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ELIMINATION OF NUMERICAL DISPERSION FROM
ELECTROMAGNETIC TIME DOMAIN ANALYSIS BY
USING RESOURCE EFFICIENT FINITE ELEMENT
TECHNIQUE

S. M. Raiyan Kabir*, B. M. A. Rahman, Arti Agrawal, and
Ken T. V. Grattan

City University London, London EC1V 0HB, United Kingdom

Abstract—Time domain analysis of electromagnetic wave propaga-
tion is required for design and characterization of many optical and
microwave devices. The FDTD method is one of the most widely used
time domain methods for analysing electromagnetic scattering and ra-
diation problems. However, due to the use of the Finite Difference
grid, this method suffers from higher numerical dispersion and inaccu-
rate discretisation due to staircasing at slanted and curve edges. The
Finite Element (FE)-based meshing technique can discretize the com-
putational domain offering a better approximation even when using a
small number of elements. Some of the FE-based approaches have con-
sidered either an implicit solution, higher order elements, the solution
of a large matrix or matrix lumping, all of which require more time and
memory to solve the same problem or reduce the accuracy. This paper
presents a new FE-based method which uses a perforated mesh sys-
tem to solve Maxwell’s equations with linear elements. The perforated
mesh reduces the requirement on memory and computational time to
less than half of that compared to other FE-based methods. This pa-
per also shows a very large improvement in the numerical dispersion
over the FDTD method when the proposed method is used with an
equilateral triangular mesh.

1. INTRODUCTION

The use of time domain analysis for electromagnetic radiation and
scattering problems was first introduced by Yee in 1966 [1]. He
proposed a finite difference algorithm which runs the initial value
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problem on a lattice of staggered field components known as Yee’s
lattice. This method, known as the Finite Difference Time Domain
(FDTD) approach, is the most popular and widely available numerical
method for electromagnetic time domain analysis [2–5]. The reasons
for its popularity are, firstly, the simplicity of the algorithm which
makes the development of a three-dimensional code easy. Secondly, the
algorithm is data parallel, so a parallel implementation of the algorithm
can be carried out on all computing platforms [6–9]. Thirdly, for each
computational cell the FDTD uses the least possible computational
resources to obtain the evolving fields.

The disadvantages of the FDTD algorithm are also well known.
Firstly, with the use of a rectangular finite difference grid, it is
difficult to model slanted or curved structures. Although the general
perception is to decrease the cell size to achieve more accurate
representation, decreasing the grid size does not always give predictable
improvements. To minimize the error, a sub-pixel smoothing scheme
can be added [10], which require modification of the real boundary
conditions and use of an anisotropic technique to model devices when
the actual device contains only isotropic materials. Secondly, the use
of a rectangular grid with the FDTD introduces numerical dispersion
in the computational domain.

The Finite Element (FE)-based approaches are better alternatives
for the effective representation of an arbitrary shaped structure,
such as one with slanted or curvilinear interfaces because it uses an
unstructured polygonal mesh to represent the structure. The FEM
was introduced to the electromagnetic analysis during the 1980’s to
solve frequency domain problems [11–13]. To represent the structure
more accurately, researchers have considered the FEM for time domain
analysis [5, 14–18]. Although these methods are sometime more
accurate in structural representation, some of them may require an
implicit solution of the computational domain for each time step [19],
some require the solution of large matrices [5] and some require higher
order solutions of Maxwell’s equations [14, 17, 18].

However, among all the FE methods reported, the point-matched
method [14] has features which may make it the more suitable.
Firstly, it solves Maxwell’s equations directly in the same manner
as the FDTD. Secondly, it does not generate mass matrices and all
calculations are local to each element. Lastly, the formulation is data
parallel and suitable for parallel computing implementation. However,
the downsides of this method presented in the work of Cangellaris [14]
are the use of the rectangular grid. So, there is no significant advantage
offered in the numerical dispersion. As the method uses four node
rectangles as computational elements, it requires the solution of second
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order shape functions. Hence, the method takes more memory and
CPU time to analyze the same structure.

This paper presents a novel two-dimensional point matched
technique using two linear triangle meshes. This paper reports the
development of an FE based time domain technique which uses
minimum possible computational resources (memory and CPU time)
and reduce the numerical dispersion to a negligible value which makes
the time domain simulation almost dispersion free.

2. DERIVATION OF THE METHOD

In this section, the derivation of the simplest possible governing
equations from Maxwell’s equations using FE discretization and linear
shape functions is presented. The method will use FE meshes
to discretize the computational domain and thus a more accurate
representation of the computational structure can be made.

2.1. Maxwell’s Equations

Maxwell’s Equations for a source-free and isotropic region can be
written as

∂H
∂t

= − 1
µ
∇×E (1a)

∂E
∂t

=
1
ε
∇×H (1b)

where, H = x̂Hx + ŷHy + ẑHz, E = x̂Ex + ŷEy + ẑEz, µ and ε are the
vector magnetic field, the vector electric field, the permeability and
the permittivity of the medium respectively with x̂, ŷ and ẑ being the
unit vectors in the x, y and z directions, respectively.

For the two-dimensional (2D) propagation in x-y plane, it can be
assumed that ∂/∂z = 0. In this case, two sets of equations (Eq. (2)
and Eq. (3)) can be obtained for the propagation of Transverse Electric
(TE) and Transverse Magnetic (TM) modes, respectively.

