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Analysis of Neural-BOLD Coupling
Through Four Models of the Neural
Metabolic Demand
Christopher W. Tyler *, Lora T. Likova and Spero C. Nicholas

Smith-Kettlewell Institute, San Francisco, CA, USA

The coupling of the neuronal energetics to the blood-oxygen-level-dependent (BOLD)

response is still incompletely understood. To address this issue, we compared the fits

of four plausible models of neurometabolic coupling dynamics to available data for

simultaneous recordings of the local field potential and the local BOLD response recorded

from monkey primary visual cortex over a wide range of stimulus durations. The four

models of the metabolic demand driving the BOLD response were: direct coupling with

the overall LFP; rectified coupling to the LFP; coupling with a slow adaptive component of

the implied neural population response; and coupling with the non-adaptive intracellular

input signal defined by the stimulus time course. Taking all stimulus durations into

account, the results imply that the BOLD response is most closely coupled with metabolic

demand derived from the intracellular input waveform, without significant influence from

the adaptive transients and nonlinearities exhibited by the LFP waveform.

Keywords: fMRI, metabolic coupling, neural signal estimation, human brain, multimodal imaging, BOLD, local field

potentials

INTRODUCTION

The goal of functional Magnetic Resonance Imaging (fMRI) is to estimate properties of the
neural signals in the brain during the spectrum of activities controlled by the nervous system.
However, the recorded fMRI signal is a response to the metabolic demands of supporting the
nearby neural activity (Thompson et al., 2003, 2004). It is therefore important to understand as
much as possible about the pathway coupling the recorded fMRI response to the dynamics of the
neural activity giving rise to it. The theoretical development of the neural/BOLD coupling logic
is based on that of Tyler and Likova (2011) although the present application to monkey joint
fMRI/local-field-potential data is entirely novel.

Neural/Astrocyte Coupling
It is widely accepted that the origin of the metabolic demand driving the blood-oxygen-level-
dependent (BOLD) signal recorded in fMRI is the energetic load deriving from transmitter release
at the synaptic inputs to each neuron (Logothetis, 2002, 2003; Logothetis and Wandell, 2004;
Shmuel et al., 2006; Carmignoto and Gómez-Gonzalo, 2010). The transmitter release is tightly
coupled to the activation of the post-synaptic receptors on the recipient cell membrane and
consequently to the energetic demands of the synaptic activation of the transmitter molecules for
future release, the majority of synapses being glutamatergic (Magistretti, 2006). The synaptic origin
of the energetic demand driving the BOLD signal is thus coupled to the net transmitter signal
impinging on the cells, and hence to the intracellular potential in these cells. The majority of these
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energetic demands are met by either by glycolysis of glutamate
to glutamine in the neighboring astrocytes (Shank and Aprison,
1979; Wang and Floor, 1994; Bélanger et al., 2011; see Figure 1),
or by oxidative phosphorylation from the neuronal mitochondria
(Attwell and Laughlin, 2001; Hall et al., 2012; Pellerin and
Magistretti, 2012).

It should be mentioned, however, that the existence of a
direct interneuron pathway for vasodilation and vasoconstriction
has also been proposed (Dirnagl et al., 1993; Ma et al., 1996),
although the proportion of the effects specific to this direct
pathway remain a matter of debate (Lindauer et al., 1996;
Attwell et al., 2010). Indeed, we are unaware of any studies
on this issue that provide evidence of interneuron control of
vascular diameter having the fast (∼5 s) time constant sufficient
to account for the BOLD response dynamics in the human brain
in vivo.

Source of BOLD Waveform Variability
It is well known that there are substantial variations in the BOLD
waveform in different cortical regions recorded during the same
task (Handwerker et al., 2004, 2012; Fox et al., 2005), which
have often been interpreted as due to variations in the local
hemodynamics among cortical regions. Two points should be
made in this regard. One is that differences in hemodynamics
are largely attributable to differences in density of the arterial
supply and draining veins overlying the cortical parenchyma
(Handwerker et al., 2012), which indeed are expected to have
different dynamics from the local capillaries within the cortex.
However, this is an issue that can be addressed by accurate
segmentation and the appropriate choice of voxel sizes to
exclude extra-parenchymal signals and restrict the recorded
BOLD responses to cortical space. To our knowledge, none of
the papers evaluating the regional variations in BOLD waveform
have implemented this strategy.

FIGURE 1 | The astrocytes as the substrate for the neurovascular coupling of the neural metabolism. (From Magistretti, 2006, with permission).

