority of pra
ti
al purposes, we not only need to �t a mortality model to

histori
al data but also to use it to proje
t mortality rates into the future. In Chapter

3, we found that we needed to be 
areful when doing so in AP mortality models in order

to ensure that the proje
ted mortality rates will not depend on the arbitrary identi�a-

bility 
onstraints imposed when �tting the models to data. The same is true in APC

mortality models. However, the addition of a set of 
ohort parameters and the presen
e

of unidenti�able deterministi
 trends 
ompli
ate this analysis signi�
antly.

The most obvious 
hange when moving from an AP to an otherwise similar APC mor-

tality model is the presen
e of a set of 
ohort parameters whi
h will also need to be

proje
ted into the future. The period and 
ohort parameters in the APC model are


on
eptually di�erent and need to be treated separately when making proje
tions. This

is be
ause 
ohort e�e
ts have very di�erent demographi
 signi�
an
e from the period ef-

fe
ts and are treated separately when �tting the model. It is therefore 
ommon pra
ti
e

to proje
t the period and 
ohort parameters independently.

Some authors (e.g., Haberman and Renshaw (2011)) disagree with this approa
h, argu-

ing that it may only be appropriate to do this when the 
ohort parameters are estimated

using the residuals from the �tted primary age/period stru
ture. This means that the


ohort stru
ture �tted by the model is independent of the age/period stru
ture by 
on-

stru
tion. However, su
h �tting te
hniques will not give parameter estimates whi
h

maximise the �t to data and 
an lead to hierar
hi
al issues (be
ause the 
ohort param-

eters are only estimated 
onditional on the previously �tted estimates of the age/period

stru
ture). We, therefore, have a 
lear preferen
e for model �tting te
hniques where all

su
h models may have transformations that leave the �tted mortality rates approximately un
hanged,

as dis
ussed in Hunt and Villegas (2015).
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parameters are estimated together in order to generate the best �t to the histori
al data.

25

More generally, it is 
on
eivable that events su
h as in�uenza pandemi
s will 
ause both

an immediate rise in mortality and also lifelong health e�e
ts in infants born during the

pandemi
 due to sele
tion e�e
ts, leading to 
orrelations between extreme period and


ohort e�e
ts. However, it is di�
ult to analyse any dependen
e stru
ture between the


ohort and period parameters as the 
ohort parameters will be observed over a longer

time period, but potentially at a lag of some de
ades. While it is possible that some

extreme mortality events may generate distin
tive e�e
ts in both the period and 
ohort

parameters, the eviden
e supporting this 
onje
ture is 
urrently ambiguous (for instan
e,

see Murphy (2009)) and will not generally be relevant for more typi
al period and 
ohort

e�e
ts. An assumption of independen
e is, therefore, both pra
ti
al and parsimonious.

In order to make proje
tions of future mortality rates, we typi
ally model the period

and 
ohort parameters as being generated by independent time series pro
esses and use

these to proje
t the parameters sto
hasti
ally into the future. However, the pre
ise form

of the time series pro
esses generating the parameters is unknown. Therefore, we anal-

yse the �tted parameters by statisti
al methods, su
h as the Box-Jenkins pro
edure, to

determine whi
h pro
esses from the ARIMA family provide the best �t.

Nevertheless, when it 
omes to proje
ting mortality rates, we need to re
ognise that

there is a fundamental symmetry between the pro
esses of estimating a model and pro-

je
ting it: the former takes observations to 
alibrate the model, whilst the latter uses

this 
alibration to produ
e proje
ted observations of the future. Due to this symmetry,

identi�
ation issues whi
h exist when �tting the model may also yield problems when

proje
ting it. When estimating the model, these identi�ability issues were solved by

imposing arbitrary identi�ability 
onstraints on the parameters. However, any time se-

ries stru
ture that we �nd in the parameters needs to be independent of the arbitrary

identi�
ation s
heme used when �tting the model to histori
al data.

We formalise this by saying that:

Two sets of model parameters, whi
h give identi
al �tted mortality rates for

the past, should give identi
al proje
ted mortality rates when proje
ted into

the future.

25

For example, in the general pro
edure of Chapter 5, all parameters are re-estimated every time the

stru
ture of the model is 
hanged, in order to ensure a 
lose �t to the data.
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We say that time series pro
esses whi
h satisfy this property are �well-identi�ed�.

In parti
ular, the invariant transformations of the parameters of the model whi
h leave

the �tted mortality rates un
hanged should also leave the proje
ted mortality rates un-


hanged and, hen
e, the time series pro
esses used to generate the proje
ted mortality

rates un
hanged. Consequently, we should use the same time series pro
esses for all sets

of parameters from a model whi
h give the same �tted mortality rates. If this is not

the 
ase, di�erent pro
esses will be used for di�erent arbitrary identi�ability 
onstraints,

giving di�erent proje
ted mortality rates. A well-identi�ed time series pro
ess should

be equally appropriate for all equivalent sets of parameters. To 
on�rm this, we need

to 
he
k that applying the invariant transformations to the parameters, whi
h leave the

�tted mortality rates un
hanged, do not also a�e
t the time series pro
esses used to

proje
t the parameters.

Chapter 3 dis
ussed how the identi�
ation issues in the 
lass of AP models meant that

methods for proje
ting the period parameters from these models into the future needed

to be 
hosen with 
are in order to ensure they are well-identi�ed. In general, we argued

that we should 
hoose to proje
t the model using multivariate methods whi
h are as

unstru
tured as possible, i.e., we should not impose features su
h as independen
e, levels

of mean reversion or di�erent orders of integration on the time series a priori, but allow

these to emerge during the �tting pro
ess. However, we also saw that, in models with

parametri
 age fun
tions, the age/period terms were no longer inter
hangeable on
e we

de�ned their forms in the model. This allowed us to prioritise biologi
al reasonableness

26

over using the same pro
esses for equivalent models, i.e., models giving the same �tted

mortality rates with di�erent de�nitions of the age fun
tions.

Current pra
ti
e is to:

1. �t the 
hosen model to data, imposing any arbitrary identi�ability 
onstraints

needed in order to spe
ify the parameters uniquely;

2. sele
t time series pro
esses for proje
ting the parameters based on either using

a statisti
al method (su
h as the Box-Jenkins pro
edure to sele
t the preferred

pro
esses from the ARIMA 
lass of models) or by dire
tly 
hoosing the time series

pro
esses to ensure biologi
ally reasonable proje
tions by making an appeal to the

demographi
 signi�
an
e of the parameters.

26

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.
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However, su
h an approa
h often leads to proje
tions of mortality rates whi
h are not

well-identi�ed. This is be
ause the se
ond step assumes that the parameters found at the

�rst step are known, rather than merely estimated up to an arbitrary identi�ability 
on-

straint. This means that 
urrent pra
ti
e builds the arbitrary identi�ability 
onstraint

into the proje
tion pro
ess, ensuring that the proje
ted mortality rates are also arbitrary.

To avoid this, we propose to work ba
kwards from our desire for proje
tions whi
h are

biologi
ally reasonable and well-identi�ed to determine the time series pro
esses we need

to use to a
hieve these aims. Before �tting the model, we need to 
ondu
t a thorough

analysis of the identi�ability issues in the 
hosen model, using the prin
iples established

in Se
tion 4.4, to determine whi
h features of the parameters are set by the data and

whi
h are set by the arbitrary identi�ability 
onstraints. Then, suitable time series pro-


esses should be sele
ted to model only the former, identi�able features of the parameters,

while still allowing for the unidenti�able trends in a way that guarantees that they do

not a�e
t the proje
tion of future mortality rates. By following this pro
edure, we 
an

ensure that the time series pro
esses are well-identi�ed and that the proje
ted mortality

rates do not depend on the arbitrary 
hoi
es we make when �tting the model.

In this se
tion, we will �rst look at the broad set of 
riteria needed for well-identi�ed

proje
tion methods in general APC mortality models in Se
tion 4.5.1. Se
tion 4.5.2 looks

in more detail at why 
urrent pra
ti
e 
an lead to proje
tions whi
h are not well-identi�ed

and depend on the arbitrary identi�ability 
onstraints 
hosen in the 
ontext of the 
lassi


APC model from Se
tion 4.3. We then revisit the general 
ase of an APC mortality model

in Se
tion 4.5.3, in order to determine general rules for 
hoosing time series pro
esses

whi
h are well-identi�ed. These are then applied in the 
ontext of the 
lassi
 APC model

again in Se
tion 4.5.4 and it is demonstrated that proje
ted mortality rates are genuinely

independent of the 
hoi
e of arbitrary identi�ability 
onstraint. Se
tion 4.5.5 then applies

the general rules in the 
ontext of the Plat model from Plat (2009a) and Se
tion 4.4.1.1

to see how they work in the 
ontext of more sophisti
ated mortality models with more


omplex identi�ability issues.

4.5.1 Proje
ting general APC models

Consider the 
ase of proje
ting an APC mortality model, whi
h has been �tted using

data over the period [1, T ] to give mortality rates at time τ > T . From Equation 4.2, we
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ould write this as

ηx,τ = αx + β⊤
x κτ + γτ−x

If the model has identi�ability issues, then the proje
ted mortality rates should be un-


hanged under exa
tly the same invariant transformations as the �tted mortality rates

were, i.e., if we have an invariant transformation of the form of Equation 4.8, namely

α̂x = αx − a(x)

β̂x = βx

κ̂t = κt − k(t)

γ̂y = γy + g(y)

where a(x), k(i)(t) and g(y) satisfy Equation 4.9, in whi
h 
ase

ηx,τ = α̂x + β̂
⊤
x κ̂τ + γ̂τ−x

The proje
ted κτ (and potentially the γτ−x) will be random variables, whose distribution

is a fun
tion of the histori
al, �tted values, i.e., κτ = Pκ(τ ; {κ}) and γy = Pγ(y; {γ}).
We said previously that we should use the same method of proje
tion for all sets of

parameters as a �rst step to ensure that the proje
ted mortality rates do not depend

upon the identi�ability 
onstraints. However, for di�erent identi�ability 
onstraints,

these pro
esses will be estimated from di�erent sets of �tted parameters, e.g., if we use

Pκ(τ ; {κ}) to proje
t the untransformed period parameters, we must use Pκ(τ ; {κ̂}) to
proje
t the transformed period parameters. If we 
ombine this with the invarian
e of the

proje
ted mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) + Pγ(τ − x; {γ}) = α̂x + β̂

⊤
x Pκ(τ ; {κ̂}) + Pγ(τ − x; {γ̂})

= αx − a(x) + β⊤
x Pκ(τ ; {κ − k}) + Pγ(τ − x; {γ + g})

Pγ(τ − x; {γ + g})− Pγ(τ − x; {γ}) = a(x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ − k}))

Using Equation 4.9, we 
an eliminate a(x)

Pγ(τ − x; {γ + g}) − Pγ(τ − x; {γ}) = g(τ − x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ − k})− k(τ))

In order for this to hold for all τ and x requires

Pκ(τ ; {κ − k}) = Pκ(τ ; {κ})− k(τ) (4.21)

Pγ(y; {γ + g}) = Pγ(y; {γ}) + g(y) (4.22)
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This means that we should obtain the same results if we proje
t the transformed param-

eters as if we transform the proje
ted parameters, i.e., the pro
esses of proje
tion and

transformation are 
ommutative. Consequently, we see that, in order for a proje
tion

method to be well-identi�ed under the invariant transformation, it needs to preserve the

unidenti�able trends in the model, i.e., Pκ must preserve the trends k(t), and Pγ must

preserve the trend g(y). This also means that it does not matter in whi
h order we per-

form the pro
esses of proje
tion and transformation, the distribution of the transformed

parameters proje
ted into the future will be identi
al to the distribution of the proje
ted

parameters whi
h are then transformed.

In addition, sin
e

Var(κτ ) = Var(κτ − k(τ)) = Var(κ̂t)

Var(γy) = Var(γy + g(y)) = Var(γ̂y)

we note that the variability of the parameters around the trend is identi�able and so

does have a meaning independent of the identi�ability 
onstraints imposed. Therefore,

we 
on
lude that, while the deterministi
 trends may be unidenti�able and not meaning-

ful, the variation around the trend is of genuine signi�
an
e, sin
e it is independent of

the identi�ability 
onstraints. Therefore, this variation needs to be proje
ted 
onsistent

with our demographi
 signi�
an
e for the parameters and what has been observed in the

histori
al data.

However, the time series pro
esses sele
ted via 
urrent pra
ti
e often do not preserve the

unidenti�able trends in the period and 
ohort parameters, as we shall now see using the


lassi
 APC model.

4.5.2 Proje
ting the 
lassi
 APC model

It has long been known, at least sin
e Osmond (1985), that the la
k of identi�ability in

the 
lassi
 APC model has important 
onsequen
es when making proje
tions from the

model. Di�erent sets of arbitrary identi�ability 
onstraints are based on di�erent allo-


ations of the linear trends in the data between the age, period and 
ohort parameters.

The out
ome of 
urrent pra
ti
e 
an therefore be in�uen
ed by the presen
e or absen
e

of a linear trend in the �tted parameters, despite this being purely dependent upon the

identi�ability 
onstraints 
hosen.
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To illustrate this, we 
onsider proje
ting the 
lassi
 APC model �tted using four di�erent

sets of identi�ability 
onstraints. The �tted mortality rates given using these four sets

of 
onstraints are identi
al; however, the time series pro
esses found by 
urrent pra
ti
e

di�er whi
h means that 
urrent pra
ti
e would give di�erent proje
ted mortality rates in

the four di�erent 
ases. Consequently, these time series pro
esses are not well-identi�ed.

We start by �tting the 
lassi
 APC model to mortality data for the USA from Human

Mortality Database (2014) for ages 50 to 100 and year 1950 to 2010. As dis
ussed in

Se
tion 4.3, a number of equally valid identi�ability 
onstraints 
an be imposed on this

model, whi
h give identi
al �tted mortality rates. We 
onsider the following four sets of

identi�ability 
onstraints:

Case 1:

∑

t κt = 0,
∑

y nyγy =
∑

x,t γt−x = 0 and
∑

y nyγy(y− ȳ) =
∑

x,t γt−x((t− t̄)−
(x− x̄)) = 0. This was dis
ussed in Se
tion 4.3 and restri
ts the 
ohort parameters

to be zero on average and without any linear trends, 
onsistent with our desired

demographi
 signi�
an
e for the 
ohort parameters.

Case 2:

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0. These 
onstraints impose the

same demographi
 interpretation on the parameters, ex
ept that the averages are

not weighted by the number of observations of ea
h 
ohort.

Case 3:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(x − x̄) = 0. This set of 
onstraints is

the same as imposed on the 
lassi
 APC model in Cairns et al. (2009), where it

was written as imposing

∑

x(αx − 1
T

∑

t ηx,t)(x − x̄) = 0, i.e., that the stati
 age

fun
tion, αx, explains all the linearity a
ross ages in the data.

Case 4:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(t− t̄) = 0. Similar to Case 3, this set

of 
onstraints imposes that the period fun
tion, κt, a

ounts for all of the linearity

a
ross years in the data.

The �rst thing to note is that all of these 
onstraints were developed to give the 
ohort

parameters the same demographi
 signi�
an
e, i.e., that they should be 
entred on zero

and the other fun
tions in the model should 
apture any linear trends. Be
ause of this,

the �tted parameters in ea
h 
ase are very similar. However, they are not identi
al, unlike

the �tted mortality rates. We therefore see that demographi
 signi�
an
e, whilst helpful

in sele
ting an appropriate set of identi�ability 
onstraints, does not spe
ify a unique set

of 
onstraints to use. Model users with the same interpretation of the parameters 
an

reasonably 
hoose to impose di�erent 
onstraints and obtain di�erent �tted parameters

when using the same model with the same data. The fa
t that demographi
 signi�
an
e

is subje
tive and, in pra
ti
e, di�erent model users adopt a range of interpretations for
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the di�erent parameters highlights the fa
t that we must take 
are to ensure that any


on
lusions regarding proje
ted mortality rates are independent of the arbitrary 
hoi
e

of 
onstraints made when �tting the model, and unders
ores the extent to whi
h the

identi�ability 
onstraints we 
hoose is arbitrary.

Current pra
ti
e is to take the �tted parameters and then determine whi
h time series

pro
esses to use to proje
t them. This may involve performing a Box-Jenkins analysis

on the �tted parameters, as was done in Lee and Carter (1992) and Cairns et al. (2011a).

Alternatively, 
urrent pra
ti
e may appeal to the demographi
 signi�
an
e assigned to

the parameters, as in Plat (2009a). Su
h an appeal might determine that the period

fun
tion is non-stationary (as it is primarily responsible for the evolution of mortality)

and, based on the dis
ussion in Chapter 2, that the 
ohort parameters are stationary

around zero. It might therefore appear reasonable to 
hoose

27

to use a random walk with

drift pro
ess for κt and an AR(1) pro
ess for γy

κt = κt−1 + µ+ ǫt (4.23)

γy = ργy−1 + εy (4.24)

Table 4.1 shows the �tted parameters for the four 
ases above using these time series

pro
esses.

Case 1 Case 2 Case 3 Case 4

κ2010 -0.3526 -0.3439 -0.3550 -0.3478

µ -0.0110 -0.0107 -0.0111 -0.0109

σκ = StDev(ǫt) 0.0161 0.0161 0.0161 0.0161

γ1950 -0.1459 -0.1125 -0.1422 -0.1530

ρ 0.9513 0.9577 0.9499 0.9542

σγ = StDev(εy) 0.0193 0.0184 0.0193 0.0194

Table 4.1: Time series parameters for the period and 
ohort fun
tions in the 
lassi


APC model �tted using di�erent identi�ability 
onstraints

For τ − x > 1950,28 we �nd

Eηx,τ = αx + κ2010 + (τ − 2010)µ + ρτ−x−1950γ1950 (4.25)

27

Note that we are not saying that these are the most appropriate time series pro
esses to use for this

set of parameters. We use them for illustrative purposes as they are relatively simple and not atypi
al

of the pro
esses used in pra
ti
e. However, it is important to observe that sele
ting alternative time

series pro
esses on a purely statisti
al basis from the �tted parameters would not solve the issues we

have identi�ed.

28

That is, for 
ohort parameters that are proje
ted rather than �tted from histori
al data, taking into


onsideration that 
ohort parameters for the ten most re
ent years of birth are not �tted from the data

due to insu�
ient observations.
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Figure 4.2: Proje
ted µ60,t using di�erent sets of identi�ability 
onstraints

We 
an therefore see that, inserting the �tted time series parameters from Table 4.1

for the four di�erent 
ases, we do not �nd the same expe
ted values for the future

mortality rates.

29

This is shown in Figure 4.2. In addition, the variability of the proje
ted

parameters depends on σκ, ρ and σγ . However, ρ and σγ di�er between 
ases, meaning

that the variability of proje
ted mortality rates will also be di�erent for the di�erent


ases. These di�eren
es in the distribution of proje
ted mortality rates might be felt to

be relatively small, although they will grow with proje
tion time. However, the most

important point is that the di�eren
es should not exist at all - the �tted mortality rates

for the di�erent 
ases were identi
al and so should be the distribution of the proje
ted

mortality rates. We therefore see that the time series pro
esses used above to proje
t

the 
lassi
 APC model are not well-identi�ed.

4.5.3 Proje
ting general APC mortality models: Revisited

From Se
tion 4.5.1 above, we note that we must use the same time series pro
esses to

proje
t sets of parameters whi
h give identi
al �tted mortality rates, i.e., if Pγ(y; {γ})
29

For example, Eη60,2020 = −4.5449 for the Case 1 parameters, −4.5598 for the Case 2 parameters,

−4.5459 for the Case 3 parameters and −4.5433 for the Case 4 parameters.
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is a suitable pro
ess (with time series parameters estimated from the �tted 
ohort pa-

rameters, {γy}), then Pγ(y; {γ̂}) is a suitable pro
ess, albeit with time series parameters

estimated from the transformed 
ohort parameters, {γ̂y = γy + g(y)}.

In pra
ti
e, we usually des
ribe our proje
tion methods in terms of time series pro
esses

rather than proje
tion fun
tions. However, the two are equivalent, sin
e the proje
tion

fun
tion is found by �solving� the di�eren
e equation form of the time series. For instan
e,

the AR(1) pro
ess has the di�eren
e equation form in Equation 4.24, but has solution

Pγ(y; {γ}) = ρy−Y γY +

y
∑

s=Y+1

ρy−sεs

where Y is the last year of birth for whi
h we �tted the 
ohort parameters.

The general form of ARIMA di�eren
e equations for γy 
an be written as

30

(1− L)dΦ(L)(γy − Γ(y)) = Ψ(L)εy (4.26)

where L is the lag operator, d is the order of integration of the pro
ess, Φ and Ψ are

polynomials of order p and q governing the autoregressive and moving average parts of

the pro
ess, respe
tively,

31 εy are the innovations and Γ(y) is a deterministi
 fun
tion of

year of birth. Taking un
onditional expe
tations (i.e., with no 
onditioning on previous

lags of the pro
ess), we see that

E [γy − Γ(y)] = 0 ∀y

and that the fun
tion Γ(y) represents the trend around whi
h the 
ohort parameters vary.

The invariant transformation of the model in Equation 4.9 adds a deterministi
 fun
tion

- the unidenti�able trend g(y) - to the 
ohort parameters. However, this deterministi


fun
tion must not 
hange the error term, εy, of a well-identi�ed pro
ess and so

εy = (1− L)dΨ−1(L)Φ(L)(γy − Γ(y))

= (1− L)dΨ−1(L)Φ(L)(γ̂y − Γ̂(y))

= (1− L)dΨ−1(L)Φ(L)(γy + g(y) − Γ̂(y))

30

For simpli
ity, we use the 
ohort fun
tion as an illustrative 
ase. The analysis is identi
al for κt,

however.

31

In order to be stationary, these polynomials have roots with modulus less than unity.
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In order to ensure that the variation around the trend, given by the error term, remains

un
hanged by the invariant transformation, we require

Γ̂(y) = Γ(y) + g(y)

In this 
ase, the deterministi
 trend, Γ(y), has 
hanged under the invariant transforma-

tion but not the variation around the trend.

We stated above that the time series pro
esses being used for the parameters should be

equally appli
able for all sets of parameters whi
h give the same �tted mortality rates.

This implies that the form of the deterministi
 trends should be the same, and, therefore,

that Γ̂(y) is of the same form as Γ(y). This 
an only be true if Γ̂(y), Γ(y) and g(y) are

all of the same form. For instan
e, if g(y) is a linear fun
tion of year of birth (as in the


ase of the 
lassi
 APC model), then Γ(y) and Γ̂(y) must also be linear fun
tions of year

of birth and so will not 
hange form under the invariant transformations of the model.

If we solve Equation 4.26, we see that

γy = Pγ(y; {γ}) =
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) (4.27)

In this form, it 
an also be seen that su
h time series pro
esses preserve unidenti�ed

trends in the manner dis
ussed in Se
tion 4.5.1

γ̂y = γy + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ̂(y)

i.e., the proje
ted parameters after applying the invariant transformation will have the

same variation,

Ψ(L)
(1−L)dΦ(L)

εy, but around a di�erent deterministi
 trend, Γ̂(y), 
ompared

with the original parameters proje
ted using the same method. The use of the invariant

transformations will not a�e
t our measurement of any 
oe�
ients in Ψ(L) or Ψ(L) at

the �tting stage. Thus, we also see that the two ways of looking at the proje
ted param-

eters, namely as time series pro
esses and via proje
tion fun
tions, are equivalent.

As an example, 
onsider the 
ohort parameters in the 
lassi
 APC model. From Se
tion

4.3, we see that, in this model, the 
ohort parameters have an unidenti�ed 
onstant and

linear trend, i.e., g(y) = b + c(y − ȳ) from Equations 4.5 and 4.6. In Se
tion 4.5.2, we
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said that 
urrent pra
ti
e might use an AR(1) pro
ess for the 
ohort parameters, whi
h

has ARIMA form

(1− ρL)γy = εy

Comparing this with Equation 4.26, we see that 
urrent pra
ti
e assumes that Γ(y) = 0,

whi
h is not of the same form as g(y) above. Therefore, the time series pro
ess 
hanges

form when using an alternative set of parameters γ̂y = γy + g(y) in pla
e of γy,

(1 − ρL)γ̂y = (1− ρL)(γy + b+ c(y − ȳ))

= (1− ρL)γy + (1− ρ)(b+ c(y − ȳ)) + ρc

= εy + (1− ρ)(b+ c(y − ȳ)) + ρc

6= εy

and therefore the pro
ess is not well-identi�ed.

When analysed in this form, however, a solution be
omes immediately apparent: we

need to introdu
e a linear fun
tion, Γ(y) = β0 + β1y, into the AR(1) pro
ess to ensure

that the pro
ess is well-identi�ed, i.e.,

(1− ρL)(γy − β0 − β1y) = εy (4.28)

Using the alternative parameters γ̂y would produ
e

(1− ρL)(γ̂y − β̂0 − β̂1y) = (1− ρL)(γy + b+ c(y − ȳ)− β̂0 − β̂1y)

= (1− ρL)(γy − β0 − β1y)

= εy

if β̂0 = β0−b−cȳ and β̂1 = β1−c. Therefore, the form of Equation 4.28 does not 
hange

under the invariant transformations of the 
lassi
 APC model, and we 
on
lude that

this time series pro
ess is well-identi�ed. Again, we also see that the variation around

the linear trend, given by εy, is un
hanged by the invariant transformation, whilst the

unidenti�able trend is a�e
ted by the invariant transformation.

The time series pro
ess in Equation 4.28 has been suggested previously for the 
ohort

parameters in Cairns et al. (2009) where it was referred to as the �AR(1) pro
ess around

a linear drift �. However, in Cairns et al. (2009), it was not used for the 
lassi
 APC

model, nor was it sele
ted for being well-identi�ed, but rather on the grounds of �tting
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the observed 
ohort parameters well.

The AR(1) around linear drift pro
ess is solved to give

Pγ(y; {γ}) = ρy−Y (γY − β0 − β1Y ) + β0 + β1y +

y
∑

s=Y+1

ρy−sεs

We 
an also verify, by substituting the forms for γ̂y, β̂0 and β̂1 found above, that this

pro
ess also satis�es the requirement of Equation 4.22 in Se
tion 4.5.1, namely

Pγ(y; {γ̂}) = Pγ(y; {γ}) + a+ b(y − ȳ)

Hen
e, proje
ting the transformed 
ohort parameters gives us the same results as trans-

forming the proje
ted 
ohort parameters.

Returning to the form of the time series pro
ess in Equation 4.26, it is 
ommon to write

this in an alternative, but equivalent form

(1− L)dΦ(L)γy − (1− L)dΦ(L)Γ(y) = Ψ(L)εy

(1− L)dΦ(L)γy = ξ(y) + Ψ(L)εy (4.29)

where ξ(y) is a deterministi
 fun
tion of y and Γ(y) solves the di�eren
e equation

(1− L)dΦ(L)Γ(y) = ξ(y) (4.30)

In this form, ξ(y) is often referred to as the �drift�. Knowing the form that Γ(y) must

take (i.e., the same form as g(y) from the unidenti�able trends in the model in Equation

4.8), we 
an therefore spe
ify the 
orre
t form of ξ(y).

As an example of this, 
onsider the 
lassi
 APC model again, but, this time, 
onsider

the period parameters. We know from Se
tion 4.3 that the period parameters have an

unidenti�ed linear trend in mu
h the same way as the 
ohort parameters, i.e., k(t) =

a − c(t − t̄) if we re-write Equations 4.4 and 4.6 using the notation of Equation 4.9.

Random walk pro
esses are often used for the period parameters, i.e., we assume d = 1

and Φ(L) = Ψ(L) = 1. It is then important to spe
ify the 
orre
t form for the drift ξ(t).

Based on similar arguments to the ones used above for the 
ohort parameters, we should

look for time series pro
esses of the form

(1− L)(κt − ν0 − ν1t) = ǫt
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whi
h has a linear trend K(t) = ν0 + ν1t. To obtain a well-identi�ed time series of the

form of Equation 4.29, we need the drift, ξ(t), of the random walk to satisfy

ξ(t) = (1− L)(ν0 + ν1t)

= ν0 + ν1t− ν0 − ν1(t− 1)

= ν1

i.e., the drift is 
onstant. This shows that the random walk with drift is well-identi�ed

for the period parameters in the 
lassi
 APC model.

We 
an also verify this dire
tly, sin
e

ǫt = κt − κt−1 − µ

= κ̂t − a+ c(t− t̄)− κ̂t−1 + a− c(t− 1− t̄)− µ

= κ̂t − κ̂t−1 − µ̂

if µ̂ = µ−c. Thus the transformed period parameters, κ̂t, follow a random walk with drift

if the original period parameters do. However, the value of the drift, whi
h determines

the unidenti�able linear trend, will 
hange under the invariant transformation, although

the innovations, ǫt, whi
h determine the variability around this drift do not.

In summary, we have the following pro
edure for sele
ting a well-identi�ed time series

pro
ess for any spe
i�
 APC mortality model:

1. Determine the identi�ability issues in the spe
i�
 APC model by �nding the uniden-

ti�able deterministi
 trends for the parameters whi
h 
annot be assigned between

the di�erent age/period and 
ohort terms in the spe
i�
 model. This will need to

be done prior to the �tting stage in order to �t the model robustly to data.

2. Spe
ify a time series pro
ess for the variation around these trends. This 
an either

be done by analysing this variation using statisti
al te
hniques, or by sele
ting a

pro
ess whi
h a

ords with our demographi
 signi�
an
e for the parameters. Doing

so will set the form of Φ(L) and Ψ(L), whi
h determine the sto
hasti
 stru
ture of

the ARIMA pro
ess.

3. Spe
ify the deterministi
 trends, Γ(y), in the time series pro
ess in Equation 4.26,

whi
h will need to be of the same form as g(y). Equivalently, this 
an be a
hieved

by �nding a drift fun
tion, ξ(y), in the alternative form of the time series pro
ess

in Equation 4.29, with the requirement that (1− L)dΦ(L)Γ(y) = ξ(y).
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It is important to re
ognise that this pro
edure works ba
kwards from the variation

around the trends in the parameters, whi
h is independent of the identi�ability 
on-

straints and then adds ba
k in the unidenti�able trends whi
h will depend upon the

spe
i�
 set of identi�ability 
onstraints we use when �tting the model. In this fash-

ion, we 
an ensure that the proje
ted parameters are both well-identi�ed and possess

our desired demographi
 signi�
an
e when spe
ifying a suitable form for the time series

pro
ess.

4.5.4 Proje
ting the 
lassi
 APC model: Revisited

In Se
tion 4.5.2, it was demonstrated that the 
urrent pra
ti
e approa
h to sele
ting time

series pro
esses for the period and 
ohort parameters in the 
lassi
 APC model yielded

proje
tions of mortality rates whi
h depended upon arbitrary 
hoi
es made when �tting

the model. In Se
tion 4.5.3, we then showed that the issue in this 
ase was not the use

of the random walk with drift for the period parameters, but the sele
tion of an AR(1)

pro
ess, rather than an AR(1) pro
ess around a linear drift for the 
ohort parameters.

If we use the AR(1) around linear drift pro
ess for the 
ohort parameters for the four


ases dis
ussed in Se
tion 4.5.2, we obtain the time series parameters in Table 4.2.

Case 1 Case 2 Case 3 Case 4

γ1950 -0.1459 -0.1125 -0.1422 -0.1530

β0 0.1388 0.1852 0.1388 0.1388

β1 -0.0053 -0.0056 -0.0052 -0.0055

ρ 0.9636 0.9636 0.9636 0.9636

σγ = StDev(εy) 0.0184 0.0184 0.0184 0.0184

Table 4.2: Time series parameters for di�erent identi�ability 
onstraints

As previously mentioned in Se
tion 4.5.2, ρ and σγ 
ontrol the variation of proje
ted


ohort parameters. It is, 
onsequently, important to see that these parameters do not


hange in the four di�erent 
ases using the well-identi�ed time series pro
esses. The

variability of proje
ted mortality rates will be identi
al in ea
h of the four 
ases. Using

the AR(1) around linear drift pro
ess, we also �nd

Eηx,τ = αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x) (4.31)

From the results of Se
tion 4.5.3, we 
an see that if we transform the parameters of

the 
lassi
 APC model using the transformation in Equations 4.4, 4.5 and 4.6, and then
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proje
t them using well-identi�ed time series pro
esses, we obtain

α̂x = αx − a− b+ c(x− x̄)

Eκ̂τ = κ̂2010 + µ̂(τ − 2010)

= κ2010 + a− c(2010 − t̄) + (µ − c)(τ − 2010)

= κ2010 + a− c(τ − t̄) + µ(τ − 2010)

Eγ̂τ−x = ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= ρτ−x−1950(γ1950 + b+ c(1950 − x− ȳ)− β0 − b− cȳ − (β1 + c)× 1950)

+ β0 + b+ cȳ + (β1 + c)× (τ − x)

= ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)

Hen
e, the expe
tation of ηx,t in Equation 4.31, after applying the invariant transforma-

tions, be
omes

Eη̂x,τ = α̂x + κ̂2010 + (τ − 2010)µ̂

+ ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= αx − a− b+ c(x− x̄) + κ2010 + a− c(τ − t̄) + µ(τ − 2010)

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)

= αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x)

= Eηx,τ

We 
an therefore see how 
hanges in the linear drift of the period fun
tions between the

di�erent 
ases 
an
el with the 
hanges in the linear drift in the 
ohort fun
tions to give

exa
tly the same expe
ted proje
ted mortality rates in all four 
ases.

32

We, therefore,

see in pra
ti
e what was derived theoreti
ally in Se
tion 4.5.3, namely that using a ran-

dom walk with drift pro
ess for the period parameters and an AR(1) around linear drift

pro
ess for the 
ohort parameters gives well-identi�ed proje
tions for the 
lassi
 APC

model, and so the proje
ted mortality rates whi
h do not depend upon the identi�ability


onstraints imposed.

Proje
tions using an AR(1) pro
ess around a linear drift might be felt to 
on�i
t with

our desired demographi
 signi�
an
e for the 
ohort parameters, i.e., that they should

32

For example, in all four 
ases Eη60,2020 = −4.6413.
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exhibit no long-term trends. However, demographi
 signi�
an
e is subje
tive and so

should not be used to override a greater 
on
ern that the proje
ted mortality rates do

not depend upon the arbitrary identi�ability 
onstraints. Fortunately, there are methods

for obtaining well-identi�ed proje
tions of the 
ohort parameters whi
h do 
onform to

our desired demographi
 signi�
an
e of trendlessness.

In order to la
k trends, the drift 
oe�
ients of the pro
ess, β0 and β1, should be zero.

Looking again at Table 4.2, one might think that the values of β0 and β1 are quite small,

and therefore be tempted to test them statisti
ally with a view to setting them to zero.

This, however, would be a mistake. As shown in Se
tion 4.5.3, the values of β0 and

β1 
hange under the invariant transformations of the 
lassi
 APC model and, therefore,

will depend upon the identi�ability 
onstraints 
hosen. Consequently, the results of any

statisti
al analysis of their signi�
an
e will also depend upon the arbitrary identi�ability


onstraints, whi
h is not desirable.

The reason that β0 and β1 are �small� is be
ause we have imposed this via the iden-

ti�ability 
onstraints. All four sets of identi�ability 
onstraints were 
hosen to set the

level of the 
ohort parameters to be around zero and to have no linear trends over the

whole range of the data. Therefore, we would expe
t to �nd low values of β0 and β1,

whi
h 
ontrol the level and drift to whi
h the pro
ess mean-reverts. We 
ould have 
ho-

sen other, equally reasonable 
onstraints based on alternative subje
tive interpretations

of the demographi
 signi�
an
e of the period and 
ohort parameters whi
h would have

resulted in far larger values of β0 and β1 and given exa
tly the same �tted and proje
ted

mortality rates. We therefore see that whether or not these parameters are �small�, and


onsequently whether or not they pass a statisti
al test of their signi�
an
e, is solely

dependent upon the arbitrary identi�ability 
onstraints we have 
hosen.

The four 
ases in Se
tion 4.5.2 were motivated by the same desired demographi
 signi�-


an
e for the 
ohort parameters - that they should be 
entred around zero and not have

any linear trends. However, the four di�erent 
ases used four di�erent interpretations of

these subje
tive requirements, and therefore arrived at four di�erent interpretations of

what it means to be 
entred around zero and trendless. These di�erent interpretations

resulted in the four di�erent sets of identi�ability 
onstraints. Using an AR(1) around

linear drift pro
ess to proje
t the 
ohort fun
tions introdu
es a �fth interpretation for

the meaning of being 
entred around zero and having no linear drift, in this 
ase, that

the time series parameters β0 and β1 are equal to zero. Therefore, we 
ould use another

set of parameters with the identi�ability 
onstraints
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Figure 4.3: Proje
ting the parameters of the 
lassi
 APC model: Cases 1 and 5

Case 5:

∑

t κt = 0, β0 = 0 and β1 = 0

This set of 
onstraints gives identi
al �tted and proje
ted mortality rates to the other


ases, but gives proje
ted 
ohort parameters whi
h mean-revert around zero, whi
h a
-


ords better with our demographi
 signi�
an
e. However, the restri
tions in Case 5


annot be known at the time of �tting the model to data, sin
e the appropriate time

series pro
ess that will be used to proje
t the 
ohort parameters 
annot be known at

that stage. To use this set of 
onstraints, we need to do the following:

1. �t the model to data, applying some 
onvenient set of identi�ability 
onstraints

whi
h 
an be known in advan
e of analysing the time series stru
ture of the pa-

rameters, e.g., those in Case 1;

2. estimate values for β0 and β1 for these histori
al parameters by �tting the AR(1)

around a linear drift pro
ess in Equation 4.28 to them;

3. use these estimated values for β0 and β1 in the transformations in Equations 4.5

and 4.6 to obtain a new set of (equivalent) age, period and 
ohort parameters.

The period and 
ohort parameters for Case 5, 
ompared with those for Case 1, are

shown in Figure 4.3. Using the Case 5 parameters may appear unnatural as the 
ohort

parameters in this 
ase appear to possess a linear trend. However, when we proje
t

using the well-identi�ed AR(1) around linear drift pro
ess, we �nd no linear drift in

these parameters, merely mean reversion to a level of zero, whi
h �ts well with the

demographi
 signi�
an
e for the 
ohort parameters dis
ussed in Chapter 2.
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4.5.5 Proje
ting the Plat model

We will now use this analysis to spe
ify a set of well-identi�ed proje
tion pro
esses for

the Plat model dis
ussed in Se
tion 4.4.1.1. As des
ribed in that se
tion, the invariant

transformations of the model 
an be written in the form of Equation 4.9 with

α̂x = αx − a1 − a2 − a3 − b+ c(x− x̄)− d(x− x̄)2 = αx − a(x)

κ̂
(1)
t = κ

(1)
t + a1 − c(t− t̄)− d(t− t̄)2 = κ

(1)
t − k(1)(t)

κ̂
(2)
t = κ

(2)
t + a2 + 2d(t− t̄) = κ

(2)
t − k(2)(t)

κ̂
(3)
t = κ

(3)
t + a3 = κ

(3)
t − k(3)(t)

γ̂y = γy + b+ c(y − ȳ) + d(y − ȳ)2 = γy + g(y)

by 
omposing the transformations in Equations 4.4 (for ea
h period fun
tion), 4.5, 4.6

and 4.13.

Starting with the 
ohort parameters, we may wish to retain the demographi
 interpre-

tation that they should be stationary and mean reverting and so wish to use an AR(1)

stru
ture. However, from the dis
ussion in Se
tion 4.5.3 and the observation that g(y) is

quadrati
 for the Plat model, we therefore require that Γ(y) in Equation 4.26 is quadrati
.

In order to give well-identi�ed proje
tions, we would therefore proje
t the 
ohort param-

eters using an AR(1) around quadrati
 drift pro
ess, i.e.,

(1− ρL)(γy − β0 − β1y − β2y
2) = εy (4.32)

Simple insertion of γ̂y = γy+g(y) into this shows that it does not 
hange stru
ture under

the invariant transformation and so is well-identi�ed. In prin
ipal, we 
ould then de
ide

to swit
h to an equivalent set of parameters with the 
onstraints β0 = β1 = β2 = 0 in

the same manner as for the 
lassi
 APC model. This may be desirable as it gives pro-

je
ted 
ohort parameters whi
h mean-revert around zero, in line with our demographi


signi�
an
e. In addition, when more 
ompli
ated methods are used to proje
t the 
ohort

parameters, it might be felt to simplify the pro
ess of proje
tion.

33

For the period parameters, we may wish to use a random walk with drift stru
ture as

we did for the 
lassi
 APC model on the demographi
 interpretation that the period

fun
tions should be non-stationary. This would be written as

(1− L)κt = ξ(t) + ǫt (4.33)

33

For an example where this is the 
ase, see Chapter 6.
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where κ =
(

κ
(1)
t , κ

(2)
t , κ

(3)
t

)⊤
as dis
ussion in Se
tion 4.2 and similarly for ξ(t) and ǫt.

Using this notation, we 
an group the transformations of the period fun
tions as

κ̂t = κt +









a1 + ct̄− dt̄2

a2

a3









+









−c+ 2dt̄

2d

0









t+









−d

0

0









t2

= κt + k0 + k1t+ k2t
2

In Se
tion 4.5.3, we showed that in order to ensure identi�ability, we needed

ξ(t) = (1− L)(k0 + k1t+ k2t
2)

= k0 + k1t+ k2t
2 − k0 − k1(t− 1) + k2(t− 1)2

= k1 − k2 + 2k2t

=









−c+ 2dt̄+ d

2d

0









+ 2









−d

0

0









t

Therefore, we see that, in order for the Plat model to have well-identi�ed proje
tions, we

require a 
onstant drift 
omponent for κ
(2)
t (i.e., ξ(2)(t) = µ

(2)
0 , a 
onstant) and a linear

drift 
omponent for κ
(1)
t (i.e., ξ(1)(t) = µ

(1)
0 + µ

(1)
1 t, a linear fun
tion of time). This 
an

be written as

κt = κt−1 + µXt + ǫt (4.34)

where

µ =









µ
(1)
0 µ

(1)
t

µ
(2)
0 0

0 0









and Xt =
(

1, t

)⊤
. We 
an see that this form of the random walk with drift pro-


ess extends naturally to allow for other unidenti�able trends by 
hoosing the �trend�

matrix, Xt, and 
orresponding �drift� matrix, µ, appropriately. The need to use a ran-

dom walk with linear drift is often overlooked, for instan
e in Plat (2009a) and Börger

et al. (2013) (who used a model whi
h nests the redu
ed Plat model) - see also Chapter 6.

We also see that di�erent drifts are required for di�erent period fun
tions in order to

give well-identi�ed proje
tions of mortality rates. This runs 
ounter to the desire to
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treat all the period fun
tions the same, as dis
ussed in Chapter 3. However, using the

same drifts for all the period fun
tions 
an give proje
tions whi
h are not biologi
ally

reasonable. For example, allowing for a quadrati
 trend in κ
(3)
t 
an result in apparent


hanges in trend whi
h are in
onsistent with the histori
al data. In Chapter 3, we also

found that we 
an treat di�erent period fun
tions di�erently in models with parametri


age fun
tions, be
ause there were no invariant transformations of the model whi
h 
ould

be used to inter
hange the age/period terms. It may, therefore, be preferable to allow

for di�erent drifts in di�erent period fun
tions in the Plat (2009a) model to obtain well-

identi�ed proje
ted mortality rates whi
h are also biologi
ally reasonable.

34

We should,

therefore, be prepared to override the desire to treat the period fun
tions identi
ally if

the alternative is to put biologi
al reasonableness at stake. See Chapter 6 for an example

of this issue in pra
ti
e.

4.5.6 Summary

APC mortality models whi
h have unidenti�able trends at the �tting stage require extra


are when proje
ted to ensure that the proje
tions do not depend on the identi�ability


onstraints 
hosen. In general, we �nd that the proje
tion method used must preserve

whatever trends were unidenti�able at the �tting stage. For example, the pro
esses whi
h

were well-identi�ed for the 
lassi
 APC model dis
ussed in Se
tion 4.5.4 preserved linear

trends, whi
h were shown to be unidenti�able in Se
tion 4.3.

Su
h an approa
h generalises naturally for more 
ompli
ated mortality models, su
h as

the Plat model dis
ussed in Se
tions 4.4.1.1 and 4.5.5. However, models with higher

order polynomial age fun
tions have higher order unidenti�able trends (as shown in Se
-

tion 4.4.1), and so require proje
tion pro
esses whi
h allow for these trends. This may


ause problems for long term proje
tions.

For example, 
onsider the model

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σx)κ

(3)
t + γt−x (4.35)

whi
h extends model M7 of Cairns et al. (2009) with a stati
 age fun
tion (as was done

in Haberman and Renshaw (2011)). We 
an see that a model of this form possesses

age fun
tions whi
h span the polynomials to quadrati
 order. From Se
tion 4.4.1, we

know, without performing any additional analysis, that it has unidenti�able 
ubi
 trends

34

Using di�erent drifts for the di�erent period fun
tions will mean, however, that time series pro
esses

will be required for equivalent models.
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in both the 
ohort parameters and κ
(1)
t whi
h will need to be allowed for in proje
tion.

However small they may be in the histori
al data, these 
ubi
 trends will eventually


ome to dominate the long term evolution of mortality rates, potentially yielding pro-

je
ted mortality rates whi
h la
k biologi
al reasonableness due to apparent 
hanges in

trend.

Consequently, it may be prudent to avoid unidenti�able 
ubi
 (and higher) order polyno-

mial trends in an APC mortality model. Su
h trends arise when we use more 
ompli
ated

models with higher-order polynomial age fun
tions. It is therefore useful, when sele
ting

su
h models, to have a larger �toolkit� of age fun
tions for use in the models than simply

extending existing models by using higher-order polynomial terms. Chapter 5 proposed

su
h a toolkit, whi
h allows for more 
ompli
ated mortality models that do not su�er

from ex
essive identi�ability issues and 
an give biologi
ally reasonable, well-identi�ed

proje
tions of mortality rates, as shown in Chapters 6 and 8.

4.6 Con
lusions

In Chapter 3, we saw how AP mortality models are not fully identi�ed, and that in order

to identify these models, most users impose additional arbitrary identi�ability 
onstraints

on them when �tting the models to data. Some APC mortality models have extra iden-

ti�ability 
onstraints, 
aused by the 
ollinearity between age, period and 
ohort, whi
h

are unlike anything found in similar AP models. These depend upon the form of the age

fun
tions in the model and so are spe
i�
 to individual models. The identi�ability issues

involve deterministi
 trends whi
h 
annot be uniquely allo
ated between the age, period

or 
ohort terms and so an arbitrary allo
ation must be made via additional arbitrary

identi�ability 
onstraints. The nature of the unidenti�able trends present in spe
i�


models are summarised in Figure 4.1.

These unidenti�able deterministi
 trends have important 
onsequen
es when we 
ome to

proje
t the model. We must �rst determine the identi�ability issues in the spe
i�
 model

we are using, in order to �nd whi
h deterministi
 trends are unidenti�able. When this is

done, we 
an spe
ify suitable time series pro
esses for the variation around these trends.

Only by doing this 
an we ensure that our proje
ted mortality rates are independent of

the arbitrary identi�ability 
onstraints imposed when �tting the model.
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By understanding these identi�ability issues, however, we 
an build more 
omplex mor-

tality models, for instan
e, via the �general pro
edure� of Chapter 5, and be 
on�dent

that they are founded on a se
ure knowledge of the underlying mathemati
al stru
ture of

APC mortality models. We are also able to use more sophisti
ated time series proje
tion

methods, as in Chapters 6 and 8, knowing that our proje
tions are free from dependen
e

on the arbitrary 
hoi
es we made when �tting the model to data.

4.A Identi�ability in APC models with non-parametri
 age

fun
tions

The matrix form of AP mortality models, given by Equation 3.3 in Chapter 3, 
an be

extended to allow for 
ohort e�e
ts

H = α1⊤T + βκ+ γ (4.36)

where γ is an (X × T ) Toeplitz matrix, i.e., a matrix where the diagonal elements are


onstant. It is 
lear that the transformations in Equations 3.11 and 3.12 are still invari-

ant transformations of Equation 4.36 and therefore the 
on
lusions of Chapter 3 are still

appli
able in the wider 
ontext of APC mortality models. Indeed, the transformation

in Equation 4.4 of the 
lassi
 APC model is simply the transformation in Equation 3.12

applied to this spe
i�
 model.

Generalising Equation 4.5 in this 
ontext for more 
ompli
ated invariant transformations,

we 
an see that the transformation

{α̂, β̂, κ̂, γ̂} = {α− c1X , β, κ, γ + c1X1
⊤
T } (4.37)

is 
ommon to all APC models of the form in Equation 4.36 (where 1X is a (X×1) 
olumn

ve
tor of ones and similarly for 1T ). This transformation was also dis
ussed (using alter-

native notation) in Se
tion 4.4. This allows us to set the level of the 
ohort parameters -

typi
ally to be around zero to impose the demographi
 signi�
an
e dis
ussed in Chapter

2.
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To generalise the transformation in Equation 4.6, if we 
an �nd a Toeplitz matrix Γ su
h

that

35

Γ = a1⊤T + βk (4.38)

(with a an (X × 1) matrix and k an (N × T ) matrix), we then have the transformation

{α̂, β̂, κ̂, γ̂} = {α − a, β, κ − k, γ + Γ} (4.39)

In the 
ase of the 
lassi
 APC model, we have β = 1X and so 
an �nd a Toeplitz matrix

Γ = c(1XT⊤ −X1

⊤
T ) where X is the (X × 1) 
olumn ve
tor Xi = {i− x̄} where i runs

from 1 to X (and similarly for T ).

Theorem 4.3. There are no invariant transformations of general APC mortality models

with non-parametri
 age fun
tions, i.e., no su
h A, k and Γ exist unless a spe
i�
 shape

for β is assumed in the model.

Sket
h of Proof Consider the general term a1⊤T + βk, whi
h is analogous to the pre-

di
tor stru
ture of an AP mortality model. As we argue in Chapter 3, this has dimension

X +N(X + T )−N(N + 1), i.e., the X parameters in a, the NX parameters in β, and

the NT in k redu
ed by the N(N + 1) degrees of freedom in the transformations in

Equations 3.11 and 3.12.

In 
ontrast, in the general 
ase, Γ has dimension X + T − 1, i.e., one degree of freedom

for ea
h diagonal. For Equation 4.38 to be true, these matri
es must have the same

dimension and therefore

X +N(X + T )−N(N + 1) = X + T − 1

N2 +N(1−X − T ) + T − 1 = 0 (4.40)

However, N , X and T are integers, set by the stru
ture of the model and the range of

the data, and therefore Equation 4.40 will not generally be true. Hen
e Equation 4.39

will not be an invariant transformation of a general APC mortality model with non-

parametri
 age fun
tions.

35

We a
tually require the more general statement that Γ = a1⊤T + bk with b a (X ×N) matrix su
h

that β = bA, i.e., the 
olumns of b lie within the span of the 
olumns of β. However, without loss of

generality, we de�ne k̃ = Ak to obtain the result shown.
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The argument used in this proof relies on a1⊤T + βk being of full rank and therefore

breaks down if β is of lower dimension than the maximum possible. However, this is

equivalent to imposing a parametri
 form on the age fun
tions and a

ordingly, the line

of reasoning above is not possible in the general 
ase.

Therefore, general non-parametri
 APC mortality models do not possess any other in-

variant transformations apart from the ones in Equations 3.11, 3.12 and 4.37. They

require only identi�ability 
onstraints whi
h set the normalisation s
heme of the age

fun
tions, impose orthogonality between the age and period fun
tions (both using the

transformation in 3.11), set the levels of the period fun
tions κ
(i)
t using Equation 3.12,

and the level of the 
ohort parameters γt−x using Equation 4.37.

For instan
e, we see that for the H1 model of Haberman and Renshaw (2009) and Hunt

and Villegas (2015),

ηx,t = αx + βxκt + γt−x (4.41)

we 
annot �nd an invariant transformation of the parameters similar to that in Equa-

tion 4.6. This is be
ause of the la
k of shape in either age or period in the βxκt term

whi
h 
an be used to de
ompose the 
ohort term. However, this model does possess an

�approximate� identi�ability 
onstraint, whi
h leaves the �tted mortality rates almost

un
hanged in the majority of 
ases. This is 
aused by κt often having a form that is


lose being parametri
, whi
h is dis
ussed in detail in Hunt and Villegas (2015).

Some, espe
ially demographers, have argued that all 
ohort e�e
ts are simply mis-

spe
i�ed age/period e�e
ts and are best modelled as su
h.

36

Although this may be

true in a stri
tly mathemati
al sense, a large number of age/period terms are required

to repli
ate any general 
ohort term in the model. It is therefore more parsimonious to

in
lude a set of 
ohort parameters rather than multiple age/period terms. This, again,

is similar to the argument in Wilmoth (1990), whi
h states that it is plausible and par-

simonious to in
lude a single set of 
ohort parameters rather than an ex
essive number

of age/period terms whi
h a
hieve the same e�e
t.

Some datasets may show little or no stru
ture a
ross years of birth, in whi
h 
ase the

de
ision to in
lude a 
ohort term be
omes one de
ided on the basis of the demographi


and statisti
al signi�
an
e of the parameters for that dataset. Su
h a de
ision 
an be

36

For instan
e, Cairns et al. (2011a) raised �the possibility that 
ohort e�e
ts might be partially or


ompletely repla
ed by well-
hosen age and period e�e
ts� and also see Murphy (2010)
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made only after all signi�
ant age/period terms have been identi�ed. We therefore

re
ommend a pro
edure, su
h as the �general pro
edure� in Chapter 5, whi
h only adds

su
h a term when justi�ed by the data.

4.B Models without a stati
 age fun
tion

As we dis
uss in Chapter 2, a number of APC mortality models have been proposed

whi
h do not have an expli
it stati
 age fun
tion, αx, the most prominent of whi
h being

the extensions of the CBD model in Cairns et al. (2009). If the model does not have

an expli
it stati
 age fun
tion, the age fun
tions in the model must be parametri
 and

therefore known in advan
e of �tting the model to data. The stru
ture of the APC model

in this 
ase is therefore

ηx,t =
N
∑

i=1

f (i)(x)κ
(i)
t + γt−x

The identi�ability issues in su
h models 
an be 
onsidered in the same fashion as in

Se
tion 4.4. In parti
ular, we noted in Se
tion 4.4.2 that the invariant transformations

of models with exponential or trigonometri
 age fun
tions did not involve the stati
 age

fun
tion, and therefore are also appli
able in models without one.

The invariant transformations of models with polynomial age fun
tions, in 
ontrast, did

involve the stati
 age fun
tion expli
itly. The proof of Theorem 4.1 involves expanding

a polynomial fun
tion of year of birth, g(y), into polynomial terms in x and t and then


ombining these in the appropriate age/period terms. In parti
ular, the term in this

expansion with no t dependen
e was 
ombined into the stati
 age fun
tion. This is seen

most 
learly in the transformation in Equation 4.6, but also in the transformation in

Equation 4.13 for the Plat model.

However, we 
an see that the la
k of a stati
 age fun
tion to absorb this term in the

expansion of g(y) is not an insurmountable problem as long as there is an age/period

term with the appropriate age fun
tion. This means that if g(y) is a polynomial of order

M , we must have age fun
tions in the model up to order M as well. This 
ontrasts with

models with a stati
 age fun
tion, whi
h only require age fun
tions up to order M − 1.

Theorem 4.4. APC mortality models with no stati
 age fun
tion and age fun
tions

spanning the polynomials to order M possess invariant transformations whi
h adds a

polynomial of order M to the 
ohort fun
tion.
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Sket
h of Proof The proof is similar to that of Theorem 4.1. Take g(y), a general

polynomial of order M , and expand as a fun
tion of x and t. This 
an then be regrouped

into an equivalent form that 
orresponds to the age/period terms in the model, in order

to see how g(y) 
an be absorbed into the age/period stru
ture

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =

M
∑

n=0

an(t− x)n

=
M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=

M
∑

n=0

n
∑

l=0

an

(

n

l

)

tn−l(−x)l

=
M
∑

l=0

(−x)l
M
∑

n=l

an

(

n

l

)

tn−l

=

M
∑

l=0

(−1)lf (l)(x)

M
∑

n=l

an

(

n

l

)

tn−l

=

M
∑

l=0

f (l)(x)k(l)(t)

whi
h is of the form of Equation 4.9 if the age fun
tions in the model are of the form

f (j)(x) = xj of j = 0, 1, . . . M .

To see this in pra
ti
e, 
onsider model M6 of Cairns et al. (2009)

ηx,t = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (4.42)

and 
ompare it with the redu
ed Plat model of Equation 4.12 in Se
tion 4.4.1.1. For

the redu
ed Plat model, we saw that the transformation in Equation 4.13 was invariant,

and involved adding a quadrati
 fun
tion of year of birth to the 
ohort parameters,

with adjustments to κ
(1)
t , κ

(2)
t and the stati
 age fun
tion αx. For model M6, this

transformation is not permitted, as there is no stati
 age fun
tion to adjust in this

model. Instead, the model only has the simpler linear invariant transformation

{κ̂(1)t , κ̂
(2)
t , γ̂y} = {κ(1)t − c(t− t̄), κ

(2)
t − c, γy − c(y − ȳ)} (4.43)

We 
an also see this using the analysis of Chapter 2, where it was shown that models

without a stati
 age fun
tion 
an be written as though they do have one of a spe
i�
,

parametri
 form that has been 
ombined with the other age/period terms in the model.
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In the 
ase of model M6, we see that this implies a stati
 age fun
tion whi
h is a linear

fun
tion of age, whi
h then 
ould not be used to absorb a quadrati
 age term 
oming

from the addition of a quadrati
 fun
tion of year of birth to the 
ohort parameters.

Consequently there is a trade-o�: models without a stati
 age fun
tion have simpler

identi�ability issues than (otherwise similar) models possessing one, but are unable to

provide a good �t to mortality data a
ross the full age range, as dis
ussed in Chapter 2.

4.C Maximal invariants

An alternative approa
h to using an arbitrary identi�
ation s
heme was suggested by

Kuang et al. (2008b,a) and Nielsen and Nielsen (2014) for the 
lassi
 APC model. This

is to 
hange the parameterisation of the model to an equivalent form with redu
ed di-

mensionality whi
h does not su�er from identi�ability issues. The new parameters are

known as �maximal invariant� parameters, sin
e they are the set with the largest number

of parameters (i.e., are �maximal�), and are inje
tive

37

and give the same �tted mortality

rates as the original model in Equation 4.1 (i.e., the reparameterisation is �invariant�) .

We 
an think of this as �nding a parameterisation of the model whi
h gives the same

�t to data, but where every possible degree of freedom in the model is fully utilised in

�tting the data.

Kuang et al. (2008b) and Nielsen and Nielsen (2014) proposed an approa
h to generating

a maximally invariant parameterisation for the 
lassi
 APC model based on �nding the

se
ond di�eren
es of the age, period and 
ohort terms. These se
ond di�eren
es do not


hange under the invariant transformations of the model and so have a meaning inde-

pendent of the identi�ability 
onstraints. In this Appendix, we review this approa
h and

dis
uss how it 
an be extended to deal with the identi�ability issues in some of the more


omplex APC mortality models. However, we also �nd that it su�ers from a number of

limitations whi
h make it unsuitable for many APC models and whi
h 
an 
ause proje
-

tions to be biologi
ally unreasonable.

37

A transformation is inje
tive if di�erent points in the domain get mapped to di�erent points in the

image of the transformation.
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First, the age, period and 
ohort fun
tions in the 
lassi
 APC model are expanded as

teles
opi
 sums in terms of their se
ond di�eren
es, i.e.,

αx = αX −
X
∑

i=x+1

∆αi

= αX −
X
∑

i=x+1



∆αX −
X
∑

j=i+1

∆2αj





= αX − (X − x)∆αX +

X
∑

i=x+1

X
∑

j=i+1

∆2αj

κt = κ1 + (t− 1)∆κ2 +

t
∑

i=2

t
∑

j=3

∆2κj

γy = γ1−X + (y − 1 +X)∆γ2−X +

y
∑

i=2−X

y
∑

j=3−X

∆2γj

In the 
ase of the age fun
tion, αx, we work ba
kwards from αX due to the negative

dependen
e of 
ohort on age. However, it is important to note that this expansion has

not 
hanged the number of parameters in the model, merely written them in a new form.

This, of itself, will not solve the identi�ability issues. However, Kuang et al. (2008b)

and Nielsen and Nielsen (2014) then substituted the se
ond di�eren
e expansions of the

parameters into the 
lassi
 APC model and group the deterministi
 terms together

ηx,t = a0 + (X − x)a1 + (t− 1)b1 +

X
∑

i=x+1

X
∑

j=i+1

∆2αj +

t
∑

i=2

i
∑

j=3

∆2κj +

t−x
∑

i=2−X

i
∑

j=3−X

∆2γj

(4.44)

where

a0 = αX + κ1 + γ1−X

a1 = ∆γ2−X −∆αX

b1 = ∆κ2 +∆γ2−X

In Kuang et al. (2008b) and Nielsen and Nielsen (2014), these new parameters were in-

trodu
ed by 
onsidering three points of the �tted mortality surfa
e. The most important

point about the pro
edure is that it repla
es six parameters in the original parameterisa-

tion with only three in the maximally invariant parameterisation. The maximally invari-

ant parameterisation therefore 
ontains 3+(X−2)+(T −2)+(T +X−3) = 2X+2T −4

free parameters. This 
ompares with 2X + 2T − 1 parameters and the three additional

identi�ability 
onstraints required by the three invariant transformations - Equations

4.4, 4.5 and 4.6 - for the original parameterisation of the 
lassi
 APC model. Hen
e the
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Figure 4.4: Se
ond di�eren
es from the 
lassi
 APC model

maximally invariant parameterisation gives the same �tted mortality rates with the same

number of e�e
tive parameters but without the over-parameterisation and 
onsequent

need for identi�ability 
onstraints in the original formulation of the model.

However, by doing this, we have lost mu
h of the demographi
 signi�
an
e asso
iated

with the original parameters in the 
lassi
 APC model. For example, whilst αx in the

original parameterisation of the 
lassi
 APC model relates to an age e�e
t spe
i�
 to

age x, ∆2αx relates to the 
urvature of the mortality 
urve in the age dimension at age

x and will impa
t mortality rates at all ages below x. It is therefore harder to explain

its demographi
 signi�
an
e to other model users or develop an intuition about what

values are reasonable in order to 
he
k the validity of the model. Although demographi


signi�
an
e is subje
tive, it is still not desirable to lose it if it 
an be avoided. This may

restri
t the usefulness of the maximally invariant approa
h.

In order to proje
t the model into the future, we need to analyse the ∆2κt and ∆2γy

parameters as time series. These are shown in Figure 4.4 for the same dataset as used

in Se
tion 4.5.2. As 
an be seen,

38

these parameters appear to be stationary and so it is

natural to proje
t them using an ARMA pro
ess.

If we were to �integrate up� the double di�eren
es to re
over our original κt and γy

parameters, these would both be I(2) pro
esses. This 
on�i
ts with the demographi


signi�
an
e for the 
ohort parameters dis
ussed in Chapter 2. I(2) pro
esses are also not

38

We have removed the large outlier 
ohort e�e
ts for years of birth 1918/19 using indi
ator variables,

as they are believed to be data artefa
ts resulting from the surge of births due to the demobilisation of

soldiers after the First World War, based on similar reasons as those presented in Ri
hards (2008) and

Cairns et al. (2014).
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likely to be biologi
ally reasonable, as the un
ertainty in proje
ted mortality rates would

grow very qui
kly. This would have important rami�
ations if the model is proje
ted.

The maximal invariant approa
h also works with some other APC mortality models.

For instan
e, 
onsider the redu
ed Plat model of Equation 4.12. This model has X +

2T + (X + T − 1) = 2X + 3T − 1 parameters and, as dis
ussed in Se
tion 4.4.1.1, we

know that it requires �ve identi�ability 
onstraints to fully identify (two for the level of

the period fun
tions and one ea
h for the level, linear trend and quadrati
 trend in the


ohort parameters).

In order to �nd a maximally invariant parameterisation, we follow the same logi
 as in

Kuang et al. (2008b) and 
onsider the teles
opi
 sums of the parameters. However, as

αx, κ
(1)
t and γy all possess unidenti�able quadrati
 trends, we need to 
onsider the third

di�eren
es of these parameters, but only 
onsider the se
ond di�eren
es of κ
(2)
t , sin
e it

only has unidenti�able linear trends

αx = αX − (X − x)∆αX +
1

2
(X − x)(X − 1− x)∆2αx −

X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk

κ
(1)
t = κ

(1)
1 + (t− 1)∆κ

(1)
2 +

1

2
(t− 1)(t− 2)∆2κ

(1)
3 +

t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k

κ
(2)
t = κ

(2)
1 + (t− 1)∆κ

(2)
2 +

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

γy = γ1−X + (y − 1 +X)∆γ2−X +
1

2
(y − 1 +X)(y − 2 +X)∆2γ3−X

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk

Combining these in Equation 4.12 and grouping the deterministi
 terms of the same type

redu
es the dimension of the parameter set in the same manner as for the 
lassi
 APC

model. Therefore, we �nd the maximally invariant form of the redu
ed Plat model

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +
t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (4.45)
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The �nal step to prove that this is a maximally invariant parameterisation would be to


he
k that ea
h of the parameters 
an be estimated uniquely from the data. Alternatively

and more easily, we 
an see that it is maximally invariant from a dimensional argument,

sin
e the parameterisation has 6+(X−3)+(T −3)+(T −2)+(X+T −4) = 2X+3T −6

free parameters, whi
h is the same as the number of parameters in the original redu
ed

Plat model less the number of identi�ability 
onstraints imposed. Therefore, the freely

varying parameter spa
e has the same dimension as the model spa
e and gives the same

�tted mortality rates as the original model, and so the parameters represent maximal

invariants. Be
ause of this, the revised model does not possess any identi�
ation issues.

As in the 
ase of the 
lassi
 APC model, moving to a maximally invariant form for the

model means losing the demographi
 signi�
an
e of the parameters. The maximally in-

variant form of the redu
ed Plat model is highly unintuitive 
ompared with the original

parameterisation, and it would be di�
ult to 
ommuni
ate the impa
t of the various

parameters to anyone not intimately familiar with the maximally invariant approa
h.

As dis
ussed in Chapter 2, sin
e demographi
 signi�
an
e is a major reason for 
hoosing

a model with parametri
, as opposed to non-parametri
 age fun
tions, this is highly un-

desirable. Also, and again similar to the 
lassi
 APC model, the use of third di�eren
es

for κ
(1)
t and γy leads naturally to using I(3) pro
esses when we proje
t the model, whi
h

are unlikely to give biologi
ally reasonable proje
tions.

Further, the maximal invariant approa
h does not work with all APC mortality models.

If we follow the same logi
 to try to �nd the maximally invariant parameterisation for

the full Plat model in Equation 4.11 we obtain

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +

t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+ (x− x̄)+κ
(3)
1 + (x− x̄)+

t
∑

i=2

∆κ
(3)
i +

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (4.46)

We know, from Se
tion 4.4.1.1, that the Plat model hasX+3T+(X+T−1) = 2X+4T−1

parameters and requires six identi�ability 
onstraints (three on the levels of the period

fun
tions and one ea
h for the level, linear trend and quadrati
 trend in the 
ohort

parameters). However, the maximally invariant parameterisation in Equation 4.46 has

7+ (X − 3) + (T − 3) + (T − 2) + (T − 1) + (X + T − 4) = 2X +4T − 6 free parameters,

i.e., one too many. This is be
ause the (x− x̄)+κ
(3)
1 term 
annot be 
ombined with the

expanded form of αx, sin
e it is not a polynomial. Consequently, there is no dimensional
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redu
tion with respe
t to this age/period term.

Be
ause of this, we will still require an additional identi�ability 
onstraint to �t the

model in Equation 4.46 to data. However, it is no longer 
lear what this should be

or what the underlying invariant transformation of the parameters is. The maximally

invariant approa
h has therefore not solved the identi�ability issues for this model, but

has made making an arbitrary identi�
ation 
onsiderably more di�
ult.

This will be true for any age/period term whi
h does not have a polynomial age fun
tion.

As dis
ussed in Se
tion 4.4.3, su
h terms do not generate any additional identi�ability

issues beyond the unidenti�able level of the period fun
tion, as dis
ussed in Chapter 3.

It therefore may be possible to deal with this using an approa
h similar to that proposed

for the model of Lee and Carter (1992) in Nielsen and Nielsen (2014) and dis
ussed in the

Appendix of Chapter 3. However, as these two te
hniques for obtaining maximally invari-

ant parameterisations are fundamentally di�erent, it is un
lear how to 
ombine them in

models whi
h mix polynomial and non-polynomial age fun
tions, su
h as the Plat model.

In summary, the maximally invariant approa
h proposed in Kuang et al. (2008b) and

Nielsen and Nielsen (2014) for the 
lassi
 APC model 
an be generalised, but only to

models with purely polynomial age fun
tions. For models with other forms for the age

fun
tions (or whi
h mix polynomial and non-polynomial age fun
tions), the maximally

invariant approa
h, at best, o�ers a partial solution. However, in using su
h an approa
h,

we lose our desired demographi
 signi�
an
e regarding the parameters in the model and

are likely to obtain proje
ted mortality rates whi
h are not biologi
ally reasonable, so

this approa
h is not, in general, re
ommended.
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Chapter 5

A General Pro
edure for

Constru
ting Mortality Models

5.1 Introdu
tion

In re
ent years, there has been an explosion in the number of new mortality models that

have been proposed. This has been triggered, in part, by the greater fo
us pla
ed on

longevity risk by demographers, a
tuaries and governments. It has also been prompted

by the failure of existing models to identify adequately the full extent of the 
omplexities

involved in the evolution of mortality rates over time.

Yet these new models often involve ad ho
 extensions to existing models, whi
h have

questionable demographi
 signi�
an
e.

1

Despite having more terms than the older mod-

els, they still fail to 
apture a lot of the information present in the data, su
h as the

level of lifespan inequality in the population. They also have di�
ulties providing real-

isti
 fore
asts of spe
i�
 mortality rates. La
king a formal pro
edure for interrogating

the data to establish what stru
ture remains to be explained, modellers too often add

new terms based on theoreti
al models of mortality or on assumptions regarding the

shape of the mortality 
urve rather than eviden
e. This is espe
ially dangerous in mod-

els with 
ohort parameters intended to 
apture generational e�e
ts. The result of any

mis-spe
i�
ation in these extra age/period terms 
an result in stru
ture being wrongly

attributed to the 
ohort e�e
t. This is then proje
ted in
orre
tly, moving up the age

range with the passage to time, with the result that implausible fore
asts are generated

1

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of a model

in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in mortality rates

whi
h generate them.
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at higher ages.

In view of this, we feel that the time has 
ome to take a fresh look at mortality model


onstru
tion. But, rather than propose yet another new model, what we do in this study

is outline and implement a �general pro
edure� (GP) for building a mortality model from

s
rat
h, driven by a forensi
 examination of the data. Through an iterative pro
ess, the

GP identi�es every signi�
ant demographi
 feature in the data in a sequen
e, begin-

ning with the most important. For ea
h demographi
 feature, we need to apply expert

judgement to 
hoose a parti
ular parametri
 form to represent it. To do this, we need a

�toolkit� of suitable fun
tions.

By following the GP, it is possible to 
onstru
t mortality models with su�
ient terms to


apture a

urately all the signi�
ant information present in the age, period and 
ohort

dimensions of the data. In parti
ular, the GP prevents stru
ture in the data whi
h is

genuinely asso
iated with an age/period e�e
t being wrongly allo
ated to a 
ohort e�e
t.

The pro
edure is general in the sense that it 
an be applied to any dataset to give a fully

spe
i�ed model tailored to the features of the population under 
onsideration. Most sig-

ni�
antly, the GP provides eviden
e for the addition of ea
h term to an existing model; it

allows ea
h new term to be asso
iated with a spe
i�
 demographi
 and biologi
al pro
ess

driving the evolution of mortality rates.

Se
tion 5.2 presents a summary of the stru
ture of the 
lass of mortality models we

are 
onsidering and sets out the desirable properties that we believe a good mortality

model should possess. The general pro
edure is dis
ussed in Se
tion 5.3. In Se
tion

5.4, we apply the GP to data for men in the UK and des
ribe how the steps in Se
tion

5.3 operate in pra
ti
e. In Se
tion 5.5, we assess the goodness of �t of this model and


he
k whether there is any remaining stru
ture present in the �tted residuals. Se
tion

5.6 
ompares the GP with the Lee-Carter model and with a pro
edure based on prin
i-

pal 
omponent analysis as an alternative method of 
onstru
ting mortality models with

multiple age/period terms. Finally, Se
tion 5.7 
on
ludes with an assessment of how the

�nal model found measures up against our set of desirable properties from Se
tion 5.2

as well as its advantages and disadvantages.
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5.2 The stru
tural form of mortality models

The majority of existing mortality models proposed in the a
tuarial literature fall into an

age/period/
ohort framework. This transforms the observed mortality rates and then

�ts a series of terms to a

ount for the intera
tions between the age, x, the year of

observation, t, and the year of birth, y = t − x, for the population within ea
h 
ell of

data. Mathemati
ally, this 
an be written as:

2

η

(

E

(

Dx,t

Ex,t

))

= αx +

N
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x (5.1)

This equation has the following 
omponents:

• a link fun
tion η to transform the observed data into a form suitable for modelling.

The raw data usually 
onsists of death 
ounts Dx,t and exposures to risk Ex,t at

ages x and for years t;

• a stati
 age fun
tion αx to 
apture the general shape of the mortality 
urve that

does not 
hange with time;

• N age/period terms f (i)(x; θ(i))κ
(i)
t , 
onsisting of 
ompanion pairs of period terms

κ
(i)
t (or �trends�) whi
h give the evolution of mortality rates through time and age

fun
tions f (i)(x; θ(i)) whi
h determine whi
h segments of the age range these trends

a�e
t; and

• 
ohort parameters γt−x whi
h determine the lifelong e�e
ts that are spe
i�
 to

di�erent generations as dis
ussed in Willets (2004), denoted by their year of birth;

Many mortality models proposed to date 
an be written in this form. These in
lude the

Lee-Carter (LC) model proposed in Lee and Carter (1992) and extensions of this, su
h

as those of Renshaw and Haberman (2003b) and Yang et al. (2010). It also in
ludes the

Cairns-Blake-Dowd family of mortality models (in Cairns et al. (2006a) and Cairns et al.

(2009)), the 
lassi
 age/period/
ohort model of Hob
raft et al. (1982) and developments

of these models su
h as the models proposed by Plat (2009a) and O'Hare and Li (2012a).

In addition, it in
ludes various other mortality models not 
ontained within these fam-

ilies su
h as the ones proposed in Wilmoth (1990) and Aro and Pennanen (2011). The

models of the rate of mortality 
hange proposed in Haberman and Renshaw (2012, 2013)

2

This stru
tural form and demographi
 signi�
an
e of the terms in it are dis
ussed in depth in Chapter

2.

153



A General Pro
edure for Constru
ting Mortality Models

and Mit
hell et al. (2013) also fall within this stru
ture for suitable 
hoi
e of the link

fun
tion ηx,t. These models and the relationships between them are dis
ussed in greater

depth in Chapter 2. Examples of models whi
h fall outside this framework in
lude those

with a 
onstant, Makeham term, the extension to the LC model proposed in Renshaw

and Haberman (2006) (due to the presen
e of the β
(0)
x term modifying the 
ohort pa-

rameters) and the P-splines models of Currie et al. (2004).

A good mortality model should satisfy the following �desirability 
riteria�:

1. provide an adequate �t to the data, with su�
ient terms to 
apture all the signi�-


ant stru
ture in the data;

2. be biologi
ally reasonable;

3

and have terms whi
h have demographi
 signi�
an
e in

the sense that they are explainable in terms of the underlying biologi
al, medi
al

or so
io-e
onomi
 
auses of 
hanges in mortality rates at spe
i�
 ages

3. be parsimonious, with the smallest number of terms needed to 
apture this stru
-

ture, and with ea
h term using as few parameters as possible;

4. be robust, in that parameter un
ertainty should be low and small 
hanges in the

data should not result in signi�
ant 
hanges in the estimates of the parameters and

in our interpretation of them;

5. span the full age range, with su�
ient terms to model the 
omplex shape of and

dynami
s observed in mortality rates at younger ages; and

6. in
lude 
ohort e�e
ts if justi�ed by the data and allow for these to be 
learly

distinguished from age/period e�e
ts to allow plausible proje
tions of the model.

The GP has been designed with these 
riteria (and the trade-o�s between them) in mind.

Most spe
i�
ally, the GP 
hooses parametri
 age fun
tions,

4 f (i)(x; θ(i)), whi
h take a

spe
i�
 fun
tional form and are parameterised by a small number of variables θ(i), over

more general non-parametri
 age fun
tions,

5 β
(i)
x , due to their parsimony and be
ause

we 
an use our judgement to assign demographi
 signi�
an
e to the term in question.

The advantages and disadvantages of using parametri
 age fun
tions are dis
ussed in

greater depth in Chapter 2. However, a key feature of the GP is to use the information

dis
overed from �rst using a non-parametri
 age fun
tion to provide guidan
e on the

shape of that demographi
 feature. This will improve the goodness of �t for ea
h term

and avoid the need to make a priori assumptions regarding whi
h age fun
tions to use.

3

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.

4

De�ned in Chapter 2 as one taking a spe
i�
 fun
tional form that is de�ned by an algebrai
 formula.

5

De�ned in Chapter 2 as one �tted without imposing any a priori stru
ture a
ross ages.
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5.3 A general pro
edure for 
onstru
ting mortality models

The general pro
edure 
onsists of the following steps:

1. Start with a stati
 age fun
tion αx to 
apture the time-independent shape of the

mortality 
urve a
ross ages in the data set under 
onsideration;

2. Add a 
ompanion pair of non-parametri
 age and period fun
tions βxκt to �nd the

most signi�
ant age/period e�e
t not 
aptured by the model so far, where the age

term βx is free to take the shape that maximises the �t to the data;

3. Observe the shape of the estimated age term βx a
ross ages and how κt has evolved

through time;

4. Che
k that the addition of the new pair of terms improves the overall goodness of

�t to the data;

5. Use judgement to sele
t a spe
i�
 smooth fun
tional form f(x; θ) to repla
e the

non-parametri
 age term βx where the fun
tion is de�ned by a small number of

free parameters θ;

6. Che
k whether the �tted model with this spe
i�
 fun
tional form

(a) produ
es a similar evolution over time as the non-parametri
 term by 
om-

paring the �tted κt's for the two 
ases and

(b) a
hieves 
omparable improvements in the goodness of �t as the non-parametri


term.

7. Che
k whether the addition of the new 
ompanion pair of terms has signi�
antly


hanged the shape of previously sele
ted terms, in whi
h 
ase we might need to


hange and re-estimate the earlier terms;

8. Repeat steps 2 to 7 until we are satis�ed that the model 
aptures all signi�
ant

age and period stru
ture in the data;

9. Add a 
ohort term γt−x to 
apture any year of birth e�e
ts;

10. Test the �nal model for goodness of �t and robustness, and the residuals for the

properties of normality and independen
e, thereby 
on�rming that there is no

signi�
ant unexplained demographi
 stru
ture remaining in the data;

11. Compare the �nal model to alternative models estimated using the same data set.
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After ea
h modi�
ation of the model stru
ture (e.g., repla
ing a non-parametri
 age

fun
tion, βx, with a parametri
 alternative, f(x), or the addition of the 
ohort term),

all the terms are re-estimated by �tting the model to histori
al data.

6

This ensures that

all of the parameters are estimated on the basis of maximising the �t to data and that

there is no expli
it hierar
hy within the model stru
ture. Figure 5.1 shows a �ow 
hart

of the GP summarising these steps.

The GP is a data-driven pro
edure, with terms being sele
ted based on their ability to


apture features of the observed mortality rates. At high level, it is a spe
i�
-to-general

model building pro
edure (as de�ned in Campos et al. (2005)) as it begins with a sim-

ple model and sequentially adds terms in order to build a model that fully re�e
ts the

features 
ontained in the dataset under investigation. This approa
h is unavoidable,

sin
e to begin with a fully general mortality model, as required by the general-to-spe
i�


methodology, would 
ontain su
h a large number of terms that it would be impossible

to �t it to data and di�
ult to simplify. However, at the �mi
ro� level, ea
h age/period


ompanion pair is added in a general-to-spe
i�
 fashion - the most general form of the

fun
tion is added to the model and then simpli�ed into a spe
i�
, parametri
 form, whilst

seeking to retain its explanatory power. Thus, we believe that the GP bene�ts from both

model-building frameworks.

The GP sele
ts the fun
tional form of the age/period terms in two stages. First, it allows

ea
h age/period term within the data to be identi�ed by a non-parametri
 age fun
tion

without requiring any a priori assumptions to be made by the modeller. Se
ond, it al-

lows the shape of these non-parametri
 age fun
tions to guide the 
hoi
e of parametri


fun
tion that is sele
ted from the toolkit to mat
h as 
losely as possible the explanatory

power of the former, whilst bene�ting from parsimony in terms of the number of param-

eters to be estimated. However, judgement is required in the sele
tion of the parametri


fun
tion, although that the GP provides eviden
e to justify the de
ision made.

Appendix 5.A gives details of the �toolkit� of parametri
 age fun
tions needed to im-

plement the GP; it also gives a general algorithm for estimating the free parameters in

them. However, a toolkit is never 
omplete and so we do not o�er this as an exhaustive

list of fun
tions - only as those we have 
onsidered so far. Two highly desirable features

for a fun
tion to be in
luded in the toolkit are a small number of free parameters (in our

experien
e, more than two free parameters leads to unstable estimates) and the ability

6

The only ex
eption to this is when an exploratory βxκt term is added to the model, sin
e these

models are often very unstable due to over-parametrisation.
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to adjust the lo
ation of the fun
tion in the age range.