For TE Propagation
∂Hx

∂t
= − 1

µ

∂Ez

∂y
(2a)

∂Hy

∂t
=

1
µ

∂Ez

∂x
(2b)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(2c)
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For TM Propagation

∂Ex

∂t
=

1
ε

∂Hz

∂y
(3a)

∂Ey

∂t
= −1

ε

∂Hz

∂x
(3b)

∂Hz

∂t
= − 1

µ

(
∂Ey

∂x
− ∂Ex

∂y

)
(3c)

2.2. Discretization

To apply the governing equations of Eq. (2) and Eq. (3), the
computational domain has to be discretized. All the field components
in these equations are functions of both space (x, y) and time (t). For
all equations the left hand side of the equations calculate only the time
evolution of the field and the right hand side of the equations calculate
evolution in space separately. Therefore, the time evolution can be
calculated with a time shape function (t is the variable of the function)
at a fixed space node and the space evolution can be calculated at a
fixed time node with a spatial shape function (x and y are the variable
of the function).

2.2.1. Space Discretization

To discretize the computational domain both in space and time, nodal
elements can be used. Linear shape functions can be used to describe
the variation of the field inside an element. The distribution shape
functions of all the field components can be written as

Φ =
M∑

i=1

Niφi (4)

where Φ can be any field component (any one of Hx, Hy, Hz, Ex, Ey,
Ez) inside the element, φi is the field component at the ith node of the
element (any one of hx, hy, hz, ex, ey, ez), M is the number of nodes.
For a linear element (i.e., three node triangular elements) M = 3 and
Ni is the shape function for the ith node. Linear shape functions can
be expressed as

Ni = ai + bix + ciy (5)

where, ai, bi and ci are the coefficients of the equation of plane going
through the nodes of the element. It should be mentioned here that,
by using Eq. (4), shape function of any order can be incorporated with
the proposed method. However, to store each higher order element
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more computer memory space is required than a linear element. Each
linear element also takes least computation time. So, linear elements
were chosen for the space discretization.

2.2.2. Time Discretization

Similarly, the field components along the time axis can be discretized
as

Ψ =
P∑

j=1

Qjψ
(j) (6)

where Ψ can be any field component (any one of the Hx, Hy, Hz, Ex,
Ey, Ez) inside the element, ψ(j) is the field component at jth time
node, P is the number of the time node in the time element and for
linear elements, P = 2. Here, Qj is the shape function for the jth time
node and for the linear shape function it can be expressed as

Qj = pjt + qj (7)
where pj and qj are the coefficients of the line passing through the
nodes of the time element. Similar to the space discretization, Eq. (6)
allows higher order time elements.

Both Eq. (4) and Eq. (6) can be applied to Eq. (2) and Eq. (3).
For example, Eq. (2a) can be written as

∂

∂t

2∑

j=1

Qjh
(j)
x = − 1

µ

∂

∂y

3∑

i=1

Niezi ⇒
2∑

j=1

∂Qj

∂t
h(j)

x = − 1
µ

3∑

i=1

∂Ni

∂y
ezi

⇒ h(2)
x =

1
∂Q2

∂t

[
− 1

µ

3∑

i=1

∂Ni

∂y
ezi − ∂Q1

∂t
h(1)

x

]

Similarly, all the equations from Eq. (2) and Eq. (3) can be
derived. Discretized versions of Eq. (2) and Eq. (3) are given in Eq. (8)
and Eq. (9), respectively.

For TE Propagation

h(n+1)
x =

1
∂Q2

∂t

[
− 1

µ

3∑

i=1

∂Ni

∂y
e
(n)
zi − ∂Q1

∂t
h(n−1)

x

]
(8a)

h(n+1)
y =

1
∂Q2

∂t

[
1
µ

3∑

i=1

∂Ni

∂x
e
(n)
zi − ∂Q1

∂t
h(n−1)

y

]
(8b)

e(n+1)
z =

1
∂Q2

∂t

[
1
ε

(
3∑

i=1

∂Ni

∂x
h

(n)
yi −

3∑

i=1

∂Ni

∂y
h

(n)
xi

)
− ∂Q1

∂t
e(n−1)
z

]
(8c)
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For TM Propagation

e(n+1)
x =

1
∂Q2

∂t

[
1
ε

3∑

i=1

∂Ni

∂y
h

(n)
zi − ∂Q1

∂t
e(n−1)
x

]
(9a)

e(n+1)
y =

1
∂Q2

∂t

[
−1

ε

3∑

i=1

∂Ni

∂x
h

(n)
zi − ∂Q1

∂t
e(n−1)
y

]
(9b)

h(n+1)
z =

1
∂Q2

∂t

[
− 1

µ

(
3∑

i=1

∂Ni

∂y
e
(n)
yi −

3∑

i=1

∂Ni

∂y
e
(n)
xi

)
− ∂Q1

∂t
h(n−1)

z

]
(9c)

where the field components with the (n+1), (n) and (n−1) superscripts
are the future, current and the past values, respectively.

3. THE MESHES

The mesh is the most important part of all the FE-based methods.
It allows discretization of an irregular shaped structure in a more
accurate and efficient manner. The speed of an FE-based code largely
depends on how efficiently the mesh discretizes the computational
domain. Hence efficient meshing which reduces computational cells
without sacrificing accuracy of the solution, is one of the key factors
used to make a fast and efficient FE-based code.

