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Agent-Based Simulation for Large-Scale Emergency
Response: A Survey of Usage and Implementation

GLENN I. HAWE, GRAHAM COATES, DUNCAN T. WILSON and ROGER S. CROUCH

Durham University, England

When attempting to determine how to respond optimally to a large-scale emergency, the ability
to predict the consequences of certain courses of action in silico is of great utility. Agent-based

simulations (ABSs) have become the de facto tool for this purpose, however they may be used and
implemented in a variety of ways. This paper reviews existing implementations of ABSs for large-

scale emergency response, and presents a taxonomy classifying them by usage. Opportunities for

improving ABS for large-scale emergency response are identified.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory—

Model classification; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Intelli-
gent agents; Multiagent systems

General Terms: Design

Additional Key Words and Phrases: Agent-based simulation, Emergency response

1. INTRODUCTION

1.1 Emergency Response and Preparedness

Multiple objectives may be used to define how to best respond to an emergency
[Narzisi et al. 2006]. For example, in the U.K., the ‘Concept of Operations’
(ConOps) [U.K. Cabinet Office 2010b] lists thirteen general objectives for those in-
volved in emergency response. High-level and qualitative, these include goals such
as ‘saving and protecting human life’, ‘relieving suffering’ and ‘protecting property’.
Due to the potential for conflict, the ‘Utopian’ response, which simultaneously op-
timizes all objectives, does not necessarily exist. Consequently, Pareto-optimal
trade-offs are the best that one can theoretically attain [Sawaragi et al. 1985]. The
quandary of how to trade the objectives against one another [Branke et al. 2004]
is complicated by the fact that “their relative priority may shift as the emergency
develops” [U.K. Cabinet Office 2010b]. In the U.K., government ministers “advise
on the appropriate balance to strike in light of the circumstances” [U.K. Cabinet
Office 2010b].

Practically however, issues associated with emergencies such as time-constraints
and uncertainty, mean that usually even these trade-offs are unachievable. The
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Preparedness

ResponseRecovery

Mitigation

Fig. 1. The emergency management cycle.

response is the actions taken to: (1) avert an imminent emergency1, mitigate its
effects, prevent further damage, secure the scene, and address the immediate de-
structive effects of an incident (crisis management), and (2) prevent the impact
from escalating (consequence management) [U.K. Cabinet Office 2010b]. These ac-
tions are precipitated by the bottom-up decision-making of the individuals involved,
and the (often) top-down instructions which govern their coordination2, neither of
which are easily optimized: as Stirling [2003] says, “no realistic decision making
problem can account for all logically possible options”. This is especially the case
in immediate impact emergencies [London Resilience Team 2010] (such as trans-
portation accidents and terrorist attacks), which occur with little or no warning,
and thus have limited time for options to be considered.

At the operational level, even the premise of having well defined objectives may be
a luxury during an emergency. Introducing the concept of ‘flexecution’, the flexible
execution of plans whereby ill-defined goals are discovered and refined as they are
pursued, Klein [2007a] explains that “firefighters must handle emergent goals in the
sense of managing goal conflicts but also revising goals depending on the progress
they make”. Despite having changing, conflicting and emerging goals, an analysis of
69 incidents which the London Fire Brigade responded to found that not once was
more than one alternative course of action considered by the incident commanders
at any of the key decision points [Burke and Hendry 1997]. This is indicative of
naturalistic decision making [Klein 2008], a description of how humans actually
make satisficing [Simon 1957] decisions in demanding situations3. Whilst implying
that ‘optimal response’ is an oxymoron, this satisficing (rather than optimizing)
nature of human decision making “should not change the standard that is sought.
Indeed, failure to achieve the standard should serve as motivation to improve the
ability to perform, rather than a rationale for lowering the standards” [Stirling
2003].

1This is particularly relevant for ‘rising tide’ [London Resilience Team 2010] emergencies with

long ‘lead-in’ times, such as flooding and health pandemics. Recent examples of responses to
such emergencies include the evacuation of coastal areas in Hawaii in response to a tsunami

threat [Reuters 2011], and the opening of floodgates in Louisiana to avert the potential flooding

of New Orleans “in a disaster that would have been much worse than Hurricane Katrina in
2005” [USA Today 2011].
2In the U.K., the principle of subsidiarity states how these bottom-up and top-down forces should

coexist: decision-making takes place at the lowest possible level, whilst coordination occurs at the
highest necessary level [U.K. Cabinet Office 2010b].
3Klein et al. [1986] also observed this practice in fire-fighters.
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Fig. 2. Classification of emergencies using (a) Gad-el-Hak’s Classification of Disaster Severity and
(b) the U.K. Concept of Operations.

Activities which improve the ability to perform in response occur during pre-
paredness, the phase of the emergency management cycle [Haddow et al. 2010]
which immediately precedes response. Recovery, the fourth phase, follows response
and feeds back into mitigation, the first phase, as shown in Figure 1. In the U.S., the
Federal Emergency Management Agency (FEMA) National Preparedness Guide-
lines [FEMA 2007] describes preparedness as a cycle of planning; organizing and
staffing; equipping; training; and exercising, evaluating and improving. Prepared-
ness may even go beyond what is anticipated; for example, it may include tools for
supporting improvisation [Mendonça and Fiedrich 2006; Mendonça 2007]. Work
remains to be done however: for example, in his discussion of flexecution, Klein
[2007b] notes “We must develop new tools and support concepts to enable people to
simultaneously define and pursue goals”.

Finally, we point out that some things may affect the efficacy of a response which
are simply down to luck. For example, paragraph 153 of the coroner’s inquest into
the London bombings in July 2005 (‘7/7’) notes that “. . . amongst the tragedy on
7/7, there were two fortuitous events. First, . . . London’s Air Ambulance was hold-
ing a clinical governance day. This enabled them to deploy a total of 27 physicians
and paramedics across the four bomb scenes. Second, the explosion on the No. 30
bus occurred outside the British Medical Association building. This allowed many
physicians to aid the victims of the attack.” [Hallet 2011]. Whilst welcome, such
good fortune should of course not be allowed to conceal any deficiencies in pre-
paredness.

1.2 Large-Scale Emergencies

1.2.1 Defining ‘large-scale’. Emergencies may be classified along many differ-
ent dimensions, such as number of casualties, size of geographical area affected,
duration, and cause. Different scales make use of different dimensions, according
to their purpose. Examples include Berren’s five dimensional classification [Berren
et al. 1980], de Boer’s disaster severity scale [de Boer 1990], Fischer’s sociological
disaster scale [Fischer III 2003] and Gad-el-Hak’s classification of disaster sever-
ity [Gad-El-Hak 2009], which is illustrated in Figure 2(a).

Intuitively, when considering the dimensions relevant to classifying a generic
emergency as ‘large-scale’, the ‘large’ may apply to either the size of geographi-
cal area affected, or to the ‘impact’ on the individuals therein, or both. Indeed,
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these are the two dimensions used by Gad-El-Hak [2009], with ‘impact’ being the
number of individuals displaced, injured or killed. They are also the dimensions
used in the U.K. ConOps [U.K. Cabinet Office 2010b], where an emergency is classi-
fied as ‘significant’, ‘serious’ or ‘catastrophic’, depending on its geographical extent
and ‘impact’ (two further categories are used for smaller emergencies which require
only a local response). The 2005 7/7 London bombings (in which there were 56
fatalities and approximately 700 injuries), the 2007 U.K. floods (in which there
were 13 fatalities and tens of thousands adversely affected), and the 2009 H1N1 flu
pandemic (which lead to approximately 300 fatalities in the U.K., and hundreds of
thousands infected) are all categorized as ‘serious’, leaving us to deduce that the
generic ‘impact’ dimension is more likely to refer to the number of fatalities, than
to the number of injured or adversely affected (which, across these three emergen-
cies, varies by several orders of magnitude). The U.K. ConOps classification of
emergencies is illustrated in Figure 2(b).

The two classifications in Figure 2 differ in at least two ways. First, in the
ConOps classification, an emergency cannot be classified in either of the two most
severe categories as a consequence of its geographical extent alone: a minimum
level of impact is required as well. This is in contrast to Gad-el-Hak’s classifica-
tion, where geographic extent alone is sufficient. Secondly, as already discussed,
in the ConOps classification, ‘impact’ seems to refer to the number of fatalities;
Gad-el-Hak’s ‘impact’ is measured by the number of individuals adversely affected.
Nevertheless, the two classifications share some common fundamental features. In
particular, both:

(1) classify an emergency by its geographical extent and a measure of its ‘impact’,

(2) have five categories of emergency, and

(3) both follow the general pattern that going to the top right of the scale increases
the severity of the emergency.

Because of this concordance with practitioner usage (in the U.K. at least), we use
Gad-el-Hak’s classification to set lower limits on what is meant by ‘large-scale’, and
thus set the scope of emergencies which will be considered in this paper. Thus, in
this paper, a large-scale emergency is one which either affects an area of at least 10
km2 in size, or affects at least 100 individuals, or both. Furthermore, we consider
any emergency larger than this still as large-scale, i. e. we do not concern ourselves
with whether or not an emergency is ‘enormous’ or ‘gargantuan’ (or ‘serious’ or
‘catastrophic’).

1.2.2 Triggers of large-scale emergencies. As well as the scale, the cause4 of
the emergency determines to a large extent the response required. As Dombrowsky
[1995] states: “For the state, the breakdown of public order and safety is the key, not
the phenomena itemized. However, the specification of possible disasters is required
because of the need for an appropriate selection of countermeasures to reestablish
public order and safety. . . . The trigger determines the measure; thus, riots the

4The distinction between what is being responded to (the ‘disaster’ or ‘emergency’), and what
triggered it, is captured by Dombrowsky [1995]: “Disasters do not cause effects. The effects are

what we call a disaster.”
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use of the National Guard; epidemics, the General Surgeon; terrorism, the Special
Forces and Bomb squads. . . . The type of phenomenon is only the key for the use
of the appropriate tool box.”

For example, in the U.S., FEMA [FEMA 2011] list seventeen types of emergency:
Chemical emergencies; Dam failure; Earthquake; Fire or wildfire; Flood; Hazardous
material; Heat; Hurricane; Landslide; Nuclear power plant emergency; Terrorism;
Thunderstorm; Tornado; Tsunami; Volcano; Wildfire; and Winter storms. In the
U.K., the Cabinet Office [U.K. Cabinet Office 2010a] list fourteen types of emer-
gency, arranged into three different groups: Natural events: Severe weather;
Coastal flooding; Inland flooding; Pandemic human disease; Non-pandemic human
disease; Animal disease. Major accidents: Major industrial accidents; Ma-
jor transport accidents. Malicious attacks: Attacks on crowded place; Attacks
on critical infrastructure; Attacks on transport systems; Non-conventional attacks;
Cyber-attacks (data confidentiality); Cyber-attacks (infrastructure). Each type of
event has its own (location dependant) probability and impact associated with it.
Together, these determine the overall risk it poses, and thus influence the amount
of preparedness it attracts [FEMA 2007]. For example, in the U.K., the National
Risk Register [U.K. Cabinet Office 2010a] plots the relative likelihood and impact of
these fourteen types of emergency (at national level), and community risk registers
refine these values at county level.

1.3 The Simulation of Large-Scale Emergency Response

1.3.1 Methods of simulation. The simulation of emergency scenarios is an inte-
gral part of preparedness [U.K. Cabinet Office 2011]. Simulations can range from
pen and paper [Motowidlo et al. 1990] to real-life exercises. Whilst real-life exer-
cises may offer a level of verisimilitude which is hard to surpass, this can come at
a high cost. For example, the recent Orion training exercise [Orion 2010], which
simulated the response to an earthquake measuring 8 on the Richter scale striking
the U.K., cost e1 million, lasted 3 days, and involved hundreds of participants
from across Europe [Crook 2010]. Such figures suggest that if some lessons can
be learned via in silico simulations, especially for large-scale emergencies, then
doing so makes economic sense. Furthermore, some things which are not even pos-
sible with real world exercises become possible via in silico simulation. Indeed,
the ability to use “simulations to re-produce scenarios that would be prohibitively
expensive, dangerous, environmentally damaging, or even physically impossible to
re-create in reality” is listed as one of the main benefits of the ‘Emergency Sim-
ulation Program’, from the British Columbia Institute of Technology [Straylight
2010]. Another example is performing large parameter sweeps: by simulating the
response to a suitably parameterized emergency scenario an appropriate number of
times, each with different parameter values, we may build up a general picture of
how different objectives depend on resource levels [Mysore et al. 2006], for example.

Computational simulation techniques which have been used for emergency re-
sponse and preparedness include systems dynamics [Zhong and Kim 2011], discrete-
event simulation [Connelly and Bair 2004], stochastic modelling [Mukherjee and
Gupta 2009] and queueing networks [Au-Yeung et al. 2006]. For approximately a
decade, agent-based simulation (ABS) has been used for emergency response and
preparedness. It offers advantages over each of the methods mentioned [North and
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Macal 2007]. Benefits of ABS include [Bonabeau 2002]: ABS captures emergent
phenomena; ABS provides a natural description of a system; ABS is flexible. Emer-
gency response satisfies the criteria for when it is suitable to use ABS [North and
Macal 2007]. Many emergencies may involve the presence of crowds, e. g. [Samuel-
son et al. 2008; Oğuz et al. 2010]. In their discussion of tools for responding to
large-scale emergencies, Lin and Manocha [2010] state that crowds “are vital ele-
ments to model in a virtual environment”. In their review of simulation tools for
crowd behaviours, Challenger et al. [2009a] conclude “The most realistic simulation
tools currently available on the market comprise agent-based models, and are pop-
ulated by intelligent, autonomous agents, capable of making independent decisions
and reacting to environmental conditions.”

1.3.2 Applications of computer simulation. The appropriateness of computer
simulation for emergency response and preparedness may be seen by observing its
two major categories of usage [Ören and Longo 2008]:

(1) To provide experience for three types of training and entertainment:

(a) by using virtual equipment (to enhance motor skills)
(b) by gaming simulation (to enhance decision making skills)
(c) by a mixture of real system and simulation (to enhance operational skills)

(2) To perform experiments, including for education, understanding and decision
support.

For example, as part of their ‘Integrated Emergency Response Framework’, Jain
and McLean [2003] identify the following five possible applications of computer
simulation for the emergency response and preparedness domain:

Planning. Determining the impact of a disaster event, and the most appropriate
ways in which to prepare and respond.

Vulnerability Analysis. Evaluating and assessing existing emergency response strate-
gies to hypothetical emergencies.

Identification and Detection. Determining the possibility of a particular emer-
gency occurring.

Training. Training emergency services personnel for handling emergencies through
interactive simulations.

Real-time Response Support. Determining alternative response strategies, based
on current knowledge of an unfolding emergency situation.

As the idealized use of computer simulation for emergency response and prepared-
ness requires multiple phenomena to be modelled at the same time (for example,
a fire simulation, a traffic simulation and a crowd simulation may all be required),
Jain and McLean [2003] emphasize the need for a set of standards to allow different
simulators to be integrated together.

Finally, from these five application areas, we note that users of computer sim-
ulation may include planners, trainers, and first responders. In principle, many
organizations involved in emergency response and preparedness may benefit from
the use of computer simulation, including non-governmental organizations provid-
ing humanitarian relief [Wolf 2003; Zhao et al. 2009].