At ea
h stage of the GP, we need to assess whether the resulting model is in a

ordan
e

with our desirability 
riteria. First, we will need to test whether an additional age fun
-

tion improves the �t of the model to data. It is well known that a measure su
h as the

log-likelihood will always show an improvement in the �t of a series of nested models to

the data due to the in
reased number of free parameters. In order to a
hieve our desire

for a parsimonious model, it is therefore ne
essary to penalise the number of free param-

eters used by 
onsidering a measure su
h as the Bayes Information Criterion (BIC).

7

The

log-likelihood is still useful, however, when adding an additional non-parametri
 term as

the 
hange in this measure represents the maximum possible improvement in the �t from

the addition of a single new term. We 
an therefore use this maximum possible improve-

ment as the ben
hmark for measuring the su

ess of the spe
i�
 parametri
 form being

trialled: a parametri
 age fun
tion whi
h produ
es 80-90% of the same improvement in

log-likelihood 
an be regarded as highly desirable.

Se
ond, we need to 
ompare whether the stru
ture identi�ed by a non-parametri
 age

fun
tion is the same as that found when a spe
i�
 parametri
 fun
tion is introdu
ed.

Plots of the two are useful for revealing the general pattern of mortality 
hange and

identifying features su
h as trend 
hanges and outliers that the two series have in 
om-

mon.

Finally, we will need to test the residuals from the data. As dis
ussed in Pita

o et al.

(2009), under a Poisson model for deaths (su
h as the one we use), the standardised

devian
e residuals rx,t are given by

rx,t = sign(dx,t − d̂x,t)

√

√

√

√

2Wx,t

φ

(

dx,t ln

(

dx,t

d̂x,t

)

− (dx,t − d̂x,t)

)

with a
tual death 
ount dx,t, �tted death 
ount d̂x,t = Ec
x,tµx,t, and φ the s
ale parameter

given by the total �tted devian
e divided by the number of degrees of freedom

8

of the

model. This assumes that the residuals have 
onstant varian
e a
ross age and time. For

large expe
ted death 
ounts, these should be approximately standard normal variables,

so we 
an test the residuals for normality using the Jarque-Bera test of the skewness and

kurtosis to 
he
k this. The residuals should also be independent and show no obvious

stru
ture a
ross ages, periods and 
ohorts. To look for stru
ture within the residuals, we

7

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
8

Number of data points less number of free parameters.
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plot heat maps and visually inspe
t for obvious verti
al, horizontal or diagonal banding

patterns. This would indi
ate the presen
e of further age, period or 
ohort e�e
ts. We

also 
al
ulate the 
orrelations of the residuals with their neighbours in the age and period

dire
tions, and test these 
orrelations against the assumption of independen
e.

To exit the 
y
le of adding new age/period terms, we need a stopping rule in the GP

to determine when there are no further demographi
ally signi�
ant age/period terms

left unidenti�ed in the data. Su
h a stopping rule will inevitably be subje
tive. This

means that the GP is not a �bla
k-box� algorithm; it requires the a
tive engagement and

exer
ise of judgement by the modeller at ea
h stage of the model building pro
ess.

Finally, we add the 
ohort parameters as the last step in the GP. The reason for this

re�e
ts a preferen
e for a model where the majority of the temporal dependen
e in the

data is allo
ated to the age/period terms. The reasons for this preferen
e are dis
ussed

in detail in Chapter 2, but in our experien
e, the pattern of �tted 
ohort parameters

produ
ed by some models does not seem to have any demographi
 signi�
an
e and may

be 
aused by the model trying to 
ompensate for inadequate age/period terms. We

therefore seek to avoid this in the GP.

5.4 Appli
ation of pro
edure to male UK data

To illustrate the GP, we apply it to data for men in the UK from 1950 to 2009 
overing

ages 0 to 100 (ungrouped) downloaded from the Human Mortality Database (Human

Mortality Database (2014)). We restri
t the data to the period sin
e the Se
ond World

War as it is free from major 
on�i
ts and abrupt so
ial upheaval. Sin
e the Human

Mortality Database provides 
entral exposures to risk for ea
h age and year, we assume

that the death 
ounts are Poisson random variables and therefore use a log-link fun
tion

for ηx,t as it is the 
anoni
al link fun
tion for the Poisson distribution, as dis
ussed in

Chapter 2. We �t the model at ea
h stage using Poisson maximum likelihood estimation

using the algorithms des
ribed in Appendix 5.A.

5.4.1 Stage 0 - Stati
 age fun
tion

The stati
 age fun
tion produ
ed by �tting ln(µx,t) = αx 
onstitutes the �rst step in the

GP. The �tted values of αx (not shown) show the usual pattern of mortality a
ross the
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full age range: with high mortality rates at age zero due to infant mortality, the log-linear

pattern of mortality in
reases at high ages (from 50 to 90) and the in
reased rates of

mortality due to the a

ident hump between ages 15 and 25. Whilst the age fun
tion is

re�tted at ea
h stage of the GP, this shape does not 
hange signi�
antly throughout the

di�erent stages of the model building pro
ess.

5.4.2 Stage 1 - First age/period term

The next step is to add the �rst non-parametri
 age/period term to the stati
 model to

arrive at ln(µx,t) = αx + βxκ
(1)
t , whi
h has the form of the LC model. This gives the

familiar βx and κ
(1)
t terms shown in Figure 5.2.

In order to fully identify the model, we impose

∑

x

|βx| = 1 (5.2)

∑

t

κ
(1)
t = 0 (5.3)

and adopt these identi�ability 
onstraints for all subsequent age/period terms in the

model for 
onsisten
y. For parametri
 age fun
tions, imposing Equation 5.2 involves

res
aling the age fun
tion by either a 
onstant or with a fun
tion of the free parameters,

θ(i) (i.e., ensuring that the age fun
tion is �self-normalising�). This is dis
ussed further

in Appendix 5.A and Chapter 3.

In the interests of parsimony and demographi
 signi�
an
e, we believe that it is highly

desirable to �nd a simpler parametri
 form than the age fun
tion of the LC model to


apture the impa
t of the dominant trend within the data - ideally the simplest age

fun
tion that will 
apture the same trend. This parametri
 form should be 
ontinuous to

avoid any issues with the smoothness of proje
ted mortality rates. As the �tted βx age

fun
tion is positive a
ross the whole age range, it might be felt to represent a general im-

provement in mortality rates a
ross all ages. Appealing to this demographi
 signi�
an
e,

we therefore try the simplest possible age fun
tion - a 
onstant. As Figure 5.2 shows, this

simple age fun
tion e�e
tively 
aptures the same trend as the non-parametri
 βx fun
tion

with 100 fewer parameters, and a
hieves approximately 92% of the same improvement in

log-likelihood. We are therefore satis�ed that there is no need to use a more 
omplex and

less parsimonious age fun
tion, although we would expe
t that mu
h of the age stru
ture

present in the �tted βx will need to be 
aptured by subsequent age/period terms.
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Figures 5.2a and 5.2b shows the age and period fun
tions generated by Stage 1 of the

GP. We 
an see that the population has experien
ed sustained improvements in mortal-

ity whi
h have a

elerated slightly in re
ent years. The model also dete
ts the in
reased

mortality in 1951 owing to the in�uenza epidemi
 in that year whi
h a�e
ted mu
h of

England.

So far, so good, but a plot of the residuals - not shown here - indi
ates that additional

terms are ne
essary to fully 
apture all the stru
ture within the data.

5.4.3 Stage 2 - Se
ond age/period term

In order to �nd the next most signi�
ant age/period e�e
t within the data, we now add

another non-parametri
 age/period term to the model to arrive at

ln(µx,t) = αx + f (1)(x)κ
(1)
t + βxκ

(2)
t (5.4)

The �tted model gives the values of βx and κ
(2)
t shown in Figure 5.3. It is not a trivial

task to sele
t an appropriate parametri
 age fun
tion from the shape of βx and this is

where judgement be
omes important. By inspe
tion, the non-parametri
 age fun
tion

appears to have two 
omponents - an upward-sloping linear trend a
ross the entire age

range and a large �hump� superimposed on the age range 10 to 50. Sin
e we 
an assign

di�erent demographi
 signi�
an
e to ea
h of these features, it is appropriate that we

separate them into two di�erent age/period terms in the fully spe
i�ed model. However,

these trends will probably be highly 
orrelated whi
h is why the non-parametri
 fun
tion

has 
ombined them.

We 
hoose to �t a straight line as our 
hoi
e of f (2)(x) as it is a simpler potential fun
-

tion than one with a hump shape; indeed it is the simplest possible fun
tion after a


onstant. In our experien
e, a straight line is often the se
ond 
hoi
e of age fun
tion

that arises naturally when applying the GP, espe
ially for data restri
ted to higher ages.

This lends support for the use of the Cairns-Blake-Dowd 
lass of models. A straight

line 
an be interpreted as determining 
hanges in the slope parameter in a Gompertz

model of mortality for models with a logarithmi
 link fun
tion. This is related to the

�re
tangularisation� of the mortality 
urve, as a greater proportion of deaths at high age

o

ur around the median age of death. We also note that κ
(1)
t and κ

(2)
t are negatively


orrelated, 
onsistent with the Strehler-Mildvan law of mortality dis
ussed in Finkelstein
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(2012).

5.4.4 Stage 3 - Third age/period term

Our dis
ussion of the 
hoi
e of an appropriate age fun
tion at Stage 2 should give us a

strong idea as to the appropriate shape of the age fun
tion for Stage 3. The GP gives

us the eviden
e to support or reje
t our 
onje
ture by �rst extending the model with a

new non-parametri
 age/period term

ln(µx,t) = αx +

2
∑

i=1

f (i)(x)κ
(i)
t + βxκ

(3)
t (5.5)

The �tted non-parametri
 model gives the values of βx and κ
(3)
t shown in Figure 5.4. This


on�rms that a suitable 
hoi
e for f (3)(x) 
ould indeed be some form of hump-shaped

fun
tion 
entred around age 25 and so we experiment with

f (3)(x; x̂, σ) ∝ 1

σ
exp

(

−(x− x̂)2

σ2

)

(5.6)

This fun
tion has two free parameters, x̂ and σ whi
h, by analogy with the normal dis-

tribution, govern the lo
ation of the hump and its width. These are estimated using

Poisson maximum likelihood estimation. We 
hoose the starting values for these pa-

rameters by observing the pattern of the βx fun
tion, before applying our optimisation

algorithm. The �nal, �tted values should not be overly sensitive to the initial 
hoi
e. If

they are, this indi
ates that the 
hoi
e of age fun
tion may be inappropriate and will


ause problems with the model when additional terms are added.

The �nal �tted f (3)(x; x̂, σ) and κ
(3)
t fun
tions are shown in Figure 5.4. When adding

a new term to the model, we need to 
he
k that it does not signi�
antly alter the de-

mographi
 interpretation of the previous terms. Plots of the �rst two terms - not shown

here - indi
ate that they have not 
hanged signi�
antly due to the presen
e of the third

term.

Visual inspe
tion of the heat map of residuals in Figure 5.5 shows us that a) there ap-

pear to be additional age/period e�e
ts in the data, most obviously 
entred on age 0

and age 18 and b) there is a 
lear need for a 
ohort e�e
t in the model as shown by

the prominent diagonal lines on the heat map indi
ating features whi
h follow individual

years of birth as they age. The eviden
e gleaned from the heat map plot is useful when
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de
iding on subsequent terms, espe
ially when trying to determine if the shape shown

by an exploratory βxκt fun
tion is trying to approximate for a 
ohort e�e
t - something

we believe is essential to avoid.
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Figure 5.5: Heat map of residuals from Stage 3

5.4.5 Stage 4 onwards - Additional age/period terms

The format of the GP from Stage 4 onwards follows the same pattern as for Stages 1, 2

and 3: 
hoose an appropriate fun
tional form for the age term in order to 
apture the

main e�e
t revealed by the non-parametri
 βxκt term.

We have already dipped into our toolkit of age fun
tions, most notably by using the two-

parameter Gaussian fun
tion at Stage 3. Stage 4 and onwards require us to have a far

greater range of fun
tions available in the toolkit that we 
an potentially use. Appendix

5.A 
ontains a list of the parametri
 fun
tions 
onsidered in this analysis.

Figure 5.6 shows plots of the �nal �tted age fun
tions f (i)(x, θ(i)) and trends κ
(i)
t for

i = 4, 5, 6, 7. It is useful to note that the order of dis
overy of these fun
tional forms
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provides a natural order of importan
e for the age terms.

The age fun
tions we have �tted are:

• Stage 4: a broken linear fun
tion similar to the payo� of a put option, whi
h we


an asso
iate with 
hildhood mortality rates;

9

• Stage 5: a Rayleigh fun
tion, whi
h we asso
iate with the postponement of deaths

from late middle age to old age that results from medi
al improvements over the

past 60 years;

• Stage 6: a log-normal fun
tion 
entred on ages 18-19 whi
h we asso
iate with the

peak age of the a

ident hump; and

• Stage 7: a normal fun
tion 
entred on ages 55 to 65 whi
h may be asso
iated with

the major 
auses of death in late middle age, su
h as lung 
an
er and 
oronary

heart disease and the e�orts made to ta
kle them.

The residual heat map for Stage 7 (Figure 5.7) is dominated by the diagonal lines repre-

senting the 
ohort e�e
ts whi
h have been ex
luded from the model so far. This might

lead us to 
on
lude that we have extra
ted all of the important age/period e�e
ts from

the data. This is 
on�rmed by adding a further exploratory non-parametri
 term to the

model. Whilst the resulting BIC for the model does in
rease, there is little stru
ture to

the βx �tted (shown in Figure 5.8a) ex
ept for the periodi
 pattern at high ages whi
h

is 
learly trying to 
apture a series of 
ohort e�e
ts.

10

We therefore 
on
lude that, for

UK male data over the sample period, there are seven distin
t age/period e�e
ts in the

data.

9

This fun
tion 
an be thought of as a very simple linear spline with a single knot, similar to those

used as basis fun
tions in Aro and Pennanen (2011). More 
omplex splines 
ould also be 
onsidered as

part of the toolkit of age fun
tions.

10

We have tested whether the use of an indi
ator fun
tion at age 18 or a narrow, triangular �spike�

fun
tion 
entred on this age would improve the goodness of �t. However, when using the BIC whi
h

penalises for ex
essive parametrisation, the use of these fun
tions did not improve the �t of the model.

The use of an indi
ator fun
tion also leads to mortality rates at age 18 being �t perfe
tly whi
h does

not a

ord with our desire for parsimony and may lead to dis
ontinuous mortality rates whi
h are not

biologi
ally reasonable.
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Figure 5.7: Heat map of residuals from Stage 7

5.4.6 Stage 8 - Cohort term

The �nal stage is to add the 
ohort parameters γt−x to yield the �nal model

ln(µx,t) = αx +

7
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x

Due to the limited number of observations on very early and late 
ohorts, we do not

estimate 
ohort parameters in the �rst and last ten years of birth. Instead, we linearly

interpolate these to zero for smoothness. The �nal model gives the 
ohort parameters

shown in Figure 5.9. Adding a 
ohort term to the model also 
reates additional issues

with the identi�ability of the parameters, whi
h are solved by applying extra identi�a-

bility 
onstraints.

11

The full set of identi�ability 
onstraints required by the �nal model

produ
ed by the GP is given in Appendix 5.A.

From this, we 
an identify the major features of interest and 
an try to relate them to

the life histories of the a�e
ted 
ohorts. Most obviously, there is a 
lear dis
ontinuity

between years of birth 1918 and 1919. This may relate to the impa
t of the in�uenza

11

This issue is dis
ussed in Chapter 4.
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Figure 5.9: γt−x 
ohort e�e
ts from Stage 8 of the general pro
edure

epidemi
 that year. Alternatively, it 
ould be a data artefa
t 
aused by a �ood of births

after the First World War distorting the assumptions used to 
onstru
t exposures to risk

(for a dis
ussion, see Ri
hards (2008)). Following this is the de
line in 
ohort mortality

observed in Willets (1999, 2004) and dis
ussed in Murphy (2009) relating to the �golden


ohort� of individuals born in the late 1920's and early 1930's. We also observe a further

(although smaller) dis
ontinuity between 1945 and 1946 relating to the end of the Se
ond

World War, strengthening the data artefa
t argument presented in Ri
hards (2008). We

are unsure what demographi
 signi�
an
e the ex
ess 
ohort mortality observed for years

of birth between 1960 and 1980 has. These are individuals 
urrently aged between 30

and 50 and therefore we have limited mortality experien
e data for them and so any

attempt at assigning demographi
 signi�
an
e is somewhat spe
ulative. However, this

feature is robust when adjusting the range of the data for the model and when additional

age/period terms are added. This feature will be signi�
ant for proje
ting mortality rates

if this ex
ess mortality is 
ontinued later into life. Finally, we observe a distin
t 
ohort

e�e
t for individuals born around the year 1900 (whi
h again is robust to the model and

data spe
i�
ation). This may be due to the formative impa
t of experien
e during the

First World War as young men and the lifetime health e�e
ts this may have indu
ed.
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5.5 Testing the �nal model

Our �nal model 
onsists of the seven age period terms des
ribed in Table 5.1 plus terms

for the stati
 life table αx and the 
ohort parameters γt−x.

Term Des
ription f (i)(x) ∝ Demographi


Signi�
an
e

1 Constant 1 General level

of mortality

2 Linear x− x̄ �Gompertz slope�,

re
tangularisation

3 Normal exp
(

− (x−x̂)2

σ2

)

Young adult

mortality

4 �Put option� (xc − x)+ Childhood

mortality

5 Rayleigh (x− x̂) exp
(

−ρ2(x− x̂)2
)

Postponement of

old age mortality

6 Log-normal

1
x exp

(

− (ln(x)−x̂)2

σ2

)

Peak of

a

ident hump

7 Normal exp
(

− (x−x̂)2

σ2

)

Late middle /

old age mortality

Table 5.1: Age/period terms in the �nal model

Figure 5.10 shows (on a logarithmi
 plot) the 
ontribution ea
h of these terms makes to

improving the goodness of �t (measured by the BIC) of the model. It 
an be seen that

the majority of the improvement in goodness of �t 
omes from the �rst three age/period

terms. However, the other terms (as well as being statisti
ally and demographi
ally sig-

ni�
ant) are still important in des
ribing genuine stru
ture in the data su
h as the level

of inequality in lifespan in the population, des
ribed by measures su
h as the entropy

or Gini 
oe�
ient of the life table (for instan
e, see Shkolnikov et al. (2003)). Without

them, the 
ohort term - as the �nal 
at
h-all term added to the model - would attempt

to 
apture this stru
ture, leading to it being wrongly spe
i�ed and generating ina

urate

and implausible fore
asts of mortality rates when proje
ted.

Our �nal model should, ideally, satisfy the desirable properties relating to the adequa
y

and goodness of �t of the model dis
ussed in Se
tion 5.2. Spe
i�
ally

1. it should provide a good and parsimonious �t to the data (whi
h should have been

a
hieved through the model �tting pro
edure);
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Figure 5.10: Improvement in goodness of �t at di�erent stages of the general pro
e-

dure

2. it should extra
t all of the signi�
ant stru
ture from the data, leaving residuals

whi
h are independent and identi
ally distributed; and

3. it should give parameter estimates whi
h are robust to small 
hanges in the data.

To test for stru
ture within the standardised devian
e residuals, we extend the pro
edures

in Dowd et al. (2010
). We �rst plot the heat map shown in Figure 5.11. This shows an

apparent la
k of any major age/period or 
ohort features and there are very few �hot�

and �
old� regions or 
lusters in the plot. We then 
al
ulate the sample moments of

the residuals whi
h are shown in Table 5.2. With large exposures and death 
ounts and

assuming the residuals have 
onstant varian
e, we 
an use an approximation to assume

that they are N(0, 1) variables under the null hypothesis and so use the Jarque-Bera

statisti
 to test for this.

The 
riti
al statisti
 for the Jarque-Bera test at 95% is 5.99, whilst at 99% it is 9.21.

This means that we de
isively reje
t the assumption of normality for the standardised

devian
e residuals. Next, we 
onsider the 
orrelations of the residuals with those adja
ent
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Figure 5.11: Heat map of residuals from Stage 8

Residual Standard Residual Residual Jarque-Bera

mean deviation skewness kurtosis statisti


General pro
edure -0.01 0.94 -0.03 3.38 37.70

Lee-Carter -0.02 0.98 0.47 9.75 11,700

PCA 0.00 0.94 0.06 3.26 21.25

Table 5.2: Properties of the residuals from Stage 8 of the general pro
edure and the

Lee-Carter and PCA models

in the age and period dire
tions, i.e.

ρXx = corr(ǫx−1,., ǫx,.)

ρTt = corr(ǫ.,t−1, ǫ.,t)

Figure 5.12 shows the plot of these 
orrelations against age and year and the relevant

statisti
s if we test against the null hypothesis of independen
e (a two-tailed test at 95%

signi�
an
e) for the �nal model from the general pro
edure. Clearly, the hypothesis of

independen
e is not supported overall. Testing these jointly (i.e., as a series of indepen-

dent binomial trials where the probability of failure is 5% under the null) 
on�rms the

la
k of independen
e in both the age and period dire
tions at the 99% level.
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This la
k of normality and independen
e should be investigated further. In pra
ti
e, this

may be due to isolated outliers (often 
aused by data errors) or due to stru
tural 
hanges

within the data. This would 
ause the varian
e of the residuals to 
hange with age or

time. Plots of the residuals from the model against age, period and 
ohort (not shown)

indi
ate that there are no extreme outliers that would need to be investigated and that

the varian
e of the residuals is roughly 
onstant. Therefore, it is probable that there is

unexplained stru
ture remaining within the data whi
h is not 
aptured by the model.

However, 
omparing these results to those from the PCA model and other models su
h

as the Lee-Carter model show that the GP gives results whi
h are at least as good as

those from alternative mortality models.

12
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Figure 5.12: Correlations and tests statisti
s for residuals from the general pro
edure

We also perform a number of tests of the robustness of the model to 
hanges in the data.

These in
lude:

1. Fitting the model to di�erent periods of data by in
reasing the start date sequen-

tially from 1950 to 1980;

12

We will 
ompare the relative performan
e of alternative mortality models in Se
tion 5.6.
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2. Bootstrapping the standard devian
e residuals using a method based on the pro-


edure of Koissi et al. (2006) to test the extent of parameter un
ertainty; and

3. Removing ages and years from the data by setting their weights to zero to test that

none of the age/period fun
tions are overly sensitive to spe
i�
 ages and years.

The �rst of these tests is based on the pro
edure in Cairns et al. (2009). Graphs of the

�tted parameters (not shown but available from the authors) indi
ate that the model �ts

similar patterns for the evolution of the di�erent κ
(i)
t period fun
tions and slowly varying

age fun
tions as the age range of the data is 
hanged.

The se
ond robustness test we perform is to look at parameter un
ertainty under resid-

ual bootstrapping. Standard bootstrapping te
hniques, su
h as that implemented by

Koissi et al. (2006) were developed for use with the Lee-Carter model and assume that

the residuals from the model are independent. However, this assumption is not valid.

13

Nevertheless, for simpli
ity, we implement an approa
h based on this method of residual

bootstrapping in order to test our �nal model for parameter un
ertainty. This method

samples randomly from the �tted residuals and adds them to the �tted mortality surfa
e

to generate arti�
ial death 
ounts, to whi
h the model is re�tted to generate new param-

eter estimates. In this fashion, the degree of parameter un
ertainty 
an be as
ertained.

The plots in Figure 5.13 depi
t fan 
harts (see Dowd et al. (2010a)) showing the 90%


on�den
e interval for the period and 
ohort parameters produ
ed by this bootstrap-

ping pro
edure using 1,000 simulations. As 
an be seen, the underlying pattern of the

parameters remains un
hanged and there is no eviden
e to suggest that any terms are

not signi�
ant when allowan
e is made for parameter un
ertainty. The age fun
tions are

not shown, but these are 
onsiderably more robust to the e�e
t of parameter un
ertainty

than the period and 
ohort e�e
ts.

As a �nal test of the model, we systemati
ally remove ages and years from the data

by setting their weights to zeros and then re�tting the parameters. This tests if any of

the �tted fun
tions are overly sensitive to the spe
i�
 rows or 
olumns of the data grid,

and the model's ability to interpolate sensibly for missing data. Figures 5.14 and 5.15

shows the impa
t of this analysis on the 
ohort parameters γt−x and on the age/period

terms f (6)(x) and κ
(6)
t .

14

As 
an be observed, while removing spe
i�
 ages and years 
an

distort the 
ohort parameters at the end of the range of data, it does not substantially

13

More re
ently, strati�ed (see D'Amato et al. (2011)) and blo
k-bootstrapping (see Liu and Braun

(2010)) pro
edures have been used, as have those based on geo-statisti
al te
hniques whi
h look at the


orrelation stru
ture a
ross residuals (see Debón et al. (2008, 2010)).

14

This age/period term was 
hosen as the most spe
i�
 age fun
tion �tted and therefore probably the

most sus
eptible to un
ertainty under this analysis.
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a�e
t those estimated a
ross more data points in the 
entre of the range. κ
(6)
t is also

robust under this analysis.

15

. We are therefore satis�ed that our �nal model is robust

under small 
hanges to the data.

5.6 Comparison with alternative models

The model produ
ed by the GP in Se
tion 5.5 had some unexplained stru
ture a

ording

to our analysis of the residuals. How serious a problem is this? Perhaps the best way to

answer this question is to 
ompare the model from the GP with some alternative mortal-

ity models: the LC model (as the most widely used mortality model) and a method based

on prin
ipal 
omponent analysis whi
h extends the Lee-Carter approa
h with multiple

age/period and 
ohort terms.

The LC model, introdu
ed in Lee and Carter (1992) has subsequently been mu
h stud-

ied, developed and extended, most notably in the work of Lee (2000), Brouhns et al.

(2002a), Booth et al. (2002), Renshaw and Haberman (2003b, 2006) and Hyndman and

Ullah (2007). It has rapidly be
ome the ben
hmark mortality model against whi
h others

are 
ompared (for instan
e in Cairns et al. (2009) or Plat (2009a)) and so is a natural

starting point for 
omparing the model produ
ed by the GP against. However, it is a

relatively simple model with only one age/period term and no 
ohort term, and so we

would expe
t the GP to give signi�
antly better �ts to the data.

The singular value de
omposition used to �t the model to data in Lee and Carter (1992)

is a parti
ular implementation of prin
ipal 
omponent analysis (PCA) - see Huang et al.

(2009) for more details. It is therefore the natural extension of the Lee-Carter methodol-

ogy 
apable of giving multiple age/period terms. It �nds age and period fun
tions that

explain the maximum amount of varian
e (a
ross the period dimension) in the model.

PCA has long been used in the study of mortality rates: for example Wilmoth (1990)

used it to dete
t higher order age/period fun
tions, Booth et al. (2002) and Renshaw and

Haberman (2003b) both proposed its use to extend the Lee-Carter model with additional

age/period terms and the models of Hyndman and Ullah (2007) and Yang et al. (2010)

used it dire
tly to �t multiple age/period e�e
ts. However, it 
annot dire
tly �nd 
ohort

e�e
ts. Therefore a dire
t 
omparison of PCA with our model is not appropriate.

15

Corresponding graphs for the age fun
tions and other period fun
tions, not shown here, also show


onsiderable robustness.
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In order to 
ompare pro
edures, we use a method similar to that used in Wilmoth (1990).

We �rst use PCA to �nd age/period fun
tions for ln(µx,t) in the absen
e of 
ohort e�e
ts.

We then add a 
ohort e�e
t to the underlying model and use the PCA age/period e�e
ts

as the starting point when maximising the Poisson log-likelihood using the algorithms in

Appendix 5.A. This pro
ess is repeated for di�erent numbers of age/period terms and

the model with the highest BIC sele
ted for 
omparison against our �nal model.

5.6.1 Results

Table 5.3 
ompares the three models and shows the goodness of �t to our dataset. The

LC is a single fa
tor model and so it is unsurprising that the other two models give


onsiderably better �ts to the data, although at the 
ost of a far greater number of

parameters. The PCA method also requires substantially fewer age/period terms to

a
hieve a very similar goodness of �t to the model produ
ed by the GP. Be
ause ea
h

of these age fun
tions has approximately one hundred free parameters 
ompared with

a maximum of two using the GP, this does not result in a more parsimonious model,

however. Further, as we are primarily interested in the evolution of mortality rates over

the period, we 
onsider that it is desirable to have a high proportion of the parameters

relating to the period and 
ohort e�e
ts of interest. This is not the 
ase in the PCA

model.

Model No. A/P No. free Log- BIC

terms parameters likelihood

General pro
edure 7 679 −3.09 × 104 −3.38 × 104

Lee-Carter 1 259 −5.13 × 104 −5.25 × 104

PCA 3 735 −3.07 × 104 −3.39 × 104

Table 5.3: Goodness of �t for the di�erent models

Figures 5.16 and 5.17 show the age and period fun
tions for the GP and PCA pro
edure

- the age and period fun
tions for the LC model are the same as the non-parametri


terms shown in Figure 5.2. We �nd it di�
ult to assign demographi
 signi�
an
e to

the age fun
tions in the LC and PCA models. The 
ohort parameters for the GP and

PCA models are shown in Figure 5.18 - there is no 
orresponding plot for the LC model

due to the absen
e of a 
ohort term. Here it is worth noting the similarities as well as

the di�eren
es in the �tted parameters. Both approa
hes dete
t the dis
ontinuities after

the First and Se
ond World Wars and the in
rease in 
ohort mortality for years of birth

around 1900 and between 1960 and 1980.
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However, there are substantial di�eren
es in both the magnitude and the pattern of 
o-

hort parameters. Cohort e�e
ts for the GP are less pronoun
ed than those from the

PCA pro
edure. In addition, the PCA model fails to �nd a sustained de
rease in 
ohort

mortality for the �golden 
ohort� dis
ussed previously. Most seriously, there appear to

be large 
ohort e�e
ts at the beginning and end of the range of years of birth whi
h are

not explainable demographi
ally. We believe that these e�e
ts are trying to 
ompensate

for the se
ond and third age fun
tions in the PCA model, whi
h do not tend to zero at

high ages (as shown in Figure 5.17a). This has very serious e�e
ts when these models

are proje
ted into the future. We therefore believe that the 
ohort parameters produ
ed

by the GP are more biologi
ally reasonable and demographi
ally signi�
ant than those

�tted by the PCA pro
edure.

Table 5.2 above shows the moments and results of the Jarque-Bera tests on the residuals

for the three approa
hes. We note that none of the three models tested give normally

distributed standardised residuals, although the residuals from the GP and PCA models


ome 
onsiderably 
loser than those from the LC model.

We also 
ompare plots of the residual heat maps in Figure 5.19 and test for 
orrelation

amongst the standardised devian
e residuals in Figure 5.20 from the Lee-Carter and PCA

models in Figure 5.20 - 
omparable plots for the GP are shown in Figures 5.11 and 5.12

respe
tively. The heat maps for the Lee-Carter and PCA models shows obvious 
lusters

in the �tted residuals, indi
ating that there is still substantial stru
ture remaining in

the residuals of the PCA model. The LC residuals in parti
ular show the 
lear need

for a 
ohort term to 
apture the impa
t of the 
ohorts born after the First and Se
ond

World Wars. The PCA model yields residuals whi
h are 
loser to normality than the GP,

although they still do not pass the Jarque-Bera test. The 
orrelations a
ross residuals

from the PCA pro
edure are higher than from the GP. Probably this is due to the

smaller number of age/period terms. However, adding additional terms to the PCA

model results in worse BICs and therefore will not improve the goodness of �t. This

reinfor
es the 
on
lusion that there is still stru
ture in the data whi
h is not adequately


aptured by the PCA model.
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Figure 5.13: Parameter un
ertainty due to residual bootstrapping
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ertainty due to removal of one age of data
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Figure 5.15: Parameter un
ertainty due to removal of one year of data
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Figure 5.16: Age and period fun
tions for the general pro
edure
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Figure 5.18: Cohort parameters for the GP and PCA models

185



A
G
e
n
e
r
a
l
P
r
o


e
d
u
r
e
f
o
r
C
o
n
s
t
r
u


t
i
n
g
M
o
r
t
a
l
i
t
y
M
o
d
e
l
s

0 20 40 60 80 100
1950

1960

1970

1980

1990

2000

2010  

Age

 

Y
ea

r

Min

−3 StDev

−2 StDev

− StDev

−0.5 StDev

Med

0.5 StDev

StDev

2 StDev

3 StDev

Max

(a) Lee-Carter

0 20 40 60 80 100
1950

1960

1970

1980

1990

2000

2010  

Age

 

Y
ea

r

Min

−3 StDev

−2 StDev

− StDev

−0.5 StDev

Med

0.5 StDev

StDev

2 StDev

3 StDev

Max

(b) PCA

Figure 5.19: Residual heat maps for the Lee-Carter and PCA models
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Figure 5.20: Residual 
orrelations a
ross age and period for the Lee-Carter and PCA models
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5.7 Con
lusions

As the level of interest in longevity risk in
reases, it be
omes in
reasingly important to

be able to 
onstru
t more sophisti
ated mortality models reliably and robustly. These

will need to 
apture most of the identi�able stru
ture in mortality rates within the data

- whi
h 
alls for more terms - but to do so with the smallest number of free parameters

- whi
h 
alls for parsimony. Where 
ohort e�e
ts are believed to be real and important,

they will need to be 
aptured by the model. However, they must also be 
learly distin-

guished from age/period e�e
ts in order that they 
an be proje
ted 
orre
tly. This, in

pra
ti
e, means that all the signi�
ant age/period e�e
ts must be identi�ed before any

attempt is made to estimate the 
ohort e�e
t. Finally, terms within the model should be


apable of being asso
iated with underlying biologi
al or so
ial pro
esses. This requires

judgement to be used to guide their proje
tion and aid their 
ommuni
ation with other,

non-te
hni
al, stakeholders who are subje
t to longevity risk and wish to understand the

impli
ations.

In this 
hapter, we have introdu
ed a new, general pro
edure for 
onstru
ting mortality

models. The general pro
edure is driven by forensi
ally examining the data to provide

eviden
e for the sele
tion of ea
h and every term in the �nal model produ
ed. We believe

this improves the goodness of �t of the model parsimoniously and with demographi
 sig-

ni�
an
e. We have applied the general pro
edure to a spe
i�
 dataset, asso
iated ea
h

term generated with an underlying demographi
 and/or so
io-e
onomi
 fa
tor for the

population being modelled, analysed the residuals to 
on�rm that there is no identi�able

stru
ture remaining in the data whi
h is not 
aptured by the model, and 
ompared the

results with those from other methods of 
onstru
ting mortality models.

The general pro
edure requires the modeller to engage intelligently with the data and

make various subje
tive de
isions in its implementation. It is not a �bla
k box� algorithm

whi
h 
an be deployed me
hani
ally on various datasets, but rather requires a substan-

tial investment of time to understand the underlying for
es driving mortality within the

population of interest and how these for
es 
an be represented mathemati
ally. But far

from this being a disadvantage, we would argue that our approa
h a

ords perfe
tly with

good model building pra
ti
e, whi
h seeks to move beyond a purely algorithmi
 approa
h

in order to understand better the underlying stru
ture of the data.
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In 
on
lusion, we believe that the general pro
edure is 
apable of produ
ing models

whi
h are in a

ordan
e with the desirability 
riteria of adequa
y of �t to the data, de-

mographi
 signi�
an
e, parsimony, robustness and 
ompleteness (by in
luding su�
ient

terms to 
over all ages and 
ohorts).

However, we are aware that in order to be pra
ti
ally useful, a good �t to histori
al data

needs to be a

ompanied by the ability to use the model to make reliable fore
asts of

future mortality rates. Proje
ting models with multiple age/period and 
ohort terms


onsistently is a di�
ult problem as the histori
al time series are often highly 
orrelated

and display 
urvature, outliers or subtle trend 
hanges whi
h need to be a

ommodated

(as have been des
ribed in Li and Chan (2005), Li et al. (2011) and Coelho and Nunes

(2011)). We address these issues in Chapters 6 and 8.

5.A Appendix: Algorithms and toolkit of fun
tion

In order to implement the general pro
edure, we need the ability to introdu
e new terms

to existing models and to �t these to data. At ea
h stage, all parameters within the

model are freely estimated (although the values found at previous stages are used as


onvenient starting points for later stages of the maximisation algorithm). The ex
ep-

tion to this is when new non-parametri
 terms are added to the model and the previously

�tted age fun
tions are not re-estimated as this often leads to model instability. As these

terms are added purely for exploratory purposes and all parameters will be re-estimated

on
e they are repla
ed with suitable parametri
 forms, we do not believe this will have

a signi�
ant impa
t on the �nal model.

As we have 
entral exposures to risk from the Human Mortality Database (Human Mor-

tality Database (2014)), we adopt a Poisson likelihood maximisation approa
h whi
h

enables us to do this qui
kly and e�
iently. This pro
edure is based on that imple-

mented in Brouhns et al. (2002a) and is des
ribed in Algorithm 1 at high level below.

The �tting algorithm used by the general pro
edure di�ers from the Brouhns et al.

(2002a) method in that the log-likelihood is maximised with respe
t to ea
h set of pa-

rameters sequentially rather than simultaneously. It 
ould be argued that this may lead

the algorithm to �nd lo
al rather than global maxima for the parameter values. In

pra
ti
e, we have not found this to be an issue and believe it 
an be largely resolved

through �nding the full set of identi�
ation issues for the parameters within the model
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Algorithm 1 Algorithm for Poisson likelihood maximisation

1: Set initial starting values and 
al
ulate initial log-likelihood

2: while In
rease in log-likelihood less than threshold value (e.g. 10−2
) do

3: Maximise log-likelihood with respe
t to αx holding all other parameters 
onstant

4: for Ea
h age/period term i do

5: Maximise log-likelihood with respe
t to κ
(i)
t holding all other parameters 
on-

stant

6: Maximise log-likelihood with respe
t to free-parameters θ(i) in age fun
tion

f (i)(x; θ(i)) or with respe
t to βx holding all other parameters 
onstant

7: end for

8: Maximise log-likelihood with respe
t to γt−x holding all other parameters 
onstant

if model 
ontains a 
ohort term

9: Impose identi�ability 
onstraints through use of invariant transformations

10: Cal
ulate updated log-likelihood

11: end while

12: Cal
ulate residuals and BIC

(as dis
ussed in Chapters 3 and 4). The maximisation of ea
h set of parameters (i.e.

ξ = αx, βx, κ
(i)
t , γc, θ

(i)
) is done as per Algorithm 2 below.

Algorithm 2 Algorithm for maximisation of individual parameters

1: Start with values for maximisation passed from parent algorithm

2: while In
rease in log-likelihood less than threshold value (e.g. 10−4
) do

3: Cal
ulate �rst derivative of log-likelihood with respe
t to parameters

∂L
∂ξ

4: Cal
ulate se
ond derivative of log-likelihood with respe
t to parameters

∂2L
∂ξ2

5: Update estimate of parameters ξ̂ = ξ − φ
∂L
∂ξ

∂2L
∂ξ2

6: Impose identi�ability 
onstraints, e.g. on the level of κ
(i)
t , using invariant trans-

formations

7: Update �tted surfa
e µx,t and log-likelihood

8: end while

9: Return updated parameter estimates, �tted mortality rates and log-likelihood to

parent algorithm

This is nothing more than the repeated appli
ation of the Newton-Raphson pro
edure.

The parameter φ ∈ (0, 1] is a simple s
aling whi
h 
an be lowered to improve the stability

of parameter estimates (albeit at the 
ost of in
reasing the run time of the algorithm).

In most 
ases, the parameter sets are treated as ve
tors meaning that

∂2L
∂ξ2

is the Hessian

matrix. However, this matrix usually has a diagonal stru
ture (e.g.

∂2L
∂αx∂αy

= 0 for

x 6= y) whi
h simpli�es the implementation signi�
antly.

Models produ
ed by the GP will not be fully identi�ed and so will require additional

identi�ability 
onstraints to be robustly estimated. A dis
ussion of the origin and nature

of this la
k of identi�ability and the sele
tion of appropriate identi�ability 
onstraints
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was given in Chapters 3 and 4. In summary, we impose the following identi�ability


onstraints upon the �nal model from Stage 8.

∑

t

κ
(i)
t = 0 ∀i (5.7)

∑

x

|f (i)(x; θ(i))| = 1 ∀i (5.8)

∑

y

nyγy = 0 (5.9)

∑

y

nyγy(y − ȳ) = 0 (5.10)

∑

y

nyγy((y − ȳ)2 − σy) = 0 (5.11)

Not all of these 
onstraints will be appli
able at all stages (e.g., the 
onstraints in Equa-

tions 5.9, 5.10 and 5.11 will not apply to models without a 
ohort term) whilst for models

with a non-parametri
 age fun
tion, we require the additional 
onstraints below.

∑

x

|βx| = 1 (5.12)

∑

x

βxf
(i)(x; θ(i)) = 0 ∀i (5.13)

(5.14)

We refer to Equations 5.8 and 5.12as the normalisation of the age fun
tion. In 
ontrast to

some authors (e.g. Haberman and Renshaw (2009)) we do not require that age fun
tions

are non-negative. In order to normalise age fun
tions with free parameters θ(i), we must

modify the form of the age fun
tion so that

∑

x |f (i)(x; θ(i))| is not a fun
tion of θ(i).

This means that the normalisation s
heme in Equation 5.8 holds as θ(i) is varied when

�tting the model. This is usually a
hieved by multiplying it by a �self-normalisation�

fun
tion N(θ(i)). This was dis
ussed in greater depth in Chapter 3. Equation 5.13 is

only applied in exploratory models with a non-parametri
 term in order to maximise the

distin
tness of the age/period terms.

The fun
tions in the toolkit we have developed so far are given in Table 5.4 along

with the free parameters they require and the self-normalisation fun
tions N(θ(i)). In

this, the age range is assumed to run from age 1 to age X with x̄ = 1
X

∑X
x=1 x and

σx = 1
X

∑X
x=1(x − x̄)2. Some of these normalisations are only approximate or are true

up to a 
onstant, so it is still ne
essary to res
ale the age fun
tions after applying Algo-

rithm 2 to optimise the value of the free parameters. Similar de�nitions for ȳ and σy are
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used in Equations 5.9, 5.10 and 5.11.

Name

Fun
tion Normalisation

Free Parameters

f(x) ∝ N(θ)

Constant 1 1
X none

Linear x− x̄
1

x̄(x̄+1) none

Quadrati
 (x− x̄)2 − σx
1
12X(X + 2)2 none

�Put option� (xc − x)+ 1
xc(xc−1) xc - pivot

�Call option� (x− xc)
+ 1

(X−xc)(X−xc−1) xc - pivot

Exponential exp(−λx) 1− exp(−λ) λ - width

Gumbel exp(exp(−λx)) λ λ - width

Spike

(x− (xc − a))I(xc − a ≤ x < xc)+ 1
a

xc - peak

((xc + a)− x)I(xc ≤ x < xc + a) a - width

Normal exp
(

− (x−x̂)2

σ2

)

1
σ

x̂ - lo
ation

σ - width

Log-Normal

1
x exp

(

− (ln(x)−x̂)2

σ2

)

1
σ

x̂ - lo
ation

σ - width

Rayleigh (x− x̂) exp(−ρ2(x− x̂)2) 0.5ρ2
x̂ - lo
ation

ρ - width

−1

Ellipse

√

1− (x−x̂)2

a2
2
aπ

x̂ - lo
ation

a - width

Table 5.4: Age fun
tions in toolkit

Figure 5.21: Age fun
tions in toolkit
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Chapter 6

Consistent Mortality Proje
tions

Allowing for Trend Changes and

Cohort E�e
ts

6.1 Introdu
tion

The last two de
ades have seen dramati
 
hanges in the modelling and management

of longevity risk, both in theory and in pra
ti
e. One important 
hange has been the

swit
h from using deterministi
 models based on expert judgement to sto
hasti
 models

whi
h extrapolate the observed trends within the data to give probabilisti
 fore
asts of

mortality rates.

The extrapolative approa
h to proje
ting mortality has the 
ore assumption that there

is 
onsisten
y between the evolution of mortality rates in the past and the future. After

all, today is both yesterday's future and tomorrow's past. While it is easy to 
riti
ise

this assumption as simplisti
 - as, for example, Gutterman and Vanderhoof (1998) do -

and point out the many potential new advan
es in medi
ine whi
h may o

ur in future,

it is important to remember that the past also experien
ed profound innovations that we

take for granted today. Revolutions in the provision of health
are, new epidemi
s and

pandemi
s, and 
hanges in lifestyle have all a�e
ted mortality rates in developed 
oun-

tries sin
e the Se
ond World War. It therefore seems reasonable to use the experien
e

gained from analysing past developments to help us with fore
asting the future.
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When using extrapolative mortality models, there is a fundamental symmetry between

the pro
esses of �tting the model to histori
al observations in order to estimate parame-

ters, on the one hand, and proje
ting parameter values to generate future observations,

on the other. It is important that the models we use to proje
t mortality genuinely

a
hieve 
onsisten
y between the past and the future. This ensures that our proje
tions

are as similar to those observed in the histori
al data as possible, both in their 
entral

estimates of future mortality rates and in the levels of un
ertainty around these esti-

mates. For example, when we �t models to the past, we often see 
hanges in trends

in the parameters. For 
onsisten
y, similar trend 
hanges should also be present in our

proje
tions of these parameters in the future. We must also take 
are when looking at

the lifelong features of mortality a�e
ting spe
i�
 
ohorts, sin
e our data only shines a

partial light on the life histories of those 
ohorts with members who are still alive.

We must be aware of the arbitrary 
hoi
es we make when �tting a model to data, for

instan
e, our 
hoi
e of whi
h 
onstraints to apply in order to identify the parameters in a

model fully. Di�erent 
hoi
es imply di�erent interpretations of the parameters, but not

the �tted mortality rates themselves, and therefore it is important to ensure that these


hoi
es do not 
hange our proje
ted mortality rates either. This subje
t is 
onsidered

in depth in Chapters 3 and 4 for general age/period/
ohort mortality models. In this

study, we apply the prin
iples established in those studies to the spe
i�
 
ontext of the

mortality model 
onstru
ted in Chapter 5 to see how they are applied in pra
ti
e and

the impa
t they make on the proje
tion of mortality rates.

This 
hapter dis
usses the extrapolative approa
h to proje
ting mortality and some of

the 
riti
isms of it in Se
tion 6.2. It then reviews the mortality model developed in

Chapter 5 for men in the UK using the �general pro
edure� in Se
tion 6.3 and proposes a

number of new te
hniques to proje
t mortality a
ross periods and along 
ohorts in Se
-

tions 6.4 and Se
tion 6.5. These te
hniques attempt to ensure that there is 
onsisten
y

between the past and the future whi
h is independent of our arbitrary 
hoi
es made

when �tting the model. They are presented in the 
ontext of the model developed in

Chapter 5, however, they 
an be applied more generally to any age/period/
ohort mor-

tality model, su
h as those dis
ussed in Chapter 2. Doing so allows us to obtain more

a

urate fore
asts of mortality rates in the short term, but also gives greater variability

in our long-term fore
asts. In Se
tion 6.6, we show this by using a ba
ktesting exer
ise

to demonstrate the improvements in short-term predi
tive power and then demonstrate

how standard proje
tion methods may understate both the expe
ted values and the risk-

iness of annuities in payment for example. An additional bene�t of these new te
hniques

is more e�e
tive risk management, as traditional te
hniques may understate the risks in
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providing long-term bene�ts.

6.2 The extrapolative approa
h to proje
ting mortality rates

The extrapolative approa
h to proje
ting mortality analyses the patterns in the evolution

of mortality rates statisti
ally and then uses time series methods to proje
t these into

the future. It therefore has, as a 
entral assumption, that there is 
onsisten
y between

the past and the future. As Booth (2006, p. 550) said

Extrapolative methods are essentially atheoreti
al; the only assumption is

that the future will be (in some sense) a 
ontinuation of the past. This is

their strength, but it is also their fundamental weakness: histori
al patterns

may not be the best guide to the future, notably be
ause 
hanges in the trend,

or stru
tural 
hanges, may be missed. Extrapolative methods make no use

of exogenous variables: they do not in
orporate 
urrent knowledge about

a
tual and prospe
tive developments in relevant areas su
h as medi
ine and

new diseases, lifestyles and the e
onomy.

This embodies the 
entral 
riti
ism of the extrapolative method; that a failure to under-

stand and in
orporate information regarding medi
al progress and so
io-e
onomi
 fa
tors

makes extrapolative proje
tions unsuitable, as dis
ussed in Gutterman and Vanderhoof

(1998). A lot of resear
h has been 
ondu
ted into analysing these exogenous 
auses

and their impa
t on mortality rates, for instan
e in Manton et al. (1980), Ruhm (2000,

2004), Rei
hmuth and Sarferaz (2008), Gaille and Sherris (2011) and Hanewald (2011).

However, it is fair to say that we are still a long way from truly understanding these un-

derlying fa
tors. As stated by Andreev and Vaupel (2006): �Cause-spe
i�
 fore
asts are

of less bene�t to long-term fore
asts than they are to the short-term variant, however, due

to the 
urrent la
k of knowledge about disease etiology and about the fa
tors underlying

mortality trends in the distant future.� A similar point is made in Continuous Mortality

Investigation (2004): �if the explanatory variables themselves are as di�
ult to predi
t

as the dependent variables (or indeed more so), then the proje
tion's reliability will not

be improved by in
luding them in the model�. Beyond this, Wilmoth (1998) observed

that �even if we understood these intera
tions and wanted to predi
t future mortality on

the basis of a theoreti
al model, we would still need to anti
ipate trends in ea
h of its


omponents� and, hen
e, we are still left with a problem of extrapolation.
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We, therefore, believe that, whilst the analysis of the exogenous 
auses of 
hanging

mortality rates is important to understanding the past, it is not a useful method for

making long-term proje
tions into the future. We are for
ed by ne
essity to adopt an ex-

trapolative approa
h for most pra
ti
al purposes, espe
ially those requiring model-based

sto
hasti
 fore
asts of mortality rates, su
h as risk management in the life insuran
e

industry.

Furthermore, exponents of exogenous 
ause based models often start from the assumption

that we exist at a privileged point in human history. This assumption 
an be optimisti
,

as in de Grey (2006), whi
h argued that revolutions in the understanding of human

geneti
s and biology just around the 
orner. Alternatively, this assumption 
an be pes-

simisti
, as in Olshansky et al. (1998), whi
h argued that we are approa
hing a hard

limit in human longevity based on the fundamental obsoles
en
e programmed into the

human body beyond reprodu
tive ages, or in Olshansky et al. (2005), whi
h argued that

the rise in obesity will soon threaten the in
reases in longevity we have witnessed to date.

However, arguments su
h as these are not unique to the present time. The past 
entury

and more has been one of 
ontinuous medi
al progress (antibioti
s, va

inations, trans-

plants, et
), but with new threats 
ontinuously arising (smoking, HIV/AIDS, obesity,

et
). Wilmoth (1998) pointed out that � extrapolations of past mortality trends assume,

impli
itly, a 
ontinuation of so
ial and te
hnologi
al advan
e on a par with these earlier

a
hievements�. However, at every point within the past 
entury, there were individuals

making arguments very similar to those seen today, and that the time in whi
h they lived

was unlike any other whi
h had 
ome before and would 
ome afterwards. What has been

observed, however, is a steady improvement in human health and longevity, whi
h is

remarkable both for its enduran
e and its regularity. It is �This 
ombination of stability

and 
omplexity should dis
ourage us from believing that singular interventions or barri-

ers will substantially alter the 
ourse of mortality de
line in the future� (Wilmoth (1998)).

We, therefore, dispute the argument that 
onsisten
y between the past and future when

proje
ting mortality rates is, in fa
t, a weakness of the extrapolative approa
h. If we wish

to understand what 
hanging mortality rates look like during periods of rapid 
hanges in

medi
ine, lifestyle and so
iety, then that information is available in the histori
al re
ord.

In analysing UK mortality data sin
e 1950, for instan
e, we are basing our fore
asts on

a period of time whi
h has witnessed far-rea
hing 
hanges in lifestyle (for instan
e, the

prevalen
e of smoking and the impa
t of diet on health) and medi
ine. It is also a period

whi
h saw a number of in�uenza pandemi
s (in 1951, 1957/58, 1968/69 and 2009) as well

as the emergen
e of new diseases su
h as HIV. In short, we believe that 
areful analysis

of the past and proje
tions based upon this analysis if fully able to a

ommodate these
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riti
isms of the extrapolative approa
h.

When making extrapolative fore
asts of mortality, it is, therefore, important to 
onstru
t

a mortality model whi
h is fully 
apable of 
apturing the information in the histori
al

data. For that reason, in Se
tion 6.3, we use the �general pro
edure� (GP) des
ribed in

Chapter 5 to 
onstru
t a mortality model whi
h 
an identify as mu
h of the stru
ture in

the histori
al data as parsimoniously as possible. However, in order to make proje
tions,

we must ensure that the time series pro
esses used to proje
t the parameters in su
h

models 
an repli
ate the features observed in the past. To this end, in Se
tion 6.4, we

introdu
e a method for dete
ting and proje
ting trend 
hanges in the period parame-

ters, and so address, at least partially, the 
riti
ism in Booth (2006) quoted above. For

the 
ohort parameters, however, we su�er from the issue that we only have in
omplete

observations on generations whi
h are still alive, and therefore require that the un
er-

tainty in our parameter estimates for 
urrently living generations blends smoothly into

our proje
tions for future years of birth. We dis
uss how this 
an be a
hieved in Se
tion

6.5.

This is not to say, however, that events unpre
edented in the histori
al re
ord 
ould not

o

ur in future and have an important impa
t on future mortality rates. However, by

de�nition, su
h events 
annot be anti
ipated in advan
e and all attempts to do so are,

ne
essarily, somewhat spurious. Certainly, unpre
edented events should not form the ba-

sis of a �best estimate� of future mortality rates, but should only be in
luded as unusual

or �extreme� s
enarios. Exploring the impa
t of unpre
edented events via s
enario anal-

ysis 
an be a useful tool to explore some extreme situations. However, it 
annot perform

any degree of quanti�
ation of the risk of these events o

urring. In addition, the extrap-

olative approa
h is useful for establishing where su
h �extreme� s
enarios should start

from, by de�ning the limits of what is normal. For example, an extreme s
enario based

on an event unpre
edented in the histori
al re
ord must, by de�nition, produ
e an impa
t

that is greater than, say, two standard deviations of the 
entral fore
ast produ
ed by an

extrapolative approa
h using the past 50 years of data. However, we believe that su
h a

subje
tive s
enario analysis should only be performed after statisti
al and extrapolative

proje
tions have been produ
ed, to examine the reasonableness of the proje
tions, give

insights into the tails of the proje
ted distribution of mortality rates and allow results

to be 
ommuni
ated with non-spe
ialist stakeholders, rather than as the primary means

of fore
asting the future.
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6.3 Fitting the past and identifying the model

We �rst use the GP to 
onstru
t a suitable mortality model for data from the Human

Mortality Database (2014) for men aged 0 to 100 in the UK over the period 1950 to

2009. The GP 
onstru
ts a bespoke mortality model in the 
lass of age/period/
ohort

models dis
ussed in Chapter 2, of the form

ln(µx,t) = αx +

7
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x (6.1)

where

• age, x, is in the range [0, 100], period, t, is in the range [1950, 2009] and therefore

that year of birth, y, is in the range [1850, 2009];

• αx is a stati
 fun
tion of age;

• κ
(i)
t are period fun
tions governing the evolution of mortality with time;

• f (i)(x; θ(i)) are parametri
 age fun
tions (in the sense of having a spe
i�
 fun
tional

form sele
ted a priori) modulating the impa
t of the period fun
tion dynami
s over

the age range, potentially with free parameters θ(i);1 and

• γy is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon a 
ohort's

year of birth and follow that 
ohort through life as it ages.

A summary of the terms in the models and their demographi
 signi�
an
e

2

is given in

Table 6.1 and the age and period fun
tions shown in Figures 6.1a and 6.1b, respe
tively.

Many mortality models are not fully identi�ed. This means that we 
an �nd transforma-

tions of the parameters

3

in the model whi
h leave the �tted mortality rates un
hanged.

To uniquely spe
ify the parameters, we impose identi�ability 
onstraints. These 
on-

straints are arbitrary, in the sense that they do not a�e
t the �t to data, but they do

allow us to impose our desired demographi
 signi�
an
e on the terms in the model. These

issues are dis
ussed in detail in Chapters 3 and 4.

1

For simpli
ity, the dependen
e of the age fun
tions on θ(i) is supressed in the notation used in the

remainder of this 
hapter, but not in the model itself.

2

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of a model

in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in mortality rates

whi
h generate them.

3

These are 
alled �invariant transformations� in Chapters 3 and 4.
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Term Des
ription Demographi
 signi�
an
e

αx Stati
 age fun
tion Constant shape of mortality 
urve

f (1)(x)κ
(1)
t Constant age fun
tion Level of mortality 
urve

f (2)(x)κ
(2)
t Linear age fun
tion Slope of mortality 
urve

f (3)(x)κ
(3)
t Gaussian age fun
tion Young adult mortality

f (4)(x)κ
(4)
t �Put option� age fun
tion Childhood mortality

f (5)(x)κ
(5)
t Rayleigh age fun
tion Postponement of old age mortality

f (6)(x)κ
(6)
t Log-normal age fun
tion Peak of a

ident hump

f (7)(x)κ
(7)
t Gaussian age fun
tion Late middle / old age mortality

γy Cohort parameters Lifelong year of birth e�e
ts

Table 6.1: Terms in the �nal model of Chapter 5

0 20 40 60 80 100
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Age

 

 

f(1)(x)

f(2)(x)

f(3)(x)

f(4)(x)

f(5)(x)

f(6)(x)

f(7)(x)

(a) Age fun
tions

1950 1960 1970 1980 1990 2000 2010
−60

−50

−40

−30

−20

−10

0

10

20

30

40

Year

 

 

κ(1)
t

κ(2)
t

κ(3)
t

κ(4)
t

κ(5)
t

κ(6)
t

κ(7)
t

(b) Period fun
tions

Figure 6.1: Age and period fun
tions for the mortality model

In the 
ontext of the model generated by the GP for the UK, we impose the following

standard identi�ability 
onstraints

∑

t

κ
(i)
t = 0 ∀i (6.2)

∑

x

|f (i)(x)| = 1 ∀i (6.3)

These identi�ability 
onstraints, respe
tively, allow us to:

• set a 
onsistent level for ea
h of the period fun
tions, so that they represent devi-

ations from an �average� level of mortality in the period, and

• sele
t age fun
tions a priori so that they have a 
onsistent normalisation s
heme.

This enables us to 
ompare the magnitudes of the period fun
tions with ea
h other

and between populations and gauge their relative importan
e.
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However, using the results of Chapter 4, we observe that the following transformations

involving the 
ohort parameters leave the �tted mortality results un
hanged

4

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − a0, κ

(1)
t , κ

(2)
t , γy + a0} (6.4)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx + a1(x− x̄), κ

(1)
t − a1(t− t̄), κ

(2)
t , γy + a1(y − ȳ)} (6.5)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − a2((x− x̄)2 − σy + σt), κ

(1) − a2((t− t̄)2 − σt),

κ
(2)
t + 2a2(t− t̄), γy + a2((y − ȳ)2 − σy)} (6.6)

The degrees of freedom represented by the free parameters a0, a1 and a2 in these trans-

formations need to be used to impose three identi�ability 
onstraints on the 
ohort

parameters when �tting the model. We 
hoose these to be

∑

y

nyγy = 0 (6.7)

∑

y

nyγy(y − ȳ) = 0 (6.8)

∑

y

nyγy((y − ȳ)2 − σy) = 0 (6.9)

where ny is the number of observations of ea
h 
ohort in the data. The justi�
ation

for these 
onstraints is that they appear to remove polynomial trends up to quadrati


order in the 
ohort parameters at the �tting stage, so that they 
onform better with

the demographi
 signi�
an
e des
ribed in Chapter 2, i.e., that the 
ohort parameters

should be 
entred around zero and not have any long-term trends. It is important to

note that the 
hoi
e of these 
onstraints is still arbitrary and it is important that they

do not a�e
t our proje
tions of mortality rates. This will in�uen
e our 
hoi
es for the

time series models we use to proje
t the parameters in Se
tions 6.4.1 and 6.5 below.

6.4 Period fun
tions

The �tted period parameters given in Figure 6.1b exhibit the following features:

4

Here, x̄ = 1
X

∑

x x, σx = 1
X

∑

x(x− x̄)2 and X is the number of ages in the data, and similarly for

t̄, ȳ, et
. These 
onstants have been introdu
ed to maintain the 
onstraint that

∑

t κ
(i)
t = 0. Also note

that, to aid understanding these 
omplex relationships, Equations 6.4, 6.5 and 6.6 do not in
orporate the

normalisation fa
tors required on the age fun
tions in order to ensure that

∑

x |f
(i)(x)| = 1 ∀i. These

will need to be in
luded before the model is �tted to data.
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• Most (but not all) of them appear to be non-stationary, a

ording to statisti
al

tests su
h as the ADF test.

5

• The time series appear to be 
orrelated, sometimes highly so. For instan
e, κ
(2)
t

and κ
(3)
t have a sample 
orrelation of 92.6%.

• Some of the time series appear to show one or more 
hanges in trend over the

period.

6

Our proje
tions of the parameters should in
orporate these features to ensure that our

fore
asts of the future are not systemati
ally di�erent from the stru
ture observed in the

histori
al data.

The period fun
tions in mortality models have typi
ally been proje
ted using random

walks with drift

κ
(i)
t = κ

(i)
t−1 + µ

(i)
0 + ǫ

(i)
t (6.10)

The use of this pro
ess for the period fun
tions runs from the earliest sto
hasti
 mortal-

ity model in Lee and Carter (1992), through Cairns et al. (2006a), to the more re
ent

models in Plat (2009a), Cairns et al. (2011a) and Haberman and Renshaw (2011). In

some 
ases, this time series pro
ess was sele
ted after performing a Box-Jenkins analysis

(e.g., Lee and Carter (1992)). In others, the pro
ess was 
hosen a priori without any

statisti
al justi�
ation (e.g., Cairns et al. (2006a)), but based on its ability to produ
e

biologi
ally reasonable

7

fore
asts of mortality rates.

The random walk with drift model has a number of desirable 
hara
teristi
s whi
h make

it an attra
tive pro
ess to use when proje
ting the period fun
tions. It has a de�nite

trend, allowing for mortality rates to de
rease with time. It also has non-stationary

variation around this trend, i.e., our proje
tions get more variable as we make fore
asts

further into the future, whi
h is important for making long-term proje
tions. Further,

it is not mean-reverting around this trend, and has a long memory of histori
al mortal-

ity sho
ks. By giving non-stationary and 
orrelated period fun
tions, the multivariate

5

In parti
ular, κ
(6)
t is found to be stationary at the 5% level, whilst all other period fun
tions are

found to be non-stationary.

6

Some studies refer to these as �stru
tural breaks� rather than �trend 
hanges�. In this study, we use

the terms �trend 
hange� and �stru
tural break� as synonyms.

7

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.
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random walk with drift is also 
onsistent with the �rst two observations in the histor-

i
al data des
ribed above.

8

For these reasons, a multivariate random walk with drift

has be
ome the standard pro
ess for proje
ting period fun
tions in mortality models and

has therefore been used in the �naïve� proje
tions of mortality we introdu
e in Se
tion 6.6.

6.4.1 Identi�ability of proje
tions

When proje
ting mortality rates, it is important to use time series pro
esses whi
h do not

depend on the arbitrary identi�ability 
onstraints we imposed on the parameters when

�tting the model to data. Sin
e these 
hoi
es did not a�e
t our analysis of the past, it

is important that they do not a�e
t our proje
tion of the future. In parti
ular, we must

be 
ertain that any 
on
lusions we draw when using these models do not depend on ear-

lier arbitrary 
hoi
es when �tting the model.

9

We 
all time series whi
h give proje
ted

mortality rates that are independent of the identi�ability 
onstraints �well-identi�ed�.

How to obtain well-identi�ed proje
tion methods was dis
ussed in depth in Chapters 3

and 4 in the 
ontext of general APC mortality models. Chapter 3 established that the

period fun
tions from age/period mortality models should be proje
ting using time series

pro
esses whi
h

• are multivariate, to allow for any potential 
orrelations between the time series,

and

• do not treat the di�erent period fun
tions di�erently. In pra
ti
e, this means that

the various time series should be integrated to the same order (in this 
ase, I(1)).

This gives us an initial set of requirements, whi
h are satis�ed by using a multivariate

random walk with drift pro
ess to proje
t all of the period fun
tions in the model.

However, the analysis of Chapter 4 dis
ussed the more 
ompli
ated identi�ability issues

present in models with a 
ohort term. These were 
aused by the 
ollinearity between age,

period and year of birth and meant that, in some models, spe
i�
 deterministi
 trends

8

However, in order to in
orporate 
hanges in trend, we must go beyond the random walk with drift

pro
ess, whi
h we do in Se
tions 6.4.2 and 6.4.3 below.

9

In addition, identi�ability 
onstraints that are sensible when estimating the model might not be the

most suitable when making proje
tions. We will see this in Se
tion 6.5 where we 
hoose to 
hange the

identi�ability 
onstraints from those imposed when �tting the model to a new set whi
h is more helpful

when proje
ting the 
ohort parameters. We therefore need to ensure that our results are not a�e
ted by

our new 
hoi
e of identi�ability 
onstraints.

204



Consistent Mortality Proje
tions Allowing for Trend Changes and Cohort E�e
ts

were unidenti�able, i.e., they 
ould not be allo
ated between the age/period terms and

the 
ohort term by the model and so required additional identi�ability 
onstraints to

make this allo
ation manually. The allo
ation of these unidenti�able trends was per-

formed using the transformations in Equations 6.4, 6.5 and 6.6, whi
h were used to

obtain a set of parameters satisfying the arbitrary 
onstraints.

In this study, we apply the analysis of Chapter 4 to extend the random walk with drift

pro
ess, as dis
ussed in Se
tion 6.4.1.1 below. Doing so, we ensure that the same time

series pro
ess is appropriate for all possible sets of potential identi�ability 
onstraints

and so will give the same proje
ted mortality rates. However, in order to a
hieve this,

there is a potential 
on�i
t between the se
ond requirement from Chapter 3, namely

that all period fun
tions should be proje
ted using the same pro
esses, and the need to

obtain biologi
ally reasonable proje
tions of mortality rates. This is dis
ussed in Se
tion

6.4.1.2, along with a potential resolution that provides proje
ted mortality rates whi
h

are biologi
ally reasonable and preserves the spirit of the requirements in Chapter 3.

6.4.1.1 First period fun
tion

Sin
e the random walk with drift pro
ess is the most 
ommon time series pro
ess used to

proje
t the period parameters, we �rst need to show that it does not give well-identi�ed

proje
tions of mortality rates for the model des
ribed in Se
tion 6.3. We do this by

showing that, if the random walk with drift pro
ess is suitable for κ
(1)
t under one set of

identi�ability 
onstraints, it will not ne
essarily be appropriate for a transformed κ̂
(1)
t

under an alternative set of identi�ability 
onstraints.

To do this, �rst we note that Equation 6.5 adds a term linear in time to κ
(1)
t and Equation

6.6 adds a term quadrati
 in time to κ
(1)
t . In addition, as dis
ussed in Chapter 3, the

level of κ
(1)
t is unde�ned, meaning we 
an add a 
onstant to it without 
hanging the

�tted mortality rates. Combining these, for κ
(1)
t , we write

κ̂
(1)
t = κ

(1)
t + a

(1)
0 + a

(1)
1 t+ a

(1)
2 t2 (6.11)

This transformation 
onverts one set of �tted parameters, satisfying one set of identi�-

ability 
onstraints, into an alternative set of parameters whi
h satisfy a di�erent set of

identi�ability 
onstraints. These two sets of parameters, κ
(1)
t and κ̂

(1)
t are equivalent:

they give the same �tted mortality rates and so there is no statisti
al reason for prefer-

ring one over the other. As dis
ussed in Chapters 3 and 4, this further implies that the
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same time series pro
ess should be equally appropriate for either set of parameters.

For the time series pro
ess used for κ
(1)
t to be appropriate for all equivalent sets of

parameters (su
h as κ̂
(1)
t ), we need to make sure that it does not 
hange form if we

use the transformation in Equation 6.11 to move between κ
(1)
t and κ̂

(1)
t , i.e., that if

κ
(1)
t follows a random walk with drift pro
ess in Equation 6.10, then κ̂

(1)
t also follows a

random walk with drift pro
ess. However, the random walk with drift pro
ess 
hanges

form when we apply the transformation in Equation 6.11 to it and, so, does not satisfy

this requirement. We 
an see this by substituting the κ̂
(1)
t into the random walk with

drift pro
ess to give

κ
(1)
t = κ

(1)
t−1 + µ(1) + ǫ

(1)
t

κ̂
(1)
t − a

(1)
0 − a

(1)
1 t− a

(1)
2 t2 = κ̂

(1)
t−1 − a

(1)
0 − a

(1)
1 (t− 1)− a

(1)
2 (t− 1)2 + µ(1) + ǫ

(1)
t

κ̂
(1)
t = κ̂

(1)
t−1 + µ(1) + a

(1)
1 − a

(1)
2 + 2a

(1)
2 t+ ǫ

(1)
t

We see that, if a random walk with drift was appropriate for κ
(1)
t , then a random walk

where the drift 
hanges linearly with time is appropriate for κ̂
(1)
t . Hen
e, the random

walk with 
onstant drift is not appropriate for all equivalent sets of parameters and,

therefore, all sets of identi�ability 
onstraints. This means that proje
tions using su
h a

pro
ess, the most 
ommonly used in the literature to date, are not well-identi�ed under

the transformations in Equation 6.11 and, therefore, that we should not use it to proje
t

the model in Se
tion 6.3.

However, this 
an be easily re
ti�ed. A random walk with drift pro
ess is not well-

identi�ed under the transformation in Equation 6.11 be
ause the transformation intro-

du
ed a term linear in time into the drift whi
h was not present in the original time

series. It is therefore natural to extend the random walk with drift pro
ess to introdu
e

a term linear in time into the original time series. The transformation would then not

add anything new to the pro
ess, merely modify what was already present. This suggests

that we should use a random walk with linear drift for κ
(1)
t

κ
(1)
t = κ

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t (6.12)
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Again, we 
an 
he
k that this is well-identi�ed by substituting κ̂
(1)
t into Equation 6.12

to 
on�rm that we have the same time series pro
ess for both sets of parameters

κ
(1)
t = κ

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t

κ̂
(1)
t − a

(1)
0 − a

(1)
1 t− a

(1)
2 t2 = κ̂

(1)
t−1 − a

(1)
0 − a

(1)
1 (t− 1)− a

(1)
2 (t− 1)2 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t

κ̂
(1)
t = κ̂

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ a

(1)
1 − a

(1)
2 + 2a

(1)
2 t+ ǫ

(1)
t

= κ̂
(1)
t−1 + µ̂

(1)
0 + µ̂

(1)
1 t+ ǫ

(1)
t

Although the numeri
al values we �nd for µ
(1)
0 and µ

(1)
1 are di�erent for di�erent sets

of parameters (and, hen
e, identi�ability 
onstraints), the form of the time series is not.

Hen
e, if a random walk with linear drift is appropriate for κ
(1)
t , it is also appropriate for

κ̂
(1)
t , and so, in turn, it is appropriate for all di�erent sets of identi�ability 
onstraints.

Therefore, the random walk with linear drift is well-identi�ed.

We may �nd that under some sets of identi�ability 
onstraints, µ
(1)
1 takes an apparently

low value, and so we might be tempted to ignore it. Alternatively, we might be tempted

to �t a random walk with linear drift and then test µ
(1)
0 for statisti
al signi�
an
e, with

a view to setting it to zero. However, as shown above, the magnitude of µ
(1)
1 is entirely

dependent upon the identi�ability 
onstraints used, i.e., even if µ
(1)
0 is 
lose to zero,

µ̂
(1)
0 = µ

(1)
0 +2a2 
an be arbitrarily large depending upon the value of a2. Therefore any

de
ision to ignore µ
(1)
1 would also be entirely dependent upon the arbitrary identi�ability


onstraints. Thus, the 
hoi
e of time series to use for κ
(1)
t 
annot be motivated by argu-

ments based on statisti
al signi�
an
e or goodness of �t, but must be determined by the

identi�ability issues present in the model. Hen
e, we must use a random walk with linear

drift for κ
(1)
t , regardless of the apparent size of µ

(1)
0 to avoid generating poorly-identi�ed

proje
tions of mortality rates that depend on the arbitrary 
onstraints imposed when

�tting the model.

In summary, the transformation in Equation 6.6 means that we must allow for quadrati


trends in the �rst period fun
tion in the model. We do this by extending the 
onventional

random walk with drift model to a random walk with linear drift pro
ess. This time

series pro
ess is not 
hanged fundamentally by 
hanging from one set of identi�ability


onstraints to another, and therefore will give proje
tions whi
h do not depend on the

spe
i�
 set of identi�ability 
onstraints adopted.
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6.4.1.2 Other period fun
tions

As with κ
(1)
t , we �nd that the invariant transformation in Equation 6.6, plus the uniden-

ti�able level in the period fun
tions, means that the �tted mortality rates are un
hanged

by a transformation of κ
(2)
t in the form of

κ̂
(2)
t = κ

(2)
t + a

(2)
0 + a

(2)
1 t (6.13)

and of the form

κ̂
(i)
t = κ

(i)
t + a

(i)
0 i = 3, . . . 7 (6.14)

for the other period fun
tions.

A similar analysis to that performed in Se
tion 6.4.1.1 shows that both the random walk

with 
onstant drift and the random walk with linear drift pro
esses are well-identi�ed

under these transformations. The 
on
lusions of Chapter 3, des
ribed at the beginning

of this se
tion, suggest that we should use random walks with linear drifts for all seven

period fun
tions in the model in order avoid treating κ
(1)
t di�erently from the other

period fun
tions. However, if we do so, however, we obtain proje
tions whi
h are not

biologi
ally reasonable.

10

We therefore have a 
on�i
t between our desire for proje
tions whi
h are biologi
ally rea-

sonable, on the one hand, and well-identi�ed, on the other. Su
h 
on�i
ts were dis
ussed

in Chapter 3, where it was 
on
luded that it was possible to treat age/period terms with

parametri
 age fun
tions as distin
t, sin
e there was no invariant transformation of the

model whi
h for
ed them to be inter
hangeable. However, using the same pro
esses to

proje
t all the period fun
tions in a model was still highly desirable be
ause it was un-

likely that the demographi
 signi�
an
e of the term would lead to spe
i�
 requirements

for how it should be proje
ted.

Models produ
ed by the GP have parametri
 age fun
tions, where ea
h age fun
tion has

a de�ned fun
tional form, sele
ted in advan
e of �tting the model to data to give ea
h

term distin
t demographi
 signi�
an
e. We, therefore, feel that it is justi�able to pre-

serve this distin
tiveness in order to ensure that the proje
tions of mortality rates from

10

Experiments have shown that using random walks with linear drifts for all period fun
tions produ
es

proje
tions where mortality rates at some ages are predi
ted to 
ontinue de
reasing and then start

in
reasing in the near future with probability 
lose to unity under this model. Without any biologi
al

reason why this should be the 
ase, we 
onsider this model to be in
onsistent with existing medi
al

knowledge.
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the model are biologi
ally reasonable. Furthermore, it is only the drift term whi
h varies

between the random walk pro
esses used for the di�erent period fun
tions. We do not

assume that the period fun
tions di�er in terms of stationarity, dependen
e stru
ture or

any other statisti
al property. Therefore, we feel that the use of a random walk with

linear drift for κ
(1)
t , but random walks with 
onstant drifts for the other period fun
tions

minimises the extent to whi
h the various period fun
tions are treated di�erently. This


ompromise preserves the spirit of the requirements in Chapter 3, whilst maintaining

biologi
ally reasonable proje
ted mortality rates.

11

A

ordingly, we will use the random walk with drift model for the se
ond to seventh

period fun
tions, but must use a random walk with linear drift pro
ess for κ
(1)
t for the

identi�ability reasons dis
ussed in Se
tion 6.4.1.1, i.e., we use

κ
(i)
t =







κ
(i)
t−1 + µ

(i)
0 + ǫ

(i)
t if i 6= 1

κ
(i)
t−1 + µ

(i)
0 + µ

(i)
1 t+ ǫ

(i)
t if i = 1

(6.15)

with innovations, ǫ
(i)
t , whi
h are allowed to be 
ontemporaneously 
orrelated.

As stated at the start of Se
tion 6.4, we observed 
hanges in trend in the histori
al

period fun
tions. However, the random walk model is not 
apable to reprodu
ing this

trend 
hanges in future, even when it is well-identi�ed. Consequently, we extend the

random walk with drift model to allow for 
hanges in trend, as des
ribed below.

6.4.2 Histori
al trend 
hanges

We observed in Se
tion 6.3 that some of the period fun
tions appear to exhibit sharp


hanges in trend, whi
h should be allowed for when proje
ting the model. A number of

other studies have sought to dete
t and analyse 
hanges in trend in mortality models

using e
onometri
 te
hniques to dete
t stru
tural breaks, for instan
e, Coelho and Nunes

(2011), Sweeting (2011), Börger and Ruÿ (2012) and O'Hare and Li (2012b) whi
h we

dis
uss below.

Another, 
on
eptually similar approa
h is to use �regime 
hange� models, su
h as in

Milidonis et al. (2011), Hainaut (2012) and Lemoine (2014). All of these studies have

11

However, we note that it is theoreti
ally possible to 
onstru
t mortality models whi
h give exa
tly

the same �tted mortality rates to the model presented in Se
tion 6.3, but whi
h would require di�erent

time series pro
esses to give well-identi�ed proje
tions and, hen
e, may give di�erent proje
ted mortality

rates.

209



Consistent Mortality Proje
tions Allowing for Trend Changes and Cohort E�e
ts

the disadvantage, however, that they assume only a �nite number of regimes (usually

two) and, therefore, dis
ount the possibility for more radi
al 
hanges in the evolution of

mortality in future.

Our approa
h is to follow the stru
tural break literature and a

ommodate 
hanges in

trend by allowing the drift fun
tions for the random walks to be subje
t to infrequent

and random jumps, i.e., we repla
e

µ
(i)
0 with µ

(i)
0 +

N(i)
∑

j=1

ν
(i)
j I

t≥τ
(i)
j

i 6= 1 and

µ
(1)
1 t with µ

(1)
1 t+

N(1)
∑

j=1

ν
(1)
j (t− τ

(1)
j )+ (6.16)

in the random walk model in Equation 6.15, where N (i)
is a Poisson 
ounting pro
ess

for the number of 
hanges in trend o

urring at times τ
(i)
j , j = 1, . . . , N (i)

,

12 I is an

indi
ator value and x+ = max(x, 0).

To allow for 
hanges in trend in future, we must �rst identify the trend 
hanges that

are present in the histori
al data. This, in part, addresses the 
riti
ism of Booth (2006)

raised in Se
tion 6.2. A number of methods have been proposed to do this.

13

We use the

method developed in Bai and Perron (1998),

14

sin
e it is 
apable of identifying multiple

stru
tural breaks and we �nd it to be relatively intuitive to implement. An outline of

this pro
edure is given below, but it is dis
ussed in greater detail in van Berkum et al.

(2014):

• Ea
h period fun
tion is 
onsidered independently.

• Conditional on k trend 
hanges o

urring at dates τ
(i)
j in period fun
tion i, the

magnitude and dire
tion of the trend 
hanges ν
(i)
j 
an be 
al
ulated using least

squares regression, as well as the log-likelihood and Bayes Information Criterion

(BIC)

15

of the observed time series.

• Conditional on k trend 
hanges o

urring, we test every possible set of dates for

the trend 
hanges to sele
t the values of τ
(i)
j whi
h maximises the log-likelihood

12

By 
onvention,

∑N(i)

j=1 Xj = 0 for N (i) = 0.
13

For instan
e, Sweeting (2011) and Börger and Ruÿ (2012) use a method based on the DW (Durbin

and Watson (1951)) statisti
 to identify multiple trend 
hanges in a trend-stationary pro
ess and Coelho

and Nunes (2011) use the method of Harris et al. (2009) in 
onjun
tion with testing for a unit root.

14

This te
hnique is also used in O'Hare and Li (2012b) and van Berkum et al. (2014).

15

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
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(and BIC) of the �tted time series. Consistent with van Berkum et al. (2014), to

prevent over-�tting the model and �nding spurious 
hanges in trend, we assume

that trend 
hanges 
annot o

ur within �ve years of ea
h other, or within the �rst

and last �ve years of the dataset.

• k is then in
reased sequentially until the BIC has stopped in
reasing to give N (i) =

argmax BIC(k).

It is important to note that this pro
edure 
an be very 
omputationally intensive if long

datasets are used, and so may 
ause pra
ti
al issues in implementation. Bai and Per-

ron (2003) presented an approa
h for dete
ting multiple stru
tural breaks in time series

whi
h gives the same results as the pro
edure des
ribed above, but is based on dynami


programming and is 
onsiderably faster to implement. Sin
e we only 
onsider 60 years of

data in this study, this te
hniques was not used in this study. However, we a
knowledge

that, in order to gain a more 
omprehensive understanding of the dynami
s of trend


hanges, a longer period of data is required, as in Sweeting (2011) and Börger and Ruÿ

(2012).

