

City, University of London Institutional Repository

Citation: Blasco, J., Hernandez-Castro, J. C., Tapiador, J. M. E., Ribagorda, A. & Orellana-

Quiros, M. A. (2009). Steganalysis of Hydan. IFIP Advances in Information and
Communication Technology, 297, pp. 132-142. doi: 10.1007/978-3-642-01244-0_12

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13755/

Link to published version: https://doi.org/10.1007/978-3-642-01244-0_12

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Steganalysis of Hydan

Jorge Blasco1, Julio C. Hernandez-Castro1, Juan M.E. Tapiador1

Arturo Ribagorda1 and Miguel A. Orellana-Quiros2
1 {jbalis, jcesar, jestevez, arturo}@inf.uc3m.es

2mangel.orellana@meh.es

February 26, 2009

Abstract

Hydanis a steganographic tool which can be used to hide any kind of information inside executable files. In
this work, we present an efficient distinguisher for it: We have developed a system that is able to detect executable
files with embedded information throughHydan. Our system uses statistical analysis of instruction set distribution
to distinguish between files with no hidden information and files that have been modified withHydan. We have
tested our algorithm against a mix ofcleanand stego-executable files. The proposed distinguisher is able to tell
apart these files with a 0 ratio of false positives and negatives, thus detecting all files with hidden information
throughHydan.

1 Introduction
Steganography is the art and science that tries to hide the existence of messages [4]. The objectives of steganogra-
phy are not the same that those of cryptography, which main aim is to conceal the message contents by perform-
ing different transformations so only authorized persons can read it. At first, one may think that cryptography
is enough to ensure the security of the communications between two parties, but there are scenarios where the
knowledge of the existence of a communication between two parties may be critical. These scenarios all have
something in common with that described by Simmons and knownas the Prisoners problem[12]. In this, two
prisoners (Alice and Bob) want to plot an escape plan. As theyare not in the same cell they must communicate
through a warden (Willie). If Willie ever suspects that Alice and Bob are planning to escape or are engaging in
any kind of secret communication he will put them into isolation cells. In this scenario, Alice and Bob can not
simply use cryptography because Willie will recognize encrypted messages and infer they are communicating
secretly, so he will stop this channel. Alice and Bob should hide their messages into seemingly innocuous ones,
so Willie will not notice the covert communication. Additionally, Willie can behave in different ways: If Willie
just checks the messages and forwards them to its recipient,then Willie is apassive warden. On the other hand,
if Willie has high suspicions of Alice and Bob planning an escape, but he does not have a proof, it is possible
that he will modify slightly the message contents trying to perturb any hidden information. In this case, Willie is
anactive warden. Both possible scenarios must be considered when designingstego-systems, so the quality of
a stego-system can be measured (in addittion to other properties) by means of the difficulty to detect its content
and the possibility that hidden information is not lost evenif the stego-object suffers some modifications.

The first documented use of steganography [5] was made byDemaratus, who wanted to warn the Greeks
about a Persian invasion leaded byXerxes. Demaratussent a message written on a wooden table covered by wax,
so it could pass all the guard controls and arrive to Sparta.

Since those days, steganography has developed as a science,and many different approaches have been used
to cover contents of any kind [9]. Image Steganography [4] isone of the most used techniques. Covering
contents into images can be done in many different ways. Mostsimple techniques hide information on the least
significant bits (LSB) of each pixel. Other techniques use image compression algorithms. For example, the
JPEG image compression algorithm is based on the parametersof the discrete cosine transform (DCT). Using
different parameters in the DCT calculation allows hiding information in the image file. Another widely used
cover are digital audio files. Audio steganography also includes techniques such as LSB (similar to image LSB
steganography).

1

https://www.researchgate.net/publication/2573553_Information_Hiding_-_A_Survey?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/260583963_Exploring_Steganography_Seeing_the_Unseen?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/260583963_Exploring_Steganography_Seeing_the_Unseen?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220722260_The_History_of_Subliminal_Channels?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

Changing the last significant bit on each audio sample produces slight modifications on audio files that can
not generally be distinguished by humans, specially if the redundancy ratio is high. Audio steganography can be
performed also in compressed audio files like MP3s. Some tools like MP3Stego [10] can hide information during
the inner loopstep, by modifying the DCT values. Much more steganographictechniques can be found in the
literature such as subliminal channels [12], SMS [11], TCP/IP [6] and games [3].