The other important point is that none of the studies of
regional variations in BOLD waveform have assessed the role
of neural variations in temporal waveform in this phenomenon.
Neural waveform variations among neurons of different types
and even the same types in different cortical regions are well-
established (e.g., Hegdé and Van Essen, 2004, 2006). Such
variations in the source signal can readily give rise to variations
in the consequent BOLD waveforms, even on a different (longer)
timescale (see Tyler et al., 2008; Tyler and Likova, 2011, 2014).
Given this neurophysiological evidence, it is arbitrary and
prejudicial to attribute all BOLD waveform variations purely
to hemodynamics. There must be a neural component to this
variation that needs to be acknowledged in all analyses of BOLD
variations across regions.

Indeed, the logic of the known neural variations in neural
signals poses the question whether any of the regional BOLD
variation can be securely attributed to hemodynamic causes.
All studies of regional BOLD variation to date have employed
paradigms in which the BOLD responses are mediated by neural
signals, whether in response to external stimulation or intrinsic
neural interactions. As such, the BOLD responses were subject to
the known functional variation of neural activity across regions of
cortical specialization, and hence of potential temporal variation.
Only if the neural signals were determined to be equal by
direct measurement, or the BOLD signals across cortical regions
were generated by a post-neural input, such as nitric oxide
infusion in the region of the blood vessels, could the variation
be convincing attributed to hemodynamic factors. However, in
order to follow the first course, it is necessary to determine the
aspect of the neural signals that is responsible for generating
BOLD response dynamics, which is the topic of the present
paper based on a novel analysis of simultaneously recorded
local field potential (LFP) and BOLD signals from monkey
cortex.
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Nonlinearity of the BOLD Time Course
The neural and BOLD response time courses were measured
simultaneously to rotating checkerboards stimuli in a study
by Logothetis (2003) in behaving monkeys. The neural time
course was recorded in terms of the LFP, with the BOLD
signal being recorded from 16 adjacent voxels (since the
presence of the electrode prevented recording from the actual
voxel containing it). Representative results are shown in
Figure 2.

Two points are noteworthy. One is that the LFP timecourse
(black curves) does not exactly match the stimulus timecourse
(black box function) despite the author’s efforts to do so by
providing a continuously moving, high contrast target. The
timecourse has the initial transient ubiquitously seen in single-
unit recordings, followed by a sustained plateau that shows
a gradual adaptation effect. The off-response shows a similar
(inverted) transient, but only minimum evidence of the plateau.
As a result, the overall LFP response is nonlinearly related to the
stimulus in a manner that can be captured by a parallel-channel
model of the sum of several component neural responses, but not
by a serial model of convolution with any single form of temporal
impulse response.

Logothetis’ concern was not, however, with the linearity or
otherwise of the LFP, but with its relation to the BOLD response.
The BOLD time course was predicted on the basis of convolution

of the recorded LFP waveforms with an estimated impulse
response function. The function that provided a good fit for
short duration stimuli, however, showed significant deviations
from the measure data at long durations (Figure 2), predicting a
substantially stronger BOLD response than was actually recorded
at the longest duration, in particular.

This result implies that the neurometabolic coupling is not
well-described by a linear convolution process, but has further
nonlinearities built into it that need to be taken into account in
an attempt to infer the neural signal on the basis of local BOLD
response recordings.

The LFP recordings in Figure 2 make it apparent that
the LFP waveform has a complex time course that can be
approximated by two exponentials with time constants of about
1 s and >30 s, respectively. Relative to the usual time courses of
neural transients, of about 50ms these are remarkably prolonged
neural processes on the time scale of the recorded BOLD signal
from the same general region of cortex (blue trace).

The importance of this adaptation effect is emphasized by
the fact that the recorded LFP signal does not fully match
the predicted BOLD activation (red curve), and therefore a
more comprehensive model is required, going beyond the
standard General Linear Model (GLM) of convolution of a
metabolic kernel with the stimulus time course. We note that
a corresponding adaptation effect in the neural response to

FIGURE 2 | Time course of the local field potentials (black trace), BOLD (red blue trace), and predicted BOLD (red trace) to a continuous dynamic

stimuli (black rectangle) of 3, 6, 12, and 24 s duration (A–D, respectively from Logothetis, 2003, with permission). The prediction was generate by linear

convolution of the recorded LFP signal with a hemodynamic response function (see Logothetis, 2002, for details).
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flickering stimulation was inferred by Pfeuffer et al. (2003) from
the pattern of variations in BOLD response amplitude as a
function of stimulus duration.

