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Abstract: We compute for various perturbed conformal field theories the vacuum en-

ergies by means of the thermodynamic Bethe ansatz. Depending on the infrared and

ultraviolet divergencies of the models, governed by the scaling dimensions of the under-

lying perturbed conformal field theory in the ultraviolet, the vacuum energies exhibit

different types of characteristics. In particular, for the homogeneous sine-Gordon models

we observe that once the conformal dimension of the perturbing scalar field is smaller

or greater than 1/2, the vacuum energies are positive or negative, respectively. This be-

haviour indicates the need for additional ultraviolet counterterms in the latter case. At

the transition points we obtain an infinite vacuum energy, which is partly explainable

with the presence of several free Fermions in the models studied.

1. Introduction

According to the ideas developed first in [1] a large class of massive quantum field theories

in 1+1 space-time dimensions can be viewed as perturbed conformal field theories (CFT)

with Euclidian action

S = SCFT + λ

∫

d2xϕ(x) . (1.1)

Here SCFT denotes a fixed point action, ϕ(x) a scalar field with (left, right) conformal

dimension (∆,∆) and λ a coupling constant, scaling with (1−∆, 1−∆). The great virtue

of such theories is that very often they are integrable and can be solved exactly, that is to

all orders in perturbation theory. Since the original formulation various non-perturbative

techniques have been developed to study such theories with great success. Nonetheless,

once the CFT is well investigated one may also employ standard perturbative arguments

and unravel the meaning of certain types of behaviour in that more traditional language.

http://arxiv.org/abs/hep-th/0401075v2
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Accordingly, the vacuum expectation value of any local operator O can then be computed

as

〈O(z, z̄)〉 = Z−1
∞
∑

n=0

(−λ)n

n!

∫

d2z1 . . . d
2zn 〈O(z, z̄)ϕ(z1, z̄1) . . . ϕ(zn, z̄n)〉CFT . (1.2)

Here the normalization factor is in general Z =
〈

exp−λ
∫

d2zϕ(z, z̄)
〉

CFT
, with 〉CFT de-

noting the vacuum state related to SCFT. In quantum field theories such expressions are

plagued by various types of divergencies. First of all one encounters the infinities due to

the self-contraction of the fields, which can be regularized fairly easily by a normal ordering

prescription. Second, one might have ultraviolet (UV) singularities for (z − zi) → 0. Here

the case O =ϕ will be important, for which we can approximate with the help of standard

CFT operator product expansion the integrals in (1.2) as ∼
∫

dzi |z − zi|−2∆. Thus for

∆ < 1/2 the integrals in (1.2) remain finite, whereas for ∆ > 1/2 we require in general

counterterms to elliminate the divergencies. Third, one might have infrared (IR) singular-

ties for (z − zi) → ∞. In the infinite plane it is usually an intricate issue to handle them

[2, 3]. However, when formulating the theory from the very beginning on a cylinder instead

of an infinite plane the integrals in (1.2) will automatically be IR finite for ∆ > 0, as the

cylinder radius R constitutes a natural cut off. The fourth singularity occurring is related

to the fact, that even when the individual integrals in (1.2) are finite the entire series will

in general be IR divergent for large R.

Supposing now that one is able to compute (1.2) exactly, that is to all orders in

perturbation theory, the different types of renormalization quantities should be tractable

in that context. In fact, the thermodynamic Bethe ansatz (TBA) [4] is a method which

allows such identifications when O is taken to be the energy operator. The above mentioned

arguments hold when recalling [5] that this operator is proportional to the perturbing field

ϕ. Defining then for the ground state energy E(R) the scaling function c(R) = −6RE(R)/π

one encounters several types of general behaviours, which can all be brought into the generic

form

c(r) = ceff + E0r
2 + E ′

0r
2 ln r +

∞
∑

n=1

Enλ
nfn(r) . (1.3)

Usually one uses the dimensionless parameter r = R/m with m being a mass scale and

E0, E ′

0 being finite real numbers. The function c(r) is normalized in such a way that

c(r = 0) coincides with the effective central charge ceff = c − 24∆min, with c being the

Virasoro central charge of the underlying ultraviolet conformal field theory and ∆min the

smallest conformal scaling dimension in the model. This constant c has the well known

interpretation as the Casimir energy, which is the vacuum energy on the cylinder and

becomes zero when mapped onto the plane. Viewing (1.2) as resulting from a partition

function, the term E0r
2 has to be present in (1.3), since thermodynamics dictates that

for large r the energy has to be proportional to the volume. In quantum field theoretic

terms both E0r
2 and E ′

0r
2 ln r are related to renormalization issues, characterized by the

conformal dimension ∆ as described above. These terms are also needed in order to ensure

that limr→∞ c(r) = 0, which one expects for a purely massive model. Finally, the fn(r)
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result from the integrals in (1.2) and takes on various general forms depending on the

regime in which ∆ is valued.

In this paper we will discuss more concretely the precise nature of the expansion (1.3).

We will first recall in section 2 how the TBA can be used to compute the vacuum energies

and in the following sections we discuss the different regimes for different types of concrete

theories, the homogeneous sine-Gordon (HSG) models [6, 7] and affine Toda field theories

(ATFT) [8, 9]. These theories probe several regimes for ∆ and exhibit different types

of behaviours. In particular for the HSG-models, which are defined in the entire regime

0 < ∆ < 1, our results will be new. Our conclusions are stated in section 6.

