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Revealing Patterns and Trends of Mass Mobility through Spatial 
and Temporal Abstraction of Origin-Destination Movement Data 

Gennady Andrienko, Natalia Andrienko, Georg Fuchs, and Jo Wood 

Abstract— Origin-destination (OD) movement data describe moves or trips between spatial locations by specifying the origins, 
destinations, start, and end times, but not the routes travelled. For studying the spatio-temporal patterns and trends of mass 
mobility, individual OD moves of many people are aggregated into flows (collective moves) by time intervals. Time-variant flow data 
pose two difficult challenges for visualization and analysis. First, flows may connect arbitrary locations (not only neighbors), thus 
making a graph with numerous edge intersections, which is hard to visualize in a comprehensible way. Even a single spatial 
situation consisting of flows in one time step is hard to explore. The second challenge is the need to analyze long time series 
consisting of numerous spatial situations. We present an approach facilitating exploration of long-term flow data by means of spatial 
and temporal abstraction. It involves a special way of data aggregation, which allows representing spatial situations by diagram 
maps instead of flow maps, thus reducing the intersections and occlusions pertaining to flow maps. The aggregated data are used 
for clustering of time intervals by similarity of the spatial situations. Temporal and spatial displays of the clustering results facilitate 
the discovery of periodic patterns and longer-term trends in the mass mobility behavior. 

Index Terms—Movement data, mobility behavior, spatial flow situation, flow map

 

1 INTRODUCTION 
Spatio-temporal patterns and long-term trends of mass mobility 
behavior are difficult to analyze and understand due to the 
complexity of the phenomenon itself as well as the high 
dimensionality and large volumes of data reflecting it. One of the 
possible forms of data on mass mobility is a large number of records 
about individual moves or trips including origin, destination, start 
time, and end time. Such records can be aggregated into flows 
(collective moves) by origin-destination pairs and time intervals. The 
flows are characterized by the counts of the people that moved and, 
possibly, further attributes, such as mean or median move duration, 
speed, or characteristics of the people that moved. Data reflecting 
mass mobility may be originally available in this aggregated form, 
for example, population migration data. This form of data will 
henceforth be referred to as OD (origin-destination) flow data, or, 
shortly, flow data. The size and complexity of flow data is a product 
of the number of possible origin-destination pairs, which is quadratic 
with respect to the number of distinguishable locations in the data, 
and the number of time intervals. When the number of locations 
and/or time intervals is large, comprehending characteristic features 
of mass mobility behavior and its variation across space and time 
requires an appropriate abstraction of the flow data. 

There are two complementary views on time-dependent flow data 
[1][2]: as multiple time series of scalar attribute values (move counts 
and others) associated with the OD pairs, called links, and as a single 
time series of spatial flow situations, which are in the focus of our 
paper. One spatial flow situation corresponds to one time interval. It 
is a directed weighted graph with the nodes anchored in geographic 
space, that is, the nodes are discrete spatial locations. A directed 
edge (link) exists between two nodes A and B if there were any 
moves from A to B. The number of these moves, called flow 
magnitude, is taken as the weight of the link. The flow magnitudes 
and, consequently, the link weights change from one time interval to 
another. The links may also have other time-dependent attributes. 

 For any location, there may be many outgoing and many 
incoming links; in the extreme, a flow situation is a complete graph 
where each location is linked with every other location. Numerous 
intersecting links make flow situations very difficult to visualize and 
to comprehend, but it is even more difficult to deal with long time 
series of flow situations. 

Our research goal was to develop a general procedure for 
analyzing the temporal dynamics of spatial flow situations in order to 
understand characteristic spatio-temporal features and trends in mass 
mobility behavior over long time periods. We found that spatial and 
temporal abstraction are necessary for dealing with the intrinsic 
complexities of OD flow data. We propose an approach in which the 
spatial abstraction aggregates OD flows with a common origin or a 
common destination by direction and distance ranges. This reduces 
the dimensionality of the data and permits visual representation of 
flow situations by diagram maps, thus avoiding line intersections, 
which are inevitable in flow maps with links represented by lines. 
The temporal abstraction is based on clustering of time intervals by 
similarity of the flow situations. The aggregations resulting from the 
spatial abstraction are used as feature vectors describing the flow 
situations. Clusters of time intervals represented visually in a 
calendar-like display show the overall temporal patterns and trends, 
and also exhibit disruptions and outliers. 

The overall analytical procedure, which is the main contribution 
of our paper, includes the following components: 
x Spatial simplification and analysis: 

o A data abstraction technique that simplifies a flow situation by 
aggregating OD flows by direction and distance ranges. 

o A cartographic visualization method for representing an 
abstracted flow situation on a map by a set of radial diagrams. 

o An approach to supporting visual comparisons between flow 
situations. 

o An approach to combining an overall abstracted view of a 
spatial situation with “details on demand” [3][4]. 

x Temporal simplification and analysis: 
o Data abstraction by means of interactive clustering of time 

intervals according to similarity of the flow situations. 
o A calendar-like visualization of the overall temporal 

distribution of the clusters of flow situations. 
o Summarization of flow situations by time clusters. 

These components are organized in a workflow presented in Section 
3. The analytical procedure is targeted on revealing and exploring the 
following types of temporal and spatial patterns in flow data: 
x Temporal patterns: time intervals of similar flow situations, small 

and large changes of flow situations, disruptions of continuity, 

 
x Gennady Andrienko and Natalia Andrienko are with Fraunhofer 

Institute IAIS and City University London. E-mail:  
{gennady|natalia }.andrienko@iais.fraunhofer.de. 

x Georg Fuchs is with Fraunhofer Institute IAIS. E-Mail: 
georg.fuchs@iais.fraunhofer.de 

x Jo Wood is with City University London. E-mail: J.D.Wood@city.ac.uk. 
 



periodic repetition of similar flow situations with regard to 
temporal cycles (daily, weekly, and seasonal), temporal outliers. 

x Spatial patterns: major hubs (locations with many outgoing or 
incoming flows), spatial flow trends (prevalence of flows in 
certain directions and/or to certain distance ranges in different 
parts of the territory), regions of attraction and repulsion (where 
incoming or outgoing flows prevail). 

x Spatial patterns of changes: locations and regions of increase or 
decrease of outgoing or incoming flows, changes with regard to 
flow directions and/or distances. 

These pattern types are specializations of the highly general pattern 
types ‘association’, ‘differentiation’, and ‘arrangement’ ([5], p. 91). 

We would like to stress that the goal of the paper is to present a 
general analytical procedure but not a particular system that we used 
for developing and testing the procedure and for making illustrations. 
The specifics of the software implementation are thus irrelevant. 

2 RELATED WORKS 

2.1 Spatial simplification of flow data 
Spatial simplification can be achieved by grouping the places of the 
flow origin and destination into larger regions and aggregating the 
original flows into flows between the regions. Guo [6] proposes a 
spatially constrained graph partitioning method that groups spatially 
neighboring places so that there are more connections within the 
groups than between the groups. For data representing individual 
trips, regions can be defined by spatial clustering of the points of the 
trip origins and destinations [7]. Gao et al. [8] apply place clustering 
for simplification of time-dependent flow situations; however, for 
each time step, the places and flows are aggregated separately, which 
complicates tracking changes between time steps. Von Landesberger 
et al. [9] use density-based clustering for aggregation of strongly 
connected neighboring places into regions and then apply graph 
drawing techniques to represent flows between the regions in a more 
abstracted manner. Flow data can also be simplified by grouping and 
aggregating spatially close OD flows using hierarchical clustering 
[10] or kernel-based density estimation [11]. After the simplification, 
the most important flows are visualized on a flow map, i.e., minor 
flows are hidden for reducing the display clutter. Our approach to 
spatial simplification preserves the original set of places (i.e., does 
not unite them) but aggregates OD flows with common origins or 
destinations by direction and distance classes, which allows flow 
maps to be transformed into diagram maps. This approach can also 
be applied after a previous simplification of OD flow data by any of 
the earlier mentioned methods. 

 

2.2 Temporal simplification of time-variant flow data 
To analyze changes of flow situations over time, it was proposed to 
group similar situations corresponding to different time intervals by 
means of clustering [1][2][9]. The situations are specified by large 
feature vectors consisting of the flow magnitudes for all existing 
links. The result is clusters of time intervals, which are shown on 
temporal displays, such as a calendar display [12]. For these time 
clusters, average flow situations are computed and represented on a 
small multiple flow map display. However, the problem of over-
plotting of the flow lines remains unsolved. Another problem is the 
length of the feature vectors describing the situations. With 
increasing the number of distinct places, the number of links and, 
hence, the length of the feature vectors, grow quadratically. The data 
become too heavy and problematic for clustering tools [13]. 
Simplification of the data is required to reduce the dimensionality 
and decrease the impacts of occasional fluctuations [9]. 