All security requirements for cryptographic systems are usually (or should be) applied to steganographic
systems. This means that the security of a steganographic algorithm should not rely itself on the secrecy of the
algorithm, which should be public, but on the knowledge of the key. In steganography, it should not be possible
to distinguish acleanobject from a stego-object if the key is unknown. In this work, we prove that it is possible to
distinguish acleanexecutable file from a stego-object created throughHydanwithout the possession of the key.
The remainder of this document is structured as follows. Section 2 introduces previous work done in executable
files steganography. Section 3 describes the basics ofHydanand how it works. Section 4 shows the steganalysis
performed onHydanand the resulting distinguisher. This section also performs a discussion on possible ways
to overcome the steganalysis presented. Section 6 presentsthe gathered conclusions and possible lines of future
work.

2 Previous Work
Hydan [2] is the first documented tool and scheme that uses directlyexecutable files as a cover. During years,
other techniques have been used to insert hidden information into source files, but for copyright protection pur-
poses only. These involve access to source code, where programmers insert copyright marks and integrity checks
right inside their code. Information inserted in this way can be used to prove the integrity and authorship of the
program [13]. OutsideHydan, other authors [1] have later described different techniques to introduce informa-
tion in executable files. Authors describe four different techniques.Instruction Selectionreplaces some of the
instructions in the executable file for others with the same functionality. Register Allocationencodes embedded
information in changes on the registers used by some instructions. Instruction Schedulingchanges the order of
non-dependant instructions. Finally,Code Layoutuses the order of big blocks.

Authors have implemented all the proposed techniques in a more advanced tool calledStilo. A steganalysis of
Stilo is proposed in the same paper based on a concept namedCode Transformation Signature, which is defined
as the set of characteristics that can be used to detect the presence of hidden information intoStilo executable
files. Authors describe theCode Transformation Signaturesfor Stilo and propose a group of countermeasures to
avoid them. Authors also mentionHydan, but they do not perform any steganalysis nor reveal the corresponding
Code Transformation Signaturesfor Hydan. Apart from this work, no other techniques have been proposed to
hide information on executable files. In this paper we describe the main properties (itsCode Transformation
Signatures) that can be used to detect executable-files with hidden information throughHydan. Based on those
properties, a very efficient distinguisher is proposed.

3 Hydan
Hydanis a steganographic tool which covers messages in executable files. It does not change the functionality of
the executable neither the size of it. A detailed description on howHydanworks can be found on [2].

Hydan uses the “redundancy” on the instructions sets of executable files to introduce hidden information.
Specifically,Hydanuses the concept offunctionality-equivalent instructions. A set of functionality-equivalent
instructionsis a group of instructions in which any instruction of the group can be replaced for other without
loss of functionality. For example, to add a certain amount to a specific register it is possible to useadd, r1,
8 or , equivalently, usesub, r1, -8. In this case, theadd instruction could encode the bit value 0, and thesub
instruction may encode the bit value 1. Depending on the sizeof the functionality-equivalent instructionssets it
is possible to encode more than one bit with one instruction.A set of fourfunctionality-equivalent instructions
would allow codifying 2 bits (00, 01, 10 and 11). Generally, with a set ofn equivalent instructions it would be
possible to encode⌊log2(n)⌋ bits. Table 1 describes thefunctionality-equivalent instructionsgroups and number
of instructions in each of the groups for thex86set, which is the most common and the one used byHydan.

