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Sung Y. Park¶

Abstract

This paper studies the connections among quantile regression, the asymmetric Laplace

distribution, maximum likelihood and maximum entropy. We show that the maximum likeli-

hood problem is equivalent to the solution of a maximum entropy problem where we impose

moment constraints given by the joint consideration of the mean and median. Using the

resulting score functions we propose an estimator based on the joint estimating equations.

This approach delivers estimates for the slope parameters together with the associated “most

probable” quantile. Similarly, this method can be seen as a penalized quantile regression

estimator, where the penalty is given by deviations from the median regression. We derive

the asymptotic properties of this estimator by showing consistency and asymptotic normal-

ity under certain regularity conditions. Finally, we illustrate the use of the estimator with a

simple application to the U.S. wage data to evaluate the effect of training on wages.
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1 Introduction

Different choices of loss functions determine different ways of defining the location of a

random variable y. For example, squared, absolute value, and step function lead to mean,

median and mode, respectively (see Manski, 1991, for a general discussion). For a given

quantile τ ∈ (0, 1), consider the loss function in a standard quantile estimation problem,

L1,n(µ; τ) =
n∑

i=1

ρτ (yi − µ) =
n∑

i=1

(yi − µ) (τ − 1(yi ≤ µ)) , (1)

as proposed by Koenker and Bassett (1978). Minimizing L1,n with respect to the location

parameter µ is identical to maximizing the likelihood based on the asymmetric Laplace

probability density (ALPD):

f(y;µ, τ, σ) =
τ(1− τ)

σ
exp

(
−ρτ (y − µ)

σ

)
, (2)

for given τ . The well known symmetric Laplace (double exponential) distribution is a special

case of (2) when τ=1/2.

Several studies developed the properties of the maximum likelihood (ML) estimators

based on ALPD. Hinkley and Revankar (1977) derived the asymptotic properties of the

unconditional MLE under ALPD. Kotz, Kozubowski, and Podgórsk (2002b) and Yu and

Zhang (2005) consider alternative MLE approaches for ALPD. Moreover, models based on

ALPD have been proposed in different contexts. Machado (1993) used the ALPD to derive

a Schwartz information crietrion for model selection for quantile regression (QR) models,

and Koenker and Machado (1999) introduced a goodness-of-fit measure for QR and related

inference processes. Yu and Moyeed (2001) and Geraci and Botai (2007) used a Bayesian QR

approach based on the ALPD. Komunjer (2005) constructed a new class of estimators for

conditional quantiles in possibly misspecified nonlinear models with time series data. The

proposed estimators belong to the family of quasi-maximum likelihood estimators (QMLEs)

and are based on a family of ‘tick-exponential’ densities. Under the asymmetric Laplace

density, the corresponding QMLE reduces to the Koenker and Bassett (1978) linear quantile

regression estimator. In addition, Komunjer (2007) developed a parametric estimator for the
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risk of financial time series expected shortfall based on the asymmetric power distribution,

derived the asymptotic distribution of the maximum likelihood estimator, and constructed

a consistent estimator for its asymptotic covariance matrix.

Interestingly, the parameter µ in functions (1) and (2) is at the same time the location

parameter, the τ -th quantile, and the mode of the ALPD. For the simple (unconditional)

case, the minimization of (1) returns different order-statistics. For example, if we set τ =

{0.1, 0.2, ..., 0.9}, the solutions are, respectively, the nine deciles of y. In order to extract

important information from the data a good summary statistic would be to choose one order

statistics accordingly the most likely value. For a symmetric distribution one would choose

the median. Using the ALPD, for given τ , maximization of the corresponding likelihood

function gives that particular order statistics. Thus, the main idea of this paper is to jointly

estimate τ and the corresponding order statistic of y which can be taken as a good summary

statistic of the data. The above notion can be easily extended to modeling the “conditional

location” of y given covariates x, as we do in Section 2.3. In this case, the ALPD model

provides a twist to the QR problem, as now τ becomes the most likely quantile in a regression

set-up.

The aim of this paper is threefold. First, we show that the score functions implied by the

ALPD-ML estimation are not restricted to the true data generating process being ALPD, but

they arise as the solution to a maximum entropy (ME) problem where we impose moment

constraints given by the joint consideration of the mean and median. By so doing, the

ALPD-ML estimator combines the information in the mean and the median to capture the

asymmetry of the underlying empirical distribution (see Park and Bera, 2009, for a related

discussion).

Secondly, we propose a novel Z-estimator that is based on the estimating equations from

the MLE score functions (which also correspond to the ME problem). We refer to this esti-

mator as ZQR. The approximate Z-estimator do not impose that the underline distribution is

ALPD. Thus, although the original motivation for using the estimating equations is based on

the ALPD, the final estimator is independent of this requirement. We derive the asymptotic

properties of the estimator by showing consistency and asymptotic normality under certain
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regularity conditions. This approach delivers estimates for the slope parameters together

with the associated ‘most probable’ quantile. The intuition behind this estimator works as

follows. For the symmetric and unimodal case the selected quantile is the median, which

coincides with the mean and mode. On the other hand, when the mean is larger than the

median, the distribution is right skewed. Thus, taking into consideration the empirical distri-

bution, there is more probability mass to the left of the distribution. As a result it is natural

to consider a point estimate in a place with more probability mass. The selected τ -quantile

does not necessarily lead to the mode, but to a point estimate that is most probable. This

provides a new interpretation of QR and frames it within the ML and ME paradigm.

The proposed estimator has an interesting interpretation from a policy perspective. The

QR analysis gives a full range of estimators that account for heterogeneity in the response

variable to certain covariates. However, the proposed ZQR estimator answers the question:

of all the heterogeneity in the conditional regression model, which one is more likely to be

observed? In general, the entire QR process is of interest because we would like to either

test global hypotheses about conditional distributions or make comparisons across different

quantiles (for a discussion about inference in QR models see Koenker and Xiao, 2002). But

selecting a particular quantile provides an estimator as parsimonious as ordinary least squares

(OLS) or the median estimators. The proposed estimator is, therefore, a complement to the

QR analysis rather than a competing alternative. This set-up also allows for an alternative

interpretation of the QR analysis. Consider, for instance, the standard conditional regression

set-up, y = x′β + u, and let β be partitioned into β = (β1, β2). For a given value of β1 = β̄1,

we may be interested in finding the representative quantile of the unobservables distribution

that corresponds to this level of β1. For such a case, instead of assuming a given quantile

τ we would like to estimate it. In other words, the QR process provides us with the graph

β1(τ), but the graph τ(β1) could be of interest too.

Finally, the third objective of this work is to illustrate the implementation of the proposed

ZQR estimator. We apply the estimator to the estimation of quantile treatment effects of

subsidized training on wages under the Job Training Partnership Act (JTPA). We discuss

the relationship between OLS, median regression and ZQR estimates of the JTPA treatment
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effect. We show that each estimator provides different treatment effect estimates. More-

over, we extend our ZQR estimator to Chernozhukov and Hansen (2006, 2008) instrumental

variables strategy in QR.

The rest of the paper is organized as follows. Section 2 develops the ML and ME frame-

works of the problem. Section 3 derives the asymptotic distribution of the estimators. In

Section 4 we report a small Monte Carlo study to assess the finite sample performance of the

estimator. Section 5 deals with an empirical illustration to the effect of training on wages.

Finally, conclusions are in the last section.

2 Maximum Likelihood and Maximum Entropy

In this section we describe the MLE problem based on the ALPD and show its connection

with the maximum entropy. We show that they are equivalent under some conditions. In

the next section we will propose an Z-estimator based on the resulting estimating equations

from the MLE problem, which corresponds to ME.