Alternatively to time clustering, the vectors representing spatial 
situations at different time steps can be projected onto a plane, as 
proposed recently for generic (non-spatial) graphs [14] and other 
types of time-variant data [15]. Each situation (“snapshot” [14]) is 
represented by a point on the plane. Points corresponding to similar 

situations tend to form clusters. By interactively selecting points, the 
user can see the corresponding situations. All points are sequentially 
connected by lines in chronological order, which creates a “time 
curve” [15]. The shape of the curve gives an idea about the character 
of the temporal variation. However, this representation is not optimal 
for data with periodic variation, especially in presence of two nested 
temporal cycles, such as daily and weekly.  

2.3 Visualization of flow data 
The recent reviews of visualization methods for OD flows [16][17] 
discuss three main classes of techniques: OD matrix [18], flow map 
[19], and a hybrid of a matrix and a map called OD map [20][21]. In 
an OD matrix, the rows and columns correspond to locations and the 
cells contain flow magnitudes represented by color shades. The rows 
and columns can be automatically or interactively reordered for 
uncovering connectivity patterns. Disadvantages of the matrix 
display are the lack of spatial context and the limited number of 
different locations that can be represented.  

In flow maps, links between locations are represented by straight 
or curved linear symbols analogously to node-link diagrams. Various 
possible representations of directed links are discussed and evaluated 
by Holten et al. [22]. Flow magnitudes are shown by proportional 
line widths or by color shades. Proposed approaches to dealing with 
display clutter and occlusion rely on reducing or simplifying the 
data. These include the spatial simplification methods discussed in 
section 2.1. Visual simplification can be achieved by varying the 
opacity according to the flow magnitudes [21]. Filtering is used to 
show only flows with magnitudes above a chosen threshold 
[6][10][8][19][23] or only flows between selected locations [24].  
Edge bundling [25][26][27] simplifies the display by merging or 
grouping spatially close flows. Edge bundling methods are a popular 
research topic in the graph drawing community [28]. In flow maps, 
unlike general non-spatial graphs, edge bundling works well only for 
showing flows from one or two locations or in special cases, e.g., 
when radial flows from/to one location prevail over all others [27]. 
Besides, edge bundling on a geographic map introduces undesired 
geographic artifacts, such as arterial roads that do not exist in reality. 

Clutter on a flow map can also be reduced by removing the 
middle parts of the lines connecting origins and destinations and 
showing the start and end parts in two different colors [29]. 
FlowStrates [17][30] shows flow origins in one map and destinations 
in another. Between the two maps, there is a table display of time 
series of flow magnitudes.  The origins and destinations in the two 
maps are connected by lines with the corresponding table rows. This 
technique is suitable for tracing individual links and viewing the 
associated time series, but the spatial patterns of the flows are lost. 

OD maps [20][21] are based on space transformation in which the 
locations are arranged in a rectangular layout (i.e., a matrix) so as to 
minimize the distortions of their relative spatial positions with 
respect to each other. As a result, each location is represented by a 
matrix cell, which is filled with a small matrix of the same structure 
as the overall matrix representing the flows from/to this location 
to/from all other locations. This display is free from occlusion, but 
the space distortion complicates the perception, and the overall 
spatial pattern of flows is broken into multiple location-specific 
patterns. Besides, the method implies the user to view multiple small 
matrices, which may be too difficult for a large number of locations. 

A straightforward approach to showing time-variant flows is to 
use multiple maps arranged either temporally in map animation or 
spatially in a small multiple maps display [31]. Map animation is not 
effective [32] because the user cannot memorize and mentally 
compare multiple spatial situations. In small multiples, a limited 
number of spatial situations can be shown simultaneously; hence, 
this approach is not suitable for long time series. Clustering of spatial 
situations [1][2][9] can be used to reduce the number of distinct 
situations that need to be shown. A completely different approach is 
to show the time series of flow magnitudes separately from maps, for 
instance, as it is done in FlowStrates [17][30]; however, the spatial 
situations and their changes over time cannot be seen. 



In our approach, similarly to [9], a calendar-like display [12] 
shows how groups of similar spatial situations are distributed over 
time, and multiple maps show representative spatial situations for the 
groups. To alleviate the problem of overplotting on a flow map, we 
propose a diagram map providing an overview of a spatial situation. 

3 ANALYTICAL WORKFLOW 
Figure 1 represents the proposed analytical workflow composed of 
data transformations, clustering, and knowledge discovery with the 
help of interactive visual displays. The blue arrows in the diagram 
show the ordering of the analysis steps, such that steps appearing 
later in the sequence use results of the preceding steps. The brown 
arrows represent possible returns to earlier stages of the analysis for 
refinement of observed patterns or for testing their sensitivity to the 
parameter settings of the methods involved in the analysis. The oval 
labelled “Knowledge” represents the knowledge gained through the 
analysis, i.e., the understanding of the spatial and temporal aspects of 
the mass mobility on the studied territory. The steps of the workflow 
are presented in the following sections. Section 4 deals with the data 
transformations, i.e., the first two boxes of the diagram. Clustering of 
time intervals and exploration of their temporal distribution are 
described in section 5, and section 6 focuses on the visualization, 
exploration, and comparison of spatial situations. 

The approach has been tested on several examples of real flow 
data. In the paper, we shall use data concerning journeys by public 
bicycles in London as a running example for illustrating the methods. 

The London Cycle Hire Scheme (LCHS) allows people to pick up 
a bicycle from one of several hundred automated docking stations 
around central London, and after riding, return it to any of the 
docking stations in the network. Each bike removal or docking is 
logged in a database along with a timestamp, bicycle ID, and 
docking station ID. The data have been made publicly available by 
the governmental transport authority Transport for London 
(http://www.tfl.gov.uk/info-for/open-data-users/our-feeds). 

The LCHS dataset that we used consists of 5,177,679 records 
about individual bike trips made during the period of 28 weeks from 
Sunday, July 22, 2012 till Saturday, February 2, 2013. The origins 
and destinations of the bike trips are 569 bike stations distributed 
over the central part of London. Aggregation of the individual trips 
into flows between the stations results in a graph with 218,187 links. 
LCHS data from earlier time periods were explored previously 
[21][33]. It was interesting to check whether the earlier detected 
regular patterns preserved over time. We successfully detected these 
patterns, which signifies that our approach is feasible and valid. 

To demonstrate the applicability of the proposed analytical 
procedure to other data, we shall also use trajectories of 17,241 cars 
in Milan (Italy) collected by means of GPS tracking over one week. 
The dataset was first introduced in paper [34]. The data have been 
earlier analyzed from various perspectives (e.g., [35][2]), but the 
spatio-temporal patterns of the car journeys in terms of the origins 
and destinations have not been explored yet. Knowing that car 
positions were only recorded during movement, we extracted the 
journeys by dividing the entire position sequence of each car into 
subsequences separated by time gaps of at least 30 minutes length. 

We thus obtained 51,498 trips, from which we took only the 
beginning and ending positions and times. For trip aggregation, we 
used 63 territory compartments with approximate radii of 3 km 
resulting from data-driven tessellation [36] of the Milan territory. 

4 SPATIAL ABSTRACTION 
We propose a data abstraction technique based on aggregating links 
with a common origin or a common destination by direction and 
distance intervals. Except links with coinciding origins and 
destinations, each link has a certain spatial direction and length, i.e., 
the distance between the origin and the destination. Let Lmax be the 
maximal link length in the dataset. The analyst divides the range of 
distances (0, Lmax] into k intervals by choosing suitable breaks L1, 
…, Lk-1 based on domain knowledge or on the statistical distribution 
of the link or trip lengths. The length 0 is considered separately. The 
analyst also divides the range of spatial directions from 0° to 360° 
into m intervals by choosing breaks D1, …, Dm. Since the range of 
directions is cyclic, i.e., 0°=360°, the breaks D1, …, Dm determine 
the set of direction intervals {(Di, Di+1] � (Dm, D1] | 1≤i≤m-1}. For 
convenience of human perception, the direction breaks may be 
chosen so that the resulting intervals correspond to the four cardinal 
directions or to the eight principal compass rose directions. 

These divisions define kum+1 possible classes of links, where 
kum stands for all possible combinations of length and direction 
intervals and 1 stands for the class of links representing round trips. 
These links have coinciding origins and destinations, zero length, 
and no direction. For each location, the links starting and/or ending 
at it are grouped according to these classes. For each time interval, 
the flow magnitudes on the links are summarized by these classes, 
i.e., each spatial location S has an associated vector of flow 
magnitudes (M0, {Mij

in}, {Mij
out}). M0 is the magnitude of the flow 

from S to S. Mij
in and Mij

out, 1≤i≤m, 1≤j≤k, are the cumulated 
magnitudes of the incoming and outgoing flows to/from S from/to 
within the direction interval i and the distance interval j. A flow 
situation in each time interval is represented by a combination of 
these vectors for all locations, which can also be considered as a 
single feature vector consisting of nu(2ukum+1) components, where 
n stands for the number of the spatial locations. 