Embedding process ofHydan is done in two steps. First step encrypts the message to be hidden usingAES
or Blowfishwith the password given by the user. In the second step, the encrypted message is embedded into
the executable file. Specifically,Hydanworks as follows: Once the message has been encrypted,Hydansearches
for possible places to introduce information. Then,Hydangenerates a random number seeded with the password
entered by the user. This number is used to select which of theselected places of the executable file will be

2

https://www.researchgate.net/publication/220722141_Embedding_covert_channels_into_TCPIP?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220833945_Steganography_for_Executables_and_Code_Transformation_Signatures?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/234799152_Recognition_in_software_watermarking?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/220722260_The_History_of_Subliminal_Channels?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

Table 1: Groups offunctionality-equivalent instructionsused inHydan

Group Inst. Group Inst. Group Inst.
toac8 5 toac32 5 rrcmp8 2
rrcmp32 2 toasxc8 7 toasxc32 6
addsub8 2 addsub8-2 2 addsub32-1 2
addsub32-2 2 addsub32-3 2 xorsub8 4
xorsub32 4 add8 2 add32 2
adc8 2 adc32 2 and8 2
cmp8 2 cmp32 2 mov8 2
mov32 2 or8 2 or32 2
sbb8 2 sbb32 2 sub8 2
sub32 2 xor8 2 xor32 2
and32 2

used to hide the information. With this mechanism, the password will be needed to recover the data and different
passwords will lead to different placements of the embeddedinformation. Recovery process first extracts the
encrypted message from the executable file. Then, the message is decrypted using the provided password.

With Hydan, it is possible to embed (on average) 1 bit of information per110 bits of executable code. In
fact, it is possible to embed different ratios of information, but El-Khalil proposed the specified one as the better
trade-off between security and capacity [2].

Hydanchanges perceptibly the content of the executable files withhidden information. Therefore, if these
changes lead to a specific signature, it is possible to build asystem that is able to distinguish aHydanexecutable
file from any other executable file. This signature may show inmany different ways. Next section discusses the
possible methods to detect aHydanmodified executable and proposes a very efficient distinguisher to detect a
Hydancovert-channel.

4 Steganalysis of Hydan
Changes introduced byHydan into assembler code can modify different properties of the original executable
file. Hydandoes not change the size of the stego-object, but it changes the code itself. If the original program is
available it will be possible to check through integrity checks (CRCs [8], hash functions [7], etc.) if the executable
file has been modified, but these are not proof of embedded information. Other properties such as execution time,
flag activation and copyright marks checks, can prove that executable code has been modified, but will not be
proof of embedded information.

Most compilers often produce similar sets of instructions.Thus, if a compiler has to select between two
instructions with the same functionality it will usually select the same instruction. This property of most compilers
allows building a profile ofcleanapplications based on the probability distribution of instructions insideclean
programs. Changes made byHydanmay lead to another probability distribution of instructions. If these changes
can be profiled and generalized, it would be possible to detect if an executable file has hidden information.
Steganalysis performed on this paper is based on this approach.

We have built a distinguisher that is able to detect executable files with embedded information throughHy-
dan. To construct this distinguisher, first we have built a statistical model ofcleanexecutable files. Then, we
have performed different concealment operations in a variety of executable files. We have analyzed the main
differences between the set ofcleanexecutables and the set ofHydanmodified executables. In this paper, we
also describe possible countermeasures and the maximum capacity of Hydansteganographic files to overcome
this steganalysis.

4.1 Statistical Analysis of Clean Executable Files
The distinguisher proposed is based on the presence of unusual sets of instructions on executable files. We have
performed a statistical analysis of a set of 1261cleanexecutable files retrieved from/usr/binand/usr/sbinof an
Ubuntu x86distribution. Figure 1 shows the frequency distribution ofthe functionality-equivalent instructions

3

https://www.researchgate.net/publication/2329734_Universal_One-Way_Hash_Functions_and_Their_Cryptographic_Applications?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/3474160_Cyclic_Codes_for_Error_Detection?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==
https://www.researchgate.net/publication/2936160_Hydan_Hiding_Information_in_Program_Binaries?el=1_x_8&enrichId=rgreq-1308b50f-0bb4-41dc-948b-282164316f62&enrichSource=Y292ZXJQYWdlOzIyMDcyMjQ4NjtBUzoxMDMzNDA1NjYzODQ2NTBAMTQwMTY0OTcxOTg0NQ==

sets for our set of files. This distribution tells the probability that a random instruction belongs to afunctionality-
equivalent instructionset. Depending on this distribution, the bandwidth of the covert channel offered by an
executable may differ a lot. The bigger is the proportion of instructions belonging to a big set offunctionality-
equivalent instructions, the bigger will be the informationHydanis able to hide.