3.1. The Space Mesh System

To use the linear shape functions, triangles with three nodes were
considered to discretize the computational domain. This mesh can be
termed the “Main Mesh”. For TE propagation, it maybe assumed
that, all current ez field components are stored at the nodes of the
triangular mesh. Both hx and hy field components can be calculated
from ez using Eq. (8a) and Eq. (8b). Eq. (8a) calculates one future
value of hx using the current values of the ez field components at the
nodes of the triangular element. As there is only one value for the
whole element, it cannot be stored in any specific node of the triangle,
but instead it can be stored at the centroid of the triangle, which is
unique. As a result, no value of hx field component will be available at
the corner nodes of the elements of main mesh. Similarly, for Eq. (8b)
the calculated future value of hy can be stored at the centroid. To
obtain the next values of ez from Eq. (8c), the current value of hx

and hy are required which are placed at the centroids of the elements
of main mesh. Hence, another triangular mesh is required which will
be constructed using the centroids of the main mesh elements. This
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new mesh can be termed the “Auxiliary Mesh”. As the hx and
hy field components are stored at the auxiliary mesh, the elements
of this mesh can be used to calculate the future ez values which can
be stored in the nodes of the main mesh, provided each element of
the auxiliary mesh must surround one of the nodes of the main mesh.
Similar arrangements can be made for TM propagation using Eq. (9).

To illustrate the meshing process, at first a simple square grid
was considered. This grid can be converted into a triangular mesh by
dividing each cell with one diagonal line. Fig. 1(a) shows a triangle
mesh generated from a 4× 4 square grid. As can be seen the resultant
mesh is a “Isosceles Right-angled Triangle (IRT) Mesh”. The
lower triangle of the square cell has been shaded in pink and the upper
triangle is in white. The lower triangle is numbered with the cell index
and the upper triangle is numbered with the cell index and additionally
with a suffix “a”. The black dot inside each triangle is the centroid of
that triangle.

The auxiliary mesh has to be generated using the centroids of the
main mesh. Each element of the auxiliary mesh has to surround one of
the nodes of main mesh. The Perfect Electric Conductor (PEC)
boundary condition will be applied at the boundaries of the main mesh
to truncate the computational domain into a finite one. Therefore,
calculation of field components of the boundary nodes of main mesh is
not necessary. Centroids of the elements 2, 5 and 6 of the main mesh
(Fig. 1(a)) are taken as the three nodes of the element number 1 of the
auxiliary mesh (shaded in light blue) and the centroids of elements 1,
2 and 5 are taken for element 1b of the auxiliary mesh (white colored).
Similarly, all the other elements were generated from the centroids of
the main mesh. Fig. 1(b) shows the auxiliary mesh constructed from
the centroids of the main mesh shown in Fig. 1(a). The centroids of

(a)

1

1a

2

2a

3

3a

4

4a
5

5a

6

6a

7

7a

8

8a
9

9a
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10a

11

11a

12

12a
13

13a

14

14a

15

15a

16

16a

(b)

1 2 3

4 5 6

7 8 9

1b 2b 3b

4b 5b 6b

7b 8b 9b

(c)

Figure 1. (a) The generating the linear mesh by dividing a square
grid by diagonal line. (b) Generating the auxiliary mesh by connecting
the centroids of the main mesh. (c) Discarding the unwanted elements
from both mesh.



494 Kabir et al.

the auxiliary mesh are shown as black dots in Fig. 1(b).
It can be seen that the centroids of elements 1, 2, 3, . . ., 9 of

the auxiliary mesh (Fig. 1(b)) coincide with the node points of the
main mesh, whereas the centroids of 1b, 2b, 3b, . . ., 9b coincide with
the centroids of 1a, 2a, 3a, . . ., 11a of the main mesh. As a result,
these elements cannot be used to calculate the field components at the
nodes of the other mesh. Therefore, elements 1a, 2a, 3a, . . . of the
main mesh and 1b, 2b, 3b . . . of the auxiliary mesh can be discarded
from the respective meshes. By discarding unwanted elements, the
number of elements in Fig. 1(c) will become half of Fig. 1(b). At this
point, this unique coupled mesh system can be termed the “Coupled
Perforated Mesh System”.

This perforated mesh system has a big advantage. It reduces the
number of computational elements to less than half of the full mesh.
As a result, the method proposed in this paper is twice faster than
any other FEM method using full mesh with the same computational
need per element. The memory requirement for the method will be
less than an FEM approach using the full mesh discretization.

Although this technique removes half of the elements from both
the meshes, it does not removed any of the nodes. As seen in
Fig. 1(c), the main mesh elements surround their associated nodes
on the auxiliary mesh and are used to update the value of the fields
associated with the node and vice versa. Although the alternative
elements (elements with suffix ‘a’ and ‘b’) have been removed from
the mesh system, however, all of the three nodes associated with those
triangle are still updated during the calculation of every time step.
Therefore, the magnitude of the field components inside the perforated
region can be calculated by using the space shape functions of that
triangle (Eq. (5)).

As perforated meshing is a new concept, present day meshing
libraries may not be optimized for perforated meshing.

3.2. The Time Mesh System

Along with the space domain, the time domain also needs to be
discretized. This can be done using linear elements with two nodes.
In Eq. (8a) and Eq. (8b), the future values of the hx and the hy field
components may be calculated using the current ez field components
and the past hx and hy components respectively. Eq. (8c) calculates the
future values of the ez field components with the current hx, hy and the
past ez field components. Similar explanations can be given for Eq. (9).
For all the equations, the current values of the E field components with
the past values of the H field components are needed to calculate the
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0 t 2t 3t 4t 5tt 3t 5t 7t 9t

2 2 2 2 2

Figure 2. Arrangement of time mesh system for equal time spacing.

future values of H components and vice versa. Therefore, both the E
and H field components cannot be calculated at the same time node.