2. Vacuum energies from the TBA

Let us briefly recall the main steps of how vacuum energies may be computed [4] (more

details on the arguments can also be found in [10]) non-perturbatively with the help of the

TBA. One considers a relativistic theory in which the scattering matrices Sij(θ) for the

particles of the type i,j with masses mi,mj are known as functions of the rapidity θ. Then

the entire TBA analysis can be formulated with only two inputs: first the dynamical inter-

action, which enters via the logarithmic derivative of the S-matrix ϕij(θ) = −id lnSij(θ)/dθ

and an assumption on the statistical interaction, which we choose here to be of fermionic

type. The thermodynamic Bethe ansatz equations are then a set of coupled non-linear

integral equations

rmi cosh θ = εi(θ, r) +
∑

j

[ϕij ∗ ln(1 + e−εj)](θ, r) , (TBA)

where the pseudo-energies εi(θ, r) are the unknown quantities. We denote as usual the

convolution of two functions by (f ∗ g) (θ) := 1/(2π)
∫

dθ′f(θ − θ′)g(θ′). The scaling pa-

rameter is related to the inverse temperature T as r = m/T , ml → ml/m, with m being

an overall mass scale. In [4] it was shown that when taking the sum and difference of the

derivatives d/dr(TBA) and d/dθ(TBA)/r one may derive a set of coupled linear integral

equations for the quantities

ψi
±(θ, r) =

∂εi(θ, r)

∂r
± 1

r

∂εi(θ, r)

∂θ
, (2.1)

respectively, namely

ψi
±(θ, r) = mi e

±θ +
∑

j

[ϕij ∗
1

eεj ± 1
ψj
±](θ, r) . (2.2)

The strategie is now to solve first the equations (TBA) for εi(θ, r) and thereafter (2.2) for

ψi
±(θ, r). Once one has carried out the first step, one can already compute the scaling

function

c(r) =
3 r

π2

∑

i

mi

∞
∫

−∞

dθ cosh θ Li(θ, r) , (2.3)

– 3 –
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with Li(θ, r) = ln(1+e−εi(θ,r)). Concerning the status of analytical solutions for (2.2), it is

similar as for the TBA itself, that is only for free theories [10] a closed solution was found

and for interacting theories (2.2) was only solved in the extreme ultraviolet limit. Numerical

solutions exist even less. Once it is solved, one may compute the vacuum expectation value

of the trace of the energy momentum tensor, i.e. vacuum energies

〈

T µ
µ

〉

= −π
2

3r

d

dr
c(r) =

1

2

∑

i

mi

(

T i
+ + T i

−

)

(2.4)

=
1

2

∑

i

mi

∞
∫

−∞

dθ
1

1 + eεi(θ,r)

[

ψi
+(θ, r)e−θ + ψi

−(θ, r)eθ
]

. (2.5)

In a parity invariant theory we have εi(θ, r) = εi(−θ, r) and consequently ψi
+(θ, r) =

ψi
−(θ, r), T i

+ = T i
− = T i such that matters simplify. We like to keep the treatment here

generic for a while as we will also consider below the homogeneous sine-Gordon models,

which are not parity invariant.

There exists no systematic way to solve the equations (TBA) and (2.2) analytically,

albeit, numerically this is a solvable problem. Nonetheless, it is well known that at the fixed

points approximations can be made, such that one can solve (TBA) analytically and hence

also obtain analytic expressions for (2.3) at these points (r = 0 is one of them). Likewise we

expect to be able to solve (2.2) for these values and compute 〈T µ
µ〉 analytically. Following

now essentially the argumentation of [4, 10], we need to make only three assumptions:

i) The logarithmic derivative of the scattering matrix in (TBA) admits an expansion of

the form

ϕij(θ) = −
∑

s

ϕ
(s)
ij e

−s|θ| . (2.6)

ii) For the first coefficient in (2.6) we presume proportionality to the masses

ϕ
(1)
ij = ρijmimj (2.7)

for some function ρij specific to the particular theory.

iii) One assumes that

ε̂i(θ) − εi ≪ eθ for θ ≪ 0 (2.8)

where the εi are the pseudo-energies of the constant TBA equation and the ε̂i(θ) are

quantities in the r-independent TBA-equation

ϕij ∗ L̂j(θ) = −ε̂i(θ) +mie
θ (2.9)

obtained from (TBA) by the shift θ → θ+ ln(r/2), εi(θ, r) → ε̂i(θ). This assumption

is usually difficult to justify a priori, but is sustained in hindsight by meaningful

results or supported by numerical data.

– 4 –
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For θ → −∞ one can now derive with (2.8) the equation

ϕij ∗ L̂j(θ) = −εi +
1

2π
eθϕ

(1)
ij T

j
+ + O(eηθ) (2.10)

where η ≥ 2. Comparing then (2.9) and (2.10) for the parity invariant case, it follows

directly with (2.8) that

mi =
1

2π
ϕ

(1)
ij T

j . (2.11)

Finally we deduce the expression for the vacuum expectation value for the energy momen-

tum tensor with (2.8) and (2.4) to

〈

T µ
µ

〉

= 2π
∑

i,j

ρ−1
ij . (2.12)

This quantity is of course sensitive to above mentioned renormalization issues and possibly

exhibits the distinction between the different regimes quoted. Furthermore, one has the

possibility of comparison, as there are various other methods to obtain the vacuum energies,

such as the truncated conformal space approach [11] or a matching between the high-energy

behaviour of the scattering matrix with a Feynman diagramatic analysis [12].

Let us briefly comment on the different regimes:

0 < ∆ < 1/2 : As mentioned in the introduction, in this regime the individual integrals

in the expansion (1.2) are UV and IR convergent term by term when formulated on the

cylinder. From general arguments one finds for the behaviour in (1.3) that E ′

0 = 0 and

fn(r) = r2n(1−∆) [13]. From (1.3) and (2.4) follows also that we can identify 〈T µ
µ〉 |r=0 =

−π2/3E0. Thermodynamically this term can be seen as the infinite volume energy and field

theoretically this corresponds to the sum of all infrared substractions, which achieve the

convergence of the sums (1.3) for large r.

1/2 < ∆ < 1 : Now the individual integrals in the expansion (1.2) are still IR convergent,

but cease to be UV convergent. Nonetheless, we may still employ similar arguments as

in the previous regime and find again for the behaviour in (1.3) that E ′

0 = 0 and fn(r) =

r2n(1−∆) [13]. From (1.3) and (2.4) follows once more that we can identify 〈T µ
µ〉 |r=0 =

−π2/3E0. However, now the field theoretic interpretation of this term changes. Since

we require in this case UV conterterms to make the individual integrals finite, the E0-

term corresponds now to the sum of these UV counterterms and all infrared substractions,

which achieve the convergence of the sums (1.3) for large r. Indeed, for the concrete models

studied below this becomes visible in a change of sign in the transition from the regime

∆ < 1/2 to ∆ > 1/2.