When the number of distinct locations is large, the transformation 
notably reduces the data size. With n distinct locations, there are nun 
possible origin-destination pairs; hence, one situation is represented 
by a vector of nun flow magnitudes. The vector length is quadratic 
with respect to the number of locations. The vector length for 
transformed data is nu(2ukum+1), where 2ukum+1 is constant, i.e., 
the length is linear with respect to the number of locations. When 
n>>2ukum+1, the data reduction is substantial. 

For the LCHS dataset, we divide the range of directions [0, 360) 
degrees into the eight compass rose directions North, Northeast, 
East, and so on using breaks {22.5, 67.5, 112.5, 157.5, 202.5, 247.5, 
292.5, 337.5}. Based on the statistical distribution of the bike trip 
lengths, we divide the links into three distance classes: short (0, 2 
km], medium (2 km, 5 km], and long (5 km, f). According to these 
divisions, k=3, m=8, and the flows to and from one location are 
represented by a vector composed of 2u3u8+1=49 summarized flow 
magnitudes. One flow situation is represented by a vector with 
49u569=27,881 components, i.e., 8.61% of the 569u569=323,761 
values for all possible origin-destination pairs or 12.78% of the 
218,187 actually existing links. 

For the Milan car trips, we use the same set of directions. The 
distances between the trip start and end positions are taken as the trip 
lengths, irrespectively of the paths followed. The trips to distances 
not more than 500 m are treated as round trips. Based on the 
statistical distribution of the lengths of the remaining trips, we take 
the following distance classes: (500 m, 8 km] treated as short trips, 
(8 km, 13.5 km] as medium, and (13.5 km, f) as long. The maximal 
trip length in the dataset is 27.1 km. The proportions of the round, 
short, medium, and long trips are, respectively, 5.7, 32.6, 31.1, and 
30.5%. We divide the territory of Milan into 63 spatial compartments 

 
Fig. 1. The proposed analytical workflow.  



(further called cells) and aggregate the trips originating and ending in 
these cells into out- and in-flows by the direction and distance 
ranges. One spatial situation is represented by a vector with 
49u63=3,087 components. In this case, the data reduction is low 
(7.3%, compared to the existing 3,300 origin-destination pairs). The 
main benefit of the aggregation is obtaining clearer views of spatial 
situations than it could be achieved with traditional flow maps. 

5 TEMPORAL ABSTRACTION 

5.1 Defining time intervals 
For the temporal abstraction, the time range of the data needs to be 
divided into intervals. The choice depends on the length of the time 
period under study, the relevance of particular time cycles, and the 
spatio-temporal density of the movements. Let us explain these 
criteria by example of the LCHS data.  

Movements of people typically adhere to the daily and weekly 
cycles. The time period length of our data is 196 days, or 28 weeks. 
To analyze both weekly and daily patterns, we need to divide the 
daily cycle into such intervals that can capture the natural differences 
in the mass mobility behaviors throughout a day: morning rush 
hours, business hours, afternoon-evening rush hours, and late 
evening-night quiet time. The spatio-temporal density of our data is 
not sufficient for a division into hour-long intervals or shorter. Since 
only a few links were actually used in each interval, aggregation by 
short time intervals would result in a great number of zero flow 
magnitudes and high fluctuations in the flow time series. Therefore, 
we divide a day into four longer intervals: morning [6:00, 10:00), 
midday [10:00, 16:00), afternoon-early evening [16:00, 20:00), and 
late evening-night 20:00, 6:00). We have chosen these breaks based 
on a histogram of the distribution of the trips by hours of the day. 
The whole time range is thus divided into 4u196=784 time intervals.  

For the Milan example, where the time span of the data is short 
(only one week), we divide it into 168 hourly intervals. 

5.2 Suitable clustering methods 
After the data transformation, a spatial situation in one time interval 
is represented by a feature vector consisting of nu(2ukum+1) 
summarized magnitudes of outgoing and incoming flows, where n is 
the number of distinct locations, k is the number of distance 
intervals, and m is the number of direction intervals. Clustering is 
applied to the set of feature vectors corresponding to different time 
intervals. It groups the time intervals based on the similarity of the 
spatial situations. Thereby, temporal abstraction is gained. 

According to our approach, it is appropriate to use partition-based 
clustering methods, such as k-means [37] (used in this paper). 
Partition-based methods divide items into groups so that items within 
a group are similar and items from different groups are less similar. 
Density-based methods, such as DBScan [38] and OPTICS [39], are 
not suitable since their goal is to find dense groups of similar or close 
items; the remaining items are treated as “noise”. An item is included 
in a group when it is similar to at least a given minimal number of 
other group members, but it does not need to be similar to all group 
members. Hence, a density-based algorithm can construct a cluster in 
which two arbitrary members may be very dissimilar. Therefore, the 
density-based clustering concept is not appropriate for the proposed 
kind of analysis, which requires within-cluster consistency. 

Self-organizing map (SOM) [40] is a kind of partition-based 
method that builds a network of prototype vectors (a.k.a. neurons or 
cells) and associates each data item with the nearest (i.e., the most 
similar) prototype. Not every single cell necessarily represents a 
meaningful cluster. It may be useful to take a combination of nearby 
cells as one cluster. The u-matrix [41] showing pair wise distances 
between neighboring cells helps analysts to see what cells are similar 
and thus can be interactively joined in one cluster [42]. 

As a measure of similarity between feature vectors, partition-
based clustering methods typically use Euclidean or Manhattan 
distance. In case of high dimensional data, Euclidean distance may 

not be a good choice [43]. Manhattan distance gives better results, 
but fractional distances (i.e., Minkowski distance of order p<1) can 
work even better [43][44]. However, the choice of optimal p is 
application-dependent. It is also worth noting that the triangle 
inequality is violated for p<1, that is, the distance is not a metric.  

5.3 Temporal display of clustering results 
The resulting clusters of time intervals need to be visualized on a 
temporal display. Detection and investigation of periodic temporal 
patterns can be supported by a visualization method that may be 
called “time arranger”. Chronologically ordered time intervals are 
represented by rectangular blocks arranged in rows, similarly to the 
calendar display [12], but the time arranger is more generic, being 
applicable to time cycles of any length. The row length is set to be 
equal to the number of time intervals in a relevant time cycle. If the 
time span of the data does not start from the beginning of the time 
cycle, an appropriate offset is made in the first row. To represent a 
shorter time cycle within the cycle represented by the row length, the 
rows may be divided into sections corresponding to the shorter cycle.  

 

 
Fig. 2. Time clusters are visualized in a time arranger display (top). 
Colors are assigned to clusters by projecting cluster centers onto a 
color plane (bottom). 

  
Fig. 3. When the CIELAB color space is used for filling the projection 
background, the number of well distinguishable colors decreases. 



An example can be seen in Fig. 2 (top), which represents the 784 
time intervals of the aggregated LCHS data. The intervals are 
arranged in rows according to the weekly time cycle, i.e., each row 
represents one week starting from Monday. The row length is set to 
28 = 7 days of the week u 4 time intervals per day. Since the time 
span of the data starts from Sunday, the first row is offset by 24 = 6 
days u 4 intervals. The rows are divided by spaces into sections 
corresponding to the daily cycle. The section length is 4 blocks, as 
there are 4 time intervals per day. The first block in each section 
represents the night time interval. 

It is a usual practice to represent clustering results in visualization 
by color-coding. A unique color is assigned to each cluster, and 
display elements representing cluster members are painted in these 
colors. In a time arranger, the blocks representing time intervals are 
colored according to the cluster membership of the intervals. For 
meaningful assignment of colors to clusters, the following approach 
can be applied. The vectors representing cluster centers are projected 
onto a two-dimensional color plane [1][45] (Fig. 2, bottom) using 
multidimensional scaling [46], Sammon’s mapping [47], or another 
method. A two-dimensional continuous color space is used as a 
projection background. Clusters that are close in the projection space 
receive similar colors and distant clusters receive dissimilar colors. 

The combination of coloring and arrangement of the blocks in a 
time arranger reveals various temporal patterns and trends. Periodic 
temporal patterns manifest themselves through vertical alignments of 
identically or similarly colored blocks. Temporal trends are detected 
from the color shades gradually changing in the horizontal or vertical 
direction. Temporal outliers are manifested by blocks colored in high 
contrast to their neighbors in both horizontal and vertical directions. 

For illustrations in this paper, we use a color space that gives well 
distinguishable colors for the clusters. However, it is not perceptually 
optimal since the ratio between the human-perceived difference in 
colors and their spatial distance is not uniform throughout the space. 
CIELUV and CIELAB color spaces [48] are perceptually more 
uniform, but give quite a limited number of well distinguishable 
colors (Fig. 3). When cluster colors are intended to be mainly used as 
cluster labels in various displays, perceptual uniformity can be 
compromised for getting a larger number of distinct colors. 