16

i µ
(i)
0 µ

(i)
1 N (i) τ

(i)
j ν

(i)
j

Constant drift Linear drift No. trend 
hanges Date of trend 
hange Size of trend 
hange

1 0.0350 -0.0397 0 N/A

2 0.1036 N/A 0 N/A

3 -1.0236 N/A 1 1970 1.4842

4 -0.2441 N/A 0 N/A

5 0.1296 N/A 1 1993 -0.7905

6 0.0295 N/A 0 N/A

7 -0.1766 N/A 0 N/A

Table 6.2: Fitted time series parameters for the period fun
tions

Using this pro
edure, we obtain the estimates of the time series parameters in Equations

6.15 and 6.16 given in Table 6.2 for the histori
al period fun
tions (without allowing

for parameter un
ertainty). We have not attempted to relate the timing and dire
tion

of these trend 
hanges to spe
i�
 underlying so
io-e
onomi
 drivers of mortality for the

population as su
h relationships would be highly spe
ulative. The model dete
ts just

two signi�
ant trend 
hanges in seven period fun
tions, ea
h over 60 years of data. This

is a 
omparatively small number, whi
h makes a sophisti
ated statisti
al analysis of

the nature of the trend 
hanges impossible. A

ordingly, we must make a number of

simplifying assumptions in order to proje
t trend 
hanges in the future.

16

However, using longer periods of data runs into problems 
aused by the jumps in mortality rates

during the First and Se
ond World Wars. This is why we have limited our analysis to only use data

sin
e 1950.
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6.4.3 Proje
ting trend 
hanges

It is desirable that proje
tions of future mortality are 
onsistent with the features whi
h

have been observed in the histori
al data. Just as we have seen that the histori
al data


ontains stru
tural breaks where the trend rate of improvement in mortality has 
hanged,

so we 
an envision s
enarios where these may o

ur at an unknown point in future, 
aused

by medi
al breakthroughs in the treatment of disease or so
io-e
onomi
 
hanges in the

population, for example. A

ordingly, we should proje
t 
hanges in the trends in our

parameters to o

ur in future if they have been dete
ted in the past. This is in 
ontrast

to the work of Coelho and Nunes (2011) and van Berkum et al. (2014), who do not allow

for future trend 
hanges in proje
tions.

We believe that allowing for trend 
hanges is also important for managing longevity

risk, as an a

eleration of the trend rate of improvements would dramati
ally in
rease

the present value of annuity liabilities. To do so, we need to make assumptions on the

dependen
e, frequen
y, dire
tion and magnitude of potential trend 
hanges in future, in

order to give both biologi
ally reasonable proje
tions and to be as 
onsistent with the

observed histori
al trend 
hanges as possible. Finally, we have a strong preferen
e for

simple, parsimonious models due to the small number of observed trend 
hanges available

to 
alibrate our models.

6.4.3.1 Dependen
e between period fun
tions

We do not have su�
ient observed data to be able to determine whether trend 
hanges in

the di�erent time series are more or less likely to o

ur simultaneously. Spe
i�
ally, we do

not test for the phenomenon of 
o-breaking

17

and assume that breaks in the di�erent time

series o

ur independently of ea
h other. This 
ontrasts with the approa
h of Sweeting

(2011), where trend 
hanges were often observed simultaneously in the di�erent period

fun
tions.

6.4.3.2 Frequen
y of trend 
hanges

We assume that future trend 
hanges o

ur with the same frequen
y as the histori
al

trend 
hanges observed in the �tted time series, e.g., if we observe two trend 
hanges

in a 60-year sample period for a period fun
tion, we assume that the probability of a

trend 
hange o

urring in any proje
ted year is

1
30 . We also assume that the number

17

De�ned in Hendry and Massmann (2005) as when stru
tural breaks are observed in two or more

time series, but not in a linear 
ombination of them.

212



Consistent Mortality Proje
tions Allowing for Trend Changes and Cohort E�e
ts

of trend 
hanges is a Markov pro
ess and, a

ordingly, this probability does not 
hange

depending on when the previous trend 
hange was observed. This is the same approa
h

as was adopted in Sweeting (2011) and Börger and Ruÿ (2012).

This assumption may be 
onsidered to be unrealisti
, sin
e it 
ould reasonably be argued

that a trend 
hange is more likely to be observed in a year if none have been observed

for a long time. However, be
ause only one trend 
hange has been observed for any

individual time series in the past, any more 
omplex dependen
e stru
ture would have

to be justi�ed in terms of the underlying biologi
al and demographi
 pro
esses driving

the period fun
tions. Sin
e su
h a justi�
ation would, ne
essarily, be highly subje
tive,

we opt for a Markov pro
ess for simpli
ity.

Nevertheless, we should be aware that this assumption has a number of weaknesses.

First, the Markov assumption is in
onsistent with the restri
tion that trend 
hanges in

the histori
al data 
annot o

ur within �ve years of ea
h other. Although the proje
tion

method 
an easily be modi�ed to allow for a minimum length of time between trend


hanges, in pra
ti
e, the probability of two proje
ted trend 
hanges o

urring within �ve

years is very low. When we restri
ted proje
ted trend 
hanges so they 
ould not o

ur

within �ve years of ea
h other, it made little di�eren
e to the proje
tions of mortality

rates.

Se
ond, it implies that for time series where no trend 
hange has been observed in

the past, we assume with 
ertainty that no trend 
hange 
an o

ur in future. This

is unavoidable, sin
e even if we were to allow for a non-zero 
han
e of trend 
hanges

o

urring in future in these time series, we would have no data to 
alibrate the magnitude

of any 
hanges. This problem 
an be mitigated to an extent by allowing for parameter

un
ertainty in the �tted period fun
tions using a bootstrapping method su
h as that

developed in Koissi et al. (2006). This generates a large number of pseudo-datasets

by bootstrapping the �tted residuals from the original model to give resampled death


ounts. The model in Se
tion 6.3 is re�tted to ea
h of these sets of death 
ounts, giving

a re-estimate of the di�erent period fun
tions and, hen
e, an estimate of the level of

parameter un
ertainty in them. These resampled estimates of the period fun
tions are

then tested individually for the number and timing of trend 
hanges. Thus, parameter

un
ertainty is allowed for, both in the period fun
tions and in the parameters of the

time series pro
esses assumed to generate them. Be
ause of this, we may identify trend


hanges in some sets of bootstrapped period fun
tions, even when we did not dete
t any
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in the original period fun
tion. We use this te
hnique to generate the results shown in

Figure 6.3 and in Se
tion 6.6.

6.4.3.3 Dire
tion of trend 
hanges

We assume that trend 
hanges are as likely to be positive as negative, i.e., there is an

equal 
han
e of them improving mortality as worsening it. The limited number of his-

tori
al trend 
hanges means that any spe
i�
 assumption on the dire
tion of a trend


hange would need to be justi�ed by the underlying so
io-e
onomi
 drivers of mortality.

Biologi
al and demographi
 arguments 
an be made on either side to support the 
ase

that the de
reases in mortality rates 
urrently observed will 
ease in future (for instan
e,

the rise of obesity in the population, as dis
ussed in Olshansky et al. (2005)) or that

breakthroughs in medi
al progress will lead to an a

eleration of the improvements in

mortality (for instan
e, see de Grey (2006)). In light of this �great debate�

18

in demogra-

phy, we remain agnosti
 as to whether future 
hanges in trend are more likely to improve

or worsen mortality rates at this point.

Our 
hosen model for proje
ted trend 
hanges leaves the median fore
ast of mortality

un
hanged (
ompared with a model whi
h extrapolated the most re
ent observed trend),

but a�e
ts the tails of the proje
ted distribution. This is 
onsistent with the notion that

extrapolating the most re
ent past represents a �best estimate� of future improvements

in mortality in the short run. Allowing for 
hanges in trend, however, is important for

risk management purposes, as dis
ussed in Se
tion 6.6.3.

6.4.3.4 Magnitude of trend 
hanges

The magnitude of proje
ted trend 
hanges is the most subje
tive of the assumptions we

need to make. Sweeting (2011) and Börger and Ruÿ (2012) assume that the magnitude

of a trend 
hange is normally distributed, with mean and standard deviation 
alibrated

from the observed values. Instead, we assume that the magnitude of the trend 
hanges

follows a Pareto distribution, based on a 
onsideration of the trend 
hanges we have

observed.

All methods of dete
ting trend 
hanges in the histori
al data will fail to dete
t genuine

but small trend 
hanges, sin
e these will not be found to be statisti
ally signi�
ant.

18

So named by Siegel (2005).
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Consequently, the trend 
hanges found in the past and available for analysis are not

representative of the full distribution of trend 
hanges, but merely a trun
ation of this

distribution. Assuming that the threshold size for a trend 
hange to be dete
ted is suf-

�
iently �large�, the relevant distribution for the observed trend 
hanges will therefore

be the Pareto distribution, regardless of the �true� underlying distribution for the trend


hanges.

Our proje
tions of mortality from the model should be 
onsistent with what was observed

in the past. A model that proje
ts trend 
hanges whi
h it 
ould not have found in the

data violates this 
onsisten
y. The Pareto distribution 
an generate future trend 
hanges

whi
h are above the threshold for statisti
al signi�
an
e and therefore will be 
onsistent

with those observed in the past. We believe that this is preferable to the methods used

in Sweeting (2011) and Börger and Ruÿ (2012), whi
h may generate a signi�
ant number

of �small� trend 
hanges whi
h 
ould not have been dete
ted had they o

urred in the

histori
al data.

Another desirable property of the Pareto distribution is that it is long tailed and so 
an

generate some very large future trend 
hanges, whi
h may be useful for the risk assess-

ment of extreme mortality s
enarios. It also has only two parameters for ea
h period

fun
tion - the size of the threshold, ν
(i)
crit, and a s
ale parameter, α(i)

- whi
h are relatively

easy to estimate based on the limited number of histori
al observations.

The threshold, ν
(i)
crit, for the period fun
tion 
an be approximated by 
onsidering the

minimum size of a trend 
hange that would be found to be statisti
ally signi�
ant at a

given 
on�den
e level.

19

Consider a period fun
tion generated by a random walk pro
ess

with a trend 
hange at t = 0, when the drift 
hanged from known drift, µ, to µ+ ν

∆κt =







µ+ ǫt if t ≤ 0

µ+ ν + ǫt if t > 0

where the magnitude of the 
hange in drift, ν, is unknown. Considering the period [1, T ],

where T is the average time between trend 
hanges, we would obtain the least squares

19

Although this is not the te
hnique des
ribed in Se
tion 6.4.2 above, it gives a threshold trend 
hange

size 
onsistent with those seen in pra
ti
e.
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estimate

µ̂ =
1

T − 1

T−1
∑

t=1

∆κt

= µ+ ν +
1

T − 1

T−1
∑

t=1

ǫt

for the drift of the time series. If we were to perform a hypothesis test to determine

whether the estimated drift in [1, T ], µ̂, is equal to the drift in the earlier period, µ, the

null hypothesis would be that there was no 
hange in trend. Therefore, we would reje
t

the null hypothesis if

|µ̂ − µ| = |ν +
1

T − 1

∑

t

ǫt|

≈ |ν| ≥ Z
σ√

T − 1

i.e., we would only expe
t to dete
t trend 
hanges above the threshold |ν| ≥ Z σ√
T−1

,

where Z is the 
riti
al statisti
 from the normal distribution at a given signi�
an
e level

and σ is the standard deviation of the innovations (whi
h is assumed to be known but

whi
h 
an be estimated from our �tted period fun
tion). Similar 
onsiderations for the

random walk with linear drift yield |ν| ≥ Z 6σ√
T (T−1)(2T−1)

. These values for ea
h time

series, with Z taken from the normal distribution at the 99% level, are then used as the

threshold values ν
(i)
crit when generating Pareto random variables.

On
e the threshold of the Pareto distribution has been estimated, the s
ale parameters,

α(i)
, 
an be estimated by mat
hing the sample means of the observed trend 
hanges,

ν̄(i) = 1
N(i)

∑N(i)

j=1 ν
(i)
j , with the mean of the theoreti
al distribution to give

α(i) =
ν̄(i)

ν̄(i) − ν
(i)
crit

We derive values of ν
(i)
crit and α(i)

for ea
h time series, i = 1, . . . 7, and, when allowing for

parameter un
ertainty, for ea
h set of resampled period fun
tions. Thus, we also allow

for parameter un
ertainty in the distribution of future trend 
hanges as well as allowing

for un
ertainty in their number and timing.
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al and proje
ted trend 
hanges

Figure 6.2: 95% fan 
harts for proje
ted period fun
tion, κ
(3)
t , under three di�erent

assumptions regarding trend 
hanges

6.4.3.5 Impa
t of trend 
hanges on proje
ted period fun
tions

Figure 6.2 shows fan 
harts of the 95% 
on�den
e intervals for the proje
ted κ
(3)
t period

fun
tion using �rst a standard random walk with drift without allowing for histori
al

or proje
ted trend 
hanges (Figure 6.2a), then allowing for histori
al trend 
hanges but

not proje
ting any in future (Figure 6.2b - similar to the approa
h in van Berkum et al.

(2014)) and �nally the approa
h dis
ussed above (Figure 6.2
), allowing for both his-

tori
al and proje
ted trend 
hanges. In all 
ases, parameter un
ertainty is allowed for

in the �tted parameters using the bootstrapping method dis
ussed by Koissi et al. (2006).

It 
an be seen that allowing for trend 
hanges alters the fan 
hart of the proje
ted period

fun
tion in a number of ways 
ompared to the 
ase when trend 
hanges are not allowed.

• Allowing for trend 
hanges gives di�erent median proje
tions for the period fun
-

tions. The median proje
tion from a random walk 
ontinues the trend found by
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drawing a straight line between the �rst and last values of κ
(3)
t . By allowing for a

trend 
hange to o

ur during the histori
al period, our median proje
tions extend

the more re
ent trend operating sin
e 1970, as shown in Figures 6.2a and 6.2b.

• Allowing for trend 
hanges gives narrower proje
tion intervals in the short run, as

shown in Figure 6.2b. This is be
ause our improved estimate of the trend in the

histori
al period fun
tions has redu
ed our measured variability around this trend.

When this is proje
ted, it leads to narrower proje
tion intervals around the 
entral

trend in the short run (i.e., until we proje
t a 
hange in trend). We argue that

this is more plausible as mortality rates in the near future are unlikely to be very

di�erent from a simple extrapolation of those observed today.

• Allowing for trend 
hanges gives wider proje
tion intervals in the long run, as shown

in Figures 6.2b and 6.2
. This is be
ause we allow for the 
entral trend to 
hange

in future. Whilst the width of the proje
tion interval from a random walk with

drift will grow with proje
tion time τ at the rate τ
1
2
, the proje
tion interval from

a random walk with a drift 
hanging at random dis
rete intervals will grow at the

rate τ
3
2
.

20

We argue that this is more plausible as the more distant future is highly

un
ertain, with numerous medi
al, demographi
 and so
io-e
onomi
 fa
tors whi
h

might impa
t mortality rates radi
ally in a fundamentally unpredi
table manner.

All of these 
hanges give proje
tions whi
h we 
onsider to be more 
onsistent with the

histori
al period fun
tion, and allow for a more plausible assessment of the relative

un
ertainty of both the near and more distant future. This is despite these methods

being fairly simple and yielding only quite 
rude estimates for the distribution of trend


hanges. However, we are 
onstrained by the limited number of observed trend 
hanges

found in the histori
al data and therefore are prevented from using more sophisti
ated

methods. We also feel that, sin
e the purpose of our proje
tions is to provide more

plausible allowan
es for extreme longevity risk in proje
ted mortality rates, any greater

sophisti
ation would be somewhat spurious. Fan 
harts for all of the proje
ted period

fun
tions, allowing for parameter un
ertainty using the residual bootstrapping method

of Koissi et al. (2006), are shown in Figure 6.3.

In summary, we propose a method for dete
ting trend 
hanges in the histori
al period

fun
tions, based on the approa
h in Bai and Perron (1998), and proje
ting future trend


hanges based on assumed distributions for the frequen
y, dire
tion and magnitude of

these future trend 
hanges whi
h are 
onsistent with what has been observed in the

past. We have taken steps to ensure that these time series are well-identi�ed, in the

20

A proof of this result, whi
h is independent of the assumed distribution of the trend 
hanges, is

given in Appendix 6.A.
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Figure 6.3: 95% fan 
harts for proje
ted period fun
tions with histori
al and proje
ted

trend 
hanges

sense that our proje
tions of mortality rates do not depend on the arbitrary identi�-

ability 
onstraints we imposed when �tting the model. Allowing for trend 
hanges to

o

ur in future gives proje
tions whi
h are 
onsiderably more un
ertain, espe
ially as we

proje
t further into the future, whi
h we believe is more biologi
ally reasonable and has

signi�
ant impa
ts on risk management, as dis
ussed in Se
tion 6.6.3.

6.5 Cohort parameters

The 
ohort parameters in the model, shown in Figure 6.4, represent lifelong mortality

e�e
ts spe
i�
 to distin
t years of birth whi
h we interpret in terms of the life histories

of the relevant 
ohorts in Chapter 5.
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Figure 6.4: Cohort parameters

Given our desire for the 
ohort parameters to have the demographi
 signi�
an
e dis
ussed

in Chapter 2, we would like our proje
tions of the 
ohort parameters to have the following

properties:

• The 
ohort parameters should represent genuine lifelong mortality e�e
ts, rather

than merely being mis-
lassi�ed age/period e�e
ts resulting from an in
orre
t spe
-

i�
ation of the model. This is an espe
ially large problem for the most re
ent years

of birth, sin
e 
ohort parameters for these are only estimated on the basis of data

at younger ages, where it is more di�
ult to properly spe
ify the age/period terms

in a model. We a
hieve this by using the general pro
edure to sequentially sele
t

age/period terms whi
h 
apture all the signi�
ant age/period stru
ture in the data,

before adding a set of 
ohort parameters to the model.

• The 
ohort parameters should la
k trends, i.e., have Eγy = 0 un
onditionally for

all y for both past and future years of birth. This is 
onsistent with the notion that

the 
ohort e�e
ts represent a deviation from the level of mortality for a �typi
al�


ohort. We a
hieve this through 
areful 
hoi
e of our identi�ability 
onstraints, as

dis
ussed in Se
tion 6.5.2.
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• The proje
ted 
ohort parameters should be stationary, in the sense that the vari-

ability of the 
ohort parameters around the 
entral trend should not 
hange with

time. We do not believe there is any 
ompelling reason to suppose that the vari-

ability in the lifelong mortality fa
tors should be any greater for future 
ohorts

than for those observed to date. This is also 
onsistent with the belief that 
ohort

e�e
ts may persist for several years or de
ades, but should not result in permanent


hanges in the level of mortality, otherwise they should be re-
lassi�ed as period

e�e
ts.

• The proje
ted 
ohort parameters should be independent of the period e�e
ts. We

believe that 
ohort e�e
ts have very di�erent demographi
 signi�
an
e from the

period e�e
ts and are treated separately when �tting the model. For a full dis
us-

sion of this issue, see Chapter 4. In addition, an assumption of independen
e is

both pra
ti
al and parsimonious.

• The proje
tion method used for the 
ohort parameters should take a

ount of

�unusual� birth 
ohorts, su
h as those in 1919/1920 and 1946/1947. Based on the

analysis of Ri
hards (2008) and Cairns et al. (2014), we believe that the unusual

mortality rates asso
iated with individuals born in these years are not due to

genuine 
ohort e�e
ts, but are artefa
ts of the data. These are 
aused by the

atypi
al and uneven pattern of births o

urring in these years as a result of the

demobilisations of soldiers after the First and Se
ond World Wars, respe
tively,

whi
h, in turn, led to a mis-estimation of the size of the exposed population for

those years of birth. A Third World War lies outside the s
ope of any mortality

model to proje
t, and therefore it seems reasonable not to allow for similar 
ohort

e�e
ts to re-o

ur in future. Nevertheless, the observed 
ohort e�e
ts will persist in

observed mortality rates in future. We a

ommodate this by allowing for indi
ator

variables to 
apture the outliers in these years and deal with them in the histori
al

parameters without a�e
ting our estimates of the time series used to proje
t the

parameters into the future.

There is 
urrently no well-established method for proje
ting the 
ohort parameters. A

number of te
hniques are dis
ussed in Cairns et al. (2011a) and van Berkum et al. (2014).

Many of these �t time series from the ARIMA family in order to make proje
tions.

The 
lassi
al approa
h to proje
ting the 
ohort fun
tion is to use Box-Jenkins methods

to �t a preferred time series pro
ess to the histori
al 
ohort parameters and then to

use this pro
ess to proje
t them into the future. The limitations of this approa
h in

obtaining proje
ted parameters whi
h have 
onsisten
y between the past and future are

dis
ussed in Se
tion 6.5.1. In addition, there is no guarantee that the preferred time

series found by Box-Jenkins methods will be well-identi�ed (i.e., they do not depend on
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the identi�ability 
onstraints imposed in Se
tion 6.3 when the model was �tted to data).

We therefore dis
uss how well-identi�ed 
ohort proje
tions 
an be obtained in Se
tion

6.5.2 and then o�er a Bayesian approa
h whi
h both gives well-identi�ed proje
tions and

allows adequately for the un
ertainty in the parameters in Se
tion 6.5.3.

6.5.1 The 
lassi
al time series approa
h

When �tting time series models to the 
ohort parameters, many authors use Box-Jenkins

methods to sele
t an appropriate model. Impli
itly, these methods assume that the ob-

served values of the time series are all known with the same degree of 
ertainty. However,

we have 
onsiderably less information about the latest 
ohorts than the earlier ones. It

is therefore important to use methods whi
h apply less weight to the later 
ohorts when

estimating any time series parameters. Therefore, the 
lassi
al Box-Jenkins framework

is not appropriate.

To demonstrate this, 
onsider the pattern of 
ohort e�e
ts shown in Figure 6.4 and, in

parti
ular, the most re
ent downward trend in the parameters dating from around 1975.

Fitting a time series using standard Box-Jenkins methods would give these 25 years'

worth of data points the same weight as the parameters 
overing the period from 1920

to 1945, for instan
e. However, the 
ohort e�e
ts for the most re
ent years of birth are


onsiderably more un
ertain for two reasons.

First, we have observed these 
ohorts for less time and so have fewer annual observations

of them. For example, we have only 30 observations of the 
ohort born in 1980 in our

data, whilst we have 90 observations of the 
ohort born in 1920. We re
ognised this was

an issue in �tting the model to the extent that we did not attempt to estimate parameters

for years of birth with fewer than ten observations. It would, therefore, be in
onsistent

to then disregard this issue when we 
ome to proje
t the 
ohort parameters.

Se
ond, these 
ohorts 
omprise young people whom we would not expe
t to have died in

large numbers during the period we have been observing them. Not only are we making

estimates based on fewer observations, but these observations are asso
iated with very

few deaths. As a 
onsequen
e, any 
on
lusions on the mortality in these most re
ent


ohorts is subje
t to very 
onsiderable un
ertainty.
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We 
an see this more formally by 
onsidering the Fisher information matrix under max-

imum likelihood estimation assuming the death 
ount, Dx,t, for ea
h age and period is a


onditionally Poisson-distributed random variable, whi
h will give a lower bound for the

standard deviation of our parameter estimates via the Cramér-Rao bound:

I(γy) = −E

[

∂2L
∂γ2y

]

=
∑

x

Wx,y+x Ec
x,y+x µx,y+x

=
∑

x

Wx,y+x EDx,y+x (6.17)

≥ 1

Var(γy)

where Ec
x,t are the observed 
entral exposures to risk and Wx,t are a set of weights for

ea
h age and period. This shows that the varian
e of a 
ohort parameter is inversely pro-

portional to the number of deaths expe
ted to date for that year of birth. The observed


ohort parameters are therefore unavoidably heteroskedasti
. In 
ontrast, Box-Jenkins

methods assume that the observations of the time series pro
ess under investigation are

either known with 
ertainty or estimated with the same degree of un
ertainty, and so

Equation 6.17 invalidates the traditional approa
h to sele
ting a time series model in

these 
ir
umstan
es.

There are two potential �
lassi
al� methods whi
h 
ould be used to resolve this issue:

• We 
ould �t an ARIMA time series pro
ess using a weighted least squares approa
h,

and expli
itly give less weight to 
ohort parameters felt to be more un
ertain when

estimating the time series parameters.

• We 
ould allow for parameter un
ertainty in our estimates of the histori
al 
ohort

e�e
ts, for instan
e, by using Bayesian te
hniques (as in Pedroza (2006)) or by

residual bootstrapping (as in Koissi et al. (2006)).

Both of these methods make some attempt to 
orre
t for the higher level of un
ertainty

in the re
ent 
ohort e�e
ts when we 
ome to sele
t a time series pro
ess and estimate

the parameters within it.

However, 
lassi
al approa
hes assume that the existing parameter estimates will not be

revised in light of the new information that future data will 
ontain. This, therefore,

still assumes that there is a dis
ontinuity between the �known� histori
al parameters
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used to estimate the pro
ess and the unknown future parameters whi
h are proje
ted.

This dis
ontinuity leads to a sharp in
rease in the modelled level of un
ertainty in the

parameters between the histori
al parameters and the proje
ted parameters.

While this is true for the period fun
tions, sin
e no new data obtained for future years

will make us revise our estimate for κ
(1)
1975, it does not hold for the 
ohort parameters.

This is be
ause we will 
ontinue to observe 
ohorts born re
ently for de
ades into the

future and use these observations to revise the estimated 
ohort parameters on an on-

going basis. To illustrate, the last �tted 
ohort parameter we have is for year of birth

1999 and the �rst proje
ted 
ohort parameter is for 2000. The 
lassi
al approa
h would

assume that γ1999 is known with 
ertainty whilst γ2000 needs to proje
ted. However, we

will 
ontinue to observe both 
ohorts for nearly a 
entury, and so our 
urrent estimate of

γ1999 should be 
onsidered an approximation based on partial information and subje
t

to future revision. In addition, we possess only slightly more information for estimating

γ1999 than γ2000 and so the assumption that one is known whilst the other is unknown is

in
onsistent with the data we possess. In order to obtain a desired 
onsisten
y between

the histori
al and proje
ted 
ohort e�e
ts, we use the Bayesian approa
h des
ribed in

Se
tion 6.5.3 whi
h is 
apable of allowing for the in
omplete nature of the information we

have regarding 
ohorts whi
h are 
urrently alive when proje
ting the 
ohort parameters.

6.5.2 Identi�ability in proje
tions

In addition to the 
onsiderations dis
ussed above, the use of Box-Jenkins methods to

sele
t a time series pro
ess for the 
ohort parameters 
an lead to the use of time series

pro
esses whi
h are not well-identi�ed. Just as in the dis
ussion 
on
erning identi�ability

in the period parameters in Se
tion 6.4.1, we need to ensure that our proje
ted mortality

rates are well-identi�ed, i.e., they do not depend on the identi�ability 
onstraints im-

posed. To 
hange the identi�ability 
onstraints on the 
ohort parameters, we need to

use the transformations in Equations 6.4, 6.5 and 6.6 to obtain a new (but equivalent)

set of parameters. We therefore need to ensure that the time series pro
ess used for the


ohort parameters does not 
hange if we use these transformations and so are equally

appropriate for all sets of identi�ability 
onstraints.

We see that Equation 6.4 adds a 
onstant to γy, Equation 6.5 adds a term linear in year

of birth to γy and Equation 6.6 adds a term quadrati
 in year of birth to γy. These 
an
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be 
ombined and written as

γ̂y = γy + a0 + a1y + a2y
2 = γy +AXy (6.18)

where Xy =
(

1, y, y2
)⊤

. As with the period fun
tions in Se
tion 6.4.1, this transfor-

mation 
onverts one set of �tted parameters (using one set of identi�ability 
onstraints)

into an alternative set of parameters whi
h satisfy a di�erent set of identi�ability 
on-

straints. These two sets of parameters, γy and γ̂y, are equivalent: they give the same

�tted mortality rates and so there is no statisti
al reason for preferring one over the other.

As dis
ussed in Chapter 4, identi�ability under this transformation means that we need

to allow for linear and quadrati
 trends within the 
ohort parameters, even if they are

not apparent visually. The desire for a stationary distribution around these 
entral,

deterministi
 trends leads us to use an ARMA time series pro
ess of the form

Φ(L)(γy − βXy) = Ψ(L)ǫy (6.19)

where β is a matrix of regression 
oe�
ients found from analysing the �tted parameters

and L is the lag operator. We 
an see that this is well-identi�ed by applying the trans-

formation in Equations 6.18 to Equation 6.19 to obtain an equivalent set of parameters,

whi
h we then substitute into Equation 6.19 to give

Φ(L)(γ̂y −AXy − βXy) = Φ(L)(γ̂y − β̂Xy) = Ψ(L)ǫy (6.20)

Doing this has 
hanged the numeri
al values of the regressors in β, but nothing funda-

mental about the time series, su
h as the moving average and autoregressive terms, Φ

and Ψ. Hen
e, if the time series pro
ess was appropriate for γy, it is also appropriate for

γ̂y and, therefore, appropriate for all di�erent sets of identi�ability 
onstraints. Hen
e,

this time series model is well-identi�ed.

The spe
i�
 nature of the time series 
an be set by 
hoosing the polynomials Φ(L) and

Ψ(L). In prin
iple, these 
ould be sele
ted via a modi�ed Box-Jenkins pro
ess, but tak-

ing 
are to in
lude the βXy term. Alternatively, we 
an work ba
kwards from our desired

demographi
 signi�
an
e of the 
ohort parameters to sele
t Φ(L) and Ψ(L), whilst also

in
luding the βXy term to ensure that the pro
ess is well-identi�ed.

For instan
e, an AR(1) pro
ess, with Φ(L) = 1 − ρL and Ψ(L) = 1, might be felt to

be 
onsistent with the desired demographi
 signi�
an
e as it is stationary, parsimonious,
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but still allows for persistent 
ohort e�e
ts. AR(1) pro
esses are often used for the 
ohort

parameters in mortality models, for instan
e in Cairns et al. (2011a). In order to make

this well-identi�ed, however, we 
ould 
hoose to proje
t using an AR(1) pro
ess around a

quadrati
 trend by in
luding a βXy term, as dis
ussed above. This is the �AR(1) pro
ess

around a quadrati
 drift� pro
ess dis
ussed in Chapter 4 for the model of Plat (2009a).

When we proje
t using the AR(1) pro
ess around a quadrati
 drift, we obtain Eγy = βXy

un
onditionally. Consequently, it might be felt that there is a 
on�i
t between the need

for the time series pro
ess to be well-identi�ed and our desired demographi
 signi�
an
e

for the 
ohort parameters, namely that they la
k trends. We need to allow for quadrati


trends in order to give well-identi�ed proje
tions, but we would like these trends to be

zero based on our (subje
tive) demographi
 signi�
an
e, i.e., we would like to have β = 0.

Clearly, the need to have well-identi�ed proje
tions whi
h do not depend upon arbitrary

identi�ability 
onstraints is more important. However, it is possible to a
hieve both aims

simultaneously.

As shown by Equation 6.20, the value of β found depends upon the identi�ability 
on-

straints imposed. In Chapter 4, we argued that the 
hoi
e of identi�ability 
onstraints is

arbitrary, and no one set of identi�ability 
onstraints is preferable on statisti
al grounds

to any other. We also know that the transformations in Equations 6.4, 6.5 and 6.6

allow us to 
hange between di�erent, equivalent sets of parameters (i.e., di�erent arbi-

trary identi�ability 
onstraints) without 
hanging the histori
al �t to data, whilst using

well-identi�ed proje
tion pro
esses for the period and 
ohort parameters means that the

arbitrary 
hoi
e of identi�ability 
onstraints will not a�e
t the proje
ted mortality rates.

We therefore propose the following approa
h.

First, we �t the model as in Se
tion 6.3, imposing the 
onstraints in Equations 6.7, 6.8

and 6.9. These 
onstraints are 
onvenient when �tting the model as they are simple to

apply (by regressing the 
ohort parameters on the relevant deterministi
 trends) and do

not depend upon what time series pro
ess we subsequently use to proje
t the period and


ohort parameters.

Se
ond, we sele
t an appropriate time series pro
ess for the 
ohort parameters, working

ba
kwards from our desired demographi
 signi�
an
e for the parameters and the need

for the pro
ess to be well-identi�ed, as dis
ussed in Chapter 4. For illustrative purposes,
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we sele
t the AR(1) around quadrati
 drift pro
ess dis
ussed above.

21

Third, we �t an AR(1) around quadrati
 drift to the histori
al 
ohort parameters. In do-

ing so, we �nd β =
(

−5.05 × 10−4, −1.24× 10−5, −2.49× 10−7
)

. Numeri
ally, these

regression 
oe�
ients are small, however it is important to note that they are not equal

to zero. In the long run, therefore, the small quadrati
 trend in the 
ohort parameters

will result in the proje
ted 
ohort parameters diverging signi�
antly from zero, whi
h


on�i
ts with our desired demographi
 signi�
an
e.

However, the magnitude of β is entirely dependent upon the identi�ability 
onstraints

used, i.e., even if β is small, we see from Equation 6.20 that β̂ = β+A 
an be arbitrarily

large depending upon the value of A. Therefore, any de
ision to ignore β would also be

entirely dependent upon the arbitrary identi�ability 
onstraints. Thus, we are unable

to test β and set it to zero if it proves statisti
ally insigni�
ant, sin
e the results of any

statisti
al tests on them would also depend upon the arbitrary identi�ability 
onstraint.

Hen
e, the 
hoi
e of time series to use for γy 
annot be motivated by arguments based on

statisti
al signi�
an
e or goodness of �t, but must be determined by the identi�ability

issues present in the model, in order to avoid generating poorly-identi�ed proje
tions of

mortality rates that depend on the arbitrary 
onstraints imposed when �tting the model.

Sin
e the value of β depends upon the identi�ability 
onstraints, we 
an work ba
kwards

to impose β = 0 by 
hoosing a new set of identi�ability 
onstraints. To do this, we use

the transformations in Equations 6.4, 6.5 and 6.6, with the values of the free parameters

in these transformations given by the �tted values of β found above. This gives an equiv-

alent set of histori
al parameters, with the original 
onstraints in Equations 6.7, 6.8 and

6.9 over-ridden by the new 
onstraint, β = 0. Imposing β = 0 in this fashion does not


hange our �tted mortality rates (as it merely involves using the invariant transforma-

tions), nor does it a�e
t the proje
ted mortality rates, sin
e all the time series pro
esses

used for the period and 
ohort parameters are well-identi�ed. However, it will ensure

that our proje
ted 
ohort parameters have the subje
tive demographi
 signi�
an
e we

desire for them from Chapter 2, namely that they la
k deterministi
 trends.

The identi�ability 
onstraint β = 0 
ould not have been imposed when �tting the model

to data, sin
e it depends on knowing whi
h time series pro
ess we would use to proje
t

21

However, in Se
tion 6.5.3, we will extend this using a Bayesian approa
h to allow for the issues

dis
ussed in 6.5.1.
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the 
ohort parameters a priori.

22

It therefore makes sense - and is 
ertainly more 
onve-

nient - to use the original set of identi�ability 
onstraints (Equations 6.7, 6.8 and 6.9),

to �t the model to data and analyse the �tted 
ohort parameters. On
e we have done

this and 
hosen an appropriate time series pro
ess to proje
t the 
ohort parameters,

the �tting 
onstraints 
an be revisited and we 
an swit
h to the more 
onvenient set

of identi�ability 
onstraints for proje
ting the model. Be
ause all sets of �tted param-

eters give the same �tted mortality rates, and be
ause using well-identi�ed proje
tion

methods for both the period and 
ohort parameters means that, when we proje
t any

of these sets of parameters, we obtain the same proje
ted mortality rates, we are free to

swit
h between them at any stage of the analysis depending on whi
h set of identi�a-

bility 
onstraints is most 
onvenient at the time. This is dis
ussed in depth in Chapter 4.

6.5.3 A Bayesian approa
h for proje
ting the 
ohort parameters

From Se
tion 6.5.1, we see that we must be 
areful when allowing for the un
ertainty in

the 
ohort parameters, as our estimates to date will be based only on in
omplete infor-

mation. In attempting to allow for this un
ertainty, it therefore makes sense to develop

a pro
ess that is 
onsistent with the nature of our observation of ea
h 
ohort.

We do this using a Bayesian te
hnique, sin
e Bayesian methods are well suited to al-

lowing for the inherent un
ertainty in parameter estimates based on partial information,

but there are prior views regarding the pro
ess generating the data. Bayesian methods

have been used extensively in order to �t various mortality models to data, for instan
e

in Pedroza (2006), Cairns et al. (2006b), Rei
hmuth and Sarferaz (2008) and Mavros

et al. (2014), often using Markov 
hain Monte Carlo (MCMC) te
hniques. However,

they have not been used to model the underlying pro
esses generating the 
ohort pa-

rameters. A

ordingly, the �tted values of γy from models with 
ohort parameters �tted

using MCMC te
hniques will su�er from exa
tly the same issues as those des
ribed in

Se
tion 6.5.1. Instead, we 
onstru
t a Bayesian framework for the 
ohort parameters

from the ground up, starting by spe
ifying the underlying data generating pro
ess of

ea
h individual 
ohort parameter and then in
orporating a (well-identi�ed) time series

22

In prin
iple, if the �nal time series pro
esses are known in advan
e or determined by a trial two

step sequential estimation of the model and time series pro
esses, it is possible to �t the model and

time series pro
esses to data jointly in a one step pro
ess. This 
an be done either using maximum

likelihood te
hniques (as in Dowd et al. (2011b), or Bayesian Markov 
hain Monte Carlo te
hniques,

as in Pedroza (2006). However, su
h te
hniques are 
ompli
ated to implement and so are not pra
ti
al

when using sophisti
ated mortality models or if the model is intended to be used for di�erent datasets,

where di�erent time series pro
esses might be appropriate.
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pro
ess governing the evolution of the 
ohort parameters a
ross years of birth.

6.5.3.1 The data generating pro
ess

We start by noting that our dataset gives us a limited number of observations for ea
h


ohort, ea
h of these observations giving us a small amount of information regarding the

mortality e�e
ts spe
i�
 to that 
ohort. We also note that the value of ea
h observation

is proportional to the fra
tion of the 
ohort whi
h dies at that age, with ages with many

deaths giving relatively more insight than ages experien
ing few deaths. We formalise

this intuition as follows.

Consider a 
ohort born in year y where a proportion, dx, of the total 
ohort dies at age

x (assuming ages in the range [1,X] and no other de
rements from the population other

than death, su
h as migration). For simpli
ity, dx is assumed to be the same for all 
o-

horts.

23

Therefore, by the time the 
ohort has rea
hed age x, we have seen a proportion

Dx =
∑x

ξ=1 dξ of the 
ohort die. Trivially, DX =
∑X

ξ=1 dξ = 1.

We start by assuming that ea
h observation of 
ohort y at age x gives us a pa
ket of

information, γxy , relating to the 
ohort-spe
i�
 mortality e�e
ts. We assume

γxy |Γy, σ
2 ∼ N

(

Γy,
σ2

dx

)

(6.21)

where Γy is the 
ommon mean of the information pa
kets for year of birth y. We as-

sume that the information pa
kets are 
onditionally independent of ea
h other, apart

from sharing a 
ommon mean. This implies that an observation of a 
ohort at age 50

only depends upon the observation of the same 
ohort aged 40 via the mean, Γy, and so

observations of the γxy 
an be used to estimate this unknown variable. We will assume

a prior distribution for Γy based on the time series stru
ture for the 
ohort parameters


onsidered in Se
tion 6.5.3.2.

What we are primarily interest in, however, is the �ultimate� 
ohort parameter, γy. This

is the lifelong mortality e�e
t experien
ed by the 
ohort, and is 
onstru
ted from the

pa
kets of information observed at ea
h age. Be
ause the ultimate 
ohort parameter is

a lifelong e�e
t, it will only be known fully at the extin
tion of the 
ohort (i.e., at time

23

In pra
ti
e, we take dx to be given by the �tted mortality rates in the �nal year of the data. However,

the results are relatively insensitive to the 
hoi
e of dx as long as these re�e
t a plausible pattern of

deaths from a 
ohort a
ross di�erent ages.
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y +X), but will be unobservable at any time before this. We assume that the ultimate


ohort parameter is given by the weighted sum of the information pa
kets, with the

weights given by the s
hedule of deaths for the 
ohort, i.e.,

γy =

X
∑

x=1

dxγ
x
y (6.22)

From this, we �nd the distribution of the ultimate 
ohort parameter, assuming we have

observed no information pa
kets to date (e.g., for 
ohorts whi
h have yet to be born)

γy|Γy, σ
2 ∼ N(Γy, σ

2) (6.23)

Thus, Γy is also the mean of the ultimate 
ohort parameter, as well as the mean of the

information pa
kets. Note that the pa
kets are all a lot more variable than the ultimate


ohort parameter, sin
e dx will tend to be small (of the order of a few per
ent of people

in a 
ohort dying at ea
h age).

Before the extin
tion of the 
ohort, γy is unobservable and we will have only partial

information regarding the 
ohort, based on the pa
kets of information observed to date.

The 
hallenge, therefore, is to �nd the distribution of the ultimate 
ohort parameter

given the partial information we have at time t. We will typi
ally assume that t is �xed

at the 
urrent year of observation (i.e., the last year of the dataset).

24

At this time, we

have re
eived the �rst t− y pa
kets of information, i.e., γxy , x ∈ [1, t− y]. We, therefore,

de�ne the partial sum of the pa
kets, γ
y
(t) =

∑t−y
x=1 dxγ

x
y . The distribution of this partial

sum is given by

γ
y
(t)|Γy, σ

2 ∼ N
(

Dt−yΓy,Dt−yσ
2
)

(6.24)

Unlike the individual information pa
kets, γxy , the partial sums, γ
y
(t), are, in prin
iple,

observable at time t and 
ould be found from the available data . However, they are not

the same as the estimated 
ohort parameters found when �tting a mortality model to the

available data at time t. This is be
ause the expe
ted value of the partial sums depends

upon Dt−y, i.e., the proportion of the 
ohort expe
ted to have died to date, and so we

observe very small values of γ
y
(t) for 
ohorts whi
h have just been born, but 
onsiderably

larger values for older 
ohorts (for �xed Γy). This is in
onsistent with the assumption,

impli
it in the majority of APC mortality models, that the 
ohort parameters have the

24

In Chapter 12, this is relaxed and the year of observation is allowed to 
hange to re�e
t the impa
t

of new observations on the previously estimated 
ohort parameters.
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same s
ale.

25

Therefore, we de�ne �interim� 
ohort parameters, γy(t) = 1
Dt−y

γ
y
(t). From Equation

6.24, we see that the γy(t) have distribution

γy(t)|Γy, σ
2 ∼ N

(

Γy,
1

Dt−y
σ2

)

(6.25)

Not only do the γy(t) have means independent of Dt−y, but they have varian
es whi
h

are inversely proportional to the number of deaths expe
ted from the 
ohort to date,

whi
h is 
onsistent with Equation 6.17 and the analysis of Se
tion 6.5.1. Therefore, we

identify the interim 
ohort parameters, γy(t), with the 
ohort parameters estimated by

the model in Se
tion 6.3 and shown in Figure 6.4. Hen
e, we are able to obtain values

of γy(t) by �tting the APC model to data. The interim 
ohort parameters, γy(t) are

assumed to be known at time t, as opposed to having the distribution in Equation 6.25,

and similarly the partial sums, γ
y
(t), are also assumed to be known at time t. It is

trivial to move between the �tted γy(t) and the partial sums, γ
y
(t), whi
h are more

fundamental in the analysis.

We 
an use the knowledge of γy(t) (and γ
y
(t)) to update the distribution for the ultimate


ohort parameter, γy by 
onditioning on the partial information we have to time t. To

do this, we note that, for times in the interval y ≤ t < y +X

γy =

t−y
∑

x=1

dxγ
x
y +

X
∑

x=t−y+1

dxγ
x
y

= γ
y
(t) +

X
∑

x=t−y+1

dxγ
x
y (6.26)

Therefore, from Equation 6.21, we �nd

γy|γy(t),Γy, σ
2 ∼ N(γ

y
(t) + (1−Dt−y)Γy, (1−Dt−y)σ

2) (6.27)

Thus, we have found the distribution of the ultimate 
ohort parameters for year of

birth y, 
onditional on our observations of the 
ohort to date and its prior expe
ted

value. However, we have not made any assumptions regarding the form that this prior

expe
tation should take and, in parti
ular, how this expe
ted value relates to the values

for other neighbouring 
ohorts.

25

This is a 
onsequen
e of having a simpli�ed age/
ohort stru
ture and setting β
(0)
x = 1 dis
ussed in

Chapter 2.
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6.5.3.2 Time series dynami
s

The dependen
e of the ultimate 
ohort parameters, γy, upon the pre
eding 
ohorts is

given by the time series pro
ess driving the dynami
s of the 
ohort parameters. These

assumed time series dynami
s a
t as a prior distribution in the Bayesian approa
h. Work-

ing ba
kwards from our desired demographi
 signi�
an
e for the 
ohort parameters, we

said in Se
tion 6.5.2, that an AR(1) pro
ess around a quadrati
 drift 
an provide pro-

je
tions in line with our desire for stationary but persistent 
ohort parameters relatively

parsimoniously. Writing the AR(1) pro
ess around a quadrati
 drift in distributional

terms gives

γy|γy−1, β, ρ, σ
2 ∼ N

(

βXy + ρ(γy−1 − βXy−1), σ
2
)

(6.28)

Comparing this with Equation 6.23, we see that using the AR(1) pro
ess around a

quadrati
 drift is equivalent to setting Γy = βXy + ρ(γy−1 − βXy−1).
26

This 
hoi
e for

Γy also feeds through into the distributions both of the partial sums, γ
y
(t), in Equation

6.24 to give

γ
y
(t)|γy−1, β, ρ, σ

2 ∼ N
(

Dt−y(βXy + ρ(γy−1 − βXy−1)),Dt−yσ
2
)

(6.29)

and of the information pa
kets, γxy , in Equation 6.21 to give

27

γxy |γy−1, β, ρ, σ
2 ∼ N

(

βXy + ρ(γy−1 − βXy−1),
σ2

dx

)

(6.30)

To in
orporate both sour
es of information regarding the ultimate 
ohort parameter, γy

(i.e., the partial information observed to date for the 
ohort and that from the 
ohort

parameter for the previous year of birth using the time series stru
ture), we substitute

the expression for Γy into Equation 6.27, to obtain

γy|γy(t),γy−1, β, ρ, σ
2 ∼

N
(

γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)), (1 −Dt−y)σ

2
)

(6.31)

This expression gives the distribution of the ultimate 
ohort parameter for 
ohort y,

given our observations of the 
ohort parameter to date and the previous ultimate 
ohort

parameter, γy−1. It 
an, therefore, be 
onsidered as the posterior distribution in the

Bayesian approa
h, sin
e it takes the prior distribution given by the time series dynami
s

26

The model 
ould, theoreti
ally, be extended to allow for more lags and an AR(p) stru
ture via a

di�erent 
hoi
e for Γy.

27

While the distribution for γx
y is not used here, it is ne
essary when updating the estimates of the


ohort parameters for additional data, as done in Chapter 12.

232



Consistent Mortality Proje
tions Allowing for Trend Changes and Cohort E�e
ts

in Equation 6.28 and updates it by in
orporating the information observable in γ
y
(t).

This posterior distribution 
an be used for simulation purposes, espe
ially when it is

rewritten in the form

γy = γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)) + ǫy (6.32)

ǫy ∼ N(0, (1 −Dt−y)σ
2)

We refer to this as the �updating equation�, whi
h we 
an use to simulate sample paths

for the ultimate 
ohort parameters, γy, over the range t −X < y < Y (where Y is the

last 
ohort in the data for whi
h we have estimated a 
ohort parameter).

If we were to write Equation 6.32 using the interim 
ohort parameters, γy(t), estimated

by the model, instead of the partial sums, γ
y
(t), we 
an see that the expe
tation of

the ultimate 
ohort parameter is of the form of a weighted sum of the �tted parameter

based on observations of the 
ohort to time t and the expe
ted value from the time series

dynami
s

Eγy|γy
(t), γy−1, β, ρ, σ

2 = Dt−1γy(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1))

In this form, the approa
h 
an be 
ompared to a �
redibility analysis� of the 
ohort pa-

rameters as dis
ussed in Chapter 7 of Kaas et al. (2001), sin
e our estimate of the true

parameter is formed as a weighted average of our observed parameter and what would be

predi
ted by the time series. These weights, i.e., the proportion of ea
h 
ohort expe
ted

to have died by the observation date, are shown in Figure 6.5. We 
an see that we pla
e

a high degree of 
on�den
e in our estimates of the 
ohort parameters before 
. 1930 (i.e.,

individuals 
urrently aged around 80), but this falls rapidly for younger 
ohorts. For

these, the se
ond term in Equation 6.32 will dominate.

While useful for simulation purposes, Equation 6.31 is not the end of the story, sin
e it is

still 
onditional on knowing the previous ultimate 
ohort parameter, γy−1. However, for

the majority of 
ohort parameters, the previous ultimate 
ohort parameter will also be

unknown at time t. However, it is possible to solve Equation 6.31 iteratively to remove

the dependen
e on γy−1 and obtain the distribution for the 
ohort parameter γy at time

t, based solely on the observations made to date. We do this by writing

γy|Ft,y, β, ρ, σ
2 ∼ N(M(y, t), V (y, t)) (6.33)

where Ft,y represents the sum total of information known at time t about 
ohorts up to

and in
luding year of birth y, i.e., {γ
υ
(t) υ ≤ y}, and M(y, t) and V (y, t) are the mean
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Figure 6.5: De
eased proportion of 
ohort, Dy

and varian
e fun
tions, respe
tively. From Equation 6.31 and Bayes Theorem, we work

ba
kwards to give

γy|Ft,y, β, ρ, σ
2 ∼ N

(

γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t)− βXy−1)),

(1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)
)

⇒ M(y, t) = γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t) − βXy−1)) (6.34)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t) (6.35)

This gives us iterative equations for the mean and varian
es fun
tions, respe
tively, for

the ultimate 
ohort parameters based on the information observed to date, whi
h 
an be

solved to give

M(y, t) =

∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)

]

ρs
[

γ
y−s

(t) + (1−Dt−y+s)β(Xy−s − ρXy−s−1)
]

(6.36)

V (y, t) =

∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)
2

]

(1−Dt−y+s)ρ
2sσ2

(6.37)

in 
losed form. We adopt the 
onvention that empty produ
ts equal unity (i.e.,

∏s−1
r=0(1−
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Dt−y+r) = 1 for s = 0). It is also important to note that, although these are written as

in�nite sums, they will in fa
t terminate as DX = 1.

So far, this analysis has assumed that we know the parameters of the underlying time

series dynami
s, i.e., Equation 6.33 is 
onditional on knowing the values of β, ρ and

σ2
. In pra
ti
e, these parameters 
an be estimated from the �tted 
ohort parameters,

on
e we �nd the predi
tive distribution for γ
y
(t)|Ft,y−1, i.e., the observed γ

y
(t), given

all previous γ
υ
(t). This 
an be 
al
ulated using Bayes Theorem and Equation 6.29 to

give

γ
y
(t)|Ft,y−1, β, ρ, σ

2 ∼ N (Dt−y(βXy + ρ(M(y − 1, t)− βXy−1)),

Dt−yσ
2 + ρ2D2

t−yV (y − 1, t)
)

(6.38)

This predi
tive distribution gives us the distribution of an observable quantity, γ
y
(t), in

terms other observable quantities, γ
υ
(t) (in M(y, t)), and the unknown time series pa-

rameters. This means that we 
an use quasi-maximum likelihood methods to estimate β,

ρ and σ2
. As dis
ussed in Se
tion 6.5.2, in general, we will observe non-zero values for β,

whi
h is undesirable given our demographi
 signi�
an
e for the 
ohort parameters. We,

therefore, use the invariant transformations in Equations 6.4, 6.5 and 6.6 to set β = 0,

as dis
ussed in Se
tion 6.5.2. This also has the bene�t of simplifying both the expression

for M(y, t) in Equation 6.36 and the proje
tions of the 
ohort parameters 
onsiderably.

So far, we have only 
onsidered the situation where we have two sour
es of information for

ea
h 
ohort, the observations to date and the time series stru
ture. In order to proje
t

the 
ohort parameters into the future (i.e., beyond year of birth Y ), we do not have

any observations to date and therefore we simply use the AR(1) stru
ture to generate

proje
tions. To proje
t beyond the last �tted 
ohort parameter (assumed to be known

for the time being), the AR(1) pro
ess gives

γY+η|γY , ρ, σ2 ∼ N

(

ρηγY ,
1− ρ2η

1− ρ2
σ2

)

To remove the dependen
e on γY , whi
h will be unknown in pra
ti
e, we use Bayes

Theorem to obtain

γY+η|Ft,Y ∼ N

(

ρηM(Y, t),
1− ρ2η

1− ρ2
σ2 + ρ2ηV (Y, t)

)

(6.39)

The varian
e of this 
ontains two parts. First, the variability from proje
ting the time

series, whi
h in
reases to a 
onstant σ2(1− ρ2)−1
as η → ∞ as expe
ted. Se
ond, there
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Figure 6.6: 95% fan 
hart of the proje
ted 
ohort parameters using the Bayesian

approa
h

is the variability from the fa
t that our initial value γY is unknown: this sour
e of vari-

ability de
ays exponentially. However, as V (Y, t) < σ2(1− ρ2)−1
,

28

this means that our


on�den
e intervals for γY+η in
rease with time towards a limit.

As with Equation 6.31, it is helpful to rewrite Equation 6.39 in the form of an updating

equation

γY+η = ργY+η−1 + εy

εy ∼ N(0, σ2)

whi
h 
an be used for generating sample paths. Again, we see that this is simply the time

series pro
ess for an AR(1) pro
ess and is similar to Equation 6.32, but with Dt−y = 0

and β = 0, i.e., we are fore
asting 
ohorts for whi
h there have been no observed deaths

to date.

28

Mathemati
ally, this is a 
onsequen
e of Dt−Y > 0. More intuitively, it 
an be seen that σ2(1−ρ2)−1

is the variability of a 
ohort parameter under the prior distribution from the AR(1) time series without

any additional information from the data to re�ne the parameter estimate.
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Figure 6.6 shows a fan 
hart of the values of the 
ohort parameters using this method,

with the �tted parameters indi
ated by a dotted line for 
omparison. We note that the


ohort parameters have three regimes:

1. y ≤ t−X (i.e., y ≤ 1909): our data has a 
omplete set of observations regarding

the 
ohort and therefore we do not have any un
ertainty in the 
ohort parameters

(i.e., γy = γ
y
(t) = γy(t)).

2. t − X < y ≤ Y (i.e., y ∈ [1910, 1999]):29 we have partial observations for ea
h


ohort and, therefore, γy is not known with 
ertainty but is 
onstru
ted from the

observations to date and the time series dynami
s. However, older 
ohorts are


onsiderably less variable as we have a greater number of observations for these

years of birth (and observations in
luding ages where a larger proportion of the


ohort is expe
ted to die). In 
ontrast, the un
ertainty in the parameter estimates

grows rapidly for more re
ent 
ohorts.

3. Y < y (i.e., y ≥ 2000): we have no observations for these years of birth and so

the proje
ted 
ohort parameters are based solely upon the time series dynami
s

assumed.

It is important to note that, despite the qualitative di�eren
es between these three

regimes, the 
on�den
e interval showing the un
ertainty in the parameters blends smoothly

between the �tted and the proje
ted parameters, with no sharp dis
ontinuity at the

regime boundary. This is in 
ontrast to the 
lassi
al approa
hes dis
ussed in Se
tion

6.5.1, whi
h would have the un
ertainty of the 
ohort parameters in
rease sharply at the

boundary between estimated 
ohort parameters, y ≤ Y (assumed known) and proje
ted


ohort parameters, y > Y (proje
ted using the time series). This is important in many

appli
ations, su
h as proje
ting annuity values, as dis
ussed in Se
tion 6.6.3, and also

for valuing longevity-linked se
urities, as dis
ussed in Chapter 8.

We also note from Figure 6.6 that the expe
tation of the ultimate 
ohort parameter,

M(y, t) (given by the 
entre of the 
on�den
e interval in Figure 6.6), 
an be signi�
antly

di�erent from the 
ohort parameters estimated from data to time t, γy(t). Sin
e these

estimated 
ohort parameters were �tted (along with the other parameters in the model)

on the basis of maximising the goodness of �t to data, using the Bayesian approa
h will

worsen the �t to the histori
al data. However, the redu
tion in the goodness of �t is

29

As dis
ussed in Chapter 5, we do not �t 
ohort parameters for the last 10 years of birth in the

data, due to the la
k of observations. Instead, these are linearly interpolated to zero to prevent them

interfering with the age/period terms.
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relatively marginal,

30

as the di�eren
e between the two is only signi�
ant for the most

re
ent 
ohorts, for whom we have relatively little data to �t the model. This worsening

of the goodness of �t is also more than 
ompensated by the more plausible proje
tions

and in
reased allowan
e for un
ertainty in these parameter estimates. In addition, the

use of the Bayesian approa
h for the 
ohort parameters may appear in
onsistent with

the use of the other �tted age and period fun
tions in the model. However, these other

parameters are estimated over a wide range of years of birth and so are not signi�
antly

a�e
ted by the 
hanges to the most re
ent years of birth 
aused by using the Bayesian

approa
h for the 
ohort parameters.

31

Finally, we also see that the pattern of the �tted 
ohort parameters shown in Figure 6.4

after 1950 (i.e., a rapid in
rease and then de
rease in 
ohort mortality relative to the

baseline) is smoothed out, sin
e it is not based on su�
ient observations to be 
redible.

Therefore, using the Bayesian approa
h will tend to avoid the issues found in Cairns

et al. (2011a), where distin
tive patterns in the most re
ent 
ohort parameters lead to

proje
ted mortality rates whi
h are not biologi
ally reasonable.

In summary, we propose a new Bayesian approa
h for proje
ting the 
ohort parameters,

whi
h involves updating a prior distribution for them based on assumed time series

dynami
s with the partial observations we have for ea
h 
ohort from the available data.

This is similar 
on
eptually to a 
reditability analysis of the form familiar to a
tuaries.

In addition, we have ensured that these proje
tions are well-identi�ed, in the sense that

the proje
ted mortality rates do not depend upon any arbitrary set of identi�ability


onstraints imposed. Although this approa
h is 
ompli
ated, it yields proje
tions of the


ohort parameters whi
h we believe are more plausible and also allow for the un
ertainty

in the histori
al 
ohort parameters as we have only partial data regarding them.

6.6 Testing the proje
ted mortality rates

Our aim is to develop te
hniques for proje
ting mortality rates that are more 
onsistent

with the features observed in the histori
al data and whi
h make suitable allowan
e for

longevity risk. This 
annot be done by looking at the parameters of the model in iso-

lation. Rather, we must look at the plausibility of the proje
ted mortality rates and

30

We �nd log-likelihoods of −3.09× 10−4
using the estimated parameters and −3.25× 10−4

using the

expe
tation of the ultimate parameters, whi
h is mainly due to worsening the �t to mortality data at

age zero. This may indi
ate that the �tted 
ohort parameters attempt to over�t data at this unusual

age, rather than 
apturing genuine lifelong mortality e�e
ts.

31

In prin
iple, the other age/period terms in the model 
ould be re-estimated subsequent to deter-

mining M(y, t). In pra
ti
e, however, this was not done in this study.
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asso
iated indi
es in order to assess the reasonableness of the models developed. To

test our proje
tions, we follow the approa
hes of Dowd et al. (2010b) and Cairns et al.

(2011a) by �rst ba
ktesting the proje
tion model to see if it 
ould have predi
ted the

mortality rates observed in the past, and then make longer term fore
asts to assess the

qualitative nature of the mortality fore
asts.

We 
ombine the trend 
hange model for the period fun
tions and the Bayesian approa
h

for the 
ohort parameters to proje
t mortality rates into the future. We will 
all this

the �
onsistent� approa
h sin
e it has been designed to give proje
tions whi
h are 
on-

sistent with the observed features of the histori
al data. For a 
omparison, we use an

approa
h whi
h simply uses a multivariate random walk for the period parameters and

an AR(1) pro
ess for the 
ohort parameters. This approa
h is more typi
al of the pro-

je
tion methods used by previous studies, e.g. Cairns et al. (2006a), Cairns et al. (2009)

and Haberman and Renshaw (2011). We will denote this the �naïve� approa
h, sin
e,

due to its simpli
ity, it is unable to give proje
tions whi
h are independent of the identi-

�ability 
onstraints, allow for stru
tural breaks in the period fun
tions, or allow for the

un
ertainty in the 
ohort parameters.

Our proje
tions also allow for parameter un
ertainty using the residual bootstrapping

te
hnique of Koissi et al. (2006). We also allow for idiosyn
rati
 (Poisson) risk in the

proje
ted mortality rates when these are 
ompared with the observed mortality rates in

the ba
ktesting exer
ise 
ondu
ted in the following se
tion.

6.6.1 Ba
ktesting the �
onsistent� and �naïve� approa
hes

We �rst test the 
onsistent model using a ba
ktesting pro
edure similar to that devel-

oped in Dowd et al. (2010b). The model is �rst �tted to data from 1950 to 1999 and

then proje
ted for the period 2000 to 2009. These proje
ted mortality rates (allowing

for both parameter un
ertainty and idiosyn
rati
 mortality risk) are then 
ompared with

the rates observed during this period. Results of this pro
edure at ages 60, 70 and 80 are

presented in Figures 6.7 and 6.8 for the naïve and 
onsistent approa
hes, respe
tively.

32

These show fan 
harts 
overing the 95% 
on�den
e interval for the proje
ted mortality

rates with 
rosses representing the observed mortality rates.

32

These ages have been 
hosen as they are of greatest interest to annuity providers, su
h as life

insuran
e 
ompanies and pension s
hemes, whi
h are most a�e
ted by longevity risk. Similar �gures for

younger ages do not show any signi�
ant di�eren
e between the two models in terms of the ability to

fore
ast mortality rates for the period 2000 to 2009.
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Figure 6.7: 95% 
on�den
e intervals for ba
ktested mortality rates - Naïve approa
h

The fan 
harts show that at these key ages, the 
onsistent approa
h gives 
onsiderably

more a

urate fore
asts of mortality rates in 
omparison with the naïve approa
h. In

parti
ular, it is noted that the naïve proje
tion method gives poor proje
tions of mor-

tality rates between ages 70 and 90 for more than �ve years ahead. Sin
e it is these ages

that are of most interest to providers of annuities and pension produ
ts and also where

the numbers of deaths are greatest, this is of great 
on
ern.

To test this statisti
ally, we use the Dawid-Sebastiani s
oring rule (DSS) dis
ussed in

Gneiting and Raftery (2007), as used in Riebler et al. (2012) and van Berkum et al.

(2014).

33

To do this, we 
al
ulate the statisti


DSSx,t =
1

5, 000

5,000
∑

j=1

(

ln
(

µ
(j)
x,t

)

− ln (mx,t)
)2

σx,t
+ ln

(

σ2
x,t

)

(6.40)

33

We are indebted to Frank van Berkum for bringing this test to our attention.
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Figure 6.8: 95% 
on�den
e intervals for ba
ktested mortality rates - Consistent ap-

proa
h

where µ
(j)
x,t are the proje
ted mortality rates for simulation j for age x and period t,

mx,t =
dx,t
Ec

x,t
are the observed mortality rates, and σx,t is the standard deviation of the

proje
ted log mortality rates, estimated on the basis of 5,000 Monte Carlo simulations.

34

Thus, the Dawid-Sebastiani s
oring rule gives a larger value if the observed mortality

rates are a great distan
e from the 
entre of the 
on�den
e interval of the proje
ted

mortality rates, whilst taking into a

ount the width of this 
on�den
e interval.

The di�eren
e between the DSS statisti
s using the 
onsistent and naïve approa
hes at

ea
h age and period are shown in Figure 6.9. As 
an be seen, the 
onsistent approa
h

gives generally lower DSS statisti
s, indi
ating that the proje
ted mortality rates are


loser to those observed, for most ages and years, but espe
ially at younger ages and

34

We look at proje
ted log mortality rates, unlike proje
ted death 
ounts as in van Berkum et al.

(2014), sin
e we expe
t these to be approximately normally distributed, and hen
e, Equation 6.40 is

similar to a log-likelihood.
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Figure 6.9: Heat map of di�eren
es in Dewid-Sebastiani s
ore statisti
s between the


onsistent and naïve approa
hes a
ross ages and proje
ted years

ages 60 to 70. We 
an also 
al
ulated aggregate DSS statisti
s over all ages and years as

DSS =
1

101 × 10

100
∑

x=0

2009
∑

t=2001

DSSx,t

Doing this, we �nd aggregate DSS statisti
s of -3.80 for the 
onsistent approa
h and -3.77

for the naïve approa
h, indi
ating that the 
onsistent approa
h gives proje
tions whi
h

are marginally 
loser to the observed mortality rates than the naïve approa
h overall.

However, this statisti
 does not give greater weight to those ages of greatest interest (i.e.,

those at higher ages) and so should be used with 
aution.

In summary, visual inspe
tion of the ba
ktesting exer
ise gives some eviden
e to suggest

that the 
onsistent approa
h gives more a

urate proje
tions of mortality rates, espe
ially

at the ages of greatest interest to pension and annuity providers. This is supported by the

use of the Dawid-Sebastiani s
oring rule to evaluate the 
loseness between the proje
ted

and observed mortality rates.
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Figure 6.10: 95% fan 
harts of proje
ted mortality rates - Naïve approa
h

6.6.2 �Consistent� and �naïve� mortality density fore
asts

We use the 
onsistent and naïve approa
hes to proje
t mortality rates 50 years into the

future. Figures 6.10 and 6.11 show proje
tions for mortality rates at ages 40, 60 and 80

under these two alternative approa
hes.

35

The �rst thing we note is that the naïve approa
h gives median proje
ted mortality rates

whi
h are far less smooth than those given by the 
onsistent approa
h. This is be
ause

they fully take a

ount of the la
k of smoothness in the �tted 
ohort parameters. In 
on-

trast, the Bayesian te
hnique used in the 
onsistent approa
h smooths the most re
ent


ohort parameters via the prior time series model for them, leading to smoother median

proje
ted mortality rates overall, whi
h might be felt to be more biologi
ally reasonable.

35

These ages have been 
hosen as representative of the pattern of improvements a
ross a broader range

of ages than those shown in Figures 6.7 and 6.8.
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Figure 6.11: 95% fan 
harts of proje
ted mortality rates - Consistent approa
h

Se
ond, the 
onsistent proje
tion approa
h gives proje
ted mortality rates whi
h are


onsiderably more variable than those using the naïve approa
h, espe
ially at younger

ages. For instan
e, Figure 6.10a shows that some tail s
enarios have mortality rates for

40 year olds in 2060 in ex
ess of those observed in the histori
al data, and 
omparable to

those seen during the Se
ond World War. This is mainly due to the potential for trend


hanges in κ
(3)
t . Allowing for these tail s
enarios may appear extreme, but is desirable

for 
onsisten
y with the histori
al data, where these mortality rates have been more

variable than those at higher ages. It is also 
onsistent with our desire for biologi
ally

reasonableness as younger ages, whi
h are typi
ally subje
t to a wider range of signif-

i
ant 
auses of death, su
h a

idents, sui
ides and disease pandemi
s (su
h as HIV or

pandemi
 in�uenza) than older individuals. This means that our proje
tion of mortality

rates for these ages should be 
onsiderably more un
ertain.

The di�eren
es between the two proje
tion approa
hes also show up in the proje
tions

of aggregate measures of mortality, su
h as period life expe
tan
y at birth as seen in

Figure 6.12. In both 
ases, we see that our proje
tion methods allow the high rates of
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Figure 6.12: 95% fan 
harts of proje
ted period life expe
tan
y at birth

in
rease in life expe
tan
y observed in the re
ent past to 
ontinue in future. In the naïve

approa
h, the rate of improvement in period life expe
tan
y tails o� in future. This is

be
ause the naïve approa
h uses a random walk with drift for κ
(1)
t , and so this parameter

de
reases roughly linearly. This leads to in
reases in life expe
tan
ies whi
h get progres-

sively slower and tail o� as the entropy of the life table (as de�ned in Key�tz (1985))

in
reases. In 
ontrast, the 
onsistent model uses a random walk with linear drift for κ
(1)
t

for reasons of identi�ability, as dis
ussed in Se
tion 6.4.1. This gives proje
tions for κ
(1)
t

whi
h de
rease faster than linearly, and these, in turn, have the 
onsequen
e that life

expe
tan
ies do not tail o� in future but 
ontinue to in
rease at roughly the same rate

as is 
urrently observed. Proje
tions using the 
onsistent model therefore do not 
on-

tradi
t the �ndings of Oeppen and Vaupel (2002) whi
h show life expe
tan
y in
reasing

linearly over long time periods and predi
t that this linear in
rease in life expe
tan
y

will 
ontinue in future. In
reases in life expe
tan
y whi
h do not tail o� might also be


onsidered to give more prudent (i.e., less �nan
ially optimisti
) estimates of the long-

term improvements in mortality rates for risk management purposes for annuity books,


ompared with models whi
h impli
itly assume that improvements in life expe
tan
y tail

o� in future.

In addition, the higher variability of mortality rates at younger ages has the impa
t that

the proje
ted period life expe
tan
y at birth under the 
onsistent approa
h has asym-

metri
 proje
tion intervals. This is be
ause improvements in mortality at younger ages

have limited s
ope to redu
e the number of deaths (whi
h is already low) and so lengthen

average life span, but deteriorations in mortality rates at younger ages have 
onsiderable

s
ope to in
rease the number of premature deaths and so redu
e life expe
tan
y. How-

ever, in aggregate, we note that the extreme s
enarios in Figure 6.12 show period life

expe
tan
y returning to a level last seen in 1950, whi
h is not biologi
ally unreasonable.
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6.6.3 Risk management

One of the motivations in developing these te
hniques is to allow fully for the longevity

risk present in bene�ts su
h as annuities. In respe
t of these bene�ts, a stylised life

insurer will:

• hold reserves su�
ient to meet a �best estimate� of the present value of the liabil-

ities, and

• hold 
apital in ex
ess of the reserves su�
ient to 
ope with unexpe
ted events up

to a 
ertain per
entile in the probability distribution.

Figure 6.13 shows the �best estimates� of the present values of annuities for individuals

aged 65 to 90 as the median proje
ted annuity value using a real dis
ount rate of 1%

p.a. for both the 
onsistent and naïve approa
hes. The 
onsistent approa
h signi�
antly

in
reases the �reserves� required to ba
k the annuities 
ompared to the naïve approa
h,

by between 5 and 15% depending on age. Mostly, this is due to κ
(1)
t de
reasing faster

than linearly in future.

We 
an also look at the 95th per
entile of the distribution of present values to illustrate

the additional �
apital� required on top of these �reserves� using the 
onsistent and naïve

approa
hes.

36

In addition to in
reasing the reserves, the 
onsistent approa
h in
rease

the riskiness of the annuities slightly, requiring �
apital ratios�

37

of about 11 to 13%

depending on age, whi
h is about 1 to 2% higher at ages below 80 than required using

the naïve approa
h.

In summary, the 
onsistent approa
h gives proje
ted mortality rates whi
h are more

un
ertain than the naïve approa
h, espe
ially in the long term. This is of 
onsiderable

importan
e for the providers of annuities, su
h as life insuran
e 
ompanies and pension

s
hemes, as not allowing fully for the risk in these long-term proje
tions may 
ause them

to understate their 
apital requirements and reserves.

36

For the avoidan
e of doubt, this is not dire
tly 
omparable to the approa
h adopted in the 
al
ulation

of the 
apital required under many modern solven
y regimes, su
h as Solven
y II (see EIOPA (2014)).

This requires 
al
ulating the 
apital needed to prote
t against a 
hange in the value of the reserves over

a spe
i�ed time period (usually one year) at a higher 
on�den
e level (e.g., the 99.5% level). Studies

whi
h look at this issue in
lude Stevens et al. (2010), Plat (2011), Bauer et al. (2012) and Chapter 12.

37

That is,

P95%−P50%
P50%

where Pα is the α per
entile of the distribution of annuity values.
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Figure 6.13: Expe
ted present values of annuity using the naïve and 
onsistent ap-

proa
hes (valued using 1% net dis
ount rate)

6.7 Con
lusions

The extrapolative approa
h to proje
ting mortality makes the 
ore assumption that there

is 
onsisten
y between the evolution of mortality rates in the past and the future. We

believe that assuming su
h 
onsisten
y is pra
ti
al and ne
essary. When using mortality

models, there is a fundamental symmetry between the pro
esses of �tting the model to

histori
al observations to �nd parameter estimates and proje
ting parameter values to

derive future observations. Therefore, we desire our proje
tions of future patterns of

mortality to be as similar to those observed in the histori
al data as possible.

In Chapter 5, we developed a �general pro
edure� for 
onstru
ting mortality models,

the purpose of whi
h is to dete
t all of the statisti
ally and demographi
ally signi�
ant

stru
ture present in the data. In this study, we have developed te
hniques to make 
on-

sistent proje
tions into the future of many of the features found in the past, su
h as

trend 
hanges in the period fun
tions. Further, we have allowed for un
ertainty in our

estimates of the 
ohort parameters due to the partial information we have observed to

date for re
ent birth 
ohorts. Whilst these methods have been des
ribed in the 
ontext
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of the model in Chapter 5, they 
an be easily adapted for any other age/period/
ohort

mortality model.

We also wanted to ensure that neither the model's �t to histori
al data nor its proje
-

tions of future mortality rates are a�e
ted by the arbitrary 
hoi
es made to identify the

parameters in the model. To a

omplish this, we had to utilise the results of Chapters 3

and 4 to sele
t well-identi�ed proje
tion methods.

When using these te
hniques, we are able to obtain proje
tions whi
h are biologi
ally

reasonable and 
onsistent with the most re
ent trends observed in the histori
al data.

The te
hniques also suggest that standard approa
hes to proje
ting mortality rates may

understate the risk inherent in proje
ting them into the future, as they do not fully allow

for the possibility that features whi
h have o

urred in the past will re
ur in future.

The past few de
ades have witnessed dramati
 
hanges in mortality rates, and there is

no eviden
e to suggest that the forth
oming de
ades will be di�erent in terms of the

magnitude of the pa
e of 
hange or the 
hallenges in making predi
tions. It is, therefore,

vital that we make best use of our understanding of the past to in
orporate su�
ient

un
ertainty into our proje
tions of what lies ahead.

6.A Fore
ast proje
tion interval widths

Consider the model in Equation 6.16 with a 
onstant drift subje
t to random 
hanges in

trend

∆κt = µ0 +

N
∑

j=1

νjIt≥τj + ǫt

We 
an solve this di�eren
e equation to give

κt = κ0 + µ0t+
N
∑

j=1

νj(t− τj)
+ +

t
∑

s=1

ǫs

= κ0 + µ0t+

t
∑

s=1

|νs|Js(t− s)+ +

t
∑

s=1

ǫs

where Js is an indi
ator variable denoting whether a trend 
hange o

urred at time s and

so takes the value +1 with probability 0.5p (
orresponding to a positive trend 
hange), −1

with probability 0.5p (
orresponding to a negative trend 
hange) and 0 with probability

(1 − p) (no trend 
hange). Assuming that the magnitudes of the trend 
hanges |νs| are
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independent and identi
ally distributed, and are independent both of the pro
ess Js (i.e.,

the dire
tion of a trend 
hange) and the innovations pro
ess ǫs, we have

Var(κt) = Var

(

t
∑

s=1

|νs|Js(t− s)

)

+ Var

(

t
∑

s=1

ǫs

)

=
t
∑

s=1

(t− s)2Var(|νs|Js) + σ2t

=
t
∑

s=1

(t− s)2[(E|νs|)2Var(Js) + (EJs)
2Var(|νs|) + Var(|νs|)Var(Js)] + σ2t

=

t
∑

s=1

(t− s)2[p(E|νs|)2 + pVar(|νs|)] + σ2t

= pE|ν|2
t
∑

s=1

(t− s)2 + σ2t

= pE|ν|2(1
6
t(t− 1)(2t − 1)) + σ2t

Therefore, for large t, StDev(κt) ∼ t1.5. This result is independent of the distribution of

the trend 
hange magnitudes |ν|.

A similar result holds for the random walk with linear drift subje
t to random 
hanges

in trend. In this 
ase, we �nd that

κt = κ0 + (µ0 + 0.5µ1)t+ 0.5µ1t
2 +

t
∑

s=1

|νs|Js(0.5((t − s)2 + (t− s))) +
t
∑

s=1

ǫs

whi
h 
an be solved in a similar fashion to give StDev(κt) ∼ t2.5 for large t.
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Chapter 7

Identi�ability, Cointegration and

the Gravity Model

7.1 Introdu
tion

Chapters 3 and 4 dis
ussed the issue of identi�ability in single population age/period/-


ohort (APC) mortality models, and in parti
ular how to obtain proje
tions of mortality

rates whi
h do not depend upon the arbitrary identi�ability 
onstraints imposed.

Issues with identi�ability in proje
tions also exist if we proje
t mortality for multiple

populations rather than just one. Su
h multi-population proje
tions are vital in order

to allow for the 
orrelations and dependen
ies between related populations that are in-

�uen
ed by similar biologi
al and so
io-e
onomi
 drivers of 
hanging mortality. It is

essential that, in su
h a model, our proje
tions do not depend on the arbitrary identi�a-

bility 
onstraints imposed when �tting the model, but only on the underlying drivers of

mortality evolution.

Many multi-population mortality models go beyond merely allowing for 
ovariation be-

tween the sto
hasti
 evolution of mortality in di�erent populations, and instead impose

the stronger assumption of �
oheren
e�, i.e., that mortality rates in di�erent populations

should not diverge with time. Su
h an imposition is popular and intuitively appealing;

however, we �nd that it usually 
annot be imposed on a model in a fashion whi
h does

not depend on the arbitrary identi�ability 
onstraints. In addition, it 
an often lead to

overriding the eviden
e from the histori
al data in order to impose our pre
on
eptions
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on proje
ted mortality rates in a manner whi
h we 
onsider to be uns
ienti�
.

One model designed to a
hieve 
oherent proje
tions of mortality between two popula-

tions is the �gravity model� of Dowd et al. (2011b). This model adopted a 
ointegration

framework to proje
t the period and 
ohort terms from the 
lassi
 APC model �tted

to ea
h population. However, as originally formulated, the model is not well-identi�ed,

sin
e the proje
tions from it depend on the identi�ability 
onstraints imposed when �t-

ting the 
lassi
 APC model. Later work by Zhou et al. (2014) applied the framework

of the gravity model to the period terms from the Lee-Carter model (Lee and Carter

(1992)) and avoided some of the issues present in the original model of Dowd et al.

(2011b). However, this new form of the model is still not well-identi�ed, sin
e it gives

proje
tions dependent upon the identi�ability 
onstraints imposed by the user.

In this study, we dis
uss the issue of identi�ability in 
ointegration models and apply this

to the spe
i�
 
ontext of the gravity model in order to obtain a well-identi�ed model.

Se
tion 7.2 dis
usses the 
lassi
 APC model whi
h was used in Dowd et al. (2011b) to �t

mortality rates in both populations. Se
tion 7.3 outlines the gravity model introdu
ed

in Dowd et al. (2011b) and pla
es it in the 
ontext of more general 
ointegration models.

Se
tion 7.4 dis
usses why the gravity model is not well-identi�ed and how it 
an be

modi�ed to give well-identi�ed proje
tions. Se
tion 7.5 dis
usses the model of Zhou

et al. (2014), how it di�ers from the gravity model of Dowd et al. (2011b) and the issues

with identi�ability whi
h are still present. Finally, Se
tion 7.6 generalises these results

to a broader 
lass of mortality models and Se
tion 7.7 
on
ludes.

7.2 Identi�ability in the 
lassi
 APC model

The simplest APC model (referred to here as the �
lassi
 APC model�) has a long history

and is widely used in the �elds of medi
ine, epidemiology and so
iology as well as in

demography and a
tuarial s
ien
e. It has the form in Equation 7.1

1

ln(µx,t) = αx + κt + γt−x (7.1)

The parameters in the 
lassi
 APC model 
annot be estimated uniquely by referen
e to

the data alone. A model is fully identi�ed when all the parameters in it 
an be uniquely

determined by referen
e to the available data. In 
ontrast, the 
lassi
 APC model is not

1

In this 
hapter, we assume that ages, x, are in the range [1, X] and periods, t, are in the range [1, T ]
and therefore that years of birth, y, are in the range (1−X) to (T − 1).
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fully identi�ed be
ause there exist di�erent sets of parameters whi
h will give the same

�tted mortality rates and 
onsequently the same goodness of �t for any data set.