THEORETICAL ANALYSIS

Analysis of Neural/BOLD Coupling
Nonlinearities
The widespread utilization of the general linear model in
fMRI analyses may be taken to imply that it is an adequate
approximation to the BOLD signal behavior under typical
recording conditions, but a detailed reveals some limitations of
this model. As a starting point of the analysis, we have developed
a specific model structure of the processes leading to the BOLD
paramagnetic signal of fMRI recordings (Tyler and Likova, 2011).
This model goes beyond the linear convolution analyses of
Friston (1997) and Friston et al. (1998, 2000) in incorporating
multiple forms of neural signal within each voxel and recognizing
an explicit glial aspect to the metabolic coupling pathway.

In general terms, the stimulus impinging on the subject
generates a sequence of neural responses starting with the
transduction into a neural signal within the sensory receptors,
which then propagates to the brain and activates various
populations of neurons within the voxels then being analyzed by
the fMRI technique. For instance, the signals arriving from the
retina generate synaptic activation of the populations of cortical
cells, which generates a local energetic demand for the restoration
of the neurotransmitter molecules carrying the activation signals.
The chain of cortical metabolic processing, illustrated in the block
diagram of Figure 3, progresses from the local metabolic demand
generated by the neural events at the synapse through the
metabolic coupling mediated by the neighboring astrocyte glial
cells as a whole to the processes of oxygen delivery by the adjacent

capillaries that is detected by the imaging methodology. It is
important to emphasize that the astrocytemetabolic processes are
slow relative to the intracellular signal dynamics, about as slow as
the processes of hemodynamic oxygen supply. The time constant
of the astrocyte responses is known to be of the order of several
seconds (Kelly and Van Essen, 1974; Filosa et al., 2004; Metea
and Newman, 2006; Schummers et al., 2008), and it is clear that
there must be a substantial pre-hemodynamic component from
these slow responses. Kelly andVan Essen (1974) and Schummers
et al. (2008) also show that the slower glial responses are as
strongly tuned to local stimulus orientation as are the neural
responses, implying a tight functional coupling between them.
However, at present too little is known of their dynamics and/or
nonlinearities to securely assign precise time constants to the
astrocytic component relative to the hemodynamic component.

Specifying the Model Framework
The model framework is slightly modified from that in Tyler and
Likova (2011). We treat the neural responses within each voxel
for a given stimulus S(t) as generated by sets of homogeneous
populations with similar signal waveforms Ni(t) within each
population (see Figure 3). For generality, it is assumed that
these neural signal waveforms are generated by a nonlinear
transduction from the input stimulus. The transduction from
each neural population response to the local metabolic demand
Mi(t) is further assumed for generality to be nonlinear. The
overall metabolic demands G(t) within a voxel are met primarily
by the surrounding astrocytes, which support the required
neural energy consumption over time and space and make
a complementary metabolic demand G(t) on the adjacent
vasculature. This integrated metabolic demand stimulates the
vascular hemodynamic processes H(t) provide the requisite
oxygen and glucose exchange to replenish the energy depletion
in the astrocytes. The last three stages constitute the metabolic

FIGURE 3 | Block diagram of the main processing stages that lead up to the BOLD signal. The subscript i indicates that the stage incorporates multiple

components from homogeneous subpopulations within a voxel (from Tyler and Likova, 2011, 2014).
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TABLE 1 | Mathematical model of the operations involved in the

generation of the BOLD signal from the input stimulus.

Output Generation logic Features

Neural signal Ni (t) = f[S(t) ⊗ ni (t)].e
−t/γ Nonlinear transducer

with adaptation

Neural metabolic

demand

Mi (t) = f[Ni (t) ⊗ m(t)] Nonlinear transducer

Glial metabolic

coupling

G(t) = ΣMi (t) ⊗ g(t) Multiple linear

summation

Hemodynamic

response

H(t) = G(t) ⊗ h(t) Linear (slow)

Paramagnetic

response

BOLD(t) = H(t) ⊗ p(t) Linear (fast)

Metabolic

coupling relation

BOLD(t) ≈ ΣMi (t) ⊗ mrk(t) Combines 4 previous

stages

response that determines the ratio of oxygenated to deoxygenated
hemoglobin in the blood complement of a given voxel that is
estimated through the paramagnetic reaction as the BOLD signal
Y(t). These post-neural processing stages are often modeled as
a linear metabolic response kernel (mrk) convolved with the
presumed neural signal.