2.1 Maximum Likelihood

Using (2), consider the maximization of the log-likelihood function of an ALPD:

L2,n(µ, τ, σ) = n ln

(
1

σ
τ(1− τ)

)
−

n∑

i=1

1

σ
ρτ (yi − µ) = n ln

(
1

σ
τ(1− τ)

)
− 1

σ
L1,n(µ; τ), (3)

with respect to µ, τ and σ. The first order conditions from (3) lead to the following estimating

equations (EE):
n∑

i=1

1

σ

(
1

2
sign(yi − µ) + τ − 1

2

)
= 0, (4)

n∑

i=1

(
1− 2τ

τ(1− τ)
− (yi − µ)

σ

)
= 0, (5)

n∑

i=1

(
− 1

σ
+

1

σ2
ρτ (yi − µ)

)
= 0. (6)
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Let (µ̂, τ̂ , σ̂) denote the solution to this system of equations. The first equation leads to

the most probable order statistic. Once we have τ̂ , (1− 2τ̂) will provide a measure of asym-

metry of the distribution. Equation (6) provides a straightforward measure of dispersion,

namely,

σ̂ =
1

n

n∑

i=1

ρτ̂ (yi − µ̂).

Then, the loss function corresponding to (3) can be rewritten as a two-parameter loss

function

− 1

n
L2,n(µ, τ) = ln

(
1

n
L1,n(µ; τ)

)
− ln (τ(1− τ)) . (7)

This determines that L2,n(µ, τ, σ) can be seen as a penalized quantile optimization function,

where we minimize ln
(
1
n
L1,n(µ; τ)

)
and penalize it by − ln (τ(1− τ)). The penalty can be

interpreted as the cost of deviating from the median, i.e. for τ = 1/2, − ln (τ(1− τ)) =

− ln(1/4) is the minimum, while for either τ → 0 or τ → 1 the penalty goes to +∞.

It is important to note that the structure of the estimating functions suggests that the

solution to the MLE problem can be obtained by first obtaining every quantile of the dis-

tribution, and then plugging them (with the corresponding estimator for σ) in (5) until this

equation is satisfied (if the solution is unique). In other words, given all the quantiles of y,

the problem above selects the most likely quantile as if the distribution of y were ALPD.

2.2 Maximum Entropy

The ALPD can be characterized as a maximum entropy density obtained by maximizing

Shannon’s entropy measure subject to two moment constraints (see Kotz, Kozubowski, and

Podgórsk, 2002a):

fME(y) ≡ argmax
f
−

∫
f(y) ln f(y)dy (8)

subject to

E|y − µ| = c1, (9)

E(y − µ) = c2, (10)

5



and the normalization constraint,
∫
f(y)dy = 1, where c1 and c2 are known constants. The

solution to the above optimization problem using the Lagrangian has the familiar exponential

form

fME(y : µ, λ1, λ2) =
1

Ω(θ)
exp [−λ1|y − µ| − λ2(y − µ)] , −∞ < y <∞, (11)

where λ1 and λ2 are the Lagrange multipliers corresponding to the constraints (9) and (10),

respectively, θ = (µ, λ1, λ2)
′ and Ω(θ) is the normalizing constant. Note that λ1 ∈ R

+ and

λ2 ∈ [−λ1, λ1] so that fME(y) is well-defined. Symmetric Laplace density (LD) is a special

case of ALPD when λ2 is equal to zero.

Interestingly, the constraints (9) and (10) capture, respectively, the dispersion and asym-

metry of the ALPD. The marginal contribution of (10) is measured by the Lagrangian

multiplier λ2. If λ2 is close to 0, then (10) does not have useful information for the data,

and therefore, the symmetric LD is the most appropriate. In this case, µ is known to be the

median of the distribution. On the other hand, when λ2 is not close to zero, it measures the

degree of asymmetry of the ME distribution. Thus the non-zero value of λ2 makes fME(·)
deviate from the symmetric LD, and therefore, changes the location, µ, of the distribution

to adhere the maximum value of the entropy (for general notion of entropy see Soofi and

Retzer, 2002).

Let us write (9) and (10), respectively, as

∫
φ1(y, µ)fME(y : µ, λ1, λ2)dy = 0 and

∫
φ2(y, µ)fME(y : µ, λ1, λ2)dy = 0,

where φ1(y, µ) = |y − µ| − c1 and φ2(y, µ) = (y − µ) − c2. By substituting the solution

fME(y : µ, λ1, λ2) into the Lagrangian of the maximization problem in (8), we obtain the

profiled objective function

h(λ1, λ2, µ) = ln

∫
exp

[
−

2∑

j=1

λjφj(y, µ)

]
dy. (12)
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The parameters λ1, λ2 and µ can be estimated by solving the following saddle point problem

(Kitamura and Stutzer, 1997)

µ̂ME = argmax
µ

ln

∫
exp

[
−

2∑

j=1

λ̂j,MEφj(y, µ)

]
dy,

where λ̂ME = (λ̂1,ME, λ̂2,ME) is given by

λ̂ME(µ) = argmin
λ

ln

∫
exp

[
−

2∑

j=1

λjφj(y, µ)

]
dy.

Solving the above saddle point problem is relatively easy since the profiled objective function

has the exponential form. However, generally, c1 and c2 are not known or functions of

parameters and Lagrange multipliers in a non-linear fashion. Moreover, in some cases, the

closed form of c1 and c2 is not known. In order to deal with this problem, we simply

consider the sample counterpart of the moments c1 and c2, say, c1 = (1/n)
∑n

i=1 |yi − µ|
and c2 = (1/n)

∑n
i=1(yi − µ). Then, it can be easily shown that the profiled objective

function is simply the negative log-likelihood function of asymmetric Laplace density, i.e.,

h(λ1, λ2, µ) = −(1/n)L2,n(µ, τ, σ) (see Ebrahimi, Soofi, and Soyer, 2008). In this case, µ̂ME

and λ̂ME satisfy the following first order conditions ∂h/∂µ = 0, ∂h/∂λ2 = 0 and ∂h/∂λ1 = 0,

respectively:

−λ1
n

n∑

i=1

sign(yi − µ)− λ2 = 0. (13)

2λ2
(λ1 + λ2)(λ1 − λ2)

+
1

n

n∑

i=1

(yi − µ) = 0, (14)

− 1

λ1

λ21 + λ22
λ21 − λ22

+
1

n

n∑

i=1

|yi − µ| = 0, (15)

Equations (13)-(15) are a re-parameterized version of (4)-(6). In fact, from a comparison of

(2) and (11) we can easily see that λ1 = 1/(2σ), λ2 = (2τ−1)/(2σ) and Ω(θ) = σ/(τ(1−τ)).
Given λ1 the degree of asymmetry is explained by λ2 that is proportionally equal to 2τ − 1

in ALPD. Note that λ2 = 0 when τ = 0.5, i.e., µ is the median. Thus finding the most

appropriate degree of asymmetry is equivalent to estimating τ based on the ML method.
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The role of the two moment constraints can be explained by the linear combination of two

moment functions, |y− µ| and (y− µ). Figure 1 plots g(y;λ1, λ2, µ) = λ1|y− µ|+ λ2(y− µ)
with three different values of λ2, λ1 = 1, and µ = 0. In general, g(y;λ1, λ2, µ) can be seen as

a loss function. Clearly, this loss function is symmetric when λ2 = 0. When λ2 = 1/3, g(·)
is tilted so that it puts more weight on the positive values in order to attain the maximum

of the Shannon’s entropy (and the reverse is true for λ2 = −1/3). This naturally yields the

asymmetric behavior of the resulting ME density.