∆ < 0 : Now the individual integrals in the expansion (1.3) are still UV convergent, but

cease to be IR convergent even on a cylinder. General arguments now yield for the be-

haviour in (1.3) that E0 6= 0, E ′

0 6= 0 and fn(r) = (α+ ln(r))−n with α being some constant

[14, 15, 16, 17, 18]. One still finds that 〈T µ
µ〉 |r=0 = −π2/3E0, e.g. [12], but now the

interpretation is less obvious as some counterterms also accumulate in the E ′

0-term.

∆ = 1/2 : In this case one usually finds free Fermions in the model and E0 6= 0, E ′

0 6= 0,

fn(r) = rn. Now the vacuuum energy is divergent, see e.g. [10] for an analytical expression.

We will investigate some concrete theories.

– 5 –
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3. 0 < ∆ < 1/2, minimal affine Toda field theories

These theories have been studied before [10, 19], nonetheless, we recall them here as they

are easy examples which illustrate the working of the above formulae and we shall also

point out some novel features. We recall first that minimal affine Toda field theories can

be realized as perturbations of the coset conformal field theories g1⊗g1/g2, with gk being a

simply laced Kac-Moody algebra of rank ℓ and level k [20, 21]. The corresponding Virasoro

central charges c and conformal dimension of the perturbing operator ∆ are

c =
2ℓ

2 + h
and ∆ =

2

2 + h
, (3.1)

respectively. Apart from h = 2, i.e. the free Fermion with g = A1, we always have

for the Coxeter number h > 2 and are therefore in the stated regime 0 < ∆ < 1/2.

The renormalization issues are handled most easily in this case and the vacuum energies

are computable with the above arguments. With regard to assumption i), we recall the

expansion of the TBA-kernel for these theories [10, 22, 23]

ϕij(θ) = −4
∑

s∈E

cot
sπ

h
xi(s)xj(s)e

−s|θ| , (3.2)

with E ={s+ nh}, s being an exponent of g, n ∈ N0 and xi(s) are the left eigenvectors of

the Cartan matrix. In particular, we have xi(1) = mi/m, with m being an overall mass

scale, which is needed for the assumption ii) to hold. Having therefore the quantity ϕ
(1)
ij in

the form (2.7), we deduce immediately with the help of (2.12)

〈

T µ
µ

〉

= m2π

2
tan

π

h
. (3.3)

Obviously apart from the free Fermion with h = 2, when 〈T µ
µ〉 → ∞, we have 〈T µ

µ〉 > 0.

This result agrees with a similar formula obtained in [10] in terms of the coefficients ϕ
(1)
11

without explicit evaluation and “1” referring to the lightest particle. More concret case-

by-case studies were carried out in [19] for perturbations of gl ⊗ gk/gk+l-coset CFT’s (see

formulae (3.14) therein). When using the overall mass scale to perform suitable normal-

izations the formula for k = l = 1 in there can be brought into the universal formula (3.3),

which is not obvious at first sight. The formulae in [19] are expressed in terms of a mass

scale M whose relation with our m varies for every theory as

Aℓ : M = m sin π
ℓ−1

Dℓ : M = m/
√

2

E6 : M = m

√

√

3
2 sin π

12

E7 : M = m
√

sin π
18/ sin 2π

9

E8 : M = m
√

2 sin π
30 sin π

5 .

(3.4)

The advantage of our formulation relies on the fact that the masses are normalized with

respect to the same general mass scale m for all simply laced Lie algebras, which allows

for the very compact and generic expression (3.3). Alternatively these results were also

confirmed in [24].

– 6 –
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4. 0 < ∆ < 1, gk-homogeneous sine-Gordon models

Let us now consider a theory which is more interesting with regard to the above mentioned

problematic, namely the gk-HSG model [6, 7], with g being a simple Lie algebra of rank

ℓ and level k. These models can be viewed as perturbed Wess-Zumino-Novikov-Witten

(WZNW) [25] coset-models

SHSG = SWZNW +
m2

πβ2

∫

d2x
〈

Λ+, g(~x)−1Λ−g(~x)
〉

. (4.1)

Here 〈 , 〉 denotes the Killing form of g and g(~x) a group valued bosonic scalar field. Λ±

are arbitrary semi-simple elements of the Cartan subalgebra associated with the maximal

abelian torus h ⊂ g, which have to be chosen not to be orthogonal to any root of g. The

parameters m and β are the bare mass scale and the coupling constant, respectively. The

Virasoro central charge of the coset model and the dimension of the perturbing operator

are computed to

c = ℓ
k h− h∨

k + h∨
and ∆ =

h∨

k + h∨
, (4.2)

with (h∨)h being the (dual) Coxeter number of g. We note that now the constraint ∆ < 1/2

does not automatically hold for each level and the above mentioned complications could

arise for some theories in this series when changing from k > h∨ to k < h∨. Up to now no

indication for a different behaviour of the theories in this two different regimes have been

found in the literature. We treat the simply laced and non-simply laced cases separately.

4.1 Simply laced HSG-models

As in the original formulation of these models, the algebra g is assumed to be simply laced.

Since for this case the expansion of the kernel ϕ does not appear in the literature, we will

start with the scattering matrix, which was found originally in [26] (see [27] for an integral

representation). We cast the matrix describing the scattering between the particle of type

A = (a, ã) and B = (b, b̃), with 1 ≤ ã, b̃ ≤ ℓ; 1 ≤ a, b < k into the form

Sãb̃
ab(θ) = ηãb̃

ab exp

∫

dt

t
K̃ãb̃(t)

sinh(at/k) sinh[(k − b)t/k]

sinh(t/k) sinh t
e−it(θ+σ

ãb̃
)/π . (4.3)

Here ηãb̃
ab = exp[iπεãb̃(2− IAk−1

)−1
āb ] are constant phase factors not relevant for our analysis,

K̃ãb̃(t) = 2δãb̃ cosh t/k − Iãb̃ with I being the incidence matrix of g and the σ’s are the

resonance parameters, which indicate the presence of unstable particles in these models.