The terms of the conceptual model in Figure 3 are related
by a series of mathematical operations specified in Table 1

(modified from Tyler and Likova, 2011). The three operators
are: (i) linear convolution (⊗), a nonlinear amplitude relation
(f[ ]), and a multiple linear integrator (Σ). Note that each stage
of the model is treated as the linear convolution of the output
signal from the previous stage with a temporal response kernel
designated by lower case initial for the respective process, i.e., the
neural response function n(t), the metabolic response function
m(t), the glial response function g(t), the true hemodynamic
response function h(t), the paramagnetic response function p(t)
that generates the BOLD signal, and an approximate metabolic
response kernel mrk(t). This last process corresponds to a linear
approximation of the metabolic coupling relation implied by
the previous three stages. The linear integration across multiple
parallel elements within the voxel provided by the glial coupling
stage corresponds to a nonlinear process in the context of single-
channel solution.

Nonlinearities
Unlike the example in Figure 2, however, typical LFP responses
show a much weaker transient at offset than onset (see
Figure 6, column 1), which implies the presence of an adaptation
process decreasing the transient component over time. Such
adaptation can be readily modeled by the nonlinear process of an
exponential decay with time constant γ multiplying the response
over time (after convolution with the stimulus), as shown in the
first line of Table 1.

Table 1 thus invokes three kinds of nonlinearities in the
overall model—an amplitude nonlinearity (lines 1 and 2), an
adaptive temporal nonlinearity (the exponential term in line 1),
and a multiple summatory nonlinearity (line 3). Nevertheless,
these stages are typically inaccessible, therefore for practical
purposes, they are approximated by the linear model form in

the last line of the table: a function representing the neural
metabolic demand evoked by the neural response to the stimulus
presentation is convolved with the metabolic response kernel
(mrk).

Nonlinear Model of the Local Field
Potential (LFP)
The Neural Signal
A comprehensive model of the BOLD therefore requires an
accurate model of the intracellular potential dynamics coupled to
stimulation. If the excitatory and inhibitory transmitter release
are symbolized by ψe, ψi, we can specify the relationships
between the synaptic input and the intracellular potential VI(t)
as follows:

VI (t) =
∑

ηe

ψe(t)−
∑

ηi

ψi(t)+ n0 (0, σ0)

= stim(t)⊗
(

ηet
kee−t/τe − ηit

kie−t/τi
)

+ n0 (0, σ0) (1)

where ηe and ηi are the number of excitatory and inhibitory
transmitter molecules, respectively (or, strictly, the number
of ionic charges carried by the net inflow of transmitter
molecules per unit time) and n (0, σI) is the cumulated noise of
the intracellular signal from quantal, thermal, and transmitter
sources.

To avoid complications, we do not specify the contributory
components of the intracellular noise. For example, the quantal
component will decrease in standard deviation as luminance
level is increased, and the transmitter source may decrease in
standard deviation as the activation level decreases, but we
assume the totality of noise sources add up to a constant
Gaussian noise source to a first approximation. This assumption
has been evaluated in detail by Carandini (2004) in coupled
intracellular and extracellular recordings. His model provides an
accurate quantitative account of the strong signal-dependence
of the variability of the extracellular spike rate (Tolhurst
et al., 1981; Vogels et al., 1989) in terms of a purely additive
Gaussian intracellular noise passing through the threshold-like
nonlinearity of the spike generation process. Thus, the additive
Gaussian noise assumption for the intracellular signal governing
the metabolic demand is fully compatible with the signal-
dependent properties of neural spike noise.

The constants ηe and ηi are specified for every individual cell
and will vary substantially among cell types. Indeed, they will vary
substantially with the placement of the intracellular (e.g., patch-
clamp) recording site in relation to the synaptic inputs of the cell.
However, for the present purposes, the relevant values are the
average values integrated over large volumes of cortex leading to
the local metabolic demand that underlies the BOLD signal, as
reflected in the local field potential (LFP) recorded at a site in the
extracellular medium.

As is highlighted by the data of Figure 2, there are adaptive
effects in the neural response with a complex time course that
can be approximated by two exponentials with time constants
of about 1 s and >30 s, respectively. These are remarkably
prolonged neural processes on the time scale of the recorded
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BOLD signal from the same general region of cortex (blue trace)
as indicated by the fact that the recorded LFP signal does not fully
match the predicted BOLD activation (red curve). The negative
LFP signal in Figure 2 following stimulus offset has a similar
(but inverted) time course to that following the stimulus onset,
implying that the adaptation effect is a subtractive inhibition
rather than solely a multiplicative form of fatigue (which would
have no negative rebound). If such a gain control were purely
multiplicative, the amplitude of signal change at offset would be
substantially less than that at onset, whereas the two amplitudes
are similar within about 10%. Thus, the adaptive inhibition
must be predominantly subtractive rather than multiplicative
gain control and may correspond to the tonic intracellular
hyperpolarization suggested by Carandini and Ferster (1997,
2000) to be the mechanism for pattern adaptation. However, it is
adapting essentially to a dynamic input modulation, and hence
the sustained LFP signal should be treated as deriving from a
full-wave rectified transform of the intracellular potential.