ACM Journal Name, Vol. V, No. N, Month 20YY.
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1.4 Remainder of this Paper

In Section 2, we provide a description of agent-based simulation (ABS), beginning
with terminology. After discussing the essential components of an ABS, and con-
cepts pertinent to its application to large-scale emergency response, a brief overview
of the two main toolkits, JADE and Repast, is given. Constructing an ABS for any
application requires making design decisions. For example, the abstract concepts
relating to agent architecture need to be made concrete. Also a realistic virtual
environment needs to be constructed, such that the environmental state that each
agent observes is sufficiently detailed for its purpose. This paper reviews how de-
sign decisions such as these have been made to date in the context of simulating
large-scale emergency response. In Section 3.1, we begin by reviewing the different
ways in which ABSs are used for large-scale emergency response, and propose a
taxonomy classifying existing ABSs by usage. Validation and verification methods
are also discussed. Sections 3.2 - 3.4 then review implementation details of ABSs
for large-scale emergency response. Design decisions relating to the environment
(Section 3.2), the agents (Section 3.3), and the large-scale nature of the problem
(Section 3.4) are each reviewed. Section 4 concludes the paper with a summary,
including future research directions regarding the use and implementation of ABS
for large-scale emergency response.

2. AGENT-BASED SIMULATION

2.1 Terminology

We begin by acknowledging that what is now to be discussed (and is referred to as
‘agent-based simulation’ in this paper) suffers from ambiguous terminology [Hare
and Deadman 2004]. In their review of ‘agent based modeling toolkits’, Nikolai
and Madey [2009b] note the “conflicting use of terms in different domains”, with
‘agent’5, ‘agent-based’ and ‘multi-agent’ having the most inconsistent usage. Even
focussing on a single application area does not help a consensus be reached how-
ever, with multi-agent system [Gonzalez 2009a], multi-agent simulation [Massaguer
et al. 2006], multi-agent simulation system [Takeuchi 2005] and agent-based simula-
tion [Schoenharl et al. 2009] being just some of the terms employed in the context
of large-scale emergency response, with no apparent pattern to their usage.

Attempts have been made to distinguish between such terms on different grounds.
For example, Nikolai and Madey [2009b] used heterogeneity to make the distinc-
tion: an agent-based system is described as “a system capable of modeling a large
number of fairly homogenous agents”, whilst a multi-agent system is “a smaller
system of heterogeneous agents equipped with artificial intelligence”. Epstein and
Axtell [1996] on the other hand describe the population of an agent-based model as
‘heterogeneous’, consisting as it does of “distinct agents, each with its own geneti-
cally and culturally transmitted traits (attributes and rules of behavior)”. As well as
heterogeneity, the emphasis in this definition is on ‘distinct’: there is no aggregation
in agent-based models. Heterogeneity and lack of aggregation also form part of the
emphasis in definitions of individual based models, a term which appears to be domi-

5The issue of what is meant by ‘agent’ is a perennial debate [Franklin and Graesser 1997; Drogoul

et al. 2003; Petrie 2007; Castelfranchi 2010].
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nant within the ecological modelling community. Due to its ‘fuzzy’ usage in the mid
1990s [Grimm and Railsback 2005], four biologically important criteria were pro-
posed by Uchmánski and Grimm [1996] to distinguish individual based models from
other ‘individual-oriented’ models, namely: (1) the degree to which the complexity
of an individual’s life cycle is reflected in the model; (2) explicit representation of
the usage of resources by individuals; (3) discreteness (individuals are discrete, and
thus population size is an integer); (4) heterogeneity among individuals. As well as
heterogeneity and individuality, the emphasis placed on interactions has also been
used to distinguish between terms. Sun [2006] describes a multi-agent system as
“a community of autonomous entities each of which perceives, decides, and acts on
its own, in accordance with its own interest, but may also cooperate with others to
achieve common goals and objectives”, and states that agent-based social simula-
tions “focus upon the interactions among agents”. Hare and Deadman [2004] also
use the importance attached to modelling interactions (as opposed to modelling
cognitive ability), and place various definitions in the literature on a “continuum
according to the types of interaction modelled”, with agent-based modelling appear-
ing towards one end of the scale and multi-agent simulation appearing towards the
other. The growing interest in including agents with cognitive ability in agent-
based social simulations [Sun 2006; Gilbert 2006] however means that determining
whether their focus is on modelling interactions or on modelling cognitive ability
is difficult, as evidenced by two definitions of this term appearing in very different
positions on the scale.

In this paper we shall follow Hare and Deadman [2004], and use ‘agent-based
simulation’ (ABS) as an umbrella term, covering most papers which describe them-
selves using terms such as those above, but not all. As minimum requirements of an
ABS, we refer to Epstein and Axtell [1996], who identify “three basic ingredients:
agents, an environment or space, and rules”. This is in concordance with Macal
and North [2010], who state that “a typical agent-based model has three elements”:

(1) A set of agents, their attributes and behaviours.

(2) A set of agent relationships and methods of interaction: an underlying topology
of connectedness defines how and with whom agents interact.

(3) The agents’ environment : agents interact with their environment in addition
to other agents.

We stress at this point that the agents and environment are both virtual, so that
by ‘ABS’ we mean software which runs on a desktop machine or supercomputer.
This then precludes work such as [da Silva et al. 2008], which although uses a
‘multi-agent system’ for emergency response, does so through pervasive computing:
agents are real-world decision making entities which exist in the real environment.
Such work may be agent-based, but it is beyond the scope of this paper.

Furthermore, using the definition of ‘large-scale’ in Section 1.2, we restrict our-
selves to ABSs which:

(4) Are used to answer some question pertaining to large-scale emergency response.

This further precludes some ABSs, such as DrillSim [Massaguer et al. 2006] (which
investigates the effect of the number of floor wardens on the rate of evacuation of
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Fig. 3. An abstract agent with state, and its environment, adapted from [Wooldridge 2009].

28 agents from a single building), as the scenarios they simulate do not satisfy our
notion of large-scale.

We now discuss briefly the central concepts of ABS, italicized in (1)-(4) above,
in the context of simulating large-scale emergency response.

2.2 Agents

Perhaps the only trait common to every definition of an agent is autonomy [Wooldridge
2009]. An agent exercises its autonomy through actions in the environment in which
it is situated. If the agent is intelligent [Wooldridge and Jennings 1995], then these
actions are both proactive (initiated by the agent in order to achieve some goal) and
reactive (in response to changes in the environment). Furthermore, communication
between agents may also take place in order to achieve shared goals.

Figure 3, adapted from Wooldridge [2009], shows an abstract agent with an
internal state, interacting with its environment, and with other agents situated
within this environment. The internal state is updated via percepts, and used to
determine which action to perform, via the following functions:

sense: E ×M → Per. The agent observes its environmental state e and receives
zero or more message(s) m from other agents, and generates a percept sense(e,m).
E is the set of all possible environmental states, M is the set of all possible messages,
and Per is the set of all possible percepts.

next: I × Per → I. The internal state i of the agent is updated via the next

function, being set to next(i,sense(e,m)). I is the set of all possible internal
states, and Per is as before.

action: I → Ac . The action function programmatically represents agent be-
haviour. It selects and returns6 an action, action(next(i,sense(e,m))), which is
a member of Ac, the set of all possible actions available to the agent (which may
include sending messages to other agents).

6Note that the return type of this function shares the same name as the function itself, viz. ‘action’.
To avoid equivocation, in this paper, when written in typewriter typeface, ‘action’ refers to the
function which algorithmically represents behaviour. This returns an ‘action’ (Roman typeface),

an element of the set Ac which the agent performs. Specific actions, however, are themselves
written in typewriter typeface. So, for example, we may refer to a move action, returned by an

action function which programmatically represents the movement behaviour of an agent.

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Glenn I. Hawe et al.

Whilst this description of an agent is quite common within the multi-agent sys-
tems community, it also covers the characteristics deemed essential7 in the agent-
based modelling community, namely [Macal and North 2010]:

(1) An agent is a self-contained, modular, and uniquely identifiable individual.

(2) An agent is autonomous and self-directed. It has behaviours that relate infor-
mation sensed by the agent to its decisions and actions. An agent’s information
comes through interactions with other agents and with the environment.

(3) An agent has a state that varies over time. An agent’s behaviours are condi-
tioned on its state.

(4) An agent is social having dynamic interactions with other agents that influence
its behaviour.

Given the application domain of large-scale emergency response, it is natural to
consider an individual agent as representing one of the human individuals involved,
typically either a civilian or rescuer. More generally however, agents are used to
represent non-human entities as well: for example, vehicles and buildings have
also been modelled as agents. Different implementations of agents for large-scale
emergency response are reviewed in Section 3.3.

2.3 Environment

In the context of large-scale emergency response, the virtual environment in which
the agents are situated represents a geographical area, which may be real or ficti-
tious. Recall that the actions which an agent decides to perform depends partly
on what it observes in its environment, i.e. what is contained in the environmental
state e. Therefore all entities which are relevant to an agent’s decision making,
such as the buildings it observes and the road network it can travel along, should
be represented in the environment, at an appropriate level of detail [Sato and Taka-
hashi 2011]. Many of the types of emergencies listed in Section 1.2.2, especially the
large natural events, involve some level of destruction to the environment. When
this is the case, the environmental entities need to contain attributes which can be
modified to reflect this.

One of the simplest methods of representing a geographical area is using a grid.
When representing real areas, vector Geographic Information System (GIS) files are
popular, but integrating them with ABS is not trivial [Gimblett 2002; Gonçalves
et al. 2004; Schule et al. 2004; Rand et al. 2005; Brown et al. 2005; Castle and Crooks
2006; Pooyandeh et al. 2007; Sengupta and Sieber 2007; de Andrade et al. 2008;
Crooks et al. 2008; Crooks 2008; Liebert et al. 2008; O´Sullivan 2008; Kennedy
et al. 2009; Guo et al. 2008]. Representing the environment as a network may be
sufficient, for example if there is no damage to the environment, as is the case with
pandemics [Valle et al. 2006]. An example grid, GIS and network representation of a

7In [North and Macal 2007], Macal and North give slightly different criteria, listing adaptive-
ness, the capability to learn and modify behaviour, autonomy and heterogeneity as the “defining
characteristics of agency”. Furthermore, they state: “In the case that a simulation is structured

as an agent model, but the agents do not exhibit the requisite characteristics of agents as noted
above, then it is not an agent-based model. Instead the agents in question are prototype agents,

or ‘proto-agents’, and the simulation is a proto-agent model.”
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(a) (b)

(c) (d)

Fig. 4. (a) A geographical area and its representation using (b) a Grid, (c) vector GIS files and

(d) a Network.

geographical area are shown in Figure 4. Different implementations of environments
for large-scale emergency response are reviewed in Section 3.2.

2.4 Interactions

Epstein and Axtell [1996] describe “three types of rules of behaviour for the agents
and for sites of the environment”:

Agent-environment interactions. Each agent has a repertoire of actions which it
can perform in its environment. The actions taken, which modify attributes of en-
tities in the environment, and possibly of other agents, define the response. Actions
are selected partly based upon what an agent senses in its environment, another
form of agent-environment interaction. In order to allow the quick determination
of the entities that an agent can observe, environmental entities need to be stored
in a data structure which provides an efficient spatial index. Also, the environment
may modify an agent’s attributes: if an agent is in a building which collapses, for
example, its health attribute will deteriorate.
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Environment-environment interactions. The state of the entities in the environ-
ment may evolve due to processes other than agent actions. For example, fires
may spread and buildings may collapse. These processes are the environment-
environment interactions.

Agent-agent interactions. Agent-agent interactions include: communication (lead-
ers may issue instructions, trapped agents may call for help); physical contact
(adminstration of first aid, rescue from a building); social contact (being in the
proximity of someone with an contagious disease may lead to infection).

These interactions form part of the discussion in Section 3.2 and Section 3.3.

2.5 Scale

When implementing agents and the environment, scale is an issue (from a compu-
tational perspective). As the application is large-scale emergency response, either
the number of agents representing displaced, injured or killed human individuals
is greater than one hundred, or the virtual environment in which the agents are
situated represents a geographical area greater than ten square kilometres (in which
case it potentially contains thousands of entities of interest), or both. Distributed
memory parallelism is one way to achieve this scalability: a large geographical area
may be divided into smaller sub-areas which are then simulated on separate pro-
cessors, e.g. [Koto and Takeuchi 2003]. Even still, large numbers of agents may
still exist in one sub-area (processor), and so shared memory parallelism may be
required to enable them to act concurrently. Different techniques related to scale
are reviewed in Section 3.4.

2.6 Usage

The ultimate purpose of each ABS reviewed in this paper is to help answer some
question pertaining to large-scale emergency response. Each ABS does this by
predicting, through simulation, the consequences of a particular course of action,
with a particular level of resources, to a particular large-scale emergency, at a
particular location. The question posed defines which aspects of the ABS may
vary in order to optimize the response (as well as the objective function(s) being
optimized), and which aspects are required to mimic reality.

From the real-world perspective, the response is the actions taken. These:

(1) are selected as a consequence of the behaviours of the real-world agents exe-
cuting them; and

(2) are constrained by the resources available.

Thus, the actions which define the response may be altered by either changing agent
behaviour, or changing the levels of resources, or both. In an ABS, determining
optimal resource levels is a standard optimization problem, with resource levels as
the design variables. When determining optimal agent actions however, there are
two radically different approaches:

(1) Optimize existing behaviours: typically by either:

(a) parameterizing current procedures in the action function of each agent,
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and then determining the optimal parameter8 values by applying a suitable
optimization algorithm, e.g. [Narzisi et al. 2006]; or

(b) testing the consequences of alternative actions, when these alternatives
exist in reality and the best choice is not clear, e.g. [Khalil et al. 2010].

(2) Design and implement completely new procedures, which do not already occur
in real life: these can cover either bottom-up or top-down decision making, or
both e.g. [Akin et al. 2010].

As put by Carley et al. [2006], ABSs containing agents of the second variety are9

“concerned with designing smart algorithms, not with investigating a current human
social system as it exists and designing a public policy for it” and thus are quite
different from ABSs of the first variety, which are concerned with optimizing aspects
of current agent behaviour (e.g. the setting of parameters which are subjective in
nature, or choosing between alternative competing policies).

The earlier premise ‘to a particular large-scale emergency, at a particular loca-
tion’ served to fix certain control variables, which characterize the severity of the
emergency, and the environment that it is occurring in. If these control variables
were to change, the optimal response may change too. For example, viruses which
cause pandemics vary in how infectious they are. Thus the probability of a virus
being transmitted from one individual to another, is a control variable when mod-
elling a pandemic [Kim et al. 2008]. The optimal response, defined (say) by the
optimal radius which quarantined areas should have, depends on this probability
of transmission. Investigating how the optimal resource and behaviour parameter
values depend on the values of the control variables helps determine the optimal re-
sponse to new emergencies at new locations, through generalization. In some cases,
the parameters relating to agent behaviour and resource levels are kept constant
throughout, to mimic real-life. Then, by changing control variables, the effective-
ness of current procedures and resource levels are tested in unprecedented scenarios.