We 
an see that this model is not fully identi�ed, sin
e if we use the transformations in

Equations 7.2, 7.3 and 7.4 to obtain new sets of parameters, we do not 
hange our �t to

the data (we 
all su
h transformations �invariant� for this reason)

{α̂x, κ̂t, γ̂y} = {αx − a, κt + a, γy} (7.2)

{α̂x, κ̂t, γ̂y} = {αx − b, κt, γy + b} (7.3)

{α̂x, κ̂t, γ̂y} = {αx + cx, κt − ct, γy + cy} (7.4)

Be
ause di�erent sets of parameters give the same �t to the data, we 
annot use the

data to 
hoose between them. Typi
ally, we impose identi�ability 
onstraints on the

parameters in order to spe
ify them uniquely. For instan
e, a 
ommonly used set of

identi�ability 
onstraints is

∑

t κt = 0,
∑

y nyγy = 0 and

∑

y nyγy(y − ȳ) = 0.2 We refer

to these identi�ability 
onstraints as �natural�, sin
e they allow us to impose our interpre-

tation of the demographi
 signi�
an
e

3

of the parameters onto the model. For example,

the �rst two of these 
onstraints mean that αx 
an be interpreted as an �average� level

of mortality at age x over the period, with κt and γy representing deviations from this

average level. The third 
onstraint requires that there are no deterministi
 linear trends

within the �tted 
ohort parameters, sin
e any linear trend has been arbitrarily assigned

to the age and period e�e
ts. This is in line with the demographi
 signi�
an
e we assign

to the 
ohort parameters in Chapter 2, namely that the 
ohort parameters should be


entred around zero and should not show any long term trends. This means that 
ohort

e�e
ts are interpreted as deviations in the mortality experien
ed by one 
ohort relative

to that of adja
ent years of birth.

However, it is important to note that these additional identi�ability 
onstraints, although

having a natural interpretation, are arbitrary and ad ho
. While they might allow us to

interpret the parameters in terms of their demographi
 signi�
an
e, this interpretation

nevertheless depends entirely on the user's judgement rather than on the underlying

data. Of spe
i�
 importan
e in the 
ontext of this study, Dowd et al. (2011b) used the

2

Here ny is the number of observations of 
ohort y in the data and so

∑

y nyγy =
∑

x,t γt−x, and a

bar denotes the arithmeti
 mean of the variable over the relevant data range, e.g., ȳ = 1
X+T−1

∑

y y =
0.5(X + T ) .

3

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of a model

in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in mortality rates

whi
h generate them.
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onstraints

∑

t κt = 0,
∑

y nyγy = 0 and a third 
onstraint des
ribed in terms of min-

imising a tilting parameter δ, whi
h 
an be written as

∑

x,t(x− x̄)γt−x = 0. The impa
t

of using either the �natural� or the Dowd et al. (2011b) identi�ability 
onstraints when

making proje
tions is assessed in Se
tion 7.4.3.

Sin
e the identi�ability 
onstraint we 
hoose to impose are arbitrary and do not a�e
t the

histori
al �tted mortality rates, they should also not a�e
t the future proje
ted mortality

rates either. In 
onsequen
e, we should obtain the same proje
ted mortality rates for any

set of identi�ability 
onstraints, in
luding but not limited to the two dis
ussed above.

We say that models with this property are �well-identi�ed�.

7.3 The gravity model

The �gravity� model was introdu
ed in Dowd et al. (2011b) in order to obtain mortality

proje
tions for two di�erent populations whi
h do not diverge with time.

4

This model

might be appropriate for a small population, su
h as the lives in an annuity book or pen-

sion s
heme, whi
h is a subpopulation of a mu
h larger population, su
h as a national

population. The analogy the authors use is of the smaller population being like a planet

in orbit around a star (the larger population).

The gravity model requires that the 
lassi
 APC model of Equation 7.1 is �tted to two

populations

5

and the period fun
tions proje
ted using

κ
(I)
t = ν(I) + κ

(I)
t−1 + ǫ

(I)
t

κ
(II)
t = ν(II) + κ

(II)
t−1 + φ(κ

(I)
t−1 − κ

(II)
t−1 ) + ǫ

(II)
t (7.5)

The parameter φ ∈ [0, 1) is designed to ensure that the di�eren
e, κ
(I)
t − κ

(II)
t , is sta-

tionary and, therefore, the period fun
tions in the di�erent populations do not diverge.

4

This model is fun
tionally equivalent to the model in Cairns et al. (2011b), whi
h di�ers only in the

presentation of the model and the te
hniques used to �t it to data. Therefore, the 
omments made in

this 
hapter for the gravity model are also appli
able to the model of Cairns et al. (2011b).

5

In Dowd et al. (2011b), these were referred to as populations 1 and 2, with the period and 
ohort

fun
tions numbered a

ordingly. To avoid 
onfusion with the di�erent period fun
tions κ
(i)
t for models

with more than one age/period term �tted to a single population, we shall refer to the populations as I

and II and label the period fun
tions κ
(I)
t and κ

(II)
t respe
tively.
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We 
an rewrite Equation 7.5 as

∆

(

κ
(I)
t

κ
(II)
t

)

=

(

ν(I)

ν(II)

)

+

(

0

φ

)

(

1, −1
)

(

κ
(I)
t−1

κ
(II)
t−1

)

+

(

ǫ
(I)
t

ǫ
(II)
t

)

(7.6)

This model is just a spe
ial 
ase of a more general 
ointegration model, although this in-

terpretation was not 
ommented upon in Dowd et al. (2011b). A number of papers have

suggested or implemented 
ointegration as a means of proje
ting the period parameters

of mortality models for di�erent populations. Cointegration was �rst suggested in the

work of Carter and Lee (1992), but was more re
ently used in the modelling of Li and

Hardy (2011) and Yang and Wang (2013).

Cointegration between the period fun
tions requires that we model the ve
tor of time

series pro
esses as

∆κt = νXt +

p−1
∑

i=1

Γi∆κt−i +Πκt−p + ǫt (7.7)

The rank of the matrix Π is then tested in order to identify the number of 
ointegrating

relationships between the period fun
tions in the model. If it is of rank r < N (the

number of period fun
tions in κt), then Π 
an be de
omposed as Π = αβ⊤
, where α

and β are N × r matri
es to give the interpretation that the rows of β⊤κt−p represent

r stationary 
ointegrating relationships between the di�erent period fun
tions. In order

to use 
ointegration robustly, we need to ensure that any statements we make about the

rank of Π are independent of our 
hoi
e of identi�ability 
onstraints.

We 
an therefore see that the gravity model in Equation 7.6 has the same form as Equa-

tion 7.7, with p = 1, Xt =
(

1
)

, r = 1, α =
(

0, φ

)⊤
and β =

(

1, −1
)⊤

. The

pres
ribed form for β imposes that there is a stationary 
ointegrating relationship of

the form κ
(I)
t − κ

(II)
t = Zt, and so ensures that relative mortality rates will not diverge

between the two populations, whilst the pres
ribed form for α allows the interpretation

that population I is dominant and so has no dependen
e on population II.
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A related pro
ess was used in Dowd et al. (2011b) to proje
t the 
ohort parameters from

the model. This 
an be written as

∆

(

γ
(I)
y

γ
(II)
y

)

=

(

µ(I)

µ(II)

)

+

(

α(I) 0

0 α(II)

)

∆

(

γ
(I)
y−1

γ
(II)
y−1

)

+

(

0

φ

)

(

1, −1
)

(

γ
(I)
y−1

γ
(II)
y−1

)

+

(

ε
(I)
y

ε
(II)
y

)

(7.8)

We 
an therefore see that this is also similar to the 
ointegration relationship in Equation

7.7.

6

7.4 Identi�ability in the gravity model

7.4.1 Period fun
tions

The values of κ
(I)
t and κ

(II)
t are not uniquely identi�able by the 
lassi
 APC model, but

instead depend upon our 
hoi
e of identi�ability 
onstraints. Equations 7.2 and 7.4 give

us the freedom to add linear trends in time to either or both time series independently,

i.e.

(

κ̂
(II)
t

κ̂
(II)
t

)

=

(

κ
(I)
t

κ
(II)
t

)

+

(

a(I)

a(II)

)

+

(

c(I)

c(II)

)

t

κ̂t = κt + a+ ct (7.9)

However, this transformation, despite leaving the �tted mortality rates un
hanged if we

make the appropriate o�sets to the stati
 age fun
tions and 
ohort parameters, funda-

mentally alters the 
ointegration relationship in Equation 7.6 sin
e

∆κ̂t = ∆κt + c

= ν + αβ⊤κt−1 + ǫt + c

= ν + c− αβ⊤(a+ ct) + αβ⊤κ̂t−1 + ǫt

= ν̂ − αβ⊤ct+ αβ⊤κ̂t−1 + ǫt

The transformed time series has a deterministi
 linear term, αβ⊤ct, whi
h was not

present in the original parameterisation. This means that the time series stru
ture in

6

There is a slight di�eren
e between Equation 7.8 and the standard form of the 
ointegration rela-

tionship in Equation 7.7, in that Equation 7.8 involves a stationary term in γy−1 =
(

γ
(I)
y−1, γ

(II)
y−1

)⊤

rather than γy−2. This 
ould be solved by rearranging Equation 7.8 using A∆γy−1 + αβ⊤
γy−1 =

(A + αβ⊤)∆γy−1 − αβ⊤
γy−2 and rede�ning the matrix A. However, this solution involves losing the

parti
ular stru
ture imposed upon A in Dowd et al. (2011b).
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Equation 7.6 is not well-identi�ed. In pra
ti
e, this has the 
onsequen
e that the gravity

model 
an be di�
ult to �t to histori
al time series and may give implausible values.

We might 
onje
ture that a solution to this problem would be to allow for deterministi


trends up to linear order in the 
ointegrating relationship, i.e., using ν0 + ν1t in pla
e

of ν in Equation 7.6 to give

∆

(

κ
(I)
t

κ
(II)
t

)

=

(

ν
(I)
0

ν
(II)
0

)

+

(

ν
(I)
1

ν
(II)
1

)

t+

(

0

φ

)

(

1, −1
)

(

κ
(I)
t−1

κ
(II)
t−1

)

+

(

ǫ
(I)
t

ǫ
(II)
t

)

∆κt = ν0 + ν1t+ αβ⊤κt−1 + ǫt (7.10)

Su
h a model is well-identi�ed as it does not 
hange form under the transformation in

Equation 7.9

∆κ̂t = ν0 + ν1t+ c− αβ⊤(a+ ct) + αβ⊤κ̂t−1 + ǫt

= ν̂0 + ν̂1t+ αβ⊤κ̂t−1 + ǫt

ν̂0 = ν0 + c− αβ⊤a

ν̂1 = ν1 − αβ⊤c

However, be
ause we have the �rst di�eren
e of the time series on the left-hand side of

Equation 7.10, when we integrate this equation, we obtain quadrati
 trends in the levels

of the period fun
tions. This is undesirable as we do not generally observe quadrati


trends in the �tted parameters and they might 
hange dire
tion when proje
ted into the

future with near 
ertainty for no 
ompelling biologi
al reason. Therefore, the model in

Equation 7.10 
on�i
ts with our desire for biologi
ally reasonable

7

proje
tions.

There is, however, a way to obtain both biologi
al reasonableness and identi�ability un-

der the transformations in Equation 7.4. This is to restri
t the linear deterministi
 trend

in Equation 7.10 by imposing ν1 = αβ1 where β1 is an arbitrary 
onstant. This will

ensure that the relevant deterministi
 trend is present in κt, but is 
onstrained within

the stationary 
ointegrating relationships and is not present in the non-stationary part

of the relationship.

7

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�

257



Identi�ability, Cointegration and the Gravity Model

This means that we need to in
lude 
onstrained deterministi
 linear trends in the 
oin-

tegrating relationship, but leave an un
onstrained 
onstant term, i.e.

∆κt = ν0 + αβ1t+ αβ⊤κt−1 + ǫt

= ν0 + α(β⊤κt−1 + β1t) + ǫt (7.11)

To see that this stru
ture is well-identi�ed under the transformations in Equation 7.4,

let us transform the parameters using Equation 7.9 to obtain

∆κ̂t = ν0 + c− αβ⊤a+ α
(

β⊤κ̂t−1 + (β1 − β⊤c)t
)

+ ǫt

= ν̂0 + α
(

β⊤κ̂t−1 + β̂1t
)

+ ǫt

where ν̂0 = ν0+c−αβ⊤a, as previously, and β̂1 = β1−β⊤c. This model also gives bio-

logi
ally reasonable values for φ whi
h do not depend upon the identi�ability 
onstraints

imposed when �tting the models, as demonstrated in Se
tion 7.4.3.

7.4.2 Cohort parameters

As with the period parameters, the values of γ
(I)
y and γ

(II)
y are not uniquely identi�able in

the 
lassi
 APC model, but instead depend upon our 
hoi
e of identi�ability 
onstraints.

Equations 7.3 and 7.4 give us the freedom to add linear trends in time to either or both

time series independently, i.e.

(

γ̂
(II)
y

γ̂
(II)
y

)

=

(

γ
(I)
y

γ
(II)
y

)

+

(

b(I)

b(II)

)

+

(

c(I)

c(II)

)

y

γ̂y = γy + b+ cy (7.12)

Rewriting Equation 7.8 in the form

∆γy = µ+A∆γy−1 + αβ⊤γy−1 + εy

we see that this is also not well-identi�ed as it 
hanges form under the transformation

in Equation 7.12

∆γ̂y = µ+ c−Ac− αβ⊤ (b+ cy) +A∆γ̂y−1 + αβ⊤γ̂y−1 + εy
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as the transformed drift term, µ̂ = µ+ c −Ac− αβ⊤ (b+ cy), is now a linear fun
tion

in year of birth, y.

However, in the same manner as used for the period parameters above, we 
an introdu
e a


onstrained linear trend into the 
ointegrating relationship in order to give well-identi�ed

proje
tions whi
h are biologi
ally reasonable

∆γy = µ+A∆γy−1 + α
(

β⊤γy−1 + β̃1y
)

+ εy (7.13)

This 
an be shown to be well-identi�ed by transforming the 
ohort parameters in a sim-

ilar fashion.

7.4.3 Appli
ation to England & Wales and CMI Assured Lives data

In order to illustrate how the original gravity model gives proje
tions of mortality whi
h

depend upon the identi�ability 
onstraints 
hosen, we apply the gravity model to the

same data used in Dowd et al. (2011b), i.e., the dominant population is the 
ombined

populations of England & Wales and the subordinate population is that of assured lives

in the UK as re
orded by the Continuous Mortality Investigation, i.e., those people who

pur
hase life assuran
e poli
ies with UK insuran
e 
ompanies. In both 
ases, we use

data for ages 50 to 90 and years 1947 to 2006.

8

We start by �tting the 
lassi
 APC model to the data.

9

In doing so, we have a 
hoi
e

over the identi�ability 
onstraints imposed on the models for England & Wales and the

CMI Assured Lives. We investigate four di�erent sets of identi�ability 
onstraints, whi
h

were used for the 
lassi
 APC model in Chapter 4, i.e.,

Case 1:

∑

t κt = 0,
∑

y nyγy =
∑

x,t γt−x = 0 and
∑

y nyγy(y− ȳ) =
∑

x,t γt−x((t− t̄)−
(x− x̄)) = 0.

Case 2:

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0.

8

Data for England & Wales is taken from Human Mortality Database (2014) and we are indebted to

the Continuous Mortality Investigation for providing CMI Assured Lives dataset.

9

To do this, we use a two-step pro
edure to �t the model for simpli
ity, i.e., we �t the 
lassi
 APC

model to the data �rst, and then �t the time series pro
ess to the �tted parameters using a least squares

approa
h. This is in 
ontrast with the approa
h used in Dowd et al. (2011b), where a one-step method

is used. However, Dowd et al. (2011b) introdu
e additional parameters into the one-step method in a

Bayesian-type approa
h whose purpose appears to be to 
onstrain the value of φ and prevent it taking

values whi
h are not biologi
ally reasonable. However, as dis
ussed later, this issue arises be
ause the

gravity model is not well-identi�ed and therefore should not be ne
essary in a well spe
i�ed model.
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Case 3:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(x− x̄) = 0.

Case 4:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(t− t̄) = 0.

We investigate the 
onstraints shown in Case 1 and Case 3 as they are the �natural�


onstraints and the 
onstraints used in Dowd et al. (2011b), respe
tively, as dis
ussed

in Se
tion 7.2. The 
onstraints in Case 2 are similar to those in Case 1, ex
ept that the

summations are taken over ea
h year of birth rather than over all ages and years in the

dataset. This has the e�e
t of moving from a weighted average of the 
ohort parameters

being equal to zero (with the weights determined by the number of observations for ea
h


ohort) in Case 1 to a simple arithmeti
al average in Case 2, and similarly for the linear

trend. Although not used for the 
lassi
 APC model, similar 
onstraints were imposed

on the 
ohort term in Model M6 in Cairns et al. (2009) and so have been in
luded for


omparison. As dis
ussed in Se
tion 7.2, the logi
 underpinning the sele
tion of the Case

3 
onstraints in Dowd et al. (2011b) was that the stati
 age fun
tion in the model should

explain all the observed linearity a
ross ages. We 
an apply similar logi
 to the period

fun
tion in the 
lassi
 APC model, i.e., that the period fun
tion, κt should explain all of

the observed linearity a
ross time, to give the 
onstraints in Case 4.

It is important to note that all four sets of 
onstraints were developed to give the same de-

mographi
 signi�
an
e to the 
ohort parameters, i.e., that they should be 
entred around

zero and the other fun
tions in the model should 
apture any linear trends. Be
ause of

this, these four sets of 
onstraints give very similar sets of �tted parameters when these

are plotted. These sets of parameters also give identi
al �tted mortality rates, sin
e they


an be transformed into ea
h other using Equations 7.2, 7.3 and 7.4. However, the di�er-

ent sets of parameters are not identi
al. We therefore see that demographi
 signi�
an
e,

whilst helpful in sele
ting an appropriate set of identi�ability 
onstraints, does not spe
-

ify a single, unique set of 
onstraints to use. Model users with the same interpretation of

the parameters 
an reasonably 
hoose to impose di�erent 
onstraints and obtain di�erent

�tted parameters when using the same model with the same data. Furthermore, the fa
t

that demographi
 signi�
an
e is subje
tive and, in pra
ti
e, di�erent model users adopt

a range of interpretations for the di�erent parameters highlights the fa
t that we must

take 
are to ensure that the proje
ted mortality rates are independent of the arbitrary


hoi
e of 
onstraints made when �tting the model, and unders
ores the extent to whi
h

the identi�ability 
onstraints we 
hoose is arbitrary.

In ea
h 
ase, we apply the same identi�ability 
onstraints to both populations. Figure 7.1

shows the �tted values of κ
(I)
t − κ

(II)
t using the Case 1 
onstraints. Dowd et al. (2011b)
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assumed that these di�eren
es are stationary, however, Figure 7.1 shows that they have

a 
lear linear trend whi
h would bias the estimation of φ in the original spe
i�
ation of

the model. Sin
e the magnitude and dire
tion of this trend is dependent upon the iden-

ti�ability 
onstraints imposed, the degree of this bias is dependent upon our 
hoi
e of

identi�ability 
onstraints. However, the modi�ed gravity model allows for the potential

presen
e of a linear trend in the 
ointegrating relationship and therefore any estimates

for φ will not be biased by su
h a trend.
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Figure 7.1: Di�eren
e between the period fun
tions

To demonstrate this numeri
ally, for ea
h set of �tted period parameters, we then �rst �t

the original gravity model in Equation 7.6 and then the modi�ed model in Equation 7.11.

We pay parti
ular attention to the estimated value of φ found, as this will determine the

rate at whi
h divergen
e between the two populations mean reverts.

Original gravity model Modi�ed gravity model

Case 1 0.0706 0.3234

Case 2 0.0702 0.3234

Case 3 0.0701 0.3234

Case 4 0.0700 0.3234

Table 7.1: Values of φ for di�erent identi�ability 
onstraints

The results shown in Table 7.1 indi
ate that the rate of mean reversion (and therefore

the distribution of proje
ted mortality rates) is dependent upon the identi�ability 
on-

straints using the original gravity model, whereas this is not the 
ase for the modi�ed

model. The di�eren
es between the 
ases for the original model appear relatively small.
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However, this is be
ause the four sets of identi�ability 
onstraints used were sele
ted on

the basis of the same demographi
 signi�
an
e for the parameters and therefore the �tted

parameters were broadly 
omparable. This will not ne
essarily always be the 
ase, as

demographi
 signi�
an
e is subje
tive and di�erent model users may have very di�erent

understandings as to the interpretation of the parameters.

The most important point is not how small the di�eren
es are but that they are di�erent

at all. The identi�ability 
onstraints made no di�eren
e to the the �tted mortality rates

for the di�erent 
ases - they were identi
al. However, the distribution of the proje
ted

mortality rates depends upon φ, whi
h varies between the four 
ases in the original spe
-

i�
ation of the model. Therefore, the proje
ted mortality rates would depend upon the


hoi
e of identi�ability 
onstraints. This is in
onsistent with the �tting stage, where the


hoi
e of identi�ability 
onstraints made no di�eren
e to the �tted mortality rates. By


ontrast, the modi�ed gravity model avoids this, as shown by the �tted value of φ being

identi
al in all four 
ases in Table 7.1.

In parti
ular, we note that it is possible that some sets of identi�ability 
onstraints for

the 
lassi
 APC model would give values of φ in the original gravity model whi
h were

greater than unity or less than zero. Therefore, the arbitrary 
hoi
e of identi�ability


onstraint may lead to diverging proje
tions of mortality in the original gravity model,

despite having the same histori
al �tted mortality rates as the 
ases shown. This is


learly something whi
h should be avoided by use of the modi�ed gravity model.

It is also interesting to note that the modi�ed gravity model gives values for φ whi
h

are 
onsiderably larger than in the original model. This is be
ause the parameter now


aptures the genuine reversion between the period fun
tions (i.e., the saw-tooth pattern

in Figure 7.1) without additionally trying to 
apture the linear trend.

These modi�
ations make a signi�
ant di�eren
e to the proje
ted parameters when using

the gravity model, as shown in Figure 7.2 using the Case 1 identi�ability 
onstraints.

As 
an be seen in Figure 7.2a, the original spe
i�
ation of the gravity model adjusts

the 
entral trend so that there is a sharp 
hange of trend in the CMI population at the

point where the proje
tions begin. In 
ontrast, the modi�ed gravity model in Figure

7.2b allows the trends observed in either population to 
ontinue in future.
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Figure 7.2: Proje
ted period parameters

The 
hange in trend exhibited by the period parameters in the original gravity model

is explained by the transition between the past, where the linear trends are diverging

in the period parameters �tted to the histori
al data, and the future, where the gravity

model is for
ing them together. Sin
e the linear trends in the �tted period parameters

were unidenti�able and, hen
e, entirely dependent upon the identi�ability 
onstraints

imposed upon the model, the magnitude of the trend 
hange also depends solely upon

the arbitrary identi�ability 
onstraints. Therefore, the existen
e of su
h a trend 
hange

is not well-identi�ed and leads to proje
ted mortality rates whi
h depend upon the iden-

ti�ability 
onstraints 
hosen, unlike the �tted mortality rates.

Furthermore, the existen
e of su
h a trend 
hange leads to in
onsisten
ies between the

past and the future. This is not 
ompatible with the extrapolative approa
h to proje
t-

ing mortality, as dis
ussed in Chapter 6. Although there might be insu�
ient eviden
e

in the histori
al data to support the existen
e of 
hanges in trend in the �tted period

parameters, the original gravity model imposes a trend 
hange, pre
isely at the transition

between the histori
al data and the proje
ted mortality rates. One impli
ation of this is

that the data has been 
olle
ted at a unique point in time that is qualitatively di�erent

from the periods before or after it. We do not believe that su
h an assumption is tenable.

In 
ontrast, the modi�ed gravity model does not predi
t a 
hange in trend at the transi-

tion between past and future. As dis
ussed in Chapter 4, the linear trends in the 
lassi


APC model are unidenti�able and depend entirely upon the identi�ability 
onstraints,

whereas the variation around those trends is identi�able. Therefore, the modi�ed gravity

model leaves the linear trend in both populations un
hanged, but allows the variation

around these trends to be 
ointegrated. This means that de
reases in mortality whi
h
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are faster than expe
ted in England & Wales are 
orrelated with faster than expe
ted

de
lines in mortality rates in the CMI Assured Lives population. Capturing this 
orre-

lation is vital in the measuring of basis risk between populations, as in Li and Hardy

(2011) and Coughlan et al. (2011), and when modelling liabilities and se
urities whi
h

depend upon mortality in multiple populations, as dis
ussed in Chapter 8.

Not only is the modi�ed gravity model well-identi�ed, we also believe that it gives pro-

je
tions whi
h give greater 
onsisten
y between the past and the future. The behaviour

of the �tted parameters has been analysed and proje
ted into the future, without as-

suming a priori that this behaviour will 
hange. Su
h an approa
h is far more 
onsistent

with the extrapolative approa
h to proje
ting mortality rates dis
ussed in Se
tion 6.2

of Chapter 6 than the assumption of a trend 
hange present in the original gravity model.

Furthermore, we believe that an assumption whereby proje
tions maintain the same

trends in ea
h population but allow for 
orrelated variation around these trends is more

justi�ed in terms of biologi
al reasonableness than assuming that the period parameters


onverge in future. The fa
tors impa
ting deviations in mortality rates from trend in

one population are likely to be 
ommon a
ross populations, leading to 
orrelated vari-

ation around the trend in the two populations. In 
ontrast, the di�ering trend rates of

mortality improvement are likely to be generated by more fundamental so
io-e
onomi



auses, whi
h will remain un
hanged for the foreseeable future.

In summary, we �nd that the modi�ed gravity model gives proje
ted mortality rates

for England & Wales and the CMI Assured Lives populations whi
h are well-identi�ed

and have variation whi
h is 
orrelated in a biologi
ally reasonable fashion. However,

the modi�ed gravity model does not indu
e the trends present in either population to


hange sharply at the transition point between past and future, whi
h is a feature of the

original gravity model and whi
h was imposed to ensure that mortality rates in the two

populations are �
oherent�.

7.4.4 Coheren
e

The term �
oheren
e� was introdu
ed in Li and Lee (2005), and was de�ned formally in

Hyndman et al. (2013) in terms of the relative mortality rates between populations, i.e.,

E

[

µ
(p1)
x,t

µ
(p2)
x,t

]

→ Rx (7.14)

264



Identi�ability, Cointegration and the Gravity Model

a fun
tion of age only. This means that relative mortality rates are stationary, and so the

mortality rates proje
ted in the two populations do not diverge with time. Coheren
e is

a stronger requirement for a multi-population mortality model than simply allowing the


ovariation observed in the past to 
ontinue into the future, as dis
ussed in Se
tion 7.4.3

above.

10

The original gravity model was introdu
ed in part to ensure that mortality rates in the

England & Wales and CMI Assured Lives populations are 
oherent. The original gravity

model has 
oheren
e built into it, sin
e

ln

[

µ
(I)
x,t

µ
(II)
x,t

]

=
(

α(I)
x − α(II)

x

)

+
(

κ
(I)
t − κ

(II)
t

)

+
(

γ
(I)
t−x − γ

(II)
t−x

)

=
(

α(I)
x − α(II)

x

)

+ β⊤ (κt + γt−x

)

whi
h is stationary in time by 
onstru
tion.

11

However, when the gravity model is modi�ed to ensure proje
tions are well-identi�ed,


oheren
e no longer ne
essarily holds, sin
e we 
an have di�erent linear trends in both

populations (i.e., β⊤
(

κt + β1t+ γt−x + β̃1(t− x)
)

is stationary, whilst β⊤ (κt + γt−x

)

is not). The level of divergen
e will be set by the observed divergen
e between the popu-

lations in the histori
al dataset, i.e., we will proje
t mortality rates that will 
ontinue to

diverge if they have been observed to do so in the past. Su
h an approa
h gives greater


onsisten
y between the histori
al data and proje
ted mortality rates.

Therefore, we see that there is the potential for 
on�i
t between the desire for 
oherent

proje
tions and the need for proje
tions of the model to be well-identi�ed. In general,

we believe that obtaining proje
ted mortality rates that do not depend on arbitrary


hoi
es made when �tting the model to data is more important than a desire to prevent

divergen
e between populations, for the reasons dis
ussed below. However, we note that

identi�ability issues in mortality models are features of the parameters in mortality mod-

els, whereas 
oheren
e is a property of the proje
ted mortality rates, whi
h should be

10

Coheren
e is a potential feature of the proje
ted mortality rates and 
an result from a number of

di�erent te
hniques for proje
ting mortality, rather than it being a te
hnique in itself. For instan
e,

the original and modi�ed gravity models both involve the te
hnique of 
ointegration, but one gives


oherent proje
ted mortality rates, whilst the other does not. Conversely, the original gravity model

and the SAINT model of Jarner and Kryger (2011) both give 
oherent mortality rates, but use di�erent

te
hniques to a
hieve this.

11

However, the long-run distribution of

µ
(I)
x,t

µ
(II)
x,t

, and spe
i�
ally Rx, will depend upon the arbitrary

identi�ability 
onstraints imposed when �tting the model.
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independent of these issues. If 
oheren
e is desired, we therefore believe that methods of

imposing it should fo
us on 
onstraining the proje
ted mortality rates themselves, rather

than spe
i�
 features of the model parameters, whi
h will depend on the identi�ability


onstraints imposed.

However, we would often go further and question the desire to impose 
oheren
e a pri-

ori on proje
ted mortality rates. Mu
h of the work dis
ussing 
oherent proje
tions of

mortality rates has been based on the idea that mortality rates should not diverge inde�-

nitely in future between related populations. For instan
e, Li and Lee (2005) stated that

�Obviously, mortality di�eren
es between [
losely related℄ populations should not in
rease

over time inde�nitely if the similar so
io-e
onomi
 
onditions and 
lose 
onne
tions were

to 
ontinue.� We believe that there are two problems with this 
onje
ture.

First, whilst it might be true that proje
ting divergen
es inde�nitely into the future may

be unrealisti
, we would point out that extrapolating any model inde�nitely into the

future is likely to give nonsensi
al results sooner or later. For example, the Lee-Carter

model will tend to give mortality rates arbitrarily 
lose to zero at all ages if proje
ted

far enough into the future. However, su
h a phenomenon is more the fault of a modeller

misusing the model to make inappropriate fore
asts than it is the fault of the model itself.

A general rule of thumb is that a model should not be proje
ted for a longer period than

the data used to estimate it. Given this, the question be
omes why we should believe

that mortality di�eren
es 
annot diverge for another 50 years (say) if we have observed

mortality di�eren
es diverging for the previous 50 years. Assuming that the evolution of

mortality rates in the future will be qualitatively di�erent from the past is in
onsistent

with the extrapolative approa
h.

Se
ond, we believe that it is simply untrue that di�eren
es in mortality rates 
annot

persist for prolonged periods between ostensibly related populations. For example, life

expe
tan
y at age 65 varies 
onsiderably between areas in the same 
ity

12

in a pattern

whi
h has been stable for de
ades, let alone between di�erent so
io-e
onomi
 groups

within the same 
ountry (see Harper et al. (2007) and Villegas and Haberman (2014))

or between 
ountries. Whilst 
oheren
e does not impose the requirement that these

long-established di�eren
es de
rease, it does assume that they are not expe
ted to grow

beyond their 
urrent level, whi
h we do not believe is supported by the eviden
e. It

also raises the question as to what is so spe
ial about the 
urrently observed di�eren
es

in mortality that they should a
t as a barrier beyond whi
h further divergen
e is not

12

Sour
e: http://data.london.gov.uk/dataset/life-expe
tan
y-birth-and-age-65-ward
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possible.

Therefore, we do not believe that 
oheren
e is a desirable property to impose upon an

extrapolative multi-population mortality model. As s
ienti�
 investigators, we should al-

low the data to speak for itself rather than impose any prior views onto the models that

we use. This is 
onsistent with the extrapolative approa
h dis
ussed in Se
tion 6.2 of

Chapter 6, where analysis of histori
al data, rather than subje
tive opinions and biases,

is used to proje
t mortality rates. If the data supports our beliefs, that is en
ouraging.

If the data does not, then we need to examine either our pre
on
eptions to determine

whether they need to be revised or re-examine the model we are using to analyse and

proje
t the data.

Ultimately, many of the pre
on
eptions whi
h lead to a desire for 
oheren
e between

di�erent populations have a basis in our knowledge of the spe
i�
 populations under


onsideration and the spe
i�
 fa
tors 
ausing the divergen
e in these populations. For

example, the observed divergen
e between mortality rates in the England & Wales and

CMI Assured Lives populations 
ould be attributed to the sele
tive nature of the CMI

Assured Lives dataset, whi
h 
onsists of individuals who are likely to be wealthier than

the average 
itizen of England & Wales. In addition, this sele
tive population may adopt

di�erent lifestyles, with less smoking and a better diet than the wider population, for

example, leading to a di�ering pattern of mortality. We might reasonably feel that su
h

di�eren
es will get less important with time and the wider population adopts the same

lifestyle as the sub-population, and therefore that mortality rates in the two population

should stop diverging in future.

However, this kind of argument for imposing 
oheren
e on a model makes use of addi-

tional information regarding the 
auses of any divergen
e, information that was not used

when �tting the model. We therefore believe that, rather than imposing 
oheren
e on a

model to obtain the results we want, it would be better to in
orporate into our model

the additional information that justi�es our desire for 
oheren
e in the �rst pla
e. Su
h

information may in
lude e
onomi
 and lifestyle variables, for instan
e, as in Rei
hmuth

and Sarferaz (2008), Wang and Preston (2009) and Fren
h (2014). This may help explain

any observed divergen
e in the past and potentially allow for 
oherent proje
tions whi
h

are still well founded in a rigorous analysis and extrapolation of the data.
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7.5 Identi�ability in the 
ointegrated Lee-Carter model

Zhou et al. (2014) applied a similar 
ointegration framework as developed for the gravity

model to the period parameters of the Lee-Carter model

ln(µx,t) = αx + βxκt (7.15)

for multiple populations. The period parameters are proje
ted using a time series pro
ess

of the form

∆κt = ν + Γ∆κt−1 + αβ⊤κt−1 + ǫt (7.16)

whi
h is a 
ointegrated relationship of the form in Equation 7.7.

13

As in Dowd et al.

(2011b), β was 
onstrained so that β =
(

1, −1
)⊤

in order that relative mortality rates

do not diverge in the two populations. However, no assumption is made regarding the

dominan
e of one population over the other, and therefore no 
onstraint is made on α,

unlike the gravity model where α =
(

0, φ

)⊤
was used to impose the 
ondition that

population I dominates population II.

As dis
ussed in Lee and Carter (1992) and Chapter 3, the Lee-Carter model is also not

well-identi�ed and possesses the invariant transformations

{α̂x, β̂x, κ̂t} = {αx,
1

a
βx, aκt} (7.17)

{α̂x, β̂x, κ̂t} = {αx − bβx, βx, κt + b} (7.18)

whi
h are used to impose identi�ability 
onstraints in a similar fashion to the 
lassi


APC model. These invariant transformations 
an be applied independently to the two

populations without a�e
ting the �tted mortality rates, and so we 
an write

κ̂t = A (κt + b) (7.19)

with A =

(

a(I) 0

0 a(II)

)

.

13

Again, the form of Equation 7.16 di�ers from the form of Equation 7.7 due to the stationary 
ointe-

grating term, αβ⊤
κt−1, as opposed to αβ⊤

κt−2 required by Equation 7.7. However, this 
an be resolved

in the manner outlined in footnote 6.
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If we apply this transformation to the time series pro
ess in Equation 7.16 we obtain

∆κ̂t = Aν −Aαβ⊤b+AΓA−1∆κ̂t−1 +Aαβ⊤A−1κ̂t−1 +Aǫt

= ν̂ + Γ̂∆κ̂t−1 + α̂β̂⊤κ̂t−1 + ǫ̂t

whi
h is of the same form as Equation 7.16 if we rede�ne the terms appropriately. In

parti
ular, this involves setting

β̂ = A−1β

=

(

1
a(I)

0

0 1
a(II)

)(

1

−1

)

=
(

1
a(I)

, − 1
a(II)

)⊤

i.e., if the time series pro
ess is well-identi�ed, β 
annot be restri
ted to have any parti
-

ular form, sin
e these restri
tions will only apply for one set of identi�ability 
onstraints.

We also see that we are free to set α̂ = Aα, sin
e α is not 
onstrained to any parti
ular

form initially. Therefore, in order for the model of Zhou et al. (2014) to be well-identi�ed,

the restri
tion on β as well as the restri
tion on α must also be relaxed. This was 
om-

mented upon in Nielsen and Nielsen (2014).

The reason for the di�eren
e between the models of Zhou et al. (2014) and Dowd et al.

(2011b) arises be
ause of the di�eren
es in the underlying APC mortality models used

in either study. In the Lee-Carter model used in Zhou et al. (2014), the �s
ale� of the

period fun
tions is de�ned by an identi�ability 
onstraint on βx. This s
ale is arbitrary,

and we 
an 
hange it without a�e
ting the �tted mortality rates from the model. There-

fore the proje
ted mortality rates from the model of Zhou et al. (2014) also need to

also be invariant to 
hanges in this s
ale. In 
ontrast, the s
ale of the period fun
tions

is de�ned by the parametri
 age fun
tion in the 
lassi
 APC fun
tion, and not by an

identi�ability 
onstraint. Therefore, it 
annot be 
hanged in the model, and so we do

not have to ensure that the proje
ted mortality rates are invariant to 
hanges in its s
ale.

Conversely, the Lee-Carter model does not have unidenti�able linear trends, unlike the


lassi
 APC model. Therefore the model of Zhou et al. (2014) does not require a linear

drift term, i.e., β1t, in the 
ointegrating relationships. The 
lassi
 APC model does 
on-

tain unidenti�able linear trends in the parameters, whi
h 
an be varied in the histori


parameters without a�e
ting the �tted mortality rates. It is, therefore, essential that the

proje
ted mortality rates from the model of Dowd et al. (2011b) are invariant to 
hanges

in the linear trend in the period an 
ohort fun
tions, whi
h is ensured by the presen
e
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of the linear drift term, β1t, in the 
ointegrating relationships.

We see, therefore, that the form the gravity model needs to take in order to be well-

identi�ed depends on the underlying APC mortality model being used and the identi�a-

bility issues within that parti
ular model. It is therefore essential that these identi�ability

issues are fully analysed and understood, as dis
ussed in Chapters 3 and 4. In general,

we see that it is best to avoid making any impositions on the stru
ture of α and β, and so

use the most general form of 
ointegrating relationship, in order to avoid any potential

identi�ability issues and avoid 
onstraining the form of the model unne
essarily and,

potentially, inappropriately.

7.6 Extending the 
ointegration model

For the general 
ointegration model in Equation 7.7, our approa
h generalises naturally

to models where there are unidenti�able higher-order polynomial deterministi
 trends

in the parameters. If the period fun
tions of a model have unidenti�ed deterministi


trends whi
h are polynomial of order M , then in order to be well-identi�ed under the


orresponding invariant transformations, we will need to allow for un
onstrained deter-

ministi
 trends up to polynomial order M − 1 and 
onstrained deterministi
 trends of

order M .

For instan
e, the model of Plat (2009a)

ln(µ
(p)
x,t) = α(p)

x + κ
(1,p)
t + (x− x̄)κ

(2,p)
t + (x− x̄)+κ

(3,p)
t + γ

(p)
t−x (7.20)

has unidenti�able quadrati
 trends, as dis
ussed in Chapter 4. If the Plat (2009a) model

were �tted to two populations, we would have six period fun
tions in total - κ
(1,I)
t and

κ
(1,II)
t with unidenti�ed quadrati
 trends, κ

(2,I)
t and κ

(2,II)
t with unidenti�ed linear trends

and κ
(3,I)
t and κ

(3,II)
t with unidenti�ed 
onstants.

We 
ould look for a 
ointegration model involving all six period fun
tions. Cointegration,

by its nature, involves intera
tions between the di�erent period fun
tions. We therefore

are unable to allow for deterministi
 trends of di�erent order in di�erent period fun
tions.

Allowing for 
ointegration between all six time series would therefore mean allowing for


onstrained quadrati
 trends and un
onstrained linear trends in all six period fun
tions,
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whi
h may lead to proje
tions whi
h are not biologi
ally reasonable for ea
h population.

It is more biologi
ally reasonable to 
onsider ea
h pair of period fun
tions separately

based on their shared demographi
 signi�
an
e. This would mean looking for 
ointegrat-

ing relationships with 
onstrained quadrati
 (and un
onstrained 
onstant and linear)

trends for the two κ
(1,p)
t fun
tions, relationships with 
onstrained linear trends for the

κ
(2,p)
t fun
tions, and so on. That is, we use

∆κ
(1)
t = ν

(1)
0 + ν

(1)
1 t+ α(1)

(

β(1)⊤κ
(1)
t−1 + β

(1)
2 t2

)

+ ǫ
(1)
t (7.21)

∆κ
(2)
t = ν

(2)
0 + α(2)

(

β(2)⊤κ
(2)
t−1 + β

(2)
1 t
)

+ ǫ
(2)
t (7.22)

∆κ
(3)
t = α(3)

(

β(3)⊤κ
(3)
t−1 + β

(3)
0

)

+ ǫ
(3)
t (7.23)

to proje
t the period fun
tions. This approa
h is used in Chapter 8, albeit in a model

with unidenti�ed 
ubi
 (as opposed to merely quadrati
) trends.

7.7 Con
lusions

Cointegration 
an be a powerful tool for proje
ting mortality rates in related populations.

However, it is a tool whi
h must be used with 
are to ensure that we have identi�ability

under any invariant transformations whi
h allo
ate unidenti�able polynomial trends be-

tween the parameters. In the 
ase of the gravity model of Dowd et al. (2011b) and the

model of Zhou et al. (2014), we have shown how to adapt the pro
ess used to proje
t

the period fun
tions so that it gives well-identi�ed proje
tions that do not depend on

the arbitrary identi�ability 
onstraints imposed. We have also shown how this 
an be

generalised to more 
ompli
ated APC mortality models.

Further, we have shown that we 
annot also impose the 
ondition that mortality rates

are 
oherent and do not diverge in future. Not only does imposing 
oheren
e mean that

the proje
ted mortality rates will depend upon the arbitrary identi�ability 
onstraints

sele
ted, it is also in
ompatible with an extrapolative approa
h to modelling mortality.

An extrapolative approa
h must, �rst and foremost, take its lead from the eviden
e

of the histori
al data. While, in many 
ir
umstan
es, a belief in 
oheren
e is quite

natural, we believe we should test for its existen
e in the histori
al data statisti
ally

using well-identi�ed models, rather than assume its existen
e beforehand as an arti
le of

faith. If we do not �nd any eviden
e for 
oheren
e in the histori
al data, this should be


onsidered a puzzle to explain using more data and better models, and not just an error

to be 
orre
ted by an ad ho
 �x whi
h overrides the eviden
e of the data to obtain the
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results we anti
ipated in advan
e. Su
h an approa
h is not only more rigorous and more

s
ienti�
, but 
an also give new insights into the fa
tors whi
h govern the evolution of

mortality rates and enhan
e our understanding of longevity risk.
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Chapter 8

Modelling Longevity Bonds:

Analysing the Swiss Re Kortis Bond

8.1 Introdu
tion

The traded market for longevity risk 
ontinues to grow and develop. As the risks posed

by in
reasing longevity for the providers of pensions and annuities have gained greater

prominen
e, a variety of di�erent vehi
les have been proposed and implemented to trans-

fer longevity risk to the 
apital markets. These have in
luded bonds, swaps and forwards,

ea
h linked to di�erent measures of mortality rates and survivorship.

A key 
ontribution to the development of the market was the issuan
e of the Kortis bond

by Swiss Re in 2010. Unlike previous mortality and longevity se
uritisations, the Kortis

bond is linked to the divergen
e in mortality improvement rates between two 
ountries,

rather than to mortality rates dire
tly or to survivorship amongst a 
ohort. As su
h, it

was promoted as the �rst �longevity trend bond�. The bond might herald a distin
tly

new way of transferring the risk of faster than expe
ted redu
tions in mortality rates,

from insurers and reinsurers to investors willing to hold these risks as part of a diversi�ed

portfolio.

The development of new longevity-linked se
urities has been aided by and, in turn,

en
ouraged the development of in
reasingly sophisti
ated mortality models. These are

ne
essary in order to estimate a

urately the risk present in su
h se
urities. In parti
ular,

they need to proje
t mortality rates with 
omplex 
orrelation stru
tures, robustly esti-

mated 
ohort e�e
ts and dependen
ies between di�erent populations. Su
h proje
tions
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Chapter 9

Basis Risk and Pension S
hemes: A

Relative Modelling Approa
h

9.1 Introdu
tion

Longevity risk is in
reasingly re
ognised as a major risk in developed 
ountries, as rising

life expe
tan
ies pla
e unanti
ipated strains on so
ial se
urity and health
are systems (see

Oppers et al. (2012)). As well as being of 
on
ern for governments, however, longevity

risk also a�e
ts private organisations that have promised people an in
ome for life, be

this in the form of an insured annuity or an o

upational pension. In the UK, this means

that longevity risk a�e
ts the thousands of o

upational pension s
hemes

1

established

by 
ompanies during the 20th 
entury to provide �nal salary pensions to their employees.

However, when it 
omes to managing the longevity risk in a pension s
heme, a
tuaries

fa
e a 
riti
al problem: a shortage of mortality data for the s
heme. A typi
al UK pen-

sion s
heme has fewer than 1,000 members and may have reliable, 
omputerised member

re
ords going ba
k no more than a de
ade. This is insu�
ient for use with the sophisti-


ated sto
hasti
 mortality models that have been developed in re
ent years to measure

longevity risk in national populations, sin
e these models require more data to estimate

parameters robustly and longer time series to make proje
tions into the future. While

the insights gained from the study of national populations are useful for the study of

longevity risk in pension s
hemes, a
tuaries are left with a nagging doubt: �What if my

1

In this 
hapter, we refer to �pension s
hemes� whi
h administer the provision of de�ned bene�ts to

members. We draw a semanti
 distin
tion between a �pension s
heme� and a �pension plan�, whi
h we

would use as a more general term for any de�ned bene�t or de�ned 
ontribution pension arrangement

provided on either a group or an individual basis.
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s
heme is di�erent from the national population?� The potential for divergen
e in mor-

tality rates between the s
heme and the national population is 
alled �basis risk�, and,

ane
dotally, is often given as a key reason holding ba
k the use of standardised �nan
ial

instruments (based on national data) to manage longevity risk in pension s
hemes.

The a
tuarial profession in the UK initiated the Self-Administered Pension S
heme study

in 2002 in an attempt to over
ome these issues with data. The study pools data from

almost all large o

upational pension s
hemes in the UK, allowing insights about how

typi
al pension s
hemes di�er from the national population to be established.

In this study, we use the data 
olle
ted by the Self-Administered Pension S
heme study

and develop a �relative� model for mortality in order to 
ompare the evolution of mortal-

ity rates in UK o

upational pension s
hemes dire
tly with that observed in the national

population. Su
h a relative model has the advantages of parsimony and robustness, im-

portant properties when dealing with the smaller datasets available for pension s
hemes.

We then use this relative model to investigate the phenomenon of basis risk between

pension s
hemes and the UK population, as well as the potential of using this approa
h

on even smaller populations 
omparable with the size of an individual s
heme. In doing

so, we bring into question the potential importan
e of basis risk in small populations and

�nd that in most 
ontexts it is likely to be substantially outweighed by other risks in a

pension s
heme. This is investigated further in Chapter 10 .

The outline of this 
hapter is as follows. Se
tion 9.2 des
ribes the Self-Administered Pen-

sion S
hemes (SAPS) study and how the population observed by it di�ers stru
turally

from the national UK population. Se
tion 9.3 dis
usses the �relative� modelling frame-

work we will use to 
ompare the mortality experien
e of these populations. Se
tion 9.4

then applies this framework to data from the SAPS study, tests the models produ
ed

and 
onsiders the impa
t of parameter un
ertainty on these 
on
lusions. Se
tion 9.5

uses the relative model to proje
t mortality rates for the sub-population in the 
ontext

of assessing the basis risk between it and the national population. Se
tion 9.6 then as-

sesses the feasibility of using the relative model for smaller populations whi
h have sizes

more 
omparable to those of a
tual UK pension s
hemes. Se
tion 9.7 dis
usses some of

the broader 
on
lusions on the importan
e of basis risk we draw from this study, whilst

Se
tion 9.8 summarises our �ndings.
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9.2 The Self-Administered Pension S
heme study

The Institute of A
tuaries in England & Wales and the Fa
ulty of A
tuaries in S
otland

initiated the SAPS study in 2002 to investigate the mortality experien
e of pensioner

members of o

upational pension s
hemes in the UK. Data from the SAPS study has

been analysed by the Continuous Mortality Investigation (CMI) to produ
e the gradu-

ated mortality tables

2

in use by the majority of pension s
hemes in the UK for funding

and a

ounting purposes.

3

The CMI has also analysed the SAPS data in terms of the

evolution of mortality during the study period

4

and the di�eren
es in experien
e for

s
hemes whose employers are in di�erent industries.

5

UK pension s
hemes with more than 500 pensioner members are asked to submit mortal-

ity experien
e data to the SAPS study after ea
h triennial funding valuation. The CMI

provides summaries of the aggregate of this data to members of the study, 
ategorised

a
ross a number of di�erent variables, at regular intervals.

6

We have been provided

with this data in a more 
omplete form, 
omprising exposures to risk and death 
ounts

(unweighted by the amount of pension in payment) for all men and women in the SAPS

study between 2000 and 2011 by the CMI. A summary of the data used in this study is

given in Appendix 9.A.

Sin
e it is sampling from a distin
t subset of the national population, the dataset 
olle
ted

by the SAPS study is atypi
al of the UK population data for a number of reasons:

• The dataset is the mortality experien
e of members of o

upational, de�ned-bene�t

pension s
hemes. Typi
ally, this will ex
lude the unemployed, the self-employed,

those employed in the informal se
tor or those working for newer 
ompanies (whi
h

typi
ally do not o�er de�ned-bene�t pensions).

• The dataset is the mortality experien
e of members of reasonably large pension

s
hemes. A

ording to The Pensions Regulator (2013b), only around 20% of UK

pension s
hemes have more than 1,000 member in total, a large number of whom

are likely to be below retirement age. This means that employees of large, mature


ompanies are likely to be over-represented in the SAPS study.

2

The S1 tables in Continuous Mortality Investigation (2008) and the S2 tables in Continuous Mortality

Investigation (2014a).

3

The Pensions Regulator (2013a) and Sithole et al. (2012).

4

See Continuous Mortality Investigation (2011).

5

See Continuous Mortality Investigation (2012).

6

See Continuous Mortality Investigation (2014
) for example.
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• The dataset is the mortality experien
e of pension s
hemes subje
t to triennial

funding valuations. This means that it ex
ludes most publi
 se
tor employees, who

are members of unfunded state pension s
hemes.

• The dataset is likely to have some individuals in re
eipt of pensions from multiple

sour
es, for instan
e, be
ause of employment at two or more di�erent 
ompanies,

and who will therefore be represented multiple times.

• The dataset will in
lude members of UK pension s
hemes who emigrate and pos-

sibly die overseas, and who therefore would not be in
luded in the UK national

population mortality data.

These fa
tors explain why the experien
e of the SAPS mortality study is believed to

be a better proxy for the mortality experien
e of individual UK pension s
hemes (even

those not in
luded in the SAPS study). The mortality tables graduated from the SAPS

data are therefore often used for pension s
heme a

ounting and funding purposes, as

opposed to tables graduated from national population data or the experien
e of indi-

viduals buying annuities dire
tly from life insurers. However, they also mean that the

future evolution of mortality rates for SAPS members may be di�erent from that of the

national population (although they may well be similar in other respe
ts).

Unfortunately, the SAPS dataset poses a number of di�
ulties for use with the more

sophisti
ated mortality modelling and proje
tion te
hniques whi
h have been developed

in re
ent years. These in
lude:

• relatively small exposures to risk (at most around 1.5 million members under ob-

servation in a single year), leading to greater parameter un
ertainty espe
ially in


omplex models;

• the short length of the study, with only twelve years of data in the sample for

analysing the trends present; and

• the method of data 
olle
tion - s
hemes submit data in respe
t of a three-year

period at a lag of up to 18 months after the period ends - leads to a distin
tive

pattern of exposures shown in the data in Appendix 9.A, with only partial data

having been submitted to date for the last �ve years in the study.

For these reasons, it is still advisable to use national mortality data, with its larger

exposures and longer period of availability, to produ
e proje
tions of mortality rates.

The SAPS data 
an then be used to quantify the ways that members of UK pension
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s
hemes are likely to di�er from this baseline. We do this by means of a �relative�

mortality model, whi
h we now des
ribe.

9.3 Relative mortality modelling

A �relative� mortality model for two populations is one that does not model mortality

rates in a smaller population dire
tly, but instead models the relative di�eren
e between

those rates and those found in a larger, referen
e population. That is, it models the

behaviour of the relative mortality rates, Rx,t, given by

Rx,t = f

(

µ
(S)
x,t

µ
(R)
x,t

)

(9.1)

where µ
(p)
x,t are the mortality rates in the small population, S, and referen
e population,

R. Typi
ally, mortality rates in the referen
e population are modelled and proje
ted

independently of Rx,t.

A number of di�erent models of this form have been proposed in order to analyse mor-

tality for various di�erent populations. Those whi
h have expli
itly adopted a relative

modelling approa
h in
lude the models of Jarner and Kryger (2011), who used a series

of basis fun
tions a
ross age to model Rx,t for Denmark 
ompared to the wider EU and

assume it mean reverts deterministi
ally in future, and Villegas and Haberman (2014),

who investigated the mortality of di�erent so
io-e
onomi
 groups within the UK relative

to the national average. However, a good many other multi-population mortality models

whi
h have been proposed, su
h as those of Carter and Lee (1992), Li and Lee (2005),

Delwarde et al. (2006), Dowd et al. (2011b), Cairns et al. (2011b), Russolillo et al. (2011)

and Wan and Berts
hi (2015), 
an be rewritten as relative mortality models although this

was not ne
essarily 
ommented on by the authors. See Villegas and Haberman (2014)

for a useful summary of many of these models and the similarities between them.

The advantage of a relative modelling approa
h is that it allows us to use a far simpler

model for the relative mortality rates, Rx,t, than would be used for the referen
e popu-

lation. This is desirable as we typi
ally have insu�
ient data for the smaller population

to estimate more 
omplex models robustly, but would like to use a sophisti
ated model

for the referen
e population in order to produ
e more a

urate proje
tions of mortality

rates. In addition, there is no requirement that the data for the small population 
overs
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the same range of ages and years as that for the larger population.

9.3.1 The referen
e model

For the referen
e population, we 
hoose to use the �general pro
edure� (GP) of Chapter 5

in order to 
onstru
t a model su�
ient to 
apture all the signi�
ant information present

in the national population data. This sele
ts an appropriate model within the 
lass of

age/period/
ohort (APC) models

7

of the form

ln
(

µ
(R)
x,t

)

= α(R)
x +

N
∑

i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x (9.2)

where

• age, x, is in the range [1,X], period, t, is in the range [1, T ] and hen
e that year

of birth, y, is in the range [1−X,T − 1];

• α
(R)
x is a stati
 fun
tion of age;

• κ
(R,i)
t are period fun
tions governing the evolution of mortality with time;

• f (R,i)(x; θ(R,i)) are parametri
 age fun
tions (in the sense of having a spe
i�
 fun
-

tional form sele
ted a priori) modulating the impa
t of the period fun
tion dynam-

i
s over the age range, potentially with free parameters θ(R,i)
;

8

and

• γ
(R)
y is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon a 
ohort's

year of birth and follow that 
ohort through life as it ages.

The GP sele
ts the number of age/period terms, N , and the form of the age fun
tions

f (R,i)(x) in order to 
onstru
t mortality models whi
h give a 
lose but parsimonious

�t to the data. This way, we aim to extra
t as mu
h information as possible from the

national population dataset and have spe
i�
 terms within the model 
orresponding to

the di�erent age/period or 
ohort features of interest.

7

See Chapter 2 for a des
ription of this 
lass of models.

8

For simpli
ity, the dependen
e of the age fun
tions on θ(R,i)
is supressed in notation used in this


hapter, although it has been allowed for when �tting the model to data.
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9.3.2 The relative model

To analyse the data from the SAPS study, we propose using a model of the form

Rx,t = ln

(

µ
(S)
x,t

µ
(R)
x,t

)

= α(∆)
x +

N
∑

i=1

Λ(i)f (R,i)(x)κ
(R,i)
t + Λ(γ)γ

(R)
t−x + νXt−x (9.3)

Apart from the νXy term, this is an APC model of the same form as that used to model

the referen
e population, i.e., with the same age/period terms and 
ohort parameters.

However, these are modulated by the fa
tors Λ(j)
where j ∈ {1, . . . , N, γ}. The νXt−x

term, where Xy is a set of deterministi
 fun
tions of year of birth and ν the 
orrespond-

ing regression 
oe�
ients, has been added to the APC stru
ture in order to ensure that

the model is identi�able under invariant transformations of the 
ohort parameters, as

dis
ussed in Appendix 9.B.

The 
hoi
e of stru
ture in Equation 9.3 is also motivated by the fa
t that we 
an write

the mortality rates for the sub-population as

ln
(

µ
(S)
x,t

)

= α(S)
x +

N
∑

i=1

λ(i)f (R,i)(x)κ
(R,i)
t + λ(γ)γ

(R)
t−x + νXt−x (9.4)

where α
(S)
x = α(R) + α

(∆)
x and λ(j) = 1 + Λ(j)

. We are therefore able to interpret α
(∆)
x

as the di�eren
e in the level of mortality between the two populations, whilst the λ(j)


orrespond to the �sensitivity� of the small population to the jth fa
tor in the referen
e

population. In this form, it is possible to see the model as similar in spirit to that pro-

posed by Russolillo et al. (2011), as dis
ussed in Se
tion 9.3.3.

It should be noted that there are two spe
ial 
ases for these sensitivities:

1. λ(j) = 0 (i.e., Λ(j) = −1): the small population has no dependen
e on the jth

age/period or 
ohort term; and

2. λ(j) = 1 (i.e., Λ(j) = 0): there is no di�eren
e between the referen
e and small

populations with respe
t to the jth fa
tor.

In order to obtain a more parsimonious model, it may also be desirable to simplify the

non-parametri
 stru
ture

9

for α
(∆)
x by 
onstraining it to be of a spe
i�
 parametri
 form,

for example, a linear 
ombination of a set of pre-de�ned basis fun
tions. However, we

9

De�ned in Chapter 2 as being �tted without any a priori stru
ture or fun
tional form.
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must take 
are when doing so in order that the relative model is robust to 
hanges in

the identi�ability 
onstraints for the referen
e model, as dis
ussed in Appendix 9.B.

When �tting the relative model to data, we have a strong preferen
e for parsimony due to

the low volume of data for the sub-population. We therefore adopt a �spe
i�
-to-general�

modelling approa
h: �rst testing a highly restri
ted form of the model with a parametri


form for α
(∆)
x and λ(j) = {0, 1} and then relaxing these restri
tions sequentially. The

�nal model is 
hosen to maximise the Bayes Information Criteria (BIC),

10

whi
h pe-

nalises ex
essive parameterisation. This pro
edure is performed algorithmi
ally, and is

espe
ially important when we apply the relative model to very small datasets 
omparable

to the size of individual pension s
hemes, as done in Se
tion 9.6.

9.3.3 Comparison with �three-way Lee-Carter�

It was noted above that many alternative multi-population mortality models have been

proposed in the literature, in
luding many whi
h were expli
itly designed as relative

mortality models and others whi
h 
an be re-written in relative form. For a summary

and 
omparisons of some of these models, see Li and Hardy (2011) and Villegas and

Haberman (2014).

Of these, the model whi
h bears 
losest resemblan
e to the model outlined in Se
tion

9.3.2 is the �three-way Lee-Carter� model of Russolillo et al. (2011). This extends the


lassi
 model of Lee and Carter (1992) into a third �dimension� of population, beyond

the original two dimensions of age and period. They a
hieve this by in
luding an extra


ovariate in the Lee-Carter predi
tor stru
ture to represent the di�erent populations, p,

i.e.,

ln(µ
(p)
x,t) = α(p)

x + λ(p)βxκt (9.5)

The parameters are �tted using multi-dimensional prin
ipal 
omponents te
hniques. Vil-

legas and Haberman (2014) pointed out that an additional identi�ability 
onstraint is

required to obtain a unique set of parameters, whi
h they 
hoose to be

∑

p λ
(p) = Np, the

number of populations. In a two-population setting, this 
an be re-written as a relative

model, with

Rx,t = α(∆)
x + (λ(S) − λ(R))βxκt

10

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
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and α
(∆)
x de�ned in the same fashion as in Equation 9.3.

We 
an, therefore, see that the relative model of Se
tion 9.3 
an be thought of as a

�three-way� extension for multiple populations of the underlying model 
onstru
ted by

the general pro
edure for a single population, namely

ln
(

µ
(p)
x,t

)

= α(p)
x +

∑

i

λ(p,i)f (i)(x)κ
(i)
t + λ(p,γ)γt−x

We then introdu
e the νXy term in order to ensure that the model does not depend upon

the arbitrary identi�ability 
onstraints imposed in the referen
e model, as dis
ussed in

Appendix 9.B. In our relative model, however, we set λ(R,j) = 1 ∀j, as opposed to

λ(R,j) + λ(S,j) = 1 ∀j as in Villegas and Haberman (2014). Our identi�ability 
onstraint

impli
itly establishes a hierar
hy between the populations, with population S subordi-

nate to population R. Setting λ(R,i) = 1 motivates the two-stage �tting pro
ess, with the

age/period and 
ohort terms being �tted using data for the referen
e population alone.

In our 
ontext, as the two populations are of very di�erent sizes, this is both reasonable

and unlikely to make a material di�eren
e to the �tted parameters. However, it means

that the �tted parameters for the sub-population are 
onditional on those found for the

referen
e model. It is, therefore, important that tests of the model in
lude full allowan
e

for parameter un
ertainty in both populations.

As with the model of Russolillo et al. (2011) and the analysis of Villegas and Haberman

(2014), it is also possible to apply our model to multiple sub-populations, su
h as those

from di�erent pension s
hemes. In this 
ase, separate s
aling fa
tors would be required

for ea
h s
heme. For multiple s
hemes, the hierar
hi
al stru
ture of the model is an

advantage, sin
e ea
h s
heme 
an be 
onsidered separately on
e the referen
e population

has been estimated.

9.4 Applying the relative model to SAPS data

9.4.1 The referen
e models for UK data

Our �rst task is to 
onstru
t suitable mortality models for men and women in the na-

tional UK population. To do this, we apply the GP to data from the Human Mortality

Database (Human Mortality Database (2014)) for the period 1950 to 2011 and for ages

50 to 100. The GP produ
es a model with three age/period terms, des
ribed in Table

327



Basis Risk and Pension S
hemes: A Relative Modelling Approa
h

9.1,

11

plus 
ohort terms for both men and women in the UK. All of these terms are

shown in Figures 9.1 and 9.2. Further details of the age fun
tions used in this model and

tests of the goodness of �t to data are given in Appendix 9.C.

Term Men Women

Des
ription Demographi
 Sig-

ni�
an
e

Des
ription Demographi
 Sig-

ni�
an
e

f (R,1)(x)κ
(R,1)
t Constant

age fun
-

tion

General level of

mortality

Constant

age fun
-

tion

General level of

mortality

f (R,2)(x)κ
(R,2)
t �Call� age

fun
tion

Older age mortal-

ity

�Call� age

fun
tion

Old age mortality

f (R,3)(x)κ
(R,3)
t �Put� age

fun
tion

Younger age mor-

tality

Gaussian

age fun
-

tion

Younger age mor-

tality

Table 9.1: Terms in the referen
e models 
onstru
ted using the general pro
edure for

UK men and women ages 50 to 100

In Figures 9.1
 and 9.2
, the most notable features of the 
ohort parameters for both

men and women are the presen
e of large outliers in 1919/20 and 1946/47. We believe,

based on the analysis of Ri
hards (2008), that these are not genuine 
ohort e�e
ts, but

are merely data artefa
ts arising from the surge of births following the large-s
ale de-

mobilisations after the First and Se
ond World Wars, whi
h biases the 
al
ulation of

the exposures to risk in the UK population data for those years. We do not expe
t to

�nd similar outliers in the SAPS data as this is based on aggregating individual s
heme-

member data rather than population level estimates.

12

One method to solve this would

be to adjust the UK population exposures data as proposed in Cairns et al. (2014). How-

ever, for simpli
ity, we 
hoose to retain the original data and employ indi
ator variables

to remove the impa
t of outliers from the relevant 
ohort parameters. These adjusted


ohort parameters are then used in the analysis whi
h follows.

13

As dis
ussed in Chapters 3 and 4, many mortality models are not fully identi�ed. To

uniquely spe
ify the parameters, we impose identi�ability 
onstraints. These 
onstraints

11

Demographi
 signi�
an
e, as used in Table 9.1, is de�ned in Chapter 2 as the interpretation of the


omponents of a model in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges

in mortality rates whi
h generate them.

12

This is borne out by using simple APCmodels �tted to the SAPS data, whi
h show 
ohort parameters

without these outliers.

13

It is interesting to note that these outliers may impa
t the e�e
tiveness of hedging strategies whi
h

use se
urities indexed to national population data, as the index will 
ontinue to show a large (but

�
titious) e�e
t for spe
i�
 
ohorts whi
h will not be observed in the spe
i�
 population being hedged.

It is therefore important that any indi
es use national population data whi
h has been adjusted to

remove these data artefa
ts, possibly using the approa
h of Cairns et al. (2014).
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e model for men in the UK
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are arbitrary, in the sense that they do not a�e
t the �t to data. However, they 
an be

used to impose our desired demographi
 signi�
an
e on the parameters.

Models generated by the GP impose the following standard identi�ability 
onstraints

100
∑

x=50

|f (R,i)(x)| = 1 ∀i, R = {UKm, UKf} (9.6)

on the age fun
tions to ensure that they have a 
onsistent normalisation s
heme. This

enables us to 
ompare the magnitudes of the period fun
tions both with ea
h other and

between populations and gauge their relative importan
e.

14

In order to assist the visual 
omparison between the UK and SAPS data (the latter

of whi
h only spans ages 60 to 90 and years 2000 to 2011), we impose the following


onstraint on the period fun
tions

2011
∑

t=2000

κ
(R,i)
t = 0 ∀i, R = {UKm, UKf} (9.7)

This means that the period fun
tions represent deviations from an �average� level of

mortality in the period 
overed by the SAPS data, rather than over the whole period of

the UK data.

The results of Chapter 4 also indi
ate that we need to impose 
onstraints on the levels

and linear trends present in the 
ohort parameters. To identify their levels, we impose

the following 
onstraints on the 
ohort parameters for ea
h of the referen
e populations

1951
∑

y=1910

n(S)
y γ(R)

y = 0, R = {UKm, UKf} (9.8)

S = {SAPSm, SAPSf}

where n
(S)
y is the number of observations of ea
h 
ohort in the SAPS data. As with

the period fun
tions, this means that the 
ohort parameters should be 
entred around

zero over the range of the SAPS data, not the full range of the data 
overed for the UK

14

For both women and men, the se
ond and third age/period terms use age fun
tions whi
h are

�self-normalising� in the sense of Chapter 3.
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population. To 
onstrain the linear trends in the 
ohort parameters, we impose

1961
∑

y=1850

n(R)
y γ(R)

y (y − ȳ) = 0, R = {UKm, UKf} (9.9)

where n
(R)
y is the number of observations of ea
h 
ohort in the UK national data.

The justi�
ation for these 
onstraints is that they allow us to remove linear trends in the


ohort parameters. This makes them 
onform better to the demographi
 signi�
an
e for


ohort parameters des
ribed in Chapter 2, namely that the 
ohort parameters should not

have any long-term systemati
 trends. We impose this over the whole range of the UK

data, whi
h is 
onsiderably longer than the range 
overed by the SAPS data, as there ap-

pear to be short-term trends (lasting for a few de
ades) whi
h are then reversed out over

a longer time horizon. However, this means that over the shorter range of years of birth


overed by the SAPS data, the 
ohort parameters appear to have strong, negative trends.

It is important to note, however, that our demographi
 signi�
an
e for the parameters

is highly subje
tive and our 
hoi
e of 
onstraints is arbitrary. We have therefore taken

appropriate steps in Appendix 9.B to ensure that our 
hoi
e of identi�ability 
onstraints

does not a�e
t either the mortality rates �tted by the relative model or our overall 
on-


lusions.

9.4.2 The relative models for the SAPS data

We now estimate the relative model using these referen
e age, period and 
ohort terms

for the full SAPS dataset. As dis
ussed in Se
tion 9.3, we do this in stages using a

spe
i�
-to-general pro
edure. We start with the simplest and most restri
ted model,

i.e., where α
(∆)
x is restri
ted to take a parametri
 form and we restri
t the s
aling fa
tors

λ(j)
to be equal to zero. This model is referred to as Model 1 in Tables 9.2 and 9.3 below.

We then allow these restri
tions to be relaxed sequentially. This means that, in turn,

we estimate the relative model with all possible 
ombinations of 
onstraints, where α
(∆)
x

is either parametri
 or non-parametri
 and where λ(j)

an be restri
ted to be equal to

zero, unity or allowed to vary freely. This gives us 162(= 2× 34) di�erent 
ombinations

of 
onstraints for the two alternative stru
tures for α
(∆)
x and three alternatives for ea
h

of the four di�erent s
aling fa
tors, λ(j)
. For ea
h of these di�erent models, the goodness
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Observed dataset for the

referen
e population

Observed dataset for

the sub-population

Fitted parameters for

the referen
e model

Fit relative model

with di�erent sets

of restri
tions

Fitted parameters for

the relative model with

restri
tion set j = 1

. . .
Fitted parameters for the

relative model with re-

stri
tion set j = 162

Sele
t set of restri
-

tions, j∗, whi
h

gives best �t to data

Fitted parameters for

the relative model

Figure 9.3: Flow 
hart illustrating the pro
edure for �tting and sele
ting the relative

model

of �t to the data is 
al
ulated, as measured by the BIC. The model whi
h gives the

best �t to data (i.e., the highest BIC) is then sele
ted as the preferred model, referred to

as Model 8 in Tables 9.2 and 9.3, for the dataset. This pro
ess is illustrated in Figure 9.3.

Several of the models tested, with representative 
ombinations of restri
tions, are shown

in Tables 9.2 and 9.3 for the male and female SAPS data.

15

These have been 
hosen

to illustrate the impa
t of relaxing various restri
tions, for instan
e, 
omparing Models

1 and 2 illustrates the impa
t on the goodness of �t of using a non-parametri
 as op-

posed to a parametri
 stru
ture for α
(∆)
x , whilst 
omparing Models 3 and 4 illustrates

the impa
t of introdu
ing the set of 
ohort parameters from the referen
e population.

15

In Tables 9.2 and 9.3, �NP� stands for non-parametri
 while �P� stands for parametri
.
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The preferred model whi
h maximises the �t to data is shown as Model 8. However, it is

important to note that the �tting pro
edure tests all 162 possible 
ombinations for the

stru
ture of α
(∆)
x and any 
ombination of restri
tions on λ(j)

.

Model No. 1 2 3 4 5 6 7 8

α(∆)
P NP P P NP P NP P

λ(1)
0 0 1 1 1 1.36 1.37 1.35

λ(2)
0 0 1 1 1 1.78 1.93 1.73

λ(3)
0 0 1 1 1 2.01 1.97 2.00

λ(γ)
0 0 0 1 1 0.86 0.51 1

Log-likelihood ×103 -2.14 -2.06 -2.00 -1.94 -1.89 -1.91 -1.86 -1.92

Free parameters 3 31 3 3 31 7 35 6

BIC ×103 -2.15 -2.15 -2.01 -1.95 -1.98 -1.93 -1.96 -1.93

Table 9.2: Representative sets of restri
tions for the relative model using male SAPS

data

Model No. 1 2 3 4 5 6 7 8

α(∆)
P NP P P NP P NP P

λ(1)
0 0 1 1 1 1.24 1.20 1.22

λ(2)
0 0 1 1 1 2.35 2.45 2.42

λ(3)
0 0 1 1 1 0.09 -0.06 0

λ(γ)
0 0 0 1 1 1.06 0.97 1

Log-likelihood ×103 -2.05 -2.01 -1.94 -1.83 -1.80 -1.80 -1.77 -1.80

Free parameters 3 31 3 3 31 7 35 5

BIC ×103 -2.06 -2.10 -1.95 -1.83 -1.89 -1.82 -1.87 -1.82

Table 9.3: Representative sets of restri
tions for the relative model using female SAPS

data

For both men and women, the preferred model sele
ts a parametri
 simpli�
ation for

the di�eren
e in the level of mortality, α
(∆)
x . This substantially redu
es the number of

free parameters in the preferred model, leading to greater parsimony. This is also borne

out by 
omparing models whi
h di�er by the form of α
(∆)
x , but have similar restri
tions

pla
ed on the s
aling fa
tors, λ(j)
, e.g., Models 1 and 2, or Models 4 and 5 in Tables 9.2

and 9.3. In some respe
ts, this supports the traditional a
tuarial pra
ti
e of adjusting

mortality rates for a pension s
heme by taking a mortality table from a referen
e pop-

ulation (in this 
ase, the full UK population) and making relatively simple adjustments

to it. We also see from Figures 9.5a and 9.5b that α
(∆)
x is generally negative a
ross all

ages. This indi
ates that the SAPS population has generally lower levels of mortality

rates than the national population, whi
h is 
onsistent with the results of Continuous

Mortality Investigation (2011).
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In the 
ase of the male data, the pro
edure sele
ts a model where all the λ(i)
for the

age/period terms are allowed to vary freely, i.e., without any restri
tions pla
ed upon

them at the estimation stage. The same is true for the female data, ex
ept that λ(3)
is

set to be equal zero. This is unsurprising given the other models shown in Table 9.3:

in the models where λ(3)
for women is allowed to vary (e.g., Models 6 and 7), it takes

a value 
omparatively 
lose to zero, and so it 
an be restri
ted to equal zero without

adversely a�e
ting the goodness of �t of the model.

We also see that the s
aling fa
tors for the period fun
tions for both men and women

are greater than unity when their estimation is not restri
ted. This indi
ates that the

SAPS populations are responding to the same drivers of mortality rates as the national

population, but with greater sensitivity to these underlying 
auses. Sin
e mortality rates

are generally falling in the UK, this implies that the rate of improvement in longevity

is slightly faster for members of o

upational pension s
heme than for the national pop-

ulation. This 
ontrasts with the �ndings of Continuous Mortality Investigation (2011),

whi
h found that the falls in standardised mortality ratios for the SAPS populations

broadly mirrored the falls observed in the wider UK population. However, sin
e the

standardised mortality ratio is an aggregate measure of mortality, whi
h takes a

ount

of the level of mortality rates, it is likely that the di�eren
e between our results and

those of Continuous Mortality Investigation (2011) are not signi�
ant.

In addition, for both sexes, λ(γ)
is restri
ted to be equal to unity. This means that we

do not expe
t any systemati
ally di�erent 
ohort e�e
ts in the SAPS data 
ompared to

those observed in the referen
e population. It is interesting to 
ompare this to the results

of Li et al. (2013), whi
h also found that the 
ohort e�e
ts in related populations 
an

often be assumed to be equal to ea
h other without adversely a�e
ting the goodness of

�t for a model.

Finally, we note that the BICs of many of the models with di�erent restri
tions are very

similar, meaning that there is not mu
h to 
hoose between them. It may therefore be

justi�able to sele
t simpler models than suggested by looking just at goodness of �t, on

the grounds that they may be more robust to parameter un
ertainty or easier to proje
t

into the future, as done in Se
tion 9.5. This will be even more important when we in-

vestigate smaller, pension s
heme-sized datasets, as in Se
tion 9.6.
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9.4.3 Parameter un
ertainty and model risk

We next 
onsider the robustness of the preferred model sele
ted, i.e., Model 8. We do

this in two stages, by 
onsidering the di�erent sour
es of un
ertainty outlined in Cairns

(2000). First, we 
onsider only parameter un
ertainty, i.e., the un
ertainty in the free

parameters of the preferred model, on the assumption that the restri
tions pla
ed on

the parameters in Model 8 are 
orre
tly spe
i�ed. Se
ond, we allow for model risk by

allowing the pro
edure to sele
t di�erent models using the sequential pro
edure dis
ussed

above.

For both stages, we use a pro
edure based on the residual bootstrapping method of

Koissi et al. (2006) to generate new pseudo-data. This resamples from the �tted residu-

als to generate new simulated death 
ounts to whi
h the model is re�tted, allowing the

un
ertainty in the parameters to be measured. We do this �rst to allow for parameter

un
ertainty in the referen
e model. It is important to allow for parameter un
ertainty in

the referen
e model due to the hierar
hi
al stru
ture of the relative model, i.e., that the

parameters for the referen
e model are impli
itly assumed to be known when the relative

model is �tted. Therefore, un
ertainty in the parameters of the referen
e model 
an be

magni�ed when we 
ome to investigate the un
ertainty in the parameters of the relative

model.

The next step is to bootstrap new pseudo-data for the sub-population. When using a

residual bootstrapping pro
edure, it is important that the �tted residuals being used


ontain as little stru
ture as possible, so that very little of the information in the original

data is lost when these residuals are randomly resampled. This will be the 
ase for mod-

els whi
h provide a 
lose �t to the data (i.e., a high maximum likelihood), irrespe
tive

of the number of free parameters used by the model to a
hieve this �t. Therefore, in our

residual bootstrapping pro
edure we use the expe
ted mortality rates and �tted residuals

from Model 7, sin
e this model has the highest log-likelihood in Tables 9.2 and 9.3 above.

However, sin
e Model 7 is outperformed by a number of other models when the goodness

of �t is penalised for the number of parameters, we do not spe
i�
ally 
onsider it further.

9.4.3.1 Parameter un
ertainty

For the �rst stage, we 
onsider only parameter un
ertainty. To do this, we �t the rel-

ative model to 1,000 sets of pseudo death 
ounts, generated by the Koissi et al. (2006)
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Bootstrapped dataset i for

the referen
e population

Bootstrapped dataset i

for the sub-population

Fitted parameter set i

for the referen
e model

Fit relative model

with preferred set

of restri
tions j∗

Fitted parameter set i for

the relative model allowing

for parameter un
ertainty

Figure 9.4: Flow 
hart illustrating the pro
edure for �tting and sele
ting the relative

model allowing for parameter un
ertainty
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Figure 9.5: 95% fan 
harts showing the level of parameter un
ertainty in α
(∆)
x

residual bootstrapping pro
edure. For ea
h of these datasets, however, we do not test

whi
h set of restri
tions give the best �t to the data. Instead we impose the same set

of restri
tions as were used for Model 8 in Tables 9.2 and 9.3. We �t the relative model

with the restri
tions in Model 6 (whi
h allows all s
aling fa
tors to freely vary) used as

a 
omparator. This pro
ess is illustrated in Figure 9.4.

Figure 9.5 shows the impa
t of parameter un
ertainty on the level parameters by showing

the 95% fan 
hart. To interpret this, we note that a 95% 
on�den
e interval for α
(∆)
x
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of width 0.1 at age, x, (i.e., α
(∆)
x ∈ (α̂∆

x − 0.1, α̂∆
x + 0.1)) roughly 
orresponds to a 95%


on�den
e interval for the �tted mortality rates of (0.90µ̂x,t, 1.10µ̂x,t), where µ̂x,t is our

best estimate of the mortality rate. For 
omparison, di�eren
es in the level of mortality

of around this order of magnitude are visible between di�erent industrial se
tors in Fig-

ures 8 and 9 of Continuous Mortality Investigation (2012). This implies that it may be

di�
ult to robustly determine di�eren
es in the level of mortality between individuals

who worked in di�erent industries on
e parameter un
ertainty is taken into a

ount. The

dashed lines in Figure 9.5 show the parameter-
ertain estimates of α
(∆)
x , whi
h lie 
lose

to the 
entre of the 
on�den
e intervals given by relative models.

16

Men Women

Model 6 Model 8 Model 6 Model 8

λ(1)
[1.21,1.40℄ [1.23,1.39℄ [1.13,1.31℄ [1.12,1.31℄

λ(2)
[1.47,1.93℄ [1.44,1.91℄ [1.66,2.96℄ [1.79,2.94℄

λ(3)
[1.44,2.33℄ [1.45,2.33℄ [-0.56,0.82℄ 0

λ(γ)
[0.71,1.09℄ 1 [0.87,1.22℄ 1

Table 9.4: 95% 
on�den
e intervals for s
aling fa
tors in Model 6 and Model 8 �tted

to male and female SAPS data

Table 9.4 shows the 95% 
on�den
e intervals for the s
aling fa
tors for men and women.

The �rst thing to note from these results is that the s
aling fa
tors are subje
t to sub-

stantial parameter un
ertainty. As the relative model is very parsimonious and 
ontains

relatively few free parameters, this should 
aution us against 
onsidering more sophisti-


ated models for the SAPS population. For instan
e, we are unlikely to have su�
ient

data to robustly estimate separate period fun
tions for the SAPS data 
ompared with

the referen
e population, whi
h was done in Villegas and Haberman (2014).

We also note that the 
on�den
e intervals for λ(1)
tend to be slightly narrower than those

for the other age/period terms, whi
h is to be expe
ted sin
e the �rst age fun
tion 
overs

the entire age range and therefore the estimate of λ(1)
uses more data. This 
autions

us against trying to estimate age-spe
i�
 or year-spe
i�
 parameters, sin
e these would

have relatively little data to support them, leading to substantial parameter un
ertainty

in their estimates. For instan
e, the un
ertainty in the estimate of a non-parametri


form for α
(∆)
x would be 
onsiderably higher, sin
e this requires separate parameters at

ea
h age to be estimated.

16

This indi
ates that our method for estimating parameter un
ertainty does not signi�
antly bias the

results, whi
h is an important 
he
k of its suitability.
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From Table 9.4, we 
an easily apply a simple but important 
he
k of our modelling

approa
h by using an alternative method for determining suitable restri
tions of the rel-

ative model su
h as a �general-to-spe
i�
� approa
h des
ribed in Campos et al. (2005).