[Figure 1]

2.3 Linear Regression Model

Now consider the conditional version of the above, by taking a linear model of the form

y = x′β + u, where the parameter of interest is β ∈ R
p, x refers to a p-vector of exogenous

covariates, and u denotes the unobservable component in the linear model. As noted in

Angrist, Chernozhukov, and Fernández-Val (2006), QR provides the best linear predictor for

y under the asymmetric loss function

L3,n(β; τ) =
n∑

i=1

ρτ (yi − x′iβ) =
n∑

i=1

((yi − x′iβ) (τ − 1(yi ≤ x′iβ))) , (16)

where β is assumed to be a function of the fixed quantile τ of the unobservable components,

that is β(τ). If u is assumed to follow an ALPD, the log-likelihood function is

L4,n(β, τ, σ) = n ln

(
1

σ
τ(1− τ)

)
−

n∑

i=1

(
1

σ
ρτ (yi − x′iβ)

)

= n ln

(
1

σ
τ(1− τ)

)
− 1

σ
L3,n(β; τ). (17)

Estimating β in this framework provides the marginal effect of x on the τ -quantile of the

conditional quantile function of y.

Computationally, the MLE can be obtained by simulating a grid of quantiles and choosing

the quantile that maximizes (17), or by solving the estimating equations, ∇L4,n(β, τ, σ) = 0,
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i.e.,
∂L4,n(β, τ, σ)

∂β
=

n∑

i=1

1

σ

(
1

2
sign(yi − x′iβ) + τ − 1

2

)
xi = 0, (18)

∂L4,n(β, τ, σ)

∂τ
=

n∑

i=1

(
1− 2τ

τ(1− τ)
− (yi − x′iβ)

σ

)
= 0, (19)

∂L4,n(β, τ, σ)

∂σ
=

n∑

i=1

(
− 1

σ
+

1

σ2
ρτ (yi − x′iβ)

)
= 0. (20)

As we stated before, L4,n can be written as a penalized QR problem loss function that

depends only on (β, τ):

− 1

n
L4,n(β, τ) = ln

(
1

n
L3,n(β; τ)

)
− ln (τ(1− τ)) , (21)

and the interpretation is the same as discussed in section 2.1.

3 A Z-estimator for Quantile Regression

In this section we propose a Z-estimator based on the score functions from equations (18)-

(20). Thus, although the original motivation for using the estimating equations is based on

the ALPD, the final estimator is independent of this requirement. Let ‖ · ‖ be the Euclidean
norm and θ = (β, τ, σ)′. Moreover, define the estimating functions

ψθ(y, x) =




ψ1θ(y, x)
ψ2θ(y, x)
ψ3θ(y, x)


 =




1
σ
(τ − 1(y < x′β)) x
1−2τ
τ(1−τ) −

(y−x′β)
σ

− 1
σ
+ 1

σ2ρτ (y − x′β)


 ,

and the estimating equations

Ψn(θ) =
1

n

n∑

i=1




1
σ
(τ − 1(yi < x′iβ)) xi

1−2τ
τ(1−τ) −

(yi−x′iβ)
σ

− 1
σ
+ 1

σ2ρτ (yi − x′iβ)


 =

1

n

n∑

i=1

ψθ(yi, xi) = 0.

A Z-estimator θ̂n is the approximate zero of the above data-dependent function that

satisfies ‖Ψn(θ̂n)‖
p→ 0.
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The implementation of the estimator is simple. As discussed in the previous section, an

iteration algorithm can be used to solve for the estimates in the estimating equations above.

Computationally, the estimates can be obtained by constructing a grid for quantiles τ and

solving the QR problem as in (18) and (19) to find β̂(τ) and σ̂(τ). Finally, we estimate

the quantile τ̂ that finds an approximate zero in (20). This algorithm is similar to the

one proposed in Hinkley and Revankar (1977) and Yu and Zhang (2005) that compute the

estimators for MLE under the ALPD. We find that the algorithm converges fast and is very

precise.

In the proposed Z-estimator the interpretation of the parameter β is analogous to the

interpretation of the location parameter in the QR literature. As in the least squares case,

the scale parameter σ can be interpreted as the expected value of the loss function, which

in the QR case corresponds to the expectation of the ρτ (.) function. Finally, τ captures a

measure of asymmetry of the underline distribution of y|x and also is associated with the

most probable quantile. In the Appendix A we discuss the interpretation of these parameters

in more detail.

We introduce the following assumptions to derive the asymptotic properties.

Assumption 1. Let yi = x′iβ0 + ui, i = 1, 2, ..., n, where (yi, xi) is independent and

identically distributed (i.i.d.), and xi is independent of ui, ∀i.

Assumption 2. The conditional distribution function of y, G(y|x), is absolutely contin-

uous with conditional densities, g(y|x), with 0 < g(·|·) <∞.

Assumption 3. Let Θ be a compact set, with θ = (β, τ, σ)′ ∈ Θ, where β ∈ B ⊂ R
p,

τ ∈ T ⊂ (0, 1), and σ ∈ S ⊂ R
+;

Assumption 4. E‖x‖2+ǫ <∞, and E‖y‖2+ǫ <∞ for some ǫ > 0.

Assumption 5. (i) Define Ψ(θ) = E [ψθ(y, x)]. Assume that Ψ(θ0) = 0 for a unique

θ0 ∈ intΘ. (ii) Define Ψn(θ) = En[ψθ(y, x)] =
1
n

∑n
i=1 ψθ(yi, xi). Assume that ‖Ψn(θ̂n)‖ =

op(n
−1/2).

Assumption A1 considers the usual linear model and imposes i.i.d. to facilitate the proofs.
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Assumption A2 is common in the QR literature and restricts the conditional distribution of

the dependent variable. Assumption A3 imposes compactness of the parameter space, and

A4 is important to guarantee the asymptotic behavior of the estimator. The first part of A4

is usual in QR literature and second part in least squares literature. Finally Assumption A5

imposes an identifiability condition and ensure that the solution to the estimating equations

is “nearly-zero”, and it deserves further discussion.

The first part of A5 imposes a unique solution condition. Similar restrictions are fre-

quently used in the QR literature to satisfy E[ψ1θ(y, x)] = 0 for a unique β and any given

τ . This condition also appears in the M and Z estimators literatures. Uniqueness in QR

is a very delicate subject and is actually imposed. For instance, Chernozhukov, Fernández-

Val, and Melly (2009, p. 49) propose an approximate Z-estimator for QR process and

assume that the true parameter β0(τ) solves E[(τ − 1{y ≤ X ′β0(τ)})X] = 0. Angrist,

Chernozhukov, and Fernández-Val (2006) impose a uniqueness assumption of the form:

β(τ) = argminβ E[ρτ (y − x′β)] is unique (see for instance their Theorems 1 and 2). See

also He and Shao (2000) and Schennach (2008) for related discussion.

It is possible to impose more primitive conditions to ensure uniqueness. These conditions

are explored and discussed in Theorem 2.1 in Koenker (2005, p. 36). If the y’s have a

bounded density with respect to Lebesgue measure then the observations (y, x) will be in

general position with probability one and a solution exists.1 However, uniqueness cannot be

ensured if the covariates are discrete (e.g. dummy variables). If the x’s have a component

that have a density with respect to a Lebesgue measure, then multiple optimal solutions

occur with probability zero and the solution is unique. However, these conditions are not

very attractive, and uniqueness is in general imposed as an assumption.