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'(
)
*+
"

'(
)
*&
%
"

,,
*-

.
+
"

,,
*-

.
&
%
"

'(
)
/*
0
+
"

'(
)
/*
0
&
%
"

)
1
1
/2
3
+
4$
"

)
1
1
/2
3
+
4%
"

)
1
1
/2
3
&
%
4$
"

)
1
1
/2
3
&
%
4%
"

)
1
1
/2
3
&
%
4&
"

0(
,/
2
3
+
"

0(
,/
2
3
&
%
"

)
1
1
+
"

)
1
1
&
%
"

)
1
*+
"

)
5
1
+
"

)
5
1
&
%
"

*-
.
+
"

*-
.
&
%
"

-
(
6
+
"

-
(
6
&
%
"

(
,+
"

(
,&
%
"

/3
3
+
"

/3
3
&
%
"

/2
3
+
"

/2
3
&
%
"

0(
,+
"

0(
,&
%
"

7
,8
9
2
8
5
*:
";
5
"<
"

725*=(5)>;':4892;6)>85'";5/',2*=(5"/8'/"

Figure 1: Frequency distribution offunctionality-equivalent instructionssets

Our analysis has shown that all thefunctionality-equivalent setsof instructions are present in our test files.
Nevertheless, most of the instructions found on the analyzed files belong to a small group offunctionality-
equivalent instructionssets. Therefore, the capacity of the covert channel dependson the capacity of these
commonly used sets (Fig. 1). In order to build our statistical model, we have analyzed distribution of instructions
inside each of the most frequentfunctionality-equivalent instructionssets.

One of the most usedfunctionality-equivalent instructionssets istoac32. This set includes five different
instructions. Thus, it can encode⌊log2(5)⌋ = ⌊2.32⌋ = 2 bits. Frequency distribution of instructions inside the
set is shown in Fig. 2.

0!

10!

20!

30!

40!

50!

60!

70!

80!

90!

100

test r/m 32, r32! or r/m 32, r32! or r32, r/m32! and r/m32, r32! and r32, r/m32!

F
re

q
u
e
n
c
y
 i
n
 %
!

Instructions!

Figure 2: Frequency distribution of instructions ontoac32set

Results obtained in the frequency analysis of this instruction set have been gathered in Table 2.

4

Table 2: Frequency distribution of instructions ontoac32set

Instruction Frequency
test r/m32, r32 100.0%
or r/m32, r32 0.0%
or r32, r/m32 0.0%
and r/m32, r32 0.0%
and r32, r/m32 0.0%

In all analyzed files, only one instruction of this set was used. In this case, a variation of the distribution of
instructions within this set would be detected easily.

For each of the remaining sets of equivalent functions, we have computed the frequency distribution of its
instructions based on our set of executable files, as in thetoac32set. Once we have constructed a frequency
distribution model for each of the sets, we have also computed the proportion of instructions per set in each of the
executable files. Each of the proportions computed for each file andfunctionality-equivalent instructionsset has
been compared using a chi-square statistic (χ2) against the frequency distribution of thatfunctionality-equivalent
instructionsset calculated for all the files. For each of thefunctionality-equivalent instructionssets we have
calculated the averageχ2 statistic (Equation 1).

Averagesetj =
n

∑
i=0

χ2
f ilei

n
(1)

Wheresetj is a functionality-equivalent instructionsset, andf ilei is the ith file on our set of files. Fig-
ure 3 shows the averageχ2 for all the functionality-equivalent instructionssets. For most of the equivalent
instructions sets, the distribution of its instructions has remained constant in all the executable files. Thus, its
averaged chi-square is 0.Functionality-equivalent instructionssets with higher average value indicate that the
frequency distribution of that sets has more variability between executable files. Figure 3 shows how six of the
functionality-equivalent instructionssets suffer lots of variability on the distribution of its instructions depending
on the executable file.

Differences introduced byHydan will change the frequency distribution of instructions inside each of the
functionality-equivalent instructionssets. Comparing the new instruction distributions obtained against the refer-
ence distributions for each of thefunctionality-equivalent instructionssets will allow to determine if information
has been embedded into the executable file.