In order to evaluate the expansion for ϕ, we can employ the residue theorem for a contour

along the real axis closing up in the positive half of the complex plane encircling all poles

on the imaginary axis in the upper half plane. Noting that in (4.3) t = iπn are simple

poles, except for t = iπnk which constitute double poles for n ∈ N, we deduce for σãb̃ = 0

ϕãb̃
ab(θ) = 2πi

∞
∑

s=1;s 6=nk

Res
t=iπs

(

− 1

π

)

K̃ãb̃(t)
sinh(at/k) sinh[(k − b)t/k]

sinh(t/k) sinh t
e−itθ/π (4.4)

= −2

∞
∑

s=1;s 6=nk

K̃ãb̃(iπs)
sin(aπs/k) sin(bπs/k)

sin(πs/k)
e−s|θ| . (4.5)

– 7 –
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The desired coefficient (2.7) follows from this directly to

ϕ
(1)

ãb̃
= 2K̃ãb̃(iπ)mamb/m

2 sin(π/k) (4.6)

where mã
a = ma m

ã with ma = sin aπ/k being the masses of Ak−1-affine Toda field theory

and mã are ℓ free mass scales. We choose them here to be all equal mã = m ∀ ã. Finally

we derive from this a closed expression for the vacuum expectation value for the trace of

energy-momentum tensor

〈

T µ
µ

〉

= πm2 sin(π/k)

ℓ
∑

ã,b̃=1

[

K̃−1(iπ)
]

ãb̃
. (4.7)

We are not aware of a generic formulation for K̃−1(iπ) and analyse therefore the expression

(4.7) below in more detail case-by-case. We can summarize our findings as

〈

T µ
µ

〉











> 0 for k > h ≡ ∆ < 1/2

→ ∞ for k = h ≡ ∆ = 1/2

< 0 for k < h ≡ ∆ > 1/2

. (4.8)

In many cases we can attribute the divergence for ∆ = 1/2 to the presence of free Fer-

minons. The change of sign when going from ∆ < 1/2 to ∆ > 1/2 reflects the fact that

besides the IR counterterms, which achieve the convergence of the sums (1.2) for large r,

needed in both cases in the latter we also require UV conterterms to make the individual

integrals in (1.2) finite.

4.1.1 (Aℓ)k-HSG model

For Aℓ the Coxeter number is h = ℓ+ 1. The inverse of the matrix relevant in (4.7) can be

cast in this case into a simple formula

[

K̃−1
Aℓ

(iπ)
]

ãb̃
=

sin(ãπ/k) sin[(h− b̃)π/k]

sin(π/k) sin(hπ/k)
for ã ≤ b̃. (4.9)

Computing the sums over both entries then yields after some algebra

〈

T µ
µ

〉

=
πm2

2 tan2 π/2k

[

tan
hπ

2k
− h tan

π

2k

]

. (4.10)

Hence, the condition 〈T µ
µ〉 > 0 becomes

tan
hπ

2k
> h tan

π

2k
(4.11)

or equivalently, when expanding the tan,

4

π

h

k

∞
∑

n=1

1

(2n − 1)2 − (h/k)2
> h

4

π

1

k

∞
∑

n=1

1

(2n − 1)2 − (1/k)2
. (4.12)

It is easily seen that (4.12) holds term by term once h/k < 1, hence establishing the first

inequality in (4.8). Similar arguments show that the opposite inequality holds in the regime

h/k > 1. We comment more on the case k = h below.

– 8 –
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4.1.2 (Dℓ)k-HSG model

For Dℓ the Coxeter number is h = 2ℓ−2 and by evaluating (4.7) similarly as in the previous

subsection, we find

〈

T µ
µ

〉

=
πm2 sin π

k

[

2 − (2 + h) cos hπ
2k

]

+ 2πm2 sin hπ
2k

sin2 π
2k cos hπ

2k

. (4.13)

The condition 〈T µ
µ〉 > 0 is now equivalent to

sin
π

k

[

(2 + h) − 2

cos hπ
2k

]

< 2 tan
hπ

2k
. (4.14)

Expanding the left and right hand side of this inequality yields by similar arguments as in

the previous subsection once more the relation (4.8).

4.1.3 (E6)k-HSG model

For E6 the Coxeter number is h = 12 and we find

〈

T µ
µ

〉

= 2πm2

∑4
p=1 τp sin pπ/k

2 cos 4π/k − 1
~τ = (4, 4, 5, 3). (4.15)

We see that the numerator is < 0 for k = 2 and > 0 for k > 2. The denominator is > 0 for

k = 2, k > 12 and < 0 for 2 < k < 12. The denominator vanishes for k = 12. Hence the

relation (4.8) holds.

4.1.4 (E7)k-HSG model

For E7 the Coxeter number is h = 18 and we find

〈

T µ
µ

〉

=
πm2

∑7
p=1 τp sin pπ/k

cos π/k(4 cos 6π/k − 2)
~τ = (9, 18, 20, 22, 17, 12, 7) . (4.16)

We observe now that the numerator is < 0 for k < 4 and > 0 otherwise. The denominator

on the other hand is > 0 for k = 3, k > 18 and < 0 otherwise except for k = 2, 18 in which

case it is zero. Hence (4.8) holds also in this case.

4.1.5 (E8)k-HSG model

For E8 the Coxeter number is h = 30 and we find

〈

T µ
µ

〉

=
πm2

∑7
p=1 τp sin pπ/k

cos 8π/k + cos 6π/k − cos 2π/k − 1/2
~τ = (4, 8, 12, 12, 13, 10, 7, 4) . (4.17)

We see that the numerator is < 0 for k < 5 and > 0 otherwise. The denominator is > 0

for k = 2, 3, 4; k > 30 and < 0 otherwise except for k = 30 in which case it is zero. Hence

(4.8) holds also in this case.
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4.2 Non-simply laced HSG-models

Now we allow the algebra g to be also non-simply laced. In this case the scattering matrix

is slightly more complicated as the symmetry between the exchange of long and short roots

is lost. It can be restored by the use of the symmetrizers tã of the incidence matrix of g,

i.e. tãIãb̃ = tb̃Ib̃ã, with tã = 2/α2
ã and the length of long roots normalized to α2

l = 2. In [28]

the scattering between the particle of type A = (a, ã) and B = (b, b̃), with 1 ≤ ã, b̃ ≤ ℓ;