For the TE propagation example given in Section 3.1, the
simulation started with the calculation of the future hx and hy fields
from the current ez field components in the main mesh (with Eq. (8a)
and Eq. (8b). Therefore, the first time node belongs to the ez

component associated with the main mesh. The future ez field was
calculated from the hx and hy fields in the auxiliary mesh. So, the
second time node belongs to the hx and hy field components associated
with the auxiliary mesh. This way the time domain can be divided
into two time meshes M and N which are associated with the field
components of the main mesh and the auxiliary mesh respectively.
Fig. 2 shows the M and N meshes. In this example, the time step
size for the calculation of the future ez components from the previous
ez components is t. So, the ez field was calculated at t, 2t, 3t, 4t, . . .
and hence these time nodes belong to mesh M along with the initial
ez at time 0. The time step size for the calculation of the hx and
hy field components have to be of the same duration, t. To calculate
the ez components, the current hx and hy components are required.
Therefore, the hx and hy field components were calculated at t/2, 3t/2,
5t/2, 7t/2, . . .. Thus, these time nodes belong to mesh N. Similar
examples can be shown for TM propagation with Eq. (9).

4. RESULTS OF THE SIMULATIONS

A C++ code was developed to perform the numerical simulations.
The implementation was made dimensionless or scale invariant [20]
by taking the speed of light as c = 1. As a result permeability and
permittivity of vacuum µ0 = 1 and ε0 = 1 respectively. This made
the implementation dimensionless, scalable and for many problem
reduces the affect of floating point errors. “Perfectly Matched Layers
(PML)” [21, 22] were also implemented to perform long duration
simulations in a minimal truncated computational domain. The
outputs of the program were stored in the VTK file format to visualize
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with Paraview software. All field plots in this paper were generated
with Paraview.

4.1. Planar Waveguide

A Silicon core air clad planar waveguide was simulated at 1.55 µm
wavelength to compare the field profile with the results from 1D FEM
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Figure 3. (a) Ez field profile for a dielectric planar waveguide with a
Ez point source (red and blue parts are the positive and negative half
cycles of the propagating wave). (b) Comparison of Ez field profile from
the proposed FETD with the point source at the observer point with
the mode profile. (c) Ez field profile for a dielectric planar waveguide
excited with the Ez mode profile. (d) Comparison of Ez field profile
from the proposed FETD and the mode profile.
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mode solver [11, 12]. The width of the waveguide was taken to be
0.2µm. At first, a TE simulation was performed with a point source
at the middle of the waveguide. The computational domain was
discretised with a mesh of resolution ∆ = 50 per unit length and time
resolution, ∆t = ∆/2. Fig. 3(a) shows the Ez field profile after 5000
time steps. It can be observed, the Ez field is mostly confined inside
the Silicon core. Some of the field outside the guide is radiating away
from the guide. As in this case, a Ez point source was used to initiate
the propagation. As shown in Fig. 3(a), an observing line was placed
at the end of the guide before the PML boundary layer. The Ez field
mode profile along the line was observed during the simulation. This
was carried out to extract Ez field profile of the planar waveguide away
from the point source. Fig. 3(b) shows comparison of the actual mode
profile shown by red line and the observed field profile evolved from
the point source. The field profile from the proposed method perfectly
matches the mode profile in the core region, but shows some ripple
in the air cladding. This ripple is due to the radiating field as shown
earlier in Fig. 3(a).

Another simulation was performed by replacing the point source
with a line source representing the mode profile. The results are
presented in Fig. 3(c) and Fig. 3(d). As can be seen in Fig. 3(c), the
structure is supporting the mode without any leakage and Fig. 3(d)
shows the exact match of the mode profiles obtained from both the
proposed FETD and the FEM mode solver. This also validates the
accuracy of the newly developed approach using perforated meshes.

4.2. Metamaterial Flat Lens

The goal of this simulation was to show the flexibility and adaptability
of the formulation. Here a dispersive Double Negative (DNG)
metamaterial slab was simulated to show backward propagation of
the wavefront inside and double focusing of the wave [23]. For this
simulation, the Drude model [24] was added for both permittivity and
permeability to the governing equations of the method. The Drude
model equations are given as,

ε(ω) = ε0

(
1− ω2

pe

ω(ω + jγe)

)
(10a)

µ(ω) = µ0

(
1− ω2

pm

ω(ω + jγm)

)
(10b)

where, ωpe and ωpm are the plasma frequencies, and γe and γm are the
collision frequencies.
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For the simulation a rectangular computational domain sur-
rounded with PML boundary layer was taken. A rectangular shaped
metamaterial slab was placed at the centre of the domain. An Ez line
source was placed above the slab parallel to its x-axis. Fig. 4 shows
the result of the simulation. As shown, the wave generated from the
line source approaches the metamaterial slab perpendicularly. Inside
the slab the field becomes curved and focuses inside the slab. When
the field comes out of the slab, again it focuses outside. The wavefront
inside the guide moves in opposite direction to the direction of move-
ment outside the guide. The wavelength used was 1.55µm. The index
of the metamaterial slab is approximately −1 at 1.55µm.