!"

#"

$!"

$#"

%!"

&'
(
)*
"

&'
(
)+
%
"

,,
)-

.
*
"

,,
)-

.
+
%
"

&'
(
/)
0
*
"

&'
(
/)
0
+
%
"

(
1
1
/2
3
*
4$
"

(
1
1
/2
3
*
4%
"

(
1
1
/2
3
+
%
4$
"

(
1
1
/2
3
+
%
4%
"

(
1
1
/2
3
+
%
4+
"

0'
,/
2
3
*
"

0'
,/
2
3
+
%
"

(
1
1
*
"

(
1
1
+
%
"

(
1
)*
"

(
5
1
*
"

(
5
1
+
%
"

)-
.
*
"

)-
.
+
%
"

-
'
6
*
"

-
'
6
+
%
"

'
,*
"

'
,+
%
"

/3
3
*
"

/3
3
+
%
"

/2
3
*
"

/2
3
+
%
"

0'
,*
"

0'
,+
%
"

7
6
8
,(
9
8
")
:
;4
/<
2
(
,8
"6
(
=2
8
"

>25)?'5(=;&@48<2;6(=85&";5/&,2)?'5"/8&/"

Figure 3: Average chi-square statistic for each of thefunctionality-equivalent instructionssets

This can be easily seen through an example. Figure 4 represents the differences, in terms of aχ2 statistic, on

5

the frequency distribution of eachfunctionality-equivalent instructionset of theapt-getexecutable file with no
embedded information. Differences obtained are consistent with the average shown on Fig.3.

!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

'%!"

'&!"

()
*
+&
"

()
*
+,
#
"

--
+.

/
&
"

--
+.

/
,
#
"

()
*
0+
1
&
"

()
*
0+
1
,
#
"

*
2
2
03
4
&
5'
"

*
2
2
03
4
&
5#
"

*
2
2
03
4
,
#
5'
"

*
2
2
03
4
,
#
5#
"

*
2
2
03
4
,
#
5,
"

1)
-0
3
4
&
"

1)
-0
3
4
,
#
"

*
2
2
&
"

*
2
2
,
#
"

*
2
+&
"

*
6
2
&
"

*
6
2
,
#
"

+.
/
&
"

+.
/
,
#
"

.
)
7
&
"

.
)
7
,
#
"

)
-&
"

)
-,
#
"

04
4
&
"

04
4
,
#
"

03
4
&
"

03
4
,
#
"

1)
-&
"

1)
-,
#
"

8
9
:5
0;
3
*
-<
"7
*
=3
<
"

>36+?)6*=:(@5<;3:7*=<6(":60(-3+?)6"0<(0"

Figure 4: Chi-square statistics for each of the equivalent instructions sets inapt-get

Inserting information into this executable file will modifythe frequency distribution of instructions inside
some of the sets of equivalent instructions. Figure 5 represents differences, in terms of aχ2 statistic, on the
distribution of instructions inside each of the equivalentinstructions sets of theapt-getexecutable with embedded
information.

0!

20!

40!

60!

80!

100!

120!

140!

160

to
a
c
8
!

to
a
c
3
2
!

rr
c
m

p
8
!

rr
c
m

p
3
2
!

to
a
s
c
x
8
!

to
a
s
c
x
3
2
!

a
d
d
s
u
b
8
-1
!

a
d
d
s
u
b
8
-2
!

a
d
d
s
u
b
3
2
-1
!

a
d
d
s
u
b
3
2
-2
!

a
d
d
s
u
b
3
2
-3
!

x
o
rs

u
b
8
!

x
o
rs

u
b
3
2
!

a
d
d
8
!

a
d
d
3
2
!

a
d
c
8
!

a
n
d
8
!

a
n
d
3
2
!

c
m

p
8
!

c
m

p
3
2
!

m
o
v
8
!

m
o
v
3
2
!

o
r8
!

o
r3

2
!

s
b
b
8
!

s
b
b
3
2
!

s
u
b
8
!

s
u
b
3
2
!

x
o
r8
!

x
o
r3

2
!

C
h
i-
s
q
u
a
re

 v
a
lu

e
!