Note that the usual assumptions of uniqueness in QR described above for E[ψ1θ(y, x)] = 0

guarantee that β is unique for any given τ . Combining these assumptions and bounded

moments we guarantee uniqueness for E[ψ3θ(y, x)] = 0, because σ = E[ρτ (y−xβ)] such that

for each τ , σ is unique. With respect to the second equation E[ψ2θ(y, x)] = 0, it is satisfied

1See definition 2.1 in Koenker (2005) for a definition of general position.
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if
1− 2τ

τ(1− τ)
=
E[y − x′β]

σ
.

Therefore, for unique β and σ, the right hand side of the above equation is unique. Since

1−2τ
τ(1−τ) is a continuous and strictly decreasing, τ is also unique.2

The second part of A5 is used to ensure that the solution to the approximated working

estimating equations is close to zero. The solution for the estimating equations, Ψn(θ̂n) = 0,

does not hold in general. In most cases, this condition is actually equal to zero, but least

absolute deviation of linear regression is one important exception. The indicator function in

the first estimating equations determines that it may not have an exact zero. It is common in

the literature to work with M and Z estimators θ̂n of θ0 that satisfy
∑n

i=1 ψ(xi, θ̂n) = op(δn),

for some sequence δn. For example, Huber (1967) considered δn =
√
n for asymptotic

normality, and Hinkley and Revankar (1977) verified the condition for the unconditional

asymmetric double exponential case. This condition also appears in the quantile regression

literature, see for instance He and Shao (1996) and Wei and Carroll (2009). In addition, in

the approximate Z-estimator for quantile process in Chernozhukov, Fernández-Val, and Melly

(2009), they have that the empirical moment functions Ψ̂(θ, u) = En[g(Wi, θ, u)], for each

u ∈ T , the estimator θ̂(u) satisfies ‖Ψ̂(θ̂(u), u)‖ ≤ infθ∈Θ ‖Ψ̂(θ, u)‖+ ǫn where ǫn = o(n−1/2).

For the quantile regression case, Koenker (2005, p. 36) comments that the absence of a

zero to the problem Ψ1n(β̂n(τ)) = 0, where β̂n(τ) is the quantile regression optimal solution

for a given τ and σ, “is unusual, unless the yi’s are discrete.” Here we follow the standard

conditions for M and Z estimators and impose A5(ii). For a more general discussion about

this condition on M and Z estimators see e.g. Kosorok (2008, pp. 399-407).

Now we move our attention to the asymptotic properties of the estimator.

Theorem 1 Under Assumptions A1-A5, ‖θ̂n − θ0‖
p→ 0.

Proof: In order to show consistency we check the conditions of Theorem 5.9 in van der

2Note that m(τ) ≡ 1−2τ
τ(1−τ) is a continuous function, has a unique zero at τ = 1/2 and m(τ) > 0 for

τ < 1/2, m(τ) < 0 for τ > 1/2. As τ → 0, m(τ) → +∞, and as τ → 1, m(τ) → −∞. Finally,
dm(τ)
dτ

= −2τ(1−τ)−(1−2τ)2

τ2(1−τ)2 = −2τ+2τ2
−1+4τ−4τ2

τ2(1−τ)2 = −1+2τ−2τ2

τ2(1−τ)2 = −1+2τ(1−τ)
τ2(1−τ)2 < 0 for any τ ∈ (0, 1).
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Vaart (1998). Define F ≡ {ψθ(y, x), θ ∈ Θ}, and recall that Ψn(θ) = 1
n

∑n
i=1 ψθ(y, x) and

Ψ(θ) = E[ψθ(y, x)]. First note that, under conditions A3 and A5, the function Ψ(θ) satisfies,

inf
θ:d(θ,θ0)≥ǫ

‖Ψ(θ)‖ > 0 = ‖Ψ(θ0)‖,

because for a compact set Θ and a continuous function Ψ, uniqueness of θ0 as a zero implies

this condition (see van der Vaart, 1998, p.46).

Now we need to show that supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ p→ 0. By Lemma A1 in the Appendix

B we know that the class F is Donsker. Donskerness implies a uniform law of large numbers

such that

sup
θ∈Θ

|En[ψθ(y, x)]− E[ψθ(y, x)]|
p→ 0,

where f 7→ En[f(w)] =
1
n

∑n
i=1 f(wi). Hence we have supθ∈Θ ‖Ψn(θ)−Ψ(θ)‖ p→ 0.

Finally, from assumptions A1-A5 the problem has a unique root and also we have

‖Ψn(θ̂n)‖
p→ 0. Thus, all the conditions in Theorem 5.9 of van der Vaart (1998) are satisfied

and ‖θ̂n − θ0‖
p→ 0.

After showing consistency we move our attention to the asymptotic normality of the

estimator. In order to derive the limiting distribution define

V1θ = E [ψθ(y, x)ψθ(y, x)
′] , (22)

V2θ =
∂E [ψθ(y, x)]

∂θ′
. (23)

Here,

V1θ =


1
σ
τ(1− τ)E[xx′]

E[((1−2τ)sign(y−x′β)−(1−2τ)2)x′]
2στ(1−τ)

− E
[

1
σ2
ρτ (y − x′β)x′

]

1
2σ3

E[ρτ (y − x′β) (sign(y − x′β)− (1− 2τ))x′]

.
(1−2τ)2

τ2(1−τ)2
+ E[ 1

σ2
(y − x′β)2]− 2

(1−2τ)
τ(1−τ)

E[ 1
σ
(y − x′β)] 1

σ2
E[ρτ (y − x′β) (

(1−2τ)
τ(1−τ)

− 1
σ
(y − x′β))]

. . 1
σ4
E[ρ2τ (y − x′β)] + 1

σ2
− 1

σ3
E[ρτ (y − x′β)]




and

V2θ =



−E[g(x′β|x)xx′]

σ
1
σ
E[x] 0

. −1+2τ−2τ2

τ2(1−τ)2
1
σ2E[(y − x′β)]

. . − 1
σ2


 .
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Note that when y|x ∼ ALPD(x′β, τ, σ), then V1θ = V2θ.

Assumption 6. Assume that V1θ0 and V2θ0 exist and are finite, and V2θ0 is invertible.

Chernozhukov, Fernández-Val, and Melly (2009) calculated equations (22) and (23) in

the quantile process as an approximate Z-estimator.

Now we state the asymptotic normality result.

Theorem 2 Under Assumptions 1-6,

√
n(θ̂n − θ0)⇒ N(0, V −1

2θ0
V1θ0V

−1
2θ0

).

Proof: First, combining Theorem 1 and second part of Lemma A1, we have

Gnψθ̂n(y, x) = Gnψθ0(y, x) + op(1),

where f 7→ Gn[f(w)] =
1√
n

∑n
i=1(f(wi)− Ef(wi)). Rewriting we have

√
nEnψθ̂n(y, x) =

√
nEψθ̂n(y, x) +Gnψθ0(y, x) + op(1). (24)

By assumption A5

∥∥Enψθ̂n(y, x)
∥∥ = op(n

−1/2) and E[ψθ0(y, x)] = 0.

Now consider the first element of the right hand side of (24). By a Taylor expansion about

θ̂n = θ0 we obtain

E[ψθ̂n(y, x)] = E[ψθ0(y, x)] +
∂E[ψθ(y, x)]

∂θ′
∣∣
θ=θ0

(θ̂n − θ0) + op(1), (25)

where

∂E[ψθ(y, x)]

∂θ′

∣∣∣
θ=θ0

=
∂

∂θ′
E




1
σ
(τ − 1(y < x′β)) x(
1−2τ
τ(1−τ) −

(y−x′β)
σ

)

− 1
σ
+ 1

σ2ρτ (y − x′β)




∣∣∣
θ=θ0

.