5. NUMERICAL DISPERSION

For the numerical simulation, the computational domain has to be
discretized. However, due to the discretisation, phase error can be
introduced into the propagating plane wave. As a result, the speed
of propagation may be slower than the actual speed of the wave.
The phase lag with the actual wave increases with the length of its
propagation in the computational domain. The issue with the phase
error gets worse when the error varies with the direction of propagation.
The result of this is different speeds of propagation in different
directions, which is equivalent to an artificial anisotropy imposed on
the wave by the discretisation even when the material is isotropic. This
phenomenon is known as “Numerical Dispersion” [5] or “Numeric
Anisotropy” [25]. This dispersion can be minimised by increasing the
resolution of the discretization [26], but to do this would require more

Figure 4. Forward wave outside the DNG slab and backward wave
inside the slab. Double focusing of EM wave is visible.
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memory and more computations.
The method proposed here can be very efficient with the

discretization and can represent the structure accurately with fewer
elements. However, even if the structure was accurately discretized
with an efficient meshing algorithm, if the numerical dispersion of the
output mesh remains high, an erroneous solution can be obtained for
a longer propagation distance. To reduce the error, the resolution
of the mesh needs to be increased. As a result, there will be little
benefit in terms of memory usage and computational load. Therefore,
to achieve maximum memory and computational efficiency, a mesh
with a minimal numerical dispersion need to be considered.

5.1. The Numerical Dispersion Relation

For convenience of calculation, the matrix form of the equations of
Eq. (8) and Eq. (9) will be used. For TE propagation, equations Eq. (8)
can be written as,

{
h

(n)
x〈l〉

}{
∂Q(n)

∂t

}T

= − 1
µ

{
e
[m]
zk

}{
∂Nk

∂y

}T

(11a)

{
h

(n)
y〈l〉

}{
∂Q(n)

∂t

}T

=
1
µ

{
e
[m]
zk

}{
∂Nk

∂x

}T

(11b)

{
e
(m)
z〈k〉

}{
∂Q(m)

∂t

}T

=
1
ε

({
h

[n]
yl

}{
∂Nl
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h
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}{
∂Nl

∂y

}T
)

(11c)

where, superscript T is the transpose operator to convert a row matrix
into a column matrix and vice versa.

Section 3.1 introduced one main and one auxiliary mesh to hold
the E and H field components. In Section 3.2, the time nodes were
divided into sets M and N for the E and H fields, respectively. In
Eq. (11), the field components for the space node of the main and the
auxiliary meshes are denoted with k and l subscripts, respectively. For
the time nodes, the field components for the members of M and N
are denoted with (m) and (n) superscripts, respectively. The angle
brackets 〈 〉 are used to denote the centroid of the current element and
the square brackets [ ] are used to denote the current time.

To study the numerical dispersion relation, a monochromatic
source was assumed for the TE mode of propagation where Ez, Hx

and Hy can be expressed as

h
(n)
xl = Hx0e

j(ωt(n)−κ̃xxl−κ̃yyl) (12a)

h
(n)
yl = Hy0e

j(ωt(n)−κ̃xxl−κ̃yyl) (12b)
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e
(m)
zk = Ez0e

j(ωt(m)−κ̃xxk−κ̃yyk) (12c)

where, κ̄ = x̂κ̃x + ŷκ̃y is the numerical wave vector, ω the frequency of
the source and Hx0, and Hy0 and Ez0 are the amplitudes of the Hx,
Hy and Ez field components, respectively.

Applying Eq. (12) to Eq. (11a) and Eq. (11b), the expressions for
Hx0 and Hy0 (in terms of Ez0) can be obtained.

Hx0 = −Ez0

µ
·
{
e−j(κ̃x∆xk+κ̃y∆yk)

}{
∂Nk
∂y

}T

{
ejω∆t(n)

}{
∂Q(n)

∂t

}T
(13a)

Hy0 =
Ez0

µ
·
{
e−j(κ̃x∆xk+κ̃y∆yk)

}{
∂Nk
∂x

}T

{
ejω∆t(n)

}{
∂Q(n)

∂t

}T
(13b)

where, ∆xk(i) = xk(i) − x〈l〉, ∆yk(i) = yk(i) − y〈l〉, ∆t
(n)
τ = t

(n)
τ − t[m], i

is the local index of a node in space element and τ the local index of
a node in time element.

Applying Eq. (12) and Eq. (13) on Eq. (11c) and dividing both
sides of the equation by Ez0, the numerical dispersion relation can be
obtained

{
ejω∆t(n)

}{
∂Q(n)

∂t

}T

·
{

ejω∆t(m)
}{

∂Q(m)

∂t

}T

= v2
p ·
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}{
∂Nk
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}T

·
{

e−j(κ̃x∆xl+κ̃y∆yl)
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∂Nl

∂x

}T

+
{

e−j(κ̃x∆xk+κ̃y∆yk)
}{

∂Nk

∂y

}T

·
{

e−j(κ̃x∆xl+κ̃y∆yl)
}{

∂Nl

∂y

}T
)

(14)

where, vp = 1√
µε , ∆xl(i) = xl(i) − x〈k〉, ∆yl(i) = yl(i) − y〈k〉, ∆t

(m)
τ =

t
(m)
τ − t[n], i is the local index of a node in space element and τ the

local index of a node in time element.
For omnidirectional propagation in an isotropic medium, Eq. (14)

can be written as
{

ejω∆t(n)
}{

∂Q(n)

∂t

}T

·
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}{

∂Q(m)
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}T

= v2
p ·
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e−jκ̃(∆xk cos φ+∆yk sin φ)

}{
∂Nk

∂x

}T
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·
{

e−jκ̃(∆xl cos φ+∆yl sin φ)
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+
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e−jκ̃(∆xk cos φ+∆yk sin φ)
}{

∂Nk

∂y

}T

·
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e−jκ̃(∆xl cos φ+∆yl sin φ)
}{

∂Nl

∂y

}T
)

(15)

where, κ̃x = κ̃ cosφ, κ̃y = κ̃ sinφ and φ is the direction angle of
propagation with respect to the x-axis. Eq. (15) does not assume
any specific shape for the mesh. As a result, this relationship holds for
all types of linear triangular meshes.