Functionality-equivalent instruction sets!

Figure 5: Chi-square values for each of the equivalent instruction sets inapt-getwith hidden information

Frequency distribution of instructions inside the highly variable functionality equivalent instruction sets has
also offered high chi-square values, as in the reference (Fig. 3) and clean file comparison (Fig. 4). Nevertheless,
distributions of somefunctionality-equivalent instructionssets have changed and its chi-square has increased
comparing it with the reference comparison (Fig. 3) and the previous chi-square value (Fig. 4), which was 0.

The same procedure has been performed with all the executable files, obtaining for each set a model of the
frequency distribution of that set. This has allowed us to establish which distributions of instructions inside

6

Table 3: Distinguisher results for different sets of executable files

Distinguisher Clean Hidden at 40% Hidden at 80%
Mean 0.000604 151.254608 299.039886
Standard Deviation 0.024571 12.298561 17.292770

Table 4: Distinguisher classification results for different sets of executable files

Expected clean executa-
bles

Expected embedded
exec.

Predicted clean executables 1063 0
Predicted embedded exec. 0 2126

functionality-equivalentinstruction sets remain constant between differentcleanexecutable files. These results
have been used to build our distinguisher which is explainedin the next section.

5 Distinguisher Design
The proposed distinguisher measures the changes on the distribution of instructions inside a selection offunc-
tionality equivalent instructionssets. These measures have been made in terms of aχ2 statistic against the
reference distribution for each of the selectedfunctionality-equivalent instructionssets.Functionality-equivalent
instructionssets with high variability of instruction distribution betweencleanfiles have not been selected in
the calculations of our distinguisher value. High variability may elevate the result offered by the distinguisher,
marking somecleanfiles as stego-objects. Our distinguisher only uses thefunctionality-equivalent instructions
sets which its average chi-square value is 0, as calculated in 1. Therefore, 8 sets offunctionality-equivalent in-
structionsare not used:toac8, rrcmp32, addsub8, addsub8-2, addsub32-1, addsub32-2, addsub32-3andxorsub8.
Mathematically, the value obtained with our distinguisheris expressed as follows:

D(f ile) =
n

∑
i=0

χ2
instruction seti (2)

Wheren is the number of sets offunctionality-equivalent instructionswhose average chi-square value is 0.
To obtain the threshold of our distinguisher we have calculated all the results the distinguisher offers from three
set files: a set of clean files, a set of files with embedded information using a 40 % of its capacity and a set of files
with embedded information using an 80 % of its capacity. We have calculated the mean and standard deviation
of values obtained by the distinguisher for the three sets. Results obtained are shown in Table 3.

We have selected the threshold of our distinguisher as the addition of the mean and the standard deviation of
the clean files set. When a file offers a value above the expected mean and typical deviation it is marked as a
stego-object. Threshold of our distinguisher is describedbe as follows.

T = Meanclean+T.Deviationclean= 0.000604+0.24571= 0.025175 (3)

5.1 Results
With the selected threshold we have performed a test over three sets of files, each having 1063 files. The first set
of files is a selection ofcleanfiles from theUbuntu 8.10 x86distribution. Second set of files is the set ofclean
files with embedded information up to 40% of the capacity of each file. Last set is composed by the first set of
files with embedded information up to an 80% of the capacity ofeach file. Distinguisher values obtained for each
of the files are shown in Fig. 6.

Values obtained by our distinguisher for the clean files are separated from the ones offered by files with
embedded information. Some results offered by embedded information files are low, but higher than the values
returned by any of the clean files. In fact, our distinguisherhas classified all the executables correctly (Table 4).

In order to produce executable files that are not detected by our tool some changes should be done toHydan.
Our analysis have shown that replacement offunctionality-equivalent instructionsis not secure if the frequency

7

0,00001!

0,0001!

0,001!

0,01!

0,1!

1!

10!

100!

1000!

1
!

2
6
!

5
1
!

7
6
!

1
0
1
!

1
2
6
!

1
5
1
!

1
7
6
!

2
0
1
!

2
2
6
!

2
5
1
!

2
7
6
!

3
0
1
!

3
2
6
!

3
5
1
!

3
7
6
!