1 ≤ a, b < kã = tãk was proposed to be described by

Sãb̃
ab(θ) = ηãb̃

ab exp

∫

dt

t
K̃ãb̃(t)

sinh(at/kã) sinh[(1 − b/kb̃)t]

sinh(t/kãb̃) sinh t
e−it(θ+σ

ãb̃
)/π . (4.18)

Here ηãb̃
ab are once more constant phase factors not relevant for our analysis. Further-

more, one needs the quantity kãb̃ = kmax(tã,tb̃) and the matrix K̃ with entries K̃ãb̃(t) =

2δãb̃ cosh t/kã − Iãb̃tb̃/max(tã,tb̃). Note that in comparison with [28] we interchanged the

long and short roots, that is we have taken the t’s to be left and not the right symmetrizers

of the incidence matrix. A similar analysis as in the previous subsection leads now to the

following expansion of the TBA-kernel

ϕãb̃
ab(θ) = −2

∞
∑

s=1;s 6=nk
ãb̃

K̃ãb̃(iπs)
sin(aπs/kã) sin(bπs/kb̃)

sin(πs/kãb̃)
e−s|θ| , (4.19)

such that

ϕ
(1)

ãb̃
= 2K̃ãb̃(iπ)mã

am
b̃
b/m

2 sin(π/kãb̃) . (4.20)

Here the masses are assumed to renormalize with an overall factor and are therefore ex-

pected to be the same as in the semi-classical analysis [29], that is mã
a = m sin aπ/kã. The

overall mass scales associated with each colour are once more choosen to be the same. Thus

we finally deduce

〈

T µ
µ

〉

= πm2
ℓ

∑

ã,b̃=1

[

K̂−1
]

ãb̃
. (4.21)

where K̂ãb̃ = K̃ãb̃(iπ) sin(π/kãb̃). As in the previous case, we are not aware of a generic

formulation for K̂−1 and analyse therefore (4.21) in more detail case-by-case. Our findings

are summarized as

〈

T µ
µ

〉











> 0 for k > h∨ ≡ ∆ < 1/2

→ ∞ for k = h∨ ≡ ∆ = 1/2

< 0 for k < h∨ ≡ ∆ < 1/2

, (4.22)

with similar interpretations as in (4.8). We establish (4.22) in more detail case-by-case.

4.2.1 (G2)k-HSG model

The dual Coxeter number for G2 is h∨ = 4 and the symmetrizers are taken to be t1 =

3, t2 = 1. With these data we compute from (4.21)

〈

T µ
µ

〉

= 2πm2 sinπ/k + sin 4π/3k

2 cos 4π/3k − 1
. (4.23)
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Obviously, the numerator is > 0 for k ≥ 2, whereas the denominator is < 0 for k = 2, 3

and otherwise > 0 except for k = 4 when it is zero. Evidently this agrees with (4.22).

4.2.2 (F4)k-HSG model

The dual Coxeter number for F4 is h∨ = 9 and the symmetrizers are taken to be t1 = t2 = 1

and t3 = t4 = 2. From (4.21) we compute

〈

T µ
µ

〉

= 2πm2
2
∑6

p=1 sin pπ/2k − sin 3π/2k

2 cos 3π/k − 1
. (4.24)

The numerator is > 0 for k ≥ 2, whereas the denominator is < 0 for 2 ≤ k < 9 and

otherwise > 0 except for k = 9 when it is zero. Evidently this agrees with (4.22).

4.2.3 (Bℓ)k-HSG model

The dual Coxeter number for Bℓ is h∨ = 2ℓ − 1 and the symmetrizers are taken to be

t1 = t2 = . . . = tℓ−1 = 2 and tℓ = 1. We find now for even rank ℓ

〈

T µ
µ

〉

= − πm2

cos π
2k

h∨−1
∑

p=2
sin πp

2k + ℓ
2 sin πh∨

2k + 2cos π
2k

(ℓ−2)/2
∑

p=1
(ℓ− 2p − 1) sin π(1+h∨−4p)

2k

1 + 2
∑ℓ/2

p=1(−1)p cos πp
k

,

(4.25)

whereas for odd ℓ we obtain

〈

T µ
µ

〉

=
πm2

cos π
2k

h∨−1
∑

p=1
sin πp

2k + ℓ
2 sin πh∨

2k + 2cos π
2k

(ℓ−3)/2
∑

p=1
(ℓ− 2p − 1) sin π(1+h∨−4p)

2k

1 + 2
∑ℓ/2

p=1(−1)p cos πp
k

.

(4.26)

Once more we confirm (4.22). As the details are rather involvolved we drop them here.

4.2.4 (Cℓ)k-HSG model

The dual Coxeter number for Cℓ is h∨ = ℓ + 1 and the symmetrizers are taken to be

t1 = t2 = . . . = tℓ−1 = 1 and tℓ = 2.

〈

T µ
µ

〉

=
πm2(i)ℓ

cos π
2k

[

∑h∨−1
p=1 (p− 1) sin πp

2k + ℓ
2 sin πh∨

2k

1 + 2
∑ℓ/2

p=1(−1)p cos πp
k

]

, for ℓ even (4.27)

〈

T µ
µ

〉

=
πm2

cos πh∨

2k





h∨−1
∑

p=2

(p− 1) sin
πp

2k
+
ℓ

2
sin

πh∨

2k



 , for ℓ odd. (4.28)

Once more we confirm (4.22) and drop the details for the same reasons as in the previous

subsection.
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5. ∆ = 1/2, gh∨-homogeneous sine-Gordon model

The case ∆ = 1/2 is very special as then the vacuum energy diverges in the extreme

UV limit. Such type of behviour is well known from free Fermions in form of logarithmic

ultraviolet singularities, meaning that (2.4) yields 〈T µ
µ〉 → ∞ for r → 0. Explicit analytic

formulae for the free Fermion c(r)-function can be found in [10]. Indeed in many cases we

can make this connection quite explicit. It suffices to present an examples to illustrate this

point.