Since by condition A6, ∂E[ψθ(y,x)]
∂θ′

∣∣∣
θ=θ0

= V2θ0 , equation (25) can be rewritten as

E[ψθ(y, x)]
∣∣
θ=θ̂n

= V2θ0(θ̂n − θ0) + op(1). (26)
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Using Assumption A5 (ii), from (24) we have

op(1) =
√
nEψθ̂n(y, x) +Gnψθ0(y, x) + op(1),

and using the above approximation given in (26)

op(1) = V2θ0
√
n(θ̂n − θ0) +Gnψθ0(y, x) + op(1).

By invertibility of V2θ0 in A6,

√
n(θ̂n − θ0) = −V −1

2θ0
Gnψθ0(y, x) + op(1). (27)

Finally, from Lemma A1 θ 7→ Gnψθ(y, x) is stochastic equicontinuous. So, stochastic equicon-

tinuity and ordinary CLT imply that Gnψθ(y, x)⇒ z(·) converges to a Gaussian process with

variance-covariance function defined by

V1θ0 = E [ψθ(y, x)ψθ(y, x)
′]
∣∣∣
θ=θ0

. Therefore, from (27)

√
n(θ̂n − θ0)⇒ V −1

2θ0
z(·),

so that
√
n(θ̂n − θ0)⇒ N(0, V −1

2θ0
V1θ0V

−1
2θ0

).

4 Monte Carlo Simulations

In this section we provide a glimpse into the finite sample behavior of the proposed ZQR

estimator. Two simple versions of our basic model are considered in the simulation experi-

ments. In the first, reported in Table 1, the scalar covariate, xi, exerts a pure location shift

effect. In the second, reported in Table 2, xi has both a location and scale shift effects. In

the former case the response, yi, is generated by the model,

yi = α + βxi + ui,
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while in the latter case,

yi = α + βxi + (1 + γ)ui,

where ui are i.i.d. innovations generated according to a standard normal distribution, t3

distribution, χ2
3 centered at the mean, Laplace distribution (i.e. τ = 0.5), and ALPD with

τ = 0.25.3 In the location shift model xi follows a standard normal distribution; in the

location-scale shift model, it follows a χ2
3. We set α = β = 1 and γ = 0.5. Our interest is on

the effect of the covariates in terms of bias and root mean squared error (RMSE). We carry

out all the experiments with sample size n = 200 and 5,000 replications. Three estimators

are considered: our proposed ZQR estimator, quantile regression at the median (QR), and

ordinary least squares (OLS). We pay special attention to the estimated quantile τ̂ in the

ZQR.

Table 1 reports the results for the location shift model. In all cases we compute the

bias and RMSE with respect to β = 1. Bias is close to zero in all cases. In the Gaussian

setting, as expected, we observe efficiency loss in ZQR and QR estimates compared to that

of OLS. Under symmetric distributions, normal, t3, and Laplace, the estimated quantile of

interest τ̂ in the ZQR is remarkably close to 0.5. In the χ2
3 case, the ZQR estimator performs

better than the QR and OLS procedures. Note that the estimated quantile for the χ2
3 is

0.081, consistent with the fact that the underline distribution is right skewed. Finally, for

the ALPD(0.25) case, ZQR produces the estimated quantile (τ̂ = 0.248) rightly close to 0.25,

and also has a smaller RMSE. Overall, Table 1 shows that the ZQR estimator retains the

robustness properties of the QR estimator, although we do not specify a particular quantile

of interest.

[Table 1]

In the location-scale version of the model we adopt the same distributions for generating

the data. For this case the effect of the covariate xi on quantile of interest response in QR is

given by β(τ) = β+ γQu(τ). In ZQR we compute bias and RMSE by averaging estimated τ

from 5,000 replications. The results are summarized in Table 2. The results for the normal,

3Although not reported, similar results were obtained for ALPD with τ = 0.75.
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t3 and Laplace distributions are similar to those in the location model, showing that all point

estimates are approximately unbiased. As expected, OLS outperforms ZQR and QR in the

normal case, but the opposite occurs in the t3 and Laplace distributions. In the χ2
3 case, the

estimated quantile is τ̂ = 0.086. For the ALPD(0.25) distribution, the best performance is

obtained for the ZQR estimator.

[Table 2]

5 Empirical Illustration: The Effect of Job Training on

Wages

The effect of policy variables on distributional outcomes are of fundamental interest in em-

pirical economics. Of particular interest is the estimation of the quantile treatment effects

(QTE), that is, the effect of some policy variable of interest on the different quantiles of a

conditional response variable. Our proposed estimator complements the QTE analysis by

providing a parsimonious estimator at the most probable quantile value.

We apply the estimator to the study of the effect of public-sponsored training programs.

As argued in LaLonde (1995), public programs of training and employment are designed to

improve participant’s productive skills, which in turn would affect their earnings and de-

pendency on social welfare benefits. We use the Job Training Partnership Act (JTPA), a

public training program that has been extensively studied in the literature. For example,

see Bloom, Orr, Bell, Cave, Doolittle, Lin, and Bos (1997) for a description, and Abadie,

Angrist, and Imbens (2002) for QTE analysis. The JTPA was a large publicly-funded train-

ing program that began funding in October 1983 and continued until late 1990’s. We focus

on the Title II subprogram, which was offered only to individuals with “barriers to em-

ployment” (long-term use of welfare, being a high-school drop-out, 15 or more recent weeks

of unemployment, limited English proficiency, phsysical or mental disability, reading pro-

ficiency below 7th grade level or an arrest record). Individuals in the randomly assigned

JTPA treatment group were offered training, while those in the control group were excluded
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for a period of 18 months. Our interest lies in measuring the effect of a training offer and

actual training on of participants’ future earnings.

We use the database in Abadie, Angrist, and Imbens (2002) that contains information

about adult male and female JTPA participants and non-participants. Let z denote the

indicator variable for those receiving a JTPA offer. Of those offered, 60% did training; of

those in the control group, less than 2% did training. For our purposes of illustrating the

use of ZQR, we first study the effect of receiving a JTPA offer on log wages, and later we

pursue instrumental variables estimation in the ZQR context. Following Abadie, Angrist,

and Imbens (2002) we use a linear regression specification model, where the JTPA offer

enters in the equation as a dummy variable.4 We consider the following regression model:

y = zγ + xβ + u,

where the dependent variable y is the logarithm of 30 month accumulated earnings (we

exclude individuals without earnings), z is a dummy variable for the JTPA offer, x is a

set of exogenous covariates contaning individual characteristics, and u is an unobservable

component. The parameter of interest is γ that provides the effect of the JTPA training

offer on wages.

[Table 3 and Figures 2, and 3]

First, we compute the QR process for all τ ∈ (0.05, 0.95) and the results are presented in

Figure 2. The JTPA effect estimates for QR and OLS appear in Table 3. Interestingly, with

exception of low quantiles, the effect of JTPA is decreasing in τ , which implies that those

individuals in the high quantiles of the conditional wage distribution benefited less from the

JTPA training. Second, by solving equation (19) we obtain that the most probable quantile

τ̂ = 0.84. This is further illustrated in Figure 3, and this means that the distribution of

unobservables is negatively skewed. This value is denoted by a vertical solid line, together

with the 95% confidence interval given by the vertical parallel dotted lines. From Table 3 we

4Linear regression models are common in the QTE literature to accomodate several control variables
capturing individual characteristics. See for instance Chernozhukov and Hansen (2006, 2008) and Firpo
(2007).
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observe that the training effect estimate from mean and median regressions are, respectively,

0.075 (0.032) and 0.100 (0.033) which are similar, however they both are larger than the

ZQR estimate of 0.045 (0.022).5 Figure 2 shows that QR estimates in the upper tail of the

distribution have smaller standard errors, which suggests that by choosing the most likely

quantile the ZQR procedure implicitly solves for the smallest standard error QR estimator.