4
0
1
!

4
2
6
!

4
5
1
!

4
7
6
!

5
0
1
!

5
2
6
!

5
5
1
!

5
7
6
!

6
0
1
!

6
2
6
!

6
5
1
!

6
7
6
!

7
0
1
!

7
2
6
!

7
5
1
!

7
7
6
!

8
0
1
!

8
2
6
!

8
5
1
!

8
7
6
!

9
0
1
!

9
2
6
!

9
5
1
!

9
7
6
!

1
0
0
1
!

1
0
2
6
!

1
0
5
1
!

D
is

ti
n

g
u

is
h

e
r

v
a
lu

e
 (

lo
g

a
ri

th
m

ic
 s

c
a
le

)!

File i!

no hidden information!

40% hidden information!

80% hidden information!

Figure 6: Distinguisher results for sets of executable files

distribution of instructions inside afunctionality-equivalent instructionset is constant. A first approach to secure
Hydan would be to use only the functionality-equivalent instruction sets not used by our distinguisher. This would
reduce the capacity of hidden information up to a 35% of the original capacity. Stego-files generated this way
would not be detected by the distinguiser, producing false negatives.

6 Conclusions and Future Work
Steganalysis techniques are needed in order to ensure and improve the security of stego-systems in the same way
cryptanalysis is needed to foster the security of cryptography techniques. With this work, we have developed
a distinguisher that is able to recognize executable files with hidden information throughHydan. To create our
distinguisher we have built a statistical model ofcleanexecutable files. In our tests, the proposed distinguisher
classified correctly all executable files in different proportions of concealment (0%, 40% and 80%). We have also
described how to overcome this steganalysis. Research on steganography of executable files is not extensive at
the moment, but improvements to secureHydanand other related steganographic tools [1] could only be achieved
through extensive research in the field. We have advanced in this direction, and plan to further advance by refining
the steganalytic methods proposed in [1] againstStilo.

References
[1] Anckaert B., De Sutter B., Chanet D., De Bosschere K.: Steganography for Executables and Code Trans-

formation Signatures. Lecture Notes in Computer Science3506, 425–439 (2005)

[2] El-Khalil, R.: Hydan: Hiding Information in Program Binaries (2003). Lecture Notes in Computer Science
3269, 187–199 (2004) http://crazyboy.com/hydan/. Cited 20 Oct2008

[3] Hernandez-Castro J.C., Lopez I.B., Tapiador J.M.E., Ribagorda A.: Steganography in Games. Computers
and Security25(1), 64–71 (2006)

[4] Johnson N.F., Jajodia S.: Exploring steganography: Seeing the unseen. Computer31(2), 26–34 (1998).

[5] Kipper, G.: Investigator’s Guide to Steganography. CRCPress (2004)

8

[6] Murdoch S.J., Lewis S.: Embedding Covert Channels into TCP/IP. Lecture Notes in Computer Science
3727, 247–261 (2005)

[7] Naor M., Yung M.: Universal One-Way Hash Functions and Their Cryptographic Applications. Proceedings
of the twenty-first annual ACM symposium on Theory of computing, pp. 33–43. ACM, New York, NY, USA
(1989).

[8] Peterson W., Brown D.: Cyclic Codes for Error Detection.Proceedings of the IRE49(1), 228–235 (1961)

[9] Petitcolas F.A.P., Anderson R.J., Kuhn M.G.: Information Hiding:A Survey. Proceedings of the IEEE87(7)
pp. 1062–1078 (1999)

[10] Petitcolas F.A.P.: MP3Stego (2006). http://www.petitcolas.net/fabien/steganography. Cited 20 Oct 2008

[11] Shirali-Shahreza M., Shirali-Shahreza M.H.: Text Steganography In SMS. Int. Conference on Convergence
Information Technology pp. 2260–2265 (2007)

[12] Simmons G.J.: The History of Subliminal Channels. IEEEJournal on Selected Areas in Communications,
16(4), pp. 452–462 (1998)

[13] Zhu W., Thomborson C.: Recognition in Software Watermarking. Proceedings of the 4th ACM international
workshop on Contents protection and security, pp. 29–36. ACM (2006)

9

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.