5.1 (Aℓ)ℓ+1-HSG theories

Let us have a closer look at the (Aℓ)ℓ+1-HSG theories in order to see how the Fermions arise

in there. Obviously for h = k the expression (4.10) yields 〈T µ
µ〉 → ∞. Already in [27] it was

noticed that the (A2)3-HSG model decomposes into four free Fermions when the resonance

parameter vanishes. From the fact that the central charge (4.2) becomes in general ℓ2/2

for (Aℓ)ℓ+1-HSG models, one might suspect that they always decompose completely into

ℓ2 free Fermions for vanishing resonance parameters, such that each Fermion contributes

1/2 to the central charge. However, this is not quite the case as the following argument

shows.

In order to count the Fermions, identified here simply with the amount of particles

which contribute 1/2 to the central charge, we recall the constant TBA equations, which

arise from (TBA) after some standard manipulations. For the (Aℓ)ℓ+1-HSG models they

take on the form

xã
a =

ℓ
∏

b,b̃=1

(1 + xb̃
b)

N ãb̃
ab with N ãb̃

ab = δabδãb̃ −
(

K−1
Aℓ

)

ãb̃
(KAℓ

)ab . (5.1)

Solving these equations for the xã
a =exp(−εã

a) yields the effective central charge as

ceff =
6

π2

ℓ
∑

a,ã=1

L
(

xã
a

1 + xã
a

)

=
ℓ2

2
(5.2)

with L(x) =
∑∞

n=1 x
n/n2 + lnx ln(1− x)/2 denoting Rogers dilogarithm. The solutions of

(5.1) are very simple in this case

xã
a =

sin[πã/(1 + ℓ)]

sin[πa/(1 + ℓ)]
. (5.3)

Therefore we have xa
a = xℓ+1−a

a = 1 and since L(1/2) = π2/12 it follows from this that

each of the particles (a, a), (a, ℓ + 1 − a) for 1 ≤ a ≤ ℓ contributes 1/2 to the effective

central charge in (5.2). Hence in the (Aℓ)ℓ+1-HSG models we have always 2ℓ or 2ℓ− 1 free

Fermions when ℓ is odd or even, respectively. The remaining particles can be organized

without exceptions in pairs (a, ã), (ã, a). Noting with (5.3) that obviously xã
a = (xa

ã)
−1 and

recalling the fact that L(x) +L(1− x) = π2/6 explains then that the central charge has to

be an integer or a semi-integer for these models.

In general, it is less straightforward for the other algebras to identify particles which

directly contribute 1/2 to the central charge. In fact, mostly the particles occur in pairs,

triplets or higher multiplets contributing integers or semi-integer values to c.
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6. ∆ < 0, affine Toda field theories

Affine Toda field theories related to simply laced and non-simply laced Lie algebras have a

quite different behaviour due to the fact that in the first case all masses renormalize with

an overall factor, which is not the case in the latter (see e.g. [30]). As a result of this, the

strong-weak duality observed for ATFT related to simply laced algebras is broken for those

associated with non-simply laced Lie algebras. Despite the fact that there exists a uniform

formulation, we will treat them here separately as this will be more transparent.

6.1 Simply laced

ATFT are quite well studied examples of integrable models, which can be viewed in the

spirit of (1.1) which was noted first in [21, 20]

SATFT =

∫

d2x
1

2
(∂µ~ϕ)2 + µ

ℓ
∑

i=0

nie
β ~αi·~ϕ . (6.1)

The fixed point part of the action SCFT corresponds to the conformal Toda field theories

when the sum over the simple roots ~αi starts at i = 1. The µ, β are real parameters and

the ni are the Kac labels related to the negative of the highest root ~α0 = −∑ℓ
i=1 ni~αi. The

Virasoro central charge of the conformal Toda field theories and the conformal dimension

of the perturbing operator V = µn0e
β ~α0·~ϕ have been computed in [21]

c = ℓ+
4ℓh(h + 1)

B(2 −B)
and ∆ = 1 − 2h

2 −B
, (6.2)

where we use the effective coupling1 0 ≤ B = 2β2/(β2 + 4π) ≤ 2. Since 2h > 1 − B/2

is always true we are in the regime ∆ < 0 and expect the above mentioned complications

with regard to renormalization to arise. To establish that, we recall first [10, 22, 23]

ϕij(θ) = −2
∑

s∈E

sin
sπB

2h
sin

sπ(2 −B)

2h
/ sin

sπ

h
xi(s)xj(s)e

−s|θ| , (6.3)

and deduce thereafter from (2.7) and (2.12)

〈

T µ
µ

〉

=
πm2 sin(π/h)

sin(πB/2h) sin[π(2 −B)/2h]
. (6.4)

Clearly, as 0 ≤ B ≤ 2 we have 〈T µ
µ〉 > 0. Up to an overall mass re-scaling of m→ 2m, this

agrees precisely with the results in [12], which were obtained by matching the high-energy

behaviour of the scattering matrix with a Feynman diagramatic analysis.

It is very interesting to note that by an analytic continuation from real to purely

complex coupling we can also reach the regime for ∆ > 0 for (6.4) and observe similar

phenomena as for the HSG-models2. For h = 2 this means we continue from sinh-Gordon

1Confusion arises sometimes due to different conventions. For instance we can relate our notations to the

ones used in [31] by a simple rescaling of the fields ϕ = ϕF /
√

4π compensated by a scaling of the coupling

constant β = bF /
√

4π. In addition, one takes the effective coupling constant to be B = 2BF .
2We are grateful to Al. B. Zamolodchikov for pointing this out to us.
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to sine-Gordon. Following for this case the argumentation of Destri and De Vega [12], we

relate the sinh-Gordon coupling β to the sine-Gordon coupling β̃ via β → iβ̃/
√

2 according

to the standard conventions. Also we replace the breather mass scale m with the soliton

mass scale m̃ via m2 → 4m̃2 sin2 πB/2 such that we end up with the simple formula

〈

T µ
µ

〉

= πm̃2 tan
π

2

(

∆

∆ − 1

)

, (6.5)

where ∆ = β̃
2
/8π is the conformal dimension of the perturbing cos-term in the model. This

agrees also with [32]. Note that in the previous argument we considered sinh-Gordon as a

perturbed Liouville theory, whereas now we perturb the free theory rather than complex

Liouville. Analysing (6.5) in more detail one observes

〈

T µ
µ

〉



















< 0 for 2n−2
2n−1 < ∆ < 2n−1

2n

→ ∞ for ∆ = 2n−1
2n

> 0 for 2n−1
2n < ∆ < 2n

2n+1

= 0 for ∆ = 2n
2n+1

(6.6)

with n ∈ N. Note that in particular for n = 1 we have as for the homogeneous sine-Gordon

model at ∆ = 1/2 a transition point at which the sign changes by passing through a

singularity. Moreover, precisely this value corresponds to the free Fermion point, which in

this case is a very explicit example for the free Fermion picture advocated above. However,

in this case the structure is more complicated as first of all we have an infinite number of

such points rather than just one as in the HSG-models. In addition 〈T µ
µ〉 is not always

divergent at these points, but can also vanish.