The results show that for the most probable quantile, τ̂ = 0.84 (0.051), the effect of training

is different from the mean and median effects. From a policy maker perspective, if one

is asked to report the effect of training on wage, it could be done through the mean effect

(0.075), the median effect (0.100) or even the entire conditional quantile function as in Figure

2; our analysis recommends reporting the most likely effect (0.045) coming from the most

probable quantile τ̂ = 0.84. Using the above model, the fit of the data reveals that the

upper quantiles are informative, and the ZQR estimator is appropriate to describe the effect

of JTPA on earnings.

As argued in the Introduction, the ZQR framework allows for a different interpretation

of the QR analysis. Suppose that we are interested in a targeted treatment effect of γ̄ = 0.1,

and we would like to get the representative quantile of the unobservables distribution that

will most likely have this effect. This corresponds to estimating the ZQR parameters for

y − zγ̄ = xβ + u. In this case, we obtain an estimated most likely quantile of τ̂(γ̄) = 0.85.

To value the option of treatment is an interesting exercise in itself, but policy makers

may be more interested in the effect of actual training rather than the possibility of training.

In this case the model of interest is

y = dα + xβ + u

where d is a dummy variable indicating if the individual actually completed the JTPA

training. We have strong reasons to believe that cov(d, u) 6= 0 and therefore OLS and QR

estimates will be biased. In this case, while the JTPA offer is random, those individuals

who decide to undertake training do not constitute a random sample of the population.

Rather, they are likely to be more motivated individuals or those that value training the

5The numbers in parenthesis are the corresponding standard errors.
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most. However, the exact nature of this bias is unknown in terms of quantiles. Figure 4

reports the entire quantile process and OLS for the above equation. Interestingly the effect of

training on wages is monotonically decreasing in τ . The selection of the most likely quantile

determines that as in the previous case τ̂ = 0.84.

[Figure 4]

In order to solve for the potential endogeneity, and following Abadie, Angrist, and Imbens

(2002), z can be used as a valid instrument for d. The reason is that it is exogenous as it was

a randomized experiment, and it is correlated with d (as mentioned earlier 60% of individuals

undertook training when they were offered). The IV strategy is based on Chernozhukov and

Hansen (2006, 2008) by considering the model

y − dα = xβ + zγ + u.

The IV method in QR proceeds as follows. Note that z does not belong to the model, as

conditional on d, undertaking training, the offer has no effect on wages. Then, we construct

a grid in α ∈ A , which is indexed by j for each τ ∈ (0, 1) and we estimate the quantile

regression model for fixed τ

y − dαj(τ) = xβ + zγ + u.

This gives {β̂j(αj(τ), τ), γ̂j(αj(τ), τ)}, the set of conditional quantile regression estimates for

the new model. Next, we choose α by minimizing a given norm of γ (we use the Euclidean

norm),

ˆ̂α(τ) = argminα∈A ‖γ̂(α(τ), τ)‖.

Figure 5 shows the values of γ2 for the grids of α and τ . As a result we obtain the map

τ 7→{ ˆ̂α(τ), β̂( ˆ̂α(τ), τ) ≡ ˆ̂
β(τ), γ̂( ˆ̂α(τ), τ) ≡ ˆ̂γ(τ)}.

[Figures 5]

Finally, we select the most probably quantile as in the previous case, by using the first order
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condition corresponding the selection of τ :

ˆ̂τ = argminτ∈(0,1)

∣∣∣∣∣∣
1− 2τ

τ(1− τ)
−

∑n
i=1

ˆ̂ui(τ)
∑n

i=1 ρτ

(
ˆ̂ui(τ)

)

∣∣∣∣∣∣

where ˆ̂ui(τ) = yi − di ˆ̂α(τ) − x′i
ˆ̂
β(τ) − zi ˆ̂γ(τ). Figure 6 reports the IV estimates together

with the most likely quantile. Interestingly, the qualitative results are very much alike those

of the value of the JTPA training offer. The IV least squares estimator for the effect of

JTPA training gives a value of 0.116 (0.045) while IV median regression gives a much higher

value of 0.142 (0.047). The most likely quantile continues to be 0.84 (0.053), which has

an associated training effect of 0.072 (0.033). The ZQR effect continues to be smaller than

the mean and median estimates. Therefore, the upper quantiles are more informative when

analyzing the effects of JTPA training on log wages.

[Figure 6]

6 Conclusions

In this paper we show that the maximum likelihood problem for the asymmetric Laplace

distribution can be found as the solution of a maximum entropy problem where we impose

moment constraints given by the joint consideration of the mean and the median. We also

propose an approximate Z-estimator method, which provides a parsimonious estimator that

complements the quantile process. This provides an alternative interpretation of quantile

regression and frames it within the maximum entropy paradigm. Potential estimates from

this method has important applications. As an illustration, we apply the proposed estimator

to a well-known dataset where quantile regression has been extensively used.
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Appendix

A. Interpretation of the Z-estimator

In order to interpret θ0, we take the expectation of the estimating equations with respect to

the unknown true density. To simplify the exposition we consider a simple model without

covariates: yi = α + ui. Our estimating equation vector is defined as:

E(Ψθ(y)) = E




1
σ
(τ − 1(y < α))(
1−2τ
τ(1−τ) −

(y−α)
σ

)

− 1
σ
+ 1

σ2ρτ (y − α)


 = 0,

and the estimator is such that
1

n

n∑

i=1

Ψθ(yi) = 0

Let F (y) be the cdf of the random variable y. Now we need to find E[Ψθ(y)].

For the first component we have

1

σ
E[τ − I(y < α)] =

1

σ

(∫

R

(τ − 1(y < α))dF (y)

)

=
1

σ

(
τ −

∫ α

−∞
dF (y)

)

=
1

σ
(τ − F (α)) .

Thus if we set this equal to zero, we have

α = F−1(τ),

which is the usual quantile. Thus, the interpretation of the parameter α is analogous to QR

if covariates are included.

For the third term in the vector, − 1
σ
+ 1

σ2ρτ (y − α), we have

E

[
− 1

σ
+

1

σ2
ρτ (y − α)

]
= 0,

that is,

σ = E [ρτ (y − α)] .

Thus, as in the least squares case, the scale parameter σ can be interpreted as the expected
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value of the loss function.

Finally, we can interpret τ using the second equation,

E

[
1− 2τ

τ(1− τ)
− (y − α)

σ

]
= 0,

which implies that

1− 2τ

τ(1− τ)
=
E[y]− F−1(τ)

σ
.

Note that g(τ) ≡ 1−2τ
τ(1−τ) is a measure of the skewness of the distribution (see also footnote

2). Thus, τ should be chosen to set g(τ) equal to a measure of asymmetry of the underline

distribution F (·) given by the difference of τ -quantile with the mean (and standardized by

σ). In the special case of a symmetric distribution, the mean coincides with the median and

mode, such that E[y] = F−1(1/2) and τ = 1/2, which is the most probable quantile and a

solution to our Z-estimator.