Finally, the research question is often posed in order to learn lessons for potential
future emergencies (i.e. as part of preparedness). However, ABS may also be used
to answer questions about real emergencies, either retrospectively (learning lessons
in hindsight, thus playing a role in preparedness for future similar events), or in real-
time (as the emergency is happening, thus playing a direct role in the response). In
all cases, some level of verification and validation needs to be demonstrated before
an ABS can be trusted for use. Using definitions from the U.S. Department of De-
fense [Department of Defense 2009], verification is “the process of determining that
a model or simulation implementation and its associated data accurately represent
the developers conceptual description and specifications”, whereas validation is “the
process of determining the degree to which a model or simulation and its associated
data are an accurate representation of the real world from the perspective of the
intended uses of the model”. As North and Macal [2007] state “verification and
validation work together by removing barriers and objections to model use. After

8In practice, when behaviour is parameterized and optimized, resource levels are often parame-

terized and optimized too.
9The particular ABS being referred to here was RoboCup Rescue, which is discussed later in

Section 3.
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all, if a model runs perfectly well and reflects the workings of an important real-
world system, why wouldn’t someone want to use the model?”. The serious nature
of the application may even mean that some form of accreditation is requisite to
usage. A review of different usages, including validation and verification, takes
place in Section 3.1.

2.7 Agent-Based Toolkits

Many agent-based toolkits exist to ease the development of an ABS [Railsback
et al. 2006; Nikolai and Madey 2007; 2009b; Allan 2010]. Bearing in mind the
discussion on terminology in Section 2.1, the review by Allan [2010] is particularly
interesting, as it distinguishes between toolkits intended for ‘agent-based simulation
and modelling’ and those intended for building ‘multi-agent systems’10. Given the
number of toolkits available (Allan’s review discusses 31 toolkits for agent-based
simulation and modelling, and 13 for multi-agent systems, whilst the review of
Nikolai and Madey [2009b] discusses 53 toolkits in total), even a cursory description
of each is beyond the scope of this paper. In any case, in the domain of large-scale
emergency response, only two toolkits appear to dominate11: JADE and Repast.
Due to their popularity, and as they are referred to again later, we here give a brief
description of each of these toolkits.

2.7.1 JADE. JADE (Java Agent DEvelopment Framework) is a popular toolkit
for building multi-agent systems, which after a decade of development is now in
its fourth major version [JADE 2010]. Using JADE, an agent is implemented
by extending from the Agent base class, which itself implements the Runnable

interface, and so is executed in a Java thread. Contained in this base class is some
basic functionality common to all agents, such as the ability to send and receive
messages (via the send(ACLMessage msg) and receive() methods respectively)
and the scheduling of ‘behaviours’ (which cause agents to carry out tasks). Each
agent behaviour is derived from one of the classes in the Behaviour class hierarchy.
An agent may use multiple behaviours, and complex behaviours may be constructed
from simpler ones. In addition, by using FSMBehaviours, an agent may be modelled
as a finite-state machine (FSM). An example JADE agent is given in Figure 5.

Further functionality may be added to JADE agents through the use of external
Java-based software. For example, Jess [Jess 2008], a Java-based rule engine may
be used to create intelligent agents, whilst Jadex [Pokahr et al. 2005] may be used
to implement agents with the Belief-Desire-Intention (BDI) architecture [Bratman
et al. 1988; Georgeff et al. 1999].

The code-base in JADE for the construction of agents make it a popular choice
for emergency response ABS. However, as it is intended for developing multi-agent
systems rather than agent-based simulations, other important aspects remain un-

10Allan’s own words on the distinction between the two are: “There is a fine line between agent

based simulation and modelling (AMBS) [sic] and multi-agent systems (MAS). The former are
used to simulate complex systems such as social networks and biology which exhibit emergent

behaviours. The latter can also be used to simulate complex environments, such as supply chains.

These could be referred to as ‘smart’ applications and components are called ‘intelligent’ agents”.
11It is interesting to note that, according to their respective home pages, JADE is for the devel-

opment of ‘multi-agent systems’, whilst Repast is for ‘agent-based modeling’.
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1 import jade . core . Agent ;
2 import jade . core . behaviours . ∗ ;
3

4 public class ExampleJADEAgent extends Agent
5 {
6 private int h e a l t h ; // The h e a l t h l e v e l o f the agent

7
8 public void setup ( )

9 {
10 addBehaviour (new BasicBehaviour ( ) ) ;
11 }
12
13 class BasicBehaviour extends SimpleBehaviour
14 {
15 public myBehaviour ( Agent a )
16 {
17 super ( a ) ;
18 }
19
20 public void ac t i on ( )
21 {
22 . . .

23 //e . g . modify h e a l t h v a r i a b l e , s e t f i n i s h e d f l a g
24 }
25

26 private boolean f i n i s h e d = fa l se ;
27 public boolean done ( ) { return f i n i s h e d ; }
28 }
29 }

Fig. 5. Example of an agent in JADE.

supported, in particular the construction of GIS-based environments. Toolkits for
agent-based simulation, such as Repast, offer more functionality with regard to this
aspect.

2.7.2 Repast. The Repast (Recursive Porous Agent Simulation Toolkit) Suite
[Repast 2010] consists of two families of program for constructing agent-based mod-
els: Repast Simphony and Repast HPC.

2.7.2.1 Repast Simphony. Repast Simphony is a Java-based toolkit for building
agent-based models [North et al. 2007]. It uses the Eclipse Integrated Development
Environment (IDE), and models may be developed using either flowcharts (Repast
Flowchart) [North et al. 2007] or a Java Application Programming Interface (API)
(Repast Java).

Using the Java API, an agent does not have to extend any base class. Instead
an agent is implemented as a Plain Old Java Object (‘POJO’). Basic POJO agents
are referred to as ‘proto-agents’ in the Repast Simphony documentation [Repast
2010]. Only when equipped with learning ability are they considered full ‘agents’.
Repast Simphony comes equipped with packages offering evolutionary algorithms
and regression methods to enable the user to implement learning. Also available is
a way to schedule one or more agent methods (representing behaviours) to execute.
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Repast Simphony models time discretely, advancing it in units called ‘ticks’ [Crooks
2007]. Through the use of Java annotations, methods may be scheduled to execute,
either at a certain frequency (every n ticks) or as a one-off (at tick m). Additionally,
an agent action may be triggered as a result of another agent action.

Through the use of Geotools [Turton 2008] and the Java Topology Suite [JTS
2006], Repast Simphony offers methods for building an environment from GIS Esri
(Environmental Systems Research Institute) Shapefiles [ESRI 1998]. This facili-
tates the construction of complex environments, containing potentially thousands
of individual entities, such as buildings. Methods enabling agents to sense this
environment are also provided. All agents in Repast Simphony belong to a ‘Con-
text’, which is associated with one or more named ‘Projections’ (which may be
Network, Grid, Continuous or GIS). The details behind these concepts are beyond
the scope of this paper, but are explained in [Howe et al. 2006]. For an agent to
sense what is in its proximity in a GIS environment, it can query its context for
its GIS projection, use this projection to get its current coordinates, then call a
getObjectsWithin method on the projection to determine what entities are within
a certain rectangular region (‘envelope’), which represents its field of vision.

Figure 6 shows skeleton code for an agent in Repast Simphony, belonging to a
GIS projection named ‘GIS’. It has a method called step which is scheduled to be
called every time-step (starting at the first time-step). This calls a sense method,
which queries the GIS projection for a list of the objects within a rectangular region
around the agent. These can then be used to affect the state and decision making
of the agent in methods called after sense (which would be inserted at line 9 in
Figure 6).

As any Java class can be used as an agent (in the Java versions), JADE agents can
be used in Repast [Yoo and Glardon 2009]. This is useful as it allows the strong
agent functionality of JADE to be combined with the strong GIS-environmental
modelling of Repast, however in practice (with the exception of Yoo and Glardon
[2009]) one of the toolkits is always used exclusively. Finally, batches of simulations
may be scheduled to run using Terracotta [Terracotta 2010], e.g. for parameter
sweeps.

2.7.2.2 Repast HPC. Although Repast Simphony has been used to distribute
single simulations across multiple machines [Gulyas et al. 2009], the difficulty in
doing so means such usage has been uncommon. In December 2010, a separate
toolkit specifically for the purpose of running single simulations on multiple ma-
chines, Repast HPC, was released [Collier and North 2011]. It is written using C++,
and makes use of the Message Passing Interface (MPI) [Gropp et al. 2000] for dis-
tributed memory computing. Synchronization between processes is handled by a
RepastProcess class, and is conservative [Fujimoto 2000]: that is, an event is not
processed until all events scheduled to happen before it have been processed. The
RepastProcess class is also the class used to request agents from other processes.
Repast HPC uses the same concepts of ‘context’ and (distributed) ‘projection’ from
Repast Simphony, however it does not yet support a distributed GIS projection. As
the release of Repast HPC is so recent, it has not been used for emergency response
simulations yet.
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1 @AgentAnnot ( displayName = ‘ ‘ ExampleRepastAgent ’ ’ )
2 public class ExampleRepastAgent
3 {
4 // Schedule s t e p () to s t a r t at t i c k 1 , and repea t every t i c k
5 @ScheduledMethod ( s t a r t = 1 , i n t e r v a l = 1)
6 public void s tep ( )

7 {
8 I t e r a b l e <Object> percept s = sense ( ) ;

9 . . . // use p e r c e p t s to update s t a t e and s e l e c t ac t ion to perform
10 }
11

12 private void s ense ( )
13 {
14 Geography<Object> geo = ( Geography ) context . g e t P r o j e c t i o n ( ‘ ‘ GIS ’ ’ ) ;

15 Geometry geom = geo . getGeometry ( this ) ;
16 Coordinate coord = geom . getCoordinate ( ) ;
17 double range = 10 ;
18 Envelope enve lope ( coord ) ;

19 enve lope . expandBy ( range ) ;
20 return geo . getObjectsWithin ( envelope , Object . class ) ;
21 }
22 . . . // other methods

23 }

Fig. 6. Example of an agent in Repast Simphony, with a basic sense method.

3. ABS FOR LARGE-SCALE EMERGENCY RESPONSE

3.1 Usage

3.1.1 Where, when, why and how ABS is used. ABS is most commonly used
during preparedness. Past real emergencies are often used as exemplar scenarios,
in which case the usual procedure is first to tune the ABS to replicate how the
real event unfolded, and then determine the optimal response in hindsight. Alter-
natively, the emergency being simulated may be without precedent. For a given
location, preparation for an unprecedented emergency is warranted if its triggering
event is plausible there. The plausibilities of triggering events varies at national and
regional levels. For example, as mentioned in Section 1.2.2, the National Risk Regis-
ter [U.K. Cabinet Office 2010a] describes fourteen high consequence risks facing the
U.K., and plots their relative likelihood against their relative impact. Community
Risk Registers then refine these relative likelihoods and impacts at county level.
In the U.K. the greatest risks (in a Pareto-sense, in that they are non-dominated
in terms of relative likelihood and impact) are ‘attacks on transport’, ‘attacks on
crowded places’ and ‘pandemic human disease’, each of which ABS is well suited
to modelling [Challenger et al. 2009b; Epstein 2009].

Unsurprisingly, the motivation for research within a country often depends on its
own history of disasters, and the likelihoods of future potential disasters there. For
example, six of the seven ABSs (we count WIPER and DADS together) in Figure 7
were used to simulate a large-scale emergency which has either occurred, local to
where the ABS was developed, in recent history, or is a plausible risk, again local to
where the ABS was developed, in the future. We use these seven ABSs to illustrate
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SimGenis
(generic emergency)

PLAN-C
(terrorist attacks)

RoboCup Rescue
(earthquakes)

AROUND
(earthquakes)

IMAMCR
(pandemic flu)

WIPER/DADS
(hurricanes)

EpiSimS
(biological attack;

pandemic flu)
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ABS
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Fig. 7. Illustration of how the large-scale emergencies simulated using ABS varies around the
world depending on the local risks and history of events.

the types of research questions asked, including which parameters are optimized (if
any), what the objectives are, and what control parameters (if any) are varied to
generalize results.

Along the Pacific Ring of Fire, research focuses on natural disasters. For example,
various research programmes in Japan [Kitano et al. 1999; Takeuchi 2005] and
Vietnam [Chu et al. 2009] have each focussed on the response to earthquakes.
RoboCup Rescue [Kitano et al. 1999] is an ABS used to determine the optimal
actions for police, fire brigade and ambulance agents, and their coordination centres,
in the wake of a simulated earthquake. The 1995 Kobe earthquake was the original
test scenario used [Takahashi et al. 2001], although more have been added over
the years [Takahashi 2009]. The response is optimized through the design and
implementation of better action selection methods. Research teams from around
the world continue to test their action selection mechanisms on a variety of disaster
scenarios12, through an annual competition held since 200113. The success of a
response is measured using the following objective function:

S =

(
P +

H

Hinit

)√
B

Bmax
(1)

where P is the number of alive individuals, Hinit and H are the initial and final
sums of health points for all individuals respectively, and Bmax and B are the
total area and final unburnt area for all buildings respectively. Clearly S is to be

12Using a variety of different scenarios represents a change in control variables.
13Further illustrating how research is driven by local risks, 12 out of the 13 entrants in the 2010
competition were from universities in earthquake-prone countries, namely China, Iran, Japan and

Turkey.
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maximized. Recognizing the multi-objective nature of emergency response, a score
vector has recently been proposed [Siddhartha et al. 2009b; 2009a]. Using this, each
individual objective retains its ipseity as a component of a vector, and the notion
of dominance is used to compare different responses. As of 2010, the score vector
has not yet been adopted for use in the official competition.

Also vulnerable to earthquakes is Vietnam. In 2007, a collaboration between
French and Vietnamese universities resulted in an ABS called GAMA (GIS and
Agent-based Modelling Architecture) [Amouroux et al. 2009] being developed. The
following year the AROUND (Autonomous Robots for Observation of Urban Net-
work after Disasters) project became one of its first applications [Chu et al. 2008],
with an earthquake hitting Hanoi being the test scenario. The goal of the AROUND
project is to capture mathematically agent behaviour which is consistent with the
objectives of emergency responders. This is done by enabling rescue agents to
learn their behaviour from the experts they represent, through interactive sessions.
Thus, as with RoboCup Rescue, it is the behaviour which is optimized (rather than
resource levels). However, there are two major differences:

(1) Parameterizing the status quo versus the design of new procedures: In AROUND,
behaviour is modelled using a parameterized utility function, which is used for
action selection; by varying the parameters, optimal behaviour is found14. In
RoboCup Rescue, better responses are obtained by designing and implementing
new action selection methods for rescuer agents, which don’t necessarily bear
any resemblance to real-life behaviour.

(2) Difference in objectives: In AROUND, optimal agent behaviour mimics that
of the real-world rescuers they represent. In RoboCup Rescue, optimal agent
behaviour maximizes the objective function in Equation 1.

The road map for RoboCup Rescue [Tadokoro et al. 2000; Tadokoro 2006] lists
“autonomous robot rescue agent team saves human lives” as the goal for 205015. If
robots are tasked with actually carrying out the rescue, optimal behaviour is the
target. The AROUND project also envisages the use of robots [Boucher et al. 2009],
however for observation tasks only. The information gathered by these robots is fed
back to a spatial decision support system (SDSS), which uses the ABS to predict
the outcomes of possible courses of action (by human rescue teams). Boucher
et al. [2009] state that “ensuring the pertinence of the predicted outcomes requires
incorporating in the system the knowledge used in situation by responders,” hence
the need for AROUND to capture existing behaviour: the ABS is used to predict
how a particular response by human teams will proceed.