6.2 Non-simply laced

It is known, that the above mentioned complication of mass renormalization is reconciled

if one views ATFT’s in terms of dual pairs of Lie algebras. Since simply laced Lie algebras

are self-dual, this picture does not yield anything new for that case. The dual pairs of

non-simply laced Lie algebras are (G
(1)
2 ,D

(3)
4 ), (F

(1)
4 , E

(2)
6 ), (B

(1)
ℓ , A

(2)
2ℓ−1) and (C

(1)
ℓ ,D

(2)
ℓ+1).

Each algebra of these pairs allows for a description of the form (6.1) related to each other

by the strong-weak duality transformation β → 4π/β, where the untwisted algebras relate

to the weak coupling limit. The vacuum energies associated to all non-simply laced affine

Toda theories were stated in [18]. As in there no details were presented on how they were

obtained, it will be instructive to show that the procedure outlined in section 2, also holds

in this case.

Let us first of all see what we have to expect with regard to the arguments outlined

above and compute the Virasoro central charge and the dimension of the perturbing oper-

ator. According to [18] we have

c = ℓ+ 12~Q2 with ~Q = β~ρ+
1

β
~ρ∨, (6.7)

with (~ρ∨) ~ρ being the (dual) Weyl vector of the untwisted Lie algebra given by half the sum

of the positive (co)roots. Note that when evaluating (6.7) for the simply laced case yields
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precisely (6.2), but for the non-simply laced case it differs from the expressions in [21] by

the use of ~ρ∨ rather than always ~ρ. The confomal dimension of a spinless primary field

V~a(x) = e(
~Q+~a)·ϕ̃(~x) in the underlying CFT is ∆(~a) = (~Q2−~a2)/2, such that the perturbing

field µn0V(β~α0− ~Q)(x) has conformal dimension

∆(β~α0 − ~Q) = β~α0. ~Q− β2~α2
0

2
, (6.8)

~α0 defined as in the previous section, that is being the negative of the highest root. It will

turn out that these dimension will always be smaller zero. We will compute the precise

values for some concrete examples below.

Unlike to the previous cases the expansion for the kernel ϕ does not appear in the

literature, we therefore start here with the scattering matrix, which can be cast into the

universal form [33, 34]

Sij(±θ > 0) = exp

[

∓8

∫

dt

t
sinh(ϑht) sinh(tjϑH t)

[

K−1(t)
]

ij
e±itθ/π

]

, (6.9)

where ϑh = (2 − B)/2h, ϑH = B/2H with h being the Coxeter number of the untwisted

algebra and H its dual Coxeter number h∨ multiplied by the twist of the second algebra.

The effective coupling is now generalized to B = 2Hβ2/(Hβ2 + 4πh). The ti are the

symmetrizers of the incidence matrix of the untwisted algebra tiIij = tjIji, with ti = 2/~α2
i

and the length of long roots normalized to ~α2
l = 2. Also needed in (6.9) is the inverse

of the q-deformed Cartan matrix Kij(t) =
(

qq̄tj + q−1q̄−tj
)

δij − [Iij]q̄ with deformation

parameters q = exp(tϑh), q̄ = exp(tϑH) and [Iij]q̄ = (q̄Iij − q̄−Iij )/(q̄ − q̄−1).

In order to evaluate the expansion for ϕ, we can employ once again the residue the-

orem for a contour along the real axis closing up in the positive half of the complex

plane encircling all poles on the imaginary axis in the upper half plane. Recalling that

detK(t) =
∏

s∈E 4 cosh [(t+ iπs)/2h] cosh [(t− iπs)/2h], we know the positions of all poles

and it follows from the integral representation (6.9) that the TBA kernels admit a series

expansion of the form

ϕij(θ) = 16 i
∑

s∈E

Res
t→iπs

[

sinh(ϑht) sinh(tjϑH t )Ǩ(t)ij /detK(t)eitθ/π
]

. (6.10)

We do not have a closed formula for the cofactors Ǩ, but for the sake of our argument it

will be sufficient here to present some examples.

6.2.1 (G
(1)
2 ,D

(3)
4 )-ATFT

Let us first compute (6.7) and (6.8). We carry out the computations in terms of the

quantities of the untwisted algebra G
(1)
2 for which we have two simple roots ~α1 and ~α2

normalised as ~α2
2 = 2 = 3~α2

1. Furthermore, the Weyl vector, its dual and the negative of

the highest root are given by

~ρ = 5~α1 + 3~α2 , ~ρ∨ = 5~α1 + ~α2 and α0 = −3~α1 − 2~α2 . (6.11)
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These realizations allow to compute the quantities needed in (6.7) and (6.8), that is 3~ρ2 =

14, 3~ρ∨.~ρ∨ = 26 and 3~ρ.~ρ∨ = 3~ρ∨.~ρ = 8. It follows therefore

c = 2 + 32

[

13 + 3B(B − 3)

B(2 −B)

]

and ∆ =
3B + 2

B − 2
. (6.12)

Clearly for 0 < B < 2 we have −∞ ≤ ∆ ≤ −1.

To proceed further we need the (generalized) Coxeter number for this theory, which

are h = 6 and H = 12. The symmetrizers are t1 = 3 and t2 = 1. Evaluating (6.10) and

reading off the first order coefficient we obtain

ϕ
(1)
ab = −8

√
3
sin (2−B)π

12 sin Bπ
8

cos π
6 (1 − B

4 )

mamb

m2
a, b = 1, 2, (6.13)

where we normalized the masses to

m1 = m cos
π

6
(1 +

B

4
) and m2 = m . (6.14)

We deduce then with (2.12)

〈

T µ
µ

〉

=
πm2 cos π

6 (1 − B
4 )

4
√

3 sin (2−B)π
12 sin Bπ

8

. (6.15)

Agreement with the results in [18] is achieved by changing to the conventions used in there.