B. Lemma A1

In this appendix we state an auxiliary result that states Donskerness and stochastic equicon-

tinuity. Let F ≡ {ψθ(y, x), θ ∈ Θ}, and define the following empirical process notation for

w = (y, x):

f 7→ En[f(w)] =
1

n

n∑

i=1

f(wi) f 7→ Gn[f(w)] =
1√
n

n∑

i=1

(f(wi)− Ef(wi)).

We follow the literature using empirical process exploiting the monotonicity and bound-

edness of the indicator function, the boundedness of the moments of x and y, and that the

problem is a parametric one.

Lemma A1. Under Assumptions A1-A4 F is Donsker. Furthermore,

θ 7→ Gnψθ(y, x)

is stochastically equicontinuous, that is

sup
‖θ−θ0‖≤δn

∥∥Gnψθ(y, x)−Gnψθ0(y, x)
∥∥ = op(1),
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for any δn ↓ 0.

Proof: Note that a class F of a vector-valued functions f : x 7→ R
k is Donsker if each of

the classes of coordinates fi : x 7→ R
k with f = (f1, ..., fk) ranging over F(i = 1, 2, ..., k) is

Donsker (van der Vaart, 1998, p.270).

The first element of the vector is ψ1θ(y, x) = (τ − 1(yi < x′iβ))
xi
σ
. Note that the func-

tional class A = {τ − 1{yi < x′iβ}, τ ∈ T , β ∈ B} is a VC subgraph class and hence

also Donsker class, with envelope 2. Its product with x also forms a Donsker class with a

square integrable envelope 2 · maxj |xj|, by Theorem 2.10.6 in van der Vaart and Wellner

(1996) (VW henceforth). Finally, the class F1 is defined as the product of the latter with

1/σ, which is bounded. Thus, by assumption A4 F1 is Donsker. Now define the process

h1 = (β, τ, σ) 7→ Gnψ1θ(y, x). Using the established Donskerness property, this process is

Donsker in l∞(F1).

The second element of the vector is ψ2θ(y, x) =
(

1−2τ
τ(1−τ) −

(yi−x′iβ)
σ

)
. Define H = {(yi −

x′iβ), β ∈ B}. Note that

|(yi − x′iβ1)− (yi − x′iβ2)| = |x′i(β2 − β1)| ≤ ‖xi‖‖β2 − β1‖,

where the inequality follows from Cauchy-Schwartz inequality. Thus by Assumptions A3-A4

and Example 19.7 in van der Vaart (1998) the class H is Donsker. Moreover, H belongs to

a VC class satisfying a uniform entropy condition, since this class is a subset of the vector

space of functions spanned by (y, x1, ..., xp), where p is the fixed dimension of x, so Lemma

2.6.15 of VW shows the desired result. Thus, by Example 2.10.23 (and Theorem 2.10.20) in

VW the class defined by 1/σ H is Donsker, because the envelope of H (|y| + const ∗ |x|) is
square integrable by assumptions A3-A4. Thus F2 is Donsker. Using the same arguments

as in the previous case we can define h2 = (β, τ, σ) 7→ Gnψ2θ(y, x), and by the established

Donskerness property, this process is Donsker in l∞(F2).

The third element of the vector is ψ3θ(y, x) =
(
− 1
σ
+ 1

σ2ρτ (yi − x′iβ)
)
. Consider the

following empirical process defined by J = {ρτ (yi − x′iβ), τ ∈ T , β ∈ B}. This is Donsker

by an application of Theorem 2.10.6 in VW. Finally, as in the previous cases define h3 =

(β, τ, σ) 7→ Gnψ3θ(y, x), and by the established Donskerness property, this process is Donsker

in l∞(F3).

Now we turn our attention to the stochastic equicontinuity. The process θ 7→ Gnψθ(y, x)

is stochastically equicontinuous over Θ with respect to a L2(P ) pseudometric.6 First, as in

6See e.g. Kosorok (2008, p. 405) for a sufficient condition for stochastic equicontinuity.
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Angrist, Chernozhukov, and Fernández-Val (2006) and Chernozhukov and Hansen (2006),

we define the distance d as the following L2(P ) pseudometric

d(θ′, θ′′) =
√
E ([ψθ′ − ψθ′′ ]2).

Thus, as ‖θ − θ0‖ → 0 we need to show that

d(θ, θ0)→ 0, (28)

and therefore, by Donskerness of θ 7→ GnΨθ(y, x), we have

Gnψθ(y, x) = Gnψθ0(y, x) + op(1),

that is

sup
|θ−θ0|≤δn

‖Gnψθ(y, x)−Gnψθ0(y, x)‖ = op(1).

To show (28), first note that

d(θ′, θ) =
√
E ([ψ1θ′ − ψ1θ]2)

=

√
E

([
(τ ′ − 1(y − xβ′))

x

σ′ − (τ − 1(y − xβ))
x

σ

]2)

≤
[(

E
∣

∣

∣

1

σ′ (τ
′ − 1(y − xβ′))− 1

σ
1(τ − (y − xβ))

∣

∣

∣

2(2+ǫ)
ǫ

)
ǫ

(2+ǫ)

·
(

E(|x|2) 2+ǫ
2

)
2

(2+ǫ)

]
1
2

=

(

E
∣

∣

∣
(
τ ′

σ′ −
τ

σ
) + (

1

σ
1(y ≤ xβ)− 1

σ′1(y ≤ xβ′))
∣

∣

∣

2(2+ǫ)
ǫ

)
ǫ

2(2+ǫ)

·
(

E(|x|2) 2+ǫ
2

)
1

(2+ǫ)

≤
[

(

E
(∣

∣

∣

τ ′

σ′ −
τ

σ

∣

∣

∣

)

2(2+ǫ)
ǫ

)
ǫ

2(2+ǫ)

+

(

E
(∣

∣

∣

1

σ
1(y ≤ xβ)− 1

σ′1(y ≤ xβ′)
∣

∣

∣

)

2(2+ǫ)
ǫ

)
ǫ

2(2+ǫ)
]

·
(

E(|x|2) 2+ǫ
2

)
1

(2+

≤
[
∣

∣

∣

τ ′

σ′ −
τ

σ

∣

∣

∣
+

(

E
∣

∣

∣
ḡ · x′(β

′

σ′ −
β

σ
)
∣

∣

∣

)
ǫ

2(2+ǫ) ]

·
(

E‖x‖2+ǫ
)

1
(2+ǫ)

≤
[∣

∣

∣

τ ′

σ′ −
τ

σ

∣

∣

∣
+

(

ḡE‖x‖
∥

∥

∥

β′

σ′ −
β

σ

∥

∥

∥

)
ǫ

2(2+ǫ) ]

·
(

E‖x‖2+ǫ
)

1
(2+ǫ) ,

where the first inequality is Holder’s inequality, the second is Minkowski’s inequality, the
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third is a Taylor expansion as in Angrist, Chernozhukov, and Fernández-Val (2006) where ḡ

is the upper bound of g(y|x) (using A2), and the last is Cauchy-Schwarz inequality.