Equation (15) can be used with Newton’s iterative method to
obtain the numerical wave vector κ̃. In the work of Taflove and
Hagness [26] a similar technique was used to calculate the wave vector
in all directions. The normalized propagation velocity, vp/c = 2π/κ̃final

can be calculated using the final converged value for a specific angle of
propagation.

5.2. Calculation of Numerical Dispersion

To calculate the numerical dispersion of the mesh presented in
Section 3.1, Newton’s iterative method was implemented using Eq. (15)
in MATLAB. This code was used to calculate the phase velocity of the
EM wave in different directions using two different meshes: first, the
IRT mesh used in Section 3.1 (shown in Fig. 5(a)) and the second, an
“Equilateral Triangle (ET) Mesh” shown in Fig. 5(b). The calculation
of the numerical dispersion was performed for different resolutions.
For simplicity, the resolution of a mesh is expressed in the form m/λ
where, the resolution is m points per wavelength. This convention will
be followed throughout this paper.

Figure 5(c) shows the phase velocity variation for resolutions from
4/λ to 10/λ, with the propagation angle φ in degrees. As it can be
seen, the phase velocities of the IRT mesh (dashed lines) show a high
variation with the angle, φ. On the other hand, phase velocities of the
ET mesh (solid lines) are almost constant. A slight ripple can be seen
for more coarse resolutions of 4/λ and 5/λ. Resolutions higher than
5/λ show no variation in phase velocity for the ET mesh. However,
for the IRT mesh, a high phase velocity variation is visible for all
resolutions, as shown in Fig. 5(c).

A more precise measurement of the numerical dispersion can
be obtained from the standard deviation of the phase velocities for
different propagation angles. Fig. 6 shows the relationship between the
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Figure 5. Calculation of phase velocity using (a) IRT mesh and (b)
ET mesh. (c) Comparison of phase velocities in different directions for
different resolutions in IRT and ET meshes. Dashed and solid lines
are normalised phase velocity curves for the IRT and the ET meshes,
respectively.

standard deviation of the normalized phase velocity with the resolution
for both type of meshes. The horizontal green dashed line in Fig. 6(a)
denotes the standard deviation of the phase velocity of 30/λ resolution
with the IRT mesh (3.25 × 10−4). As can be seen, the numerical
dispersion of 5/λ resolution for the ET mesh is below the dashed line
and the standard deviation of the phase velocity is lower (2.132×10−4)
than that of the 30/λ IRT mesh. So, the numerical dispersion is less in
the ET mesh with 5/λ resolution than the IRT mesh with a much finer
resolution of 30/λ. This allows a reduction of resolution by a factor
of 6 which can be used for the ET mesh to obtain a similar numerical
dispersion. This factor can be called the “Resolution Reduction Factor
(RRF)”.

When the resolution of the ET mesh is increased, the RRF also
increases. Fig. 6(b) shows a comparison of the standard deviation of
the phase velocity of the 200/λ IRT mesh with that of the ET mesh.
As can be seen, a slightly lower standard deviation can be obtained
using a resolution of only 11/λ in the ET mesh with the RRF value of
more than 18. To make a more precise measurement of the RRF, the
following mathematical procedure is used.
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Figure 6. Comparison of the numerical dispersion performance of the
ET mesh and the IRT mesh. (a) Standard deviation of normalised
phase velocity from 4/λ to 30/λ resolution. (b) Standard deviation of
normalised phase velocity from 4/λ to 200/λ resolution.

5.3. Calculating Resolution Reduction Factor

Since the calculation of normalized phase velocity for the ET and the
IRT mesh has to be carried out separately using procedure described
in Section 5.1, two different sets of resolutions RESET and RESIRT

are taken for the ET and the IRT meshes respectively. The resolutions
of the ET and the IRT meshes can be expressed in set form using
Eq. 16(a) and Eq. 16(b) respectively as

RESET = {i|i ∈ N} (16a)
RESIRT = {i|i ∈ N} (16b)

where i is the number of points per wavelength on the mesh (i/λ).
The standard deviation of the normalized phase velocity presented in
Figs. 6(a) and 6(b) can be expressed as a function of the resolution
as SVET

and SVIRT
for the ET and the IRT meshes respectively. Two

mapping sets for the ET and the IRT mesh can be taken as STDVET

and STDVIRT
in Eqs. 17(a) and 17(b), respectively as

STDVET
= {s|s = SVET

(i), i ∈ RESET, s ∈ R} (17a)
∀i, SVET

: RESET 7→ STDVET

STDVIRT
= {s|s = SVIRT

(i), i ∈ RESIRT, s ∈ R} (17b)
∀i, SVIRT

: RESET 7→ STDVIRT

To calculate the RRF resolution, i from the set RESET and j
from the set RESIRT can be taken where the standard deviations of
i and j, SVET

(i) and SVIRT
(j), respectively are almost equal. Hence a
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set, RRF can be obtained as shown in Eq. (18).