This would �t an unrestri
ted model (i.e., Model 6) to the data, observe the 
on�den
e

intervals for ea
h parameter and use these to determine whi
h restri
tions to apply. To

illustrate, if the 
on�den
e interval for λ(j)
in
luded unity, the general-to-spe
i�
 ap-

proa
h would impose λ(j) = 1 on the grounds of statisti
al signi�
an
e. From Table

9.4, we see that the 
on�den
e intervals for λ(γ)
for both men and women 
ontains zero,

whilst the 
on�den
e interval for λ(3)
for women 
ontains unity. Therefore, the general-

to-spe
i�
 approa
h would arrive at the same set of restri
tions for the preferred model

as our approa
h, whi
h is based solely on 
onsidering the goodness of �t of the relative

model with di�erent sets of restri
tions.

We also see, by 
omparing the 
on�den
e intervals for the unrestri
ted parameters in

Model 8 with their 
ounterparts from Model 6, that imposing the preferred set of restri
-

tions does not signi�
antly a�e
t the estimation of the other parameters in the model.

This, again, a
ts as a useful 
he
k to ensure that the pro
edure we have used to sele
t the

preferred set of restri
tions does not remove statisti
ally signi�
ant parameters from the

relative model, and gives us 
on�den
e that our approa
h merely removes unne
essary

parameters and so leads to a more parsimonious model.

Inspe
tion of the boxplots of the bootstrapped parameters from Model 6, shown in

Figure 9.6, indi
ates that the 
on�den
e intervals appear roughly symmetri
 around their

midpoints. However, on 
loser inspe
tion, λ(1)
shows substantial skewness. Investigating

this further, Jarque-Bera tests on the bootstrapped reje
ts the assumption of normality

for λ(1)
for both sexes and for λ(3)

for women at the 5% level. This indi
ates that we


annot reliably use asymptoti
 methods based on the information matrix (similar to

those used in Brouhns et al. (2002b)) to allow for parameter un
ertainty, sin
e these

methods assume that the parameters will be normally distributed. This justi�es the use

of residual bootstrapping pro
edures, su
h as the one proposed here, in order to properly

investigate parameter un
ertainty in these models.

9.4.3.2 Model risk

The se
ond stage of testing the robustness of the model is to �t the relative model to

the bootstrapped data without spe
ifying the form of the preferred model. Instead, we

allow the pro
edure to sele
t a potentially di�erent preferred model in ea
h simulation.
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Figure 9.6: Boxplots of the bootstrapped parameters from Model 6
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-
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er-
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Figure 9.7: Flow 
hart illustrating the pro
edure for �tting and sele
ting the relative

model allowing for parameter un
ertainty and model risk

This allows for �model risk�, in the sense of Cairns (2000), i.e., the risk that the model

sele
ted is not an a

urate representation of the true pro
esses generating the data. This

pro
ess is illustrated in Figure 9.7. However, we are still sele
ting a preferred model from

a relatively limited set of 
omparators, and so the pro
edure does not fully 
apture the

potential for model risk.

Looking �rst at the preferred form of α
(∆)
x , we �nd that, from 1,000 bootstrapped

datasets, we �nd that the preferred model restri
ts α
(∆)
x to have a parametri
 form

in 88% of the datasets for men and 100% of the datasets for women. The modelling ap-

proa
h, therefore, overwhelmingly prefers imposing a parametri
 stru
ture for α
(∆)
x over
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allowing this to vary freely, even when allowing for model risk. This is not too surprising

when 
onsidering the results in Tables 9.2 and 9.3, as these showed that allowing α
(∆)
x

to take a non-parametri
 form signi�
antly worsened the goodness of �t when this was

penalised for the additional number of parameters.

Restri
tion pla
ed on: λ(j) = 0 λ(j) = 1 λ(j)
unrestri
ted

Men:

λ(1)
0% 67% 33%

λ(2)
0% 0% 100%

λ(3)
0% 36% 64%

λ(γ)
1% 71% 28%

Women:

λ(1)
0% 69% 31%

λ(2)
0% 2% 98%

λ(3)
93% 7% 0%

λ(γ)
0% 97% 3%

Table 9.5: Frequen
y of di�erent restri
tions being pla
ed upon the s
aling fa
tors in

the preferred relative model, based on 1,000 bootstrapped datasets

Table 9.5 shows the frequen
y of observing the various restri
tions on the s
aling fa
tors

in the preferred model based on the same 1,000 bootstrapped datasets. We note that

the most likely form that these restri
tions take is the preferred one found for Model 8 in

Tables 9.2 and 9.3. The ex
eption to this is λ(1)
for both men and women: when model

risk is allowed for, the most likely out
ome is that λ(1)
is restri
ted to equal unity, while

this parameter was allowed to vary freely in Model 8 for both sexes. We are unsure why

this should be the 
ase. However, we note that it is inevitable that some information

in the original data will be lost due to the random resampling of the �tted residuals

in the Koissi et al. (2006) approa
h. Therefore, it is likely that the preferred model for

bootstrapped data will be simpler and have more restri
tions pla
ed upon it, as fewer pa-

rameters will be required to 
apture the redu
ed level of information in the bootstrapped

data 
ompared with the original data.

In summary, we �nd that there is substantial model risk for both sexes, and no one set

of restri
tions out of the available options is universally sele
ted. This will be important

when we proje
t the model in Se
tion 9.5. It should also, again, 
aution us against using

overly 
ompli
ated models for the SAPS populations, as there is substantial un
ertainty

not only in any parameter estimates found but also in the fundamental form of the model.
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9.5 Basis risk and proje
ting mortality for the SAPS pop-

ulation

In Se
tion 9.4, the relative model was applied to histori
al data for the SAPS population.

Given proje
tions of the referen
e population, we 
an also use the relative model to map

these into proje
tions for the sub-population.

Many pension s
hemes are 
on
erned about �basis risk�, the risk that the mortality ex-

perien
e of the s
heme in question will be substantially di�erent to that of the national

population. This is important when assessing hedging strategies (for instan
e, in Li and

Hardy (2011), Coughlan et al. (2011) and Cairns et al. (2013)) using �nan
ial instruments

based on national mortality rates. More fundamentally, it is an important question when

funding a pension s
heme, sin
e most standard proje
tions for future mortality rates are

based on analysing national populations (for instan
e, the CMI mortality proje
tion

model in Continuous Mortality Investigation (2009a) whi
h is widely used in the UK).

Intuitively, basis risk 
an arise be
ause of a di�eren
e in levels of mortality rates (e.g.,

the spe
i�
 population exhibiting systemati
ally higher or lower mortality rates than the

referen
e population as a result of 
hara
teristi
s su
h as so
io-e
onomi
 status whi
h

will 
hange only slowly) and a di�eren
e in trends in mortality rates (i.e., mortality rates

evolving di�erently in the sub-population, for instan
e, due to preferential a

ess to new

medi
ations) between the two populations. In terms of the relative model of Equation

9.3, these 
an be thought of as relating to α
(∆)
x and the λ(j)

, respe
tively. Level di�er-

en
es 
an be measured relatively easily using traditional a
tuarial methods whi
h are well

within the 
apabilities of modern s
heme a
tuaries. However, the di�eren
e in trends

between populations is more di�
ult to measure reliably and, 
onsequently, is of greater


on
ern to many s
heme a
tuaries.

In order to evaluate the potential impa
t of basis risk between the UK and SAPS popu-

lations, we �rst need to proje
t mortality rates for the national population. However, it

is important that our proje
tions of mortality rates are �well-identi�ed� in the sense of

Chapters 3 and 4 in that they do not depend upon our 
hosen identi�ability 
onstraints.

To proje
t the referen
e population, we therefore adopt the te
hniques of Chapter 4 and

use random walks with drift

κ
(R)
t = µ(R) + κ

(R)
t−1 + ǫ

(R)
t (9.10)
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where κ
(R)
t =

(

κ
(R,1)
t , . . . κ

(R,N)
t

)⊤
, µ(R)

are drift 
oe�
ients and ǫ
(R)
t are normally

distributed, 
ontemporaneously 
orrelated innovations. For the 
ohort parameters, we

make proje
tions using an AR(1) around �well-identi�ed� drifts

γ(R)
y − β(R)Xy = ρ(R)(γ

(R)
y−1 − β(R)Xy−1) + εy (9.11)

where Xy is a ve
tor of deterministi
 fun
tions

17

and β(R)
are drift 
oe�
ients.

The deterministi
 fun
tions, Xy, are 
hosen to ensure that the proje
tions are �well-

identi�ed�, i.e., that the proje
ted mortality rates for the referen
e population do not

depend upon the identi�ability 
onstraints used when �tting the model. To a
hieve this

in the 
ontext of the referen
e models developed in Se
tion 9.4.1 and Appendix 9.C, we

have

Xy =
(

1, (y − ȳ)
)⊤

β(R) =
(

β
(R)
0 , β

(R)
1

)

R = {UKm, UKf}

Any dependen
e between mortality rates for men and women is not relevant to the fol-

lowing dis
ussion, where only the relationships between mortality rates in the referen
e

and sub-populations for the same sex are investigated. Therefore, in these proje
tions,

we do not take into a

ount any dependen
e between male and female mortality rates

in the referen
e population, and 
onsequently proje
t these populations independently.

A more 
omplete analysis of the mortality and longevity risks in pension s
hemes, su
h

as in Chapter 10 , would need to allow for dependen
e between sexes in the referen
e

population. For te
hniques whi
h 
ould allow for dependen
e between these populations,

see Chapter 8 and the referen
es therein.

To illustrate the basis risk between the SAPS and UK populations, we 
onsider annuity

values at age 65 (
al
ulated using a real dis
ount rate of 1% p.a.). We perform 1,000

Monte Carlo simulations using the time series pro
esses above to give proje
ted mortality

rates in the national population, whi
h are then used to generate proje
ted mortality

rates in the SAPS population using the relative mortality models for men and women

separately. Basis risk is a

ounted for using the relative model in three stages:

17

We have used the same notation for the trends, Xy , in Equation 9.11 as was used for the additional

fun
tions of year of birth in the relative model in Equation 9.3. However, the reader should be aware

of the slight di�eren
e in de�nition between these two 
ontexts, namely that in Equation 9.11, Xy =
(

1, (y − ȳ)
)⊤

, whilst in Equation 9.3, Xy =
(

y − ȳ
)⊤

, i.e., Xy did not possess a 
onstant.
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1. First, we allow only for the impa
t of the random innovations, ǫ
(R)
t and ε

(R)
y , on

proje
ted mortality rates, i.e., we allow for pro
ess risk in the terminology of Cairns

(2000). We do this by using Equations 9.10 and 9.11 to proje
t sto
hasti
ally the

period and 
ohort parameters found for the referen
e population in Se
tion 9.4.1,

and then using the preferred relative model estimated in Se
tion 9.4.2 and shown as

Model 8 in Tables 9.2 and 9.3. Using this te
hnique, we �nd 
orrelations between

annuity values in the UK and SAPS populations of 99% for men and 98% for

women.

2. Se
ond, we allow for parameter un
ertainty in both populations. To do this, we

use the approa
h illustrated in Figure 9.4 to generate new parameters for both the

referen
e and the sub-populations. The time series pro
esses in Equations 9.10 and

9.11 are then re-estimated for the bootstrapped period and 
ohort parameters for

the referen
e model, and mortality rates for the referen
e and sub-populations pro-

je
ted from these. When allowing for parameter un
ertainty, we �nd 
orrelations

between annuity values in the UK and SAPS populations of 98% and 97% for men

and women, respe
tively, indi
ating than parameter un
ertainty has not added sig-

ni�
antly to the basis risk between the two populations. This is surprising, given

the results of Se
tion 9.4.3.1 as shown in Figures 9.5 and 9.6, whi
h showed rela-

tively high levels of un
ertainty in the levels and s
aling parameters. However, this

may indi
ate that the basis risk arising from di�erent rates of 
hange in mortality

in di�erent populations may not be parti
ularly signi�
ant, as dis
ussed in Se
tion

9.7.

3. Finally, we allow for model risk in the sele
tion of the preferred model for the sub-

population. We do this using the same pro
edure as illustrated in Figure 9.7 to

generate new parameters for the referen
e population and a new preferred model for

the sub-population. The time series pro
esses in Equations 9.10 and 9.11 are then

re-estimated for the bootstrapped period and 
ohort parameters for the referen
e

model, and mortality rates for the referen
e and sub-populations proje
ted from

these. Using this pro
edure, we observe 
orrelations between annuity values in the

UK and SAPS populations of 95% for men and 96% for women. It is interesting to

note that for both sexes, we a
hieve 
orrelations of over 90%, even when allowing

for all three sour
es of un
ertainty in the relative model.

Note that this analysis looks only at annuity values (i.e., the expe
ted present value of

payments to an individual) and so does not 
onsider the idiosyn
rati
 risk that would

also be present in the bene�ts payable from a pension s
heme. This was investigated in

Donnelly (2014), Aro (2014) and, in parti
ular, in Chapter 10 where we �nd this is likely
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Figure 9.8: Proje
ted annuity values for the UK and SAPS populations from 1,000

Monte Carlo simulations

to be substantial for even relatively large pension s
hemes.

Figure 9.8 shows s
atter plots of annuity values 
al
ulated using mortality rates in the

UK and SAPS populations for men and women in the third, most general 
ase (i.e.,

in
orporating pro
ess risk, parameter un
ertainty and model risk). It is interesting to

note that, for both sexes, the systemati
 longevity risk (indi
ated by the range of values

the annuity value 
an take, e.g., 18 to 24 in the 
ase of men) is far greater than the basis

risk. Indeed, the systemati
 longevity risk a

ounts for around 90% of the un
ertainty

in an annuity value for the SAPS population, indi
ating that basis risk may be 
onsid-

erably less important than is 
ommonly believed. This is dis
ussed further in Se
tion 9.7.

However, it is important to note that in all of these 
ases, there is no genuine trend basis

risk between the two populations. This is be
ause the same pro
esses, i.e., κ
(R)
t and γ

(R)
y ,


ontrol the evolution of mortality in both populations, albeit s
aled by un
ertain fa
tors

in the sub-population. This helps explain why the 
orrelations we �nd are somewhat

higher than those found in other studies of basis risk, su
h as Cairns et al. (2013). How-

ever, we note that most of these studies used sub-populations whi
h were 
onsiderably

larger and 
overed a longer period of time than the SAPS population. Consequently,

there is a trade-o�. On the one hand, we might wish to use more 
ompli
ated models

that might give a more a

urate assessment of basis risk, but whi
h require larger vol-

umes of data to estimate robustly and, therefore, might involve using data for a larger

sub-population whi
h is less relevant for the mortality experien
e of a spe
i�
 pension

s
heme (for instan
e, the CMI Assured Lives dataset). On the other hand, we might

prefer to use simpler models, whi
h 
an be robustly estimated from smaller datasets that

are likely to be more relevant to the spe
i�
 s
heme experien
e, but give a less a

urate
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assessment of basis risk. The impa
t of this trade-o� is dis
ussed in Se
tion 9.7.

Finally, the importan
e of model risk and parameter un
ertainty will tend to in
rease if

we 
onsider populations smaller than the SAPS population, as we do in Se
tion 9.6. We

would therefore expe
t to see 
orrelations of a similar size to those found in other studies

for population sizes that are more typi
al of UK pension s
hemes, due to the greater

parameter un
ertainty and model risk, even without allowing for genuine trend basis risk.

In addition, the 
ash�ows experien
ed by a pension s
heme will also have (potentially

substantial) idiosyn
rati
 risk due to the relatively low number of lives under observation.

This suggests that, in pra
ti
e, it would be impossible to distinguish trend basis risk from

parameter and model un
ertainty for most pension-s
heme sized populations. Therefore,

any 
on
ern about trend basis risk may be mispla
ed, sin
e it would be impossible to

reliably quantify and be small relative to the impa
t of the other risks in the model. This

is dis
ussed further in Se
tion 9.7 and Chapter 10 .

9.6 Applying the relative model to small populations

While the SAPS population is small relative to the national UK population, it does have

annual exposures to risk of over one million lives ea
h for men and women, and so still

represents a population larger than almost all o

upational pension s
hemes (with the

ex
eption of some state s
hemes). However, the methods developed in this study 
an be

applied to signi�
antly smaller populations, su
h as those more 
omparable with the size

of large o

upational pension s
hemes.

As dis
ussed in Se
tion 9.4.2, the relative model applied to the SAPS population ex-

hibited a strong preferen
e for parsimony. However, parameter un
ertainty and model

risk were still important 
onsiderations, even with a relatively simple model and the full

SAPS data. It is therefore ex
eedingly likely that in even smaller populations, these 
on-

siderations will dominate what we 
an and 
annot realisti
ally say about the evolution

of mortality of a small sub-population su
h as that asso
iated with an individual pension

s
heme.

We investigate the e�e
t of population size on the ability of the relative model to measure

mortality di�eren
es with the national population by randomly generating s
heme-sized

exposures to risk and death 
ounts (denoted by lower-
ase s) based on the SAPS data.
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We adopt the following pro
edure to generate pseudo-data for a s
heme with N lives

(
onsidering ea
h sex separately):

1. We �rst res
ale SAPS exposures, E
(S)
x,t , to give a proxy for smaller pension s
hemes

with approximately N members. We 
ould, in prin
iple, do this very simply by

setting

E
(s)
x,t = E

(S)
x,t × N

∑

ξ E
(S)
ξ,t

This would give a s
heme with a 
onstant exposure to risk over ea
h year, but

the same pattern of exposures to risk a
ross di�erent ages. However, this simple

approa
h does not 
apture the pattern of exposures a
ross years seen in the a
tual

SAPS data, due to the partial submission of s
heme data in the �rst and last few

years of the SAPS datasets (dis
ussed in Se
tion 9.2, see also Figure 9.13a). This

means that, were we to arti�
ially generate a s
heme of the same size as the SAPS

population, we would not re
over the observed SAPS exposures and so would obtain

in
onsistent results. Sin
e we will apply this pro
edure to generate pseudo-s
heme

data for s
hemes of widely varying sizes, up to and in ex
ess of the full SAPS data,

it is essential that our results are 
onsistent with the results we found in previous

se
tions. Consequently, we amend the s
aling fa
tors so that

E
(s)
x,t = E

(S)
x,t × 5N

∑

ξ

∑2008
τ=2004 E

(S)
ξ,τ

This modi�es the denominator to re�e
t the average exposure to risk in the SAPS

data in years 2004-2008, for whi
h almost all relevant pension s
hemes have sub-

mitted data to the SAPS study. This approa
h therefore repli
ates the full SAPS

data when we generate a s
heme of the same size as the SAPS population (in
lud-

ing the pattern of relatively low exposures to risk for the �rst and last years, along

with the pattern of exposures at di�erent ages found in the SAPS data.

2. We then generate random death 
ounts for the s
heme by modelling them as Pois-

son random variables. To do this, we use the exposures to risk generated using both

the pro
edure above and the 
rude mortality rates observed in the SAPS dataset,

D
(s)
x,t ∼ Po

(

D
(S)
x,t

E
(S)
x,t

E
(s)
x,t

)

We then �t the relative model to this pseudo-s
heme data, testing all 162 sets of pos-

sible restri
tions on the parameters to determine the preferred model using the same

pro
edure des
ribed in Se
tion 9.4.3.2. This pro
edure is illustrated in Figure 9.9. Su
h
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Figure 9.9: Flow 
hart illustrating the pro
edure for generating data and �tting the

relative model to s
heme-sized populations, allowing for parameter un
ertainty and

model risk

an approa
h is 
on
eptually similar to the �semi-parametri
� bootstrapping te
hnique in

Brouhns et al. (2005), ex
ept we res
ale the exposures in order to simulate the range of

di�erent s
heme sizes present in the UK.

To gain a better understanding of the impa
t of the size of the population on the 
omplex-

ity of the preferred model, we apply this pro
edure for s
heme sizes at regular intervals

in the range N ∈ (102, 106) and for 1,000 sets of random death 
ounts at ea
h s
heme

size. This range of population sizes 
overs almost the entire range of pension s
heme

sizes in the UK, and the �tting of multiple models allows for potential model risk in the
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sele
tion of the preferred model. The results of this pro
edure for men and women are

shown in Figures 9.10 and 9.11.

First, let us 
onsider the results shown in Figures 9.10a and 9.11a. These �gures show

that the probability of the pro
edure preferring a parametri
 restri
tion for α(∆)
is al-

most unity for s
hemes up with up to one million members of ea
h sex, whi
h is far in

ex
ess of all but the largest state s
hemes in the UK. This indi
ates an overwhelming

preferen
e for parametri
 restri
tions for α
(∆)
x in all but the very largest s
heme sizes.

The impli
ation of this is that making simple adjustments to a standard mortality ta-

ble will be su�
ient to 
apture the di�eren
e in levels in mortality for almost all UK

s
hemes, with little or no need to graduate a bespoke table (even if the data is available).

Looking at the s
aling fa
tors for the age/period and 
ohort terms, we see that, typi
ally,

the smallest s
hemes (fewer than 1,000 members of ea
h sex) are indi�erent between re-

stri
ting λ(j)
to be equal to zero or unity. For instan
e, Figure 9.10b shows that the

pro
edure imposes the restri
tion λ(1) = 0 and λ(1) = 1 for men in approximately 50%

of the simulations for small s
hemes, with λ(1)
being estimated without restri
tions in

almost no 
ases. This pattern is repeated for the other s
aling fa
tors shown in Fig-

ures 9.10 and 9.11. Sin
e the restri
tions λ(j) = 0 and λ(j) = 1 give models with the

same number of free parameters, the 
hoi
e between them depends entirely on the log-

likelihood found when �tting the model. However, the di�eren
e between λ(j) = 0 and

λ(j) = 1 is the di�eren
e between a model whi
h allows mortality rates to 
hange with

time and a stati
 model of mortality (λ(j) = 0 ∀j). We therefore �nd that, in very small

s
hemes it is almost impossible to say whether or not mortality rates are 
hanging, let

alone anything about the rate they are 
hanging.

Looking at Figure 9.10b again, we see that for larger s
hemes, with around 10,000 to

100,000 members, the relative model has a 
lear preferen
e for setting λ(1) = 1 for men,

whi
h is preferred in almost all simulations for s
hemes with around 200,000 members.

This pattern is also true for the majority of the s
aling fa
tors shown in Figures 9.10

and 9.11. The impli
ation of this is that, although there is su�
ient eviden
e to sug-

gest mortality is improving in these larger s
hemes (unlike the smaller s
hemes dis
ussed

above), there is not enough data to quantify any di�eren
es in this improvement between

the s
heme and the national population. This supports the use of proje
tion methods

based on the national population for the majority of pension s
hemes in the UK. It also

makes it unlikely that we 
an dete
t trend basis risk between the s
heme and the national
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ed on the relative model for di�erent volumes of male data
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population for s
hemes with fewer than 100,000 members of ea
h sex.

Only in the very largest s
hemes, with over one million members of ea
h sex, do we �nd

that there is su�
ient data to estimate unrestri
ted λ(j)
, as illustrated by the preferen
e

for a freely varying λ(1)
for men for s
hemes with around two million members in Fig-

ure 9.10b. Therefore, it is only for these very large s
hemes that we 
an quantify any

di�eren
e in the evolution of mortality rates between a pension s
heme and the national

population, i.e., any trend basis risk, although the results of Se
tion 9.5 indi
ate that,

even when this is allowed for, the impa
t on annuity values is likely to be quite limited,

espe
ially when 
onsidered in the 
ontext of the other mortality and longevity risks in

the s
heme. This is investigated further in Chapter 10 .

In summary, we �nd that, for datasets that are the same size as a typi
al UK pension

s
heme, there is insu�
ient data to make more than a few simple adjustments to re�e
t

level basis risk. For most pra
ti
al 
ir
umstan
es, we would therefore be unable to

quantify any trend basis risk in a pension s
heme. Given that trend basis risk is often

given as a key 
on
ern for why pension s
hemes are relu
tant to use index based hedging

instruments to manage their longevity risk and, instead, prefer bespoke arrangements,

we believe that mu
h of this trepidation is mispla
ed, as we now dis
uss.

9.7 Dis
ussion: Basis risk in pension s
hemes

There has been a lot of work regarding the quanti�
ation of basis risk between di�erent

populations, most notably in Plat (2009b), Salhi and Loisel (2009), Li and Hardy (2011),

Coughlan et al. (2011), Cairns et al. (2013) and Li et al. (2013). The analysis of this risk

has also motivated many of the multi-population mortality models that have re
ently

been proposed, su
h as those of Dowd et al. (2011b), Cairns et al. (2011a), Zhou et al.

(2014) and Chapter 8. However, mu
h of this work to date is not dire
tly relevant to

the situation fa
ed by many UK pension s
hemes when assessing and trying to manage

their longevity risk.

Partly, this is be
ause the populations being 
onsidered in these studies are far larger

in terms of the size of the exposures to risk than that of a typi
al (or, indeed, even a

very large) UK pension s
heme. This enables the authors of these studies to adopt a

�general-to-spe
i�
� approa
h when analysing trend basis risk: �rst mortality models are
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�tted separately to the di�erent populations under investigation and then any depen-

den
e between the period or 
ohort parameters is analysed. This approa
h is exempli�ed

by the study of Li et al. (2013), whi
h statisti
ally determined whether or not to simplify

a model by using the same sets of parameters for di�erent populations (whi
h is a very

spe
i�
 form of dependen
e). Su
h an approa
h therefore starts from the assumption

that mortality rates will have di�erent patterns of evolution in di�erent populations, and

then looks for eviden
e of similarities.

Su
h an approa
h is entirely reasonable when looking at large populations where there

is su�
ient data to estimate sophisti
ated mortality models in ea
h population under

investigation. However, this is not the situation in whi
h most pension s
hemes �nd

themselves. Instead, with relatively little data, it is ne
essary for them to adopt a

�spe
i�
-to-general� approa
h, su
h as that underlying the relative model proposed in

this study. As there is insu�
ient data to estimate many sub-population-spe
i�
 pa-

rameters robustly, a spe
i�
-to-general methodology starts from the assumption that

mortality rates in the sub-population evolve in the same fashion as those in the referen
e

population and then looks for eviden
e of di�eren
es between the two. This approa
h

naturally leads to more parsimonious models, whi
h are therefore likely to be more ro-

bust. However, it is less likely to overturn the null hypothesis of no trend basis risk,

espe
ially when parameter un
ertainty and model risk are in
luded in any analysis.

Our �ndings suggest that large volumes of data (in terms of both the size of the exposures

to risk and the period range of the data) are required to overturn the null hypothesis of

no trend basis risk, espe
ially when parameter un
ertainty and model risk are in
luded

in the analysis. For the full SAPS dataset, the simple relative model we have proposed

a
hieves relatively good and parsimonious �ts to the data for both men and women, as

shown in Se
tion 9.4. Furthermore, for the smaller datasets more typi
al of UK pension

s
hemes, even simpler models whi
h �x the s
aling fa
tors in the model are preferred,

as shown in Se
tion 9.6. This is 
onsistent with the results of Haberman et al. (2014),

whi
h found that it is only possible to quantify basis risk for very large s
hemes.

In addition, in order to estimate the more 
ompli
ated multivariate time series pro
esses

used in many of the general-to-spe
i�
 models we need longer periods of data than a

typi
al pension s
heme has. For instan
e, to estimate the 
ointegration-based models of

Salhi and Loisel (2009) and Chapter 8 requires several de
ades of mortality data, whi
h

is usually far in ex
ess of what a pension s
heme will have itself. Similarly, Haberman

et al. (2014) found that eight years or more of data is required for the quanti�
ation of
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basis risk, even for very large pension s
hemes. Spe
i�
-to-general models, however, do

not require su
h long data ranges, as they start from the assumption that information

about the referen
e population 
an be used to �ll in gaps in the data if required.

However, Se
tion 9.5 shows that proje
tions from the relative model have many of the

features we would expe
t from models whi
h use more 
ompli
ated time series pro
esses,

when appropriate allowan
e is made for parameter un
ertainty and model risk, despite

there being no genuine trend basis risk using the relative approa
h. This implies that

it may be impossible to distinguish between genuine trend basis risk and the e�e
ts of

parameter un
ertainty and model risk in pra
ti
e. Indeed, it is noti
eable that few of the

studies to date whi
h have investigated basis risk allow for parameter un
ertainty and

model risk, and so the �ndings of these studies potentially wrongly attribute di�eren
es

in histori
al improvements in mortality between di�erent populations to basis risk and,

thus, overstate its importan
e.

We �nd that for most UK pension s
hemes, the existen
e or not of trend basis risk be-

tween the s
heme and the UK population is of little pra
ti
al relevan
e. The s
heme

will never have su�
ient information to be able to say with 
on�den
e that the improve-

ments in mortality it experien
es are signi�
antly di�erent from that in the referen
e

population, as any su
h di�eren
es will be overwhelmed by the other sour
es of risk and

un
ertainty present in the s
heme.

This is not to dispute that basis risk 
an exist between di�erent 
ountries or amongst

highly distin
t sub-populations of a referen
e population. Indeed, there are good rea-

sons to suggest that it does and that there is su�
ient data to estimate it reliably using

a general-to-spe
i�
 approa
h as in previous studies. For instan
e, many studies (for

instan
e in Li and Hardy (2011) and Chapter 8) investigate di�eren
es between the evo-

lution of mortality rates in di�erent 
ountries. However, populations in di�erent 
ountries

may have di�erent diets, lifestyles and a

ess to health
are, and so would be expe
ted to

have di�erent patterns of evolution in mortality rates. Other studies, su
h as in Villegas

and Haberman (2014) 
onsider the di�eren
es in the evolution of mortality rates between

highly sele
tive sub-populations of a 
ountry (for instan
e, based on deprivation). The

sub-populations in these studies have, therefore, been 
onstru
ted in su
h as fashion as

to maximise the likelihood of observing di�erent patterns in the evolution of mortality

rates.

18

18

As well as being a highly sele
ted sub-population of the UK population, the data for CMI Assured

Lives has also varied 
onsiderably in the so
io-e
onomi
 makeup of the relevant population over the

period of the data due to 
hanges in the UK annuity market. As this dataset was used in Cairns et al.
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Nor do we argue that the evolution of mortality rates in a pension s
heme is the same

as in the referen
e population. It may be true that for very large s
hemes, we may have

su�
ient data to be able to dete
t trend basis risk (even when allowing for parameter

un
ertainty and model risk) if there is quite a large di�eren
e in the evolution of mor-

tality rates between the two populations.

However, a pension s
heme, whose only membership requirement was employment with

a parti
ular 
ompany, would be expe
ted to be more similar to the national population

or di�er only due to persistent sele
tion e�e
ts whi
h a�e
t the level of mortality rates

but not how mortality rates evolve with time. In order to have su�
ient data to re-

je
t the assumption that the evolution of mortality rates in the pension s
heme is the

same as in the national population, the s
heme must be very large (su
h as being the

pension s
heme for a large and long-established national 
ompany) and so entry to su
h

s
hemes is likely to be relatively unsele
tive. Therefore, these s
hemes are more likely

to represent a fair 
ross se
tion of the UK population. Consequently, the 
ir
umstan
es

where we have enough data to quantify basis risk (for example, the pension s
heme of a

large, national employer) are also the 
ir
umstan
es when basis risk is least likely to be

important. Consequently, in most pra
ti
al situations, we will never have su�
ient data

to tell the di�eren
e and therefore an assumption of no di�eren
e between the evolution

of mortality rates in the national population and the pension s
heme is both pra
ti
al

and parsimonious.

The pra
ti
al impli
ations of these results are important for the development of any mar-

ket in longevity hedging. As trend basis risk is unlikely to be important enough to be

statisti
ally signi�
ant, it is also unlikely to be �nan
ially signi�
ant. If longevity risk is

felt to be important, hedging 
an be a
hieved by use of standardised instruments based

on proje
ted 
hanges in mortality rates in a referen
e population, making adjustments

to re�e
t the level of mortality observed in the pension s
heme. Con
erns that the trend

basis risk will make su
h hedges ine�e
tive, su
h as those raised against the EIB longevity

bond (see Blake et al. (2006)), should be regarded as se
ondary 
ompared with the other

risks a pension s
heme fa
es, su
h as idiosyn
rati
 mortality risk. Bespoke produ
ts,

su
h as longevity swaps tailored to the 
hara
teristi
s of the pension s
heme, should be

regarded primarily as vehi
les for hedging and transferring these other risks, rather than

any trend basis risk for the s
heme, and their 
ost e�e
tiveness judged a

ordingly, as

(2011a), Dowd et al. (2011b) and Cairns et al. (2013), it is therefore un
lear whether any di�eren
e in

the evolution of mortality dete
ted by these studies is the result of genuine trend basis risk or simply a

result of the 
hanging 
omposition of the dataset.
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dis
ussed in Chapter 10 .

9.8 Con
lusions

In 
on
lusion, in this study we present a relative model for mortality in a sub-population,

whi
h models the mortality rates observed in a small population relative to those ob-

served in a larger referen
e population. Su
h a model has the advantages of being more

parsimonious 
ompared with the approa
h of �tting separate mortality models for both

populations, whi
h has been adopted in many multi-population mortality studies, and

so is better suited to situations where there is little data for the sub-population.

We then apply the relative model to investigate the mortality rates observed in the SAPS

study of UK pension s
hemes. We �nd that this simple model is su�
ient to a
hieve a

good and parsimonious �t to the available data and reasonable proje
tions of mortal-

ity rates. Spe
i�
ally, we �nd that, in aggregate, members of UK o

upational pension

s
hemes generally experien
e lower levels of mortality rates than the national population,

whi
h are also improving at a faster rate than those in the national population. However,

we �nd relatively high levels of un
ertainty in estimating the parameters even in this sim-

ple model and that the data is insu�
ient to uniformly prefer one model over any other.

Furthermore, when we apply the relative modelling approa
h to sub-populations whi
h

are smaller than the SAPS population, and 
loser in size to those of typi
al UK pen-

sion s
hemes, we �nd that the modelling approa
h prefers very simple, highly restri
ted

models, whi
h do not allow for any di�eren
e in the evolution of mortality between the

referen
e and sub-populations.

These 
onsiderations lead us to the belief that the analysis of trend basis risk, whi
h

requires more sophisti
ated models than the relative model proposed, is not possible with

the datasets realisti
ally available for most pension s
hemes. We �nd that, in pension

s
heme sized datasets, we will never have su�
ient eviden
e to determine whether there

is any di�eren
e in the evolution of mortality rates in the sub-population 
ompared

with the referen
e population when the other risks present are properly a

ounted for.

Therefore, we believe that an assumption of no di�eren
e in the evolution of mortality

rates between the two populations is pra
ti
al and parsimonious. Consequently, we


on
lude that 
on
erns regarding trend basis risk in the development of the market for

longevity hedging and risk management tools for pension s
hemes are mispla
ed.
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9.A Summary of SAPS data

We are indebted to the CMI for kindly providing death 
ounts and exposures, weighted

by individual lives, for the SAPS population for the period 2000 to 2011 and ages 60

to 90. These relate to all pensioners in the surveyed pension s
hemes, and so in
lude

people re
eiving bene�ts after retiring at normal retirement age, those who retired early

or in ill-health, and those in re
eipt of spousal bene�ts. It is likely that some of these

sub-populations will have di�erent mortality 
hara
teristi
s, espe
ially those retiring in

ill-health. However, su
h 
ases represent a relatively small proportion of the SAPS data

and are unlikely to materially impa
t our results.

Large pension s
hemes in the UK submit their mortality experien
e to the SAPS study

following 
ompletion of a triennial funding valuation. Therefore, ea
h submission is in

respe
t of data with a 
onsiderable time delay, e.g., data submitted on 30 June 2013

may result from a funding valuation with an e�e
tive date of 31 De
ember 2011 (due

to the time taken to perform the valuation) and 
over the period 1 January 2009 to 31

De
ember 2011. Consequently, the last few years of the SAPS data only re�e
ts a par-

tial submission to date of the mortality experien
e of the s
hemes whi
h will, ultimately,

submit data to the study. However, we have no reason to believe that the s
hemes that

have submitted to date are an unrepresentative sub-sample of the SAPS population, and

so do not believe this biases our results.

Similarly, there are fewer submissions for the earliest years of the SAPS data. Unlike the

most re
ent years, the missing data for this period will never be re
eived by the CMI.

Therefore, we only have data we 
onsider 
omplete for roughly the period 2004 to 2008.

19

Figures 9.12 and 9.13 summarise the patterns of deaths and exposures for men and

women a
ross age and time.

19

However, we note that Continuous Mortality Investigation (2014b) and Continuous Mortality In-

vestigation (2014
) have been published subsequently to us obtaining the data used in this study from

the CMI. These working papers in
luded new data in respe
t of the SAPS study for 2012 and 2013,

respe
tively, along with revisions to the data for years prior to 2012 
aused by new pension s
hemes

submitting data to the study. In the interests of avoiding data errors 
aused by merging multiple sour
es

of data, we have not 
ombined this new data with that provided previously by the CMI and, therefore,

it has not been in
luded in this study. However, we have investigated the impa
t the new data would

have on our �ndings if it were in
luded, and are satis�ed that it would not a�e
t our results materially.
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Figure 9.12: Exposures to risk and death 
ounts in the SAPS dataset by age
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Figure 9.13: Exposures to risk and death 
ounts in the SAPS dataset by year

9.B Identi�ability in the relative model

In Chapters 3 and 4, we dis
ussed the identi�ability issues in age/period and age/pe-

riod/
ohort mortality models, respe
tively. In parti
ular, we �nd that almost all APC

mortality models possess �invariant� transformations, i.e., transformations of the param-

eters of the model whi
h leave the �tted mortality rates un
hanged. In order to �nd a

unique set of parameters, we impose a set of identi�ability 
onstraints on them. Typi-


ally, these are 
hosen so that we 
an assign our desired interpretation of the demographi


signi�
an
e to the parameters in question. However, be
ause this interpretation is sub-

je
tive, it is important that our 
hoi
e of identi�ability 
onstraints does not have any

impa
t on any observable quantities. For instan
e, we dis
uss in Chapters 3 and 4 how

to ensure that proje
ted mortality rates are independent of the 
hoi
e of identi�ability


onstraints.
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The relative model in Equation 9.3 does not possess any additional identi�ability issues in

and of itself, on
e the parameters from the referen
e population are known. However, due

to the relative stru
ture, transformations of the parameters in the referen
e population

model will have kno
k-on e�e
ts for those in the relative model. It is important therefore

that invariant transformations of the referen
e model are also invariant for the relative

model, so that our 
hoi
e of identi�ability 
onstraints for the referen
e population does

not a�e
t the suitability of the relative model. This requirement will determine both the

nature of the set of deterministi
 fun
tions of year of birth, Xy in Equation 9.3, and the

nature of any parametri
 simpli�
ation imposed upon α
(∆)
x , i.e., if α

(∆)
x is restri
ted to

be a linear 
ombination of a set of basis fun
tions

α(∆)
x =

n
∑

i=1

α(i)g(i)(x)

then the nature of the basis fun
tions, g(i)(x), will be determined by the identi�ability

issues present in the model. We, therefore, 
onsider ea
h of the di�erent forms that the

invariant transformations of the referen
e model 
an take in turn, in order to ensure that

they will not a�e
t the relative model.

First, the sensitivities in the relative model trivially do not depend upon the normalisa-

tion s
heme of the age/period terms in the referen
e model. Normalisation s
hemes are

imposed by using a transformation of the form

{f̂ (R,i)(x), κ̂
(R,i)
t } =

{

1

a(i)
f (R,i)(x), a(i)κ

(R,I)
t

}

and so it is obvious that Λ(i)f̂ (R,i)(x)κ̂
(R,i)
t = Λ(i)f (R,i)(x)κ

(R,i)
t .

Se
ond, we know from Chapter 3 that all APC models are invariant under the transfor-

mation

{α̂(R)
x , f̂ (R,i)(x), κ

(R,i)
t , γ̂(R)

y } = {α(R)
x − a(i)f (R,i)(x), f (i)(x), κ

(R,i)
t + a(i), γ(R)

y } (9.12)

i.e., the model using the transformed parameter set gives exa
tly the same �tted mor-

tality rates. This allows us to impose the �level� of the period fun
tions, κ
(R,i)
t , via the

identi�ability 
onstraints, su
h as imposing

∑

t κ
(R,i)
t = 0 or κ

(R,i)
T = 0. However, su
h

a set of identi�ability 
onstraints is arbitrary, and so should not have any 
onsequen
es

for our relative modelling approa
h.
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A

ordingly, we require that our relative model in Equation 9.3 is also invariant if the

transformed parameters are used for the referen
e population. In order to ensure this,

we require that Equation 9.3 is invariant under the transformation

α̂(∆)
x = α(∆)

x − a(i)Λ(i)f (R,i)(x) (9.13)

This transformation 
an be a

ommodated without α
(∆)
x fundamentally 
hanging form

if

1. α
(∆)
x is non-parametri
, as in the original spe
i�
ation in Equation 9.3; or

2. if α
(∆)
x is restri
ted to be of parametri
 form, then α

(∆)
x =

∑N
i=1 α

(i)f (i)(x) +
∑n

i=N+1 α
(i)g(i)(x), i.e., the age fun
tions in the referen
e model form a subset of

the basis fun
tions, g(i)(x).

As an example, 
onsider the 
ase where our model for the referen
e population is the

�
lassi
 APC� model of Hob
raft et al. (1982)

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R)
t + Λ(γ)γ

(R)
t−x + νXt−x

The 
lassi
 APC model is invariant under the transformation

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − a, κ

(R)
t + a, γ(R)

y }

i.e., µ̂
(R)
x,t = µ

(R)
x,t . Substituting the transformed parameters into the relative model gives

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t + a) + Λ̂(γ)γ

(R)
t−x + ν̂Xt−x

In order to ensure R̂x,t = Rx,t, we must have Λ̂
(1) = Λ(1)

, ν̂ = ν and α̂
(∆)
x = α

(∆)
x −aΛ(1)

.

The requirement that α̂
(∆)
x is of the same form as α

(∆)
x implies that any parametri


simpli�
ation for α
(∆)
x must be of the form α

(∆)
x = α(1) +

∑n
j=2 α

(i)g(i)(x), i.e., it has a


onstant basis fun
tion, g(1)(x) = 1, in order that the relative model does not 
hange if

the levels of the period fun
tions are transformed.

Third, the values of Λ(i)
depend upon the pre
ise de�nition of the age fun
tions in the

referen
e model. �Equivalent� models for the referen
e population, whi
h use di�erent

de�nitions for the age fun
tions but give identi
al �tted mortality rates, will give di�erent
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values of Λ(i)
. To see this, 
onsider a referen
e model of the form

20

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R,1)
t + (x− x̄)κ

(R,2)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R,1)
t + Λ(2)(x− x̄)κ

(R,2)
t +Λ(γ)γ

(R)
t−x + νXt−x

The model for the referen
e population is equivalent to a model of the form

ln
(

µ
(R)
x,t

)

= α(R)
x + κ̂

(R,1)
t + xκ̂

(R,2)
t + γ

(R)
t−x

with κ̂
(R,1)
t = κ

(R,1)
t − x̄κ

(R,2)
t and κ̂

(R,2)
t = κ

(R,2)
t . The 
orresponding relative model in

this 
ase is

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R,1)
t + Λ̂(2)xκ̂

(R,2)
t + Λ(γ)γ

(R)
t−x + ν̂Xt−x

However, in this situation, we would �nd that Λ̂(2)x = Λ(2)(x− x̄)+Λ(1)x̄ in order to give

the same �tted mortality rates for both referen
e models. If so, the relationship between

the two would be a fun
tion of age, x, whi
h 
ontradi
ts the assumption that the s
aling

fa
tors are 
onstants independent of age. Consequently, we �nd that the values of the

s
aling fa
tors and the �t provided by the relative model will depend on the spe
i�
s of

the age fun
tions in the referen
e model and will di�er between equivalent models.

Finally, identi�ability under transformations of the 
ohort parameters is not as straight-

forward. From Chapter 4, we found that APC models may have unidenti�able trends

whi
h are allo
ated between the age/period and 
ohort terms by the identi�ability 
on-

straints. Invarian
e of the mortality rates in the relative model to a di�erent allo
ation

of these trends in the referen
e model depends upon the deterministi
 regressors, Xy, we

added to the relative model in Equation 9.3, and the form of any parametri
 simpli�
a-

tion of α
(∆)
x . This is illustrated by the following example.

Consider the example of the 
lassi
 APC model for the referen
e population again. In

addition to the transformation above, the 
lassi
 APC model is also invariant under the

following two transformations involving the 
ohort parameters

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − b, κ

(R)
t , γ(R)

y + b}
{α̂(R)

x , κ̂
(R)
t , γ̂(R)

y } = {α(R)
x + c(x− x̄), κ

(R)
t − c(t− t̄), γ(R)

y + c(y − ȳ)}
20

We 
all this model the �redu
ed Plat� model, sin
e it was suggested in Plat (2009a) as being a

redu
ed form of the model tested in that paper that might be more suitable for high ages. This model


an also be thought of as an extension to model M6 in Cairns et al. (2009), with a stati
 age fun
tion,

or as an extension to the �CBDX� model dis
ussed in Chapter 3 with a 
ohort term.
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where a bar denotes the arithmeti
 mean of the variable over the relevant data range.

21

Invarian
e of the relative model under the �rst of these transformations requires Λ̂(γ) =

Λ(γ)
and α̂

(∆)
x = α

(∆)
x − bΛ(γ)

, and therefore that any parametri
 restri
tion pla
ed upon

α
(∆)
x must have a 
onstant basis fun
tion, g(1)(x) = 1, as dis
ussed above in respe
t of

the level of κ
(R)
t .

However, substituting the transformed parameters from the se
ond transformation in

Equation 9.3, we �nd

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t − c(t− t̄)) + Λ̂(γ)(γ

(R)
t−x + c((t− t̄)− (x− x̄))) + ν̂Xt−x

In order to have R̂x,t = Rx,t, we require

• Λ̂(j) = Λ(j)
, i.e., that our sensitivities do not 
hange from one set of identi�ability


onditions to any other;

• ν̂Xy = νXy − c(λ(γ) − λ(1))(y − ȳ), i.e., we 
an add terms linear in year of birth

to the deterministi
 term without it fundamentally 
hanging form, and therefore

that our deterministi
 regressors 
ontain a linear trend in year of birth; and

• α̂
(∆)
x = α

(∆)
x − cλ(1)(x − x̄), i.e., we 
an add linear fun
tions to any parametri


form for α
(∆)
x without it fundamentally 
hanging form, and therefore that it must

be either non-parametri
 or have a linear fun
tion of age, g(2)(x) = x− x̄, amongst

the basis fun
tions used in any parametri
 restri
tion.

In addition to the identi�ability issues dis
ussed here, it is also important that any para-

metri
 simpli�
ation for α
(∆)
x 
onsists of more than one, 
onstant term. As dis
ussed in

Tuljapurkar and Edwards (2009), multiple terms in α
(∆)
x allow higher moments of the

observable distribution of deaths in the sub-population (su
h as the varian
e of age at

death) to be 
aptured by the relative model, as well as the di�eren
e in life expe
tan
y

between the two populations. These higher moments are important in the allowan
e for

idiosyn
rati
 risk in the sub-population, whi
h is likely to be important in many 
ir
um-

stan
es, su
h as those dis
ussed in Chapter 10 .

We also see from the analysis above that the form of our deterministi
 regressors, Xy, will

depend upon the mortality model being used for the referen
e population. From Chap-

ter 4, if the model for the referen
e population 
ontains age fun
tions whi
h span the

21

e.g., x̄ = 1
X

∑

x x = 0.5(X + 1) and similarly for t̄ and ȳ.
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polynomials to order p, then there will be unidenti�ed polynomial trends in the 
ohort

parameters of order p + 1. We must therefore ensure that the deterministi
 regressors

in Equation 9.3 span the polynomials to order p + 1 and that any parametri
 simpli�-


ation for the age fun
tion, α
(∆)
x , also 
ontains a basis fun
tion of the form g(i)(x) = xp+1

.

For the 
lassi
 APC model and the models 
onstru
ted by the general pro
edure in

Se
tion 9.4.1 and Appendix 9.C, p = 0 and therefore we require that the deterministi


regressors and age fun
tion are, at least, of linear order. Similarly, for the redu
ed Plat

model, p = 1, and therefore we would require that the deterministi
 regressors are at

least of quadrati
 order.

In summary, the identi�ability issues present in APC mortality models and dis
ussed

in Chapters 3 and 4 have important 
onsequen
es for the relative mortality modelling

approa
h used in this study. Most importantly, we require an additional νXy term in

the model and must be 
areful when spe
ifying any parametri
 simpli�
ation for α
(∆)
x , in

order to ensure that our results do not depend on the arbitrary identi�ability 
onstraints

we impose on the referen
e model. In the 
ontext of the referen
e model used in this

study, des
ribed in Se
tion 9.4.1, this means that we need the term

νXy = ν1(y − ȳ)

in Equation 9.3, and any parametri
 simpli�
ation of α
(∆)
x must be of the form

α(∆)
x =

(

α(1), α(2), α(3), α(4)
)















f (1)(x)

f (2)(x)

f (3)(x)

(x− x̄)















=
N+1
∑

i=1

α(i)f̃ (i)(x)

where f (i)(x) are the parametri
 age fun
tions in the referen
e model, des
ribed in Table

9.1.
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9.C Models 
onstru
ted by the �general pro
edure� for the

UK

In Chapter 5, a �general pro
edure� for 
onstru
ting mortality models tailored to the

spe
i�
 features of individual datasets was proposed. In outline, this

• starts from a simple stati
 mortality model with a non-parametri
 stati
 age fun
-

tion;

• sequentially adds age/period terms to the model to dete
t and 
apture the age/pe-

riod stru
ture in the data:

� stru
ture is dete
ted by adding a non-parametri
 age/period term whi
h will

identify the feature explaining the largest proportion of the remaining stru
-

ture in the data;

� then this term is simpli�ed into a parametri
 form whi
h identi�es the same

feature more parsimoniously and with greater demographi
 signi�
an
e;

� then the statisti
al signi�
an
e and robustness of the term is tested;

• �nally adds a 
ohort term on
e all age/period stru
ture has been 
aptured by the

model;

• tests the standardised devian
e residuals of the model for any remaining stru
ture,

independen
e, and normality.

This pro
edure was applied to data from the Human Mortality Database (2014) for men

and women in the UK for ages 50 to 100 and years 1950 to 2011 in order to 
onstru
t

mortality models 
apable of 
apturing all the relevant information in the data and there-

fore allowing it to be proje
ted appropriately.

A brief des
ription of the terms in the models and their demographi
 signi�
an
e is given

in Table 9.1. A fuller list of the parametri
 age fun
tions in the �toolkit� developed as

part of the general pro
edure is given in the Appendix of Chapter 5.

As dis
ussed in Se
tion 9.4, we also require additional identi�ability 
onstraints in order

to obtain a unique set of parameters when �tting the model to data. These are given

in Se
tion 9.4 and have been 
hosen to aid 
omparability between the models for the

referen
e population and the relative model in Equation 9.3.
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Figure 9.14: Correlations for sequential years and ages of the residuals from �tting

the model developed by the general pro
edure to data for the UK

50 60 70 80 90 100
1950

1960

1970

1980

1990

2000

2010

 

Age

 

Y
ea

r

Min

−3 StDev

−2 StDev

− StDev

−0.5 StDev

Med

0.5 StDev

StDev

2 StDev

3 StDev

Max

(a) UK men

50 60 70 80 90 100
1950

1960

1970

1980

1990

2000

2010

 

Age

 

Y
ea

r

Min

−3 StDev

−2 StDev

− StDev

−0.5 StDev

Med

0.5 StDev

StDev

2 StDev

3 StDev

Max

(b) UK women

Figure 9.15: Heat maps of the residuals from �tting the model developed by the

general pro
edure to data for the UK

When �tting the �nal models, we obtain the parameters shown in Figures 9.1 and 9.2.

These models have BICs of −1.95×104 and −1.99×104 for men and women, respe
tively,

with 345 and 346 free parameters.

22

We also test the standardised devian
e residuals

from �tting the model as part of the general pro
edure. The moments of the residuals

and a Jarque-Bera test of their normality is given in Table 9.6. We 
an see that the

residuals are 
lose to normal, although they are slightly leptokurti
 for both datasets

and therefore fail the relevant Jarque-Bera tests for normality at the 5% level (p-values

of 2.8% for men and 0.2% for women). We also see from Figures 9.14a and 9.14b that

there appears to be relatively little 
orrelation stru
ture over 
onse
utive ages, although

the residuals show signi�
ant auto
orrelations during the early part of the data range,

whi
h diminishes towards the end of the period of the data.

22

For 
omparison, the Lee and Carter (1992) model �tted to the same data obtains BICs of −2.71×104

and −2.69 × 104 with 161 free parameters for both populations.
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Residual Standard Residual Residual Jarque-Bera

mean deviation skewness kurtosis statisti


Men -0.01 0.94 -0.01 3.19 4.76

Women -0.01 0.94 -0.01 3.32 13.97

Table 9.6: Moments of the residuals from �tting the model developed by the general

pro
edure to data for the UK for men and women in the UK

The heat maps for the residuals shown in Figure 9.15 indi
ate that the residuals for both

sexes in the UK have very little remaining stru
ture in them. There is possibly some

remaining stru
ture around age 80 for both men and women, although this appears to be

spe
i�
 to only a few neighbouring years and therefore it is di�
ult to add an age/period

term to 
apture this without over�tting the models
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Chapter 10

Transferring Risk in Pension

S
hemes via Bespoke Longevity

Swaps

10.1 Introdu
tion

The pensions de-risking industry has grown enormously in re
ent years, espe
ially in

the UK whi
h has pioneered many of the de-risking te
hniques whi
h have sin
e be
ome

international. The sponsors and trustees of pension s
hemes

1

in the UK have in
reas-

ingly looked to both redu
e or transfer the risks in providing de�ned bene�t pensions to

s
heme members. This has in
luded reviewing s
hemes' investment strategies to mat
h

the timing and nature of the proje
ted 
ash�ows (
alled �liability-driven investment� or

LDI) and limiting the a

rual of bene�ts to new and existing members of the s
heme.

Indeed, the majority of private se
tor pension s
hemes in the UK are now 
losed to the

future a

rual of bene�ts, meaning that they are now solely responsible for managing

the run-o� of the lega
y bene�ts for members. In more re
ent years, the fo
us of this

de-risking has been to transfer the �nan
ial and demographi
 risks of the s
heme to third

parties, either by a �buy-out� or a �buy-in�.

Longevity swaps were developed to hedge and transfer mortality and longevity risks

dire
tly, without referen
e to the other investment and �nan
ial risks present in the

s
heme. The market for bespoke longevity swaps - those de�ned with referen
e to the

1

In this 
hapter, we refer to �pension s
hemes� whi
h administer the provision of retirement bene�ts

de�ned in terms of salary and servi
e to members. We would draw a semanti
 distin
tion between a

�pension s
heme� and a �pension plan�, whi
h we would use as a more general term for any de�ned

bene�t or de�ned 
ontribution pension arrangement provided on either a group or an individual basis.
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spe
i�
 
hara
teristi
s of the pension s
heme membership - has grown exponentially to

over ¿50bn in the UK, whi
h 
urrently leads the world in this area.

2

In this 
hapter, we present a modelling framework suitable for assessing the various mor-

tality and longevity risks within a stylised pension s
heme and the e�e
tiveness of a

bespoke longevity swap in redu
ing the risks fa
ed by the s
heme. In parti
ular, we fo-


us on the possible intera
tions between the di�erent risk fa
tors that in�uen
e mortality

rates, whi
h are often overlooked in existing studies. Sin
e this is the �rst study to look

at these issues in detail, some of the allowan
es we make for these risk fa
tors are approx-

imate in nature, and are based on our professional experien
e of pensions 
onsultan
y

in the UK, advising on buy-ins, buy-outs and longevity swaps, rather than established

sto
hasti
 models. However, we are 
on�dent that the impa
t of these allowan
es is

broadly reasonable and 
onsistent with our pra
ti
al experien
e, but are aware that fur-

ther resear
h is required.

In order to a
hieve a 
omprehensive analysis of these risks, we distinguish between

�longevity risk�, referring to systemati
 mortality-related risks in the pension s
heme

(i.e., those relating to nation-wide and s
heme-wide populations), and �mortality risk�,

is referring to those mortality-related risks whi
h are spe
i�
 to the individual members

of the s
heme. We do this by �rst investigating the systemati
 longevity risk in the na-

tional population, before assessing the s
heme-spe
i�
 longevity basis risks present and,

�nally, making appropriate allowan
e for individual 
hara
teristi
s and the idiosyn
rati


mortality risk. We apply this analysis to stylised pension s
heme data, whi
h has been

generated to in
orporate many of the features observed in real pension s
hemes.

The 
hapter is stru
tured as follows. First, in Se
tion 10.2, we review the markets for

pension s
heme de-risking in the UK, and, in parti
ular, the market for bespoke longevity

swaps. In Se
tion 10.3, we dis
uss the data for the stylised pension s
heme used in

this study. Se
tion 10.4 
onsiders the modelling approa
h used to quantify the various

mortality and longevity risks present in this illustrative s
heme. In Se
tion 10.5, we


ompare the future 
ash�ows 
al
ulated using the assumptions for mortality rates whi
h

are often made in pra
ti
e in the UK with those whi
h would be proje
ted as a �best

estimate� from the sto
hasti
 mortality models we use to assess mortality and longevity

risks and provide a bridge between the two. Then, in Se
tion 10.6, we measure the


ontribution of the di�erent sto
hasti
 mortality and longevity risks for the s
heme, with

a parti
ular emphasis on the 
ost e�e
tiveness of a bespoke longevity swap in managing

2

For instan
e, see Hymans Robertson (2015).
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these risks. Finally, in Se
tion 10.7 we dis
uss our �ndings and their impli
ations for the

further development of the longevity swap market both in the UK and internationally.

10.2 Longevity swaps

Over the past de
ade, as the per
eived importan
e of longevity risk has grown, a number

of new tools have emerged to allow pension s
hemes to manage this risk.

3

Originally, a

pension s
heme wishing to transfer longevity risk to an insurer would have to do so via a

�buy-out�. This would involve pur
hasing either immediate or deferred annuities in the

name of ea
h s
heme member mat
hing the members' a

rued bene�ts within the s
heme.

Thus, the s
heme would fully transfer all of the assets and liabilities of the s
heme to the

insurer and dis
harge its obligation 
ompletely. Typi
ally, this was very expensive, in

part due to limited 
ompetition in the market for buy-outs, whi
h meant it was usually

only done when the s
heme was wound up following the insolven
y of the sponsoring

employer. However, the emergen
e of new life insurers spe
ialising in buy-outs in the

mid-2000s brought the 
ost down to some extent and, so, made buy-outs feasible during


orporate transa
tions to extinguish the ongoing obligation of the a
quiring 
ompany to

the pension s
heme.

One major innovation in the pensions risk-management market was the development of

pension �buy-ins� as an alternative to the full risk transfer of a buy-out. A buy-in in-

volves the s
heme pur
hasing an insuran
e 
ontra
t whi
h is tailored to exa
tly repli
ate

the bene�ts payable to a subset of the s
heme members (usually pensioners). Unlike a

buy-out, the insuran
e 
ontra
t is an asset of the s
heme rather than of the individual

s
heme members. Payments from the buy-in 
ontra
t are not earmarked for the spe-


i�
 members 
overed by the 
ontra
t and, in the event of insolven
y of the insuran
e


ompany, the s
heme retains the obligation to provide bene�ts to the 
overed members.

Therefore, a buy-in represents an investment de
ision to pur
hase a (perfe
t) hedging

instrument for the future bene�t payments rather than a full transfer of the risk to an-

other party.

Unlike a buy-out, the s
heme 
an pur
hase a buy-in for a subset of s
heme members with-

out adversely a�e
ting those not 
overed by the 
ontra
t (sin
e the preferential treatment

of one se
tion of s
heme members is not permitted in the UK). This enables buy-ins in

respe
t of only the pensioner members of the s
heme, rather than deferred members,

3

See Blake et al. (2013) for a more detailed survey of developments in the �new life market�.
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whi
h substantially redu
es the 
ost of a buy-in arrangement.

4

Furthermore, in a buy-

in, the s
heme remains liable for members' bene�ts in the event of insolven
y of the life

insurer. In pra
ti
e, however, most life insurers are 
onsiderably more 
reditworthy than

the sponsoring employers of the s
heme pur
hasing a buy-in and poli
yholders re
eive

a high level of 
ompensation under the Finan
ial Servi
es Compensation S
heme in the

unlikely event of insurer insolven
y, and so 
redit risk is 
onsidered negligible in the UK.

Sin
e a buy-in 
ontra
t mat
hes the bene�t stru
ture of the 
overed members exa
tly,

it mitigates the investment and in�ation risk as well as the demographi
 risks, su
h

as longevity risk, in respe
t of these members. However, the s
heme retains �nan
ial

and demographi
 risks for non-pensioner members, whi
h may be desirable if it feels it


an pro�t from the upside of these risks or they are too expensive to transfer immediately.

In 
ontrast, a �longevity swap� represents a pure transfer of longevity risk, with no mit-

igation of investment or in�ation risks.

5

As a 
onsequen
e, longevity swaps are usually

less expensive than buy-ins or buy-outs, and allow the s
heme to bene�t from any upside

of the remaining risks present in the s
heme. In the same manner as a buy-in, pur
hasing

a longevity swap is an investment de
ision for the s
heme and so is usually obtained for

only a subset (typi
ally, the retired members) of the s
heme. However, the limited insur-

an
e provided by a longevity swap may still be attra
tive for pension s
heme trustees,

sin
e they often 
ite un
ertainty in the long-term evolution of mortality rates as a major


on
ern for the s
heme.

As with all swap arrangements, the parties to a longevity swap agree to ex
hange the

di�eren
e between a �xed and �oating series of 
ash�ows. In a longevity swap, the

payments 
omprising the �xed leg of the swap are usually 
al
ulated with referen
e to

the best estimate of the proje
ted bene�t payments from the s
heme in respe
t of the

relevant members.

6

These are typi
ally assessed using an agreed, deterministi
 set of

assumptions for individual mortality rates, as well as other assumptions regarding the

rate of pension in
reases, et
. These best estimate 
ash�ows are then in
reased by a

4

The future 
ash�ows for deferred pensioners are more un
ertain, sin
e they are of longer term and

be
ause deferred members retain options regarding their post-retirement bene�ts. Therefore, deferred

bene�ts are more expensive to insure.

5

Longevity swaps are also 
alled �longevity reinsuran
e� if they are stru
tured as an insuran
e 
on-

tra
t.

6

Te
hni
ally, longevity swaps should therefore be 
alled �survivor swaps�, as in Dowd et al. (2006a),

sin
e what is being swapped is the survivorship of an agreed 
ohort. In prin
iple, swaps 
ould be


onstru
ted using other measures of mortality or longevity, su
h as probabilities of death (�q-swaps�

in the same fashion as q-forwards in Coughlan et al. (2007b)) or period life expe
tan
y. In pra
ti
e,

however, the term �longevity swap� has 
ome to refer uniquely to swaps on survivorship and this usage

is adopted in this study.

372



Transferring Risk in Pension S
hemes via Bespoke Longevity Swaps

Figure 10.1: Illustrative 
ash�ows from a longevity swap (Sour
e: adapted from

Kessler (2014))

�longevity swap premium�. This premium is set to re�e
t the degree of risk aversion of

both parties, and, ane
dotally, swap premiums of between 3% and 5% are not atypi
al.

The �oating leg of the swap is set to be equal to the a
tual bene�ts paid by the s
heme.

Su
h an approa
h is said to be �bespoke�, i.e., tailored to the spe
i�
 
hara
teristi
s of

the pension s
heme.

Figure 10.1, adapted from Kessler (2014), shows an illustrative longevity swap.

7

However,

it is important to realise that, in pra
ti
e, the design of a longevity swap will also need

to allow for:

• survivor bene�ts for potential spouses and dependants of s
heme members;

• the di�erent tran
hes of pension a

rued by members (espe
ially in the UK, where

di�erent portions of the bene�t are subje
t to di�erent rules for in�ationary in-


reases in payment);

• a method for adjusting the �xed leg 
ash�ows to re�e
t the di�eren
e between

a
tual pension in
reases granted and those assumed at the in
eption of the swap;

8

and

7

In Figure 10.1, �fees� refers to the longevity swap premium.

8

At in
eption, the �xed leg of the swap will be spe
i�ed on the basis of a set of assumptions for

future in
reases in pensions in payment. Therefore, the �xed leg will need to be revised subsequently to

re�e
t the di�eren
es between this assumption and the a
tual in
reases granted by the s
heme, in order

to ensure that in�ation risk is not also transferred in the swap.
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• a 
ollateralisation me
hanism to redu
e the risk of default for either party (see

Bi�s et al. (2014));

along with various other pra
ti
al issues. Therefore, longevity swap deals are usually

pre
eded by a lengthy pro
ess of negotiation and data 
leansing, allowing these pra
ti
al

issues to be resolved before the 
ontra
t is signed.

Longevity swaps were �rst developed to transfer risk between life insurers and the 
apital

markets, with the �rst swap between Friends Provident and Swiss Re in the UK in 2007.

Sin
e then, the market has evolved to be
ome dominated by the transfer of risk from

pension s
hemes to life insuran
e 
ompanies and reinsurers, the �rst being the Bab
o
k-

/Credit Suisse transa
tion in 2009.

In 
ontrast to the bespoke swaps dis
ussed above, mu
h of the a
ademi
 literature has


entred around so 
alled �standardised� or �index-based� longevity swaps. These have

the �xed and �oating legs of the swap agreement de�ned with referen
e to an agreed

standard 
ohort, usually based on the national population. In an index-based swap, the

�oating leg 
an be seen as being equivalent to the 
ash�ows from a 
lassi
 survivor bond

(Blake and Burrows (2001)), su
h as the proposed EIB/BNP Paribas longevity bond in

2004 whi
h has been dis
ussed in previous studies (e.g., Cairns et al. (2006a), Blake et al.

(2006) and Lin and Cox (2008)). See Dowd et al. (2006a) and Dawson et al. (2010) for

a fuller theoreti
al dis
ussion of index-based swap agreements.

However, the index-based approa
h has not been popular with pension s
hemes to date.

The bespoke approa
h has the advantage that it avoids �basis risk�, whi
h arises be
ause

systemati
 di�eren
es between the mortality experien
e of the s
heme and of the refer-

en
e 
ohort 
an lead to in
omplete risk transfer. Although some studies indi
ate that

basis risk may not be a signi�
ant problem (e.g., Coughlan et al. (2011) and Cairns et al.

(2013)), there is still a widespread per
eption that basis risk is an important sour
e of

risk in any index-based transa
tion. Be
ause most pension s
heme trustees are highly

risk averse, they prefer a more 
omplete risk transfer solution and favour bespoke ar-

rangements.

To date, longevity swaps are mainly targeted at larger pension s
hemes. Smaller s
hemes

�nd it more 
ost e�e
tive to 
ondu
t a full buy-out, whi
h transfers all the risks asso-


iated with running the s
heme to a life insuran
e 
ompany, or a buy-in whi
h redu
es

risk partially. Large s
hemes, however, may �nd it di�
ult to undergo a full risk transfer
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due to 
apa
ity 
onstraints within the life insuran
e se
tor. Larger s
hemes also have

the ability to take risks, su
h as investment risk, whi
h they may be rewarded for, and

so wish to manage internally.

As 
ounterparties, the majority of the longevity swaps to date have involved either spe-


ialised life insuran
e 
ompanies, the insuran
e subsidiaries of investment banks (who

reinsure most of the transferred longevity risk) or dire
tly with reinsurers. Only a rela-

tively small amount of the longevity risk transferred to date has been transferred to the


apital markets. It 
ould be argued that longevity risk has be
ome more 
on
entrated

and less well diversi�ed in the e
onomy, sin
e it has moved from the balan
e sheets of

dozens of 
ompanies and onto the balan
e sheets of a small number of life insurers and

reinsurers. This 
on
entration of risk may, therefore, have in
reased the risk to ma
ro-

e
onomi
 stability. However, the 
ounter argument to this is that the longevity risk in

an o

upational pension s
heme is held by the 
orporate sponsor of the s
heme, whi
h

may not fully understand the nature of the risk. Transferring longevity risk, in 
ontrast,

means that it has moved to the strongly regulated and highly 
apitalised balan
e sheets

of insuran
e 
ompanies whi
h have 
onsiderable expertise in managing su
h risks, and

so redu
es the threat to ma
ro-e
onomi
 stability. At the 
urrent, early stage of devel-

opment in the market for longevity risk, it is un
lear whi
h of these two 
onsiderations

is most important.

10.3 The stylised pension s
heme

There have been a number of a
ademi
 studies of longevity risk in pension s
hemes, for

instan
e, Cossette et al. (2007) and Ri
hards et al. (2013). However, these have analysed

far larger s
hemes than are typi
al in the UK. The te
hniques and solutions whi
h are

appropriate for su
h s
hemes are therefore not dire
tly appli
able to the situation in

whi
h most UK pension s
hemes �nd themselves.

This study 
onsiders longevity risk management for a pension s
heme more typi
al of

those found in the UK. Membership data for pension s
hemes is not publi
ly available

and so, for the purposes of this study, we have generated representative member data for

a stylised pension s
heme. The pro
edure for doing this has been 
hosen to reprodu
e

many of the key features of real pension s
heme data that are likely to have a signi�-


ant impa
t upon longevity risk, as dis
ussed in Appendix 10.A. The advantages of this

approa
h are that we 
an simplify 
ertain aspe
ts of the 
ompli
ated bene�t stru
tures
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Figure 10.2: S
heme membership by age
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Figure 10.3: S
heme membership by individual pension amount

seen in most UK s
hemes when these are unlikely to be relevant for the management

of longevity risk, and we 
an also avoid problems with data errors and anomalies. The

generation of stylised data also over
omes data prote
tion issues, whi
h limit the ability

to share and analyse genuine member data.

In this study, we generate a stylised pension s
heme with 2,000 members. Figures 10.2

and 10.3 give a summary of the numbers and total pension in payment of men and women

in di�erent age and salary bands. In our experien
e, the patterns shown are typi
al of

UK s
hemes, with relatively high inequality in the amount of pension in payment 
aused

by the �nal salary stru
ture.

9

The stylised s
heme assumes:

9

One rule of thumb used in pra
ti
e, whi
h we have adopted, is that 10% or the members re
eive

50% of the pension in payment or, equivalently, that 1% of the members re
eive 25% of the pension in

payment. In this regard, UK pension s
hemes have an in
ome inequality roughly equal to that of the

wider UK e
onomy (Institute for Fis
al Studies (2014)).
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• equal numbers of men and women retiring at age 65;

• equal average pensions in payment for men and women;

• in�ationary in
reases to pensions in payment;

10

• no dependants' bene�ts to spouses and 
hildren on the death of members.

We do not believe that any of these assumptions signi�
antly a�e
t out 
on
lusions.

11

It is important to note, however, that our stylised s
heme is still large by UK standards.

With 2,000 pensioner members, it would 
omfortably be amongst the largest 20% of

UK pension s
hemes

12

even without any non-pensioner members. It is, therefore, of a

size where longevity risk management solutions, su
h as longevity swaps are feasible, as

dis
ussed in Se
tion 10.2, albeit at the lower end of the range seen to date. This makes it

of greater pra
ti
al interest for modelling 
ompared to smaller s
hemes whi
h have fewer

options to manage their longevity risks.

10.4 Modelling approa
h

In order to model the longevity and mortality risks in the stylised pension s
heme, we

start from a set of deterministi
 �baseline� assumptions for mortality, representative of

the assumptions used by pension s
hemes in the UK for funding or a

ounting purposes.

These assumptions are typi
ally based on standard tables and proje
tions of mortality

rates and often do not make any s
heme-spe
i�
 or individual-spe
i�
 assumptions about

mortality rates.

We then move from this set of baseline assumptions to our deterministi
 �best estimate�

assumptions. This set of assumptions 
onsists of a number of di�erent parts. First, we

use the �general pro
edure� of Chapter 5 to 
onstru
t models of mortality for the na-

tional UK population to a
t as a referen
e. Then, we use the �relative model� approa
h

des
ribed in Chapter 9 to model 
urrent mortality rates in the stylised s
heme, assuming

that they are 
onsistent with those observed in the Self-Administered Pension S
heme

10

To avoid needing to model in�ation, all 
ash�ows shown in this study are expressed in real terms,

and a real dis
ount rate is used to 
al
ulate present values.

11

Not allowing for dependants' pensions may understate the impa
t of longevity risk, sin
e it redu
es

the term of the liabilities. However, this is o�set by assuming equal numbers and equal bene�ts for men

and women: in reality, there are likely to be fewer women than men in a typi
al pension s
heme, who

typi
ally re
eive smaller pensions in payment. Allowing for this would redu
e the term of the liabilities

relative to what we assume and, hen
e, these fa
tors will tend to o�set ea
h other.

12

See The Pensions Regulator (2013b).
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(SAPS) data. In addition, we then make an allowan
e for individual mortality rates to

vary a

ording to the in
ome of the member. Thus, we 
an in
orporate the features of

our stylised s
heme, dis
ussed above, into the proje
ted 
ash�ows.

To model the mortality and longevity risks in our stylised pension s
heme, we need to go

beyond our deterministi
 best estimate set of assumptions and in
orporate un
ertainty

sto
hasti
ally. So that our results are internally 
onsistent, we need to ensure that the

best estimate assumptions represent the median output of fully sto
hasti
 models for

ea
h of the 
omponent mortality and longevity risks. Consequently, the sto
hasti
 mod-

els give an equal probability of positive mortality sho
ks as negative sho
ks relative to

this best estimate. This allows us to separate out our analysis in Se
tions 10.5 and 10.6

into two parts: the impa
t of 
hanging the model used to proje
t the most likely s
heme


ash�ows and the riskiness of these 
ash�ows.

13

For some of the 
omponent mortality and longevity risks, we have well-established

sto
hasti
 models to allow for the un
ertainty in proje
ted mortality rates. For instan
e,

systemati
 longevity risk 
an be allowed for by proje
ting the parameters of the referen
e

models for the national population sto
hasti
ally. However, for other assumptions, su
h

as trend basis risk or the in
ome-related s
aling fa
tors applied to spe
i�
 individuals, no

widely-used model exists. To assess the potential impa
t of un
ertainty in these assump-

tions, we make more approximate allowan
es, in line with our own pra
ti
al experien
e

of buy-out, buy-in and longevity swap transa
tions. Whilst the spe
i�
 details of these

allowan
es may appear ad ho
, we have taken steps to ensure that their impa
t on the

proje
ted 
ash�ows is broadly reasonable. However, we believe that further resear
h into

these subje
ts is ne
essary.

10.4.1 The baseline set of assumptions

As a set of baseline assumptions we use:

• Male and female mortality rates in 2008 given by the S2PMA and S2PFA mor-

tality tables, graduated in Continuous Mortality Investigation (2014a) from data

weighted on an �amounts� basis (see Se
tion 10.4.2.3) from the SAPS study. These

tables are typi
al of those used by pension s
hemes in the UK for a

ounting and

13

We feel that this distin
tion is often overlooked, as �longevity risk� is sometimes used to des
ribe

the impa
t of moving from inappropriate deterministi
 assumptions to more realisti
 ones (e.g., Antolin

(2007) and Oppers et al. (2012)), as opposed to the un
ertainty in the realisti
 assumptions.
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funding purposes (The Pensions Regulator (2013a) and Sithole et al. (2012)), but

do not allow for s
heme-spe
i�
 or individual-spe
i�
 mortality e�e
ts.

• Improvements in mortality rates are given by the CMI Proje
tion Model

14

with

a long-term rate of improvement of 1.5%. This model is widely used in the UK

and has be
ome the ben
hmark method of proje
ting mortality for funding and

a

ounting purposes (for instan
e, see The Pensions Regulator (2013b)) and the

long-term rate of improvement is broadly 
onsistent with the assumption used for

funding and risk assessment purposes.

10.4.2 Modelling mortality and longevity risks

We 
lassify the 
omponent mortality and longevity risks present in the stylised pen-

sion s
heme into three broad 
ategories, with separate (but inter-related) modelling ap-

proa
hes for ea
h.

1. First, in Se
tion 10.4.2.1, we 
onsider mortality rates in the national population

in order to model the systemati
 
omponents of longevity risk. In order to do so,

we use �referen
e models� 
onstru
ted using the �general pro
edure� des
ribed in

Chapter 5.

2. Se
ond, in Se
tion 10.4.2.2, we investigate the s
heme-spe
i�
 longevity basis risks

present, in order to 
onsider the ways in whi
h mortality rates may be di�erent

in the pension s
heme 
ompared to the national population. We do this via a

�relative� modelling approa
h, as dis
ussed in Chapter 9.

3. Finally, in Se
tion 10.4.2.3 we allow for individual-spe
i�
 mortality risks, su
h

as in
ome-related s
aling fa
tors adjusting the mortality rates for an individual

s
heme member and the idiosyn
rati
 mortality risk in the timings of individual

deaths.

Ea
h of these 
omponents 
an modelled sto
hasti
ally to assess the magnitude of the

mortality and longevity risks present in the s
heme, or deterministi
ally to obtain the

best estimate set of assumptions des
ribed above.

10.4.2.1 The referen
e models for the national population

To model mortality rates in the UK national population, we use data from Human Mor-

tality Database (2014) and �referen
e models� 
onstru
ted using the �general pro
edure�

14

Des
ribed in Continuous Mortality Investigation (2009a,b) and updated in Continuous Mortality

Investigation (2013).
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of Chapter 5 for ea
h sex. These models are of the form

ln
(

µ
(R)
x,t

)

= α(R)
x +

N
∑

i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x (10.1)

where

• R ∈ {UKm,UKf}, i.e., we �t separate models for male and female mortality data.

• age, x, is in the range [50, 100], period, t, is in the range [1950, 2011] and, therefore,

that year of birth, y, is in the range [1850, 2010];

• α
(R)
x is a stati
 fun
tion of age;

• κ
(R,i)
t are period fun
tions governing the evolution of mortality with time;

• f (R,i)(x; θ(R,i)) are parametri
 age fun
tions (in the sense of having a spe
i�
 fun
-

tional form sele
ted a priori) modulating the impa
t of the period fun
tion dynam-

i
s over the age range, potentially with free parameters θ(R,i)
;

15

and

• γ
(R)
y is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon a 
ohort's

year of birth and follow that 
ohort through life as it ages.

The general pro
edure sele
ts the number of age/period terms, N , and the form of the

age fun
tions, f (R,i)(x), in order to 
onstru
t mortality models whi
h give a 
lose but

parsimonious �t to the data. This way, we aim to extra
t as mu
h information as pos-

sible from the national population dataset and have spe
i�
 terms within the model


orresponding to the di�erent features of interest. This pro
edure was performed on

male and female mortality data from the UK for ages 50 to 100 in Chapter 9, where a

full des
ription of the �nal models and the tests performed on them 
an be found. In

that study, the general pro
edure sele
ted models with three age/period terms for both

men and women of the forms given in Table 10.1.

16

Systemati
 longevity risk

15

For simpli
ity, the dependen
e of the age fun
tions on θ(R,i)
is supressed in notation used in this

study, although it has been allowed for when �tting the model to data.

16

Demographi
 signi�
an
e, as used in Table 10.1, is de�ned in Chapter 2 as the interpretation of

the 
omponents of a model in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of


hanges in mortality rates whi
h generate them.
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Term Men Women

Des
ription Demographi
 Sig-

ni�
an
e

Des
ription Demographi
 Sig-

ni�
an
e

f (R,1)(x)κ
(R,1)
t Constant

age fun
-

tion

General level of

mortality

Constant

age fun
-

tion

General level of

mortality

f (R,2)(x)κ
(R,2)
t �Call� age

fun
tion

Older age mortal-

ity

�Call� age

fun
tion

Old age mortality

f (R,3)(x)κ
(R,3)
t �Put� age

fun
tion

Younger age mor-

tality

Gaussian

age fun
-

tion

Younger age mor-

tality

Table 10.1: Terms in the referen
e models 
onstru
ted using the general pro
edure

for UK men and women ages 50 to 100

To proje
t mortality rates in the national population, we use a random walk with drift

for the di�erent period fun
tions

κt =
(

κ
(UKm,1)
t , . . . κ

(UKm,3)
t , κ

(UKf,1)
t , . . . κ

(UKf,3)
t

)⊤

κt = κt−1 + µ+ ǫt (10.2)

and an AR(1) around linear drift pro
ess for the 
ohort parameters

γy =
(

γ
(UKm)
y , γ

(UKf)
y

)⊤

γy − β0 − β1y = R(γy−1 − β0 − β1(y − 1)) + εy (10.3)

By using multivariate time series of this form, we allow for any 
orrelation in mortality

improvements between men and women in the UK whi
h is observed in the histori
al

data. These time series pro
esses have been 
hosen to be �well-identi�ed� in the sense of

Chapters 3 and 4, i.e., the proje
ted mortality rates are independent of the identi�ability


onstraints imposed upon the model.

To give deterministi
 best estimate assumptions, we set ǫt and εy to be equal to zero

in future. We refer to the variation generated by allowing ǫt and εy to be (normally-

distributed) random variables we refer to as �systemati
 longevity risk�, be
ause it a�e
ts

all members of the UK national population and so 
annot be redu
ed by pooling or di-

versi�
ation.

Parameter un
ertainty
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In addition to systemati
 longevity risk, we also investigate the impa
t of parameter

un
ertainty in the referen
e population. This is the un
ertainty due to the fa
t that

the parameters in the referen
e model and the time series pro
esses are not known with


ertainty, but are estimates based on �nite data. We do not anti
ipate parameter un-


ertainty in the referen
e population to be parti
ularly large, sin
e there is a lot of data

available for the national UK population. However, it is important to allow for parameter

un
ertainty to avoid hierar
hi
al issues in the relative model (as dis
ussed in Chapter 9),

whi
h are due to the parameters in the relative model being estimated 
onditional on

the previously estimated parameters of the referen
e population. To allow for parameter

un
ertainty, we use the residual bootstrapping pro
edure of Koissi et al. (2006) to gen-

erate multiple realisations of the parameters in the referen
e model, whi
h are then used

to re-estimate the parameters of the time series pro
ess in Equations 10.2 and 10.3.