5.4 Interactive visually supported clustering 
Typically, partition-based clustering algorithms require the user to 
specify the number of clusters in which the data must be divided; for 
SOM, the maximal number of clusters is determined by the user-
chosen dimensions for the map layout. The suitable number of 
clusters is often not known in advance. We propose to perform 
clustering iteratively, starting with a small number of clusters and 
gradually increasing it. This process is supported by the projection 
display of the cluster centers (Fig. 2). When the distances between 
the cluster centers in the projection space are large, it is reasonable to 
try a larger number of clusters. If the next clustering step results in 
two or more cluster centers located very closely, it makes sense to 
return to the previous step with a smaller number of clusters.  

Additionally, the quality of the clusters is assessed based on the 
distances of the cluster members from the cluster centers. The 
distances can be represented in a time arranger view by block sizes. 
In Fig. 4, the block sizes are inversely proportional to the distances, 
that is, they show the closeness of the time intervals to their cluster 
centers, i.e., the larger, the closer. Hence, large blocks represent core 
cluster members and small blocks represent possible outliers. A 
cluster with high internal variation is recognized from presence of 
many small blocks. Details for the blocks, including the distances to 
the cluster centers, can be accessed by mouse-pointing. 

Cluster quality can also be judged from the distance statistics. A 
large difference between the mean and median distances indicates 
that the cluster includes outliers and should be refined. However, it is 
not guaranteed that re-running of the clustering method with 
increasing the desired number of clusters will refine this particular 
cluster. We suggest progressive clustering [1], i.e., application of the 
clustering algorithm only to the clusters needing refinement. 

Please note that it is not the ultimate goal of the analysis to obtain 
perfect time clusters. The goal is to uncover the temporal patterns 
and trends existing in the data. This is achieved through repeated re-
clustering of time intervals with different clustering parameters and 
observing the color patterns emerging in the time arranger. When 
increasing the number of clusters does not uncover additional 
patterns in comparison to previous results but only highlights 
outliers, the process may be finished. Even when the analyst is 
interested in finding outliers, there is no need to strive at separating 
them into individual clusters (singletons). When outliers are included 
into larger clusters, their distances to the cluster centers are large, 
and this can be seen from the block sizes in a time arranger display. 

To facilitate comparisons of results of different clustering runs, it 
would be good to preserve the consistency of cluster colors between 
the runs. We apply the following approach. For each cluster resulting 
from the latest run, the interactive clustering tool finds the closest 
cluster from the previous run, i.e., such that the distance between the 
vectors of the cluster centers is minimal. More formally, let {CiN, 1≤i 
≤k(N)} be the set of clusters obtained in N-th run of the clustering 
algorithm; k(N) denotes the number of the clusters obtained. Let cviN 
be a vector of flow values representing the center of cluster CiN. Let 
projection(cviN) = (xiN, yiN) be the projection point of the cluster 
center onto the color plane. 

When N>1, for each CiN, the tool finds a matching cluster from 
the previous run MiN-1=CmN-1, 1≤m≤k(N-1), such that 
data_distance(cviN, cvmN-1) < data_distance(cviN, cvjN-1) for any 
1≤j≤k(N-1), j≠m. Here data_distance is the distance between two 
vectors of flow values computed by the same distance function as 
has been used for the clustering, i.e., Manhattan distance, Euclidean 
distance, or fractional Minkowski distance. 

 
Fig. 4. The closeness of the cluster members to the cluster centers is 
represented by proportional sizes of the blocks.  

 
Fig. 5. Clustering results for different number of clusters. 



Then the tool runs the projection method multiple times for the 
set of cluster centers {cviN, 1≤i≤k(N)} to obtain different projection 
variants. Each run of the projection method may arrange the vectors 
in a different way. Only the relative distances between the vectors 
are preserved but not their absolute positions. From the different 
projection variants, the tool selects the one with the smallest sum of 
weighted distances between the positions of the new cluster centers 
and the positions of their matching cluster centers in the projection 
used for the previous clustering results. The distances are weighted 
by the cluster sizes. Formally, the tool minimizes the sum 
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where |CiN| is the cardinality of cluster CiN, cviN is the center of CiN, 
mviN-1 is the center of the matching cluster MiN-1 for cluster CiN, and 
distance(projection(cviN), projection(mviN-1)) is the spatial distance 
between the projection points of the cluster centers cviN and  mviN-1 
in the projection space. 

In this way, new clusters receive colors similar to the colors of 
the corresponding old clusters, with giving higher priority to larger 
clusters. This precludes radical changes of the color patterns in the 
time arranger. As an example, Fig. 5 includes 6 images of the time 
arranger representing the results of applying the k-means clustering 
method with the Manhattan distance function to the flow situations 
obtained from the LCHS data. The images correspond to different 
values of the parameter k (the number of clusters) from 5 to 10. We 
see that the colors are mostly consistent across the different images. 

5.5 Temporal analysis by means of clustering 
Clustering of time intervals by the similarity of the flow situations in 
combination with coloring and block arrangement in a temporal 
display reveals existing periodic patterns and longer-term trends in 
the evolution of the mobility behavior; however, several runs of 
clustering with different parameters are needed for uncovering all 
relevant patterns and gaining high confidence in their validity. Thus, 
in our LCHS example, the following temporal patterns and trends 
exist (these are known from previous studies [21][33] but also 
expected based on the common knowledge of human behavior): 
x periodic daily pattern repeated in 5 weekdays; 
x distinct daily patterns occurring on Saturdays and Sundays; 
x repetition of the weekly pattern composed of these daily patterns; 
x seasonal changes of the mobility behavior while keeping the 

periodicity of the daily and weekly patterns; 
x deviations from the periodic patterns due to holidays, such as the 

Summer Bank Holiday and the Christmas – New Year period. 
All these patterns can be seen in the time arranger view already for 
k=6. The result for k=5 is worse as it puts together the midday and 
evening time intervals of the weekdays. Still, already with k=5 we 
see seasonal changes, specifically, changes of the weekly pattern that 
occurred in mid-October and are manifested by the changes of the 
cluster membership of the morning intervals of the weekdays and of 
the midday intervals of Saturdays and Sundays. The results for k=7 
and k=8 expose a couple of outliers but do not refine the previously 
uncovered patterns. With k=9, we additionally see a change at the 
beginning of September: similarly to October, the mornings of the 
weekdays changed their cluster membership. For k=10, we see that 
the mobility behavior in the weekday evenings also changed in 
October. Further increasing of the number of clusters puts more 
outliers into singletons, but does not reveal new patterns. Hence, we 
may conclude that the relevant temporal patterns have been captured. 

Fig. 6 shows the time clusters obtained for the Milan car trips. 
The uppermost row in the time arranger corresponds to Sunday and 
the lowest row to Saturday; the columns correspond to the hours of 
the day. The columns are numbered from 0 to 23, where number x 
means the time interval [x, x+1). Clustering with different values of k 
reveals differences between the night and day hours, between the 
week days and the weekend, and between the morning hours 
(starting from hour 5) of the week days and the remaining times of 

the day. The result for k=6 (Fig. 6) also separates afternoon hours of 
the week days. There are two small time clusters composed of late 
morning hours of Thursday and Friday, which, evidently, differ from 
corresponding hours in the other week days.  

Besides revealing temporal patterns, clustering of time intervals 
greatly reduces the number of situations that need to be studied. 
Long time series of flow situations can be substituted by a relatively 
small number of representative situations for the time clusters. In this 
sense, clustering of time intervals is a means of temporal abstraction 
and simplification of long time series. In the LCHS example, we 
replace the original 784 time intervals by 10 time clusters, which is 
less than 1.3% of the original size. For Milan, 168 hourly intervals 
can be replaced by 6 time clusters (3.57% of the original length). 
Besides representative situations for time clusters, analysts may also 
need to investigate detected outliers. This will not increase the 
workload dramatically. When regular temporal patterns exist, 
outliers are few, whereas presence of numerous outliers rather 
indicates the absence of regular patterns. In such a case, investigating 
every single outlier is hardly useful. 

6 VISUALIZATION AND ANALYSIS OF SPATIAL SITUATIONS 

6.1 Flow diagrams 

6.1.1 The design space 
The data transformation described in section 4 allows representing a 
flow situation on a map using diagrams that show the magnitudes of 
the flows in different directions and different distance ranges. A 
diagram can represent either incoming or outgoing flows. To view 
both, a display with two coordinated diagram maps can be used. 