Now rewrite ψ2θ(y, x) =
(

σ 1−2τ
τ(1−τ) − (y − x′β)

)

and

d(θ′, θ) =
√

E ([ψ2θ′ − ψ2θ]2)

=

√

E

(

[

σ′ 1− 2τ ′

τ ′(1− τ ′)
− (y − x′β′)− σ

1− 2τ

τ(1− τ)
+ (y − x′β)

]2
)

=

√

E

(

∣

∣

∣
σ′ 1− 2τ ′

τ ′(1− τ ′)
− σ

1− 2τ

τ(1− τ)
+ (x′(β − β′))

∣

∣

∣

2
)

≤
(

E
∣

∣

∣
σ′ 1− 2τ ′

τ ′(1− τ ′)
− σ

1− 2τ

τ(1− τ)

∣

∣

∣

2
)1/2

+
(

E|x′(β − β′)|2
)1/2

≤
(

E
∣

∣

∣
σ′ 1− 2τ ′

τ ′(1− τ ′)
− σ

1− 2τ

τ(1− τ)

∣

∣

∣

2
)1/2

+ ‖β′ − β‖
(

E‖x‖2
)1/2

,

where the first inequality is given by Minkowski’s inequality (E|X + Y |p)1/p ≤ (E|X|p)1/p +
(E|Y |p)1/p for p ≥ 1, and the second inequality is Cauchy-Schwarz inequality.
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Finally, rewrite ψ3θ(y, x) = (−σ + ρτ (y − x′β)), and thus

d(θ′, θ) =
√

E ([ψ3θ′ − ψ3θ]2)

=

√

E

(

[

− σ′ + ρτ ′(y − xβ′) + σ − ρτ (y − xβ)
]2
)

=

√

E

(

[

− σ′ + σ + ρτ ′(y − xβ′)− 1

σ2
ρτ (y − xβ)

]2
)

≤
√

E (−σ′ + σ)2 +

√

E

(

[

ρτ ′(y − xβ′)− ρτ (y − xβ)
]2
)

=

√

E (−σ′ + σ)2 +

√

E

(

[

ρτ ′(y − xβ′)− ρτ ′(y − xβ) + ρτ ′(y − xβ)− ρτ (y − xβ)
]2
)

≤ |σ − σ′|+
√

E
(

[

‖x(β′ − β)‖+ |τ ′ − τ |(y − xβ)
]2
)

≤ |σ − σ′|+
√

E
(

[

‖x‖‖β′ − β‖+ |τ ′ − τ |(y − xβ)
]2
)

≤ |σ − σ′|+
(

E
[

‖x‖‖β′ − β‖
]2
)1/2

+
(

E
[

|τ ′ − τ |(y − xβ)
]2
)1/2

= |σ − σ′|+ ‖β′ − β‖
(

E‖x‖2
)1/2

+ |τ ′ − τ |
(

E[(y − xβ)]2
)1/2

≤ const · (|σ − σ′|+ ‖β′ − β‖+ |τ ′ − τ |),

where the first inequality is is given by Minkowski’s inequality, the second inequality is given

by QR check function properties as ρτ (x+ y)− ρτ (y) ≤ 2|x| and ρτ1(y−x′t)− ρτ2(y−x′t) =
(τ2 − τ1)(y − x′t). Third inequality is Cauchy-Schwarz inequality. Fourth is Minkowski’s

inequality. Last inequality uses assumption A4.

Thus, ‖θ′− θ‖ → 0 implies that d(θ′, θ)→ 0 in every case, and therefore, by Donskerness

of θ 7→ Gnψθ(y, x) we have that

sup
‖θ−θ0‖≤δn

‖Gnψθ(y, x)−Gnψθ0(y, x)‖ = op(1).
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Table 1: Location-Shift Model: Bias and RMSE
ZQR QR (Median) OLS

N(0, 1) Bias 0.0007 −0.0004 0.0008
RMSE 0.0904 0.0899 0.0710
τ̂ 0.501 − −

t3 Bias 0.0012 −0.0008 0.0014
RMSE 0.1133 0.0967 0.1217
τ̂ 0.498 − −

χ2
3 Bias −0.0021 0.0024 0.0020

RMSE 0.1419 0.1892 0.1801
τ̂ 0.081 − −

ALPD Bias 0.0001 0.0001 0.0001
(τ = 0.5) RMSE 0.0638 0.0549 0.0710

τ̂ 0.499 − −
ALPD Bias −0.0008 −0.0001 0.0003

(τ = 0.25) RMSE 0.0718 0.0860 0.0917
τ̂ 0.248 − −

Table 2: Location-Scale-Shift Model: Bias and RMSE
ZQR QR (Median) OLS

N(0, 1) Bias 0.0015 0.0036 0.0037
RMSE 0.2209 0.1461 0.1365
τ̂ 0.499 − −

t3 Bias −0.0005 0.0002 −0.0052
RMSE 0.2457 0.1460 0.2565
τ̂ 0.501 − −

χ2
3 Bias −0.0004 0.0076 0.0089

RMSE 0.5087 0.2833 0.3788
τ̂ 0.086 − −

ALPD Bias −0.0010 −0.0001 −0.0013
(τ = 0.5) RMSE 0.1455 0.0845 0.1459

τ̂ 0.501 − −
ALPD Bias 0.0051 0.0004 0.4076

(τ = 0.25) RMSE 0.1331 0.1429 0.4505
τ̂ 0.248 − −
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Table 3: JTPA offer
ZQR [τ̂ = 0.84] OLS Median regression

Intercept 9.894 (0.059) 8.814 (0.088) 9.188 (0.086)
JTPA offer 0.045 (0.022) 0.075 (0.032) 0.100 (0.033)
FEMALE 0.301 (0.023) 0.259 (0.030) 0.260 (0.031)
HSORGED 0.201 (0.025) 0.267 (0.034) 0.297 (0.037)
BLACK -0.102 (0.026) -0.121 (0.036) -0.175 (0.039)

HISPANIC -0.032 (0.034) -0.034 (0.050) -0.025 (0.051)
MARRIED 0.129 (0.025) 0.242 (0.036) 0.265 (0.034)
WKLESS13 -0.255 (0.023) -0.598 (0.032) -0.556 (0.036)
AGE2225 0.229 (0.057) 0.175 (0.084) 0.125 (0.080)
AGE2629 0.285 (0.058) 0.192 (0.085) 0.131 (0.081)
AGE3035 0.298 (0.057) 0.191 (0.084) 0.176 (0.080)
AGE3644 0.320 (0.058) 0.130 (0.085) 0.173 (0.081)
AGE4554 0.267 (0.064) 0.110 (0.094) 0.080 (0.092)

τ̂ 0.840 (0.051) 0.500
σ̂ 0.249 (0.060) 0.538 (0.006)

Notes: 9872 observations. The numbers in parenthesis are the corresponding standard errors. JTPA offer:

dummy variable for individuals that recived a JTPA offer; FEMALE: Female dummy variable; HSORGED:

dummy variable for individuals with completed high school or GSE; BLACK: race dummy variable;

HISPANIC: dummy variable for hispanic; MARRIED: dummy variable for married individuals;

WKLESS13: dummy variable for individuals working less than 13 weeks in the past year; AGE2225,

AGE2629, AGE3035, AGE3644 and AGE4554 age range indicator variables.
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Figure 1: Linear Combination of |y − µ| and (y − µ)
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Figure 2: JTPA offer: Quantile regression process and OLS

Notes: Quantile regression process (shaded area), OLS (horizonal lines) and estimated
most informative quantile (vertical lines) with 95% confidence intervals.
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Figure 3: JTPA offer: τ -score function

Notes: The τ -score function is 1−2τ
τ(1−τ) −

∑n
i=1(yi−x′iβ̂(τ))

nσ̂
.
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Figure 4: JTPA: Quantile regression process and OLS

Notes: Quantile regression process (shaded area), OLS (horizonal lines) and estimated
most informative quantile (vertical lines) with 95% confidence intervals.
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Figure 5: JTPA: Minimization of ‖γ2(τ, α)‖
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Figure 6: JTPA: IV Quantile regression process and IV OLS

Notes: Quantile regression process (shaded area), OLS (horizonal lines) and estimated
most informative quantile (vertical lines) with 95% confidence intervals.
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