10.4.2.2 The relative models for the s
heme

The next stage of the modelling pro
ess is to investigate the s
heme-spe
i�
 fa
tors whi
h


an in�uen
e mortality rates. We 
all this the �basis� for the s
heme. We de
ompose

this basis into two parts:

1. the di�eren
es in the 
urrent level of mortality rates between the national popula-

tion and the s
heme, whi
h we 
all the �level basis�; and

2. the di�eren
es in the rates of 
hange in mortality rates between the national pop-

ulation and the s
heme, whi
h we 
all the �trend basis�.

The un
ertainty in the measurement of these two parts we refer to as the �level basis

risk� and �trend basis risk�, respe
tively.

Before we begin to model the basis for the stylised pension s
heme, we must �rst simulate

exposures to risk and death 
ounts for the s
heme, whi
h we 
an then �t a model to. We

assume that the stylised s
heme is typi
al of the SAPS population and, therefore, use

data from the SAPS study in order to estimate the parameters in the relative model.

17

However, sin
e the SAPS dataset is far larger than any o

upational UK pension s
heme,

we need to res
ale this data to make it 
omparable with the size of the stylised s
heme.

To do this, we assume that the s
heme membership has remained 
onstant at ea
h age

for a period of twelve years prior to 2011 (i.e., the period of the SAPS data) to give

17

We are indebted to the Continuous Mortality Investigation for providing this data. For further

details see Chapter 9.

382



Transferring Risk in Pension S
hemes via Bespoke Longevity Swaps

exposures to risk.

We then generate best estimate death 
ounts for the s
heme using these exposures using

the observed mortality rates in the SAPS data, i.e.,

D
(S)
x,t = E

(S)
x,t m

(SAPS)
x,t

where E
(S)
x,t are the assumed 
entral exposures to risk at ea
h age and year, andm

(SAPS)
x,t =

D
(SAPS)
x,t

E
(SAPS)
x,t

are the 
entral mortality rates observed in the SAPS populations.

This pro
edure gives us simulated data for the stylised s
heme that is 
onsistent with

that from the SAPS study, whi
h we 
an then use to model the basis for the stylised

s
heme. To do this, we use the �relative� approa
h developed in Chapter 9. This proposes

a model of the form

ln
(

µ
(S)
x,t

)

= α(R) + α(∆)
x +

N
∑

i=1

λ(i)f (R,i)(x)κ
(R,i)
t + λ(γ)γ

(R)
t−x + νXt−x (10.4)

where α
(∆)
x is the di�eren
e in the level of mortality between the two populations

18

and

the λ(j)
(j ∈ {1, 2, 3, γ}) 
orrespond to the �sensitivity� of the small population to the

fa
tor j in the referen
e population.

19

Therefore, the de�nitions above imply that α
(∆)
x


ontrols the level basis for the s
heme, whilst the λ(j)

ontrol the trend basis. Level ba-

sis risk and trend basis risk 
orrespond to the un
ertainty in estimating these parameters.

Level basis

Based on the results of Chapter 9, we restri
t α
(∆)
x to be of parametri
 form, i.e.,

α(∆)
x =

N+1
∑

i=1

α(i)f̃ (R,i)(x)

where f̃ (i)(x) is an expanded set of the age fun
tions present in the referen
e model plus

an additional linear fun
tion required for identi�ability.

20

This means that, instead of

estimating separate values of α
(∆)
x at ea
h age, there are only N + 1 
omponents, α(i)

,

18

For example, mortality rates in the s
heme at age x might be 
onsistently 5% lower than those in

the referen
e population for all times.

19

For example, the s
heme may experien
e 90% of the 
hange due to κ
(R,1)
t in the national population.

20

See Appendix 9.B of Chapter 9 for a dis
ussion of why this is ne
essary.
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for the level basis for the s
heme for ea
h sex, whi
h makes the model 
onsiderably more

parsimonious. In Chapter 9, this was found to be ne
essary to avoid over-parameterising

the model, espe
ially for small population sizes.

This approa
h is 
on
eptually similar to the standard a
tuarial pra
ti
e of spe
ifying a

base mortality table by making a series of adjustments (given by α
(∆)
x ) to a standard

mortality table (in this 
ase, given by the referen
e models for the national population).

The estimation of α
(∆)
x in this study is 
ondu
ted on a purely statisti
al basis, 
ompara-

ble to performing an analysis of the experien
e data of the s
heme. In pra
ti
e, however,

spe
ifying the base table will also make use of more subje
tive adjustments, e.g., to re-

�e
t the industry s
heme members were employed in. Furthermore, the involvement of

a life insurer, with a

ess to greater volumes of data and more sophisti
ated modelling

te
hniques, is likely to redu
e the un
ertainty in spe
ifying the base table (i.e., the level

basis risk) 
onsiderably from what 
ould be a
hieved by the s
heme alone.

To allow for level basis risk, we adopt a similar approa
h to that used to allow for pa-

rameter un
ertainty in the referen
e population, i.e., we use a residual bootstrapping

pro
edure based on Koissi et al. (2006). To do this, we take the residuals from �tting

the relative model to the data for the s
heme and use these to generate random death


ounts for the stylised s
heme. To these, we re�t the relative model in Equation 10.4

to generate new estimates of α
(∆)
x .

21

Figure 10.4 shows the 95% 
on�den
e intervals for

α
(∆)
x found using this pro
edure.

Sin
e α
(∆)
x is restri
ted to be a linear 
ombination of age fun
tions, the pattern of level

basis risk a
ross ages depends strongly upon the form of those age fun
tions. However,

we 
an see that the un
ertainty is greatest at the highest and lowest ages in the range,

due to the very low absolute numbers of deaths expe
ted at these ages. We also see that,

at most ages, α
(∆)
x is unlikely to be more than ±0.1 from its best estimate value. This


orresponds to a relative un
ertainty in the level of mortality rates of around 10% at

any age. However, there is a 
onsiderable �tail� to this distribution, whi
h means that

we are unable to rule out signi�
antly higher or lower levels of mortality rates in the

s
heme 
ompared with the national population. Comparing Figure 10.4 with Figure 9.5

in Chapter 9, we note that the basis risk for the s
heme is signi�
antly greater than for

the full SAPS population, due to its relatively small size. It is interesting to note that,

21

In addition, we use a bias 
orre
tion te
hnique to ensure 
onsisten
y between this pro
edure and

the deterministi
 best estimate assumption, sin
e otherwise the lower bound of zero deaths at any age


an give anomalous results.
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Figure 10.4: 95% fan 
harts showing the parameter un
ertainty in α
(∆)
x (level basis

risk)

while experien
e studies 
ondu
ted to quantify the level basis in pension s
hemes are be-


oming more 
ommon, it is less usual to see the un
ertainty in the level basis quanti�ed.

These results indi
ate that this un
ertainty in the level basis may be substantial, even

for a 
omparatively large pension s
heme.

It is also interesting to 
onsider the te
hnique proposed in the Solven
y II standard

model for systemati
 longevity risk (EIOPA (2014)), whi
h is to redu
e the level of

mortality in the s
heme by 20%. A 
ommon 
riti
ism (e.g., Nielsen (2010) and Börger

(2010)) of this approa
h is that it is a poor proxy for systemati
 longevity risk, whi
h is

likely to emerge slowly over time rather than immediately as a one-o� sho
k. However,

the Solven
y II standard model for systemati
 longevity risk 
ould be 
onsidered as a

s
enario for investigating the impa
t of level basis risk. We see from Figure 10.4 that a

20% redu
tion in mortality rates lies within the 95% 
on�den
e intervals for level basis

risk for most ages. Therefore, the model proposed by EIOPA (2014) 
an be 
onsidered

a reasonable proxy for investigating level basis risk in a pension s
heme, despite its

short
omings as a proxy for systemati
 longevity risk.

Trend basis

We now 
onsider the potential trend basis in the stylised pension s
heme. However,

doing so is very di�
ult be
ause quantifying trend basis requires far more data than any

pension s
heme is likely to have, as dis
ussed in Chapter 9. Attempting to do so using

the relative model in Equation 10.4 would lead to an over parameterised model, and

parameter estimates whi
h are not robust (i.e., have very large parameter un
ertainty).

This would then lead to unfeasibly large estimates of the trend basis risk, whi
h 
an be
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ruled out on the grounds of biologi
al reasonableness.

22

For example, experiments with

this approa
h have led to s
enarios where life expe
tan
y at age 65 in the stylised s
heme

rises rapidly to over 40 years or drops pre
ipitously to almost zero.

For small populations of the same size as our stylised s
heme, the relative modelling

approa
h in Chapter 9 showed a very strong preferen
e for restri
ting the model so that

λ(j) = 1 for ea
h of the age/period and 
ohort terms for both men and women. This

made the model 
onsiderably more parsimonious and robust when �tting it to data. For

the purposes of this study, we impose the same restri
tion, whi
h is equivalent to as-

suming that there is no trend basis in the s
heme. Be
ause this makes the model more

robust, it also redu
es the un
ertainty in the estimation of α
(∆)
x (i.e., the level basis risk)


ompared with using an over-parameterised model.

Imposing λ(j) = 1 is equivalent to imposing a priori that there is no trend basis and

no trend basis risk between the referen
e and sub-populations. However ne
essary this

assumption is when obtaining the best estimate set of assumptions, we will need to relax

it and allow λ(j)
to vary when performing sto
hasti
 proje
tions to estimate the trend

basis risk. To do this, we use an informal pro
edure based on our desire for biologi
al

reasonableness. Various studies, su
h as Lu et al. (2012) (espe
ially Tables 3 and 4) and

Haberman et al. (2014), have indi
ated that the magnitude of di�eren
es between the

trend rate of improvement in mortality rates between various sub-populations and the

national population is of the order of 0.5% p.a..

23

To generate trend basis risk of around the 
orre
t magnitude, we allow λ(1)
to vary using

λ(1) ∼ N(1, σ2
λ)

where σλ ≈ 0.3. This also imposes Eλ(1) = 1, to ensure that the results of this pro
edure

are 
onsistent with our deterministi
 best estimate. Although this pro
edure is some-

what informal, we are 
on�dent that we obtain results whi
h are biologi
ally reasonable

and are 
onsistent with the �ndings in the studies mentioned above. For simpli
ity, the

other s
aling fa
tors in the relative models are not allowed to vary sto
hasti
ally and so

22

The 
on
ept of biologi
al reasonableness was introdu
ed in Cairns et al. (2006b) and de�ned as �a

method of reasoning used to establish a 
ausal asso
iation (or relationship) between two fa
tors that is


onsistent with existing medi
al knowledge�

23

In the referen
e models used in this study, the expe
ted rates of improvement are around 1.5% p.a.

in the referen
e population for both sexes, given by the drift of κ
(R,1)
t from the random walk pro
ess in

Equation 10.2.
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are set equal to unity.

10.4.2.3 Individual mortality risks

Going beyond the national and s
heme-spe
i�
 evolution of mortality, we also need to


onsider individual-spe
i�
 features of mortality rates, su
h as the spe
i�
 mortality rates

for ea
h individual s
heme member and their random time of death, whi
h we refer to

as mortality risks in the stylised s
heme.

Individual in
ome-related s
aling fa
tors

Mortality rates are likely to be di�erent for di�erent individuals, sin
e wealth and lifestyle

fa
tors have an impa
t on longevity. Some of these fa
tors will already be taken into

a

ount at the s
heme level through the analysis of the basis. However, a pension s
heme

is not a homogenous group of individuals, and this may have important 
onsequen
es in

any assessment of the risks fa
ed by the s
heme. Of these fa
tors, the 
orrelation be-

tween in
ome and life expe
tan
y will probably be the most important in modelling the

stylised s
heme, sin
e individuals who are in re
eipt of the largest pensions 
ontribute

most to the total s
heme 
ash�ow.

24

In pra
ti
e, these fa
tors are often taken into a

ount by using mortality rates from stan-

dard tables whi
h have been estimated on an �amounts� basis. This approa
h weights

the experien
e of ea
h life under observation by the amount of pension in payment, and

so will give more weight to the highest in
ome pensioners. This means that tables esti-

mated on an amounts basis tend to give lower mortality rates than tables estimated on

the same data on a �lives� basis, i.e., where all lives under observation are given equal

weight. Su
h an approa
h will give mortality rates that are appropriate for evaluating

liabilities on an aggregate basis (be
ause the weight ea
h life re
eives in the liabilities is

also proportional to their pension amount). However, mortality rates estimated on an

amounts basis will not be appropriate for any spe
i�
 individual, whi
h may bias the

results of any member-by-member risk assessment for the stylised s
heme.

24

We impli
itly assume that an individual's pension is their only sour
e of in
ome and, therefore, that

in
ome and pension amount are synonymous.
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Alternatively, the 
orrelation between in
ome and longevity 
an be allowed for on an

individual basis by using mortality tables estimated on a lives basis (su
h as given by

the relative modelling approa
h in Se
tion 10.4.2.2) and then using individual s
aling

fa
tors, i.e., introdu
ing fa
tors, Kj for ea
h individual j, whi
h s
ale the mortality rates

experien
ed by an individual relative to the average s
heme mortality

µx,t,j = Kjµ
(S)
x,t (10.5)

It is important to note that these s
aling fa
tors are relative to the aggregate s
heme mor-

tality rates, whi
h are, themselves, unknown. In some respe
ts, these 
an be 
onsidered

as analogous to the �frailty� fa
tors in Vaupel et al. (1979) or the results of performing

a Cox proportional hazard model (Cox (1972)).

Sin
e we are interested in allowing for the individual mortality risks in our stylised pen-

sion s
heme as well as the systemati
 and s
heme spe
i�
 risks, we adopt the latter

approa
h and use individual s
aling fa
tors to allow for the 
orrelation between in
ome

and longevity. In pra
ti
e, the individual s
aling fa
tors are often found by 
ondu
ting a

�post
ode analysis�, where information on the address of the individual is used to make

inferen
es about their wealth and lifestyle.

However, be
ause our stylised s
heme is purely illustrative, we are not able to perform an

a
tual post
ode analysis. Instead, we use an approximate set of s
aling fa
tors, whi
h are

broadly 
onsistent with the magnitudes of the in
ome-related s
aling fa
tors in Villegas

and Haberman (2014) and Continuous Mortality Investigation (2012), and are 
onsistent

with our pra
ti
al experien
e of the results of a
tual post
ode analyses. These s
aling

fa
tors are based solely on in
ome, with an assumption that:

• The quintile of s
heme members re
eiving the largest pensions at retirement (pen-

sions over over ¿9,250 p.a. in our modelling) experien
e mortality rates 70% of the

average for the s
heme;

• The quintile re
eiving the lowest pension amounts (between ¿3,000 and ¿3,500 p.a.

in our modelling) experien
e mortality rates 130% of average; and

• The individual s
aling fa
tor are linearly interpolated between 70% and 130% for

the middle quintiles.

This means that the median in
ome level (¿4,900 p.a.) 
orresponds to an individual

s
aling fa
tor of 100%. This has the 
onsequen
e that the individual s
aling fa
tors do
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not systemati
ally bias the mortality rates that would be observed in the s
heme when

all members are given equal weight, i.e., those given by an analysis 
ondu
ted on a lives

basis. These individual s
aling fa
tors are shown in Figure 10.5.
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Figure 10.5: Individual in
ome-related s
aling fa
tors

To allow for un
ertainty in the individual s
aling fa
tors in the sto
hasti
 model, we

assume

Kj = Kj,Best Estimate

× exp(Zj)

where Zj ∼ N
(

0, 10%2
)

Sin
e the s
aling fa
tors are multipli
ative, this assumption avoids the possibility that

individual mortality rates 
ould be negative. It also ensures that the median of our

sto
hasti
 simulations 
orresponds to the best estimate s
aling fa
tors dis
ussed above.

However, it is important to note that, just as with the best estimate of these in
ome-

related s
aling fa
tors, the risk atta
hed to them is illustrative. Even when a post
ode

analysis is performed on genuine member data, the un
ertainty in the s
aling fa
tors is

rarely (if ever) quanti�ed. However, we believe that our approa
h is reasonable, sin
e

an error of 0.1 on the s
aling fa
tor for an individual is 
omparable to an error of ten

per
entage points of the in
ome distribution to whi
h the member belongs.

25

This is

realisti
 given the multiple sour
es of in
ome that pensions s
heme re
eive in pra
ti
e.

25

E.g., a s
aling fa
tor of 110% as opposed to 100% would pla
e a member in the 40th per
entile of

the in
ome distribution, rather than the 50th per
entile.
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Idiosyn
rati
 risk

The models above allow us to estimate the mortality rates experien
ed by a s
heme

member, by looking �rst at the national population, then at the s
heme itself and �nally

on an individual basis, along with estimating the un
ertainty in these estimates arising

at ea
h stage. However, even if the mortality rates were known with 
ertainty, the time

of death of any spe
i�
 individual (and hen
e the total bene�ts paid to them) would still

be un
ertain. We refer to this un
ertainty as �idiosyn
rati
 risk�.

In prin
ipal, idiosyn
rati
 risk 
an be diversi�ed away and so should not be a signi�
ant

risk for a suitably large s
heme - see Milevsky et al. (2006). The stylised s
heme in this

study has 2,000 members, whi
h is large by the standards of UK pension s
hemes. How-

ever, it is still important to allow for idiosyn
rati
 risk sin
e the stylised s
heme 
ontains

a minority of members with large pensions, for whom the exa
t time of death will still

have an important impa
t on the proje
ted bene�ts paid by the s
heme.

We allow for idiosyn
rati
 risk by 
onsidering ea
h member individually, with the ran-

dom future lifetime modelled as an inhomogeneous-Poisson pro
ess subje
t to a hazard

rate given by their modelled mortality rates.

10.5 Establishing the best estimate of s
heme 
ash�ows

As dis
ussed at the start of Se
tion 10.4, the �rst stage in our modelling approa
h is to

move from the baseline set of assumptions, typi
al of those used by pension s
hemes in

the UK for funding purposes, to the best estimate assumptions found from the model.

Quantifying the impa
t of 
hanging these assumptions is useful in assessing the potential

for misspe
i�
ation of the �xed leg of the swap. Sin
e the best estimate assumptions are

those whi
h give an equal probability of positive and negative mortality sho
ks impa
ting

the future s
heme 
ash�ows (and hen
e the �oating leg), potential misspe
i�
ation 
an

lead to systemati
 bias the net 
ash�ows from the swap in favour of either the pension

s
heme or the swap provider.

To quantify the impa
t of this potential bias, we 
hange ea
h of the baseline assumptions

in turn and independently, i.e.,
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1. We use the mortality rates �tted by the relative model for the s
heme in 2008

instead of those given by the S1PMA and S1PFA mortality tables.

2. We use the best estimate proje
tions of mortality for the national population with

no trend basis to proje
t mortality rates, instead of the CMI proje
tion model.

3. We use the in
ome-related s
aling fa
tors to adjust individual mortality rates,

rather than using the s
heme mortality rates for all members.

Figure 10.6 and Table 10.2 show the impa
t of these fa
tors on the present value and

duration of the s
heme 
ash�ows, individually and in aggregate, using a real dis
ount

rate of 1.0% p.a..

PV (¿m) ∆ PV Duration (years) ∆ Duration

Baseline 284.7 - 10.6 -

2008 mortality rates 273.0 -11.7 10.3 -0.3

Proje
tion model 274.5 -10.2 10.2 -0.4

Individual s
aling fa
tors 305.5 20.8 11.3 0.7

Best estimate 290.5 5.8 10.9 0.3

Table 10.2: Present values and durations of s
heme 
ash�ows on the baseline and

best estimate sets of assumptions

As 
an be seen from Table 10.2, the present values of the liabilities are not signi�
antly

di�erent under the baseline and best estimate assumptions, with a total di�eren
e of only

¿5.8m, or 2% of the present value of the liabilities. Looking at the pattern of 
ash�ows

in Figure 10.6, we see that the biggest di�eren
es in the proje
ted 
ash�ows under the

baseline and best estimate sets of assumption o

ur after 30 or so years of proje
tion

(i.e., after 2040), and so are heavily dis
ounted and make relatively little di�eren
e to

the present value. In many ways, this is reassuring as it implies that the deterministi


assumptions used by s
hemes for funding purposes are not substantially overestimating

or underestimating the liabilities 
ompared with what 
ould be obtained using more so-

phisti
ated models. However, it is interesting to see that this is only true in aggregate,

and that the spe
i�
 mortality assumptions 
an make sizeable di�eren
es to the present

value of the liabilities.

First, we see that the CMI Proje
tion Model with a long-term rate of improvement of

1.5% p.a. slightly overstates the proje
ted improvements in mortality 
ompared with

the referen
e model des
ribed in Se
tion 10.4.2.1, sin
e it give a present value for the

liabilities ¿10.2 higher than the best estimate assumption. This is be
ause, whilst the

best estimate assumption also gives improvements in mortality rates of around 1.5% p.a.,
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Figure 10.6: Proje
ted deterministi
 
ash�ows using di�erent sets of assumptions

the pattern of improvements a
ross di�erent ages, 
ohorts and future years 
an be very

di�erent to that given by the CMI Proje
tion model. However, sin
e the CMI Proje
tion

Model uses a fundamentally di�erent approa
h to proje
t mortality from that used by

the referen
e model, it is reassuring that the di�eren
e in the liabilities between the two

models is relatively small.

In addition, we see from Table 10.2 that the impa
t of moving from the baseline assump-

tion for 
urrent mortality rates - i.e., moving from using mortality tables graduated from

the SAPS data on an amounts basis for all members to mortality rates from the relative

model estimated from the SAPS data on a lives basis with individual adjustments to

re�e
t the amount of pension in payment - broadly o�set ea
h other. This implies that,

in aggregate, the 
ommon pra
ti
e of using standard tables graduated on an amounts

basis gives a reasonable estimate of the liabilities 
ompared with one with individual

s
aling fa
tors. Conversely, it also implies that the relatively 
rude method of obtaining

individual s
aling fa
tors used in Se
tion 10.4.2.3 (whi
h was 
hosen to be 
onsistent with

our experien
e of post
ode mortality studies in pra
ti
e) broadly repli
ates the observed

relationship between in
ome and longevity found in the SAPS data in aggregate.
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10.6 Assessing and 
omparing di�erent sour
es of risk

We now introdu
e the di�erent sour
es of mortality and longevity risk des
ribed in Se
-

tion 10.4 to assess their impa
t and measure the variability of the 
ash�ows on the best

estimate set of assumptions shown in Se
tion 10.5. To quantify this, we estimate the

standard deviation of the present value of s
heme 
ash�ows (i.e., the deviation around

the best estimate value of ¿290.5 shown in Table 10.2). This gives us a broad measure

of the total un
ertainty in the future 
ash�ows arising from the di�erent sour
es.

For a set of pension s
heme trustees 
onsidering a bespoke longevity swap, another key


onsiderations is the insuran
e value of the swap. Assuming that the distribution of the

proje
ted 
ash�ows is roughly symmetri
al at any future time, an a
tuarially fair swap

will have the �xed leg of the swap equal to the best estimate of the future s
heme 
ash-

�ows. This would ensure that there will be an equal probability of the �oating leg being

greater than or less than the �xed leg (i.e., of a positive or negative net 
ash�ow from

the swap) and, hen
e, the swap would have zero expe
ted present value for both parties.

In pra
ti
e, the �xed leg 
ash�ows are set by in
reasing the best estimate 
ash�ows by

the swap premium (whi
h we have set at 4%, 
onsistent with our pra
ti
al experien
e

of swap arrangements), whi
h means that the swap has positive expe
ted present value

for the provider and negative expe
ted present value for the s
heme. This re�e
ts the

premium the s
heme is willing to pay to transfer risk to the swap provider.

A 
onsequen
e of this is that, in the short term, there is a high probability that the

s
heme will make net payments under the swap arrangement (sin
e the short-term 
ash-

�ows will be the most 
ertain and so unlikely to be in ex
ess of the �xed leg). Therefore,

the trustees may �nd it hard to explain the value of the swap as an insuran
e poli
y

over the longer term to the other stakeholders of the pension s
heme and, hen
e, have

di�
ulty justifying entering into the swap.

To illustrate the insuran
e value of the swap, we 
al
ulate the probability of the s
heme

re
eiving a positive net payment from the swap in year t i.e.,

P (t) = P
[

Ct − 1.04CBest Estimate

t ≥ 0
]

(10.6)

where Ct is the proje
ted 
ash�ow from the s
heme, for t ≤ 20. We 
onsider the esti-

mated values of P (t) for only the �rst twenty years of the swap arrangement be
ause
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most of the liabilities are expe
ted to have run o� by the end of this period and it ap-

proximates the upper limit of the times
ales being 
onsidered by the de
ision makers

when a swap is being 
onsidered.

However, it is important to note that the insuran
e value of a longevity swap does not

solely depend upon the probability of the s
heme re
eiving a positive net payment. The

swap also has value even if no positive net payments are made, sin
e it allows the s
heme

to �x the e�e
tive mortality rates experien
ed for the members 
overed by the 
ontra
t.

This may be espe
ially desirable for s
hemes whi
h have had to 
hange their assump-

tions for future mortality rates at su

essive funding valuations (almost always 
ausing

an in
rease in the liabilities) and are willing to pay a premium to lo
k into a spe
i�
 set

of assumptions whi
h will not need revision going forwards and so obtain 
ertainty over

mortality rates.

We assess the di�erent mortality and longevity risks in the stylised s
heme in two stages.

First, ea
h sour
e of risk is 
onsidered in isolation, setting all the other sour
es of risk

equal to their best estimates, to assess its relative importan
e.

26

On
e the risk sour
es

have been 
onsidered independently, all of the risks are 
ombined to fully assess the

potential mortality and longevity risks within the stylised s
heme and, hen
e, the ability

of a longevity swap to transfer them e�e
tively. It is important to note that, be
ause

the allowan
e for many of these risks is quite approximate, our results are subje
t to


onsiderable model risk.

27

10.6.1 Systemati
 longevity risk

In Se
tion 10.4, we de�ned systemati
 longevity risk as the risk arising from the sto
has-

ti
 proje
tion of the period and 
ohort fun
tions for the referen
e UK population using

the time series pro
esses in Equations 10.2 and 10.3. Figure 10.7a shows the 95% pro-

je
tion intervals for the proje
ted (real) 
ash�ows of the s
heme allowing for this risk,

where the median value is equal to the 
ash�ows on the best estimate set of deterministi


assumptions shown in Figure 10.6. To highlight the pattern of un
ertainty in the pro-

je
ted 
ash�ows, Figure 10.7b shows the di�eren
e between these 
ash�ows and the best

26

For instan
e, to allow for systemati
 longevity risk, we proje
t the period and 
ohort parameters for

the referen
e populations sto
hasti
ally using Equations 10.2 and 10.3, but do not allow for parameter

un
ertainty, set the parameters of the relative models equal to their best estimate (without any allowan
e

for un
ertainty and, hen
e, basis risk), use the best estimate individual s
aling fa
tors and do not allow

for idiosyn
rati
 risk.

27

De�ned as the un
ertainty 
aused by our model being an approximation to the true underlying

pro
esses governing the phenomenon in question, as dis
ussed in Cairns (2000).
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Figure 10.7: Impa
t of systemati
 longevity risk on proje
ted s
heme 
ash�ows

estimate (i.e., the net payments from a swap with no premium). Thus, the magnitude of

the un
ertainty in the proje
ted 
ash�ows for any future year 
an be assessed. Overall,

the standard deviation of the present value of the s
heme 
ash�ows (using a real dis
ount

rate of 1.0%) due to systemati
 longevity risk is ¿13.6m, or 
. 4.7% of the best estimate

present value of ¿290.5m shown in Table 10.2.

We see that the main impa
t of allowing for sto
hasti
 mortality proje
tions is in 
ash-

�ows due to take pla
e in around twenty years' time. This is not surprising, given that it

takes time for the un
ertainty in the proje
ted mortality rates due to systemati
 longevity

risk to give a noti
eable e�e
t. This is be
ause it �rst takes time to �rst generate larger

di�eren
es in mortality rates, and only then, when these are signi�
ant, 
ompound these

di�eren
es in mortality rates into signi�
ant di�eren
es in the proje
ted 
ash�ows.

We also �nd that, looking at systemati
 longevity risk alone, the probability that the

s
heme re
eives a positive net 
ash�ow, P (t) in Equation 10.6, stays relatively low (
lose

to zero) for the �rst eleven years of the swap arrangement, but then grows steadily beyond

this. This may be of interest, sin
e systemati
 longevity risk is often a major 
on
ern to

pension s
heme trustees, and so they need to be aware that a longevity swap only has

signi�
ant insuran
e value against this risk after a de
ade or so. In addition, an index-

based longevity swap (whi
h would only o�er prote
tion against systemati
 longevity

risk) would have similar issues and so 
ould only be regarded as providing insuran
e only

over longer time periods.
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Figure 10.8: Impa
t of level basis risk on proje
ted s
heme 
ash�ows

10.6.2 Parameter un
ertainty

Parameter un
ertainty in the referen
e population has only a very small impa
t on the

proje
ted 
ash�ows of the s
heme, with a standard deviation in the present value of the


ash�ows of ¿0.5m (0.2% of the best estimate present value). This is unsurprising, for

the reasons dis
ussed in Se
tion 10.4.2.1, namely that the referen
e population is large

and therefore gives reliable parameter estimates. However, it is important to allow for

parameter un
ertainty in the referen
e population due to the hierar
hi
al nature of the

relative model, as dis
ussed previously.

10.6.3 Level basis risk

The impa
t of level basis risk on the proje
ted s
heme 
ash�ows is shown in Figure 10.8.

The standard deviation of the 
ash�ow present value is ¿27.4m, or 
. 9.4% of the best

estimate value, whi
h is large relative to the other risks we investigate. This should not

be surprising, given that the high degree of un
ertainty shown in Figure 10.4 and the

fa
t the level basis risk will impa
t the s
heme 
ash�ows immediately, rather than taking

time to develop as ma
ro-longevity risk and trend basis risk do.

One interesting feature in Figure 10.8b is the asymmetry of the 
on�den
e intervals, as

shown by the peak of the �downside� risk from the point of view of the s
heme (i.e.,

s
heme 
ash�ows being greater than expe
ted) is both higher and o

urs seven years

after the peak of the �upside� risk (in 2043 
ompared with 2036). We 
onje
ture that

this is partly be
ause the 
ash�ows from the s
heme are bounded below by zero, so s
e-

narios with high mortality rates run the liabilities o� qui
ker than the s
enarios with low
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mortality rates.

Furthermore, α
(∆)
x is related to the proje
ted s
heme mortality rate exponentially (i.e.,

µ
(S)
x,t ∝ exp

(

α
(∆)
x

)

). This means that, even if the level basis risk in α
(∆)
x is symmetri
al

around its best estimate, the impa
t on the s
heme mortality rates will be asymmetri
al.

In addition, the asymmetry will be in�uen
ed by the intera
tion between the basis in

the s
heme, the individual s
aling fa
tors and the amount of pension in payment for

individuals. This unders
ores the point that it is important to take a

ount of as many

mortality-related fa
tors as possible when modelling a pension s
heme, sin
e they are

likely to intera
t in a highly 
ompli
ated fashion.

Looking at the probabilities of the s
heme re
eiving a positive net 
ash�ow, we �nd that

level basis risk is a shorter term risk fa
tor than systemati
 longevity risk. Although

P (t) is very small for t ≤ 8, meaning that level basis risk on its own is unlikely to result

in a positive net payment for the s
heme, it grows rapidly after eight years (in 
ontrast

to systemati
 longevity risk whi
h only gave signi�
ant probabilities of a positive net

payment after around eleven years). This is not surprising, sin
e un
ertainty in the level

of mortality rates will a�e
t the s
heme 
ash�ows immediately, as opposed to needing to

be 
ompounded as in the 
ase of systemati
 longevity risk. Hen
e, we �nd that more of

the risk transfer provided by a bespoke longevity swap in the short term will be due to

level basis risk than systemati
 longevity risk, in addition to level basis risk being greater

overall.

However, we note that our estimates of level basis risk have been derived from a statisti
al

analysis of the s
heme itself. In pra
ti
e, the involvement of a life insurer in modelling

the best estimate of the 
ash�ows will give the s
heme a

ess to more data and more

sophisti
ated te
hniques for evaluating the level basis, and this should help redu
e the

level basis risk from the magnitudes found in this study. This means that the pro
ess of

entering into a longevity swap (or, indeed, a buy-in) 
an help redu
e the mortality and

longevity risks the s
heme fa
es in ex
ess of just the insuran
e value of the 
ontra
t.

10.6.4 Trend basis risk

The impa
t of trend basis risk on the proje
ted 
ash�ows of the s
heme is shown in

Figure 10.9, with a standard deviation for the present value of ¿8.0m or approximately

2.8% of the best estimate liability value of ¿290.5m. This suggests that trend basis risk
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Figure 10.9: Impa
t of trend basis risk on proje
ted s
heme 
ash�ows

is a moderately sized risk 
ompared with the other risks modelled in this study.

As dis
ussed in Se
tion 10.4.2, measuring trend basis risk is very di�
ult, due to the fa
t

that estimation of the trend basis is itself very di�
ult. Although we have used a pro
e-

dure whi
h we believe gives results that are biologi
ally reasonable and 
onsistent with

those in other studies, there is substantial model risk in our approa
h. In addition, trend

basis risk is a key 
on
ern for many pension s
heme trustees, and ane
dotally is believed

to be a major limiting fa
tor holding ba
k the development of a market in index-based

longevity swaps.

However, we believe that the overall impa
t of trend basis risk we �nd is reasonable. In

parti
ular, we note that our �ndings are broadly 
onsistent with the results of Villegas

and Haberman (2014), whi
h found that allowing for trend di�eren
es in di�erent so
io-

e
onomi
 groups makes less than a 1% di�eren
e in the present value of annuity values

at higher ages. Villegas and Haberman (2014) suggested that �assuming the absen
e

of improvement di�erentials in mortality is in prin
iple reasonable in the valuation of

annuities�, whi
h is 
onsistent with not allowing for trend basis risk in the best estimate

assumption.

We also observe, from looking at P (t), that trend basis risk is a 
omparatively long-

term risk for the s
heme, for similar reasons as systemati
 longevity risk. Furthermore,

be
ause trend basis risk is of smaller magnitude than systemati
 longevity risk, we �nd

that only a small 
omponent of the insuran
e value of the swap is in respe
t to trend

basis risk even in the long term.
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Figure 10.10: Impa
t of un
ertainty in individual s
alings on proje
ted s
heme 
ash-

�ows

10.6.5 Un
ertainty in the individual in
ome-related s
aling fa
tors

The proje
ted 
ash�ows of the s
heme and the swap allowing for un
ertainty in the indi-

vidual in
ome-related s
aling fa
tors are shown in Figure 10.10.The standard deviation

in the present value of the 
ash�ows due to the un
ertainty in the individual in
ome-

related s
aling fa
tors is only ¿0.6m (0.2% of the best estimate present value).

This result may be surprising, given the impa
t that the individual s
aling fa
tors made

on the best estimate of the 
ash�ows in Se
tion 10.5. This explanation may, in part,

be be
ause the approa
h we use to allow for un
ertainty in the individual s
aling fa
-

tors allows for more un
ertainty for individuals with high s
aling fa
tors than for those

with low s
aling fa
tors, due to the use of the lognormal distribution. Individuals with

high s
aling fa
tors are those with the smallest amount of pension in payment, and so

this un
ertainty makes 
omparatively little impa
t on the proje
ted s
heme 
ash�ows.

However, we should be aware that the approa
h we have used to allow for un
ertainty in

the in
ome-related s
aling fa
tors is quite informal and, while we believe the magnitude

of the impa
t is reasonable, more resear
h is required in order to fully understand the

potential un
ertainty in any method of assigning individual s
aling fa
tors for mortality.

Despite this proviso, our results indi
ate that the most important fa
tor in the analysis

is the relationship between higher in
ome and lower mortality rates: adding un
ertainty

to the latter redu
es the strength of the relationship but does not eliminate it. To illus-

trate, it is important to re
ognise that high-in
ome pensioners have lower than average

mortality rates, but the amount lower (e.g., whether their mortality rates are 30% or 35%
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Figure 10.11: Impa
t of idiosyn
rati
 risk on proje
ted s
heme 
ash�ows

lower) is less important when making proje
tions for the s
heme. In other words, it is im-

portant to build into the model the assumption of lower mortality rates for high-in
ome

pensioners, but the pre
ise quantum of the relationship is less important.

10.6.6 Idiosyn
rati
 risk

The proje
ted 
ash�ows of the s
heme and the swap allowing for idiosyn
rati
 risk in the

timings of individual deaths are shown in Figure 10.11. As 
an be seen, idiosyn
rati


risk is an important risk in the 
ontext of the s
heme, with a standard deviation for the

present value of ¿6.8m or 
. 2.3% of the best estimate value. This might be surprising

given that there are 2,000 members of the s
heme and the results of Aro (2014) and Don-

nelly (2014) apparently suggest that idiosyn
rati
 risk de
reases rapidly with s
heme size.

However, both of these studies assumed that all members re
eived the same amount of

bene�t in payment, and, therefore, weighted all lives equally. We �nd that the diver-

si�
ation of idiosyn
rati
 risk is less e�e
tive when the lives are not equally weighted,

espe
ially in the 
ase when the amount of pension in payment di�ers greatly between

s
heme members, as it does here. This means that diversi�
ation and the appli
ation

of the law of large numbers is less e�e
tive. This is reinfor
ed by the assumption that

higher-in
ome pensioners (with greatest weight) have a lower probability of death in any

given year. A

ordingly, we believe that most pension s
hemes are still subje
t to 
onsid-

erable idiosyn
rati
 risk, espe
ially in regard to the members with the largest amounts

of pension in payment.

It is also interesting to note that the pattern of variability due to idiosyn
rati
 risk

is unlike that for the other risks, with a 
on�den
e interval for the 
ash�ows whi
h is
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relatively large after only a 
ouple of years and then stays at around this width for

de
ades. This is be
ause most of the idiosyn
rati
 risk will be asso
iated with the timing

of the death of a relatively small number of individuals with large pensions, whi
h is a

risk that does not grow with time. Therefore, in the short run, this idiosyn
rati
 risk is

likely to be the dominant risk a longevity swap provides insuran
e against.

10.6.7 Summary

Figures 10.7b, 10.8b, 10.9b, 10.10b and 10.11b give some indi
ation of the relative im-

portan
e of the di�erent mortality and longevity risks in the s
heme. A summary of the

information for ea
h individual risk fa
tor, along with the total impa
t all risk fa
tors

have in aggregate for the s
heme, is shown in Table 10.3 and Figure 10.13. We note that

these risks are largely independent of ea
h other and, hen
e, that the total varian
e of

the present value of the s
heme 
ash�ows is roughly equal to the sum of the varian
es

for ea
h individual risk fa
tor. Of 
ourse, this implies that the standard deviations of

the present values are not additive, as shown by the �Diversi�
ation� item in Figure 10.13.

Risk

StDev(PV ) P (2022) P (2032)
(¿m)

Systemati
 longevity risk 13.6 1% 32%

Parameter un
ertainty 0.5 0% 0%

Level basis risk 27.4 9% 36%

Trend basis risk 6.8 0% 17%

Un
ertain in
ome-related s
aling fa
tors 0.6 0% 0%

Idiosyn
rati
 risk 10.8 6% 20%

All risks 32.8 19% 38%

Table 10.3: Impa
t of di�erent mortality and longevity risks on the present value of

s
heme 
ash�ows and the probability of a positive net payment from the swap

As 
an be seen, the most important risk fa
tor in terms of the standard deviation of

the present value of the s
heme 
ash�ows is level basis risk, with systemati
 longevity

risk, trend basis risk and idiosyn
rati
 risk as the next most important risks. We also

see that the swap provides signi�
ant value as an insuran
e poli
y in the shorter term,

with a 19% probability of the s
heme re
eiving a positive net 
ash�ow in the tenth year

sin
e the in
eption of the swap, whi
h doubles to 38% over a 20-year time horizon. After

ten years, the main 
ontributors to the probability of a positive net 
ash�ow are level

basis risk and idiosyn
rati
 risk, sin
e these impa
t the 
ash�ows immediately. However,

over the longer term, both systemati
 longevity risk and trend basis risk also provide

signi�
ant 
ontributions to the insuran
e value of the swap.
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Figure 10.12: Impa
t of all mortality and longevity risks on proje
ted s
heme 
ash-

�ows
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Figure 10.13: Contribution of ea
h risk fa
tor to total mortality and longevity risks

for the s
heme

It is also interesting that these result go a long way to explaining why pension s
heme

trustees prefer bespoke to index-based longevity swaps. An index-based swap only hedges

the systemati
 
omponent of the longevity and mortality risks present in the s
heme,

whi
h is a minority of the total risk. Sin
e these other risks are unrewarded (unlike

investment risk, where pension s
hemes expe
t to earn a premium for holding the risk),

it makes sense to transfer them as well as the systemati
 longevity risk via a bespoke

longevity swap, rather than 
ontinue to hold and manage these risks internally. This is

dis
ussed further in Se
tion 10.7.

We also note that level basis risk and idiosyn
rati
 risk are both, in theory, redu
ed by
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in
reasing the size of the s
heme. This would allow the s
heme to diversify the idiosyn-


rati
 risk and obtain more pre
ise parameter estimates for the level basis. This is the

most 
ommon explanation for why level basis risk and idiosyn
rati
 risk are often over-

looked in studies of risk in pension s
hemes. However, in pra
ti
e, in
reasing the size of

the s
heme would have to be a
hieved by either enrolling new members into the s
heme

or by merging di�erent o

upational s
heme together. Enrolling new members into the

s
heme would require the support of the 
orporate sponsor of the pension s
heme, and is

unlikely to o

ur, espe
ially now that most de�ned bene�t pension s
hemes in the UK are


losed to new members. Furthermore, merging s
hemes is administratively 
omplex and

requires the 
onsent of numerous stakeholders whi
h may be di�
ult to obtain, espe
ially

as most s
hemes are in run-o� with a view to being bought out eventually. In pra
ti
e,

therefore, a pension s
heme's ability to in
rease its size is limited and, hen
e, level ba-

sis risk and idiosyn
rati
 risk remain important risks for the majority of pension s
hemes.
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Figure 10.14: Probability of a positive net 
ash�ow to the s
heme

Figure 10.14 shows P (t), the probability of the s
heme re
eiving a positive net 
ash�ow

from the swap (i.e., the sto
hasti
ally proje
ted 
ash�ows of the s
heme are greater than

104% of the best estimate 
ash�ows) in the �rst twenty years after in
eption allowing

for all the di�erent risks models. As expe
ted, this probability grows monotoni
ally with

time. However, a s
heme entering into a longevity swap would need to wait around �ve

years before there is a signi�
ant probability of re
eiving a positive net 
ash�ow from the

swap. This might make it harder for the trustees of the s
heme to justify entering into

the swap to other stakeholders in the pension s
heme, su
h as the 
orporate sponsor.

This is be
ause in the early years, the s
heme is making signi�
ant net payments to
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the swap provider but re
eiving little prote
tion against mortality and longevity risks in

return.

Nevertheless, the bespoke longevity swap still has substantial value as an insuran
e poli
y,

however, sin
e the probability of the s
heme re
eiving a positive net 
ash�ow from it rises

rapidly to around 40% after around twenty years. However, many of the s
hemes entering

into longevity swaps have a phased de-risking plan, of whi
h longevity risk transfer is just

one stage and the last step is a full buy-out. Depending on the times
ales of the plan, it

may not make sense to pur
hase stand-alone insuran
e against mortality and longevity

risks that 
ould take de
ades to materialise. Therefore, the times
ales of the trustees'

plans regarding the de-risking of the s
heme will in�uen
e whether or not they 
onsider

a bespoke longevity swap to o�er su�
ient value as a long-term insuran
e poli
y to be

justi�able.

10.7 Con
lusions

The market for bespoke longevity swaps has grown rapidly in the UK and shows no signs

of slowing down in the near future. In this study, we investigate the impa
t of various

mortality and longevity risks in the 
ontext of a stylised pension s
heme, in order to

assess the potential for a longevity swap to transfer these risks from the s
heme.

On balan
e, we believe that bespoke longevity swaps are valuable risk management tools

for pension s
hemes, sin
e the risks that they transfer are large relative to the size of

the proje
ted 
ash�ows. However, we �nd that the risk fa
tors whi
h are often given as

the main reasons for entering into a longevity swap, su
h as systemati
 longevity risk or

trend basis risk, do not represent the majority of the risk being transferred. In 
ontrast,

other major risks transferred, su
h as level basis risk and idiosyn
rati
 mortality risk, are

not often given by pension s
heme trustees as motivations for entering into a longevity

swap. This may be be
ause it is assumed that, for a large s
heme, these fa
tors 
an be

either be measured a

urately or diversi�ed away. Sin
e the stylised s
heme investigated

in this study is 
omparatively large by UK standards, it may appear surprising that we

still �nd that idiosyn
rati
 risk and level basis risk are still the largest risk fa
tors present

in the s
heme. However, there are several reasons why they remain more signi�
ant than

might be expe
ted, even for a 
omparatively large pension s
heme.
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In respe
t of idiosyn
rati
 risk, the heterogeneity of the membership in most pension

s
hemes means that the idiosyn
rati
 risk is not diversi�ed away as e�e
tively as might

be believed. A typi
al pension s
heme will have a few members with large pensions who


ontribute most to the liabilities. A great deal of risk atta
hes to these individuals, whi
h

is not signi�
antly diversi�ed by in
reasing the number of s
heme members with rela-

tively low amounts of pension in payment. In addition, sin
e these individuals are likely

to live longest (due to the positive relationship between in
ome and life expe
tan
y), this

risk is magni�ed.

In respe
t of level basis risk, we note that although the level basis itself is frequently

estimated for pension s
hemes via an experien
e study or by 
onsidering the o

upation

of s
heme members, there has usually been less attention paid to quantifying the un
er-

tainty in this estimate. Performing an experien
e study but not adequately measuring

the un
ertainty in its �ndings gives an illusion of 
ertainty, yet the un
ertainty in the

estimate of the basis is likely to be highly signi�
ant. This is due to the relatively small

number of members in most pension s
hemes and the often short periods of observation

used for a typi
al experien
e study. Failing to quantify the un
ertainty in the estimate

of the basis has the e�e
t of substantially underestimating the level basis risk, and hen
e

the total risk, in the s
heme. As dis
ussed in Se
tion 10.6.3, the involvement of a life

insurer 
an help redu
e level basis risk simply by using more data and more sophisti-


ated te
hniques to estimate the level basis. However, the un
ertainty in these estimates

should still be quanti�ed in order to a

urately measure and manage the mortality and

longevity risks in the s
heme.

In 
ontrast, systemati
 longevity risk and trend basis risk, whi
h are often given as the

major risk fa
tors pension s
heme trustees are trying to transfer in a longevity swap,

are smaller than might be expe
ted. This is mostly be
ause these risks take substantial

time to emerge and dominate the un
ertainties in 
urrent mortality rates, by whi
h time

many of the s
heme members will have died. These risks are, therefore, likely to be

more important when 
onsidering the deferred members of a pension s
heme. However,

deferred members are usually not 
overed by a bespoke longevity swap, partly due to the

additional longevity risk for these members but also be
ause they often retain options as

to what bene�ts they will re
eive after retirement (
reating additional and unquanti�able

un
ertainty).

405



Transferring Risk in Pension S
hemes via Bespoke Longevity Swaps

These results also have signi�
ant impli
ations for the emergen
e of a market in index-

based longevity swaps, whi
h would only transfer the systemati
 longevity risk. Index-

based swaps would, therefore, appear to o�er 
omparatively poor risk transfer in the

majority of realisti
 situations for pension s
hemes and so it is not surprising that none

have been transa
ted with pension s
hemes to date.

28

However, index-based swaps 
an

still provide e�
ient transfer of systemati
 longevity risk for the very largest pension

s
hemes to life insurers, between life insurers or between life insurers and the 
apital

markets. In these situations, an index-based transa
tion 
ould be 
ondu
ted at lower


ost than a bespoke swap, and life insurers or very large pension s
hemes are better

able to diversify and manage the remaining mortality and longevity risks present in the

provision of annuities and pension bene�ts.

Furthermore, we �nd that the 
ontribution of trend basis risk to the total risk for the

s
heme is relative modest, in 
ontrast to level basis risk. This result should be treated

with some 
aution, sin
e we also �nd that it is very di�
ult to quantify trend basis

risk obje
tively, whi
h is also 
onsistent with the �ndings of Haberman et al. (2014),

i.e., that assessing trend basis risk in a pension s
heme is not pra
ti
al for s
hemes with

fewer than 25,000 members or less than eight years of reliable experien
e data. However,

we are 
on�dent that the magnitude of the risk we �nd is reasonable. The di�
ulty

in measuring the importan
e of trend basis risk may be one reason that it is of greater


on
ern for many trustees of pension s
hemes than many of the better understood risks,

sin
e it is an �unknown unknown�. Nevertheless, our results should provide some 
omfort

that trend basis risk is manageable for most s
hemes.

We also �nd that allowing for individual s
aling fa
tors to a

ount for in
ome-related

mortality e�e
ts is very important in proje
ting the best estimate of the s
heme 
ash-

�ows. However, while making a broad allowan
e for the relationship between in
ome

and mortality is important, we �nd that the pre
ise quantum of the relationship is less

important. In pra
ti
e, this means that results obtained using publi
ly available data

sour
es on the relationship between mortality rates, in
ome and lo
ation are not too

dissimilar from those obtained from more expensive post
ode analyses whi
h make use

of proprietary data. We, therefore, hope that this enables smaller s
hemes to allow for

this relationship without in
urring the additional 
osts asso
iated with a full post
ode

analysis.

28

We note, however, that the transa
tion between Pall (UK) and JP Morgan in 2011 used standardised

q-forwards to hedge longevity risk for deferred members, see Blake et al. (2013).
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Our �ndings indi
ate that entering into a bespoke longevity swap is more advantageous

for smaller pension s
hemes, sin
e the largest mortality and longevity risks are those

whi
h 
ould, in prin
iple, be diversi�ed. This 
on�i
ts with the fa
t that most of the

deals to date have involved 
omparatively large s
hemes (larger than the stylised s
heme

used in this study). In addition, to provide a greater transfer of risk, smaller longevity

swap transa
tions would also give greater s
ope for individual underwriting of s
heme

members, whi
h has only o

urred in buy-out and buy-in deals to date (see Blake and

Harrison (2013)). The use of individual underwriting would redu
e the potential un-


ertainty in the individual s
aling fa
tors and the overall level basis for the s
heme.

However, individual underwriting is less pra
ti
al for very large s
hemes and so has not

been a feature of the longevity swaps transa
ted to date.

If the market for bespoke longevity swaps moves to targeting smaller o

upational pen-

sion s
hemes in future, we believe that longevity swaps (as well as buy-ins and buy-outs)

will be largely bene�
ial in managing longer-term longevity risks in the e
onomy. The

reasons for this are twofold. First, it will help with the transfer of longevity risk from the

lightly regulated o

upational pension s
heme se
tor to the better 
apitalised insuran
e

se
tor. The re
ent �nan
ial 
risis unders
ored the importan
e to the stability of the

e
onomy of adequate 
apital being provided to support risks. Hen
e, transferring risks

from underfunded o

upational pension s
hemes to well-
apitalised insuran
e 
ompanies

is likely to improve overall e
onomi
 stability in respe
t of unforeseen longevity sho
ks.

Se
ond, buy-outs, but-ins and longevity swaps perform an important role in the aggrega-

tion of longevity risk, sin
e an insurer transferring risk from many di�erent s
hemes will

be able a
hieve the s
ale needed to diversify idiosyn
rati
 risk and obtain more 
ertain

estimates of any level basis. Furthermore, most insurers have a

ess to better tools to

measure the s
heme-spe
i�
 and individual-spe
i�
 mortality fa
tors than a typi
al pen-

sion s
heme, meaning that these risks 
an potentially be better managed in the insuran
e

se
tor.

However, this aggregation pro
ess will still leave the insurer exposed to undiversi�able

systemati
 longevity risk. A

ordingly, we see the management of longevity risk o

ur-

ring in a two-stage pro
ess, with the full range of mortality and longevity risks �rst being

transferred to the insuran
e se
tor, and then the systemati
 longevity risk being trans-

ferred onwards to investors in the 
apital markets who would otherwise not be exposed

to it. In order to a
hieve this se
ond step, it is important that longevity-linked se
uri-

ties indexed to national population data, su
h as index-based longevity swaps, exist to

enable them to manage this undiversi�able risk, whilst the insurer retains those risks it
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an diversify and manage.

In summary, we believe that, for many UK pension s
hemes, it is worth buying a longevity

swap. However, it is important to fully assess the mortality and longevity risks in the

pension s
heme in order to determine whi
h risks being transferred are the most impor-

tant, as they may not be those typi
ally given as reasons for entering into a swap.

10.A S
heme data generating pro
ess

To generate data for the stylised pension s
heme, we start by spe
ifying the total number

of s
heme members drawing pensions. We set this as 2,000, whi
h represents a s
heme

in the largest 20% pension s
hemes in the UK a

ording to The Pensions Regulator

(2013b). This number was 
hosen as it would typi
ally be expe
ted to give total pen-

sioner liabilities of 
. ¿250m, whi
h is at the lower end of the range of s
hemes whi
h

has been targeted for longevity swaps to date.

We then populate the s
heme with members a

ording to 
ertain 
riteria, in order to

give a realisti
 membership pro�le. First, we assume that ea
h member being popu-

lated has an equal probability of being male or female. Next, we assign the member a

retirement date randomly, with these dates distributed between zero and 25 years ago.

The probability density of this distribution is assumed to de
rease linearly to be zero for

retirement beginning 25 years previously, i.e., members are more likely to have retired

re
ently, 
onsistent with a s
heme whi
h is maturing. From this, member ages 
an be


al
ulated based on a retirement age of 65, whi
h is typi
al for many s
hemes in the UK.

This gives pensioner ages between 65 and 90, where 90 is the maximum age in the SAPS

data used in our analysis and so makes a suitable 
hoi
e for the 
ut o� in retirement dates.

This pro
edure populates a large number of members who would have retired from the

s
heme. Clearly, not all members who retired would have survived to the present day.

To allow for this, we need to allow approximately for mortality between retirement and

the 
urrent date. To do this, we use mortality rates for the UK national population in

2011 to estimate the survival probability of the member from retirement to the present.

29

The survivorship of an individual is then modelled as a Bernoulli random variable with

29

This impli
itly assumes that mortality rates have remained 
onstant over this period for simpli
ity.

This assumption overstates the survivorship of individuals as it will not re�e
t the mortality improve-

ments over the retirement period experien
ed by real pensioners, and so result in our stylised s
heme

being slightly older than is typi
al.
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the estimated survival probability. Only members who are 
urrently alive are in
luded

in the data, and we 
ease generating new members when we have 2,000 living individuals.

For ea
h living member, we then allo
ate them to an in
ome per
entile at retirement.

This is determined by a uniform random variable between zero and one, whi
h we then

use to assign an individual s
aling fa
tor in the manner des
ribed in Se
tion 10.4.2. From

this in
ome per
entile, we generate a pension amount for the member based on an as-

sumed distribution for in
ome at retirement today. Pension amounts are assumed to be

distributed a

ording to the Pareto distribution, whi
h has often been used to model the

distribution of in
ome within a population. This distribution is 
apable of repli
ating

the observed levels of inequality in in
ome between individuals, due to the long tail of

the observed in
ome distribution where a small number of members (typi
ally former di-

re
tors of the sponsoring employer) have extremely large pensions relative to the median.

We assume that the Pareto distribution used to generate the pension amount has a

threshold of ¿3,000 and a s
ale fa
tor of 1.43. This threshold was 
hosen to re�e
t

the typi
al amount of pension below whi
h members 
an trivially 
ommute their entire

pension bene�ts to 
ash at retirement, and therefore leave no residual liability with the

s
heme. The s
ale fa
tor has been 
hosen based on the �10/50� rule dis
ussed in footnote

9, i.e., that 10% of the s
heme members re
eive 50% of the pension in payment. The

Pareto distribution 
an be 
alibrated to produ
e distributions of pensions 
onsistent

with any rule in the form �X% of the s
heme membership re
eive Y% of the pension in

payment� by 
hoosing a s
ale fa
tor su
h that

α =
lnX

lnX − lnY

This in
ome distribution is expressed as an amount of pension if they retired in 2011.

However, pensioners who retired before this date are likely to have lower pensions in

payment today be
ause they would have had lower salaries (in real terms) when they

retired and would have re
eived pension in
reases linked to pri
e in�ation rather than

salary in�ation (whi
h is usually higher). Therefore, the pension amount if the member

retired today is 
onverted to a pension amount 
urrently in payment by adjusting for

real salary in
reases, whi
h are assumed to be equal to 0.5% p.a., i.e.,

Pension in payment = Pension if retired today× 1.005Age−65
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Together, these four variables - sex, age, s
aling fa
tor and pension in payment - are

allo
ated to ea
h surviving member of the s
heme for use in the proje
tions in this

study, and are summarised in Figures 10.2 and 10.3 in Se
tion 10.3.
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Chapter 11

Forward Mortality Rates in Dis
rete

Time I: Calibration and Se
urities

Pri
ing

11.1 Introdu
tion

Many users of mortality models are interested in using them to pla
e values on longevity-

linked liabilities and se
urities. Modern regulatory regimes require that the values of

liabilities and reserves are 
onsistent with market pri
es (if available), whilst the gradual

emergen
e of a traded market in longevity risk needs methods for pri
ing new types of

longevity-linked se
urities qui
kly and e�
iently. These needs have spurred the develop-

ment of in
reasingly sophisti
ated models of mortality rates.

Cairns et al. (2006b) pointed out that the majority of mortality models that have been

proposed are models of the mortality hazard rate, whi
h is analogous to the short rate of

interest. By analogy with interest rate models, Cairns et al. (2006b) developed formally

the 
on
ept of �mortality forward rates�, whi
h was extended in Miltersen and Persson

(2005). However, the idea of forward mortality rates has a long history, indeed Milevsky

and Promislow (2001) pointed out that �the traditional rates used by a
tuaries are re-

ally `forward rates' exa
tly analogous to a forward interest rate implied by existing bond

pri
es�.

Su
h forward mortality rates 
ould be used to pri
e longevity-linked se
urities, in the

same fashion as forward interest rates are used to value 
ash�ows dependent on future

413



Forward Mortality Models I: Calibration and Se
urities Pri
ing

interest rates. Therefore, a number of models for forward mortality rates have been

proposed to date whi
h build upon the theory of forward interest rates. These have in-


luded the models of Barbarin (2008), Bauer et al. (2008) and Tappe and Weber (2013),

whi
h adopted the Heath-Jarrow-Morton framework used for interest rates in 
ontinuous

time, and the model of Zhu and Bauer (2011a,b, 2014) whi
h adopted a semi-parametri


fa
tor approa
h in dis
rete time. An alternative approa
h, developed in Olivier and

Je�rey (2004), Smith (2005) and Cairns (2007), also works in dis
rete time but uses

gamma-distributed random variables to update a forward mortality surfa
e that is ini-

tially assumed.

However, it is important not to over-extend the analogy between interest rates and mor-

tality rates, as the two are fundamentally di�erent pro
esses. Most obviously, the forward

interest rate 
urve at any instant depends only upon term, whilst forward mortality rates

will exist a
ross a surfa
e of ages and years. Mortality rates typi
ally also in
rease expo-

nentially with age, unlike interest rates whi
h are typi
ally bounded as term in
reases.

More fundamentally, the analogy between survivorship under a for
e of mortality and

dis
ounting under a for
e of interest, whilst mathemati
ally appealing, is not exa
t, sin
e

mortality will a�e
t the a
tual amount of any 
ash�ow payable (say, in an annuity or life

assuran
e 
ontra
t) in a way that dis
ounting does not. We therefore do not believe that

simply taking existing models whi
h work well for forward interest rates and applying

them dire
tly to mortality rates is appropriate.

In addition, we must be able to 
alibrate a model of forward mortality rates to the small

number of longevity-linked se
urities in existen
e. This means that models whi
h start

by assuming the existen
e of su�
ient market pri
es to de�ne a forward mortality surfa
e

(su
h as those based on the Heath-Jarrow-Morton framework) and then de�ne the dy-

nami
s of this surfa
e are not pra
ti
al. This approa
h is inherited from the interest rate

markets, where liquid markets in bonds a
ross the whole of the relevant term stru
ture


an provide su
h information. Unfortunately, this simply does not hold for the market

in longevity-linked se
urities, and will not hold for the foreseeable future.

Instead, we propose a new approa
h, whi
h is des
ribed in two studies, of whi
h this

is the �rst. Our approa
h starts from the histori
al data on the observed mortality

rates, i.e., the observed for
e of mortality whi
h is analogous to the short rate of in-

terest. Building on the dynami
s of models of the observed for
e of mortality, we 
an

re
ast them in the form of models of forward mortality rates and then use a 
hange of

measure to in
orporate whatever market information is available. This approa
h ensures
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that the dynami
s of the forward mortality surfa
e are 
onsistent with those observed

for the for
e of mortality, in
luding features su
h as �
ohort e�e
ts� whi
h are unique to

mortality rate models, and whi
h helps to ensure demographi
 signi�
an
e.

1

We begin our analysis in this paper in Se
tion 11.2.1 with models of for
e of mortality

from the age/period/
ohort (APC) family, whi
h have been spe
i�
ally 
onstru
ted in

order to 
apture the dynami
s of mortality parsimoniously and with demographi
 sig-

ni�
an
e. APC mortality models are 
onsidered in detail in Chapters 2, 3 and 4 and

en
ompass a broad 
lass of existing and popular models of the for
e of mortality, su
h

as the Lee-Carter (Lee and Carter (1992)), Cairns-Blake-Dowd (Cairns et al. (2006a))

and 
lassi
 APC (Hob
raft et al. (1982)) models, as well as many of the extensions of

these models (see Chapter 5 for examples). We then develop the mathemati
al frame-

work required to 
onvert any APC model of the for
e of mortality into a model of the

forward mortality surfa
e in Se
tion 11.2.2 and Se
tion 11.2.3. In Se
tion 11.2.4, we

use the dynami
s of the period and 
ohort parameters observed in the histori
al data

to de�ne a forward surfa
e of mortality rate. This enables 
onsistent modelling of both

the short and forward mortality rates, and so avoids any in
onsisten
ies between the two.

Se
tion 11.3 then builds on this by transforming the forward mortality rate surfa
e, using

the Ess
her transform, from a measure 
onsistent with the �real-world� pro
ess observed

in the histori
al data to one 
onsistent with market pri
es. These �market-
onsistent�

forward mortality rates are then used to pri
e various longevity-linked se
urities. Finally,

Se
tion 11.4 
on
ludes.

The approa
h established in this 
hapter is extended in our se
ond study, Chapter 12,

whi
h analyses how the forward surfa
e of mortality 
an be updated dynami
ally. This

enables the forward mortality rate framework developed in this study to be used for

managing longevity risk in a life assuran
e book or in a portfolio of longevity-linked

se
urities.

1

Demographi
 signi�
an
e is de�ned in Chapter 2 as the interpretation of the 
omponents of a model

in terms of the underlying biologi
al, medi
al or so
io-e
onomi
 
auses of 
hanges in mortality rates

whi
h generate them.
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11.2 Forward mortality rates in dis
rete time

11.2.1 Age/period/
ohort models of the for
e of mortality

In Chapter 2, we dis
ussed dis
rete-time mortality models of the form

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t + γt−x (11.1)

where

• we have histori
al data for ages, x, in the range [1,X] and periods, t, in the

range [1, τ ] and therefore observations of 
ohorts born in years, y, in the range

[1−X, τ − 1];

• ηx,t = ln(µx,t) is the log-link fun
tion whi
h 
onne
ts the Poisson distributed death


ounts, Dx,t, to the proposed predi
tor stru
ture;

• αx is a stati
 fun
tion of age;

• κ
(i)
t are period fun
tions governing the evolution of mortality with time;

• β
(i)
x are age fun
tions modulating the impa
t of the period fun
tion dynami
s over

the age range;

2

and

• γy is a 
ohort fun
tion des
ribing mortality e�e
ts whi
h depend upon a 
ohort's

year of birth and follow that 
ohort through life as it ages.

De�ning βx =
(

β
(i)
x , . . . β

(N)
x

)⊤
and κt =

(

κ
(i)
t , . . . κ

(N)
t

)⊤
, we 
an re-write Equa-

tion 11.1 as

ηx,t = αx + β⊤
x κt + γt−x (11.2)

In this study, we will use the log-link fun
tion ηx,t = ln(µx,t). In Chapter 2, we dis-


ussed how this is appropriate if the death 
ount at age x and time t is a (
onditionally

independent) Poisson random variable, Dx,t ∼ Po(µx,tE
c
x,t), where E

c
x,t are 
entral expo-

sures to risk. This is preferred over the alternative 
hoi
e of the logit-link fun
tion and

binomially distributed death 
ounts due to the distributional properties of the forward

2

These 
an be non-parametri
 in the sense of being one �tted without imposing any a priori shape

for the fun
tion a
ross ages, or be parametri
 in the sense of having a spe
i�
 fun
tional form, β
(i)
x =

f (i)(x; θ(i)) sele
ted a priori. Potentially, parametri
 age fun
tions 
an have free parameters θ(i) whi
h

are set with referen
e to the data.

416



Forward Mortality Models I: Calibration and Se
urities Pri
ing

mortality rates, as dis
ussed in Se
tion 11.2.3.

This stru
ture de�nes the 
lass of age/period/
ohort (APC) mortality models and is very

�exible. Many of the most 
ommon mortality models �t into this stru
ture, for instan
e,

the ben
hmark Lee-Carter (LC) model of Lee and Carter (1992), the 
ohort extension

to this denoted H1 in Haberman and Renshaw (2009), the Cairns-Blake-Dowd (CBD)

model of Cairns et al. (2006a) and many of its extensions in Cairns et al. (2009), the Plat

model of Plat (2009a) and the model of Börger et al. (2013). In Chapter 5, we des
ribe a

�general pro
edure� for 
onstru
ting bespoke models within this 
lass whi
h are tailored

to the stru
ture within a given dataset.

3

It is, therefore, appropriate to use this 
lass of

models of the for
e of mortality as the starting point for de�ning the forward mortality

surfa
e, as dis
ussed below.

11.2.2 De�ning forward mortality rates

In a dis
rete-time framework, the for
e of mortality, µx,t, at age x and time t is assumed

to be 
onstant over ea
h age and year, i.e.,

µx+ξ,t+τ = µx,t (11.3)

x, t ∈ N

ξ, τ ∈ [0, 1)

Therefore, the one-year survival probability from age x at time t to age x + 1 at time

t+1, px,t,
4

is equal to px,t = exp(−µx,t). If we further assume that survival in ea
h year

is 
onditionally independent, this implies

tpx,τ =
t
∏

u=1

px+u,τ+u = exp

(

−
t
∑

u=1

µx+u,τ+u

)

(11.4)

where tpx,τ is the survival probability of an individual from age x at time τ to age x+ t

at time τ + t.5 If τ + t lies in the future, tpx,τ will be a random variable, as future values

of the for
e of mortality will be subje
t to systemati
 mortality risk.

3

The forward mortality framework des
ribed in this study is not signi�
antly a�e
ted if the 
ohort

parameters are modulated by an age fun
tion, β
(0)
x , as in the model of Renshaw and Haberman (2006).

However, for simpli
ity and the reasons dis
ussed in Chapter 2, we do not 
onsider su
h models in this

study.

4px,t = 1− qx,t, the one-year probability of death.

5

0px,τ = 1 trivially.
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To de�ne the stru
ture of forward mortality rates, we assume that the fundamental

longevity-linked se
urity

6

of interest, from whi
h all other longevity-linked se
urities 
an

be 
onstru
ted, is the �longevity zero�.

7

A longevity zero is de�ned in Blake et al. (2006)

as a zero-
oupon bond whi
h pays out a prin
ipal at a future time, dependent on the

survivorship of a suitably large 
ohort (to redu
e the idiosyn
rati
 risk in the estimation

of survival rates) over the term of the bond.

8

Therefore, a t-year longevity zero at time

τ would have pri
e

Pri
e(t, τ) = B(τ, τ + t)EQ
τ tpx,τ

where B(τ, τ + t) is the time τ pri
e of a t-year zero 
oupon bond paying one unit at

maturity, and where the expe
tation is de�ned under some �market-
onsistent� measure,

Q (to be dis
ussed in Se
tion 11.3).

9

In doing so, we have impli
itly assumed that the longevity risk is independent of the

other �nan
ial risks in the market, su
h as interest rates and in�ation, in both the real-

world measure, P, and the market-
onsistent measure, Q. This is in 
ommon with the

majority of studies, su
h as Cairns et al. (2006b) and Bauer et al. (2008) and with the

available eviden
e to date, as dis
ussed in Loeys et al. (2007). Although there may be

some situations where longevity risk is not independent of other �nan
ial risks in the

real-world measure, as in the examples of Miltersen and Persson (2005), we believe that

these situations are relatively extreme and are better 
onsidered by s
enario analysis

rather than through a sto
hasti
 model. Furthermore, Dhaene et al. (2013) show that

independen
e between longevity risk and �nan
ial risks in the real-world measure does

not automati
ally ensure independen
e in the market-
onsistent measure. However, more


ompli
ated models are required in order to allow for any dependen
e between longevity

and investment risks, whi
h require more market information for 
alibration. Therefore,

we believe that the assumption of independen
e between longevity risk and other �nan-


ial risks is ne
essary and justi�able at this early stage of development of the longevity

risk market.

6

In this paper, we use the term �se
urity� to refer to any tradable �nan
ial 
ontra
t, and so also

in
lude derivative se
urities su
h as forwards and options in this de�nition.

7

Longevity zeros were also used to de�ne forward mortality rates in Barbarin (2008) for use in a

Heath-Jarrow-Morton framework and in Cairns (2007) and Alai et al. (2013) to develop extensions of

the Olivier-Smith model.

8

It is important that the se
urity used to de�ne the forward mortality rates depends purely on the

systemati
 longevity risk, rather than the idiosyn
rati
 time of death of any individual lives, in order to

avoid the potential for 
on�i
ting de�nitions of the forward rates des
ribed in Norberg (2010).

9

We adopt the 
onvention that the subs
ript on operators Eτ (.), Varτ (.) or Covτ (.) denotes 
ondi-
tioning on the information available at time τ , i.e., Fτ .
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We de�ne

tP
Q
x,τ (τ) = EQ

τ tpx,τ (11.5)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

In this, tP
Q
x,τ (τ) are the market-
onsistent forward survival probabilities, i.e., the �mar-

ket's best view� (in the words of Miltersen and Persson (2005)) at τ of the probability of

an individual aged x at τ surviving a further t years. Mathemati
ally, we 
an see that

these fa
tors are analogous to dis
ount fa
tors based on the pri
es of zero-
oupon bonds.

It is this analogy whi
h has motivated mu
h of the development of forward mortality

rate models to date, whi
h have been mainly adapted from widely used interest rate

models. In 
ontinuous-time forward rate models, su
h as in Bauer et al. (2008), forward

mortality rates are de�ned from Equation 11.5 as

ν
Q
x,t(τ) ≡ − ∂

∂t
ln
(

tP
Q
x−t,τ (τ)

)

via the analogy with forward interest rates. In a dis
rete time model, we modify this to

de�ne forward mortality rates as

νQx,t(τ) ≡ − ln

(

t−τ+1P
Q
x−t+τ,τ (τ)

t−τP
Q
x−t+τ,τ (τ)

)

(11.6)

Existing forward mortality models, su
h as those in Cairns (2007) and Zhu and Bauer

(2011b, 2014) use similar de�nitions, but these studies are interested in the dynami
s of

the forward surfa
e of mortality and so are interested in the behaviour of νx,t(τ + 1)/νx,t(τ) ,

rather than the forward mortality rates at τ themselves (whi
h are assumed a priori in

these studies). We dis
uss these dynami
s in Chapter 12. In 
ontrast, this 
hapter is

interested in the 
onne
tion between the for
e of mortality and forward mortality rates,

and so we use the de�nition above to give

tP
Q
x,τ (τ) = exp

(

−
t
∑

u=1

νQx+u,τ+u(τ)

)

(11.7)

Comparing Equations 11.4 and 11.7, we see

exp

(

−
t
∑

u=1

νQx+u,τ+u

)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

(11.8)
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whi
h shows the 
onne
tion between the market-
onsistent forward rates and the expe
-

tations of the for
e of mortality in the market-
onsistent measure.

By Jensen's inequality

EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

≥ exp

(

−
t
∑

u=1

EQ
τ µx+u,τ+u

)

(11.9)

In pra
ti
e, the variation in µx,t is su�
iently small that Equation 11.9 holds approxi-

mately as an equality over almost all ages and years.

10

We therefore make the assumption

that

exp

(

−
t
∑

u=1

νQx+u,τ+u(τ)

)

= exp

(

−
t
∑

u=1

EQ
τ µx+u,t+u

)

(11.10)

and de�ne the forward mortality rates as

νQx,t(τ) = EQ
τ µx,t (11.11)

Thus, the forward mortality rate at age x and year t is assumed to be equal to the

expe
tation under the market-
onsistent measure of the for
e of mortality at the same

age and year, 
onditional on information observed at time τ . Thus, if we 
an spe
ify

the dynami
s of the for
e of mortality (in the market-
onsistent measure), we are able

to �nd the forward mortality rates dire
tly.

We de�ne the �forward mortality surfa
e� as the 
olle
tion of forward mortality rates,

ν
Q
x,t(τ) over all ages, x, and future years, t, at a given point in time, τ . In most 
ases,

it is more natural to 
onsider the forward mortality surfa
e as a single obje
t, sin
e the

individual forward mortality rates are expe
ted to vary smoothly a
ross ages and a
ross

future years. However, it is important to realise that the forward mortality surfa
e is

three-dimensional, de�ned by x, t and τ . In this study we shall 
onsider its stru
ture

a
ross the dimensions of x and t and how this 
an be determined at the observation time,

τ , whi
h is assumed to be 
onstant. This 
ontrasts with Chapter 12, where we dis
uss

how the surfa
e varies dynami
ally with τ .

In de�ning the forward mortality surfa
e, we assume that all longevity-linked se
urities


an be 
onstru
ted from a portfolio of longevity zeros. We shall see in Se
tion 11.3.3 that

10

This approximation is tested numeri
ally in Appendix 11.B.
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this is trivially true in the 
ase of longevity swaps.

11

We extend this by assuming that

the value of any other longevity-linked se
urity at time τ 
an be repli
ated as a portfolio

of longevity zeros and, therefore, written as a fun
tion of the νQx,t(τ). Hen
e, the forward

surfa
e of mortality 
an be used to give 
onsistent pri
es for all longevity-linked liabilities

and se
urities.

Unfortunately, however, it is 
urrently impossible to reliably spe
ify the dynami
s of

short or forward mortality rates in the market-
onsistent measure, sin
e an a
tively-

traded market in longevity-linked se
urities does not 
urrently exist. Indeed, the absen
e

of genuine market information on the pri
es for any longevity-linked se
urities is a 
rit-

i
al problem for all studies that seek to value the few longevity-linked se
urities whi
h

do exist. There have been a number of di�erent methods proposed to over
ome this

and 
alibrate the market-
onsistent measure. For instan
e, Bauer et al. (2008) proposed

using generational life tables (i.e., those whi
h allow mortality rates to depend upon an

individual's year of birth) in order to provide a forward mortality surfa
e. However, these

are updated infrequently and are not based on market information (and when used to

pri
e �nan
ial 
ontra
ts, typi
ally have margins for risk aversion added to them). Alter-

natively, Miltersen and Persson (2005) and Bayraktar and Young (2007) have suggested

using the market for endowment assuran
es for 
alibration purposes, sin
e these have a

similar pri
e stru
ture to longevity zeros. Unfortunately, Norberg (2010) showed how us-

ing se
urities dependent on the idiosyn
rati
 risk of individual lives, su
h as endowment

assuran
es, 
an lead to in
onsistent de�nitions of the forward mortality rates and so this

approa
h is not feasible.

Instead, we propose to use the histori
al data to model the dynami
s of the for
e of

mortality in the �histori
al� or �real-world� measure, P, using relatively simple APC

mortality models, as des
ribed in Se
tion 11.2.1. These real-world dynami
s of the for
e

of mortality 
an then be used to generate the forward surfa
e of mortality in the real-

world measure by using Equation 11.11. Then, in Se
tion 11.3.1, we show how to 
hange

from the real-world to a market-
onsistent measure, Q, using the Ess
her transform whi
h

is 
alibrated using whatever (limited) market information for longevity risk is available.

Thus, real-world data on histori
al mortality rates is used to supplement the limited

market data we have, and in
reasing volumes of market information 
an be in
orporated

into the forward mortality surfa
e as the market for longevity-linked se
urities develops.

11

It is also true for the valuation of annuities for reserving purposes, sin
e idiosyn
rati
 risk is not

allowed for in this 
ontext.
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11.2.3 Forward APC mortality models

Combining Equations 11.2 and 11.11, we de�ne forward mortality rates in the real-world

measure, P, as

νPx,t(τ) = EP
τ exp

(

αx + β⊤
x κt + γt−x

)

(11.12)

We assume that the age fun
tions are known with 
ertainty at time τ and therefore the

un
ertainty in future mortality rates 
omes from the proje
tion of κt andγt−x, i.e., the

forward mortality surfa
e only allows for pro
ess risk from the proje
tion of the period

and 
ohort fun
tions, in the terminology of Cairns (2000), but not parameter un
ertainty

or model risk. In the real-world measure, we �rst obtain �tted values of κt and γy by

�tting the APC model to the histori
al data. We then estimate the dynami
s of the time

series pro
esses for κt and γy from these �tted values.

If we further assume that our proje
ted κt and γy are normally distributed, then ηx,t

is also normally distributed and 
onsequently µx,t follows a log-normal distribution.

12

Therefore

νPx,t(τ) = exp

(

αx + β⊤
x E

P
τκt +

1

2
β⊤
xVar

P
τ (κt)βx + EP

τγt−x +
1

2
VarPτ (γt−x)

)

(11.13)

The assumption that proje
ted period and 
ohort parameters are normally distributed is

in line with the majority of studies, whi
h use standard ARIMA methods to proje
t these

parameters. If the proje
ted period and 
ohort parameters are not normally distributed,

however, it is unlikely that the resulting forward mortality framework would be analyti-


ally tra
table. This is be
ause the distribution of µx,t would not have the �nite moments

required. A number of studies have used alternative methods and distributions to make

proje
tions. These in
lude models whi
h allow for regime 
hanges (Milidonis et al. (2011)

and Lemoine (2014)) or trend 
hanges (Sweeting (2011) and Chapter 6) in the pro
esses

used to proje
t the parameters. Another approa
h has been to use other distributions

for the innovations in the time series pro
esses for the period or 
ohort fun
tions (su
h

as the t-distribution, the varian
e-gamma and the normal-inverse-gamma, whi
h were

used to model the innovations for κt in the Lee-Carter model in Wang et al. (2011)). In

some of these 
ases, it may be possible to extend the forward mortality rate framework

12

Note that, if we were using ηx,t = logit(qx,t) in 
onjun
tion with a binomial model for the death


ount, then qx,t would follow a �logit-normal� distribution (see Frederi
 and Lad (2008)). Unfortunately,

this is not analyti
ally tra
table and does not possess 
losed form expressions for the expe
tation.

Therefore, we are unable to de�ne a forward mortality framework in the logit-link fun
tion / binomial

death 
ount model as we 
an in the log-link fun
tion / Poisson death 
ount model.
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to allow for the non-Gaussian distributions. However, we do not 
onsider alternative

distributions for the proje
ted period or 
ohort fun
tions further within this study.

11.2.4 Proje
ting the APC model

11.2.4.1 Period fun
tions

Sin
e Lee and Carter (1992), the most 
ommon method used to proje
t the period fun
-

tions in an APC mortality model has been the random walk with drift. This was also

used for the CBD model in Cairns et al. (2006a), the period fun
tions in various mor-

tality models in Cairns et al. (2011a) and Haberman and Renshaw (2011), and the �rst

(dominant) period fun
tion in Plat (2009a).

The random walk model is attra
tive as it allows the period fun
tions to be non-stationary

with a variability that in
reases with time, giving biologi
ally reasonable

13

proje
tions

of the for
e of mortality.

In Chapters 3 and 4, we dis
uss how proje
ted mortality rates should not depend upon

the identi�ability 
onstraints used when �tting the model to data, and therefore that we

should use �well-identi�ed� proje
tion methods whi
h a
hieve this. In the 
ontext of the

random walk with drift model, this means we should proje
t the period fun
tions using

κt = µXt + κt−1 + ǫt (11.14)

where Xt is a set of deterministi
 fun
tions (�trends�) 
hosen to ensure identi�ability

and µ are the 
orresponding �drifts�.

14

For example, the 
lassi
 random walk with drift

pro
ess has a 
onstant trend, Xt = 1, with the �drift�, µ, found be regressing ∆κt on

this trend. Similarly, the random walk with linear drift introdu
ed in Chapters 4 and 6

has 
onstant and linear trends, Xt =
(

1, t

)⊤
, with the drifts found by regressing ∆κt

against Xt in a similar fashion.

13

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.