Figure 7 shows different variants of flow diagrams organized in a 
table with the columns corresponding to different shapes of diagrams 
or their components and rows corresponding to possible ways of 
combining components in a diagram. The columns have labels P for 
polygons, B for bars, R for rose diagrams [49], A for angular 
components, and C for a circular diagram. The labels of the rows are 
O for overlay, J for juxtaposition, and S for segmentation. The 
designs can thus be referred to using two-character codes, e.g., PO 
means a diagram with overlaid polygons.  

In all designs except CJ, colors are used to distinguish the 
distance ranges. Dark gray represents round trips, and colors from 
yellow through orange to red correspond to the short, medium, and 
long distances. This color scale is based on one of the Color Brewer 
[50] sequential multi-hued scales. For a better contrast between 
components within a diagram and better visibility of diagrams on a 
cartographic background (Fig. 8), we, first, picked non-neighboring 
colors and, second, increased the brightness of the chosen colors. 

Representing distance categories by color hues can support an 
overall view (i.e., holistic perception) of a map with diagrams. The 
visual variable ‘color’ (hue) is both selective and associative [51], 
that is, a map viewer can perceptually select and associate all marks 
of the same color, i.e., see them all at once. We invite the readers to 
test this with the example maps in Fig. 8 and others. The visual 
variable ‘value’ (i.e., color lightness) is not associative and, hence, 
cannot support holistic perception of a diagram map. 

All diagram variants in Fig. 7 encode the same combination of 
flow magnitude values. In design groups P, B, and R, the magnitude 
for the round trips is represented by the radii of the dark grey circles 
drawn using a dashed stroke. To represent flows in different spatial 

 
Fig. 6. Time clusters for the aggregated Milan car trips.  



directions, we use polar coordinates in PO and radial layout in the 
remaining designs. In PO, the flow magnitudes are represented by 
the distances of the polygon vertices from the polar coordinates 
origin. In B and R, the flow magnitudes are represented by the 
lengths of the bars and sectors, respectively. RO2 differs from RO1 
by applying Flannery perceptual scaling [52] of the sector lengths. 
Perceptual scaling is also applied in RS2. In BS and RS, the full 
lengths of the bars and sectors encode the sums of the flows to all 
distance ranges in the respective directions. The bars and sectors are 
proportionally divided into segments representing the flows to the 
different distance ranges. In BS and RS1, the division is applied to 
the lengths of the bars and sectors. In RS2, the sectors are 
proportionally divided into sub-sectors, such that the flows to the 
different distance ranges are represented by the angle sizes. A 
problem of RS1 is that the segments corresponding to longer 
distance ranges are wider, which leads to substantial over-estimation 
of the flow magnitudes. We also tried to represent flow magnitudes 
by sector areas rather than lengths; however, this impedes or even 
disables comparisons of flow magnitudes for different distance 
ranges and different directions. 

The two variants of design AJ correspond to a suggestion of 
reviewers of an earlier version of this paper to represent the distance 
ranges by lengths of diagram components and the flow magnitudes 
by widths, which may be more intuitively understandable to users. In 
AJ1, flow magnitudes are encoded into sector widths, i.e., the lengths 
of their ending arcs. In AJ2, we applied a slightly different idea. The 
distance ranges are represented by the distances of the sectors to the 
diagram center. All sectors have the same length, and flow 
magnitudes are represented by angle sizes. 

A drawback of AJ is that, unlike in the other designs, round trips 
cannot be represented in a way allowing direct comparison to the 
other flows. We represent round trips using small circles in the 
diagram centers. Their full area corresponds to the highest magnitude 
attained in the data set. The magnitude for round trips is represented 
by the proportion of the circle area painted in dark gray. In AJ1, the 
value is encoded by the area of a dark gray circle and in AJ2 by the 
angle size of a dark gray circle sector, which is more consistent with 
representing the other flow magnitudes also by angle sizes. However, 
for the other flows, the maximal angle size is 90q while for the round 
trips it is 360q; hence, comparisons are hindered. 

In a recently proposed design CJ [53], different distance ranges 
are represented by concentric rings while the inner circle corresponds 
to round trips. The rings are divided into sectors corresponding to the 
flow directions. The flow magnitudes are represented by shades of 
gray, so that darker shades encode higher values. To distinguish zero 
values (absence of trips) from low magnitudes, the sectors 
corresponding to zero values are not filled. 

6.1.2 Difference diagrams 
In analysis of flows, it may be necessary to compare values at all 
locations (further referred to as “local values”) with (a) the values 
from a selected reference location or (b) the values at the same 
locations for another time interval or time cluster. In both cases, two 
vectors are compared for each location: the vector of local values and 
a vector of reference values, which is common for all locations in 
case (a) and specific to each location in case (b). To facilitate 
comparisons, we propose to apply explicit encoding of differences 
[54].  The components of the reference vector are subtracted from 
the corresponding components of the local vector, and the 
differences are shown using difference diagrams. We considered two 
design variants for difference diagrams shown in the upper and lower 
rows in Fig. 9. The variant in the upper row corresponds to diagrams 
where colors are used for representing distance ranges, and the 
variant in the lower row corresponds to circular diagrams CJ. The 
diagram examples from left to right represent different combinations 
of difference values. The corresponding diagrams in the upper and 
lower rows represent the same combinations. 

In the upper row, the diagram components corresponding to 
different combinations of direction and distance ranges each consist 

of two primitives: an axial line and a triangle. The lengths of the 
axial lines represent the local values. The triangles, which are drawn 
at the ends of the axial lines, show the differences between the local 
values and the reference values. The heights of the triangles are 
proportional to the absolute values of the differences. Positive 

 
Fig. 7. Variants of flow diagram designs. Column labels denote 
shapes: P – polygon, B – bar, R – rose, A – angle, C – circle. Row 
labels denote methods of combining components: O – overlay, J – 
juxtaposition, S – segmentation. All diagrams represent the same 
combination of values. 

  

  
Fig. 8. Map fragments representing the same data using different 
diagram designs. 

 
Fig. 9. Examples of difference diagrams. 



differences (i.e., when a local value is larger than the reference 
value) are represented by filled triangles oriented outwards from the 
diagram center. Negative differences are represented by hollow 
triangles oriented towards the diagram centers. The bases of the 
triangles are positioned on the axes proportionally to the reference 
values and the base-opposite points coincide with the ends of the 
axial lines, that is, their positions are proportional to the local values. 
As a result, filled “positive” triangles lie on top of the axial lines and 
hollow “negative” triangles hang at the ends of the axial lines. 

The component representing movements with coinciding starts 
and ends consists of two concentric circles representing the local and 
reference values. The circle for the local value is thicker and darker 
than the one for the reference value. If the reference value is smaller, 
the space between the circles is filled in gray; in the opposite case, it 
remains unfilled. Hence, the component has an appearance of a filled 
or hollow wheel with the section height being proportional to the 
absolute difference between the local and reference values. 

In circular diagrams (lower row in Fig. 9), positive and negative 
differences are encoded by the saturation of shades of red and blue, 
respectively. A disadvantage of this design is that, unlike the first 
one, it shows only differences but not the values that are compared. 
However, this design is much simpler and easier to understand. 

6.1.3 Evaluation of diagram designs 
Each of the designs in Fig. 7 has its strengths and weaknesses. Rose 
diagrams are visually more prominent than bar diagrams, but a 
viewer may not be sure whether the sector lengths or areas represent 
the flow magnitudes and, hence, have interpretation difficulties. The 
bar diagram design does not have this problem and permits not only 
semi-transparent overlay of bars corresponding to different distance 
ranges (BO) but also juxtaposition of bars (BJ), in which the bars are 
more salient and easier to discern. PO can be holistically perceived 
as a single graphical object with a particular shape rather than a 
combination of objects, as may happen with a diagram consisting of 
several components. A weakness is that the polygon area has no 
meaning but a viewer may try to interpret it. Another weakness is 
that a polygon representing only movement in one direction or in two 
opposite directions collapses to a single line, which has low salience. 

In the analytical procedure, the role of maps is to represent spatial 
flow situations so that spatial patterns (hubs, trends, attraction and 
repulsion areas; see section 1) can be readily perceived. To check 
how well maps with different variants of flow diagrams can fulfil 
this role, we conducted an informal study with participation of our 
partners from two EU-funded research projects on mobility analysis 
topics, 24 persons in total, including 7 experts in maritime or air 
transportation domains, 10 professional data analysts, and 7 
computer scientists specializing in machine learning and databases. 
We designed the study so as to use at most 15 minutes of the 
valuable time of the professionals. We prepared printouts of maps in 
which the same data were represented using different types of 
diagrams, as in map fragments in Fig. 8. To avoid overwhelming the 
participants with too many diagram variants, we have chosen six 
variants: PO, BJ, RO2, AJ1, AJ2, and CJ. The maps were printed on 
separate sheets of paper together with brief (at most two lines) texts 
explaining the encoding and two questions to be answered by the 
participants. The same two questions were repeated on each sheet: 

1. What are the major hubs? 
2. What are the overall trends of the flows over the territory? 

It is intentional that both questions require the overall reading level 
[51], i.e., holistic grasp of the represented situation. 