Formally, the neural signal for the present analysis is
considered to be the extracellular voltage Vj(t) in each
jth subpopulation of neurons with homogeneous response
characteristics and is related to the intracellular voltage
according to

V + τj
dV

dt
= αjVI, where V = Vj (t −1t) (2)

and where τj and ζj are the time constants of the two
exponentials,1t is an onset delay, and αj is a scaling factor, for a
given neural population j.

Solving Equation (2) for Vj (t) and restricting it to positive t
gives:

Vj(t −1t) =
αj
τj
VI(t −1t)⊗ e−(t−1t)/τj , t > 1t

= 0, t < 1t (3)

Thus, the neural input for the contributions of the various neural
populations to the LFP for the model of Table 1 is:

n (t) =
∑

j> 1

Vj (t) (4)

together with a sustained component given by:

n1 (t) =

∫

V1 (t) (5)

Finally, themrk for the metabolic coupling relation in the last line
of Table 1 is assumed to be a gamma function of the form:

mrk(t) = αMtk · e−t/τM (6)

where αM , k, and τM are the characteristic constants of the mrk
dynamics.

To implement the additive (parallel-process) model of
Equation (3) (shown in Figure 4 for a qualitative fit to the data
of Figure 2), the two decay components had time constants
of 1 and 60 s (“slow” and “fast” components, red and green
curves in Figure 4A). These processes were convolved with a
neural signal derived from sum of the two components after
convolution of the two components with the rectangular form of
the continuous stimulus for 3 and 12 s, the latter corresponding
to the responses in Figure 2. This model captures the qualitative
features of the LFP data (Figures 4B,C, black curves) with the
sum of the two component responses (red and green curves in
Figure 4C). Again, it is difficult to obtain such a combination of
the two component slopes with purely serial model, because this
would imply a convolution of the two exponentials which would
necessarily result in a function dominated by the slower process
rather than allowing both processes full expression.

FIGURE 4 | (A) Two exponential decay processes (red and green curves) used to account for the adaptation effects in Figure 2. (B) The properties of Equation (4) for

a stimulus of 3 s duration. (C) The same for 12 s duration (black curve), together with the components making it up (red and green curves). (See text for details).
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FIGURE 5 | Four plausible models of the BOLD response characteristic

through linear convolution with various metabolic response kernel

hypotheses.

Neurometabolic Coupling
As will become evident, we will need a range of models of
neurometabolic coupling to account for the variety of data
available. We therefore develop four options as to what aspect of
the neural signal is coupled through the metabolic demand to the
BOLD response (see Figure 5). All four options assume that the
coupling to generate the BOLD response can be approximated as
a linear process of convolution with themrk (last line of Table 1),
with the nonlinearities occurring in terms of the predominant
aspect of the neural signal and the early stages of the metabolic
chain that is assumed to be driving the BOLD response. Thus,
the coupling of themrk with a LFP model response is assumed to
be linear (as in Friston et al., 1998).

LFP Coupling
The first model option (Figure 5, top row) is the original concept
that the LFP represents the net neural signal in the voxel,
which generates the metabolic demand that drives the metabolic
recovery processes through in the blood supply (Lippert et al.,
2010), as mediated by the intervening glial cells. The net neural
signal contributing to the LFP is the input for a given cortical
area as well as its local intracortical processing, including the
activity of excitatory and inhibitory interneurons and the effect of
neuromodulatory pathways (Logothetis, 2003, 2008; Magri et al.,
2012). The LFP model for this option is specified in the first line
ofTable 1, which incorporates a slow adaptive process in addition
to the fast and slow decay components of Equation (4).

Slow Adaptive Coupling
Instead of assuming that the MRK input derives from the
whole LFP, it may be assumed to be specific primarily to the
slow adaptive component of the model (Figure 5, second row),
with the fast component attributable to spiking activity, which
would have little impact on the BOLD response due it its low
metabolic requirements (Logothetis, 2002, 2003, 2008; Logothetis
and Wandell, 2004). Thus, the mrk is assumed to be solely the
sustained component of Equation (5) followed by the adaptive
process of line 1 of Table 1.