14

Note, we assume that the drifts µ are known at time τ and will not be re-estimated on the basis

of new information arising in the future. Therefore, the forward mortality framework des
ribed in this


hapter and in Chapter 12 does not allow for �re
alibration� risk as de�ned in Cairns (2013), i.e., the

risk 
aused by the un
ertainty in the drift. This risk is potentially substantial, as dis
ussed in Li et al.

(2004) and Li (2014). However, we leave the in
lusion of re
alibration risk to future work.
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The random drift model in Equation 11.14 is solved to give

κt = κτ + µχτ,t +

t
∑

s=τ+1

ǫs (11.15)

where χτ,t =
∑t

s=τ+1Xs. Note that, in the simplest 
ase where we use a 
lassi
 random

walk with drift to proje
t the period fun
tions, Xt = 1 and hen
e χτ,t = t − τ . We

assume

Eτǫt = 0

Covτ (ǫt, ǫs) = ΣIt−s

where It−s is an indi
ator variable taking a value of unity if t = s and zero otherwise.

This means that the innovations have zero mean and are independent a
ross di�erent

periods, i.e., they are white noise. In addition, we assume that the innovations are

normally distributed for the reasons dis
ussed above. From Equation 11.15, we �nd

EP
τ κt = κτ + µχτ,t (11.16)

VarPτ (κt) = (t− τ)Σ (11.17)

In an age/period mortality model without a 
ohort term, su
h as the Lee-Carter or CBD

model, allowing for the un
ertainty in the period fun
tions is su�
ient in 
onjun
tion

with Equation 11.13, to de�ne forward mortality rates in the real-world measure. How-

ever, more sophisti
ated mortality models often in
lude 
ohort terms, whose analysis is


onsiderably more 
ompli
ated, as we now see.

11.2.4.2 Cohort fun
tion

Most 
ommon te
hniques for proje
ting the 
ohort fun
tion use standard ARIMA pro-


esses, whi
h assume that there is a 
lear distin
tion between those 
ohort parameters

whi
h are estimated from histori
al data, whi
h are assumed to be known, and those


ohort parameters whi
h are proje
ted using some time series pro
ess. In the forward

mortality rate framework, we 
an see that this would lead to a sharp dis
ontinuity in the

forward mortality surfa
e. For many purposes, su
h as the valuation of longevity-linked

se
urities and liabilities, su
h a dis
ontinuity is 
learly undesirable.
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To illustrate this problem, 
onsider the 
ase where a (well-identi�ed) AR(1) pro
ess is

used to proje
t the 
ohort parameters

γy − βX̃y = ρ(γy−1 − βX̃y−1) + εy

where X̃y are deterministi
 fun
tions 
orresponding to the unidenti�able trends in the


ohort parameters,

15

and β are the 
orresponding regression 
oe�
ients (see Chapter 4).

Su
h a pro
ess would be solved to give

γy = ρy−Y (γY − βX̃Y ) + βX̃y +

y
∑

s=Y+1

ρy−sεs

for y ≥ Y , the year of birth of the last �tted 
ohort parameter.

16

The varian
e of this

pro
ess is

VarPτ (γy) =







0 if y ≤ Y

1−ρ2(y−Y )

1−ρ2
σ2

if y > Y

From Equation 11.13, we see that this would give a dis
ontinuity in the forward mor-

tality surfa
e at the interfa
e between the �tted and proje
ted 
ohort parameters. Su
h

a dis
ontinuity would give rise to pri
ing anomalies and therefore 
annot be permitted

in a well-designed forward mortality framework. Consequently, we must use alternative

pro
esses to proje
t the 
ohort parameters for use with forward mortality models.

In Chapter 6, we developed a Bayesian approa
h to over
ome this issue. This assumes

that all 
ohort parameters, γy, are random variables that are not fully observed until


ohort y is fully extin
t at time y+X. For observation times τ < y+X, we have partial

information based on observations of the 
ohort to date. This information is summarised

in the estimated 
ohort parameters, γy(τ), found by �tting the APC mortality model to

data to time τ . From the analysis in Chapter 6, we have

γy|Fτ ∼ N(M(y, τ), V (y, τ)) (11.18)

15

In general, these have a similar form to the deterministi
 fun
tions for the period parameters, Xt,

in Se
tion 11.2.4.1.

16

Typi
ally, 
ohort parameters for the last few years of birth are not estimated due to the la
k of data,

for instan
e, see Renshaw and Haberman (2006).
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where

Þτ−y,s ≡
s−1
∏

r=0

(1−Dτ−y+r) (11.19)

EP
τγy ≡ M(y, τ)

=
∞
∑

s=0

Þτ−y,sρ
s
[

Dτ−yγy(τ) + (1−Dτ−y+s)β(X̃y−s − ρX̃y−s−1)
]

(11.20)

VarPτ (γy) ≡ V (y, τ)

=

∞
∑

s=0

Þ

2
τ−y,s(1−Dτ−y+s)ρ

2sσ2
(11.21)

for y ≤ Y , where

M(y, τ) = ρy−Y
(

M(Y, τ)− βX̃Y

)

+ βX̃y (11.22)

V (y, τ) =
1− ρ2(y−Y )

1− ρ2
σ2 + ρ2(y−Y )V (Y, τ) (11.23)

for y > Y . In this,

• Dx is the proportion of a 
ohort assumed to still be alive by age x;

• ρ and σ2
are the auto
orrelation and varian
e of the AR(1) pro
ess assumed to be

driving the evolution of the 
ohort parameters;

• X̃y and β are the trends and drifts for the 
ohort parameters as de�ned above;

17

• γy(τ) are the estimates of the 
ohort parameters, �tted by the mortality model at

time τ ; and

• Fτ is the total information available at time τ , in
luding observations of the 
ohort

parameters up to year of birth y, i.e., {γυ(τ) υ ≤ y}.

In Chapter 6, it was shown that this framework allows the histori
al and proje
ted


ohort parameters to be treated 
onsistently, without any sharp dis
ontinuities in the

un
ertainty between them. It was also shown that these proje
tions are well-identi�ed,

in the sense that they do not depend upon the arbitrary identi�ability 
onstraints made

when �tting the model. In addition, it is shown in Chapter 12 that the Bayesian frame-

work allows us to update estimates of the 
ohort parameters over a one-year period to

proxy for the impa
t that new data would have on our parameter estimates, whi
h is es-

sential for risk management purposes. The Bayesian framework is therefore well adapted

17

Note that the drifts, β, depend upon the arbitrary identi�ability 
onstraints 
hosen. In pra
ti
e, we

therefore impose a set of identi�ability 
onstraints su
h that β = 0 to simplify matters 
onsiderably.
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for use in a forward mortality 
ontext, and we will use it for all APC mortality models

whi
h in
lude 
ohort parameters.

11.2.5 Estimation and proje
tion

The framework des
ribed in Se
tions 11.2.3 and 11.2.4 is very general and 
an be used

in 
onjun
tion with any APC mortality model for the for
e of mortality. To see this in

pra
ti
e, we 
onsider estimating the forward mortality rates on male data for the UK for

the period 1950 to 2011 and ages 50 to 100 from the Human Mortality Database (2014)

for �ve di�erent APC models:

1. the Lee-Carter (�LC�) model of Lee and Carter (1992);

2. the �CBDX� model dis
ussed in Chapter 3, whi
h extends the Cairns-Blake-Dowd

model of Cairns et al. (2006a) with a stati
 age fun
tion and uses a log-link fun
tion;

3. the �
lassi
 APC� model of Hob
raft et al. (1982) and others;

4. the �redu
ed Plat� (�RP�) model of Plat (2009a) dis
ussed in Chapter 4;

18

and

5. the model produ
ed by the �general pro
edure� (�GP�) in Chapter 9 for the data

des
ribed above.

These models have the forms

ln(µx,t) = α(LC)
x + β(LC)

x κ
(LC)
t (11.24)

ln(µx,t) = α(CBDX)
x + κ

(CBDX,1)
t + (x− x̄)κ

(CBDX,2)
t (11.25)

ln(µx,t) = α(APC)
x + κ

(APC)
t + γ

(APC)
t−x (11.26)

ln(µx,t) = α(RP )
x + κ

(RP,1)
t + (x− x̄)κ

(RP,2)
t + γ

(RP )
t−x (11.27)

ln(µx,t) = α(GP )
x +

3
∑

i=1

f (GP,i)(x)κ
(GP,i)
t + γ

(GP )
t−x (11.28)

where f (GP,1)(x) = 1, f (GP,2)(x) = (x− x2)
+
and f (GP,3)(x) = (x3 − x)+.19 The param-

eters in these models have been estimated by �tting the model to the UK population

data des
ribed above. These �tted parameters have, in turn, been used to estimate the

18

That is, the simpli�
ation of the main model dis
ussed in Plat (2009a) without the third, high-age

term or, equivalently, an extension of the CBDX model with a 
ohort term.

19

In this, the ages x2 and x3 in f (GP,2)(x) and f (GP,3)(x) are free parameters found by maximising

the �t to data, whi
h take the values x2 = 73 and x3 = 84 for the data in question. We also sele
t

age fun
tions whi
h are normalised so that

∑

x |βx| =
∑

x |f(x)| = 1. This involves either in
luding

normalisation 
onstants or 
hoosing age fun
tions whi
h are �self-normalising� in the sense of Chapter 3.

However, for 
larity, these are not shown, although they are taken into a

ount in the �tting algorithms.
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parameters of the time series pro
esses dis
ussed in Se
tions 11.2.4.1 and 11.2.4.2 for

κt and γy (if appli
able). Using these parameter estimates, we 
an 
al
ulate forward

mortality rate surfa
es in the real-world measure using Equation 11.12.

These models have been 
hosen to give a reasonable 
ross se
tion of the di�erent APC

mortality models whi
h 
ould be used in pra
ti
e. It should be noted that for most of

these models, we 
an use a 
onstant drift fun
tion in Equation 11.14 and the proje
tions

will be well-identi�ed. The ex
eption to this is the redu
ed Plat model, where the ran-

dom walk for κ
(RP,1)
t requires a linear drift in order to be well-identi�ed, as dis
ussed in

Chapter 4.

One of the advantages of the forward mortality rate framework des
ribed in this paper

is that it allows for 
onsisten
y between the model of the for
e of mortality and the

forward mortality surfa
e. Consequently, as a 
he
k, we 
ompare these forward surfa
es

of mortality for ea
h model to the mean mortality rates 
al
ulated using Monte Carlo

simulations (shown in Figure 11.1 for the GP model) and �nd that the small di�eren
e

between the two is explained by sampling error in the simulations.

2010 2015 2020 2025 2030 2035 2040 2045 2050
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Year

 

 

νP
65,t

 (2011)

EP
2011

 µ
65,t

Figure 11.1: Di�eren
e between forward mortality rates and those obtained from

Monte Carlo simulations using the GP model
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11.3 Pri
ing se
urities and the market pri
e of longevity

risk

11.3.1 The market-
onsistent measure

In Se
tion 11.2.4, we 
al
ulated mortality forward rates using the time series pro
esses

estimated from the �tted parameters. This means that the expe
tations in Equation

11.13 were 
al
ulated in the histori
al, real-world measure, P.

It is obviously important that longevity-linked se
urities pri
es are 
onsistent a
ross dif-

ferent types of se
urity in order to limit the potential for pri
ing anomalies and arbitrage

opportunities in the market. In addition, modern solven
y regimes require that liability

values and te
hni
al provisions for pension s
hemes and insurers must also be 
onsistent

with market pri
es. Identifying a suitable market-
onsistent measure, Q, is therefore a


riti
al 
omponent of the forward mortality framework.

The starting point of modern �nan
ial theory is to assume that the �nan
ial markets

are �
omplete� in the sense that every �nan
ial 
laim in them 
an be hedged perfe
tly

using tradable assets. In 
omplete markets, the market-
onsistent measure exists and

is unique. Derivative se
urities in 
omplete markets 
an be perfe
tly repli
ated using

these underlying se
urities without risk (and hen
e these measures are also referred to as

�risk-neutral�) and the 
osts of these hedging strategies give the derivatives their unique

pri
es. Complete markets are also free from arbitrage, sin
e all pri
es 
an be derived

using these underlying hedging strategies and any deviation from these pri
es will be

arbitraged away by informed investors. The assumption of market 
ompleteness is a

reasonable one in many 
ontexts, su
h as developed markets for equities and interest

rates in large and advan
ed e
onomies.

However, the market for longevity risk is not 
omplete. Not only are there insu�
ient

tradable longevity-linked se
urities to fully repli
ate all �nan
ial 
laims, there are al-

most no longevity-linked se
urities being a
tively traded, full stop. Therefore, de�ning a

market-
onsistent measure for longevity risk is a major problem for all mortality models

whi
h seek to pri
e longevity-linked se
urities.
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Some studies, for instan
e S
hrager (2006), assume a priori that any market will be

risk-neutral with respe
t to longevity risk and therefore that the histori
al and market-


onsistent measures are equal. We believe this is unlikely, given that any market in

longevity risk is likely to be dominated by parties whi
h su�er �nan
ially from rising life

expe
tan
y (see Loeys et al. (2007)) and therefore will be generally seeking to hedge the

risk of future improvements in mortality rates.

In light of this absen
e of information, Barrieu et al. (2012, p. 224) suggested that

the real-world measure must play a key role in the de�nition of any market-
onsistent

measure:

What will be a good pri
ing measure for longevity? It is expe
ted that the

histori
al probability measure will play a key role, due to the reliable data

asso
iated with it. Therefore, it seems natural to look for a pri
ing probability

measure equivalent to the histori
al probability measure. Important fa
tors

to 
onsider are that a relevant pri
ing measure must be: robust with respe
t

to the statisti
al data, and also 
ompatible with the pri
es of the liquid assets

quoted in the market. Therefore, a relevant probability measure should make

the link between the histori
al vision and the market vision. On
e the subsets

of all su
h probability measures that 
apture the desired information are

spe
i�ed, a sear
h 
an 
ommen
e for the optimal example by maximising the

likelihood or the entropi
 
riterion.

We agree with this analysis, and use the Ess
her transform to de�ne a market-
onsistent

measure that is equivalent to the real-world measure and that satis�es many of these

desirable properties. This transformation is relatively parsimonious, with a small num-

ber of free parameters whi
h 
an be 
alibrated using any market information we possess.

Below, we further show that the Ess
her transform gives us 
losed form expressions for

the market-
onsistent forward mortality rates as shown below, and therefore is relatively

straightforward to implement and robust to 
alibrate to data.

The Ess
her transform has often been used in se
urities pri
ing in imperfe
t markets

sin
e the work of Gerber and Shiu (1994). As dis
ussed in Kijima (2005), it is related to

other widely used distortion methods for adjusting to a risk-neutral measure, su
h as the

the Wang transform (developed in Wang (2000, 2002) and Cox et al. (2006), and used in

Denuit et al. (2007) for example), and the Sharpe ratio in modern �nan
ial theory (used

in Milevsky et al. (2005) and Loeys et al. (2007)). It is also 
onsistent with pri
ing in the

real-world measure for an individual with an exponential utility fun
tion, as dis
ussed in
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Milidonis et al. (2011).

For a risk Xx,t in the P measure, the general Ess
her transform to the Q measure 
an be

de�ned by

EQXx,t =
EP [Xx,t exp(−Zx,t)]

EP exp(−Zx,t)
(11.29)

where Zx,t is a random variable 
ontaining the parameters de�ning the market-
onsistent

measure.

In the 
ontext of mortality forward rates, we 
hoose Xx,t = µx,t = exp(ηx,t) and 
orre-

spondingly de�ne

Zx,t = λ⊤κt + λγγt−x (11.30)

where λ is an (N ×1) 
olumn ve
tor. Hen
e, there are N +1 parameters (whi
h we refer

to 
olle
tively as λ(j), j ∈ {1, . . . N, γ}), whi
h 
orrespond to the N age/period terms

(in the ve
tor λ), and the 
ohort term (with single parameter λ(γ)
) in the general APC

mortality model in Equation 11.2. It is important to note that the values found for

these parameters will depend upon the spe
i�
s of the underlying model, and so are not


omparable between di�erent models.

Due to the pau
ity of genuine market information to pri
e longevity risk, one might have

a natural in
lination to prefer simpler models, su
h as the LC model (whi
h has only

one free parameter for the Ess
her transform). Su
h models 
ould be felt to be more

parsimonious, having fewer market pri
es for longevity risk and therefore requiring fewer

market pri
es for longevity-linked se
urities in order to 
alibrate the market-
onsistent

measure. For example, 
alibrating the LC model would require only one market pri
e

in order to 
alibrate the market-
onsistent measure, whilst 
alibrating the GP model in

Se
tion 11.2.5 requires four market pri
es. Using overly simple models, however, would

be a mistake whi
h 
an lead to unreasonable pri
es for other longevity-linked se
urities

as shown in Se
tion 11.3.3.
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Using the Ess
her transform with Equation 11.11 and this de�nition for Zx,t gives

ν
Q
x,t(τ) = EQ

τ µx,t

= EQ
τ exp(ηx,t)

=
EP

τ exp(−Zx,tηx,t)

EP
τ exp(−Zx,t)

=
EP

τ exp(αx + (βx − λ)⊤ κt + (1− λγ)γt−x)

EP
τ exp(−λ⊤κt − λγγt−x)

= exp

(

αx + β⊤
x E

P
τ κt +

1

2
β⊤
xVar

P
τ (κt)βx + EP

τ γt−x

+
1

2
VarPτ (γt−x)−

1

2
β⊤
xVar

P
τ (κt)λ− 1

2
λ⊤VarPτ (κt)βx − λγVarPτ (γt−x)

)

= exp
(

−β⊤
xVar

P
τ (κt)λ− λγVarPτ (γt−x)

)

νPx,t(τ) (11.31)

due to the symmetry of VarPτ (κt).

This gives us 
losed-form expressions whi
h allow us to adjust the forward mortality rates

in the real-world measure to a market-
onsistent measure. The existen
e of 
losed-form

expressions is why we argued that the Ess
her transform neatly 
omplements the forward

mortality framework: these results 
ould not have been a
hieved with alternative trans-

formations to the market-
onsistent measure. Sin
e we have already found expressions

for VarPτ (κt) and VarPτ (γy), transforming the forward mortality surfa
e in the real-world

measure into a market-
onsistent measure is simply a matter of �nding the values of free

parameters of the Ess
her transform. This 
an be done if we have su�
ient pri
es for

longevity-linked se
urities, as dis
ussed in Se
tion 11.3.2 below.

Through the analogy with utility pri
ing and the Sharpe ratio, we refer to the parameters

of the Ess
her transform as the �market pri
es of longevity risk� asso
iated with ea
h of

the age/period and 
ohort terms. For this analogy to be reasonable, we would anti
ipate

that the parameters, λ(j)
, should be positive. However, this is not ne
essarily the 
ase

in the forward mortality framework, for the following reasons.

As dis
ussed in Loeys et al. (2007), we anti
ipate that the marginal parti
ipant in the

market for longevity-linked se
urities will be a life insurer seeking to hedge longevity risk.

Su
h a life insurer will be averse to longevity risk, and so, we would expe
t the market-


onsistent forward mortality rates to be lower than those in the real-world measure

ν
Q
x,t(τ) ≤ νPx,t(τ)
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In order for this to be true,

exp
(

−β⊤
xVar

P
τ (κt)λ− λγVarPτ (γt−x)

)

≤ 1

⇒ β⊤
xVar

P
τ (κt)λ+ λγVarPτ (γt−x) ≥ 0

Sin
e VarPτ (κt) is a positive de�nite matrix and VarPτ (γy) ≥ 0, this will 
ertainly be true

if λγ > 0 and the elements of λ are also positive. However, individual market pri
es

of longevity risk 
an be negative, whilst still ensuring that hedgers pay a positive pri
e

to transfer longevity risk overall. Sin
e some market pri
es 
an be negative, the term

�market pri
es� might be 
onsidered misleading. Although we shall refer to these pa-

rameters as market pri
es in this 
hapter and in Chapter 12, it should be borne in mind

that they are probably best thought of as simply parameters in the Ess
her transform

in Equation 11.29 rather than true market pri
es of longevity risk based on an expe
ted

utility approa
h (su
h as that dis
ussed in Zhou et al. (2015)).

The Ess
her transform approa
h has some other pra
ti
al advantages, beyond the exis-

ten
e of 
losed-form expressions for the forward mortality rates. The forward mortality

surfa
e in the real-world measure will be updated only infrequently, typi
ally on
e ev-

ery year when new mortality data is released. However, market information will need

to be updated far more frequently, espe
ially as the market for longevity-linked se
uri-

ties develops. It is desirable in pra
ti
e to be able to take the (infrequently 
hanging)

P-measure forward mortality surfa
e and make relatively simple adjustments to this to

re�e
t 
hanging market information, rather than having to re-estimate the model 
om-

pletely every time the pri
ing information 
hanges.

However, a limitation of the forward mortality framework outlined in this study is that

it is 
urrently unable to pri
e longevity-linked se
urities with optionality, for example,

a 
all option on mortality rates. In order to do this, the dynami
s of mortality rates

in the market-
onsistent measure would need to be spe
i�ed, in addition to simply the

expe
tation, EQ
τ µx,t. We leave the extension of the forward mortality framework to the

in
lusion of longevity-linked options to future work.

We also note that, looking solely at the age/period terms, Equations 11.16 and 11.17

imply

β⊤
x E

P
τκt + β⊤

xVarτ (κt)λ = β⊤
x [κτ + µχτ,t + (t− τ)Σλ]

= β⊤
x [κτ + µ̂χτ,t]
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sin
e t − τ is always one of the deterministi
 fun
tions in χτ,t. Hen
e, we see that for

an age/period model su
h as the LC and CBDX models, the Ess
her transform to the

market-
onsistent measure is equivalent to making an adjustment to the drift of the

random walk in Equation 11.14. In this form, the use of the Ess
her transform 
an

be 
ompared with some of the other approa
hes that have been suggested in previous

studies. For instan
e, Loeys et al. (2007) suggested that the pri
e of a q-forward should

be 
al
ulated as

qf = (1− (t− τ)λ̃σ2)qe

where σ2
is de�ned as the annual volatility of the mortality rate, i.e., σ2 = VarP(ln q).

We 
an 
ompare this pri
ing formula to what our forward mortality framework would

give were we to use the LC model as the underlying mortality model. This has one period

fun
tion, κt, with one asso
iated market pri
e of risk, λ. From Equation 11.31 applied

to the LC model, we �nd

ν
Q
x,t(τ) = exp (−(t− τ)βxΣλ) ν

P
x,t(τ)

We 
an therefore see that the pri
ing formula in Loeys et al. (2007) is similar in form

to Equation 11.31, although based on forward 
ontra
ts on probabilities of death, qx,t,

rather than the longevity-zeros whi
h are used as the underlying se
urities in this study.

Cairns et al. (2006a) adjusted the drift of the random walk used to proje
t the pe-

riod fun
tions dire
tly, in order to in
orporate market pri
es for longevity risk without

re
ourse to the Ess
her transform

µQ = µP − Cλ̃

where CC⊤ = Σ and λ is a ve
tor of the market pri
es of risk. If su
h an approa
h were

to be used for the CBDX model in a forward mortality rates framework su
h as above,

we would �nd market-
onsistent forward mortality rates

νQx,t(τ) = exp
(

−(t− τ)β⊤
x Cλ̃

)

νPx,t(τ)

Therefore, we see that the approa
h used in Cairns et al. (2006a) is equivalent to that

used in this study, ex
ept using Cλ̃ instead of Σλ. Equating these gives

Cλ̃ = Σλ

λ̃ = C⊤λ
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Hen
e, the more rigorous forward mortality framework de�ned in this study a
hieves

results whi
h are 
onsistent with those of Cairns et al. (2006a), but is also able to justify

the otherwise ad ho
 adjustments to the drift made in that study.

11.3.2 Calibration of the market-
onsistent measure

As has been mentioned previously, a major problem with forward mortality models is

the la
k of market information to spe
ify the market-
onsistent measure. An advantage

of using the forward mortality framework des
ribed in this study is that, rather than

requiring su�
ient market pri
es to de�ne the full forward mortality surfa
e, we require

only N + 1 pri
es to uniquely spe
ify the market pri
es of longevity risk used in the

Ess
her transform. This substantially redu
es the market information required.

However, even this simpli�
ation is unlikely to be adequate at present, given the pau
ity

of traded longevity-linked se
urities. Many of those whi
h do exist, su
h as the extreme

mortality bonds listed in Lane (2011), are not suitable as they involve options on mor-

tality rates whi
h 
annot be pri
ed using the forward mortality framework in its 
urrent

state of development. For illustrative purposes, we will demonstrate how the forward

mortality rate framework 
ould be 
alibrated with respe
t to the sort of information

whi
h is available 
urrently or is likely to be available in the foreseeable future, and how

this �external� market in longevity risk 
ould be supplemented by use of an �internal�

market for longevity risk based on the assumptions used to value and reserve for longevity

risk within a life insurer.

20

11.3.2.1 External market

A number of �external� markets exist for produ
ts whi
h depend upon longevity, for in-

stan
e the markets for endowment assuran
es and individual annuities. These were used

to provide market information for pri
ing longevity risk in Bayraktar and Young (2007)

and Bauer et al. (2008). However, both of these produ
ts are sold to individuals, and

therefore are subje
t to idiosyn
rati
 mortality risk as well as systemati
 longevity risk,

whi
h makes them unsuitable for use in a forward mortality rate framework, as dis
ussed

by Norberg (2010). Furthermore, insurers will in
lude loadings for expenses and other

risks, in addition to longevity risk when pri
ing these produ
ts, whi
h makes using them

20

In a sense, the di�eren
e between the external and internal markets for longevity risk 
ould be


ompared to the di�eren
e between using mark-to-market and mark-to-model valuation methods when

valuing se
urities in 
ompany a

ounts, depending upon whether deep and liquid markets exist for them.
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to 
alibrate a forward mortality model problemati
.

Instead, any forward mortality model will need to be 
alibrated using se
urities depen-

dent on aggregate mortality rates (preferably from national populations) rather than

those that are sold to individuals. Su
h se
urities are also more likely to be traded,

thereby giving informed and responsive market pri
es. The problem remains, however,

that there is 
urrently no a
tively-traded market in su
h se
urities whi
h 
an be used to

provide the pri
ing information required to 
alibrate the market-
onsistent measure.

To date, probably the most a
tive market in longevity-linked se
urities has been that for

bespoke longevity swaps (see Chapter 10). A longevity swap is an agreement between

two parties to swap a series of 
ash�ows - a �xed leg based on the best estimate of the

survivorship of a 
ohort but then in
reased by a 
onstant per
entage (the swap margin)

and a �oating leg based on the a
tual survivorship observed for the 
ohort. A bespoke

longevity swap is one whi
h is tailored to the 
hara
teristi
s of a spe
i�
 population

su
h as a pension s
heme. As su
h, bespoke longevity swaps are unlikely to be widely

traded, and a
t more as 
ustomised reinsuran
e 
ontra
ts than standardised longevity-

linked se
urities whi
h 
ould form the basis for a market in longevity risk. In 
ontrast,

an index-based swap, su
h as that des
ribed in Dowd et al. (2006b), is one where the


ohort in question is from a national population. Although index-based longevity swaps

have not yet been widely traded, the development of the bespoke longevity swap market

to date implies that, if a market in longevity risk does develop in the near future, it is

likely that index-based swaps will form a key 
omponent of it.

For illustrative purposes, we therefore assume the existen
e of a single index-based

longevity swap, whi
h we believe might be typi
al of the sort of se
urity whi
h may

be traded during the early stages of the development of an external market in longevity-

linked se
urities. We assume that this index-based longevity swap has been written on a

standard 
ohort of men in the UK aged 65 in 2011 and has a term of 35 years (i.e., until

the 
ohort is aged 100). The �oating leg of this swap will therefore have the value

35
∑

t=1

tP
Q
65,τ (τ)B(τ, τ + t)

i.e., the same pri
e as a series of the longevity zeros dis
ussed in Se
tion 11.2.2. The

�xed-leg 
ash�ows will re�e
t a typi
al �best estimate� agreed between the 
ontra
ting

parties when the swap is initiated. For illustrative purposes, we assume these 
ash�ows

are set by 
al
ulating the survivorship of the referen
e 
ohort using the �tted mortality
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rates in τ = 2011 proje
ted using the �CMI Proje
tion Model� (Continuous Mortality

Investigation (2009a,b, 2013)) with a �long-term rate of improvement� assumption of

1.5% p.a..

21

We denote the survival probabilities of the referen
e 
ohort from time τ

to τ + t using this assumption as tP̃65,τ (τ). While there is 
urrently no a
tive market

in index-based swaps, this assumption is typi
al of those used to de�ne the �xed leg of

bespoke longevity swaps in our experien
e. These 
ash�ows are then in
reased by a swap

premium of 4%, whi
h is a typi
al level on bespoke swaps in our experien
e.

The pri
e of the swap is therefore

35
∑

t=1

(

tP
Q
65,τ (τ)− 1.04 tP̃65,τ (τ)

)

B(τ, τ + t) (11.32)

and will be zero at time τ . We therefore 
alibrate the market pri
es of risk to impose

this using standard numeri
al optimisation algorithms. In these 
al
ulations, we assume

a �at real yield of 1.0% p.a. for the zero-
oupon bond pri
es, B(τ, τ + t)

For models with only one sour
e of risk (for instan
e, the LC model), this single, external

pri
e is su�
ient to spe
ify the single market pri
e of longevity risk uniquely. For more


ompli
ated models, with multiple risk sour
es, we require additional pri
es in order to

spe
ify the market pri
es of longevity risk.

11.3.2.2 Internal market

We observe that, while genuine market information is in s
ar
e supply, many insuran
e


ompanies will e�e
tively have an internal market for longevity risk due to the 
ross-

subsidies between di�erent lines of business with di�erent exposures to longevity risk.

For instan
e, an insurer whi
h writes both annuity and life assuran
e lines of business

has, de fa
to, established an internal market for longevity risk due to the presen
e of

natural hedging between the two lines of business, as dis
ussed in Cox and Lin (2007).

The �pri
e� of longevity risk in this internal market will �nd expression in the mortality

improvement assumptions used in the pri
ing and reserving for these di�erent lines of

business. It is therefore natural to use these �internal� market signals to supplement

21

The use of the CMI Proje
tion Model in this 
ontext is purely illustrative and should not imply that

we believe that this is the best model to use for pri
ing longevity-linked se
urities, although it is typi
al

of what has been used in pra
ti
e in our experien
e.
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those 
oming from the genuine external market if there are insu�
ient traded longevity-

linked se
urities to de�ne the market-
onsistent measure.

Alternatively, an insurer may develop an �internal� pri
e for longevity risk by analysing

the 
ost of longevity reinsuran
e via bespoke longevity swaps. Although these 
ontra
ts

do not solely transfer longevity risk, sin
e they also transfer basis and idiosyn
rati
 risks,

they 
ould still give some indi
ation of a pri
e for the systemati
 longevity risk present,

and so be used to 
alibrate the market-
onsistent measure.

For example, we assume that the forward mortality framework is being used by an organ-

isation with an internal, deterministi
 assumption that 
onstitutes their �house view� of

mortality improvements. This house view would then feed through into the assumptions

used in pri
ing and reserving, and inform those assumptions that are used for a

ounting

and regulatory purposes if there is su�
ient �exibility in how these are set. The existen
e

of su
h a house view would therefore determine the organisation's appetite for longevity

risk a
ross multiple lines of business and so underpin the �internal� market for longevity

risk.

To illustrate the sort of internal market that might be 
onsidered typi
al, we assume

a house view that mortality rates improve in line with the proje
tions from the CMI

Proje
tion Model with a long-term rate of improvement of 1.75%.

22

Again, this is in line

with the sort of assumptions used to reserve for and pri
e annuity business in the UK in

our experien
e. In order to translate this house view into the market pri
es of longevity

risk in our forward mortality framework, we try to minimise the (weighted) relative

distan
e between the surfa
e of probabilities of dying given by the internal assumption,

q̃x,t, and those given the forward mortality surfa
e in the Q-measure

Qx,t(τ) = 1− exp
(

−νQx,t(τ)
)

22

This value of 1.75% 
an be 
ompared with the assumption of a long-term rate of improvement of

1.5% used for the �xed leg of the index-based longevity swap above. The long term rate of improvement

is likely to be higher on an annuity reserving basis than for valuing a longevity swap, sin
e it is 
ommon

pra
ti
e, in our experien
es, for annuity providers to in
lude an impli
it margin for pruden
e in their

mortality proje
tion. In 
ontrast, the assumption used in a longevity swap typi
ally re�e
ts a best

estimate of future mortality improvements and risk is expli
itly allow for via the swap premium rather

than an impli
it margin in the mortality assumption.
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at 
ertain key ages, subje
t to the swap also being pri
ed fairly at time, τ , i.e.,

min
λ

∑

t,x∈X
B(τ, τ + t)

(q̃x,t −Qx,t)
2

q̃x,t

subje
t to Equation 11.32 = 0

where X = {50, 55, 60, 65, 70, 75, 80}. This pro
edure is equivalent to determining the

market-
onsistent measure by referen
e to an external market in q-forwards, as proposed

in Coughlan et al. (2007b) and dis
ussed in Se
tion 11.3.3.2 below, if su
h as market

existed. We 
onsider these key ages partly to ensure that the forward mortality surfa
e

in the market-
onsistent measure is biologi
ally reasonable over a wide age range and

be
ause, if a market in q-forwards does emerge, it is at these ages where the market

is likely to be most liquid (see Li and Luo (2012)). Therefore, the use of the internal

market for longevity risk is simply a proxy for information from an external market for

longevity risk, and will be supplanted should a genuine external market develop.

We use these assumptions for the external and internal markets for longevity risk in

order to 
alibrate the parameters of the Ess
her transform for all �ve models des
ribed

in Se
tion 11.2.5. These parameters, along with the forward mortality surfa
es obtained

in Se
tion 11.2.5, allow us to 
onstru
t the forward mortality surfa
e in the market-


onsistent measure, whi
h 
an then be used to value other longevity-linked liabilities

and se
urities in a market-
onsistent fashion.

11.3.3 Pri
ing longevity-linked se
urities

The forward mortality framework des
ribed above provides a single surfa
e of forward

mortality rates, 
alibrated from all the available information on longevity-linked se
u-

rities. It 
an, therefore, be used to value any other longevity-linked se
urities and give

pri
es 
onsistent with those observed. We demonstrate this for a range of di�erent

longevity-linked se
urities below.

11.3.3.1 Survivor derivatives

Longevity zeros and s-forwards

In Se
tion 11.2.2, we de�ned the forward mortality rates assuming the existen
e of a

market in longevity zeros. These were used as they are the fundamental se
urities de-

pendent upon the survivorship of a 
ohort of individuals, and 
an be used to 
onstru
t
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more 
ompli
ated survivor se
urities su
h as annuities and longevity swaps, as dis
ussed

below. Related to longevity zeros are �s-forwards�, as proposed in Dowd (2003), Blake

et al. (2006) and the Life and Longevity Markets Asso
iation,

23

whi
h are forward 
on-

tra
ts de�ned on a longevity zero (and hen
e are more 
apital e�
ient).

From Equation 11.7, we 
an see that

Sx,t(τ) = tP
Q
x,τ = exp

(

−
t
∑

u=1

ν
Q
x+u,τ+u(τ)

)

where Sx,t(τ) is the forward pri
e of an s-forward at time τ , de�ned on a 
ohort aged x

at τ , with a maturity of t years. Figure 11.2 shows s-forward pri
es de�ned on the 
ohort

of individuals aged 65 in 2011 with di�erent maturities.
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Figure 11.2: S-forward pri
es for �ve di�erent mortality models

As 
an be seen, most of the models give broadly 
omparable s-forward pri
es, espe
ially

those 
alibrated using the internal market information. We note that the LC model gives

s-forward pri
es whi
h are slightly di�erent from these models, with higher probabilities

23

http://www.llma.org/
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of survival over the �rst few de
ades followed by a period of higher mortality rates (and

hen
e a steeper gradient for the 
urve), but these are still biologi
ally reasonable.

Annuities

The most relevant longevity-linked instruments for many life insuran
e 
ompanies are

annuities. For the reasons dis
ussed in Se
tion 11.3.1 and Norberg (2010), individual an-

nuities 
annot be used to 
alibrate the forward mortality surfa
e in the market-
onsistent

measure, sin
e the 
ash�ows of these instruments are expli
itly linked to the survivor-

ship of a named individual and, hen
e, their pri
es in
lude an allowan
e for individual

mortality risk. In addition, they are not traded, and, therefore, 
annot provide timely

information on their values. However, when a life insurer reserves for a book of annuities,

the idiosyn
rati
 mortality risks are diversi�able and so are not in
luded in the value of

any spe
i�
 annuity but through the additional 
apital required for the book.

24

In ad-

dition, modern solven
y regimes, su
h as Solven
y II, require the best estimate of the

liabilities in respe
t of annuity poli
ies to be 
al
ulated using market-
onsistent assump-

tions. Therefore, the market-
onsistent forward framework 
ould, potentially, be used

as the basis for an insurer's �internal model� under Solven
y II, as dis
ussed in EIOPA

(2014).

25

The value of an annuity 
an be dire
tly 
onstru
ted from a portfolio of longevity zeros

using

ax(τ) =

∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (11.33)

To 
al
ulate the values of longevity zeros beyond the maximum age in our data, we use

the topping out pro
edure of Denuit and Goderniaux (2005). We therefore see that annu-

ity values are very 
losely related to the swap pri
e given in Equation 11.32.We 
al
ulate

annuity pri
es

26

for men at di�erent ages in 2011 using the �ve di�erent models, and the

results are shown in Figure 11.3.

24

There will therefore be a distin
tion between the pri
e an annuity is sold to the publi
 for and the

amount it is reserved for by the life insurer, with the additional margin for idiosyn
rati
 mortality risk


harged to the individual forming part of the pro�t margin of the produ
t.

25

This is dis
ussed further in Chapter 12.

26

Annuities are valued using a real dis
ount rate of 1% p.a..
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Figure 11.3: Annuity values for �ve di�erent mortality models

We 
an see from this that the di�erent models give broadly similar annuity values. This

is not surprising given that they all use the same external market information (i.e., the

swap pri
e) in order to 
alibrate the market-
onsistent measure. Indeed, all the mod-

els give exa
tly the same value for an annuity at age 65, sin
e this is determined by the

swap pri
e we have assumed and an annuity is equivalent to the �oating leg of a longevity

swap. However, the annuity values given by di�erent models diverge slightly as we move

away from this �xed referen
e point, with the LC model giving lower annuity values at

higher ages than the other models.

Index-based longevity swaps

We 
an also use these results to investigate the potential pri
ing of index-based longevity

swaps at di�erent ages. Extending the de�nition of the swap value in Equation 11.32 for

di�erent ages to

0 =

35
∑

t=1

(

tP
Q
x,τ (τ)− (1 + π) tP̃x,τ (τ)

)

B(τ, τ + t) (11.34)
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we 
an use the same �best estimate� assumption based on the CMI Proje
tion Model for

the �xed legs of the swaps, to 
al
ulate the implied swap premium, π, on index-based

longevity swaps at di�erent ages. The implied swap premiums are shown in Figure 11.4.
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Figure 11.4: Swap premiums for �ve di�erent mortality models

As 
an be seen, the behaviour of the swap premium depends strongly upon the model

being used. For the 
lassi
 APC, RP and GP models, whi
h in
lude a 
ohort term,

the swap premium slightly in
reases with age, from around 3% at age 60 to around 6%

between ages 75 and 80 (note that a value of 4% was assumed at age 65). Swap premi-

ums in the CBDX model are relatively high at the youngest ages (5.5% at age 60) and

de
rease slowly with age, to around 3% at age 75. However, for all of these models, the

swap premium remains positive and do not appear unreasonable at any age.

In 
ontrast, the LC model gives swap premiums whi
h de
rease rapidly with age, giving

negative swap premiums at higher ages (i.e., a premium would be paid to re
eive the

�oating payments on the swap) whi
h does not appear reasonable. This is be
ause the

LC model gives relatively low values for annuities at higher ages - lower than would be

found using the deterministi
 CMI Proje
tion Model. We therefore see that there is a

trade-o�. On the one hand, we would like to use simple models whi
h have relatively
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few free parameters and so are simple to 
alibrate from sparse data (and, in parti
ular,

would avoid the use of an internal market for longevity risk). On the other hand, we also

need to obtain plausible pri
es for di�erent longevity-linked liabilities and se
urities and

a
ross a wide range of ages.

11.3.3.2 Other longevity-linked se
urities

A number of other longevity-derivatives not based on the survivorship of a 
ohort have

been proposed, and these 
an also be valued using the forward mortality framework pro-

posed here. A number of these are illustrated below. However, the important point to

note is that any se
urity whi
h does not have a non-linear payo� (i.e., whi
h is not an

option) 
an be valued using the forward mortality framework proposed in this study.

q-forwards

Forward 
ontra
ts on future probabilities of death, known as �q-forwards�, were in-

trodu
ed in Coughlan et al. (2007b) represent another, distin
t, family of potential

longevity-linked se
urities. There have been a number of hedging transa
tions using

q-forwards, as dis
ussed in Blake et al. (2013), and so q-forwards are one of the major


ontenders to form the basis of a traded market for longevity risk if it develops. In

addition, the internal market assumption, used in Se
tion 11.3.2 to 
alibrate all of the

models other than the LC model, impli
itly makes use of a market for q-forwards, albeit

one that is internal to the life insurer rather than an externally traded market.

Values for q-forwards at age 75 and di�erent maturities, 
al
ulated using the forward

mortality models, are shown in Figure 11.5, along with the qx,t values proje
ted using

the CMI Proje
tion Model. For the models whi
h used the internal market assumption

to 
alibrate the market-
onsistent measure, we see that the q-forward values are broadly


onsistent with those from the CMI Proje
tion Model. However, they are not identi
al,

sin
e the 
alibration pro
ess also has to mat
h the swap pri
e exa
tly and minimise the

di�eren
e in q-forward pri
es at ages other than 75. However, be
ause the GP model

has more market pri
es of risk to 
alibrate, it a
hieves a slightly 
loser �t to the internal

market assumption than the other models, in
luding the 
ohort e�e
t observed around

2025 (i.e., for 
ohorts born around 1950).
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Figure 11.5: q-forward pri
es at age 75 for �ve di�erent mortality models

In 
ontrast, the LC model gives q-forward values whi
h are very di�erent from those

of the other models, with implausibly rapid de
reases in q-forward values. Again, this

is be
ause, with a single market pri
e for longevity risk, the LC model has to severely

distort the forward mortality surfa
e in the real-world P-measure in order to pri
e the

longevity swap. It 
annot ensure that mortality rates a
ross a wide range of other ages

and years behave in a plausible fashion in the market-
onsistent measure. We therefore

see that more sophisti
ated underlying APC mortality models, as well as being able to

in
orporate pri
ing information from a wider range of sour
es, will also tend to give more

biologi
ally-reasonable forward surfa
es for mortality in the market-
onsistent measure.

e-forwards

Period life expe
tan
y is a very 
ommonly used aggregate measure of mortality rates,

sin
e it 
an be 
al
ulated easily from observed data and 
an be 
ompared a
ross di�erent

populations. It is, therefore, natural to 
onsider its use as an index for longevity risk

transfer, based on the suggestion of Denuit (2009). In parti
ular, we 
onsider a market
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in forwards on period life expe
tan
y, whi
h we refer to as �e-forwards� (from the demo-

graphi
 symbol for period life expe
tan
y). Using the forward mortality framework, we


al
ulate forward period life expe
tan
ies as

E65,t(τ) = 0.5 +

∞
∑

u=1

exp

(

−
u
∑

v=1

ν
Q
65+v,t(τ)

)

Figure 11.6 shows the forward period life expe
tan
ies at age 65 from ea
h of the �ve

models in the market-
onsistent measure.
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Figure 11.6: Period life expe
tan
ies at age 65 for �ve di�erent mortality models

We note that all of the models give forward period life expe
tan
ies whi
h 
an be 
on-

sidered biologi
ally reasonable and 
onsistent with the �ndings of Oeppen and Vaupel

(2002), i.e., that they in
rease roughly linearly. Life expe
tan
ies from the LC model

in
rease slightly faster than the other models, whi
h otherwise give broadly 
onsistent

forward values. This is be
ause of the use of the internal market to 
alibrate these other

models, ensuring greater 
onsisten
y between their forward mortality surfa
es.

k-forwards
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In Chapter 8, we dis
ussed how the indi
es based on the observed rates of improvement

in mortality rates, su
h as the indi
es whi
h were de�ned in the 
onstru
tion of the

Swiss Re Kortis bond, 
ould potentially form the basis for a market in longevity risk.

Improvement rates may be a natural basis for a market in longevity, as they are often

used by a
tuaries to express long term assumptions regarding the evolution of mortality

rates. Building on this, we also 
onsider the forward value of the index for men in the

UK de�ned by

Kt(τ) =
1

11

85
∑

x=75



1−
[

ν
Q
x,t(τ)

νQx,t−8(τ)

]
1
8





This index was 
onstru
ted to measure the average rate of improvement in mortality

rates between ages 75 and 85 for men in the UK and so 
ould be used for hedging or

transferring longevity risk in a portfolio of annuities. Unlike the Kortis bond, however,

we only 
onsider an index 
onstru
ted for a single population (i.e., men in the UK) rather

than the di�eren
e between two populations, and only 
onsider pri
ing the index rather

than an option on the index.

27

In Chapter 8 it was suggested that forward 
ontra
ts based on this Kortis index 
ould

form the basis of a market in longevity risk. We refer to su
h 
ontra
ts as �k-forwards�

in the same manner at q-, s- and e-forwards dis
ussed above. Figure 11.7 shows the

proje
ted k-forward values in the market-
onsistent measure. As dis
ussed in Chapter 8,

the Kortis index is designed to be very sensitive to the rates of improvement in longevity,

whi
h are determined by the drift, µ, of the random walk used for the period parame-

ters. Indeed, for models whi
h la
k a 
ohort term, the drift in the random walk exa
tly

determines the proje
ted index values, and hen
e they are 
onstant beyond 2020.

28

For

the models whi
h in
lude 
ohort parameters, the value of the index in the short term de-

pends strongly upon the 
ohort parameters �tted by the model, as dis
ussed in Chapter

8, resulting in a distin
tive 
urved pattern. In general, the models 
ontaining a 
ohort

term give market-
onsistent assumptions for the rate of improvement in longevity whi
h

de
rease from its 
urrently observed level of around 3.5% to around 2% in 20 years' time.

This is not surprising given this is broadly in line with the assumptions used to 
alibrate

the market-
onsistent measure, i.e., the CMI Mortality Proje
tion Model with a long

term rate of improvement of either 1.5% or 1.75%.

27

See Chapter 8 for a further dis
ussion of the Swiss Re Kortis bond and its 
onstru
tion.

28

Before 2020, the Kortis index is based partly on proje
ted and partly on observed mortality rates,

and hen
e exhibits more variability than after 2020.
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Figure 11.7: Kortis index values for �ve di�erent mortality models
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As in the 
ase of the q-forwards, the index values for the LC model show a very di�erent

evolution due to the limited ability of this model to both pri
e the market information

and give a biologi
ally reasonable forward surfa
e of mortality. However, the alternative

models appear to give index values whi
h are biologi
ally reasonable and 
onsistent with

the histori
al, realised values for the k-forwards, whi
h potentially means that forwards

on the index 
ould form a viable basis for a market in longevity risk.

Other longevity-linked se
urities

The forward mortality surfa
e 
ould also be used to value life assuran
e poli
ies in the

same manner. In 
onjun
tion with the results of Chapter 12, the forward mortality

framework 
ould therefore be used as a standard model for both the valuation of a life

insurer's te
hni
al provisions and the assessment of longevity risk within them, in a

or-

dan
e with the Solven
y II regulatory regime des
ribed in EIOPA (2014). In addition,

for life insurers writing both annuity and assuran
e poli
ies, it may be desirable to value
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these 
onsistently in the te
hni
al provisions, in order to a
hieve the bene�ts from nat-

ural hedging dis
ussed in Cox and Lin (2007).

Beyond the examples dis
ussed above, the forward mortality framework 
ould be used to

value any longevity-linked se
urity with a linear payo� in the underlying index. Hen
e,

although the market for longevity-linked se
urities is in the early stage of development


urrently and it is un
lear whi
h form of se
urities will ultimately 
ome to be traded, we

believe that the framework des
ribed in this study is �exible enough to be able to pri
e

any of them in a manner 
onsistent with any other pri
es for longevity-linked liabilities

and se
urities whi
h are available.

As dis
ussed previously, one disadvantage of any forward mortality rate framework is

that it 
annot 
urrently be used to value longevity-linked options, sin
e it only looks at

the expe
ted mortality rates in the market-
onsistent measure. For example, it 
ould

not be used dire
tly to value mortality 
atastrophe bonds, su
h as the Swiss Re Vita

bond (dis
ussed in Bauer and Kramer (2007)), Longevity Experien
e Options (des
ribed

in Fetiveau and Jia (2014)), bespoke index-based solutions (des
ribed in Mi
haelson

and Mulholland (2014)), a guaranteed annuity option (dis
ussed in Pelsser (2003) and

Ballotta and Haberman (2006)) or a bond similar to the Kortis bond with the prin
ipal

being a non-linear fun
tion of the index value. At the present time, we do not think

that this is a fatal limitation of the forward mortality rate framework dis
ussed here, as


urrently the market for longevity-linked se
urities is not su�
iently developed to allow a

full 
alibration of the forward mortality rate surfa
e, let alone the dynami
s of the for
e

of mortality in the market-
onsistent measure, whi
h is required to model longevity-

linked options. However, we believe it is possible to extend the forward mortality rate

framework, whi
h would enable the pri
ing of mortality options, although we leave this

for future work.

11.4 Con
lusion

The valuation of longevity-linked liabilities and se
urities requires us to predi
t future

rates of mortality. Modern solven
y regulations and the gradual emergen
e of a market

in longevity-linked se
urities require these predi
tions to in
orporate market information,

in order to give pri
es for di�erent se
urities whi
h are 
onsistent with those observed in

the marketpla
e. As many previous studies have shown, forward mortality models are

ideally pla
ed to a
hieve this.
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We therefore believe that the answer to the titular question raised in Norberg (2010) - are

forward mortality rates the way forward? - is yes. Nevertheless, it is important to take on

board the 
riti
isms of Norberg (2010) and to develop a framework spe
i�
ally to model

mortality rates, rather than borrow a pre-existing framework developed for interest rates

and to de�ne this framework using se
urities whi
h do not depend on the idiosyn
rati


timing of individual deaths. This is be
ause, with a properly developed framework,

we 
an derive a model whi
h is 
apable of 
apturing the 
omplex dynami
s of mortality

rates, and so obtain 
onsisten
y between models of the short and forward mortality rates.

In this study, we have developed su
h a framework for forward mortality rates whi
h is

based upon the dynami
s of the for
e of mortality given by the 
lass of age/period/
ohort

mortality models. This framework has the advantage of being easier to estimate from

histori
al data than existing models, with market information being in
orporated via a

relatively parsimonious transformation of the forward mortality rates in the real-world

measure. The framework is also very �exible, as it 
an be used in 
onjun
tion with many

of the most popular models of the for
e of mortality, su
h as those proposed in Lee and

Carter (1992) and Cairns et al. (2006a).

We have shown how market information 
an be in
orporated into the model and used the

resulting forward mortality surfa
e to value a range of existing and proposed longevity-

linked se
urities. All of the pri
es 
al
ulated from the same model are 
onsistent with

ea
h other, as they are derived from the same forward surfa
e of mortality. This allows

for a uni�ed approa
h to the valuation of a wide range of liabilities and longevity-linked

se
urities.

Finally, we note that the main virtue of forward mortality models is their ability to spe
-

ify the dynami
s of the forward mortality surfa
e and, hen
e, their appli
ability to the

assessment and management of longevity risk. We develop these themes in the se
ond

part of this study, in Chapter 12. Together, these two studies show that the framework

proposed 
an provide an integrated solution to many of the valuation and risk manage-

ment problems in respe
t of longevity risk that are fa
ed by life insuran
e 
ompanies.
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11.A Identi�ability and mortality forward rates

In Chapters 3 and 4, we dis
uss the identi�ability issues in AP and APC mortality mod-

els, respe
tively. In parti
ular, we �nd that almost all APC mortality models possess

�invariant� transformations, i.e., transformations of the parameters of the model whi
h

leave the �tted mortality rates un
hanged. In order to �nd a unique set of parameters,

we impose a set of identi�ability 
onstraints on them. Typi
ally, these are 
hosen to give

a parti
ular demographi
 signi�
an
e to ea
h term in the model. However, sin
e any

interpretation of demographi
 signi�
an
e is subje
tive, it is important that our 
hoi
e

of identi�ability 
onstraints does not have any impa
t on any 
on
lusions we draw about

histori
al or proje
ted mortality rates. For instan
e, we dis
uss in Chapters 3 and 4 how

to ensure that proje
ted for
e of mortality is independent of the 
hoi
e of identi�ability


onstraint.

It is also important that the forward mortality rate framework des
ribed in this study is

independent of the 
hoi
e of identi�ability 
onstraints used when �tting the underlying

APC model to histori
al data. However, due to our de�nitions of the forward mortality

rates in Equation 11.11, we see that νPx,t(τ) in the real-world measure is automati
ally

independent of the identi�ability 
onstraints if the distribution of µx,τ is also indepen-

dent of the identi�ability 
onstraints. We therefore do not need to do any additional

work to ensure identi�ability in the forward rates on
e the methods used to proje
t the

for
e of mortality are well-identi�ed.

We also need to ensure that the forward mortality surfa
e in the market-
onsistent mea-

sure is also independent of the 
hoi
e of arbitrary identi�ability 
onstraints. This is

mostly straightforward, as we see that Equation 11.31 depends upon the forward mor-

tality rates in the real-world measure (whi
h should be independent of the identi�ability


onstraints for the reasons dis
ussed above), the varian
es of the period and 
ohort

fun
tions (whi
h are independent of the allo
ation of any levels and linear trends if the

proje
tion methods are well-identi�ed, as dis
ussed in Chapter 4) and the market pri
es

of longevity risk. However, we note that if the model transformed using

{β̂x, κ̂t} = {
(

A−1
)⊤

βx, Aκt}

then the market pri
es of risk are also transformed in the model to λ̂ =
(

A−1
)⊤

λ.

Hen
e we see that, not only are the values of the market pri
es of risk dependent upon

the underlying APC model used for the for
e of mortality, they will also depend upon
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the normalisation s
heme and spe
i�
ation of the age fun
tion in the model, and so are

not the same a
ross all models whi
h give the same �tted mortality rates.

11.B Impa
t of Jensen's inequality

In Se
tion 11.2.2, it was argued that

tPx,τ = Eτ

[

exp

(

−
t
∑

u=1

µx+u,τ+u

)]

≈ exp

(

−
t
∑

u=1

Eτµx+u,τ+u

)

(11.35)

due to the relatively low degree of variability in µx,t, and hen
e it was shown in Se
tion

11.2.2 that

νx,t(τ) ≈ Eτµx,t

This assumption 
an be tested numeri
ally, as follows.

For simpli
ity, we 
onsider Px,t = Eτ exp(−µx,t). Therefore

Px,t = Eτ exp (− exp (ηx,t))

In Se
tion 11.2.3, we assume that

ηx,t ∼ N(Mx,t,Vx,t)

and therefore

Eτ exp(−µx,t) ≈ exp (−Eτµx,t) = exp (− exp (Mx,t + 0.5Vx,t)) (11.36)

Holland and Ahsanullah (1989) dis
ussed the log-log distribution, where X is su
h that

ln(− ln(X)) ∼ N(M,V)

We therefore see that Px,τ (τ) is given by the mean of the log-log distribution if ηx,t is

normally distributed. However, the moments of this distribution do not have a 
losed

form solution. Holland and Ahsanullah (1989) showed that the rth raw moment of the

452



Forward Mortality Models I: Calibration and Se
urities Pri
ing

distribution is given by

EXr =
1√
2π

∫ ∞

−∞
exp

(

−0.5x2 − r exp[M+ x
√
V]
)

dx

whi
h 
an be 
omputed numeri
ally.

From Se
tion 11.2.3, we see

Mx,t = αx + β⊤
x Eτκt + Eτγt−x

Vx,t = β⊤
xVarτ (κt)βx + Varτ (γt−x)

Hen
e we 
an use the results of Holland and Ahsanullah (1989) to 
ompute Px,t numeri-


ally, without re
ourse to the approximation in Equation 11.36. Using this, we 
al
ulate

Px,t = Eτ exp(−µx,t)

=
1√
2π

∫ ∞

−∞
exp

(

−0.5z2 − exp[Mx,t + x
√

Vx,t]
)

dz (11.37)

numeri
ally and 
ompare it with the values assumed in Equation 11.36. This gives us

a 
he
k on the a

ura
y of the approximation in Equation 11.36, whi
h underpins the

forward mortality framework.

Figure 11.8 shows the ratio of the numeri
al value of Px,t 
al
ulated using Equation 11.37

and the approximate value 
al
ulated using Equation 11.36 for the �ve mortality models


onsidered in this paper (in the real-world measure). We 
an that in the vast majority

of 
ases, the di�eren
e that the assumption makes is less than 0.2% (i.e., ratios less than

1.002) and for no ages and years does the approximation make more than a 1.5% dif-

feren
e to the forward mortality rates. This is 
onsistent with the proje
ted mortality

rates found in Figure 11.1, whi
h also showed that forward mortality rates (using the

approximation) were very 
lose to those 
al
ulated using Monte Carlo simulations.

The mortality rates whi
h are most a�e
ted by the approximation are those at the highest

ages and the years of proje
tion furthest into the future, whi
h makes sense as these are

the mortality rates with the greatest levels of un
ertainty atta
hed to them. However,

they are also the least e
onomi
ally important, sin
e any 
ash�ows that would be a�e
ted

by these mortality rates would be in respe
t of individuals who are very old (and so there

is very little survivorship to these ages) and far into the future (whi
h means that the

present value of the a�e
ted 
ash�ows would be very small due to dis
ounting). This gives
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Figure 11.8: Impa
t of Jensen's inequality
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us reassuran
e that the approximation in Equation 11.35 does not systemati
ally distort

the results found using the forward mortality framework derived in this study, 
ompared

with those whi
h 
ould be found using an exa
t but 
onsiderably more 
ompli
ated

framework whi
h does not make this assumption.
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Chapter 12

Forward Mortality Rates in Dis
rete

Time II: Longevity Risk

Measurement and Management

12.1 Introdu
tion

The �rst de
ade of the 21st 
entury has witnessed the realisation of the importan
e of

longevity risk in the provision of retirement bene�ts and the emergen
e of new se
urities

and derivatives, su
h as the longevity swaps and pension buy-ins dis
ussed in Blake et al.

(2013), to manage this risk. It has also witnessed a �nan
ial 
risis and resulting re
es-

sion, 
aused, in part, by new forms of �nan
ial se
urities and the faulty measurement

and management of risk surrounding them. It is, therefore, of paramount importan
e

that we do not make the same mistakes with the growing market for longevity risk that

were made in the market for mortgage-ba
ked se
urities. Consequently, it is vital to be

able to measure and manage the risk in longevity-linked liabilities se
urities reliably and


onsistently.

Longevity risk is often de�ned as the risk that life expe
tan
y in
reases at a faster rate

than anti
ipated, or 
onversely, that mortality rates de
rease faster than expe
ted. How-

ever, in the 
ontext of liability-linked liabilities and se
urities, the major �nan
ial impa
t

of longevity risk is not the di�eren
e between anti
ipated and a
tual mortality rates. In-

stead, it is the impa
t of 
hanges in the expe
tations of future mortality rates that has

the greatest impa
t on the valuation of these liabilities and se
urities.
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Sin
e the expe
tations of future mortality rates are forward-looking by de�nition, what

is required for the measurement of longevity risk is a forward model for mortality rates.

In Chapter 11, we developed su
h a forward mortality framework, based on the dynami
s

of the for
e of mortality given by age/period/
ohort (APC) models in dis
rete time. We

then demonstrated how su
h a model 
an be 
alibrated to market information, in order

to pri
e a range of longevity-linked liabilities and se
urities 
onsistently, both with the

market information we possess and with ea
h other. Be
ause market-
onsistent values

are required for the liabilities under the Solven
y II regulatory regime, as des
ribed in

EIOPA (2014), su
h a forward mortality framework 
ould also form the basis of an in-

surer's internal model for longevity risk.

In this 
hapter, we go beyond de�ning the surfa
e of forward mortality rates at a single

point in time to 
onsider how this surfa
e will 
hange in future. These 
hanges are driven

by the dynami
s for the parameters of the underlying APC mortality model and so are


onsistent with how the forward mortality surfa
e was de�ned initially. Changes in the

forward mortality rates then feed through into 
hanges in the values of longevity-linked

liabilities and se
urities, and so form the basis of the measurement of longevity risk. This

is espe
ially important in the 
ontext of modern regulatory regimes, su
h as Solven
y II,

where an a

urate determination of the 
apital required to support di�erent life insur-

an
e liabilities is a 
riti
al business issue. Sin
e the forward mortality framework gives


onsistent values for both longevity-linked liabilities and se
urities, we 
an also use it to

measure the impa
t of hedging strategies whi
h attempt to manage longevity risk.

The stru
ture of this 
hapter is as follows. We �rst 
onsider how the forward surfa
e

of mortality will evolve over a one year period in Se
tion 12.2 by examining the pro-


esses assumed to be generating the observed period and 
ohort parameters. This is

then applied in Se
tion 12.3 to examine the riskiness of annuity values using di�erent

risk measures and the impa
t of hedging liability values using simple longevity-linked

se
urities. In Se
tion 12.4, this analysis is extended to the measurement of longevity risk

over multiple years, with a parti
ular appli
ation to 
al
ulating the �risk margin� under

the proposed Solven
y II regulations and the numeri
al issues 
aused by this 
al
ulation.

Finally, Se
tion 12.5 
on
ludes.
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12.2 One-year updates of the forward mortality surfa
e

The mortality forward rate framework dis
ussed in Chapter 11 enables us to value

longevity-linked liabilities and se
urities values in a market-
onsistent fashion. How-

ever, for many risk measurement purposes we are also interested in how these values


hange with time. There will be three 
omponents to su
h 
hanges:

1. Changes in value due to 
hanging 
onditions in �nan
ial markets not linked to

longevity, for instan
e, due to 
hanges in interest or in�ation rate expe
tations.

Changes in these quantities have been widely studied and a range of models have

been developed for interest rates and in�ation that 
ould be used to deal with

the impa
t of these 
hanges on longevity-linked liabilities and se
urities values.

A

ordingly, we do not study the impa
t of these 
hanges in this 
hapter.

1

2. Changes due to new mortality data. Mortality data is released relatively infre-

quently, typi
ally annually, and would be used to re�t the underlying APC mor-

tality model. Su
h 
hanges will be 
onsidered further in this study.

3. Changes due to 
hanging market longevity-risk preferen
es. These would result in


hanges in the values of traded se
urities not explainable in terms of new mortality

data or 
hanges in other non-demographi
 market indi
ators, and would be in
or-

porated into the forward mortality rate model as time-dependent market pri
es

of longevity risk, λ(j)(τ). With the traded market in longevity-linked se
urities

in a very early stage of development, there is no reliable information available to

determine how these 
hanges should be modelled. As Blake et al. (2006) said �so-

phisti
ated assumptions about the dynami
s of the market pri
e of longevity risk

are pointless�, given the absen
e of market data to 
alibrate them. We therefore

assume that the market pri
es for longevity risk are 
onstant and do not 
onsider

them further.

1

We also impli
itly assume that pro
esses governing the evolution of mortality rates are independent

of other �nan
ial risks. This is in 
ommon with the majority of studies, su
h as Cairns et al. (2006b) and

Bauer et al. (2008) and with the available eviden
e to date, as dis
ussed in Loeys et al. (2007). Although

there may be some situations where longevity risk is not independent of other �nan
ial risks in the real-

world measure, as in the examples of Miltersen and Persson (2005), we believe that these situations

are relatively extreme and are better 
onsidered by s
enario analysis rather than through a sto
hasti


model. Furthermore, Dhaene et al. (2013) show that independen
e between longevity risk and �nan
ial

risks in the real-world measure does not automati
ally ensure independen
e in the market-
onsistent

measure. However, more 
ompli
ated models are required in order to allow for any dependen
e between

longevity and investment risks, whi
h require more market information for 
alibration. Therefore, we

believe that the assumption of independen
e between longevity risk and other �nan
ial risks is ne
essary

and justi�able at this early stage of development of the longevity risk market.
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To investigate the se
ond 
omponent of these 
hanges, we are, therefore, interested in

the random variables

ν
Q
x,t(τ + 1)|Fτ

i.e., the distribution of the forward mortality rates at τ + 1 
onditional on information

at time τ . This is equivalent to studying the �updating fa
tors�

ν
Q
x,t(τ + 1)

νQx,t(τ)

whi
h underpins the models of Cairns (2007) and Zhu and Bauer (2011b).

In reality, the pro
ess of determining the forward surfa
e of mortality would involve

a
quiring death 
ounts and exposures to risk a
ross all ages for year τ +1, re-estimating

the 
hosen mortality model with a revised dataset whi
h in
luded this new information

to obtain new estimates of the various age, period and 
ohort parameters and then using

these revised estimates within the framework of Chapter 11. However, this pro
ess is not

pra
ti
al for risk management purposes, as the pro
ess of generating new death 
ounts

and exposures to risk and re�tting the model 
an be su�
iently time 
onsuming that it

is not viable to perform it thousands of times. Instead, we note the key new information

whi
h the additional data gives us:

2

1. We 
an use the new data to estimate for the �rst time the value of κτ+1.

2. We 
an use the new data to re-estimate the 
ohort parameters, and so revise the old

�tted 
ohort parameters, γy(τ), to a new set of �tted 
ohort parameters, γy(τ +1).

A

ordingly, to avoid the need to simulate death 
ounts and exposures for τ + 1 and

re�t the model, we instead generate new �observations� of κτ+1 and γy(τ + 1) based on

the assumed time series dynami
s whi
h underlie the forward mortality framework. The

pro
edures for doing this are dis
ussed in Se
tions 12.2.1 and 12.2.2 for the period and

the 
ohort fun
tions, respe
tively.

In following this pro
edure, it is important to ensure that our updated forward mortal-

ity surfa
e is �self-
onsistent�, as de�ned in Zhu and Bauer (2011b), namely that �that

expe
ted values of future fore
asts should align with the 
urrent fore
asts�. This means

that forward mortality rates should be martingales. Su
h a 
ondition is similar to �no

2

A similar line of reasoning 
an be found in Tan et al. (2014), whi
h used the �time invariant� property

of the period fun
tions in some mortality models to investigate the hedging of longevity risk.
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arbitrage� 
onditions in forward interest rate models. However, be
ause the markets for

longevity risk are not 
omplete and are likely to involve a more diverse range of potential

underlying se
urities,

3

we 
annot rule out the possibility of arbitrage opportunities even

in a self-
onsistent framework. Given the de�nition of the forward mortality rates in

Equation 11.11, we note that

4

EP
τ νPx,t(τ + 1) = EP

τE
P
τ+1 µx,t

= EP
τ µx,t

= νPx,t(τ) (12.1)

by the tower property of 
onditional expe
tations. This means that real-world measure

forward mortality rates are self-
onsistent in the real-world measure. We 
an verify this

by 
onsidering the period and 
ohort fun
tions separately, whi
h is done in Se
tion 12.2.1

for the period parameters and Appendix 12.A.1 for the 
ohort parameters.

A similar line of reasoning leads to

EQ
τ ν

Q
x,t(τ + 1) = ν

Q
x,t(τ)

i.e., market-
onsistent forward mortality rates are self-
onsistent in the market-
onsistent

measure. This result is veri�ed algebrai
ally in Appendix 12.A.2 and provides a useful

and important 
he
k on the validity of the modelling approa
h and ensures that there

are no internal 
ontradi
tions.

For most of the pra
ti
al risk management purposes in Se
tion 12.3, what is of interest is

how values of liabilities and se
urities 
hange in the real-world measure (e.g., to �nd the

one-in-200 real-world s
enario under Solven
y II). Sin
e these values are 
al
ulated using

market-
onsistent forward mortality rates, the value of liabilities and se
urities are not

self-
onsistent in the real-world measure. However, this is not surprising and is similar to

other results in �nan
e.

5

Nevertheless, it will have a number of 
onsequen
es for the be-

haviour of longevity-linked liabilities and se
urities, as dis
ussed in the following se
tions.

3

Su
h as longevity zeros (based on survivorship), q-forwards (based on probabilities of death), e-

forwards (based on period life expe
tan
y) and other se
urities based on bespoke indi
es.

4

We adopt the 
onvention that the subs
ript on operators Eτ (.), Varτ (.) or Covτ (.) denotes 
ondi-
tioning on the information available at time τ , i.e., Fτ .

5

For example, the Bla
k-S
holes sto
k option pri
e is a martingale in the risk-neutral measure by


onstru
tion. When performing risk management on sto
k options in the real-world measure, the options

pri
es will not be martingales (in general, we would expe
t to see the value of a 
all option in
rease with

time, sin
e the share pri
e is expe
ted to grow faster than the risk-free rate).
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In Chapter 11, we used the forward mortality framework with a number of di�erent

APC models, in
luding the Lee-Carter model (Lee and Carter (1992)), the 
lassi
 APC

model of Hob
raft et al. (1982) and the model developed in Chapter 9 using the �general

pro
edure� (GP) of Chapter 5. In this 
hapter, we only use the GP model as it provides

a good �t to the histori
al data and possesses most of the features of more 
ompli
ated

mortality models su
h as multiple age/period terms and a 
ohort term. However, it is

important to note that the te
hniques we propose 
ould be used in 
ombination with any

mortality model within the 
lass of APC models dis
ussed in Chapter 2.

12.2.1 Period parameters

Consider �rst the period fun
tions. From Equation 11.16 and 11.17, we have

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

VarPτ+1 (κt) = (t− τ − 1)Σ

Therefore, by generating a value of κτ+1 using the random walk with drift pro
ess

underlying the proje
tions, we 
an update the means and varian
es of the future pe-

riod fun
tions (and hen
e the forward surfa
e of mortality) from those found at τ to a

(sto
hasti
) update at τ + 1:

κτ+1 = κτ + µXτ+1 + ǫτ+1

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

= κτ + µXτ+1 + ǫτ+1 + µ

t
∑

s=τ+2

Xs

= κτ + µ

t
∑

s=τ+1

Xs + ǫτ+1

= EP
τκt + ǫτ+1

VarPτ+1 (κt) = (t− τ)Σ− Σ

= VarPτ (κt)− Σ

Hen
e we see that the expe
tation of future period parameters 
hanges by the innovation

ǫτ+1 for all future times, whilst the varian
e of the future period parameters redu
es to
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re�e
t that, at τ + 1, they will be proje
ted for one fewer year than at τ .

1950 2000 2050
−80

−60

−40

−20

0

20

40

Year

κ(1)
t

Figure 12.1: 95% predi
tion interval for Eτ+1κ
(1)
t |Fτ

Figure 12.1 shows the 95% predi
tion interval for EP
τ+1 κ

(1)
t |Fτ from the GP model. As


an be seen, it is the value of κ
(1)
τ+1 whi
h generates the un
ertainty in the later period

fun
tions, whi
h shift in parallel as a result of this new information.

6

To demonstrate the impa
t of this update of the period fun
tions on the forward mortality

rates, we see that

νPx,t(τ + 1)|Fτ = exp

(

αx + β⊤
x Eτ+1κt +

1

2
βxVarτ+1(κt)β

⊤
x

)

|Fτ

= exp

(

αx + β⊤
x

(

Eτκ
⊤
t + ǫτ+1

)

+
1

2
β⊤
x (Varτ (κt)− Σ)βx

)

|Fτ

= exp

(

β⊤
x ǫτ+1 −

1

2
β⊤
xΣβx

)

νPx,t(τ)

6

Note that, as the drift of the random walk pro
ess, µ, is assumed to be known, the forward mortality

framework does not allow for what was termed �re
alibration� risk in Cairns et al. (2013), i.e., the risk

that one year's new information will 
ause a reappraisal of the drift term. We leave the in
lusion of

re
alibration risk in the framework as future work. This may understate the risk in long-term proje
tions

of mortality rates and forms a key di�eren
e between our results and those of Ri
hards et al. (2014).
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if the underlying mortality model of the mortality short rate does not possess a 
ohort

term. Hen
e, generating random values of ǫτ+1 (the time-series innovations for the period

parameters) 
an therefore be used to update sto
hasti
ally the forward mortality surfa
e

at τ +1, 
onditional on information to time τ in a relatively straightforward fashion. In

addition, we see that

EP
τ νPx,t(τ + 1) = exp

(

β⊤
x E

Pτǫτ+1 +
1

2
β⊤
xVarτ (ǫτ+1)βx −

1

2
β⊤
xΣβx

)

νPx,t(τ)

= νPx,t(τ)

and, hen
e, the real-world forward mortality rates are martingales in the P-measure as

expe
ted.

12.2.2 Cohort parameters

As dis
ussed above, the impa
t of new data for year τ +1 has a fundamentally di�erent

impa
t on the 
ohort parameters 
ompared with the period parameters in a mortality

model. For the period parameters, new data would allow us to estimate a value for κτ+1.

To approximate this, we use the time series dynami
s of the period fun
tions to proje
t

κτ+1 sto
hasti
ally, and use this to update the forward surfa
e of mortality.

In 
ontrast, new death 
ount and exposure to risk data allows us to:

1. update the 
ohort parameters estimated by the model to allow for one additional

observation on ea
h 
ohort whi
h is alive at τ + 1;

γy(τ) → γy(τ + 1) for τ + 1−X ≤ y ≤ Y

2. estimate for the �rst time the 
ohort parameter for year of birth Y +1, i.e., γY+1(τ+

1), whi
h we did not have su�
ient information to do the year before.

Unlike for the period fun
tions, the new data does not give us a 
omplete observation of

any new, single year of birth. It is this fundamental di�eren
e in the information that

new data provides that means that we need to adopt a fundamentally di�erent approa
h

when updating the 
ohort parameters in the forward mortality framework.

To explain why this is important, we need to �rst 
onsider the problems with using more


lassi
al approa
hes to proje
ting the 
ohort parameters. In Chapter 11, we found that
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lassi
al approa
hes, su
h as those using ARIMA models, are not suitable in a forward

mortality framework. This was be
ause there is a dis
ontinuity in the varian
e of the

parameters when we move from the estimated parameters based on histori
al data to the

proje
ted parameters. This dis
ontinuity would give rise to pri
ing anomalies. In the


ontext of updating the forward mortality surfa
e, we also �nd that using these 
lassi
al

approa
hes will lead to irregularities, as we now show.

Classi
al time series pro
esses assume that the 
ohort parameters for whi
h we have

observations at time τ (up to and in
luding γY , say) are known with 
ertainty and will

not be revised and updated to re�e
t the new information re
eived at τ + 1. Instead,

new information at τ + 1 is assumed to be su�
ient to estimate γY+1. Thus, the use of


lassi
al approa
hes would give results analogous to the updating of the period param-

eters above, i.e., that we only need to proje
t γY+1 sto
hasti
ally to re�e
t the impa
t

of new data. The pattern of updated 
ohort parameters whi
h would be observed using

su
h as model is shown in Figure 12.2.

1850 1900 1950 2000
−0.4

−0.2

0

0.2

Year of Birth

Figure 12.2: 95% predi
tion interval for the one-year update of proje
ted γy using an

AR(1) pro
ess

However, this is in
onsistent with the impa
t new data would be expe
ted to have, as

dis
ussed above. In addition, using these 
lassi
al approa
hes generates unfeasible pat-

terns of un
ertainty in the forward mortality surfa
e, with a sharp dis
ontinuity between


ohort parameters whi
h are estimated from histori
al data and those whi
h are pro-

je
ted, as dis
ussed previously in Chapter 11.

In order to update the 
ohort parameters in a manner whi
h is 
onsistent with how they

would a
tually update in response to new data, we instead need to use an approa
h whi
h


ombines the time series dynami
s of the 
ohort parameters with the partial observations

we have of them to date. With su
h an approa
h, we 
an model the updating of this
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partial information to re�e
t the impa
t of new data, and then 
ombine this updated set

of observations with the time series dynami
s to revise our fore
ast 
ohort parameters.

In Chapter 6, we developed a Bayesian modelling approa
h whi
h 
an be used for this

purpose. In parti
ular, we assumed that we had two sour
es of information for estimating

the �ultimate� 
ohort parameter, γy, whi
h would only be known fully on
e all members

of the 
ohort had died. These were the underlying time series dynami
s for the 
ohort

parameters, whi
h a
ted as a prior assumption for their distribution, and the �interim�


ohort parameters estimated by the mortality model, γy(τ), whi
h were based on partial

information to time τ . Hen
e, the impa
t of new data on the 
ohort parameters 
an be

modelled by generating updates of the estimated 
ohort parameters, γy(τ + 1), whi
h

re�e
t new observations of the relevant 
ohorts.

In Chapter 6, we assumed that the ultimate 
ohort parameters were generated by inde-

pendent dis
rete pa
kets, γxy , for ea
h age of observation for the 
ohort, i.e.,

γy =
X
∑

x=1

dxγ
x
y (12.2)

where dx is the proportion of the total 
ohort whi
h dies at age x (assumed to be the

same for all 
ohorts). However, at any spe
i�
 time, we would only have re
eived an

in
omplete set of observations of any 
ohort where members of that 
ohort were still

alive, i.e., we would have re
eived pa
kets of information γxy for x ∈ [1, τ − y] by time

τ . These partial observations are 
ombined to give us the estimated 
ohort parameters

�tted by a mortality model based on data to time τ :

γ
y
(τ) =

τ−y
∑

x=1

dxγ
x
y (12.3)

γy(τ) =
1

Dτ−y
γ
y
(τ) (12.4)

where Dx =
∑x

ξ=1 dx, i.e., the proportion of a 
ohort expe
ted to die before age, x, as

de�ned in Chapter 6.

Hen
e, the pro
ess of updating the 
ohort parameters to re�e
t new information for

year τ + 1 is equivalent to generating new pa
kets of information to represent the new

observations of ea
h of the still living 
ohorts at time τ +1, and in
orporating these into
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the existing estimates of the 
ohort parameters at time τ

γ
y
(τ + 1) = γ

y
(τ) + dτ+1−yγ

τ+1−y
y (12.5)

γy(τ + 1) =
1

Dτ+1−y
γ
y
(τ + 1)

=
1

Dτ+1−y

[

γ
y
(τ) + dτ+1−yγ

τ+1−y
y

]

=
1

Dτ+1−y

[

Dτ−yγy(τ) + dτ+1−yγ
τ+1−y
y

]

(12.6)

This 
an be 
ompared to the results of a 
redibility analysis, as des
ribed in in Chapter

7 of Kaas et al. (2001), sin
e the updated estimate of the 
ohort parameter is a weighted

average of the previous estimate and the new observation of the 
ohort. Be
ause of this,

our ability to update the forward mortality surfa
e for new 
ohort information rests on

our ability to simulate new pa
kets of information, γ
τ+1−y
y . To do this, we know from

Chapter 6 and the well-identi�ed AR(1) pro
ess underlying the 
ohort parameters that

γxy |γy−1, β, ρ, σ
2 ∼ N

(

βX̃y + ρ(γy−1 − βX̃y−1),
σ2

dx

)

where β, X̃y, ρ and σ2
are de�ned in Chapters 6 and 11. However, the ultimate 
ohort

parameter for year of birth y − 1, γy−1, will not, in general, be known at time τ (as

individuals born in year y − 1 will still be alive), but we do know the distribution of

γy−1 at τ from Equations 11.20 and 11.21. Therefore, in order to �nd the distribution

of γ
τ+1−y
y |Fτ , we use Bayes Theorem and the distribution of γy−1 to give

γτ+1−y
y |Fτ , β, ρ, σ

2 ∼ N

(

βXy + ρ(M(y − 1, τ) − βXy−1), ρ
2V (y − 1, τ) +

σ2

dτ+1−y

)

(12.7)

In addition, we assume

Covτ (γ
τ+1−y
y , γ

τ+1−y+s
y−s ) = ρs

[

s−1
∏

r=0

(1−Dτ+1−y+r)

]

σ2

dτ+1−y+s
(12.8)

in order for the forward mortality rates to be self-
onsistent in the P-measure, whi
h is

demonstrated in Appendix 12.A.1.

Hen
e, by generating new pa
kets of information, γxy , in respe
t of the 
ohorts that we

would have observed in the new data for year τ + 1, we 
an update the values of γy(τ)


onsistent with how they would update in response to a
tual new data.
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(a) 95% predi
tion interval for the one-year up-

date of interim 
ohort parameters, γy(τ + 1)
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(b) 95% predi
tion interval for the one-year up-

date of the mean of the ultimate 
ohort param-

eters, M(y, τ + 1)

Figure 12.3: Updating the 
ohort parameters

To summarise, the pro
ess for updating the 
ohort parameters is:

1. generate new 
ohort information pa
kets, γ
τ+1−y
y for y ∈ [τ+1−X,Y +1], randomly

using the distribution in Equations 12.7 and 12.8;

2. update partial sums using Equation 12.6 without re�tting the APC mortality

model, to give γy(τ) → γy(τ + 1);

3. use Equation 11.20 to �nd M(y, τ + 1) (the updated estimate of the mean of the

ultimate 
ohort parameters);

4. use Equation 11.21 to �nd V (y, τ +1) (the updated estimate of the varian
e of the

ultimate 
ohort parameters);

5. use these to 
al
ulate νPx,t(τ+1) in 
onjun
tion with the updated period parameters;

6. use Equation 11.31 to transform the real-world-measure forward mortality rates to

the market-
onsistent measure, for use in valuing liabilities and se
urities.