Whilst natural disasters are the main concern in the East, malicious terrorist
attacks have been a motivating factor in the West. For example, following the
terrorist attacks on the World Trade Center on September 11th 2001, and the

14More details on the implementation of agent behaviour in AROUND are given in Section 3.3.
15Before the arrival of autonomous rescue robots however, attempts are being made to transfer

lessons from RoboCup Rescue to human responders. For example, Takahashi [2007] outlines a

method whereby the behaviour of agents may be represented by a matrix. The components of the
eigenvectors of this matrix give a basic interpretation of the agent behaviour, which may then be

communicated to human rescuers.
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anthrax attacks a matter of weeks later, the Center for Catastrophe Preparedness
and Response (CCPR) was founded at New York University. As part of its LaSER
(Large Scale Emergency Readiness) project, an ABS named PLAN-C (Planning
with Large Agent-Networks against Catastrophes) was developed to predict what
people, individually and collectively, will do in a large-scale emergency such as a
terrorist attack, to aid preparedness for such situations [Mysore et al. 2006]. PLAN-
C is an example of a parameterized model used to optimize existing resources and
procedures.

In [Mysore et al. 2006; Narzisi et al. 2006; Narzisi et al. 2007], PLAN-C is used
to simulate the first 50 hours following a Sarin attack on Manhattan island (un-
precedented in the U.S.). Multiple experiments are performed, to investigate the
effect of different parameters on the response. Some experiments only vary param-
eters related to resource levels. For example, the variation in the total number of
fatalities is investigated in terms of:

—hospital resources levels (representing recoverable resources such as personnel
and beds, and consumable resources such as drugs), and

—the number of first responders (Hazardous Materials teams (HazMats) and Major
Emergency Response Vehicles (MERVs)).

Initial increases in either parameter leads to rapid decreases in the number of fatal-
ities. However, beyond certain thresholds, further increases in either of these pa-
rameters had no discernable effect, with the number of fatalities fluctuating around
a non-zero constant value. This demonstrated that a number of victims in the
simulated Sarin attack were destined to die, regardless of resource levels.

Other experiments only vary parameters related to actions. Again, using the
number of fatalities as the objective, optimal values of the following behavioural
parameters are determined:

—when (i.e. the health level at which) a civilian should decide to go to hospital: if
they go too early, hospitals can become overwhelmed; if they go too late, then
the civilian risks death;

—when (i.e. the health level at which) a hospital should release a patient: patients
may die if released too early; however, if released too late, then hospital resources
are needlessly wasted;

—characteristics of civilian behaviour, in terms of ‘worry’ and ‘obedience’ param-
eters;

—the level of communication between hospitals (regarding their locations and ca-
pacities) and civilians: above a critical level of communication, the number of
fatalities begins to increase as healthier victims learn of nearby available hospi-
tals, which they then choose to travel to and reach before less healthy victims,
who are then forced to travel further.

Responses are not generalized to account for any control variables. However the
effect of the number of civilians present at the attack, the proportion of the popula-
tion who are physically disabled, and the total number of hospitals in Manhattan,
on the waiting times at hospitals is investigated. One counter-intuitive result was
that removing the two nearest hospitals to the attack led to more victims being
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treated earlier. This was attributed to victims distributing themselves more evenly
over the remaining hospitals: before, large numbers of victims headed to the nearest
hospitals, which quickly become overwhelmed.

Recognizing the multi-objective nature of emergency response, Narzisi et al.
[2006] applied multi-objective evolutionary algorithms to the parameterized PLAN-
C model to determine the Pareto-optimal trade-off between fatality rate, average
health level of the affected individuals, and the average waiting time for victims at
hospital. This time, only the first 16 hours following the attack were simulated.
Ten parameters (two relating to the behaviour of civilians, five to the behaviour of
hospitals, one to the behaviour of first responders, and two related to resources)
were allowed to vary, although it is noted that it is difficult to actually control some
of these in practice.

The Sarin attack modelled by PLAN-C is of a chemical nature, whilst the earth-
quakes modelled by RoboCup Rescue and AROUND represent physical destruction.
Of quite different ilk are pandemics, which are of biological origin. EpiSimS, another
ABS developed in the U.S. (at Los Alamos National Laboratory), has been used to
investigate pandemics caused both maliciously and naturally: initially developed
to simulate the spread of epidemics of natural cause in urban areas [Eubank 2002],
it has since been applied to model the response to a smallpox attack in Portland,
Oregon [Barrett et al. 2005]. EpiSimS is another example of a parameterized ABS
being used to optimize existing resources and procedures. In the simulated smallpox
attack, it was found that the number of deaths was most heavily influenced by how
quickly infected individuals isolated themselves from the rest of society (whether by
withdrawing to their homes through their own choice, or through actions by health
officials). By comparison, the actual response deployed by officials to contain the
spread of smallpox (mass evacuation of the city, vaccination, or quarantine) had a
very small effect on the death rate.

Naturally caused pandemics are a worldwide threat. As mentioned in Section 1.2,
the H1N1 flu pandemic (swine flu) which affected many different parts of the world
in 2009 was classified as a ‘serious’ emergency in the U.K., and was certainly large-
scale by any definition. Combatting a global pandemic requires effective response
strategies across the world. The World Health Organization (WHO) recommends
several response strategies to human pandemics, however different countries may
take their own measures. For example, in Egypt, part of the response to the
threat of swine flu involved the mass slaughter of all pigs in the country [BBC
2009] (against the advice of the WHO). Nevertheless, Egypt had the highest num-
ber of human fatalities in Africa as a result of the swine flu pandemic. There-
fore it is unsurprising that the first application of an ABS developed at Cairo
University, dubbed IMAMCR (Intelligent Multi-Agent Model for Crisis Response)
in [Khalil et al. 2009], was to determine the optimal response to a flu pandemic in
Egypt [Khalil et al. 2010]. IMAMCR is another example of optimizing existing re-
sources and procedures. In this case, the procedures correspond to four real control
strategies from the WHO. Success of each control strategy was measured in terms
of the peak proportion of the population infected at any one time. Determining the
optimal response involved simply identifying the control strategy which minimized
this peak. ‘Increasing awareness’, which has the effect that individuals seek medical
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help whenever they first experience flu-like symptoms, was found to be the most
effective control strategy.

Of course, not every ABS takes motivation from a particular type of local risk.
SimGenis [Saoud et al. 2004; Saoud et al. 2005; Saoud et al. 2006], for example,
which was developed at Université la Manouba, in Tunisia, is designed to be ‘generic
per accident and location’ [Saoud et al. 2006]. It was used in [Saoud et al. 2006] to
design optimal, efficient and adequate rescue strategies, based on the initial state
of victims, number of rescuers, and method of communication between rescuers.
More precisely, the aim of the research was to determine how the response to a
large-scale emergency depends on the use of:

—a centralized or a decentralized strategy, and

—an instantaneous electronic or a time-consuming paper-based means of commu-
nication.

The optimal response was generalized to different scenarios by varying the fol-
lowing control variables:

—the total number of victims,

—the initial states of victims, and

—the number of rescuers (doctors, nurses and fire-fighters)16.

The main findings from varying these control variables were:

(1) “there is no one unique ‘best’ rescue scenario (strategy), . . . (as) this depends
on the disaster configuration”, and

(2) “for a given configuration, it is hard to predict which would be the best”, al-
though some generalizations were able to be made17.

Generalizing findings from particular scenarios to the generic case is important
if results are to be applied quickly and reliably to unforeseen emergencies, once
they occur. In SimGenis, this was done using a traditional ‘design of experiments’
style investigation. However, the use of machine learning methods to classify emer-
gencies by characteristics of their optimal response, including possibly the use of
transductive inference (reasoning from the particular to the particular, without
constructing a generic case) [Vapnik 2006], may be another option for generalizing
optimal responses.

The remaining ABS in Figure 7, WIPER, is designed for real-time response.
WIPER (Wireless Integrated Phone-based Emergency Response) [Schoenharl et al.
2006; Schoenharl 2007; Pawling et al. 2008; Schoenharl et al. 2009] is a Dynamic-
Data Driven Application System (DDDAS) [Darema 2004], which couples ABS
with real-time data. It is composed of five main components [Pawling et al. 2008].
A real-time data source provides real-time data regarding cell-phone usage from
cell-phone providers. Using a historical data source (a repository of normal cell-
phone usage), a detection and alert system detects possible anomalies in cell-phone

16Strictly speaking, this is a parameter which can be varied, during preparedness. However, at

the time a response is needed, this number is fixed, and so may be seen as a control variable.
17For example, when the ratio of victims to rescuers was high, a centralized strategy was found

to be optimal; otherwise a distributed strategy was optimal.
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ABS usage

Preparedness Real-time response

Agent behaviour Agent behaviour

based on reality uses new algorithms

Generalized

optimal response

Specific

optimal response

U1 U2 U3 U4

Fig. 8. Taxonomy of ABS usage for large-scale emergency response.

usage patterns. Hypotheses explaining these possible anomalies are produced by
a simulation and prediction system (SPS), which are validated or rejected using
streaming real-time data. Emergency response managers interact with these com-
ponents through a web-based front end decision support system. The SPS operates
by creating a batch of agent-based simulations, which is run in parallel. In each
ABS, an agent’s movement behaviour mimics that in one of three different types
of crisis event: a flee event, where agents move away from a disturbance; a flock
event, where agents move as a mob; or a jam event, where agents move towards
their individual goals, but are constrained, as in a traffic jam. Using the real-time
data source, the progression of each ABS is compared to that of the real-event.
The ABSs with the greatest predictive power are identified, and used both to infer
the cause of the anomalous behaviour, and make future predictions about civilian
movements. A wider range of movement behaviours is supported in DADS (Dy-
namic Adaptive Disaster Simulation) [Chen et al. 2011], which builds upon WIPER
using methods from continuum mechanics; Hurricane Katrina is cited as motivation
for these developments.

From the seven ABSs discussed in this Section, we observe:

(1) ABSs may be designed for use:
(a) before a large-scale emergency happens, during preparedness, or
(b) during the real-time response (e.g. WIPER/DADS).

(2) Of those used during preparedness, an ABS may improve agent behaviour by:
(a) varying some component of existing behaviour (e.g. PLAN-C), or
(b) designing entirely new procedures, which are unrelated to existing be-

haviour (e.g. RoboCup Rescue).

(3) The description of the optimal response may be:
(a) for a particular scenario (e.g. IMAMCR), or it may be
(b) generalized, by investigating how this description depends on the control

variables which describe the emergency and the environment (e.g. SimGe-
nis).

Using these observations, we may categorize existing ABSs according to their
usage using the taxonomy in Figure 8. The four taxa18, labeled U1, U2, U3 and
U4, are used to identify the usage of a variety of ABSs in Table I.

18In an attempt to have reasonable numbers existing in each taxon, creation of categories halts
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Verification techniques

Structured code walk
throughs

The developers of the ABS present the code they have written to
an audience, which includes other developers (not involved in the

development of the ABS), whose task it is to scrutinize the code.

Structured debugging
walk throughs

This is similar to code walk throughs, but includes the debugging
(execution of the code, stepping through it line by line), for a few

test cases.

Unit testing The automated testing of each function in the source code, as
is done during extreme programming (XP) software develop-

ment [Beck and Andres 2004].

Test cases and sce-
narios

The logging of information, particularly at the agent behaviour
level, for a set of test cases, in a format which can then be scru-

tinized by the developers.

Visualization Displaying the simulation output on a graphical display can help
identify bugs, not readily identified using traces [Law and Kelton

1982].

Validation techniques

Face validation Asking domain experts whether the ABS behaves reasonably.

Retrodiction Use historical data sets to test ABS predictions.
Prediction Compare ABS predictions to outcomes from real events or field

experiments.

Docking Compare the results from an ABS to those from another model
whose validity has been tested [Axtell et al. 1996].

Table II. Common techniques for verifying and validating an ABS.

3.1.2 Verification and validation. A large number of techniques exist for the
verification and validation of computer simulations. For example, Balci [1997]
provides a taxonomy of 77 verification and validation techniques for simulation
models19. Some of the more common techniques for validation and verification of
ABSs [Xiang et al. 2005; North and Macal 2007] are listed in Table II.

Saoud et al. [2006] discusses the use of three methods for the validation of Sim-
Genis20. During conceptual validation, which aimed to validate the adequacy of the
the underlying model in representing reality, experts from Service d’Aide Médicale
Urgence (SAMU) were consulted to define model components. During internal
validation21, which aimed to ensure the correctness of the code, and external val-
idation, which aimed to validate the adequacy and accuracy of SimGenis results
with real world data, results from fieldwork (attending a 4 hour simulated plane
crash, and discussing rescue plans with firefighters and medical staff) were used.

In PLAN-C, “the model-checking approach focuses on individual agents’ traces”
[Narzisi et al. 2006]. This is performed using external software, XSSYS Tempo-
ral Logic Trace Analysis System [Antoniotti et al. 2003]. Its use is demonstrated
in [Mysore et al. 2005], where the time trace of a person clearly shows how their
health state improves upon admittance to hospital. A time trace of a hospital also
clearly shows how hospital resources decrease as the number of patients admitted

at an appropriate level, e.g.: It does not further categorize ABSs for real-time response, as there

as comparatively few of them.
19A further 38 techniques are included in a second taxonomy for object-oriented simulation models.
20Three further methods, cross-model, data and security were mentioned, but not used.
21Internal validation is a synonym for verification [Bharath and Silverman 2010].
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increases.
Feedback from domain experts (ambulance workers) is central to the development

and use of AROUND. Consequently, much effort was put into the GUI design, a
“cognitive (and not simply cosmetic) necessity” [Chu et al. 2009]. This may be
seen as aiding face validation, which relies heavily on ‘animation’ and ‘graphical
representation’ being presented to practitioners [Xiang et al. 2005].

Schoenharl [2007] describes three methods used to validate WIPER. Face valida-
tion was performed by the developers (rather than emergency services personnel).
One criteria for WIPER was that different runs of the ABS with exactly the same
input parameters (including seeds for random number generators) should give ex-
actly the same results. This was confirmed in six validation tests, each of which
ran four simulations with the same input parameters. Finally, simulated cell-phone
activity was confirmed to correlate well with empirical data; results from statistical
tests demonstrated “significant evidence that the WIPER simulation generates call
activity data similar to that seen in the empirical data”.

The validation of EpiSimS consisted of running (reduced size) experiments with
twelve combinations of three input variables, namely the infectivity, the proportion
of those who self isolate, and the number of people in the average room [Valle
et al. 2006]. Variation of these variables all had the expected effect on the total
number of people affected. IMAMCR was validated by comparison to a ‘SIR’
model (see Section 3.3 for description of ‘SIR’); although not matching perfectly,
the graphs of the proportions of the population who were ‘susceptible’, ‘immune’
and ‘recovered’ followed the same pattern for both models. Comparison to a ‘SIR’
model was also the approach taken in the validation of CROWD [Skvortsov et al.
2007] and BIOWAR [Chen et al. 2004]. Carley et al. [2004] give further detail of the
validation of BIOWAR, including the use of a software tool called WIZER (‘What-if
AnalyZER’) [Yahja and Carley 2006]. WIZER is a tool for automated validation,
and consists of two main components: Alert WIZER and the WIZER inference
engine. Alert WIZER detects if the outputs of the ABS is within acceptable bounds,
by comparison to an empirical data source. Using this information, a database
which relates model outputs to model parameters, and estimated bounds on the
ABS model parameters (set by subject matter experts, in BioWar’s case, experts on
bioterrorism), the WIZER inference engine then identifies which ABS parameters
to vary. These parameters are then tried in another ABS, and the process continues
until some user-defined validation criteria is met.