RRF=
{

r|r =
j

i
, i∈RESET, j∈RESIRT, SVET

(i)∼=SVET
(j)

}
(18)

As can be seen from Fig. 6, SVET
reduces faster than SVIRT

.
Therefore, each resolution in set RESET maps to one unique member
of set RRF. A mapping function, RET , can be defined which relates
the resolutions of the ET mesh to the RRF, as Eq. (19).

∀i ∈ RESET, RET : RESET 7→ RRF (19)

This procedure was implemented in MATLAB to determine nature
of the relationship between the resolution for the ET mesh and the
RRF. The relationship between the RRF and the resolution of the ET
mesh, RET can be seen in Fig. 7 where RET is nearly a linear function.
Hence, the RRF improves linearly when the resolution is progressively
increased.

6. COMPARING NUMERICAL DISPERSION OF
MESHES BY SIMULATION

The theoretical analysis of numerical dispersion shown in Section 5 can
be verified by running simulations with both type of mesh using the
C++ code. To compare the numerical dispersion of both the meshes,
a very simple setup was made. A point source was placed at the center
of a square computational domain of free-space (µr = 1 and εr = 1).
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Figure 7. Resolution Reduction Factor vs resolution of the ET mesh,
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The computational domain was also surrounded by appropriate PML
boundaries, as shown in Fig. 8(a). The point source placed at the
center is an Ez field continuous sine wave source with frequency 1 Hz
(normalized). For all the simulations, c∆t/∆l = 0.1 (where, ∆t is the
length of 1 time step and ∆l is the length of both the x and y sides of
an element in the IRT mesh and the length of any side of that of the
ET mesh) was maintained.

Initially the simulations were performed at a resolution of 10/λ.
Figs. 8(b) and 8(c) show the Ez field profile after 2000 time steps. At
this resolution, the standard deviation of the normalized phase velocity,
vp/c, is 3.041 × 10−3 for the IRT mesh and only 1.032 × 10−5 for the
ET mesh (see Fig. 6(a)). Although the standard deviation of vp/c for
the ET mesh is much smaller than that of the IRT mesh, however in
this case both the values are small enough to make the Ez field profiles
almost identical (to the naked eye) for small computational domains,
as shown in Figs. 8(b) and 8(c).

However, at lower resolution, the effect of the numerical dispersion
can be easily visualized on the field profile, even in a small
computational domain. Hence, simulations were performed at a
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(d) (e)

(f) (g)

Figure 8. Simulation results of the proposed method using the IRT
and the ET meshes. (a) Computational domain with a point source at
the center and PML boundaries near the boundary of the domain. (b)
Ez field profile after 2000 time steps with 10/λ IRT mesh. (c) Ez field
profile after 2000 time steps with 10/λ ET mesh. (d) Ez field profile
after 2000 time steps with 4/λ IRT mesh. (e) Magnified view of the
central region with mesh overlay of the field shown in Fig. 8(d). (f)
Ez field profile after 2000 time steps with 4/λ ET mesh. (g) Magnified
view of the central region with mesh overlay of the field shown in
Fig. 8(f).

resolution of 4/λ. At this resolution, the standard deviation of vp/c for
the IRT mesh is 2.598×10−2 and that for the ET mesh is 6.611×10−4.
The standard deviation of vp/c for the ET mesh at this resolution is
lower than that of the 10/λ IRT mesh. So the Ez field profile of the
4/λ ET mesh and the 10/λ IRT mesh should be almost identical. As
the standard deviation of vp/c for the IRT mesh at this resolution is
higher, the visible distortion must be present in the Ez field profile.

Figures 8(d) and 8(f) show the Ez field profiles obtained after 2000
time steps for the 4/λ IRT and the 4/λ ET meshes respectively. As
has been discussed in the previous paragraph, the impact of the lower
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resolution is clearly visible in the field profile presented in Fig. 8(d).
At this resolution with the IRT mesh, the evolution of the Ez field is
no longer circular; rather it became somewhat square in profile. This
is due to the speed variation in different angle of propagation. As
shown in Fig. 5(c), vp/c at 0◦, 45◦, 90◦ are 0.8707, 0.9443 and 0.8707,
respectively. These data indicate that the speeds of propagation at
0◦ and 90◦ will be 7.36% slower than that of the propagation at 45◦.
The variation in vp/c is also a continuous function of the propagation
angle. As a result, the Ez field profile presented in Fig. 8(d) became
a rounded square shape instead of circle, as it should have been in the
ideal case.

For the ET mesh at 4/λ resolution, the highest point of vp/c in
Fig. 5(c) is at the 60◦ angle and the lowest point is at the 30◦ angle
with their values 0.9124 and 0.9105, respectively, Showing a difference
of only 0.019%. Again, the variation of vp/c is a continuous function
of the propagation angle. As the difference of speed is much smaller
compared to that of the IRT mesh of same resolution, the ET mesh
at the 4/λ resolution retains the near circular shape of propagation of
the Ez field profile in Fig. 8(f).