The 95% predi
tion interval of the �interim� 
ohort parameters, γy(τ +1)|Fτ is shown in

Figure 12.3a, and the 95%predi
tion interval of the updated expe
tation of the ultimate


ohort parameters, M(y, τ + 1)|Fτ is shown in Figure 12.3b.

7

We observe the following:

• New data for τ + 1 does not update the 
ohort parameters for 
ohorts where we

have assumed all members have died by time τ + 1, i.e., for y ≤ τ −X.

7

Note that, in M(y, τ ) we use indi
ator variables to remove the large outliers due to the 
ohort

anomalies in 1919/20 and 1946/47. This is be
ause we believe them to be artefa
ts of the data 
olle
tion

pro
ess (see Ri
hards (2008) and Cairns et al. (2014)), rather than genuine features of mortality for

these 
ohorts.
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• For years of birth τ + 1 − X ≤ y ≤ Y , the new information would allow us to

update the interim 
ohort parameter, γy(τ), and hen
e the expe
tation of the

ultimate 
ohort parameter, M(y, τ). The importan
e of this new information for

the estimated 
ohort parameters is greater for more re
ent years of birth. This is

reasonable, sin
e the information re
eived for year τ+1 represents a greater share of

the partial information re
eived to this data for these years of birth. However, the

Bayesian approa
h implies that the ultimate 
ohort parameters 
an be thought of

as weighted averages of the prior distribution (given by the time series dynami
s)

and the partial information re
eived by observing the 
ohorts to date, whi
h is

represented by γy. For more re
ent years of birth, this approa
h gives greater

weight to the prior distribution and less to the observations to date. Therefore, for

re
ent years of birth, the impa
t of the new data updating the partial observations

of the 
ohort (i.e., updating γy(τ) to γy(τ + 1)) has only a limited impa
t on the

distribution of the ultimate 
ohort parameters.

• We make our �rst estimate of the 
ohort parameters for year of birth Y + 1. This

gives a very high variability for the estimated 
ohort parameter, γY+1(τ + 1), as

this is based on very little information. However, sin
e the Bayesian approa
h gives

most weight to the time series dynami
s for this 
ohort, this variability does not

result in large 
hanges in the expe
tation of the ultimate 
ohort parameter.

• For y ≥ Y +2, we still would not have su�
ient observations to estimate γy(τ +1).

Hen
e the Bayesian approa
h gives no weight to the observations of the 
ohort (if

any) to date and so the distribution of the ultimate 
ohort parameters for these


ohorts is given entirely by the prior distribution, i.e., the time series dynami
s.

However, this prior distribution will have 
hanged slightly be
ause of the updated

distributions of the ultimate 
ohort parameters for y ≤ Y + 1. Sin
e we have

assumed that the 
ohort parameters follow an well-identi�ed AR(1) pro
ess, up-

dating the distribution of these parameters updates the prior distribution for the

ultimate 
ohort parameters for y ≥ Y + 2. However, these 
hanges do not persist

inde�nitely and, instead, the impa
t of the new information de
reases exponen-

tially. This is reasonable, sin
e we would not expe
t to update our estimates for

the lifelong mortality features in respe
t of the 
ohort born in 2050 (say), based on

observations of their parents and grandparents.

In these respe
ts, the Bayesian framework has repli
ated what we would expe
t to see

if we a
tually had new death 
ounts and exposures for τ + 1 and used them to re�t the

model. In addition, in Appendix 12.A.1, we 
he
k to ensure that the Bayesian framework

for the 
ohort parameters gives self-
onsistent forward mortality rates in the real-world
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measure.

Cohort e�e
ts are a feature of many of the more re
ent mortality models in use, and their

robust estimation is of vital importan
e in the 
al
ulation of liabilities, su
h as annuities,

and many of the longevity-linked se
urities whi
h have been proposed. However, as

dis
ussed in Chapter 6, the proje
tion of 
ohort parameters is di�
ult, and made more


ompli
ated by the nature of the partial information we have regarding them at any

spe
i�
 date. In part be
ause of this, the forward mortality models proposed to date,

su
h as those in the Heath-Jarrow-Morton framework in Barbarin (2008), Bauer et al.

(2008) and Tappe and Weber (2013), the semi-parametri
 fa
tor model of Zhu and Bauer

(2011a,b, 2014), or the Olivier-Smith model developed in Olivier and Je�rey (2004),

Smith (2005), Cairns (2007) and Alai et al. (2013), have not been able to in
orporate


ohort e�e
ts. We believe that a key advantage of the forward mortality framework

developed in Chapter 11 and in this study is that it 
an give biologi
ally reasonable

8

dynami
s for the forward surfa
e of mortality, as it is based on the dynami
s of APC

models of the mortality hazard rate, whi
h are well understood and easy to estimate

from histori
al data. Sin
e 
ohort parameters are an important feature of su
h models,

we believe that the su

essful appli
ation of the forward mortality framework proposed

in Chapter 11 and whi
h will be used in the present study for risk management purposes

is, ultimately, dependent upon using the Bayesian approa
h of Chapter 6.

12.3 One-year risk measurement and management

Based on the results of Se
tion 12.2, we are able to generate random realisations of the

forward mortality surfa
e, whi
h 
an then be used to value longevity-linked liabilities and

se
urities. Doing so enables us to model how these values might 
hange, whi
h forms a

key 
omponent in the measurement and management of longevity risk.

12.3.1 Annuity values

We begin by investigating the impa
t of the 
hange in the forward mortality surfa
e

on the value of an annuity over a one-year period. Annuity values at ea
h age, x, are

8

Introdu
ed in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a 
ausal

asso
iation (or relationship) between two fa
tors that is 
onsistent with existing medi
al knowledge�.
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al
ulated as

ax(τ) =

∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (12.9)

where tP
Q
x,τ (τ) is the market-
onsistent forward survival probability from time τ to time

τ + t (as evaluated at time τ), as de�ned in Chapter 11 and used in Equation 11.6,

and B(τ, τ + t) is the pri
e at time τ of a risk-free zero 
oupon bond maturing at time

τ + t.9 For these and all future 
al
ulations, we assume a 
onstant risk free real rate of

interest of 1% p.a. and extrapolate forward mortality rates beyond the maximum age

in the data, X = 100, using the topping out pro
edure of Denuit and Goderniaux (2005).

This assumes that the lives on whi
h the annuities are written are not systemati
ally

di�erent from the national population, data for whi
h was used to 
alibrate the forward

mortality surfa
e. A

ordingly, we do not allow for potential basis risk in our annuity

portfolio. We leave to future work the extension of the forward mortality framework to

in
lude basis risk, for example, using the relative modelling approa
hes of Villegas and

Haberman (2014) or Chapter 9. However, the results of Chapter 9 indi
ate that the

impa
t of basis risk on systemati
 longevity risk may be limited in many situations.

In order to assess the longevity risk in annuities over a one-year period, we �rst need to

update the forward surfa
e of mortality to time τ + 1 using the te
hniques of Se
tion

12.2 and then use this updated surfa
e to 
al
ulate updated annuity values. These are

given by

ax(τ + 1) =
∞
∑

t=0

tP
Q
x,τ+1(τ + 1)B(τ + 1, τ + 1 + t) (12.10)

However, a dire
t 
omparison between these updated annuity values and those in Equa-

tion 12.9 is not valid. ax(τ +1) is not dire
tly 
omparable to ax(τ), sin
e it relates to the


ohort born in τ +1− x as opposed to the 
ohort born in τ − x. If, instead, one tries to


ompare ax+1(τ + 1) with ax(τ) (whi
h do relate to the same 
ohort), we note that this


omparison is also not valid, sin
e the former in
ludes one fewer year of bene�ts and is

dis
ounted to a di�erent point in time 
ompared with the latter. Consequently, we must

9

We therefore see that an annuity is equal to a portfolio of longevity zeros, as de�ned in Blake et al.

(2006) and used in Chapter 11.
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be very 
areful in any 
omparisons that we make and 
ompare ax(τ) with
10

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (12.11)

Doing so values the same set of 
ash�ows for the same 
ohort, dis
ounted to the same

point in time and therefore ensures that the two quantities are 
omparable. The di�eren
e

between them arises from:

1. repla
ing the time τ market-
onsistent forward mortality rates in year τ + 1 with

simulated �observed� rates for that year; and

2. repla
ing the time τ market-
onsistent forward mortality rates in years t ≥ τ + 2

with the time τ + 1 market-
onsistent forward mortality rates for the same years.

Hen
e the only di�eren
es arise from 
hanges arising from the 
hanging forward surfa
e

of mortality and, therefore, they solely re�e
t longevity risk.

60 65 70 75 80
0

5

10

15

20

25

Age

Figure 12.4: Proje
ted annuity values at di�erent ages at τ + 1

10

In Equation 12.11 and subsequently, tpx,τ is the realised probability that an individual aged x at τ

has survived to age x+ t at τ + t
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Figure 12.4 shows the 95% fan 
hart of simulated annuity values at di�erent ages in one

year's time. The 
oe�
ients of variation

11

of the proje
ted annuity values in
rease with

age, from around 1.4% of the 
urrent annuity value at age 60 to approximately 2.6% at

age 80.

Figure 12.4 also shows the time τ annuity values, ax(τ), as a dashed white line. It,

therefore, illustrates that EP
τ ax(τ + 1) ≈ ax(τ). However, it is important to note,

however, that EP
τ ax(τ + 1) 6= ax(τ), i.e., the annuity values are not martingales in

the real-world measure. The reason for this is that ax(τ +1) is 
al
ulated using market-


onsistent forward mortality rates at time τ + 1, whi
h are themselves not martingales

in the real-world measure, as dis
ussed in Se
tion 12.2.

In Chapter 11, we said that the marginal parti
ipant in the market for longevity-linked

se
urities would probably be a life insurer seeking to hedge longevity risk. Su
h a life

insurer would be averse to longevity risk, and so, we expe
ted that the market-
onsistent

forward mortality rates would be lower than those in the real-world measure

νQx,t(τ) ≤ νPx,t(τ)

Thus, we expe
t to repla
e the expe
ted survival probabilities for the period [τ, τ +

1) under the market-
onsistent measure with their proje
ted values in the real-world

measure, whi
h are lower on average, i.e.,

EP
τ 1px,τ = EP

τ exp (−µx,τ+1)

= exp
(

−νPx,τ+1(τ)
)

< exp
(

−νQx,τ+1(τ)
)

= 1P
Q
x,τ (τ)

Therefore, we �nd EP
τ ax(τ + 1) < ax(τ) a
ross ages, indi
ating that annuity values

would be expe
ted to fall. In simulations, we �nd this has an impa
t of around 1% of the

value of an annuity. In an insuran
e 
ontext, this would give an �expe
ted return� due

to the �release of reserves� in respe
t of the annuity, 
aused by having held reserves for

the poli
y higher than the expe
ted value of the bene�ts in the real-world measure. This

expe
ted return on longevity-linked liabilities and se
urities has important 
onsequen
es,

whi
h will impa
t the measurement of risk in liabilities and longevity-linked se
urities,

11

The standard deviation of the annuity value divided by its expe
tation.
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as dis
ussed in the following se
tions.
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Figure 12.5: Correlations between annuity values at di�erent ages at τ + 1

In addition to looking at the annuity values at di�erent ages in isolation, we also need

to assess their dependen
e upon ea
h other in order to a
hieve a full assessment of the

longevity risk in our illustrative annuity book. To do this, Figure 12.5 shows the 
orrela-

tions between annuity values at di�erent ages. From this, we see that there is substantial


orrelation between annuity values at di�erent ages, typi
ally between 95% and 100%.

This is due to the stru
ture of the underlying APC mortality model, sin
e the evolu-

tion of the forward surfa
e of mortality over the year is driven by the same few fa
tors,

namely the three age/period terms with a limited 
ontribution from the 
ohort term.

This leads, in turn, to relatively low diversi�
ation of longevity risk a
ross di�erent ages.

In 
ontrast, there 
ould be apparently large bene�ts in risk redu
tion due to �natural

hedging�, i.e., writing life assuran
e poli
ies as the value of these would be expe
ted to

be negatively 
orrelated with annuity values under longevity risk, as dis
ussed in Cox

and Lin (2007). However, as argued in Zhu and Bauer (2014), these bene�ts are largely

model dependent, although these 
riti
isms 
an be partly assuaged by using APC mor-

tality models with a su�
ient number of terms to fully 
apture the dynami
s of mortality.
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However, for many risk measurement purposes, it is not su�
ient to simply look at

expe
tations, standard deviations and 
orrelations of the annuity values. Instead, we

need to use more sophisti
ated risk measures.

12.3.2 Risk measures

Numerous di�erent risk measures are used in pra
ti
e to quantify the riskiness of liabilities

and portfolio values, many of whi
h are dis
ussed in Denuit et al. (2005) and Dowd et al.

(2006b). Amongst these, some of the most 
ommonly used risk measures are the �value

at risk� (VaR) and the �tail value at risk� (TVaR). For a risk, X1, o

urring at time one,

these are de�ned as

VaR(X1;α) = F−1
X (1− α) (12.12)

TVaR(X1;α) = EP [X1|X1 ≥ VaR(X1;α)] (12.13)

where α is the signi�
an
e level of the risk measure and FX is the 
umulative distri-

bution fun
tion for X1 in the real-world measure, P.12 The value at risk 
an therefore

be thought of as the loss observed 100α% of the time, whilst the tail value at risk 
an

be interpreted as the expe
ted value of the worst 100α% of the loss distribution (and

hen
e it is also 
alled the expe
ted shortfall). Whilst the value at risk has numerous

drawba
ks as a risk measure, su
h as not being �
oherent� as dis
ussed in Denuit et al.

(2005) and Dowd et al. (2006b), it remains widely used in pra
ti
e as a ben
hmark for

risk management, and is widely in
orporated into regulations. The tail value at risk is


oherent in the sense of Denuit et al. (2005), and also 
an be felt to give a more reasonable

measure of the tail risk in a portfolio as it takes into 
onsideration the distribution of the

risk in the tail of the distribution, rather than merely the αth
quantile of this distribution.

For 
omparison purposes, rather than use VaR and TVaR dire
tly, we de�ne the �e
o-

nomi
 
apital� as in Denuit et al. (2005) by

EC̺(X1;α) = ̺(X1;α) − EPX1 (12.14)

where ̺ is the risk measure being used (i.e., VaR or TVaR). The e
onomi
 
apital there-

fore represents the 
apital required by an insurer to 
over unexpe
ted losses on risk X1.

This de�nition, using the value at risk forms the basis of the Solven
y Capital Require-

ment (SCR) under the Solven
y II regulatory 
apital regime, as dis
ussed in EIOPA

12

We assume that in
reasing X1 
orresponds to larger losses. In addition, as we will only deal with


ontinuous X1, the tail value at risk is equivalent to the 
onditional tail expe
tation. See Chapter 2 of

Denuit et al. (2005) for more dis
ussion of risk measures.
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Figure 12.6: E
onomi
 
apital ratios for annuity values at di�erent ages

(2014) and below.

In this 
ontext, for 
omparison purposes, it is useful to go beyond this de�nition and


ompare �e
onomi
 
apital ratios� (ECRs) de�ned as follows

ECR̺(X1;α) =
EC̺(X1;α)

X0

=
̺(X1;α)− EP

τX1

X0
(12.15)

where X0 is the value of the risk at time zero. In the 
ontext of an insurer, the ECR 
an

generally be thought of as referring to the amount of e
onomi
 
apital required per unit

of �best-estimate� liability.

12.3.3 Risk measurement and management

12.3.3.1 Liabilities

Previously, we used the forward mortality framework to �nd the distribution of annu-

ity values (
ontrolling for the impa
t of bene�ts being paid, et
) updated to re�e
t an

additional year of information. Consequently, we 
an use this distribution with the risk

measures dis
ussed in Se
tion 12.3.2 to give a more detailed measurement of the longevity

risk in annuity poli
ies.

Figure 12.6a shows the ECR

VaR

for annuity values at di�erent ages at the 95%, 99% and

99.5% levels (i.e., 
orresponding to one-in-20, one-in-100 and one-in-200 year events),
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whilst Figure 12.6b shows ECR

TVaR

for the annuities at the same levels. It is interest-

ing to see that more 
apital (as a per
entage of the best estimate liability) is required

in respe
t of longevity risk for annuities for older individuals. This is despite the fa
t

that annuities for these individuals are of shorter duration and therefore less subje
t to

longevity risk. However, this is o�set by the fa
t that annuities for older individuals have

lower expe
ted value, so the total e
onomi
 
apital will be lower than for younger-age

annuities.

We believe this is be
ause the primary impa
t of new data in our forward mortality model

is to update the mortality rates observed in year τ+1, whi
h gives a broad impa
t a
ross

most ages. It is therefore interesting to 
ompare these results with those presented in

Ri
hards et al. (2014), whi
h showed smaller e
onomi
 
apital ratios for annuities at

higher ages from a model that fo
uses primarily on extreme 
hanges in the trend rate of

improvement in mortality rates. This longevity trend risk was also 
alled re
alibration

risk in Cairns et al. (2013), and we leave its in
lusion in our forward mortality framework

to future work.

The 99.5% VaR for longevity-linked liabilities is of parti
ular interest to life insuran
e


ompanies as it is used in the de�nition of the Solven
y Capital Ratio (SCR) in the

Solven
y II regulatory requirements. These are set by the European Insuran
e and

O

upational Pensions Authority (EIOPA) and are due to be implemented in 2016 for

all insuran
e 
ompanies based in the EU (see also Stevens et al. (2010) and Bauer et al.

(2012)). The liabilities side of the Solven
y II balan
e sheet, des
ribed in EIOPA (2014),


an be 
onsidered of 
onsisting of two elements:

1. the �Te
hni
al Provisions�, 
orresponding �to the 
urrent amount undertakings

would have to pay if they were to transfer their (re)insuran
e obligations imme-

diately to another undertaking� (EIOPA (2014, TP.1.1.)); and

2. the �Solven
y Capital Ratio� (SCR) re�e
ting the additional 
apital required to

prote
t against unanti
ipated risks, 
al
ulated as �the Value-at-Risk of the basi


own funds

13

of an insuran
e or reinsuran
e undertaking subje
t to a 
on�den
e

level of 99.5% over a one-year period� (EIOPA (2014, SCR.1.9.)).

In Chapter 11, we argued that the forward mortality framework 
ould be used by a life

insurer as an internal model to value its liabilities in a market-
onsistent fashion, and

hen
e provide a valuation of the te
hni
al provisions des
ribed above. Together with the

13

De�ned as the di�eren
e between the assets and the liabilities in EIOPA (2014, SCR.1.6.).
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results above, we therefore see that the forward mortality framework 
ould be used to


al
ulate both parts of the Solven
y II balan
e sheet and, hen
e, a
t as an internal model

for a life insurer with respe
t to its longevity risk.

To illustrate, we 
onsider a stylised annuity book, 
onsisting of annuities written on male

lives equally distributed a
ross ages 60 to 80. This liability pro�le has also been heavily

simpli�ed, as real annuity books are likely to in
lude poli
yholders of both sexes

14

and

di�erent so
io-e
onomi
 ba
kgrounds.

15

Nevertheless, it is su�
ient to illustrate many

of the advantages of the forward mortality framework and we will form the basis for our

valuation of the 
omponents of the Solven
y II balan
e sheet.

Te
hni
al provisions

Be
ause there is no a
tively-traded market in longevity risk, it is impossible to a

urately

determine the te
hni
al provisions in a genuinely market-
onsistent fashion. There are

two potential ways around this:

1. Constru
t a market-
onsistent measure that is somewhat subje
tive, perhaps via

the in
lusion of �internal� market information in the manner des
ribed in Chapter

11. The future bene�t payments 
an then be valued in this measure to give a value

for the te
hni
al provisions whi
h is broadly market-
onsistent.

2. Use the real-world measure to value the future bene�ts payments, sin
e this gives

an obje
tive value for them. However, EIOPA (2014) requires that, under this

approa
h, the te
hni
al provisions would 
onsist of this real-world value plus a

�risk margin� to proxy for the additional 
ost of transferring the liabilities to a

third-party. The 
al
ulation of the risk margin is 
ompli
ated, and is dis
ussed

further in Se
tion 12.4.2.

Using the market-
onsistent approa
h, the value of the future bene�ts (and hen
e the

te
hni
al provisions) at time τ is 
al
ulated as

L(τ) =
80
∑

x=60

ax(τ) (12.16)

14

Ne
essitating a multi-population model for the evolution of mortality, su
h as the one dis
ussed in

Chapter 8.

15

As dis
ussed in Villegas and Haberman (2014) whi
h ne
essitates some form of individual risk s
aling

of the sort used in Chapter 10.
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and the value at time τ + 1 is

L(τ + 1) =

80
∑

x=60

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (12.17)

(both in notional 
urren
y units). Using this de�nition for the liabilities at τ + 1 makes


omparing L(τ) and L(τ + 1) more straightforward, in the same manner as was done

above for the annuity values.

In 
ontrast, using the real-world plus risk margin approa
h gives annuity values at age

x and time τ of

aPx(τ) =
∞
∑

t=0

tP
P
x,τ (τ)B(τ, τ + t) (12.18)

=

∞
∑

t=0

exp

(

−
t
∑

s=1

νPx+s,τ+s(τ)

)

B(τ, τ + t)

(
ompared to Equation 12.9), with similar modi�
ations to Equations 12.16 and 12.17.

Using these approa
hes, we �nd values for the future liabilities of 331.4 for the market-


onsistent approa
h and 314.2 (both in notional 
urren
y units) using the real-world

approa
h - a di�eren
e of 5.2%. This di�eren
e should be 
ompensated for by the risk

margin, as dis
ussed in Se
tion 12.4.2.

Solven
y Capital Ratios

The di�eren
e in approa
h used for the valuation of the te
hni
al provisions also has


onsequen
es for the 
al
ulation of the SCR, sin
e the �basi
 own funds� of the insurer

depends upon the value of the te
hni
al provisions. However, the de�nition of the SCR

is not pre
ise, and there exist multiple potential interpretations of �basi
 own funds�

whi
h lead to subtly di�erent values of the SCR for any given set of te
hni
al provisions

- see Christiansen and Niemeyer (2014) for a more 
omplete dis
ussion of this issue. For

instan
e, it is 
ommon to interpret basi
 own funds as the value of net assets (i.e., assets

minus liabilities), as used in Stevens et al. (2010), and denoted as N (τ) at time τ . Using

this de�nition gives the following expression for the SCR

SCR(τ) = VaR(N (τ) −B(τ, τ + 1)N (τ + 1)|Fτ ; 99.5%) (12.19)
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Figure 12.7: De
omposition of the SCR

In this study, we are interested only in the longevity risk in the liabilities, and thus

assume that the assets are invested in riskless se
urities and so investment risk does not


ontribute to the SCR. Therefore, using the de�nition of the liabilities (
al
ulated using

either a market-
onsistent or real-world approa
h) in 
onjun
tion with Equation 12.21

gives

SCR(τ) = VaR(L(τ + 1)− L(τ)|Fτ ; 99.5%) (12.20)

This 
an be de
omposed as

SCR(τ) = VaR(L(τ + 1)|Fτ ; 99.5%) − L(τ)

=
(

VaR(L(τ + 1)|Fτ ; 99.5%) − EP [L(τ + 1)|Fτ ]
)

−
(

L(τ)− EP [L(τ + 1)|Fτ ]
)

= EC

VaR

(L(τ + 1)|Fτ ; 99.5%) −
(

L(τ)− EP [L(τ + 1)|Fτ ]
)

Consequently, we see that the 
ommon de�nition of the SCR 
onsists of two parts:

1. the e
onomi
 
apital required to prote
t against unexpe
ted longevity sho
ks at

the one-in-200 level less

2. the expe
ted release of reserves for the year, L(τ)− EP [L(τ + 1)|Fτ ].

This is illustrated in Figure 12.7.

We expe
t the release of reserves to be positive sin
e the market-
onsistent measure is

anti
ipated to proje
t higher mortality rates than expe
ted in the real-world measure, as

dis
ussed in Se
tion 12.3.1 and, therefore, it will tend to o�set the e
onomi
 
apital re-

quired to prote
t against risk. The magnitude of this release of reserves depends strongly

on the spe
i�
ation of the market-
onsistent measure. Sin
e the market-
onsistent mea-

sure, Q, used in both Chapter 11 and this 
hapter is largely illustrative, due to the
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absen
e of genuine market information on the pri
es of longevity-linked se
urities, we do

not wish the details of its 
onstru
tion to bias our results. Consequently, we 
hoose to

de�ne the SCR as

SCR(τ) = ECV aR(L(τ + 1)|Fτ ; 99.5%) (12.21)

i.e., the e
onomi
 
apital alone. Using the market-
onsistent approa
h to 
al
ulate the

liability value, we �nd an SCR of 12.8, i.e., 3.9% of the value of the te
hni
al provisions.

In 
ontrast, if a real-world approa
h is used to value the liabilities, we see that there is

no release of reserves sin
e

EP
τLP(τ + 1) ≈ LP(τ)

i.e., the liability value in the real-world measure is almost a martingale, be
ause the

forward mortality rates are martingales in the real-world measure.

16

Using the real-world approa
h to 
al
ulate the liability value, we �nd an SCR of 12.6,

i.e., 4.0% of the best-estimate liability value. It is interesting to note that the nominal

value of the SCR using the best-estimate liabilities is not signi�
antly di�erent from the

value 
al
ulated using the market-
onsistent liabilities. This is be
ause the 
hange of

measure does not introdu
e any additional un
ertainty into the liabilities, and hen
e the

nominal magnitude of their riskiness is the same.

In the 
ontext of using the forward mortality framework as an internal model under

Solven
y II, it is also interesting to 
ompare the 99.5% e
onomi
 
apital ratios derived

from the forward mortality framework with the �standard model� approa
h under Sol-

ven
y II. This proposes that the SCR for longevity risk should be valued by assuming

the probability of death at ea
h age and for all time periods is redu
ed by 20% from

what is expe
ted under a best-estimate s
enario. These stressed mortality rates are then

used to value the liabilities EIOPA (2014, SCR.7.25). Figure 12.8 shows the SCRs found

by su
h an approa
h and 
ompares them with those found using the forward mortality

framework (using the liabilities on a real-world basis).

16

The di�eren
e between EP
τL

P(τ +1) and LP(τ ) arises due to Jensen's inequality in a similar fashion

to the approximation used in the de�nition of the forward mortality rates themselves in Chapter 11.

However, the results of Chapter 11 show that this is likely to be negligible a
ross all ages and years of

interest.
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Figure 12.8: SCRs for annuities at di�erent ages using the forward mortality frame-

work and the Solven
y II standard model

As 
an be seen, the Solven
y II standard model for longevity risk overstates the required


apital signi�
antly 
ompared with using the forward mortality framework - more than

doubling the SCR for an annuity at most ages. This is 
omparable to the results found

by other authors, su
h as Börger (2010), Nielsen (2010) and Ri
hards et al. (2014) using a

range of di�erent models. In addition, the approa
h adopted by the Solven
y II standard

model, i.e., a one o� redu
tion in mortality rates o

urring immediately and remaining


onstant in time, is in
onsistent with the nature of longevity risk, whi
h is a long-term

risk whi
h in
reases over time.

These three approa
hes to 
al
ulating the te
hni
al provisions and SCR (using the

market-
onsistent approa
h, the real-world approa
h and the standard model) are 
om-

pared in Table 12.1. However, it is important to note that the relatively low value of the

liability value found using the real-world and standard model approa
hes will be 
om-

pensated for by the risk margin, whi
h is 
onsidered in greater detail in Se
tion 12.4.2.
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Approa
h Liability value SCR(τ) SCR as % of Liabilities

Market-
onsistent 331.4 12.8 3.9%

Real-world 314.2 12.6 4.0%

Standard model 314.2 31.6 10.0%

Table 12.1: Liability values and SCRs using di�eren
e approa
hes

12.3.3.2 Longevity-linked se
urities

In Chapter 11, the forward mortality framework was used to value a number of potential

longevity-linked se
urities. For 
apital e�
ien
y, most of these have taken the form

of forward 
ontra
ts, written on various indi
es of mortality. A number of di�erent

mortality indi
es for use in forward 
ontra
ts have been proposed to date:

• q-forwards: as dis
ussed in Coughlan et al. (2007b), these are forward 
ontra
ts on

future probabilities of death, qx,t (see also Li and Luo (2012)).

• s-forwards: as proposed in Dowd (2003), Blake et al. (2006) and by the Life and

Longevity Markets Asso
iation,

17

these are forward 
ontra
ts on the probability of

survival of a 
ohort from in
eption at time t0 to maturity.

• e-forwards: as dis
ussed in Denuit (2009), period life expe
tan
y is a natural index

to use for summarising the evolution of mortality rates in a population, and there-

fore we 
onsider the potential of a forward market in period life expe
tan
y (whi
h

we refer to as �e-forwards� from the demographi
 symbol for period life expe
tan
y)

at age x in future year t for hedging purposes.

In ea
h of these 
ases, we assume that the referen
e population for the index is the

national population used to estimate the APC model underpinning the forward mortality

model. Hen
e, the value of the mortality index at time τ is 
al
ulated as:

18

q-forward: Qx,t(τ) = 1− exp
(

−νQx,t(τ)
)

(12.22)

s-forward: Sx,t0,t(τ) = τ−t0px,t0 × t−τP
Q
x+τ−t0,τ (12.23)

e-forward: Ex,t(τ) = 0.5 +
∞
∑

u=0

exp

(

−
u
∑

v=0

νQx+v,t(τ)

)

(12.24)

Thus, we 
an see that these mortality measures are qualitatively di�erent from ea
h

other, and range from q-forwards whi
h are very simple se
urities based on only one

17

http://www.llma.org/

18

Note that the s-forward is de�ned on a referen
e 
ohort aged x at the in
eption data, t0 ≤ τ , and

therefore the survivorship of this 
ohort is a produ
t of the observed survivorship from t0 to τ , given

by τ−t0px,t0 , and the anti
ipated survivorship from τ to maturity, t, given by t−τP
Q
x+τ−t0,τ

. For the

purposes of this study, we shall assume that t0 = τ .
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forward mortality rate, to more 
omplex se
urities whi
h look at forward mortality rates

a
ross a number of di�erent ages and years.

For a general forward 
ontra
t, linked to mortality index Ix,t, the forward pri
e spe
i�ed

by the 
ontra
t must be equal to the time τ value of the mortality measure, i.e., Ix,t(τ),
in order for the 
ontra
t to have zero value at in
eption. We assume that the buyer of

the 
ontra
t will re
eive a �oating payment and pay a �xed amount at time t. Hen
e,

the value of the forward 
ontra
t at time τ + 1 will be

B(τ + 1, t) [Ix,t(τ + 1) − Ix,t(τ)]

and, therefore, we are interested in the distribution of the 
hange in the index of mortality

over time

[Ix,t(τ + 1)|Fτ ]− Ix,t(τ)

Although longevity risk is a long-term risk whi
h will materialise over a number of

de
ades, it is likely that longevity-linked se
urities will need to be 
onsiderably shorter-

term 
ontra
ts in order to appeal to spe
ulators. Hen
e, we only 
onsider forward 
on-

tra
ts with maturities of 5, 10 and 15 years, i.e. t = 5, 10, 15. Spe
i�
ally, we investigate

the time τ + 1 values of the following forward 
ontra
ts entered into at time τ :

• a q-forward at age 65 and maturity τ + t, i.e., Q65,τ+t;

• an s-forward with maturity date τ + t, spe
i�ed on a referen
e 
ohort aged 65 at

time τ , i.e., S65,τ,τ+t; and

• an e-forward at age 65 with maturity τ + t, i.e., E65,τ+t.

Boxplots showing the time τ + 1 distribution of these forward 
ontra
ts per £100 of

nominal value are shown in Figure 12.9.

As dis
ussed earlier in the 
ontext of annuity values, we note that

EP
τ [I(τ + 1)|Fτ ]− I(τ) 6= 0

i.e., the expe
ted value of the forward 
ontra
t at time τ + 1 is not equal to zero, the

value at in
eption. This is, again, due to the pri
es of se
urities in the market-
onsistent

measure not being martingales under one-year updates of the forward mortality surfa
e

in the real-world measure. Hen
e, there will be an expe
ted return from trading in
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longevity-linked forwards, whi
h arises for the same reasons as the expe
ted release of

reserves in annuities, as dis
ussed in Se
tion 12.3.1.

We also see that for q-forwards and e-forwards, the one-year riskiness of the 
ontra
t

does not 
hange signi�
antly with its term. In 
ontrast, the riskiness of an s-forward

in
reases rapidly with the term of the 
ontra
t. The reason for this is that the nomi-

nal value of the mortality index for q-forwards and e-forwards (probability of dying and

period life expe
tan
y) does not 
hange mu
h with term, whilst that of the s-forward

(survivorship of a 
ohort) de
reases rapidly. This means that longer term q-forward and

e-forward 
ontra
ts 
ould, potentially, be written, with the risk in them managed by

annually rebalan
ing the portfolio. However, this may be more di�
ult for long-term

s-forward 
ontra
ts and it may be di�
ult to attra
t spe
ulators to trade (and hen
e


reate liquidity) in the longer-term 
ontra
ts.

Figure 12.9 also shows that the q-forward 
ontra
ts are signi�
antly riskier per ¿100

nominal than the alternatives. This is be
ause the nominal value of the mortality mea-

sure is relatively small,

19

and hen
e the value of the 
ontra
t is proportionally more

a�e
ted by new information. In addition, the q-forward is spe
i�ed on mortality rates

at one spe
i�
 age and time (rather than a
ross a range of ages and years, as in the 
ase

of the s-forward and e-forward) whi
h is likely to be more volatile.

When writing forward 
ontra
ts, it is also ne
essary to 
onsider the amount required

in order to 
ollateralise the 
ontra
t (whi
h is highly desirable to redu
e 
redit risk in

the 
ontra
t). If the 
ontra
ts were ex
hange traded, this amount would also form the

basis of the margin a

ount. Assuming the 
ollateral a

ount is readjusted on an annual

basis, a sensible method of determining the amount required in the a

ount would be to

�nd the 
apital needed to prote
t against a 95% loss on the forward 
ontra
t, i.e., the

e
onomi
 
apital of the 
ontra
t.

20

The 95% e
onomi
 
apitals for the three ten-year

forward 
ontra
ts per ¿100 nominal are shown in Figure 12.10.

We see that the 95% e
onomi
 
apital is substantially higher for the q-forward (around

5% to 6% per ¿100 nominal) than for the s-forward and e-forward. This is 
onsistent

with the results shown in Figure 12.9, whi
h indi
ated that q-forwards over a range of

terms were substantially riskier than the alternative 
ontra
ts. In the other two 
ases, we

19

Typi
ally, qx,t will be in the range [0.005, 0.05] for most ages of interest, whilst t−t0px,t0 will be in

the range [0.1, 0.9] and ex,t will be in the range [10, 30].
20

For Equation 12.15, we see that we are unable to de�ne e
onomi
 
apital ratios for the 
ontra
ts as

they have zero value initially, i.e., X0 = 0.
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Figure 12.10: E
onomi
 
apital for di�erent longevity-linked se
urities

�nd 
ollateral requirements of a few per
ent of the nominal value. However, for all three


ontra
ts, we �nd that the amount of 
ollateral needed for the 
ontra
t is fairly typi
al

of other traded forward 
ontra
ts, su
h as the standard �nan
ial and 
ommodity futures

traded on the London International Finan
ial Futures and Options Ex
hange (LIFFE).

12.3.3.3 Hedging longevity risk

Having measured the longevity risk in annuity values in Se
tion 12.3.3, it is natural to


onsider how this risk 
ould be managed and redu
ed. In pra
ti
e, this 
an be a
hieved

through reinsuran
e, se
uritisation (e.g., Cowley and Cummins (2005)) or natural hedg-

ing (e.g., Cox and Lin (2007)). Another method whi
h has been proposed (but not yet

widely implemented) is to hedge the longevity risk in a liability portfolio using standard-

ised, tradable longevity-linked se
urities.

21

21

We draw a slight distin
tion between su
h a strategy and pur
hasing a single, 
ustomised asset

without the intention of rebalan
ing the hedge in future. Examples of these 
ustomised assets in
lude

bespoke longevity swaps, as 
onsidered in Chapter 10, and highly 
ustomised bespoke options on mortal-

ity, su
h as those dis
ussed in Mi
haelson and Mulholland (2014). However, we feel that this alternative

strategy has more in 
ommon with a reinsuran
e poli
y than truly hedging risk using 
apital market

se
urities.
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To illustrate the potential e�e
tiveness of hedging these illustrative liabilities, we 
onsider

using ea
h of the di�erent se
urities dis
ussed in Se
tion 12.3.3.2 in turn. We adopt a

simple mean-varian
e hedging strategy and sele
t the portfolio whose value at time τ +1

has smallest varian
e, i.e., we �nd the hedged portfolio

L∗ = L − θ̃Ix,t

where θ̃ is 
hosen by minimising the varian
e

θ̃ = argminθVar
P
τ (L(τ + 1)− θIx,t(τ + 1))

⇒ θ̃ =
CovPτ (L(τ + 1),Ix,t(τ + 1))

VarPτ (Ix,t(τ + 1))

Varτ (L∗(τ + 1)) =
(

1− ρ2L,I
)

Varτ (L(τ + 1))

Hen
e we see that su
h a strategy depends 
riti
ally upon the 
orrelation between the

liabilities and the hedging instrument, ρL,I , at time τ +1, with 
orrelations 
loser to ±1

giving more e�e
tive hedges. The measured 
orrelations for the four se
urities 
onsidered

are shown in Table 12.2. Be
ause we wish to minimise the variability of the value of the

portfolio at time τ + 1, this approa
h investigates �value� hedging strategies as opposed

to �
ash�ow� hedging strategies, whi
h seek to minimise the un
ertainty in the realised


ash�ows.

Se
urity q-forward s-forward e-forward

Term

5 -93.9% 87.8% 99.5%

10 -93.9% 89.8% 99.6%

15 -93.7% 93.9% 99.6%

Table 12.2: Correlation between L(τ + 1) and se
urity values with di�erent terms

As 
an be seen from Table 12.2, most of the se
urities being 
onsidered give very high


orrelations with the liabilities. In the 
ase of q-forwards, this 
orrelation is negative,

sin
e higher than anti
ipated redu
tions in mortality rates have the e�e
t of in
reasing

liability values, but triggering net payments from the buyer to the seller of the q-forward,

giving a negative value under the 
onvention adopted in Se
tion 12.3.3.2. This means

that a holder of longevity risk will want to re
eive the �oating leg of a q-forward, as

opposed to wanting to re
eive the �xed legs of the other forward 
ontra
ts.

The high 
orrelations shown in Table 12.2 arise from the same reasons that we observed

high 
orrelations between annuity values at di�erent ages in Se
tion 12.3.1. This was

be
ause relatively few fa
tors (i.e., the age/period terms in the model, and mainly κ
(1)
t )
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drive the 
hanges in mortality rates. These results are therefore model dependent, as


autioned against by Zhu and Bauer (2014). However, we note that the three age/period

term model 
onstru
ted by the general pro
edure will give more 
ompli
ated dynam-

i
s for mortality (and hen
e, lower 
orrelations) than most other widely used mortality

models, su
h as the other APC models 
onsidered in Chapter 11.

We also note that, for q-forwards and e-forwards, the 
orrelation between the forward


ontra
t and the liabilities is roughly independent of the term of the 
ontra
t. In 
on-

trast, the s-forward value be
omes more highly 
orrelated with the liability value as the

term of the 
ontra
t in
reases. This in unsurprising, sin
e longer term s-forward 
on-

tra
ts are more exposed to the 
umulative e�e
ts of longevity risk and will behave more

like annuity 
ontra
ts by their nature. However, as dis
ussed in Se
tion 12.3.3.2 and

shown in Figure 12.9, longer term s-forwards are also more risky. This may limit the

development of the market in long-term s-forwards whi
h, unfortunately, are amongst

the 
ontra
ts whi
h are most useful for hedging longevity risk.

Figure 12.11 shows the empiri
al distributions of the value of the unhedged and hedged

liabilities (using the three di�erent hedging se
urities with maturities of ten years) based

on 50,000 Monte Carlo simulations. As expe
ted, all the hedging strategies 
onsidered

appear to substantially redu
e the variability of the portfolio value at time τ + 1. This

is shown by the e
onomi
 
apital ratios using the VaR and TVaR risk measures (at the

95% level) and the 
orresponding redu
tions in risk from the unhedged liability value in

Table 12.3.

ECRV aR
% Redu
tion of

ECRTV aR
% Redu
tion of

ECR ECR

Unhedged 2.44% - 3.06% -

q-forward 0.84% 65% 1.07% 66%

s-forward 1.08% 55% 1.37% 55%

e-forward 0.21% 91% 0.27% 91%

Table 12.3: Impa
t of hedging strategies on longevity risk

It is noti
eable from Figure 12.11 and Table 12.3 that the strategy based on an e-forward

is signi�
antly more e�e
tive at redu
ing risk than the other two. This is be
ause the

values of the period life expe
tan
y at the maturity date is 
al
ulated in a similar manner

to the 
al
ulation of an annuity but over a range of di�erent 
ohorts, and therefore this

se
urity is sensitive to the same risk fa
tors as the annuities we are trying to hedge. In


ontrast, the q-forward is sensitive to mortality rates at a single sele
ted age, whilst the

s-forward 
onsiders only a single 
ohort, and 
onsequently both are poorer at hedging
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Figure 12.11: Empiri
al distribution of liability values under di�erent hedging strate-

gies

risk.

As 
an be seen, the redu
tion in longevity risk with even relatively simple hedging strate-

gies over a one-year period is very high. These are �value hedges�, in the sense that the

strategy has been 
hosen to minimise the varian
e of the total portfolio value, as opposed

to �
ash�ow� hedges that minimise the variability of the net 
ash�ows from the port-

folio.

22

Longer term hedges 
ould potentially be a
hieved by rebalan
ing the portfolio

at least annually to re�e
t the a
tual experien
e of the annuity book. However, su
h a

strategy is dependent upon the existen
e of a relatively liquid market in the underlying

longevity-linked se
urities.

One potential 
riti
ism is that these results are all model dependent. It does not seem

likely that the high 
orrelations shown in Table 12.2 
ould be a
hieved in pra
ti
e and,

therefore, su
h large redu
tions in risk may not be feasible. In parti
ular, the use of

relatively simple APC mortality models to underpin the forward mortality framework

might be felt to give 
orrelation stru
tures for future mortality rates whi
h are overly

22

Examples of 
ash�ow hedging solutions for longevity risk in
lude bespoke longevity swaps.
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simplisti
, and so overstate the e�e
tiveness of any hedging strategy. However, we note

that our underlying model for the for
e of mortality has three age/period terms and a


ohort term, making it relatively 
omplex 
ompared with many more 
ommonly used

mortality models, and so it is unlikely that using a more 
ompli
ated model for the short

rate would materially a�e
t our results.

23

In addition, the impa
t of hedging would be

lower if the market pri
es of risk 
hange during the year. However, sin
e the market

for longevity risk is just emerging, assuming 
onstant market pri
es of risk is unavoid-

able at present, for the reasons dis
ussed in Se
tion 12.2, and, a

ordingly, all liability

and se
urities values will be model-dependent for the foreseeable future. Furthermore,

high 
orrelations between the liabilities and hedging instruments are required in order to

re
ognise the hedge under some a

ounting standards. Therefore, we argue that redu
-

tions in risk, even if they are only mark-to-model, are still bene�
ial for many purposes.

In addition, the results presented above do not allow for potential basis risk between

populations or for idiosyn
rati
 risk in the number of deaths observed in an a
tual annuity

book, and so will overstate the potential e�e
tiveness of hedging strategies whi
h 
ould

be obtained in pra
ti
e. We leave the addition of both of these sour
es of risk to future

work.

12.4 Multi-year risk measurement and the Solven
y II risk

margin

12.4.1 Proje
ting the liabilities

In Se
tion 12.3, we 
onsidered the possible 
hanges in the values of a portfolio of annu-

ities over a one-year period. However, it should be 
lear that we 
an also use the forward

mortality rate framework to measure longevity risk in the liabilities over a longer time

horizon than just one year. This is espe
ially valuable as longevity risk is a long-term

risk whi
h may take years or de
ades to fully emerge.

23

We have tested the hedging strategies using the simpler models of the short rate of mortality dis-


ussed in Chapter 11 and obtain even higher redu
tions in risk. In parti
ular, we observed perfe
t


orre
tion between the liabilities and se
urities, and therefore perfe
t hedges, when using the Lee-Carter

model as the underlying mortality model, sin
e this model only possesses one age/period term and hen
e

only one sour
e of risk.
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To do this, we start by extending the de�nition of the liabilities in Equation 12.17 to

allow for multiple years, i.e., the liability at time t is equal to

L(t) =
80
∑

x=60

[(

t
∑

s=τ+1

B(τ, s)s−τpx,τ

)

+B(τ, t)t−τpx,τax+t−τ (t)

]

(12.25)

Similar to Equation 12.17, using this form for the liabilities allows for the impa
t of

bene�ts paid and interest, and therefore ensures that L(t) is 
omparable to L(τ).
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Figure 12.12: Distribution of future market-
onsistent liability values

Proje
ted market-
onsistent liability values are shown in Figure 12.12. The �rst thing

to note about these is that the variability in the liabilities in
reases rapidly in the �rst

year, but then grows more slowly over the remaining term of the bene�ts. This is be-


ause 
hanges in the estimation of future mortality rates have a greater impa
t while the

liabilities are relatively immature than when most of the bene�ts have already run o�.

This 
an be 
onsidered analogous to the interest-rate risk in a portfolio of bonds, whi
h

de
reases with time as the bonds mature and the duration of the portfolio de
reases.

In addition, we note that median of the liabilities de
reases with time, from the initial

value of 331.4 (in notional 
urren
y units) to 316.4, i.e., a de
rease of approximately
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4.5% over the lifetime of the liabilities. This is due to the release of reserves over the

period, as dis
ussed previously in the single-year 
ontext in Se
tion 12.3. This is 
aused

by the market-
onsistent liability value being greater than a true �best estimate� of the

present value of the future bene�ts, i.e., the real-world liability value.
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Figure 12.13: Distribution of future real-world liability values

Correspondingly, Figure 12.13 shows the proje
ted liabilities if they are valued using

the real-world approa
h, as opposed to the market-
onsistent approa
h above. Here,

we observe very similar levels of riskiness in the liabilities, but no release of reserves,

whi
h is 
onsistent with the results of Se
tion 12.3.3.1 over a single year. Indeed, the

distribution of the real-world and market-
onsistent liabilities ultimately 
onverge to the

same distribution, sin
e this is given by the proje
ted bene�ts paid during run-o�, whi
h

is determined in the real-world measure. However, sin
e the liabilities are systemati
ally

lower in the P-measure 
ompared with the Q-measure, using these liabilities values alone

as the te
hni
al provisions under Solven
y II would be in
onsistent with the desire to

a
hieve a market-
onsistent approa
h for reserving for life insuran
e liabilities.

491



Forward Mortality Models II: Longevity Risk Assessment and Management

12.4.2 The Solven
y II risk margin

To allow for the di�eren
e between the real-world and the market-
onsistent valuation

of the liabilities, EIOPA (2014) requires insurers to add a �risk margin� to the real-world

liability value as a proxy for the additional 
ost required to transfer the liabilities to a

third party. Spe
i�
ally, �The risk margin is a part of te
hni
al provisions in order to

ensure that the value of te
hni
al provisions is equivalent to the amount that insuran
e

and reinsuran
e undertakings would be expe
ted to require in order to take over and meet

the insuran
e and reinsuran
e obligations� (EIOPA (2014, T.P.5.2.)). In order to proxy

for this, EIOPA assumes that a reinsurer would require an additional amount equal to

the future 
osts of holding su�
ient 
apital to insure the risk, i.e., the present value of

future SCRs. Therefore, the risk margin is de�ned in EIOPA (2014) as

Risk Margin(τ) = CoC×
∞
∑

t=τ

SCR(t)B(τ, t) (12.26)

where the SCR is de�ned as in Se
tion 12.3.3.1 and CoC is the 
ost of 
apital for the

annuity business.

24

To avoid having a 
ir
ular de�nition, the SCR is de�ned as the value

at risk of 
hanges in the real-world liability value, not the te
hni
al provisions (whi
h

would also in
lude the risk margin, and hen
e depend upon the value of the SCR). In

addition, the SCR at time t is a random variable sin
e it is 
onditional on Ft and so will

depend upon the evolution of mortality rates and the liabilities between time τ and t.

This is dis
ussed further in Christiansen and Niemeyer (2014). In order to 
al
ulate the

risk margin, we use the modi�ed de�nition

Risk Margin(τ) = CoC×
∞
∑

t=τ

EP
τSCR(t)B(τ, t) (12.27)

where we have taken expe
tations of the SCR 
onditional on the initial information at

time τ .

However, 
al
ulating the risk margin is problemati
 as �nested� simulations (i.e., sim-

ulations within simulations) are required, as dis
ussed in Bauer et al. (2012). This is

be
ause:

1. Monte Carlo simulations are required to proje
t the liabilities from time τ to time

t sto
hasti
ally. In order to obtain a fair sample of the distribution of the liabilities

at t, a large number (say, N) of Monte Carlo simulations are required for this.

24

In line with EIOPA (2014, TP.5.21), we use a 
ost of 
apital of 6% p.a..
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2. For ea
h proje
ted liability at time t, Monte Carlo simulations are required to


al
ulate SCR(t), whi
h requires the the sto
hasti
 development of the forward

mortality surfa
e from time t to time t + 1. Sin
e the SCR is the value at risk

at a very high signi�
an
e level, a large number (say, M ≥ N) of Monte Carlo

simulations are also needed.

τ τ + 1 τ + 2

L(τ)

L(τ + 1)

L(τ + 2)

Figure 12.14: �Nested simulations� approa
h for 
al
ulating the risk margin, N = 5
simulations used to proje
t the liabilities and M = 10 simulations (dashed) to 
al
ulate

the SCR at ea
h future time for ea
h liability value

This is illustrated in Figure 12.14, showing N = 5 simulations for proje
ting the liabili-

ties and M = 10 simulations in order to 
al
ulate the one-year update of the liabilities

at ea
h future time in order to 
al
ulate the SCR. Using this �nested� approa
h with

N = 1, 000 and M = 20, 000, we 
al
ulate a risk margin of 10.3 notional 
urren
y units,

equivalent to 3.3% of the real-world liability values. As shown in Table 12.4, this would

give total te
hni
al provisions of 324.5 (in notional 
urren
y units), 
ompared with 331.4

if the te
hni
al provisions are 
al
ulated using the market-
onsistent valuation of the

liabilities and so would not fully 
ompensate for the di�eren
e between the real-world

and our illustrative market-
onsistent measure.

Approa
h

Liability Risk Te
hni
al

SCR(τ)
Total

Value Margin Provisions Liabilities

Market-
onsistent 331.4 - 331.4 12.8 344.2

Real-world 314.2 10.3 324.5 12.6 336.4

Table 12.4: Te
hni
al provisions and SCRs using di�erent approa
hes

In addition, Figure 12.15 shows the proje
ted SCRs in future years as the liabilities are

run o�. We see from this that the SCR is expe
ted to de
rease rapidly as the bene�ts

are run-o� and so de
rease in riskiness.
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Figure 12.15: Future SCR values 
al
ulated using nested simulations

However, this nested approa
h is 
omputationally intensive, as it requires N ×M Monte

Carlo simulations. To 
al
ulate the risk margin above took a several days of 
omputing

time on a single desktop 
omputer. Although using more powerful 
omputers running

in parallel 
ould, potentially, redu
e this time, the 
al
ulation of the risk margin for an

insurer would be 
onsiderably more 
ompli
ated, sin
e more risks, other than longevity

risk, would need to be in
luded.

12.4.3 Approximate 
al
ulation of the risk margin

Sin
e the full 
al
ulation of the risk margin is 
omputationally intensive, there have

been a number of di�erent methods suggested in order to 
al
ulate it approximately by

simplifying the 
al
ulation. These have, broadly speaking, taken two approa
hes:

1. Proje
ting the liabilities from time τ to time t sto
hasti
ally, but then approximat-

ing the 
al
ulation of SCR(t). This redu
es the 
omputational burden from N×M

to N . Examples of these te
hniques are dis
ussed in Se
tion 12.4.3.1.
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2. Proje
ting the liabilities from time τ to time t deterministi
ally, but then 
al
u-

lating SCR(t) exa
tly. This redu
es the 
omputational burden from N ×M to M .

Examples of these te
hniques are dis
ussed in Se
tion 12.4.3.2.

One of the simplest pra
ti
al methods for simplifying the 
al
ulation of the risk margin

was proposed in EIOPA (2014, TP.5.60) and uses both of these approa
hes simulta-

neously to 
al
ulate the risk margin deterministi
ally, not based on any Monte Carlo

simulations. This approa
h 
al
ulates the risk margin using the modi�ed duration of the

liabilities

Risk Margin = B(τ, τ + 1)× CoC×Durτ × SCR(τ)

This �duration� approa
h avoids the need either to do sto
hasti
 simulations to proje
t

the liabilities, or for additional estimates of the SCR in future years (just an initial value

at time τ). It is therefore unlikely to fully 
apture the un
ertainty in the future liabil-

ities and so will provide a relatively 
rude estimate of the 
apital required. Using this

te
hnique, we estimate a risk margin of 2.5% of the liabilities, based on a duration of

10.5 years and the SCR(τ) from the forward mortality framework. This is signi�
antly

below the value obtained from using nested simulations, and indi
ates that the duration

approa
h may understate the te
hni
al provisions if used for the 
al
ulation of the risk

margin.

12.4.3.1 Approximating the SCR

A number of te
hniques are available to approximate the SCR at time t without the need

to estimate it via Monte Carlo simulations and, therefore, redu
e the 
al
ulation burden

of 
omputing the risk margin. This is illustrated in Figure 12.16, showing the N = 5

simulations required to proje
t the liability values, but no nested simulations required

to 
al
ulate the SCR for ea
h of them.

The �rst of these te
hniques was proposed in EIOPA (2014, SCR.7.29) and 
al
ulates

the SCR for ea
h simulation using the standard model, i.e., by stressing the mortality

rates by 20% in ea
h simulation and for ea
h future time to 
al
ulate liability values.

However, this �standard model� approa
h su�ers from the same disadvantages as were

dis
ussed in Börger (2010) and Se
tion 12.3.3 for 
al
ulating the initial SCR at time

τ . Most importantly, it will systemati
ally result in a large over estimate of the a
tual


apital requirement. However, we 
an modify this approa
h by res
aling the standard
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Figure 12.16: Approximate approa
h for 
al
ulating the risk margin, using N = 5
simulations to proje
t the liabilities but approximating the SCR at ea
h future time for

ea
h liability value

model SCR at time t, i.e.,

SCR(t) ≈ SCRStandardModel(t)×
SCRForwardRates(τ)

SCRStandardModel(τ)

= SCRStandardModel(t)×
4.0%

10.0%
from Se
tion 12.3.3.1

so as not to systemati
ally overestimate the future values of the SCR.

When we do this, we �nd a risk margin equal to 5.3% of the best-estimate value of the

liabilities using N = 1, 000, whi
h is higher that that found using the nested simulations

approa
h dis
ussed above. Figure 12.17 shows the proje
ted EP
τ SCR(t) values using

this modi�ed �standard model� approa
h. This shows that the standard model approa
h

results in an unusual pattern as the liabilities are run o�, with the SCR de
reasing more

slowly at �rst than in Figure 12.15 using the nested simulations, and then falling rapidly

after around 30 years. We regard this as highly unusual, espe
ially 
onsidering we would

expe
t the un
ertainty in the liabilities to de
rease rapidly as they mature. Therefore,

we believe that the standard model approa
h does not provide a good approximation for

the full 
al
ulation of the risk margin using nested simulations.

A se
ond approa
h, dis
ussed in EIOPA (2014, TP.5.52), assumes that SCR(t) is pro-

portional to the prospe
tive liability value, i.e., SCR(t) = SCR(τ) × L̃(t)
L(τ) .

25

Using this

te
hnique and N = 1, 000, we 
al
ulate a value for the risk margin of 4.0% of the best-

estimate liability value, whi
h is higher than that given by the nested simulations. Values

of the proje
ted EP
τ SCR(t) using this �proportional� approa
h (whi
h takes the SCR

25

This uses the prospe
tive liabilities, L̃(t), as opposed to the liabilities L(t) de�ned in Equation 12.25,
i.e., the value of the bene�ts paid beyond time t, dis
ounted to t.
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Figure 12.17: Proje
ted SCRs using the standard model and proportional approa
hes


al
ulated at time τ from the forward mortality rate framework) are also shown in Figure

12.17.

The pattern of future SCRs 
al
ulated using the proportional approa
h is more similar

to that shown in Figure 12.15 as the liabilities mature. However, the liabilities at time

t+ 1, 
onditional on time t, will not have the same distribution as the liabilities at time

τ + 1, 
onditional on time τ , due to their in
reasing maturity. This has the potential

to distort the estimate of the SCR, and, as the level of longevity risk in more mature

annuity portfolios will generally be lower than less mature portfolios, may bias the SCR

upwards. However, for the relatively simple illustrative annuity portfolio used in this

study, this e�e
t does not appear to be signi�
ant and the proportional approa
h gives

a reasonable approximation to the full nested simulations approa
h.

Both of the approa
hes dis
ussed above 
al
ulate SCR(t) as a relatively simple fun
tion

of L(t), the liability value at time t. More 
ompli
ated fun
tions 
ould also be used to

estimate SCR(t), for instan
e, using the te
hniques of Denuit (2008) in the 
ontext of

using the Lee-Carter model as the underlying mortality model, or through the use of
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extreme value theory, as mentioned in passing by Bauer et al. (2009). However, these

approa
hes have been developed in relatively simple and spe
i�
 
ontexts, and so are

unlikely to be feasible for 
omplex liabilities or when using more sophisti
ated mortality

models.

A 
on
eptually similar approa
h, proposed in Bauer et al. (2009) and based on te
hniques

that are popular in option pri
ing, is the use of least-squares Monte Carlo methods. This

approa
h uses a number of deterministi
 s
enarios to regress the SCR at time τ as a fun
-

tion of the underlying latent variables of the model (i.e., the period and 
ohort fun
tions

κτ and γτ−x). This approa
h is also 
on
eptually similar to those suggested in Cairns

(2011) and Dowd et al. (2011a).

However, 
ompli
ated mortality models (espe
ially those with 
ohort parameters) will

have a large number of latent variables, e.g., the GP model using in this study has 54

latent variables 
orresponding to the three period fun
tions and the 51 
ohort parameters

for years of birth with members whi
h are 
urrently alive. Therefore, it is un
lear how

pra
ti
al least squares Monte Carlo methods are for more 
ompli
ated annuity portfo-

lios and sophisti
ated mortality models. Least squares Monte Carlo methods are also

most suitable for pro
esses whose distributions do not 
hange signi�
antly with time,

and therefore may not be appropriate for modelling liabilities in run-o�.

12.4.3.2 Approximating the liabilities

A fundamentally di�erent approa
h is to 
al
ulate the SCR at time t a

urately using

Monte Carlo simulations, but to use only a redu
ed number of s
enarios to model the

evolution of the liabilities from τ to t. Börger (2010) and Stevens et al. (2010) suggest

using the best estimate (i.e., median) s
enario to proje
t the liability value. To do this,

we 
al
ulate LMed(t) deterministi
ally, but then use Monte Carlo simulations to proje
t

one year ahead and estimate the distribution of L(t+1)|LMed(t). From this distribution,

SCRMed(t) 
an be estimated as

SCRMed(t) = ECV aR(L(t+ 1)|LMed(t); 99.5%)

This �median� approa
h is illustrated in Figure 12.18, showing M = 10 simulations in

grey to 
al
ulate the SCR at ea
h future time.
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Figure 12.18: �Median� approa
h for 
al
ulating the risk margin, using M = 10
simulations to estimate the SCR for the median liability value at ea
h future time

The median approa
h 
aptures the impa
t of the in
reasing maturity of the liabilities

on the distribution of the one-year proje
tion of the liabilities and hen
e the estimation

of the SCR. Using the median approa
h with M = 20, 000, we estimate a risk margin

of 3.5% of the real-world value of the liabilities, whi
h is not very di�erent from that


al
ulated using nested simulations.

One potential 
riti
ism of this approa
h is that it does not 
al
ulate the SCR for s
enarios

where the liabilities are already signi�
antly higher or lower than the median estimate

at time t. For instan
e, although at time t, we 
onsider highly adverse s
enarios for how

mortality might evolve to t + 1 in the 
al
ulation of SCR(t), we only use the median

s
enario to 
al
ulate L(t+ 1) and, hen
e, ignore the potential for adverse experien
e to

a
tually be realised. As the SCR is a phenomenon relating to the tail of the distribution

of the liabilities, it may have a di�erent distribution if the starting liabilities at time t

are already in a stressed s
enario 
ompared with the best estimate s
enario.

26

However, this approa
h 
an be extended to deal with this 
riti
ism. We do this by re
og-

nising that the median s
enario is just one representative s
enario (or �model point�) of

the distribution of liabilities at time t. As we have to �nd the distribution of the liabilities

at time t in order to 
al
ulate SCR(t− 1), we 
ould instead take multiple model points

(say, p) from this distribution. For ea
h of these representative s
enarios, we would then


al
ulate SCR(t), with the estimated total SCR at time t being a probability-weighted

average of the estimates for ea
h model point. This approa
h is illustrated in Figure

12.19, using p = 3 model points and M = 10 simulations to 
al
ulate the SCR for ea
h

26

For example, we may believe that our liabilities will behave di�erently if we have already observed

rapid redu
tions in mortality rates 
ompared to a best estimate s
enario.
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model point.

τ τ + 1 τ + 2

L(τ)

L(τ + 1)

L(τ + 2)

Figure 12.19: �Model point� approa
h for 
al
ulating the risk margin, using p = 3
model points and M = 10 simulations to estimate the SCR for ea
h model point at

ea
h future time

Hen
e, the model point approa
h is able to investigate the behaviour of the SCR un-

der adverse s
enarios for the evolution of the liabilities. This may be important for


ompli
ated bene�t stru
tures, whose distribution 
ould, potentially, be strongly path-

dependent. This �model point� approa
h requires ∼ p×M simulations, whi
h, although

still 
omputationally intensive, is a signi�
ant redu
tion from the N × M simulations

required for the nested approa
h.

The 
hoi
e of model points is left to the model user. For illustrative purposes, in our 
al-


ulations, we have 
hosen model points at regular quantiles of the liability distribution,

namely p model points at the

1
2
100
p

th
,

3
2
100
p

th
, . . . 2p−1

2
100
p

th
per
entiles of the distribution,

whi
h are all given the same weight. However, other 
hoi
es might be more appropriate

if a greater number of model points in the tails of the distribution is desired, although

the weights would have to be adjusted appropriately.

Nevertheless, there is, still a trade-o� between the number of model points and the num-

ber of simulations to 
al
ulate the SCR at ea
h model point for a �xed 
omputational

budget. Using more model points, therefore, means redu
ing the number of simulations

used to 
al
ulate the SCR for ea
h, in order to keep the same total number of simula-

tions. To illustrate this, we 
al
ulate the SCR during run o� and the risk margin for

di�erent values of p with �xed p×M = 20, 000.27

27

Note that the 
ase p = 1 
orresponds to the median approa
h dis
ussed above.
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Figure 12.20: Proje
ted SCRs for di�erent numbers of model points

Figure 12.20 shows the estimated SCRs at di�erent times and di�erent numbers of model

points. As 
an be seen, the number of model points does not appear to signi�
antly af-

fe
t the proje
ted values of the SCR, and therefore will give similar estimates of the risk

margin. The is be
ause the liability values are driven 
hie�y by the period parameters,

κt, whi
h are proje
ted using a random walk with drift. This means that the period

fun
tions are not path-dependent, e.g., observing larger than anti
ipated 
hanges in κt

between τ and t merely 
hanges the starting point for where we expe
t the pro
ess to

go in future, but does not 
ause us to revise our expe
tation of the drift of the pro
ess.

Allowing for experien
e to feed through into an adjusted assumption for the drift of the

pro
ess (i.e., allowing for re
alibration risk) in the forward mortality framework would


hange this assumption and, potentially, our results. However, the stru
ture of our illus-

trative liabilities is relatively simple, whi
h may limit the extent to whi
h SCR(t) would

be a�e
ted by adverse experien
e between τ and t. There might be more 
ompli
ated

situations where a greater number of model points are needed in order to 
apture the

behaviour of the SCR in the tail of the liability distribution, su
h as if the liabilities

in
luded longevity-linked options, su
h as guaranteed annuity rates.

28

28

However, as dis
ussed in Chapter 11, the forward mortality rate framework 
annot 
urrently be used

to value options on measures of mortality. We leave the modelling of longevity-linked options to future

work.
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12.4.3.3 Comparing the approa
hes

Values of the SCR and risk margin at time τ (as per
entages of the time τ liability value)

are shown in Table 12.5 for the various methods 
onsidered above for 
al
ulating the risk

margin. As 
an be seen, the standard model approa
h overestimates the amount of 
ap-

ital required, both 
ompared with the approa
h based on nested simulations and the

other approximate approa
hes dis
ussed. Thus, an insurer using the standard model ap-

proa
h may experien
e a lower return on 
apital from their annuity book and �nd writing

annuities less pro�table than 
ompetitors adopting a more sophisti
ated approa
h. In


ontrast, we �nd that the duration approa
h underestimates the risk margin and, hen
e,

the total 
apital required, whi
h might prompt further investigation from the regulator

regarding the 
apital adequa
y of an insurer using this approa
h. The other methods

�nd broadly 
omparable amounts of risk 
apital in order to support the annuity book.

However, our results are based on a very simple, illustrative annuity book and therefore

may not be dire
tly appli
able for the more realisti
 annuity books.

Approa
h SCR(τ) Risk Margin Total

Nested 4.0% 3.3% 7.3%

Duration 4.0% 2.5% 6.5%

Standard model 4.0% 5.3% 9.3%

Proportional 4.0% 4.0% 8.0%

Median 4.0% 3.5% 7.5%

Model point (p = 10) 4.0% 3.5% 7.5%

Table 12.5: SCRs and risk margins using di�erent approa
hes

In pra
ti
e, any measurement of the SCR and risk margin would also need to take

into a

ount other risks, su
h as un
ertain investment returns, interest rates, in�ation,

poli
yholder behaviour and operational risks, all of whi
h might add substantially to these

requirements. It is important that any model used for longevity risk 
an be integrated

into the wider framework of measuring and managing the full range of risks fa
ed by a

life insurer. We believe that approa
hes whi
h provide greater detail about the potential

evolution of the liabilities, su
h as the model point approa
h, 
an do this more e�e
tively

and, hen
e, provide a more holisti
 approa
h to risk management within the annuity

book, than some of the other simpler approa
hes dis
ussed above.
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12.5 Con
lusions

In Chapter 11, we de�ned a stati
 forward surfa
e of mortality for the purpose of valuing

longevity-linked liabilities and se
urities. In this study, we extend this framework by

investigating the dynami
s of the forward mortality surfa
e to show how these values

might 
hange over time. This involves understanding the pro
esses we use to proje
t

the underlying parameters in the mortality model and how these update to re�e
t new

information. In parti
ular, an understanding of how the 
ohort parameters in the model

update in response to new information is 
riti
al in measuring the dynami
s of the for-

ward mortality surfa
e. We use this understanding to show that forward mortality rates

are martingales in both the real-world and market-
onsistent measures, and are, there-

fore, �self-
onsistent� in the terminology of Zhu and Bauer (2011b).

We then apply this dynami
 framework to investigate some of the most important 
ur-

rent issues in the measurement and management of longevity risk. In parti
ular, we

demonstrate how the forward mortality framework 
ould be used as an internal model as

part of the Solven
y II regulations being implemented a
ross the EU. We also 
ompare

it with the standard model proposed in EIOPA (2014), whi
h we have demonstrated

signi�
antly overstates the amount of 
apital an insurer would need to hold in respe
t

of longevity risk. We also investigate the 
al
ulation of the Solven
y II risk margin

and 
ompare a variety of approa
hes for simplifying this. In addition, we use the for-

ward mortality framework to investigate the e�e
tiveness of longevity-linked se
urities

in hedging longevity risk in an annuity portfolio, and �nd that relatively simple hedg-

ing strategies 
an signi�
antly mitigate the longevity risk in a set of illustrative liabilities.

However, the forward mortality framework des
ribed here and in Chapter 11 
ontains

some notable omissions, namely that it 
annot 
urrently allow for revisions to the trend

rate of mortality improvement (re
alibration risk in the terminology of Cairns (2013)),

does not allow for potential basis risk between populations and 
annot be used to value

options on mortality rates and other instruments with non-linear longevity-linked payo�s.

We leave ea
h of these problems for future work, but are 
on�dent that they are solvable.

In Chapter 11, we stated our belief that the forward mortality rates are the way forward

in answer to the question posed in Norberg (2010). This study rea�rms this 
on
lusion

and demonstrates the many pra
ti
al uses a forward mortality framework 
an have in


ompleting the framework for measuring and managing longevity risk.
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12.A Self 
onsisten
y

In Se
tion 12.2, we dis
ussed the self-
onsisten
y property of Zhu and Bauer (2011b)

and argued that P-measure forward mortality rates should be self-
onsistent in the real-

world measure and Q-measure forward mortality rates should be self-
onsistent in the

market-
onsistent measure sin
e they are de�ned as 
onditional expe
tations. However,

it is helpful to 
on�rm this expli
itly in order to ensure that there are no in
onsisten
ies

in the modelling framework. This was done for age/period models of the short rate

in Se
tion 12.2.1, where the time series pro
ess updating the period parameters was

relatively simple. In this Appendix, we �rst verify the martingale property for models

that in
lude a 
ohort term and then verify that forward mortality rates are self-
onsistent

in the market 
onsistent Q-measure.

12.A.1 Self 
onsisten
y of the 
ohort parameters

For simpli
ity, 
onsider a model of the short mortality rate with no age/period terms,

i.e.,

lnµx,t = αx + γt−x

In this 
ase

νPx,t(τ) = exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

and trivially therefore

νPx,t(τ + 1) = exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

First, we observe that

V (y, τ + 1) = V (y − 1, τ) (12.28)

from the de�nition of the varian
e fun
tion in Equation 11.21. The, using Equation 12.28

and dropping the supers
ript P (sin
e all expe
tations and varian
es are in the real-world

measure), we see that self-
onsisten
y implies

exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

= Eτ exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

= exp

(

αx + EτM(t− x, τ + 1) +
1

2
(Varτ (M(t− x, τ + 1)) + V (t− x− 1, τ))

)

504



Forward Mortality Models II: Longevity Risk Assessment and Management

Therefore, we require

EτM(y, τ + 1) = M(y, τ) (12.29)

Varτ (M(y, τ + 1)) = V (y, τ) − V (y − 1, τ) (12.30)

It is important to note that these are dire
t 
onsequen
es of the laws of 
onditional

expe
tation and varian
e, i.e., Equations 12.29 and 12.30 
an be rewritten as

EτEτ+1γy = Eτγy

Varτ (Eτ+1γy) + EτVarτ+1(γy) = Varτ (γy)

and therefore that the following is merely a 
he
k on whether the Bayesian pro
ess un-

derpinning the 
ohort parameter is internally 
onsistent.

For simpli
ity, we assume that we have 
hosen a set of identi�ability 
onstraints su
h that

β = 0. From Chapter 6, we have the following re
ursive relationships whi
h de�ne the

mean and varian
e fun
tions (and whi
h were solved to give the 
losed forms of M(y, τ)

and V (y, τ) in Equations 11.20 and 11.21)

M(y, t) = γ
y
(t) + (1−Dt−y)ρM(y − 1, t) (12.31)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)) (12.32)

Starting with Equation 12.29

EτM(y, τ + 1) = Eτ

∞
∑

s=0

[

s−1
∏

r=0

(1−Dτ+1−y+r)

]

ρsγ
y−s

(τ + 1)

=

∞
∑

s=0

Þτ+1−y,sρ
sEτγy−s

(τ + 1)

where we have de�ned

Þτ−y,s =

s−1
∏

r=0

(1−Dτ−y+r)

and Þτ−y,0 = 1 by de�nition, as per Chapter 6. From this de�nition, we note the following

Þτ−y,s+1 = (1−Dτ−y+s)Þτ−y,s

Þτ−y+1,s =
(1−Dτ−y+s)

(1−Dτ−y)
Þτ−y,s
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From Equation 12.7 we have

Eτγ
τ+1−y
y = ρM(y − 1, τ)

Varτ (γ
τ+1−y
y ) = ρ2V (y − 1, τ) +

σ2

dτ+1−y

Using this with Equation 12.5 gives us

Eτγy(τ + 1) = γ
y
(τ) + dτ−y+1Eτ [γ

τ−y+1
y ]

= γ
y
(τ) + dτ−y+1ρM(y − 1, τ)

= M(y, τ) − (1−Dτ−y)ρM(y − 1, τ) + dτ−y+1EτρM(y − 1, τ)

= M(y, τ) − (1−Dτ−y+1)ρM(y − 1, τ)

where we have used Equation 12.31 to remove the dependen
e on γ
y
(τ).

It therefore follows that

EτM(y, τ + 1) =

∞
∑

s=0

Þτ+1−y,sρ
s (M(y − s, τ)− (1−Dτ−y+1)ρM(y − s− 1, τ))

=
∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

(1−Dτ−y+1)Þτ+1−y,sρ
s+1M(y − s− 1, τ)

=

∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

Þτ+1−y,s+1ρ
s+1M(y − s− 1, τ)

= Þτ+1−y,0ρ
0M(y, τ)

= M(y, τ)

as required.

Perhaps unsurprisingly, demonstrating Equation 12.30 is tri
kier. We start by showing

that it is true when y = τ +1−X, i.e., the 
ohort is one year away from being fully run

o�. Trivially V (τ + 1 −X, τ + 1) = 0, sin
e at time τ + 1, everyone in the 
ohort born

at τ + 1 −X has died and so the 
ohort parameter γτ+1−X = γ
τ+1−X

(τ + 1) is known
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with 
ertainty. Therefore

Varτ (M(τ + 1−X, τ + 1)) = Varτ (γτ+1−X
(τ + 1))

= Varτ (γτ+1−x
(τ) + dXγXτ+1−X)

= d2X
σ2

dX

= dXσ2 = (1−DX−1)σ
2 = V (τ + 1−X, τ)

using Equations 12.7 and 11.21. This is the �rst step in an indu
tion argument, enabling

us to work forwards in y to prove that Equation 12.30 holds true

Varτ (M(y, τ + 1)) = Varτ

(

γ
y
(τ + 1) + (1−Dτ−y+1)ρM(y − 1, τ + 1)

)

= Varτ (γy(τ + 1)) + (1−Dτ−y+1)
2ρ2Varτ (M(y − 1, τ + 1))

+ 2(1 −Dτ−y+1)ρCovτ (γy(τ + 1),M(y − 1, τ + 1))

using Equation 12.31 and expanding the varian
e. Looking at the �rst of these parts, we

see

Varτ (γy
(τ + 1)) = Varτ (γy(τ) + dτ−y+1γ

τ−y+1
y )

= d2τ−y+1Varτ (γ
τ−y+1
y )

= dτ−y+1σ
2 + ρ2d2τ−y+1V (y − 1, τ)

from Equation 12.7. For the se
ond part, we assume that Equation 12.30 holds for y−1,

using the indu
tive argument, and therefore

Varτ (M(y − 1, τ + 1)) = V (y − 1, τ) − V (y − 2, τ)

Consequently

Varτ (γy(τ + 1)) + (1−Dτ−y+1)
2ρ2Varτ (M(y − 1, τ + 1))

= dτ−y+1σ
2 + ρ2

(

d2τ−y+1 + (1−Dτ−y+1)
2
)

V (y − 1, τ)

− (1−Dτ−y+1)
2ρ2V (y − 2, τ)

= dτ−y+1σ
2 + ρ2

(

(1−Dτ−y+1 + dτ−y+1)
2 − 2(1−Dτ−y+1)dτ−y+1

)

V (y − 1, τ)

− (1−Dτ−y+1)σ
2 − V (y − 1, τ) using Equation 12.32 on V (y − 2, τ)

= (1−Dτ−y)σ
2 + ρ2(1−Dτ−y)

2V (y − 1, τ) − V (y − 1, τ)

− 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)

= V (y, τ)− V (y − 1, τ) − 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)
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Therefore

Varτ (M(y, τ + 1)) = V (y, τ)− V (y − 1, τ)

+2(1 −Dτ−y+1)ρ
(

Covτ (γy(τ + 1),M(y − 1, τ + 1))− ρdτ−y+1V (y − 1, τ)
)

and so Equation 12.30 will hold if and only if

Covτ (γy
(τ + 1),M(y − 1, τ + 1)) = ρdτ−y+1V (y − 1, τ)

To show that this 
al
ulation holds, we de
ompose the 
ovarian
e as

Covτ (γy
(τ + 1),M(y − 1,τ + 1)) = dτ+1−yCovτ (γ

τ+1−y
y ,M(y − 1, τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sCovτ (γ

τ+1−y
y , γ

y−1−s
(τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+2Covτ (γ

τ+1−y
y , γ

τ+2−y+s
y−s−1 )

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+sρ

s+1
Þτ+1−y,s+1

σ2

dτ+2−y+s

from Equation 12.8

= ρdτ+1−y

∞
∑

s=0

(1−Dτ+1−y+s)Þ
2
τ+1−y,s+1ρ

2sσ2

= ρdτ+1−yV (y − 1, τ)

from the de�nition of V (y, τ) in Equation 11.21. Therefore, Equation 12.30 does indeed

hold and models involving a set of 
ohort parameters are self-
onsistent in the real-world

P-measure.

12.A.2 Self-
onsisten
y in the market-
onsistent measure

Together, the results of Se
tion 12.2.1 and Appendix 12.A.1 show that the forward mor-

tality rates are self-
onsistent in the real-world P-measure, as expe
ted. We now demon-

strate that they are self-
onsistent in the market-
onsistent Q-measure, i.e.,

EQ
τ νQx,t(τ + 1) = νQx,t(τ)
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From Equation 11.31, we have

ν
Q
x,t(τ + 1) = exp

(

β⊤
xVar

P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× νPx,t(τ + 1)

= exp

(

αx + β⊤
x E

P
τ+1κt +

1

2
β⊤
x Var

P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

and also from Equation 11.29

EQ
τ νQx,t(τ + 1) =

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

ν
Q
x,t(τ + 1)

]

EP exp
(

−λ⊤κt − λγγt−x

)

Looking �rst at the denominator

[

EP exp
(

−λ⊤κt − λγγt−x

)]−1
=

exp

(

λ⊤EP
τκt −

1

2
λ⊤VarPτ (κt)λ+ λγEP

τγt−x −
1

2
λγ 2VarPτ (γt−x)

)

Next, let us 
onsider the numerator

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

ν
Q
x,t(τ + 1)

]

=

exp

(

αx + β⊤
x E

P
τ+1κt +

1

2
β⊤
xVar

P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)− λ⊤κt − λγγt−x

)

= exp

(

αx +
1

2
β⊤
xVar

P
τ+1(κt)βx +

1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× EP
τ exp

(

βxE
P
τ+1κt − λ⊤κt + EP

τ+1γt−x − λγγt−x

)

Sin
e all expe
tations and varian
es are under the measure P (unless stated otherwise),

we drop the supers
ripts for simpli
ity. Considering only the expe
tation

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤
xVarτ (Eτ+1κt)βx +

1

2
λ⊤Varτ (κt)λ

+β⊤
xCovτ (Eτ+1κt,κt)λ+

1

2
Varτ (Eτ+1γt−x) +

1

2
λγ 2Varτ (γt−x)− λγCovτ (Eτ+1γt−x, γt−x)

)
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Looking at ea
h of the varian
e terms, we use the results

Varτ (Eτ+1X) = Varτ (X)− Varτ+1(X)

Covτ (X,Eτ+1X) = EτCovτ+1(X,Eτ+1X) + Covτ (Eτ+1X,Eτ+1X)

= 0 + Varτ (Eτ+1X)

= Varτ (X)− Varτ+1(X)

to give

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤
x [Varτ (κt)− Varτ+1(κt)]βx

+
1

2
λ⊤Varτ (κt)λ+ β⊤

x [Varτ (κt)− Varτ+1(κt)]λ+
1

2
Varτ (γt−x)−

1

2
Varτ+1(γt−x)

+
1

2
λγ 2Varτ (γt−x)− λγVarτ (γt−x) + λγVarτ+1(γt−x)

)

Putting all three parts together and 
an
elling terms, we �nd

EQ
τ ν

Q
x,t(τ + 1) = exp

(

αx + β⊤
x Eτκt +

1

2
β⊤
xVarτ (κt)βx + Eτγt−x +

1

2
Varτ (γt−x)

+β⊤
xVarτ (κt)λ+ λγVarτ (γt−x)

)

= exp
(

β⊤
x ΛVarτ (κt)βx + λγVarτ (γt−x)

)

νPx,t(τ)

= ν
Q
x,t(τ)

i.e., that forward mortality rates are self-
onsistent martingales under the market-
onsistent

Q-measure. From this, we also see that

EP
τν

Q
x,t(τ + 1) = EP

τ exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νPx,t(τ + 1)

= exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νPx,t(τ)

= exp
(

β⊤ [Varτ+1(κt)− Varτ (κt)]λ+ λγ [Varτ+1(γt−x)− Varτ (γt−x)]
)

νQx,t(τ)

i.e., the 
hange of measure introdu
es a distortion whi
h prevents market 
onsistent

forward rates being self-
onsistent in the real-world P-measure.
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