If ABS is to be used by practitioners, the need for rigorous validation and verifi-
cation is particularly important. For example, Takahashi [2007] reports feedback22

received from local Japanese authorities on RoboCup Rescue, and states “a greater
validity of the ABSS is required to persuade fire-fighting departments to use them
with other methods”. The use of ABS by practitioners will often require some form
of accreditation [Duong 2010]. Accreditation is defined as “the official certification
that a simulation, or federation of simulations is acceptable for use for a specific
purpose” [Australian Government Department of Defence 2005], and may only fol-
low appropriately high standards of verification and validation.

22Comments included “there are no theoretical backgrounds” and “the number of agents is small

as compared to that in the real world”.
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Finally, we point out that some thoughts on the use of unvalidated large-scale
agent-based models are presented in [Gross and Strand 2000].

3.2 Environment Implementations

3.2.1 Representation. When used for large-scale emergency response, the vir-
tual environment in an ABS represents the geographical area affected by the emer-
gency. In most cases this corresponds to a real-world area, but it may also be a
fictitious area. For example, in the ABS SimGenis [Saoud et al. 2003; Saoud et al.
2004; Saoud et al. 2005; Saoud et al. 2006], the environment represents a fictitious
city, of unknown size, ‘including its routes and hospitals’. It is modelled as a grid of
‘cells’, where a cell is described as ‘an elementary unit to represent graphically the
environment’ [Saoud et al. 2006]. Three types of cell exist: obstacle cells, danger
cells, and normal cells. The type of a cell determines:

(1) Which agents may pass through it : no agents may pass through obstacle cells,
and only fire-fighters may pass through danger cells.

(2) The evolution of the health of any victim agents within it : each victim’s health
state is modelled using a Markov chain; the probability of transition from one
state to another depends, in part, on what type of cell the victim is in.

Modelling the environment as a grid restricts agent movement to up-down and
left-right type movements. In SimGenis, Dijkstra’s algorithm [Dijkstra 1959] is used
by ambulance agents to determine the shortest route to a destination (presumably
in this case each cell represents a node on a graph which resembles a regular grid).

A grid was also used to model the environment in an early version of PLAN-
C [Mysore et al. 2005], which simulated a food poisoning outbreak in the Brazilian
state of Minas Gerais in 1998. In both these examples, the authors recognize the
inadequacies of using a grid to model the environment. For example:

—Saoud et al. [2006] concludes “To be more realistic and in order to be able to
simulate real accidents with real map, we are working on the connection of the
simulator to a GIS”.

—Mysore et al. [2005] notes “We might need to switch the environment to a real city.
Transportation constraints and modes, roads, subways, and other geographical
information might need to be incorporated”.

The use of vector GIS data files to construct a virtual environment has at least two
main advantages over a grid (raster) based environment:

(1) The geometries of individual entities, such as buildings, may be described as
polygons of arbitrary shape (as opposed to a collection of rectangular grids).

(2) Transport networks, such as road networks, which agents may travel along,
may be represented accurately as a graph.

SimGenis was built using JADE [JADE 2010], which does not directly include ca-
pabilities for building environments from vector GIS data. This is perhaps why
vector GIS environments in SimGenis did not materialize, and why the virtual
environments in JADE-based ABSs are still often quite simplistic, e.g. [Gonzalez
2010]. PLAN-C however was built using Repast [Repast 2010], which does of-
fer support for building environments from vector GIS data. In later versions of
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PLAN-C [Mysore et al. 2006; Narzisi et al. 2006; Narzisi et al. 2006; Narzisi et al.
2007], vector GIS data were used to model Manhattan island, an area of size 60
km2. After making some simplifying assumptions, open-source GIS files were used
to construct a non-planar graph representing the road and (mostly underground)
subway network. The 104,730 nodes of this graph included some 167 subway stops,
and 30 hospitals [Narzisi et al. 2006; Narzisi et al. 2007] (22 hospitals in the ear-
lier [Mysore et al. 2006]). In this case, a modified A* algorithm [Korf 1990] was
used to determine agents’ paths along the graph.

Other ABSs built using Repast also take advantage of its vector GIS capabili-
ties. For example, GAMA [An 2008; Amouroux et al. 2009], the ABS which the
AROUND project uses, is built using Repast. After preparation in ArcGIS [ArcGIS
2010], four shapefiles [ESRI 1998] (a vector GIS file format) representing roads,
hospitals, police-barracks and agents, are used to model the Ba-Dinh district in
Hanoi [Chu et al. 2008; Chu et al. 2009], an area approximately 10 km2 in size.
The road layer is used to construct a graph, along which the agents move. Shortest
distances in this graph are computed in three different ways: ‘on the fly’, where each
time an agent needs to know a shortest path to a destination node, it is computed
using Dijsktra’s algorithm [Dijkstra 1959]; ‘on the fly with memory’, same as ‘on
the fly’, but if the shortest path between two nodes has already been computed, it
is not recomputed; and ‘pre-computation’, where all shortest paths are computed
before the beginning of the simulation using the Floyd-Marshall algorithm [Floyd
1962; Warshall 1962].

In order for an ABS to construct rapidly the widest range of environments pos-
sible, the use of GIS data which are open-source and commonly available is de-
sirable [Takahashi et al. 2005]. Movements towards this goal have been seen, for
example in RoboCup Rescue, where early environments were not built using stan-
dard GIS files23. Thus, initially, new environments appeared quite slowly:

—In 2001, the original environment included with RoboCup Rescue represented
the Nagata Ward in Kobe city, Japan, centred on the JR Nagata Railway. Rep-
resenting an area of 0.25 km2, this contained 778 buildings, and a road network
with 818 edges and 765 nodes [Takahashi et al. 2001].

—In 2002, a ‘Virtual City’ map was added. This represented a fictitious area of
0.29 km2, and its road network contained 622 edges and 531 nodes.

—In 2003, a map of Foligno, Italy was added. Representing an area of 0.74 km2,
this contained 1078 buildings, and a road network with 1480 edges and 1369
nodes.

—In 2004, a map generator was introduced, which enabled the creation of random
maps.

It was not until 2009 that the rapid construction of environments representing real
cities was enabled in RoboCup Rescue. Then, as part of the ‘infrastructure’ com-
petition24, Gobelbecker and Dornhege [2009] introduced a plug-in for the JOSM

23Chu et al. [2009] describes RoboCup Rescue’s ‘lack of support for standard GIS description’ as

a ‘major problem’ and cites it as a reason for the construction of GAMA.
24The RoboCup Rescue ‘infrastructure’ competition is a separate competition to the one men-

tioned on page 18. Its purpose is to drive development of the RoboCup Rescue ABS itself, rather
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Fig. 9. Payoff of bottom-up models vs their complexity; here we view complexity as complexity
of an ABS environment.

(Java OpenStreetMap) editor [JOSM 2010], which enabled the creation of files
for use in RoboCup Rescue from OpenStreetMap [OpenStreetMap 2010]. Where
OpenStreetMap did not provide building data for an area, this tool automatically
created buildings, based on the space available. Sato and Takahashi [2011] compare
environments built using this tool with environments built using a combination of
open-source data from OpenStreetMap and the Japanese Geographical Survey In-
stitute (GSI), which provides accurate geometries for individual buildings. Using
the more accurate GSI data, the number of individual buildings constructed in-
creased by a factor of 6-8.5, whilst the average floor area of each building decreased
by a factor of 7-10. In some scenarios this was found to influence simulation results:
the larger buildings produced using the tool of Gobelbecker and Dornhege [2009]
took a longer time to burn than the smaller buildings produced using the more ac-
curate GSI data; furthermore, gaps between smaller buildings prevented fire from
spreading.

It should be noted however, that increasing the level of detail, and thus com-
plexity, of the environment is not a desideratum per se. Rather, an optimal level
of complexity will exist at which the environment should be described. In other
contexts, this has been described as the ‘Medawar zone’ [Grimm et al. 2005], and is
illustrated in Figure 9. If the environment contains all the information possible, the
model becomes overcomplex for its purpose; if insufficient information is included,
to the point that simulations are inaccurate, then the model becomes oversimplified.
The ‘Medawar zone’ represents that intermediate level of complexity where payoff
is maximum. Further research, such as investigating the effect of further dividing
buildings into rooms, as is done in [Lee et al. 2008], would be useful in identifying
the optimal level of complexity needed for modelling environments for large-scale
emergency response.

3.2.2 Environment-environment interactions. The spreading of fire (leading to
the burning of buildings) mentioned earlier is an example of a process which makes
changes to the environment, independent of the actions of agents. These processes
model environment-environment interactions. The presence of such processes means

than agent action selection mechanisms.
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Kernel Agents
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. . .

Simulator n

Domain objects

Viewer

Fig. 10. Architecture of the 2010 RoboCup Rescue Simulation Platform [Skinner and Ramchurn
2010]. ‘Domain objects’ uses GIS files to construct the environmental entities. The ‘simulators’

are responsible for modelling the dynamic parts of the environment.

that the state of the environment may change whilst an agent decides upon a
suitable action. For an agent in such a scenario, the environment is said to be
dynamic [Russell and Norvig 2009]. Conversely, if the state of the environment
does not change whilst an agent deliberates, it is said to be static. In a dynamic
environment, the extra processes present may be simulated:

(1) by means of additional programs, which communicate with the ABS; or

(2) as part of the ABS itself.

The use of additional programs to evolve the environment leads to modularity:
additional programs may be added in the future, and existing programs may be
removed if required, with minimum impact on the remaining code of the ABS. In
RoboCup Rescue for example, these extra programs are known as simulators, and
they are responsible for modelling fires [Nussle et al. 2005], crowds [Brenner et al.
2005], traffic and most recently floods [Shahbazi et al. 2010]. These simulators
communicate with the entities represented in the environment, which are contained
in a separate domain objects component, via TCP/IP sockets, through a central
kernel. Further agents and viewer components also communicate through this
kernel. The overall architecture of RoboCup Rescue [Skinner and Ramchurn 2010]
may be seen in Figure 10.

Alternatively, the processes controlling the dynamism of the environment may be
an integral part of the ABS code itself. This is often the case with ABSs built using
Repast. For example, in PLAN-C [Narzisi et al. 2006] , ‘it is possible to initialize
multiple catastrophe-agent and setting their time of activation’ [sic]. Thus, special
types of agent in PLAN-C are used to make the environment dynamic. From the
point of view of the rescuer agents, the environment is dynamic, as its state can
change independently of their actions.

Not all view an ABS as the most appropriate way to model the environment
and its evolution during an emergency. For example, Gonzalez [2009b] states that
although a “MAS” may be used for modelling responders, it is “not necessarily
appropriate for modeling the crisis situation itself. Other types of models may be
required for representing the objects, events and dynamics of the environment in

ACM Journal Name, Vol. V, No. N, Month 20YY.



ABS for Large-Scale Emergency Response: Usage and Implementation · 31

which those agents interact.”25. One of the reasons given for this is that entities
in the environment “differ from the response agents in that they do not necessarily
require a high degree of autonomy or complexity.” As a solution, the use of a
discrete-event simulation package [Jacobs et al. 2002] is proposed for modelling
the environment and its evolution, whilst the ABS models the agents. Practical
software issues arose when combining the JADE built multi-agent system with a
discrete-event simulation. For example, ‘animated proxies’ of the agents needed to
be represented inside the discrete-event simulation, to model their interaction with
the environment. Furthermore, to allow communication between agents and the
environmental entities, an object containing all the environmental entities needed
to be created which both inherited from a JADE class and implemented an interface
from the discrete-event simulation package.

Examples of environment-environment interactions include:

Fire. Nussle et al. [2005] proposes a simulation of fire spread based on direct heat
transport, radiation, and convection, which has been implemented in RoboCup
Rescue. Ruas et al. [2009] propose the use of the Swarm toolkit [Swarm 2011] with
this fire simulation.

Flood. Shahbazi et al. [2010] describe a flood simulation for use in RoboCup
Rescue, whilst Tanigawa et al. [2005] describe the use of a flood model in the
distributed simulation IDSS [Koto and Takeuchi 2003].

Weather. Carley et al. [2004] describe the use of wind in BioWar; this is impor-
tant as it can disperse biomaterial at the time of a biological attack.

3.2.3 Providing information to sense. Finally, from a software point of view,
ABSs which use GIS environments require a suitable data structure for storing
entities. In particular, an efficient index is needed, to determine the entities situated
in an agent’s vicinity. RoboCup Rescue uses an R-tree data structure [Guttman
1984; Manolopoulos et al. 2003], from the Java Spatial Index [JSI 2010] package,
to store entities in the environment, and provide fast access to them. Repast
makes use of the GeoTools package [Turton 2008], which provides R-tree and quad-
tree [Finkel and Bentley 1974] data structures for spatial indexing. The use of such
indices occurs in the sense method of agents; the remaining agent concepts are
discussed in the following Section.

3.3 Agent Implementations

In Section 2.2 we saw that, at an abstract level, an individual agent is composed of
a state. After senseing its environment, an agent’s state is updated by a method
called next. An action method then uses the updated state, to select an action
for the agent to perform in the environment. In this section, we shall review how
these abstract concepts have been made concrete in ABS for large-scale emergency
response.

3.3.1 State and next. The state of an agent may consist of multiple parame-
ters and data-structures. We have already seen one agent parameter explicitly in

25Part of the reason Gonzalez raises this issue, whereas e.g. the PLAN-C authors do not, is that

Gonzalex uses JADE (a ‘multi-agent’ toolkit) whereas PLAN-C is built using Repast.
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Fig. 11. Markov chain representing transitions between health states for a victim agent in a normal
cell, with no intervention from rescuer agents, in SimGenis [Saoud et al. 2006].

Equation 1: the ‘health level’ of a civilian, which was used as part of the objec-
tive in RoboCup Rescue. A ‘health level’ parameter is perhaps the most common
type of parameter in agents which represent human individuals. This is because it
is needed for determining whether such an agent is dead or alive, and, as can be
seen from Table I, the ‘number of fatalities’ is one of the most common types of
objectives used when optimizing large-scale emergency response26.

Conceptually, the health parameter may be discrete-valued, continuous, or vector-
valued. When the parameter representing health is discrete, Markov chains, and
the closely related finite-state machines, are a popular way to model their evolu-
tion. In SimGenis for example, a discrete-valued health level parameter is the only
parameter in the state of agents which represent victims. Figure 11 shows the five
discrete values this health parameter can take, and how these evolve in the form of
a Markov chain. The transition probabilities between states depend on:

(1) The victim agent’s immediate environment. In this case, the ‘type’ of the cell
(‘normal’ or ‘danger’) that the victim is in. (Recall from Section 3.2, that the
environment is modelled as a grid in SimGenis.)

(2) Whether or not the victim agent is receiving treatment from rescuer agents. In
SimGenis, ‘rescuer’ agents are used to represent doctors, nurses, fire-fighters
and ‘rescue chiefs’ (supervisors). A doctor may intervene with a victim by:

(a) stabilizing the victim: this increases the probability of their health staying
in the same state, and decreases its probability of worsening; or

(b) treating the victim: this increases the probability of their health improving,
and decreases its probability of worsening.