Results presented in Figs. 8(d) and 8(f) can be further explained
by a closer examination of the evolution of field near the point source.
Figs. 8(e) and 8(g) show the field close to the point source with an
overlay of the mesh used during the simulation. It can be seen from
Fig. 8(e) that, the points surrounding the point source in the IRT mesh
are not equidistant. As a result, the calculated field at the direction of
the farthest point moves faster than that of the closest points. As the
points closest to the source are at 0◦ and 90◦ and the farthest point is
at 45◦, the maximum vp/c is found at 45◦ and minima can be found
along angles of 0◦ and 90◦.

However, for the ET mesh, all six points surrounding the source
are equidistant, as shown in Fig. 8(g). The closest point to the source
is at 30◦ at the middle of an edge of the element. The six equidistant
points are located at 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ and along these
angles the maximum values of vp/c can be found. The minimum values
of vp/c can be interpolated at a point on the outer edge of surrounding
elements at 30◦, 90◦, 150◦, 210◦, 270◦ and 330◦.

The above discussion highlights the accuracy of the method
when used with the ET mesh. Even a low resolution ET mesh of
4/λ produces an acceptable solution, where the 4/λ IRT mesh is
numerically unusable, even in the smallest possible computational
domain.

In a more practical situation use of only ET meshes may not be
able to represent the whole device to be analyzed. A small number of
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other irregular types of elements may have to be introduced into the
mesh system to represent arbitrary shape more conveniently. These
non ET elements can introduce some additional numerical dispersion
into the simulation. As long as most of the elements are close to
equilateral, the overall numerical dispersion of the entire computational
domain will remain considerably small.

7. COMPARISON WITH THE FDTD METHOD

To compare the numerical dispersion of the proposed method with
that of the more widely used FDTD method, Eq. (15) can be further
simplified for both the IRT mesh of Fig. 5(a) and the ET mesh of
Fig. 5(b).

For the IRT mesh, the nodal data of Fig. 5(a) can be applied to
Eq. (15) and the equation can be simplified as

1
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pt

2
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ejω t

2 − e−jω t
2
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1
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(
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(20)

Similarly, the nodal data from Fig. 5(b) was applied on Eq. (15)
and simplified as

[
a

vpt
sin

(
ωt

2

)]2

=
[
sin

(
κ̃a cos φ

2

)]2
+ [0.577 · sin (κ̃0.866a sinφ)]2

+
[
0.577·

(
cos

(
κ̃a cos φ

2

)
−cos(κ̃0.866a sinφ)

)]2
(21)

Two parts of Eq. (20) are underlined in red and blue and similarly,
three parts of Eq. (21) are underlined with red, blue and cyan colors
respectively. As can be seen, the part underlined with red is common
to both the equations. The constants of the blue underlined parts are
different in the two equations. The cyan underlined part in Eq. (21) is
absent in Eq. (20). Due to this extra element in Eq. (21), the proposed
method with the ET mesh shows a more stable solution for all possible
angles, compared to Eq. (20).
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Figure 9. Ez field profile after 2000 time steps with the FDTD
method.

In the work of Taflove and Hagness [26], the numerical dispersion
relation for the FDTD method has been given, which is identical to
that the proposed method when used with the IRT mesh, as shown
in Eq. (20). Therefore, the numerical dispersion characteristics of the
FDTD method will be similar to that of the proposed method when
used with the IRT mesh.

To prove the similarity of the propagation with IRT mesh and the
FDTD method, the FDTD method was implemented and a simulation
was performed with a resolution of 4/λ (keeping everything same as
shown in Section 6). Fig. 9 shows the Ez field profile after 2000
time steps. It can be seen that, both Figs. 8(d) and 9 show similar
rounded square propagation for the FDTD and the proposed method
with the IRT mesh respectively. With the ET mesh with the same
resolution, the proposed method however, retains the near circular
shape in Fig. 8(f), confirming the superiority of the method proposed
here.

8. CONCLUSION

A novel finite element-based time domain method is presented here
with a unique perforated double mesh technique. The perforated mesh
technique reduces the number of elements required to less than half,
which reduces the memory requirement and computational time. The
advantage of using the ET mesh over the IRT mesh has also been
clearly shown in the result presented. This paper also proves similarity
of numerical dispersion characteristics of the popular FDTD method
to the proposed method when used with the IRT mesh. Hence, the
advantage in numerical dispersion of the proposed method with the
ET mesh over the FDTD method is clearly demonstrated. It has
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also suggested a way to reduce the resolution of the mesh keeping
the numerical dispersion the same, which should allow a reduction
of the memory usage and the computational time. The numerical
dispersion of the proposed method with the ET mesh at low resolution
is negligible, compared to the FDTD method. It lifts the constrain
of a finer mesh being needed to reduce the numerical dispersion. As
the method uses the FE mesh, any arbitrary shaped structures can
be accurately approximated just by moving the nodes. Although this
might introduce a small amount of additional numerical dispersion,
but the overall computational domain will remain almost dispersion
free. The FE mesh also allows dense and coarse regions to be defined
in the same mesh representation. These characteristics of the method
presented here might be advantageous for simulation and design of long
complex and phase matching devices such as interferometers, acoustic
waveguides, polarisation converters photonic crystal fibres, plasmonic
guides metamaterial antennas etc. Additionally, the proposed method
can perform accurate simulations with a relatively much reduced
resolution.

The use of the FE-based mesh provides the flexibility to move
the node points when necessary. As a result, structural deformations
due to various physical influences (e.g., heating, pressure variations
etc.) might be incorporated with the method to enable the better
characterization of the interaction of physical effects with photonics
devices.
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