Neurotransmitter Input Coupling
An alternative option is the assumption that all the observed
LFP adaptation is a function of extracellular signal diffusion after
the metabolic demand has been defined by the neurotransmitter
processes (Figure 5, third row). Under this assumption, the
neurometabolic coupling would be with a non-adaptive sustained
neurotransmitter response to the input signal, as proposed by
Logothetis (2002, 2003, 2008) and specified in Equation (5).
In particular, this hypothesis implies that there would be no
transient off-response component contributing to the BOLD
signal.

Rectified LFP Coupling
A final option (Figure 5, fourth row) is that any deviation of
the LFP from zero (either positive or negative) is mediated by
the release of some form of neurotransmitter and represents a
metabolic demand (Sotero and Trujillo-Barreto, 2007; Tyler and
Likova, 2011), as specified in Equation (1) with ηi taking the
value of −1. This assumption implies that the release of any
neurotransmitter in the form of either excitatory or inhibitory
synaptic coupling would constitute a neurometabolic load that
generated a positive neurometabolic demand. A simplifiedmodel
of such a demand would thus be represented by a rectified
version of the nonlinear LFP (Rect LFP), although it is possible
that this would still underestimate the metabolic demand due to
electrical cancellation of the positive and negative components
in different parts of the cell. Nevertheless, the rectified LFP
would constitute a lower bound of the neurometabolic demand,
and in particular would convey its characteristic of having no
negative aspects. This simplified model can therefore be used as
an initial assay of whether the rectification approach has merit,
with possible elaboration if it provides a better fit than the other
models.

METHODS

As specified in the previous section, these four hypothetical forms
of coupling have all been proposed in the literature. Here we may
now compare their performance within primary visual cortex
(V1) of macaque monkeys from LFP data made available to us
by Nikos Logothetis from the study described in Figure 2 (see
Logothetis, 2003, for details), with seven recording durations
(2, 3.2, 4.3, 6.4, 12.8, 13.4, and 25.7 s). The LFP bandwidth was
10–300Hz. The stimuli were large-field rotating checkerboards,
alternating in direction every 2 s, designed to avoid response
adaptation as much as possible. There were a total of 28 datasets,

Frontiers in Neuroscience | www.frontiersin.org 7 December 2015 | Volume 9 | Article 419

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Tyler et al. Analysis of Neural-BOLD Coupling

which are averaged for each available duration to provide the
average data for the seven durations shown in Figure 6.

The model fitting was implemented through the Matlab
fminsearch function for optimization of a parametrized function
to data, with the mean squared error as the variable to be
minimized. For the full LFP model of Equation (4), we needed
to include a sustained (non-adaptive) component (Equation 5) in
addition to the two adaptive components (see line 1 of Table 1)
in order to capture the characteristics of the response; thus i =
1, 2. To fit the LFP model of Equation (4) to these data, the
four dynamic parameters of τi, ζI , their onset delay 1t and
their adaptation time constant γ , were optimized for the fit to
the mean responses simultaneously across all seven durations,
together with amplitude of each component as a free parameter
at each duration, making a total of 4 + 7 = 11 free parameters.
For each duration, n = 64 and the residual variances for the LFP
fits are specified in each panel of the first column of Figure 6.
Thus the 64 × 7 = 448 parameters of the average LFP data are
fit with a model of 11 free parameters. The component weights of
the resulting three components (green curves) are shown in the

remaining columns of Figure 6, with the overall LFP waveforms
(dashed blue curves) for comparison.

For the full model fits to the BOLD waveforms, the optimized
LFP fit for each duration was convolved with an mrk according
to Equation (6), with k and τM optimized to all durations
simultaneously, together with an amplitude parameter αM and
baseline shift parameter for each of the 7 durations (2+2∗7 = 16
free parameters). Since the BOLD sampling rate was 250ms, the
dataset of 160 × 7 = 1120 parameters was being fit with the 16
free parameters for each of the four models of metabolic demand
shown in Figure 5 (given the LFP fit as the input function for
each duration). The presence of 160 samples at each duration
implies that individual fits are significant at p < 0.001 of the F-
test, providing Bonferroni correction to p < 0.02 for multiple
applications to 16 fits if they account for more than 61% of the
variance (i.e., if the residual variance is less than 39% of the
overall variance).