The behaviour of ‘rescuer’ agents in SimGenis is discussed in more detail later.

The probabilities given in Figure 11 are those used in a ‘normal’ cell without
intervention from ‘rescuer’ agents. Heuristics, such as the those in (a) and (b)
above, are used to generalize from this reference Markov chain, to estimate the
transition probabilities in ‘normal’ cells with intervention from rescuers, and in
‘danger’ cells with and without intervention from rescuers. As it is responsible for
updating the state, this Markov chain represents the next method for victim agents
in SimGenis. This takes the ‘type’ of the cell that the agent is in, and whether
‘rescuer’ agents are stabilizing/treating it, as parameters. These are obtained from

26It is also needed for determining whether or not an individual is infected in a pandemic; ‘number

of people infected’ is the most common objective for such an emergency.
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Fig. 12. Evolution between the nine discrete health states in IMAMCR [Khalil et al. 2010].

a sense method27, which is called regularly for each victim agent: in this case, once
per second [Saoud et al. 2006]28,29.

When the emergency is a human pandemic, most ABSs use a modified ‘SIR’
model [Kermack and McKendrick 1927], which also represents the health of human
individuals as one of a finite number of discrete states. The original version of
SIR has three health states: Susceptible, Infectious and Recovered. In their ABS
IMAMCR, Khalil et al. [2010] extended the SIR model to include nine states in
total, to model the H1N1 pandemic (swine flu) in Egypt. All agents begin in
the Susceptible (S) state, i.e. they are prone to becoming infected by the H1N1
virus. Upon coming into direct contact with someone infected with the virus, an
agent’s health state changes to in-Contact (C). With a certain probability, given
by a realistic probability distribution, in-contact agents may become infected, in
which case their state changes first to Exposed (E), then to Infected (I). Whilst in
the exposed state, agents remain non-contagious. Again, with a certain probability,
infected agents may seek medical help, in which case they become Quarantined (Q),
or not, in which case they remain Non-Quarantined (NQ). Non-quarantined agents
may later become quarantined, if they later decide to seek medical attention. Both
quarantined and non-quarantined have a certain probability of dying (moving to
a Dead state (D)). Quarantined agents, however, have a probability of becoming
Recovered (R), in which case they either become Immune (M) to the H1N1 virus,
or susceptible again. This evolution of health states, which is the next method for
agents in IMAMCR, is shown in Figure 12.

The health parameter of an agent does not have to be discrete. In the simulated
Sarin attack in PLAN-C, for example, it is modelled as a continuous30 parameter,
hl ∈ [0, 1], where 0 corresponds to dead and 1 corresponds to perfect health. The
maximum rate at which an agent’s health can deteriorate is determined by the
agent’s current health level, relative to:

(1) A ‘critical’ health level, p2. Below this level, an agent’s health may deteriorate

27Note that when we talk of sense, next and action methods in an ABS, we of course mean
their equivalents in the actual code, which may be quite different in structure, never mind in the

names of methods used.
28It should be noted that the numerical values of the transition probabilities in the Markov chain
also depend on the amount of simulated time represented by the discrete time-step between state
updates, as they have unit ‘per unit of simulated time’.
29In JADE, the toolkit that SimGenis uses, agent behaviours can be scheduled to be called at
regular time intervals.
30In the Java (Repast) code, this is modelled as a double.
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if(rand(0,1) < hl)
hl = hl+ rand(0,tl + tu);

else

{
double z;

if(hl > p1) z = zmax;

else if(hl > p2) z = zd;
else z = zc;

hl = hl− rand(0,(1-tl)*z);

}

(a)

Parameter Value

p1 0.5

p2 0.2
zmax 0.000138 per minute

zd 0.000416 per minute

zc 0.000695 per minute
tu not reported

(b)

Fig. 13. (a) Evolution of a victim’s health parameter in PLAN-C. (b) Parameter values used in

Mysore et al. [2006].

at a maximum rate of zc.

(2) A ‘dangerous’ health level, p1, where p1 > p2. Below this level, but above the
‘critical’ level, an agent’s health may deteriorate at a maximum rate of zd.

Above p1, an agent’s health level may deteriorate at a maximum rate of zmax. The
parameters p1, p2, zmax, zc, zd are all global, i.e. they do not vary from agent to
agent. The evolution of an agent’s health parameter also depends on the current
level of treatment it is receiving, which, like the health level itself, is modelled as a
real number, tl ∈ [0, 1]. The algorithm for evolving the health state hl is given in
Figure 13(a), where rand(0,x) returns a number in the range [0,x] using a uniform
random distribution, and tu is a parameter which denotes the ‘maximum untreated
recovery’. This is the next method for PLAN-C. The values used for these global
parameters in Mysore et al. [2006] are given in Figure 13(b).

Finally, we note that vector-valued quantities may also be used, to assign health
levels to different parts of the human body. For example, the ‘Injury Severity
Score’ [Baker et al. 1974] assigns a value to each of six different parts of the human
body: the head and neck ; the face; the thorax ; the abdomen; the extremities; and
external soft tissue. Although these values are then aggregated to produce a final
‘score’, there is no reason not to allow them retain their ipseity as components of a
vector, thus avoiding any loss of information. To the best of our knowledge, such a
level of detail has yet to be used in ABS for large-scale emergency response.

3.3.2 Action selection: action. So far we have reviewed implementations of the
health parameter in an agent’s state, and possible next methods for updating it.
However, we also know agents perform actions in the environment. For example, we
have already seen, from the viewpoint of a victim agent, how the actions of a rescuer
agent can influence the evolution of its health parameter. The selection of which
action to perform by an agent is handled by its action method, the implementation
of which may be (from Section 3.1):

(1) an approximation to what occurs in reality; or

(2) a completely new algorithm which bears no resemblance to how actions are
selected in reality (taxon U3).
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Agents whose action methods are of the second variety are invariably homo eco-
nomicus [Hare and Deadman 2004], that is, they act rationally. This is in contrast
to homo sapiens, who are said to have a ‘bounded’ rationality [Simon 1957; Rubin-
stein 1998].

Occasionally however, agents which are intended to be bounded rational make use
of an algorithm indicative of perfectly rational behaviour. Consider for example, a
move action, which results from an action method which contains some algorithmic
description of movement behaviour. In this case, the behaviour is responsible for
determining where the agent is to go, i.e. path-planning. For the traversal between
two nodes on a graph, popular path-planning algorithms include:

(1) Dijkstra’s algorithm [Dijkstra 1959], which calculates the shortest path between
two nodes in a graph (with edges with non-negative weights).

(2) A* algorithm [Hart and Raphael 1968], which uses heuristics to achieve effi-
ciency gains over Dijkstra’s algorithm.

(3) D* algorithm [Stentz 1995], which is similar to the A* algorithm, except edge
weights vary in time.

(4) ‘longroads’ algorithm [Kleiner et al. 2006], which simplifies the road network
before applying Dijkstra’s algorithm. It is popular among the RoboCup Rescue
community.

These algorithms each construct and optimize an appropriate objective function, to
determine the optimal path from a source to a destination. Even should a human
travel along the shortest route when making a journey, it is not because they have
mentally performed these calculations. Despite this, these algorithms are used
in ABSs for agents which are supposed to approximate reality. For example, in
SimGenis31, Saoud et al. [2006] uses Dijkstra’s algorithm to navigate ambulances
in the environment, but admits ‘This assumes that the ambulance driver knows
perfectly the whole city . . . In future work, we would consider dynamic routing,
taking into account unknown areas . . . ’. Some ABSs amend algorithms such as
those above to incorporate bounded rationality into agent movement. For example,
Mysore et al. [2006] achieves it in PLAN-C by introducing a characteristic of panic-
like behaviour into the rational path-finding algorithm [Korf 1990] used by civilian
agents affected by the Sarin attack.

Considering the action of movement from a programming perspective, any move

action performed by an agent depends on that agent’s movement behaviour, as
implemented in its action method. Different movement behaviour would result in
different move actions. Observing then that:

(1) movement behaviour may vary between agents; and

(2) it is good programming practice to ‘encapsulate what varies’ [Freeman et al.
2004],

it seems a sensible option to represent each distinct movement behaviour in its own
class. Furthermore, if32:

31Which ‘mimics the observed team’ [Saoud et al. 2006].
32The following terminology is based on C++, but, with the exceptions in parentheses, may be

applied to Java.

ACM Journal Name, Vol. V, No. N, Month 20YY.



36 · Glenn I. Hawe et al.

Cell-Phone Behaviours

NullActivity No cell-phone activity
AlwaysCall Always make a call

DistributionBased Make a call with a probability based on empirical data

Movement Behaviours

NullMovement No movement

RandomMovement Random movement

MoveAndReturnMovement Simulates a return journey between the agent’s home and
workplace

FleeMovement Moves the agent in a straight line away from danger

BoundedFleeMovement As above, but stops moving the agent once it reaches a
threshold distance away from the danger

RoadFleeMovement Constrains agents in vehicles to the road network

CongestionFleeMovement Simulates traffic jams
MixedFleeMovement Combines FleeMovement and CongestionFleeMovement

Table III. Agent Behaviours in WIPER.

(1) each concrete movement class derives from the same abstract base class, over-
riding a pure virtual move method; and

(2) each agent stores a pointer (in Java, reference) to this abstract base class; and

(3) this pointer is set to point to some concrete class at run-time (in Java, the
reference is set to a concrete class); and

(4) action calls the move method using this pointer (in Java, reference),

then the code becomes particularly elegant. This is, in fact, a description of the
Strategy design pattern33 [Gamma et al. 1994], and is exactly how movements
are implemented in WIPER [Schoenharl et al. 2009]. The abstract base class for
movement behaviours is MovementModel. This contains a public pure virtual34

method move which eight concrete behaviour classes then override. A second be-
haviour, relating to cell-phone use, is implemented similarly. Its abstract base class
is ActivityModel. This contains a public pure virtual method checkCall, which
determines if the agent should make a call, and if it should, does. The eight con-
crete movement behaviours, and three concrete cell-phone behaviours are listed in
Table III.

Figure 14 illustrates this design in the form of a (simplified) UML class diagram
for an agent in WIPER [Schoenharl 2007]. A step method in the WiperAgent class
(this is the agent’s action method) is scheduled to be called every time-step (one
time-step represents one minute simulated time) using Java annotations in Repast.
This calls the move and checkCall methods on the references to MovementModel

and ActivityModel respectively. As these are set to the appropriate concrete
behaviours during the agent construction, they execute the appropriate move and
checkCall actions.

The use of the Strategy design pattern allows the programmer to vary the be-
haviour(s) in an agent’s action method, at run-time. If behaviours are known

33A more conventional alternative in Java is to use references to an interface which implements a
move method.
34Being implemented in Java (Repast), every non-static public method is virtual by default.
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WiperAgent
attr1: MovementModel
attr2: ActivityModel
step(): void

WiperAgent
attr1: MovementModel
attr2: ActivityModel
step(): void

ActivityModel

checkCall(): void
modelType(): int

AlwaysCallModelNullActivityModel DistributionBasedModel

MovementModel

move(): void
modelType(): int

RandomMovementNullMovement MoveAndReturnMovement FleeMovement BoundedFleeMovement

RoadFleeMovement CongestionFleeMovement MixedFleeMovement

Fig. 14. UML class diagram for WiperAgent, showing the use of the Strategy design pattern.

at compile-time, and do not need to be changed at run-time, then the compile-
time equivalent, ‘policy-based class design’ [Alexandrescu 2001] could be used to
structure code instead (in C++ at least). With the exception of the incomplete
‘meta-agent’ project [de Halleux 2003] however35, as far as we are aware, there
are no examples of this being used for the construction of any ABS, whatever the
application.

Of course, movement is only one example of an agent action, albeit the most com-
mon one as it applies to all agents which represent human individuals. Specialized
actions exist for specialized types of agent. For example, recall that rescuer agents
in SimGenis are used to represent doctors, nurses, fire-fighters and ‘rescue chiefs’
(supervisors). Each of these ‘types’ of agent has actions available only to them.
From a programming perspective, the UML class diagram for SimGenis agents in
Figure 15 shows that each type of rescuer agent is represented by its own class,
which derives from an abstract Rescuer base class. Rescuer and Victim agents
both derive from a common Actor base class. As the JADE toolkit is used, we can
infer Actor derives from its Agent base class (not shown), which itself implements
the Runnable interface. Such an object-oriented hierarchy of classes is a common
way to implement agents in an ABS. By making action a virtual function, different
behaviours may be implemented in each ‘type’ of agent class.

The behaviour of the rescuer agents in SimGenis are implemented using heuristic
rules, which relate to the following six activities:

(1) The search for victims in the affected area.

(2) The on-site treatment administered by doctors to victims.

(3) The transfer of victims to an advanced medical post (AMP).

(4) The transfer of victims from an AMP to a hospital.

(5) The routing of ambulances to hospital.

(6) The overall management of the rescue process.

35The fact that “using policies, creating agents with different dynamics and behaviors is as simple

as changing some templates parameters” is cited as the major idea behind the project.
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Actor

Victim Rescuer

Doctor Rescue Chief Helper

Fireman Nurse

Fig. 15. UML class diagram for agents in SimGenis [Saoud et al. 2004].

Search for victims

E1 Explorers move randomly; only fire-fighters can pass through ‘danger’ cell.

E2 Explorers move in an organized way, without visiting same cell more than once.

On-site treatment

F1 Doctors look for nearest victim within their vision.

F2 If doctor has already visited the site, they go towards nearest already known victim.

F3 If doctor has already visited the site, they go towards most seriously injured already
known victim.

A1 Doctors examine victim by questioning and observation.

A2 Doctors examine victim based on reading victim’s health-parameter history (paper
medical form).

A3 As A2, but electronic medical form.

T Victims in state 1 or 2 need stabilizing first, or on-site treatment, or both, and receive
higher evacuation priority than victims in state 3 or 4.

Table IV. Examples of the heuristic rules used to implement rescuer behaviours in SimGenis.

Key to rule labels: E : ‘exploration’ rule; F : ‘finding victim’ rule; A: ‘assessment of victim’ rule;

T : ‘treatment of victim’ rule.

The rules relating to the search for victims, and to on-site treatment, are shown in
Table IV. These, and the rules for the other four activities, are used to implement
the action methods in the Doctor, Fireman, Nurse and RescueChief classes.
Clearly, in order to use these rules, rescuer agents implement a sense method, to
give them perception. Although no details are given on how sense is implemented,
we are told that rescuer agents can distinguish between victims and other rescuer
agents, and between the three different types of cell. Furthermore, each rescuer
agent’s state contains a ‘visibility’ parameter, which determines how far they can
see. Other parameters in the state of a rescuer agent include its location, speed,
and a parameter representing the action which they are currently performing.

From the UML class diagram in Figure 15, we can see that agents are used to
represent only human individuals in SimGenis. Sometimes however, it is natural
to think of non-human entities as making decisions, e.g. we may talk of a hospital
‘deciding’ to release a patient, or of an ambulance ‘deciding’ to travel a particular
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Fig. 16. Two-step action method for an ambulance agent in AROUND [Chu et al. 2009].

route to an incident. Because of this, many ABSs model non-human decision-
making entities as agents, a process referred to as agentification by Gaumé et al.
[1999]. Hare and Deadman [2004] assert agentification “brings some reality into
the discussion of agents in simulation in that it makes clear that agents should be
designed to fit simulation needs”.