The participants were given the printouts and asked to, first, read 
the questions, second, choose the map they find the most suitable for 
answering the questions, third, write brief answers on the sheet with 
the chosen map and, fourth, rank the designs from 1 (the most 
suitable) to 6 (the least suitable). The participants were also 
encouraged to write their comments on any of the designs. This way 
of conducting the evaluation had the following rationale.  

Rather than engaging casual test participants, we wanted to 
involve professionals who understand well the OD data type and are 

capable to use and interpret maps. Since the professionals that we 
involved could not devote much time to the study, we could not do 
the evaluation in a more formal way, with asking the participants to 
fulfil similar tasks using each of the designs. At the same time, we 
could rely on the capability of our participants to compare the 
designs, make a rational choice, and explain it. In this way, we 
expected to receive qualified comments on all designs. We were not 
so much interested in obtaining the design ranks as in understanding 
the ranking criteria, i.e., what features of the designs make them 
more or less suitable for holistic perception of spatial patterns.  

Of course, it was important to check whether the participants 
could properly fulfil the tasks using the chosen maps. It was so in all 
but one cases. One participant, who used AJ1, misinterpreted the 
sector-shaped diagram components as arrows indicating movement 
directions. A possibility for this misinterpretation of AJ1 and AJ2 
was mentioned in a comment from another participant. However, 
two people found AJ very intuitive and requiring little explanation. 

Table 1 shows statistics of the ranking. The columns are ordered 
based on the median and mean ranks of the corresponding designs. 
The first two rows show the counts of the participants who gave 
ranks 1 (most suitable) and 6 (least suitable) to the diagram variants. 
Each design was preferred by at least one participant, and for each 
design except AJ2 there was at least one participant who found it the 
least suitable. The designs RO2 and AJ1 were top ranked by the 
largest numbers of participants, and the designs CJ and PO got the 
highest number of the lowest rank. From the participants’ comments, 
we elicited the following ranking criteria: 
C1. Negative: clutter and overlapping of diagrams. The equal-sized 

diagrams AJ1, AJ2, and CJ were criticized the most.  
C2. Positive: variation of the overall diagram sizes (RO2, BJ, PO). It 

makes major hubs and spatial trends (particularly, attraction and 
repulsion areas) easily identifiable. RO2 was especially praised 
for this. AJ1, AJ2, and CJ were judged as not supportive. 

C3. Positive: good visibility of all diagrams and their components 
(equal-sized diagrams CJ, AJ1, AJ2). 

C4. Negative: overlapping of colors in the diagrams (RO2, PO). 
C5. Negative: unclear flow directionality (BJ, PO). 
C6. Positive: easy comparison of flow magnitudes for different 

distance ranges (BJ). 
C7. Positive: support of detailed readings (CJ). 
C8. Negative: insufficient contrast between the colors of the diagram 

components (all designs). 
Given these criteria, none of the tested designs is perfect. Moreover, 
creating a perfect design is hardly possible since some criteria are 
conflicting (e.g., C2 against C1 and C3). 

Some participants’ comments contained suggestions for 
improving the maps. For reducing display clutter, it was suggested 
that small flows should be hidden. One participant proposed to apply 
spatial aggregation, i.e., put together flows from near places and 
represent them by a single diagram. 

None of the designs tested in this study supports perception of the 
total flows in different directions including all distance ranges. The 
diagrams with component segmentation (BS, RS1, and RS2) were 
designed to support this task. To evaluate also these designs, we 
specifically addressed those participants who preferred bar or rose 
diagrams and gave detailed explanatory comments. We got responses 
from 5 out of 7 participants asked. All of them judged the segmented 
bar diagrams (BS) as the best suitable and RS2 as the least suitable, 

TABLE 1 
RANKS OF THE DIAGRAM DESIGNS 

Measure AJ1 RO2 AJ2 BJ CJ PO 
Count of rank 1 7 8 1 5 2 1 
Count of rank 6 1 1 0 1 10 10 
First quartile 1 1 2 2 2 4 
Median 2 3 3 3 5 5 
Third quartile 4 4 4 4 6 6 
Mean 2.67 2.83 3.04 3.08 4.42 4.83 
 



because the division of the sectors into sub-sectors complicated the 
interpretation of the directions. For RS1, the participants noted that 
volumes of more distant flows can be overestimated due to larger 
widths of the segments representing them, which conforms to our 
own judgement. 

6.1.4 Accounting for study results 
Since there is no single design that is preferred by everyone and can 
suit all purposes, users should be able to choose from several design 
variants depending on the task to be performed. The selection can be 
facilitated by a task-oriented interactive interface. Based on the ranks 
and comments obtained, the following options can be proposed: 
x Identify major hubs and flow trends (RO2). 
x Compare flows to different distance ranges (BJ). 
x Compare total flows in different directions (BS). 
x See complete flow compositions (AJ1). 
x See all details for individual places (CJ). 
RO2 can appear as the default representation. When the user selects 
another option, the map immediately changes. 

The comments of the study participants indicate that it is 
reasonable to allow users to change the color scale from sequential to 
contrast. Thus, we constructed a contrast color scale consisting of 
red, yellow, and blue colors selected by means of Adobe Color 
Wheel [55] (triad model). We order the colors from red (hot) to blue 
(cold) to represent the distance ranges from near to far. The contrast 
color scale is applied in the illustrative maps in Figs. 11-14. 

To reduce display clutter by hiding small flows, our experimental 
software allows interactive focusing, which is described in the next 
section. As suggested, display clutter can also be reduced by spatial 
aggregation, i.e., uniting flows to and from neighboring locations. 
For the aggregation, the territory can be divided into compartments 
by means of data-driven tessellation [36], which is based on 
clustering of spatially close locations. Figure 10 demonstrates the 
division of the central area of London based on the spatial 
distribution of the LCHS docking stations. It can be seen that near 
docking stations tend to be included in the same compartment, as, for 
example, the docking stations at the Waterloo railway station, which 
is pointed at by an arrow. For a given territory division, data 
referring to locations fitting in the same compartment are 
summarized and represented by a single diagram. Such spatial 
aggregation is applied in the illustrative maps in Figs. 11-14.  

The use of spatial aggregation should not exclude the possibility 
to see the detailed information at the level of individual locations. In 
our prototype, it is possible to have aggregated and detailed data 
shown in two map displays or to put them in the same map display as 
two information layers, the visibility of which can be interactively 
switched on and off when more detail or more abstraction is needed. 

6.1.5 Interactive focusing 
The maximal radius of flow diagrams, including difference 
diagrams, corresponds to the maximum value of flow magnitude 
available in the represented data. The sizes of the diagram 
components in the bar and rose diagrams are proportional to the 
values they represent. Thus, some diagrams may be very small and 
hardly visible. By interactive focusing, the user can limit the 
represented range of values. The result of decreasing the upper limit 
is that the maximum diagram radius is used for a smaller data value; 
hence, previously small diagrams increase in size. The diagrams in 
which the maximal value exceeds the upper limit remain still visible, 
but their components are drawn without filling and the sizes do not 
proportionally increase beyond the maximum radius. It is also 
possible to increase the lower limit of the represented value range. 
The diagrams where the maximal values are below the lower limit 
are hidden from the view. In this way, the user may disregard 
locations with small flows and consider only those with major flows. 

For difference diagrams, interactive focusing can also be done 
according to the distances between the local and reference vectors. 
The user can select one of three methods to compute the distances: 
maximum of the absolute component-wise differences, Manhattan 

distance, and Euclidean distance. The range of computed distances is 
shown to the user, and the user can limit the range to be represented. 
The diagrams where the distances are beyond the limits are hidden. 

Both types of focusing can be done using sliders or by direct 
setting of the upper and/or lower limits. The diagrams on a map are 
dynamically updated in response to user’s manipulations. 

6.2 Interactive maps of spatial flow situations 
A spatial flow situation is represented by a map with flow diagrams 
drawn at the positions of the flow origins and/or destinations. A map 
can represent a flow situation for a time interval or a representative 
flow situation for a time cluster (Figs. 11 and 13). Multiple maps 
corresponding to different time intervals/clusters can be arranged in a 
temporal sequence (map animation) or a spatial layout (small 
multiples). The latter approach is practically possible only for a small 
number of selected time intervals/clusters, because diagram maps 
need to be quite large to be legible. In an animated display, the user 
selects the time interval/cluster t to be currently presented. The map 
shows the respective spatial situation. The current t can be changed 
step wise, or by dragging a slider, or by directly setting the value.  

In the mode of comparison between locations, the reference 
location is chosen by clicking in the map. In the mode of temporal 
comparison, the reference interval or cluster is set explicitly. 