For this one needs to re-define the effective coupling to B → B′ = 3B/(4+B) and introduce

a “floating” Coxeter number H ′ = (1 −B′)h+B′h∨.

6.2.2 (F
(1)
4 , E

(2)
6 )-ATFT

For F
(1)
4 we normalize the four simple roots to ~α2

1 = ~α2
2 = 2~α2

3 = 2~α2
4 = 2. The Weyl

vector, its dual and the negative of the highest root are in this case given by

~ρ = 16~α1 + 30~α2 + 42~α3 + 22~α4 , ~ρ∨ = ~ρ+ 22~α4 ,

and ~α0 = −2~α1 − 3~α2 − 4~α3 − 2~α4 (6.16)

such that ~ρ2 = 39, ~ρ∨.~ρ∨ = 402 and ~ρ.~ρ∨ = ~ρ∨.~ρ = 55. With this we find

c = 4 + 12

[

1608 +B(331B − 1388)

(2 −B)B

]

and ∆ =
16 +B

B − 2
. (6.17)

Therefore −∞ ≤ ∆ ≤ −8.

For this theory we have h = 12, H = 18, t1 = t2 = 1 and t3 = t4 = 2. The ratios

between the masses of the four particles in the theory are

m4

m1
= 2 sin

π

4
(1 +

B

18
),

m3

m1
= 1 + 2 cos

π

6
(1 − B

6
),

m2

m1
= 2cos

π

12
(1 − B

6
). (6.18)

We choose the normalization such that m1 = m and obtain from (6.10)

ϕ
(1)
ab = −8

√
3
sin (2−B)π

24 sin Bπ
18

cos π
4 (1 − B

18 )

mamb

m2
a, b = 1, 2, 3, 4. (6.19)
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Therefore with (2.12) we get894/4 = 447
2

〈

T µ
µ

〉

=
πm2 cos π

4 (1 − B
18 )

4
√

3 sin (2−B)π
24 sin Bπ

18

. (6.20)

We can match with the formulae in [18] by B → B′ = 4B/(6 + B), H̃ = 3(4 − B′),

m1 → m′
1, m2 → m′

3, m3 → m′
4 and m4 → m′

2.

6.2.3 (B
(1)
2 , A

(2)
3 )-ATFT

Let us now present the simplest example of the family (B
(1)
ℓ , A

(2)
2ℓ−1). In general, we choose

for the algebra B
(1)
ℓ the normalizations ~α2

i = 2 for i = 1, . . . , ℓ − 1 and ~α2
ℓ = 1. Then we

have

2~ρ = 3~α1 + 4~α2, 2~ρ∨ = 3~α1 + 8~α2 and ~α0 = −~α1 − 2~α2, (6.21)

from which we compute 12~ρ2 = 30, ~ρ∨.~ρ∨ = ~ρ2 + 72 and ~ρ.~ρ∨ = ~ρ2 + 4. Therefore

c = 2 + 8

[

447 + 24B(4B − 17)

B(2 −B)

]

and ∆ =
B + 4

B − 2
.

Hence −∞ ≤ ∆ ≤ −2

For this theory we have h = 4, H = 6, t1 = 1 and t2 = 2. The masses satisfy

m1

m2
= 2 sin

π

4
(1 +

B

6
), (6.22)

and we choose m1 = m. Evaluating (6.10) we obtain now

ϕ
(1)
ab = −8

sin (2−B)π
8 sin Bπ

6

sin π
4 (1 + B

4 )

mamb

m2
a, b = 1, 2, (6.23)

and therefore with (2.12)
〈

T µ
µ

〉

=
πm2 sin π

4 (1 + B
4 )

4 sin (2−B)π
8 sin Bπ

6

. (6.24)

Defining once more B → B′ = 4B/(6+B) and H = 4−B′ we find agreement with [18]. The

previous results also hold for the (C
(1)
2 ,D

(2)
3 )-theory by exchanging the roles of particles 1

and 2, since the Dynkin diagrams of B
(1)
2 and C

(1)
2 are identical up to the exchange of the

short and the long root.

These examples are sufficient to support the validity of the approach outlined in section

2.

7. Conclusions

We used the thermodynamic Bethe ansatz to compute vacuum energies 〈T µ
µ〉 for various

types of perturbed conformal field theories. Despite the fact, that the models considered

exhibit different general behaviours, the assumption i)-iii), needed for the validity of the

approximations in the TBA, hold in all cases.

– 17 –
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The general behaviour of 〈T µ
µ〉 is shown to be sensitive to IR and UV-conterterms,

whose presence can be characterized by the conformal scaling dimension ∆ of the perturbing

operator. In the regime 0 < ∆ < 1/2, realized by minimal ATFT and gk-HSG models for

k > h∨, the quantity 〈T µ
µ〉 can be identified with the IR-counterterms needed to compensate

the divergencies in the perturbative series expansion (1.2), when viewed on a cylinder.

In contrast, in the regime 1/2 < ∆ < 1, realized by gk-HSG models for k < h∨, the

quantity 〈T µ
µ〉 can be associated to the sum of the aforementioned IR counterterms and UV

counterterms needed to guarantee the finiteness of the individual integrals in the expansion.

In the models studied here these additional counterterms, when passing from ∆ < 1/2 to

∆ > 1/2 show up in a change of sign in 〈T µ
µ〉. It would be extremely interesting to verify

this assertion by some explicit perturbative computations for the HSG-models. For the

regime ∆ < 0, realized here by the ATFT (simply laced as well as non-simply laced) 〈T µ
µ〉

constitutes a mixture of several types of counterterms, less obvious to disentangle. The

divergence of 〈T µ
µ〉 at ∆ = 1/2 can be attributed to the occurrence of free Fermions, for

which such type of behaviour is well known from explicit analytical expressions. However,

we were not able to identify the free Fermions in all gh∨-HSG models, which can be viewed

as perturbed CFT’s with ∆ = 1/2. This needs further investigations.
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