For example, in AROUND [Chu et al. 2009], ambulances are represented as
agents. The behaviour of an ambulance agent, as implemented in its action

method, is modelled as a two step process:

(1) In the first step, a decision tree is used to decide what type of action to perform.

(2) In the second step, a utility function is used to determine the finer details of
this action.

This is illustrated in Figure 16. The set of actions available to the ambulance
is Ac = { ‘go to refuel point’, ‘go to hospital’, ‘go to victim’}. The decision tree
is used to choose which of these three actions to execute. If it is decided to go
to a refuel point, a utility function FR determines the precise refueling point R to
visit (R1,R2 or R3), with the point minimizing FR being selected (in this case R2).
Similarly, for the other two types of action, utility functions FH and FV are used
to choose exactly which hospital to visit and which victim to collect, respectively.
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The utility functions take the form of a weighted sum of different objectives.
The simulation begins with a set of default weights. However, experts (paramedics)
interact with the AROUND simulation as it runs, and can overrule what ambulance
agents decide to do. When this happens, the weights are optimized, to yield an
objective which is most consistent with the expert’s decision making.

RoboCup Rescue also makes use of agentification. Recall from Figure 10 that it
used a centralized kernel to update its virtual environment from a set of simulators.
Also connected to this kernel was an agents component. It contains two main
categories of agents:

(1) platoon agents: ‘fire brigades’, ‘police forces’ and ‘ambulances’; and

(2) centre agents: ‘fire stations’, ‘police offices’ and ‘ambulance centres’. These
send and receive messages to and from their corresponding platoons, in order
to aid their coordination.

Users of RoboCup Rescue must implement the actions for each of these agent
types. From the 2010 team source code [Robocup Rescue Simulation Project 2010],
there are two main routes to doing this:

(1) One starting point is the abstract base class StandardAgent, from which two
separate base classes, one for platoon agents and another for centre agents, may
be derived. This approach is shown in the UML class diagram in Figure 17,
where AbstractPlatoonAgent and CenterAgent are the base classes for pla-
toon agents and centre agents respectively, and was the one taken by the 2010
competition winners, RoboAKUT [Akin et al. 2010].

(2) Alternatively, users can derive their agents directly from StandardAgent’s base
class, AbstractAgent, as IAMRescue [Fave et al. 2010], the runners-up of the
2010 competition, did.

Either way, the platoon and centre agents each derive from AbstractAgent

(which, for completeness, derives from AbstractComponent). AbstractAgent con-
tains a function processSense, which is called at regular intervals by the kernel.
This is the sense method for each agent. This takes as an argument an object
of type KASense which contains perception information for the agent36. From the
source code, we note that processSense makes use of the Template design pat-
tern [Gamma et al. 1994], with the ‘hook’ being a pure virtual function think

which each subclass of AbstractAgent must implement. The function think takes
as parameters:

(1) the set of changes which the agent has observed since the previous timestep,

(2) the set of communication messages that the agent hears, and

(3) the timestep.

Using this sensory information, each type of agent selects an action to perform, and
sends a message back to the kernel informing it of its choice. Thus think represents
the action method for RoboCup Rescue agents.

36This is determined by the kernel, which uses the R-tree spatial index to determine the entities

in ‘domain objects’ which are in the line-of-sight of the agent.
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AbstractComponent

AbstractAgent

processSense()
think()

StandardAgent
E extends StandardEntity

AbstractPlatoonAgent CenterAgent

AmbulanceTeamAgent

PoliceForceAgent

FireBrigadeAgent

AmbulanceCenterAgent

PoliceOfficeAgent

FireStationAgent

AmbulanceTeam

PoliceForce

FireBrigade

Building

Fig. 17. UML class diagram for agents developed for RoboCup Rescue.

The set of actions, Ac, from which an action is selected, depends on the type
of agent. The actions for the three different types of platoon agent are shown in
Table V. Some of these actions pertain to communication, which is designed to be
imperfect (as messages drop). It is the responsibility of the user of RoboCup Rescue
to implement, in think, the action selection algorithms for the platoon agents and
their centres, in order to optimize the performance measure, given in Equation 1.

The ambulance agent in AROUND was an example of a learning agent. Its
behaviour adapts with time, in response to feedback from the experts interacting
with the simulation. An example of a learning agent in RoboCup Rescue is found
in Runka [2010]. There, each different type of platoon agent39 in RoboCup Rescue
is modeled as a tree structure, which represents a decision tree. Optimal tree
structures are sought using genetic programming [Koza 1992]. Two approaches are
taken:

(1) In the first approach, three separate tree structures, each representing one of
the platoon types of agent in RoboCup Rescue, make up a single ‘individual’
in the genetic program. The score of an individual is calculated by running a
RoboCup Rescue simulation, using its three tree structures as platoon agents.
A population of individuals is created, and the score of each individual calcu-
lated. Individuals are selected for crossover (with a probability which increases

37Using the StandardCommunicationModel.
38Using the ChannelCommunicationModel.
39A ‘distributed’ approach is taken, whereby the responsibility for decision making lies entirely
with the platoon agents. A ‘centralized’ approach, on the other hand, requires that the platoon

agents send all their information to their centers, which then issue them with instructions.
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All

sendRest Do nothing
sendMove Move agent

sendSay Communicate to other nearby agents37

sendTell Communicate via transmission37

sendSpeak Communicate by voice or radio38

sendSubscribe Subscribe to a set of communication channels

PoliceForce

sendClear Clear a road

FireBrigade

sendExtinguish Extinguish a building

AmbulanceTeam

sendRescue Remove a trapped civilian from a building

sendLoad Load an injured civilian for transport
sendUnload Unload a carried civilian

Table V. Platoon agent actions in RoboCup Rescue.

with their score), creating a new population of individuals with favourable tree
substructures. Populations evolve for several generations, in the search for the
optimal individual.

(2) In the second approach, an individual represents only one type of platoon agent.
Three separate populations thus exist, which evolve separately. In this case,
the score of an individual is related only to the tasks that type of agent is
responsible for: thus the ambulance team score is based only on the health
points at the end of the simulation, the fire brigade score is dependent only on
the area of unburnt buildings, and the police force score is dependent only on
the number of cleared blockages.

An example fire brigade agent is given in Figure 18. Its tree-structure may be
interpreted as follows: ‘if the agent is at a fire, then put out all the fires at the
nearest building; otherwise, move to the nearest building on fire’.

This type of agent is quite appealing. In particular, it does not need its behaviour
to be manually coded (other than the initial genetic programming code), nor does
it require a human expert to learn from, as AROUND agents did.

Whilst the agents in AROUND learnt ‘real’ behaviour from the experts they
represented, these genetically programmed agents learn ‘optimal’ behaviour, as the
fitness function driving their evolution is the objective function in Equation 1.
Initial results using them, however, were disappointing [Runka 2010], and further
work is required before if they are to become competitive with manually written
action selection mechanisms.

3.4 Scale

For an ABS to model large-scale emergency response, either the number of agents
representing displaced, injured or killed human individuals is greater than one hun-
dred, or the virtual environment in which the agents are situated represents a
geographical area greater than ten square kilometres, or both. There are two rea-
sons why using a single computing core to run such ABSs may be inadequate [Hager
and Wellein 2011]:
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Fig. 18. An example tree structure representation of a fire brigade agent for RoboCup Rescue,
built using genetic programming in [Runka 2010].

(1) A single core is too slow to perform the simulation in a tolerable amount of time.
For example, Schoenharl et al. [2009] shows how the run-time of WIPER in-
creases as the number of agents increases (linearly until approximately 200,000
agents, non-linearly thereafter). This places an upper limit on the number of
agents which can be simulated in real-time.

(2) The memory requirements of the ABS exceed the amount of main memory avail-
able on a single machine. For example, RoboCup Rescue was designed to model
the 1995 Kobe earthquake, in which over 6,000 people died, and over 300,000
people were made homeless. However, RoboCup Rescue typically only models
one hundred or so agents. In an investigation of its scalability, Sarika [2010]
reports “the number of rescue agents was increased to 175. However, the sim-
ulation failed, the reason being either the simulators or the agent program ran
out of memory during the initialization process”.

Going beyond the use of one computing core is parallelization, and requires a
parallel computer. There are three main classes of parallel computer40 which are
in use today [Fujimoto 2000]:

(1) Shared memory multiprocessors, which allow multiple processors to work on a
common, shared physical address space.

(2) Distributed memory multicomputers, each processor of which has its own ex-
clusive memory to which no other processor has direct access.

(3) Single Instruction Multiple Data (SIMD) machines, each processor of which
executes the same instruction on different data during program execution.

40As well as parallel computers, there are distributed computers [Fujimoto 2000]. The difference

between a parallel computer and a distributed computer is the physical area they occupy: the
processors of a parallel computer are in close proximity (a single machine, or a cabinet), whilst

the processors of a distributed computer can span anything from a building to the entire planet.
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3.4.1 Shared memory parallelism. Multi-core computers are now commonplace,
and so exploiting shared memory parallelism is an issue facing all software [Sutter
2005; Sutter and Larus 2005], not just ABS. The most common way to exploit it
in an ABS is to enable agents to act concurrently. Fortunately, the most common
programming languages provide support for concurrent programming. Examples
of the use of shared memory parallelism include:

Java. Parker [2007] exploited shared (and distributed) memory parallelism in an
agent-based epidemic model, using Java. On his choice of programming language
he states: “Java is an excellent language with which to develop large agent based
models. Java provides many built in features like RMI, serialization, and thread
management tools that allow a distributed model to be easily developed.”

ABSs which are built using the Java-based toolkit JADE take advantage of shared
memory parallelism, as each agent derives from the agent class which implements
the runnable interface and thus executes in a Java thread. The Java Virtual
Machine allows processes to run multiple threads concurrently.

C/C++. In an investigation into strategies on how to mitigate an influenza pan-
demic in the U.S. and in the U.K., Ferguson et al. [2003] describe an ABS written
in C, which used the OpenMP libraries [Massaioli et al. 2005] to exploit shared
memory parallelism. This was necessary, as the U.S. simulation used 55 GB of
RAM.

3.4.2 Distributed memory parallelism. IDSS (Integrated Disaster mitigation Sim-
ulation System) [Koto and Takeuchi 2003] is one of the earliest ABSs for large-scale
emergency response which attempts to use distributed memory parallelism. It uses
RoboCup Rescue’s architecture as a starting point for the design of a new ABS
which uses distributed memory parallelism. In IDSS, a large virtual environment is
first split into smaller sub-regions. Each one of these sub-regions is then simulated
on a separate computer. The attributes of the entities in each sub-region, referred
to as ‘state variables’, are stored in a table called a ‘space-time graph’. Each cell
of a space-time graph gives the value of a state variable, determined by the row of
the table, at a particular instance in time, determined by the column of the table.

On each computer, a local ‘kernel’ program is responsible for the management
of the space-time graph. Communicating with each kernel is a set of sub-simulator
programs, also running locally. Each sub-simulator handles a different dynamic as-
pect of the simulation, such as fire-spread, or building collapse, just as in RoboCup
Rescue. Each kernel communicates with the other kernels which represent its neigh-
bouring sub-regions, using a 100MB Ethernet interconnect. The connection of two
kernels, each of which has multiple sub-simulators, is shown in Figure 19. In [Koto
and Takeuchi 2003], a 4.5 km2 region of Kobe city, Japan, was simulated on a 34
PC cluster. The performances of traffic and fire sub-simulators were shown to in-
crease linearly as the number of computers used increased; however, at this point
the IDSS did not contain any agents.

Agents were introduced to IDSS by Takeuchi [2005]. Each agent communicates
with the kernel via a special sub-simulator called an Agent Proxy, labelled as APX
in Figure 19. One APX sub-simulator can contain multiple agents, and a kernel can
communicate with multiple APX sub-simulators. One APX (and the agents it han-
dles) runs in one single process. This approach reduces the number of agent-kernel
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Fig. 19. Architecture of IDSS, running on two PCs.

messages, as each APX bundles together the messages for all the agents it con-
tains, before sending it to the kernel. Being situated in a distributed environment,
the issues of an agent migrating from one APX to another, and communication
between agents in different APXs are noted by Takeuchi [2005]. Just as with the
environment, scale is the prime consideration. A figure of 10,000 agents is given as
a minimum target, however it is unreported if this was actually realized.

Another ABS for large-scale emergency response which uses distributed memory
parallelism is EpiSimS. In [Valle et al. 2006], it was used to simulate the daily
routines of 16,106,535 individuals in Los Angeles, which was modelled as a graph
consisting of 562,452 locations. These locations were distributed over 106 proces-
sors, each with 2GB of local memory. Agents representing individuals were able
to pass between processors (if their daily routine took them from a location on
one processor to a location on another). Synchronisation was enforced through use
of a master-worker scheme: after each time step, each of the (worker) processors
simulating locations communicated back to a single master process, which ensured
no processes started got a certain amount of time (‘slack time’) ahead of any other.

Implemented at Los Alamos National Laboratory during the mid 1990s, EpiSimS
was built using a distributed computing toolkit, which was also used for implement-
ing the transport simulation TRANSIMS [Smith et al. 1995]. In 2009, that toolkit
was redesigned and updated, to become ABM++ [Roberts 2010], which is C++
based and makes use of MPI. The appearance of this toolkit, and the similar Repast
HPC [Collier and North 2011], will hopefully ease the development of future dis-
tributed memory ABSs for large-scale emergency response.

3.4.3 SIMD parallelism. The use of Graphical Processing Units (GPUs) for gen-
eral purpose computing has become increasingly popular in recent years, especially
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since the introduction of CUDA (Compute Unified Device Architecture) by NVIDIA
in early 2007 [Kirk and Hwu 2010]. GPUs belong to the class of Single Instruction
Multiple Data (SIMD) parallel computers: they can process the same instructions
on multiple data concurrently. Sethia and Karlapalem [2010] argue this is well
suited to agent-based simulation, as:

(1) each type of agent is represented by the same code (single instruction), and

(2) there exists multiple instances of each type of agent (multiple data).

They outline its potential application, using CUDA, to RoboCup Rescue. A
major bottleneck in RoboCup Rescue occurs in the kernel, where perceptions for
each agent are computed in serial. Therefore, the calculation of percepts for the
agents concurrently on a GPU is proposed.

RoboCup Rescue is written in Java, whilst CUDA requires code written in
C/C++. Therefore this proposed use of GPUs requires a rewrite of much code,
in particular:

(1) the calculation of percepts in the kernel,

(2) the simulator code, and

(3) agent action selection code.

Instead, Sethia and Karlapalem [2010] emulate the use of a GPU in RoboCup
Rescue, and so their testing can only really be viewed as proof-of-principle.

Although it is probably only a matter of time before the use of GPU computing
becomes more common in ABS for large-scale emergency response, perhaps the
biggest barrier at present is that experienced here: CUDA, the most popular tool
currently for GPU computing, requires C/C++, however most popular agent-based
toolkits for building ABS are Java-based. For example, Nikolai and Madey [2009a]
state that 42% of agent-based toolkits are Java-based. However, as these include
some very popular toolkits such as JADE and Repast, the actual percentage of
ABSs using a Java-based toolkit is likely to be much higher.