Moreover, for the ratio between any two variances to be
significant, the ratio has to exceed 1.63 on the F-test for
significance at p < 0.001 (which provides an appropriate level

FIGURE 6 | Left column: Overall neural model fits (blue curves) to the average LFP responses (red curves) at each of 7 durations. Proportion of variance

unaccounted for (R2) shown as insets. Three right columns: Optimized sustained, fast and slow adaptive components (green curves for each duration) required to

provide the overall neural model fits (blue curves). Note that residual variance (1–R2) is less than 3% in all cases, and must be considered to have fully characterized

the LFP dynamics of V1.
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of Bonferroni correction for the test validity at p < 0.05 over
the multiple applications of 6 pairwise comparisons among the 4
models, times 7 durations, or a total of 42 test applications).

MODELING RESULTS

The first aspect of the study was to fit the model of Equation
(4) to the average LFPs across duration, as shown in Figure 6.
This model fit had the twofold goal of (a) providing a low-
free-parameter characterization of the LFP waveform and of (b)
defining its component structure in terms of the components
developed in Equations (2–5) and Figure 5. The specific model
components were thus a sustained component matching the
stimulus input, a fast adaptive component and a slower adaptive
component. (Note that the adaptation gives the latter two
components a much reduced offset transient relative to their
onset transients at long durations; Figure 6, columns 3 and 4.)
The optimal dynamic parameters are specified in Table 2.

The neural model fits to the LFP waveforms show that the
three-component model has the appropriate structure to match
all the evident features of the waveform, accounting for an
average of 98% of the variance. Except at short durations, all three
components are approximately equally weighted in the combined
model. It might be possible to capture the data with the same
component weights across duration, but the goal of the study is
not LFP modeling per se, so it was not relevant to pursue this
issue.

Fits of the four models for the metabolic demand to the BOLD
responses at each duration are shown in Figure 7, based on
the components of the LFP fits in Figure 6, together with their
optimized mrk (top row). Note that the BOLD mrk parameters
in Figure 7 were allowed to vary across the four models (as
there is no prior on the relationships among the models), but
held constant over the 7 stimulus durations, as the metabolic
parameters are not expected to be affected by the nature of the
stimulus. The time constants of the optimized mrk waveforms
in terms of peak latency were 4.8, 9.3, 6.6, and 2.7 s for the
four models, respectively, based on a 5th-order gamma function
model.

As specified in Methods, the individual fits are significant at
p < 0.03 if the residual variance is <39%. Thus, all the fits
are significant except for several of those for the 3.2 and 4.3 s
durations.

For the specific comparisons among the different models, the
statistically significant cases may be assessed as any having ratio
of the residual variances greater than 1.63 between model fits at a
given stimulus duration, as described in Methods.

Across the durations, each of the model fits is significantly
worse than for the Input model at a few durations (residual
variances shown in bold), particularly those for the Slow Adapt
model, and no model has significantly better fits than the Input

TABLE 2 | Optimal parameter values for the LFP model.

Parameter 1t τ i ζ γ

Value (ms) 0.61 1.01 2.79 2.95

model at any duration, with the exception of the LFP model
at one duration—12.8 s (Figure 7). At the longest duration, the
Input model fits are significantly better those for all three other
models. Thus, taken together, the net result is that the Input
model provides the best fit overall across the 7 stimulus durations.

DISCUSSION

Taking all durations into account, the results of this modeling
study imply that the BOLD response is most closely coupled
with the neurotransmitter input waveform defined by the
sustained response close to the boxcar waveform of the stimulus
time course, without the transients and adaptive nonlinearities
exhibited by the LFP waveform. The best-fitting BOLD mrk
was a 5th-order gamma function with a peak time of 4.8 s and
no inhibitory rebound, accounting for more than 90% of the
variance at the three longest durations (which would correspond
to correlations between the model and the data of >0.95). In
practice, of course, the inputs to V1 voxels would have passed
through several stages of neural processing in the visual pathway,
including transmission delays, and temporal integration, but
these effects are evidently too small to be resolved on the time
scale of the available analysis. Also, it should be noted that
the initial transients characteristic of most neuronal responses
are specifically minimized by the design of the stimuli, which
provided continuousmovement alternating in direction every 2 s,
and hence that the initial neural response should be expected
to closely match the stimulus specification. In this context, it is
actually surprising to find the LFP exhibiting the pronounced
initial transient that is evident in Figure 6, since the stimulus
was specifically designed to minimize such deviations from the
input boxcar waveform in the form of directional adaptation.
However, the present data and model fits imply that any longer-
term adaptation to this kind of motion stimulus is happening
beyond the stage of the neural inputs to V1, as there is no
tendency on average for the BOLD response to decline at the
longest durations, and hence it must derive from a non-adapting
component of the neural response in V1.