One diagram map can show incoming flows, or outgoing flows, 
or their differences. To view incoming and outgoing flows 
simultaneously, a display with two maps is used (Figs. 11-14), where 
the maps are coordinated in several ways. They are simultaneously 
animated and always represent the same time interval or time cluster. 
Zooming and panning operations are applied to both maps in 
parallel, so that they always show the same territory. Selection of 
different diagram designs, switching to comparison mode, interactive 
focusing, and selection of reference locations, time intervals, or time 
clusters in the comparison mode are applied to both maps 
simultaneously. As an example, the maps of out- and in-flows in Fig. 
14 represent the changes between time cluster 2 (summer weekday 
mornings) and cluster 6 (autumn and winter weekday mornings). 

Flow diagram maps are used for getting overviews of spatial 
situations instead of traditional flow maps, which are illegible due to 
heavy over-plotting. However, the transformation of the OD flow 
data into the direction-and-distance vectors involves quite large 
information loss. As a compensation, the user can obtain details on 
demand [3][4] by interactively selecting subsets of OD flows to be 
shown on the maps in addition to the diagrams (Fig. 12).  

Analogously to the transformed data, the original time series of 
OD flows can also be summarized by time clusters. When a diagram 
map shows a situation for a time cluster, the OD flow magnitudes for 
the same time cluster can be seen, as in Fig. 12. Subsets of OD flows 
to view can be selected by means of several interactive filters: (1) 
attribute-based filter, which can select links based on their flow 
magnitudes, directions, or lengths, (2) spatial filter, which selects 
links fitting in a user-drawn spatial window, and (3) filter by link 
origins and/or destinations. For the latter filter, the origin and/or 

 
Fig. 10. The territory covered by the LCHS services has been divided 
into areas for reducing map clutter by means of spatial aggregation. 
The arrow points at a spatial cluster of docking stations located near 
the Waterloo railway station. 

 



destination places are selected by clicking on the map. Four filtering 
modes are possible: for selected locations, the map can show (a) the 
outgoing flows, (b) the incoming flows, (c) both incoming and 
outgoing flows, or (d) the flows with both origins and destinations 
being selected. Fig. 12 shows the OD flows originating or ending in 
two selected places, which have high aggregated out-flows. 

Furthermore, the comparison mode can also be applied to OD 
flows. Thus, Fig. 14 demonstrates the comparison between time 
clusters 2 and 6 applied both to the flow diagrams and to the OD 
flow lines for a selected subset of links (the same as in Fig. 12). The 
flow magnitude values for cluster 2 have been subtracted from the 
values for cluster 6. The cyan color, the same as for the original flow 
lines in Fig. 12, represents the positive differences, i.e., the increased 
flows from time cluster 2 to 6. The red color, which is opposite to 
cyan, represents the negative differences, i.e., the decreased flows. 

In our experimental implementation, the maps are zoomable, the 
information layers can be switched on and off, and the maximal sizes 
of the diagrams can be increased or decreased. It is also possible to 
choose between background maps from several map servers. 
Excessive prominence of the map background can be reduced by 
covering it with a semi-transparent gray rectangle, the degree of 
darkness and transparency of which can be interactively controlled. 

7 GUIDELINES FOR EXECUTING THE PROCEDURE 
The procedure begins with defining the direction and distance classes 
and time intervals. The direction classes can be defined according to 
the eight principal compass rose directions, which are commonly 
known. To define the distance classes, the range from the minimal to 
the maximal trip lengths is divided into two or three intervals. A 
larger number of intervals may complicate the visual perception and 
analysis of spatial situations with the use of flow diagram maps, 
because the complexity of the diagrams would increase. 

The class breaks can be chosen using a histogram showing the 
statistical distribution of the trip distances. When the distribution is 
close to uniform, it is reasonable to divide the value range into 
intervals of equal length. For a distribution having one or more 
prominent peaks, the breaks are chosen so that each peak with its 
neighborhood is included in one class. If there is a long “tail”, it can 
be divided into parts containing approximately equal number of trips. 

The time span of the data can be divided into equal intervals, the 
length of which depends on the total length of the time period and 
the desired level of detail in the analysis. Domain knowledge and/or 
data properties may suggest a division into unequal intervals, as we 
showed by the LCHS example (subsection 5.1). 

When all divisions are defined, the data are automatically 
transformed as described in section 4. The next step in the workflow 
is clustering of the time intervals based on the similarity of the 
spatial situations; section 5 gives detailed guidelines. Representative 
spatial situations for the time clusters are examined and compared 
using flow diagram maps (subsection 6.2). By observing the 
temporal distribution of the time clusters and the spatial distributions 
of the flows corresponding to the time clusters, the analyst gains 
knowledge of the spatio-temporal patterns of mass mobility. 

The flow chart in Fig. 1 shows that the analysis procedure may be 
performed iteratively, with returns to previous steps and modifying 
the previously made choices. In sections 5.4-5.5, we have described 
iterative time clustering: after exploring clustering results by means 
of temporal displays, the clustering is repeated for other parameter 
settings. A return to the stage of time clustering may occur after the 
investigation of the representative spatial situations for the time 
clusters, to check whether cluster refinement may affect the spatial 
patterns seen in the maps of the representative spatial situations. To 
gain even more confidence in the analysis results, the analyst may 
also return to the stage of data transformation, in which the analyst 
can modify the direction and distance classes or the time intervals. 
After re-aggregating the OD flow data, the analysis is repeated, and 
the consistency of the new results with the previous ones is checked. 

8 CASE STUDIES 

8.1.1 Bicycle trips in London  
Section 5.5 lists the temporal patterns that we discovered by means 
of the visually supported time clustering and justifies the choice of 
the clustering result with 10 time clusters for the further analysis. We 
summarized the spatial situations in these 10 time clusters and 
explored the summarized situations using interactive maps. 

 
Fig. 11. Out- and in-flows for time cluster 2 (summer weekday 
mornings) are shown on two coordinated maps. 

 
Fig. 12. A subset of OD flows (here: incoming and outgoing flows for 
two selected places) can be shown on demand by flow lines.  

 



As could be expected, in the night times, there were almost no 
movements. In the weekday mornings (Figs. 12-13), there were two 
major hubs with strong outgoing flows in multiple directions (Fig. 
12, top), one at the railway station Waterloo and another, smaller, at 
the train stations King’s Cross and St. Pancras. These hubs represent 
multimodal journeys with large numbers of commuters using rail 
travel in the morning to get to London and then taking bikes to get to 
their final destinations or to other public transportation facilities [33]. 
The flow destinations were distributed over and around the City of 
London (Fig. 12, bottom). In the weekday afternoons, the situation 
was opposite: the morning hubs turned to the major receivers, and 
the morning receivers had large outgoing flows. The prevailing 
distance ranges were short and medium.  

The afternoon situation differs from the morning also by the 
presence of round trips at the corners of Hyde Park. These may be 
leisure bicycle trips in or around the park. Round trips in this area 
occurred also in the middays of the week days. Apart from that, the 
flow magnitudes in the midday times were low over the whole 
territory. Much more round trips took place in the weekend midday 
times in the summer and early autumn (Fig. 13). This is consistent 
with the interpretation of the round trips as leisure bike rides, which 
are done more often on weekends when the weather conditions are 
good. An exceptionally large number of such trips occurred in the 
midday of Sunday, September 9, which was put in a separate cluster. 

The seasonal changes, i.e., the differences between the same 
intervals of the weekly cycle that fall in different time clusters, are 
not as obvious as the differences within the weekly cycle. We use the 
comparison mode, as in Fig. 14 (by focusing, we have hidden the 
diagrams where the maximal flow differences are less than 5). In this 
example, we see an overall decrease of incoming flows in the City 
area (Fig. 14, bottom).  The outgoing flows (Fig. 14, top) also mostly 
decreased. Yet, in the Waterloo area, there was a small increase of 
the short-range outgoing flows to the north and a slightly larger 
increase of the mid-range outgoing flows to the northeast while the 
short-range flows in this direction preserved. The OD flow lines in 
Fig. 14 show that the main receiver of the increased northeastern 
flow was the area of Moorgate, for which the flow difference 
diagram in the lower map indicates a small increase of incoming 
mid-range flows from the southwestern direction. In the King’s 
Cross – St. Pancras area, the mid-range flows to the south also 
slightly increased and the short-range flows to the south preserved. 

In this study, we detected all previously known or expected 
spatio-temporal patterns in the use of the public bicycles, which 
confirms the validity of our approach. Besides, we could reveal and 
investigate the seasonal changes better than it was possible before. It 
was known that the use of bicycles decreased in late autumn and 
winter. We additionally found that the weekday morning flows from 
the areas of King’s Cross and Waterloo towards the City increased 
despite the overall decreasing trend. So, our approach allowed us not 
only to detect the expected but also to uncover the unexpected [52]. 