4. SUMMARY AND FUTURE RESEARCH

4.1 Summary

ABS for large-scale emergency response has been reviewed from four perspectives:
usage; implementation of the environment ; implementation of the agents; and scal-
ability.

We have seen that ABS may be used either during preparedness, or during the
real-time response. The behaviour of agents is based on the behaviour of the real
world decision-making entities they represent, unless the purpose of the research is
to design behaviours ex novo: the search for ‘smart new algorithms’ as Carley et al.
[2006] puts it. As one single execution of an ABS simulates one course of action to
one particular scenario, multiple executions are needed to determine the description
of the optimal response. How this description depends on the characteristics of the
emergency itself is often investigated using a traditional design of experiments.

The environment is most commonly implemented either as a grid, or using a
vector GIS data source. Using vector GIS data has the advantage that entities
of arbitrary shape can be modelled accurately. Furthermore, transport networks
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may be modelled using graphs. The level of detail in the virtual environment
influences the results of the simulation, as seen in the work of Sato and Takahashi
[2011], however with increased level of detail comes increased computational burden.
Dynamic aspects of the environment may be modelled using separate simulators
which communicate with the ABS, or alternatively they may be modelled using
agents within the ABS itself.

Agents are used to represent human individuals, such as civilians and emergency
responders. Some non-human entities are also modelled as agents, if they can be
viewed as making decisions: examples include hospitals and ambulances. Object
oriented hierarchies are typically used to create different ‘types’ of agent, whilst
different agent behaviours may be encapsulated using the Strategy design pattern.
Heuristic rules, finite state-machines, utility functions and decision trees have all
been used as the basis for implementing decision-making. The state of an agent
may contain multiple parameters which influence its behaviour. One particular pa-
rameter additionally often plays a part in the objective of the response, namely the
health level of human individuals; this is usually modelled as evolving stochastically.

Achieving the large-scales involved, either in terms of numbers of agents, or in
terms of the size of the environment, often requires the use of parallelism. Dis-
tributed memory parallelism is useful for modelling large geographical areas, but
may not be an option when using some agent-based toolkits. More common is the
use of shared memory parallelism, which enables the concurrent execution of agent
actions. GPU computing is also an option, and (as of 2010) is just beginning to be
applied to large-scale emergency response.

4.2 Future research

4.2.1 Usage. The potential for ABS to contribute to policy formulation in emer-
gency response, where commonly held beliefs have been cited as lacking in support-
ing evidence [der Heide 2006; Bledsoe 2007], should not be overlooked.

In the case of the ‘golden hour’, the popular notion that trauma casualties will
have “better outcomes if they are provided definitive care within 60 minutes of the
occurrence of their injuries”, an investigation into the origin of the term [Lerner and
Moscati 2001] found nothing to suggest it had been derived from evidence. Nev-
ertheless, it has gone on to become a key assumption used in emergency response
practice, despite statistical analyses [Osterwalder 2002; Newgard et al. 2010] con-
cluding that the hypothesis should be rejected. A related assumption states that
the response time, the time taken by the Ambulance Service to arrive on scene, is
highly influential on the resulting mortality - as a result, targets on response times
are typically imposed in an effort to improve outcomes [LAS 2011]. Again, data to
support this claim is lacking, with Turner et al. [2006] noting that “overall, there is
little evidence in the data that faster response times have led to better outcomes” and
similar findings reported by Petri et al. [1995] and Pons and Markovchick [2002].
The potential contribution of ABS to these debates could entail not only the supply
of further data to help assess the validity of the assumptions in question, but also
the ability to predict the impact of their removal in terms of risk and benefit.

As a result of the perceived importance of speed in the response operation, lights
and sirens are commonly used by the Ambulance Service in an effort to decrease
travel times. It has been shown, however [Hunt et al. 1995], that the benefit of such
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measures are minimal in practice, decreasing response time by only 43.5 seconds on
average. Furthermore, despite this limited gain in transport time, a large propor-
tion (39.4%) of cases where lights and sirens were in use were noted by [Lacher and
Bausher 1997] to involve casualties who were in a stable condition. The authors go
on to call for “additional studies to evaluate the effect of lights and sirens on trans-
port time and patient outcome” in order to “aid the development of standardized
protocols for their appropriate use”, a request which the use of ABS could go some
way to fulfilling - in particular, work comparing the benefit of lights and sirens to
the associated risk to both ambulance personnel and their charge [Maguire et al.
2002] would be valuable. Similarly, the use of helicopters as means to transport ca-
sualties is by no means a risk-free operation, with the occupational death rate of air
medical crew far exceeding the average across all working citizens [Bledsoe 2007].
As with the use of lights and sirens in ground transportation, research has suggested
that use of medical helicopters may not result in any benefit to patients [Bledsoe
et al. 2006] and as such the continued investment in them should be reviewed, a
task to which ABS could make a valuable contribution.

4.2.2 Implementation. Regarding the implementation of ABS, work is begin-
ning to appear comparing how different representations of the environment influ-
ence large-scale emergency response simulations [Sato and Takahashi 2011]. Further
work like this, covering more representations, and for different scenarios, would be
of great benefit to future ABS developers. Similar work using different agent rep-
resentations would also be useful, and along with general advice such as [Müller
1999], would go towards identifying which representations lie inside the ‘Medawar’
zone for different types of large-scale emergency.

Although the simulation of large-scale emergency response is clearly an area that
could benefit from high performance computing, most ABSs in this domain have
been single-process. We expect that the appearance of toolkits for distributed
agent-based simulation, such as Repast HPC [Collier and North 2011], will go a
long way towards improving this situation. Indeed, as projects become ever more
ambitious [Helbing et al. 2010], even an ABS for planet-sized emergencies, in which
there as many agents as there are people on Earth, seems to be an increasingly
realistic goal.
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Bledsoe, B., Wesley, A., Eckstein, M., Dunn, T., and O’Keefe, M. 2006. Helicopter scene

transport of trauma patients with nonlife-threatening injuries: a meta-analysis. The Journal of

trauma 60, 6, 1257.

Bledsoe, B. E. 2007. Myths of Modern EMS. http://www.bryanbledsoe.com/data/pdf/handouts/

powerpoint/Myths of Modern EMS (Revised).ppt.

Bonabeau, E. 2002. Agent-based modeling: Methods and techniques for simulating human sys-

tems. Proceedings of the National Academy of Sciences 99, 7280–7287.

Boucher, A., Canal, R., Chu, T., Drogoul, A., Gaudou, B., Le, V., Moraru, V.,
Van Nguyen, N., Vu, Q., Taillandier, P., et al. 2009. The around project: Adapting robotic

disaster response to developing countries. In Safety, Security & Rescue Robotics (SSRR), 2009
IEEE International Workshop on. IEEE, 1–6.

Branke, J., Deb, K., Dierolf, H., and Osswald, M. 2004. Finding knees in multi-objective

optimization. In Parallel Problem Solving from Nature-PPSN VIII. Springer, 722–731.

Bratman, M. E., Isreal, D. J., and Pollack, M. E. 1988. Plans and resource-bounded practical
reasoning. Computational Intelligence 4, 349–355.

Brenner, M., Wijermans, N., Nussle, T., and De Boer, B. 2005. Simulating and controlling

civilian crowds in robocup rescue. In Proceedings of Robocup 2005.

Brown, D., Riolo, R., Robinson, D., North, M., and Rand, W. 2005. Spatial process and

data models: Toward integration of agent-based models and GIS. Journal of Geographical
Systems 7, 1, 25–47.

Burke, E. and Hendry, C. 1997. Decision making on the london incident ground: an exploratory

study. Journal of Managerial Psychology 12, 1, 40–47.

Carley, K. M., Altman, N., Kaminsky, B., Nave, D., and Yahja, A. 2004. BioWar: A City-
Scale Multi-Agent Network Model of Weaponized Biological Attacks. Tech. Rep. CMU-ISRI-

04-101, Carnegie Mellon University.

Carley, K. M., Fridsma, D. B., Casman, E., Yahja, A., Altman, N., Chen, L.-C., Kaminsky,
B., and Nave, D. 2006. BioWar: scalable agent-based model of bioattacks. IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans 36, 2 (March), 252–265.

ACM Journal Name, Vol. V, No. N, Month 20YY.



50 · Glenn I. Hawe et al.

Castelfranchi, C. 2010. Bye-Bye Agents? Not. IEEE Internet Computing 14, 2, 93–96.

Castle, C. J. E. and Crooks, A. T. 2006. Principles and concepts of agent-based modelling for

developing geospatial simulations. Tech. Rep. Paper 110, Centre for Advanced Spatial Analysis,

University College London. September.

Challenger, R., Clegg, C. W., and Robinson, M. A. 2009a. Understanding Crowd Behaviours:

Guidance and Lessons Identified. U.K. Cabinet Office.

Challenger, R., Clegg, C. W., and Robinson, M. A. 2009b. Understanding Crowd Behaviours:

Simulation Tools. U.K. Cabinet Office.

Chen, F., Zhai, Z., and Madey, G. 2011. Dynamic Adaptive Disaster Simulation: Developing a
Predictive Model of Emergency Behavior Using Cell Phones and GIS Data. In Proceedings of

SpringSim 2011. Boston.

Chen, L., Kaminsky, B., Tummino, T., Carley, K., Casman, E., Fridsma, D., and Yahja, A.

2004. Aligning simulation models of smallpox outbreaks. Intelligence and Security Informatics,

1–16.

Chu, T., Drogoul, A., Boucher, A., and Zucker, J. 2009. Interactive Learning of Independent

Experts Criteria for Rescue Simulations. Journal of Universal Computer Science 15, 13, 2701–
2725.

Chu, T.-Q., Boucher, A., Drogoul, A., Vo, D.-A., Nguyen, H.-P., and Zucker, J.-D. 2008.
Interactive learning of expert criteria for rescue simulations. Lecture Notes in Artificial Intel-

ligence 5357, 127–138.

Collier, N. and North, M. 2011. Repast HPC: A platform for Large-scale Agent-based Mod-

eling. In Large-Scale Computing Techniques for Complex System Simulations, W. Dubitzky,
K. Kurowski, and B. Schott, Eds. Wiley.

Connelly, L. G. and Bair, A. E. 2004. Discrete event simulation of emergency department
activity: A platform for system-level operations research. Academic Emergency Medicine 11, 11,

1177–1185.

Crook, P. 2010. Exercise Orion - Practical Planning. Fire Magazine, 32–33.

Crooks, A. 2008. Constructing and Implementing an Agent-Based Model of Residential Segre-
gation through Vector GIS. Tech. Rep. 133, Centre for Advanced Spatial Analysis, University

College London. April.

Crooks, A., Castle, C., and Batty, M. 2008. Key challenges in agent-based modelling for geo-

spatial simulation. Computers, Environment and Urban Systems 32, 6 (November), 417–430.

Crooks, A. T. 2007. The Repast Simulation/Modelling System for Geospatial Simulation. Tech.

Rep. Paper 123, Centre for Advanced Spatial Analysis, University College London. September.

da Silva, M. L., Kostakos, V., and Matsumoto, M. 2008. Improving emergency response to

mass casualty incidents. In Proceedings of Sixth Annual IEEE International Conference on
Pervasive Computing and Communications. IEEE Computer Society, Los Alamitos, CA, USA,

256–259.

Darema, F. 2004. Dynamic Data Driven Applications Systems: A New Paradigm for Application

Simulations and Measurements. Lecture Notes in Computer Science 3038, 662–669.

de Andrade, P. R., Monteiro, A. M. V., and Camara, G. 2008. Entities and relations for agent-

based modelling of complex spatial systems. In Proceedings of the First Brazilian Workshop
on Social Simulations. 52–63.

de Boer, J. 1990. Definition and classification of disasters: Introduction of a disaster severity
scale. The Journal of Emergency Medicine 8, 591–595.

de Halleux, J. 2003. MetaAgent, a Steering Behavior Template Library.
http://www.codeproject.com/KB/library/metaagent.aspx.

Department of Defense. 2009. Dod modeling and simulation (m&s) verification, validation,
and accreditation. http://www.dtic.mil/whs/directives/corres/pdf/500061p.pdf.

der Heide, E. A. 2006. The importance of evidence-based disaster planning. Annals of Emergency
Medicine 47, 1, 34–49.

Dijkstra, E. 1959. A note on two problems in connexion with graphs. Numerische mathe-
matik 1, 1, 269–271.

ACM Journal Name, Vol. V, No. N, Month 20YY.



ABS for Large-Scale Emergency Response: Usage and Implementation · 51

Dombrowsky, W. R. 1995. Again and again: Is a disaster what we call ”disaster”? some concep-

tual notes on conceptualizing the object of disaster sociology. International Journal of Mass
Emergencies and Disasters 13, 3 (November), 241–254.

Drogoul, A., Vanbergue, D., and Meurisse, T. 2003. Multi-agent based simulation: where are
the agents? Lecture Notes in Computer Science 2581, 1–15.

Duong, D. 2010. Verification, validation, and accreditation (vv&a) of social simulations. In

Spring Simulation Interoperability Workshop, Orlando.

Epstein, J. M. 2009. Modelling to contain pandemics. Nature 460, 687.

Epstein, J. M. and Axtell, R. 1996. Growing Artificial Societies. Brookings Institutuion Press.

ESRI. 1998. ESRI Shapefile Technical Description. http://www.esri.com/library/whitepapers/
pdfs/shapefile.pdf.

Eubank, S. 2002. Scalable, efficient epidemiological simulation. In Proceedings of the 2002 ACM

symposium on Applied Computing. 139–145.

Fave, F. M. D., Packer, H., Pryymak, O., Stein, S., Stranders, R.,

Tran-Thanh, L., Vytelingum, P., Williamson, S. A., and Jennings,

N. R. 2010. Rescue Simulation League Team Description IAMRescue.
http://roborescue.sourceforge.net/2010/tdps/agents/iamrescue.pdf.

FEMA. 2007. National preparedness guidelines. http://www.fema.gov/pdf/government/npg.pdf.

FEMA. 2011. Federal emergency management agency. http://www.fema.gov/hazard/types.shtm.

Ferguson, N., Keeling, M., Edmunds, W., Gani, R., Grenfell, B., Anderson, R., and Leach,
S. 2003. Planning for smallpox outbreaks. Nature 425, 6959, 681–685.

Finkel, R. A. and Bentley, J. L. 1974. Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4, 1–9.

Fischer III, H. W. 2003. The Sociology of Disaster: Definitions, Research Questions, Measure-

ments in a Post-September 11, 2001 Environment. In presented at the annual meeting of the

American Sociological Association, Atlanta Hilton Hotel, Atlanta, GA.

Floyd, R. W. 1962. Algorithm 97: Shortest Path. Communications of the ACM 5, 6 (June),

345.

Franklin, S. and Graesser, A. 1997. Is it an agent, or just a program?: A taxonomy for
autonomous agents. Lecture Notes in Computer Science 1193, 21–35.

Freeman, E. T., Robson, E., Bates, B., and Sierra, K. 2004. Head First Design Patterns.
O’Reilly Media.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems. Wiley.

Gad-El-Hak, M. 2009. The art and science of large-scale disasters. Bulletin of the Polish
Academy of Sciences: Technical Sciences 57, 1, 3–34.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1994. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley.
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