Thus, the net conclusion from this study agrees with that of
(2002, 2003, and 2008), that the form of the BOLD signal is most
compatible with the input to the neuronal response, i.e., with
the energetics of the primary neural activation that requires a
glutamatergic metabolic response. It is noteworthy that this is the
coupling that involves the briefest estimated mrk, because this is
the metabolic demand with the least transient input of the four.
In fact, themrk peak for this case is occurring at only 4.8 s, a fairly
typical value for the general understanding for human BOLD
responses. (Note, however, that this value cannot be compared
directly with the HRF of the standard approach, as the HRF
incorporates all preceding neural dynamics, whereas the mrk is
restricted to the metabolic response kernel by the assumptions of
the analysis.)

Moreover, the model mrk had no delay parameters. As can be
seen from the examples in Figure 7 (first column), there is no
visible tendency for the rise of the BOLD onset to lag the model
fits. This result suggests that there is no inherent BOLD delay
relative to the gamma-function model of the mrk in relation to
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FIGURE 7 | Model fits (blue curves) for the four models of BOLD coupling for the respective components of the LFP coupling models of Figure 6 fitted

to the average BOLD responses (red curves) at 7 durations. Top row shows the BOLD metabolic kernels (green curves) required to best fit for each model.

Insets specify the percent residual variance of the fits, with those significantly higher than those for the Input model shown in bold. The non-adapting neural Input

model thus provides the best fit to the average BOLD data overall.

neural activation beyond that implied by the order of the gamma
function required to account for the full BOLD waveform. Any
further delays that may be needed in a range of GLM analyses of
the gamut of tasks in the literature may be attributed to neural
processing delays.

It should be emphasized that the linear convolution of the
mrk stage required for the present fits implies (although it does
not prove) that any further complexity or cortical diversity of
the measured BOLD dynamics, as reported by Fox et al. (2005),
Handwerker et al. (2012) or Likova and Tyler (2007), for example,
is attributable to variations in the underlying neural signals
rather than to variations in the BOLD HRF per se. On this
basis, the results further imply that the use of stimuli that allow
neural adaptation prior to arrival in the cortex, and hence an

adaptive waveform for the cortical input (wherever in the cortex
that may be), would show an adaptive BOLD response in that
region of cortex. Moreover, a neural input that had a negative
rebound in the signal arriving at the cortex would show a negative
rebound in the BOLD response. For example, the rotating noise
stimulus of the Logothetis study analysis here was changed in
direction every 2 s to minimize adaptation effects. If instead it
had been maintained indirection for the full 40 s time period,
classic motion adaptation would have been expected during the
stimulus presentation, with a negative rebound corresponding
to the motion aftereffect. Such behavior was indeed reported by
Tootell et al. (1995). Evidence in favor even stronger adaptation
effects in a purely transient noise paradigm is provided by Likova
and Tyler (2007).
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CONCLUSION

The good quality of the full model fits to the combined LFP
and BOLD data as a function of duration provides a principled
assessment of the nature of the neural/BOLD coupling behavior
underlying BOLD fMRI and provides structured insights into the
nature of the neural signal components contributing to the BOLD
response dynamics. In general, the results are consistent with
previous work employing a linear convolution of the stimulus
waveform with a gamma-function model of the BOLD dynamics,
but they provide further insight into the nature of the underlying
processes involved. In particular, they reveal that no negative
rebound of the BOLD response is required to account for the
recorded BOLD waveforms.

In relation to the first stage of the model process, the
extremely high quality of the model fits to the LFP data
provides strong evidence that the LFP component model
has the appropriate component structure to account for the
mechanisms contributing to the recorded LFP dynamics. This
question was not the focus of the present paper, but we note
that there are surprisingly few modeling studies attempting
to characterize the mechanisms of neural response dynamics,

particularly in the case of LFPs, and propose this model
structure as the starting point for more targeted studies of this
issue.

In relation to the question of assessing the neural signals
contributing to BOLD responses throughout the brain, a key tool
in this enterprise is an accurate model structure for the likely
neural responses in any local volume of cortex. The parameters of
such a model can allow for optimization to the range of responses
encountered across stimulus conditions, cortical regions and
individual brains. The success of the present analysis helps to
provide validation that this is an achievable goal, and should
encourage similar efforts for a wider range of stimulus conditions
to determine how far the present model can be generalized and
what other aspects need to be included to characterize the full
range of such constraints.
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