8.1.2 Car trips in Milan  
The time clusters for the Milan case study are shown in Fig. 6. 
Cluster 1 (dark blue) consists of night hours from 0 till 4, i.e., till 
interval [04:00, 05:00), and evening hours starting from 19. As could 
be expected, it is characterized by low movement activity throughout 
the territory. On the weekend, also morning hours till 8 on Sunday 
and 7 on Saturday (and midday hours 11 and 12 belong to cluster 1. 

A common feature of the spatial situations in all time clusters, 
even the quiet cluster 1, is large volumes of outgoing and incoming 
long distance flows in three areas on the northwest, northeast, and 
southeast of the territory. As an example, Figure 15 presents the flow 
patterns of time cluster 2 (bright pink). Here we use the diagram 
design with juxtaposed bars (BJ), because many places in Milan have 
almost equal flows to different distance ranges in the same 
directions. Such flows are hard to distinguish and compare using RO. 

In Fig. 15, three corners of the maps have diagrams with long 
dark red bars oriented towards the remaining corners. We have 
interactively selected the areas containing these diagrams for seeing 

their OD links, which are shown by flow lines in purple. The links 
with the highest flow magnitudes (i.e., the thickest lines) connect the 
northwest to the northeast and southeast, indicating that many car 
trips started in one of the corners and ended in one of the two others. 
Hence, many cars just passed the city using the belt motorway. There 
were many such transit car trips at all times. The magnitudes of the 
long distance out- and in-flows in the corner areas are always much 
higher than the values in the remaining areas; therefore, the diagrams 
over the whole territory, except for the corners, are too small for 
clearly showing the flow patterns over the territory. 

 
Fig. 13. Out- and in-flows for time cluster 5 (weekend midday and 
afternoon times till beginning of October and weekend midday times in 
later autumn and winter). 

 
Fig. 14. The difference diagrams show the changes from time cluster 2 
(summer weekday mornings) to 6 (autumn and winter weekday 
mornings). Additionally, the line symbols in cyan and red show the 
changes of the OD flows for two selected places. 



To alleviate this problem, we have applied interactive focusing as 
described in section 6.1.5. The result is shown in Fig. 16. It is the 
same time cluster 2 as in Fig. 15. Now we can better see several 
secondary hub areas around the city. In the map of out-flows (left), 
we observe notable volumes of mid- and short-distance flows from 
the outskirts towards the inner city, in addition to the long-distance 
flows made by transit cars. In the map of in-flows (right), we see that 
there were many car trips from various directions that ended in the 
central part of the city, especially on the east of the center. We also 
see that district Corsico southwest from the center was a strong 
attractor, especially for short trips from the southwest. On the east of 
the city, many trips in all distance ranges ended at the Linate airport. 

Time cluster 3 (light green, composed of weekday afternoon 
hours) differs from cluster 2 (weekday mornings) by increased out-
flows and decreased in-flows in the central part, as is exhibited by 
the difference diagram maps in Fig. 17. Here we use the circular 
design of the difference diagrams, with shades of blue and red 
showing negative and positive differences. In this example, the 
selective and associative power of the visual variable ‘color’ [51] 
groups multiple charts with prevailing red or blue shades into regions 
of increase or decrease. Thus, on the left, we see that out-flows 
increased not only in the center but also on the east and south and 
decreased on the north and west. On the right, we see that in-flows 
decreased on the east and south and increased on the north. 

Most of the remaining times are in time cluster 6 (light blue), 
including midday times of the weekdays and weekend afternoons. 
This time cluster is characterized by notably lower flow volumes 
over the whole territory (except the hub areas) than in the weekday 
mornings and afternoons. Small time clusters 4 (bluish green) and 5 
(orange) occurred in late mornings of Thursday and Friday. The 
corresponding situations are characterized by higher flow volumes 
than in the same hours of the other weekdays. In comparison to the 
morning flows, cluster 4 and 5 mostly differ in terms of transit flows. 
Besides, the flows from the center slightly increased and the flows to 
the center decreased. In comparison to cluster 4, cluster 5 has lower 
out-flows on the northwest and northeast. 

To summarize, we found in this case study that a large proportion 
of car trips are transit trips that enter the territory from one of the 
corners on the northwest, northeast, or southeast and leave it in 
another corner. The magnitudes of the flows derived from these trips 
are high at all times and do not significantly vary over a day. For the 
non-transit trips, the prevailing flows in the weekday mornings are to 
the city and Linate airport. The pattern reverses in the weekday 
afternoons. In the remaining times, the flows significantly decrease. 

9 DISCUSSION AND CONCLUSION 
Our approach involves data abstraction reducing the dimensionality 
of the data. The reduction factor is proportional to the number of 
distinct locations in the data. The reduction can make originally very 
large data suitable for interactive clustering. It also permits a drastic 
decrease of clutter and occlusion in cartographic visualization of the 
data compared to traditional flow maps. The abstraction decreases 
the level of detail with regard to the destinations (for out-flows) or 
origins (for in-flows). Thereby, it reveals spatial directional trends 
and allows disregarding minor fluctuations in movement destinations 
or origins, e.g., between two neighboring docking stations. 

Unlike the other methods for spatial simplification [6]-[11], our 
approach does not change the original set of locations present in the 
data, but it can be applied to OD flow data that have been previously 
simplified using any of these methods. The latter reduce the number 
of locations and links in the data but preserve the graph-like data 
structure, whereas our approach transforms the graph into a set of 
multidimensional vectors associated with the locations.  

Our method for spatial simplification has disadvantages due to 
the transformation of the flow directions and distances into discrete 
classes. As with any discretization, close values may fit in distinct 
classes while more different values may fit in the same class and 
become indistinguishable. Still, discretization is commonly used in 

data analysis. To be used properly, it requires careful definition of 
classes. Guidelines are provided in section 7. Another disadvantage 
of our method is the loss of links between locations. To compensate 
for this, selected subsets of OD links are shown on diagram maps. 

Besides the spatial abstraction, our approach involves temporal 
abstraction by clustering of time intervals according to the similarity 
of the respective spatial flow situations. This supports analysis of 
data that cover long time periods. A very large number of time 
intervals can be reduced to a much smaller number of time clusters 
to be studied. The temporal distribution of the clusters is visualized 
in a way enabling detection of periodic temporal patterns and long-
term trends. The flow situations corresponding to the clusters can be 

 
Fig. 15. Spatial patterns of the out- and in-flows for time cluster 2 
(weekday mornings) and OD flows for three selected areas. 

 
Fig. 16. Interactive focusing has decreased the visual prominence of 
the major hubs and made the overall patterns better visible. 

 
Fig. 17. Differences of time cluster 3 (weekday afternoons) from time 
cluster 2 (weekday mornings). 



examined by viewing cluster representatives. Study of differences 
between time clusters is supported by interactive difference maps. 

Hence, the approach handles the specific complexities of origin-
destination flow data: the spatial complexity due to the high 
connectivity of the flow graph and the temporal complexity due to 
the length of the flow time series and the complex character of the 
temporal variation, which is governed by interplaying time cycles. 
Using the proposed methods, a complex mobility behavior 
represented by long-term flow data can be effectively studied. 

Our approach is comparable to another systematic approach to 
analyzing long time series of OD data that was published recently 
[9]. The latter also involves spatial and temporal abstraction. The 
temporal abstraction is also achieved by means of partition-based 
clustering of time intervals, whereas the spatial abstraction is done 
through density-based clustering of neighboring strongly connected 
locations. Furthermore, spatial situations are visually represented 
using graphs (node-link diagrams) rather than maps. This alternative 
approach achieves high spatial simplification, which facilitates the 
following visual analysis. However, details in dense areas are lost, 
which may be a disadvantage. Besides, since the graph-like data 
structure is preserved, link intersections may be a problem even in 
simplified graphs. The abstracted representation of spatial situations 
as graphs has both pluses and minuses. On the one hand, certain 
mobility patterns (such as flows between the center and the 
periphery) can be more readily perceived; on the other hand, it is not 
immediately clear what areas in space are represented by the graph 
nodes. Our approach eliminates flow intersections and presents 
spatial situations by maps, where locations are easily recognizable. 

To test the feasibility and effectiveness of our methods, we 
applied them to two datasets of differing sizes and complexity. The 
results of the testing are positive: we see that the approach works and 
both confirms existing knowledge of transport experts and generates 
new understanding about spatial and temporal patterns of mobility. 
The approach is generally applicable to any OD flow data reflecting 
movements in geographical space. Geographical space is an essential 
applicability condition for our approach since it deals with spatial 
directions and assumes that spatial locations are fixed. It is thus not 
applicable to abstract graphs, where nodes can be arbitrarily moved, 
nor abstract spaces where spatial directions may have little meaning. 
It is applicable, for example, to data on population migration, 
transportation of people and goods, and movements retrieved from 
georeferenced posts in Twitter, Flickr, and other social media [2][9]. 
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