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Abstract

Timely identification of critical nodes is crucial for assessing network vulnerability and survivability. In this work, we
propose a new distributed algorithm for identifying critical nodes in a network. The proposed approach is based on
suboptimal solutions of two optimization problems, namely the algebraic connectivity minimization problem and a min-
max network utility problem. The former attempts to address the topological aspect of node criticality whereas the latter
attempts to address its connection-oriented nature. The suboptimal solution of the algebraic connectivity minimization
problem is obtained through spectral partitioning considerations. This approach leads to a distributed solution which is
computationally less expensive than other approaches that exist in the literature and is near optimal, in the sense that
it is shown through simulations to approximate a lower bound which is obtained analytically. Despite the generality of
the proposed approach, in this work we evaluate its performance on a wireless ad hoc network. We demonstrate through
extensive simulations that the proposed solution is able to choose more critical nodes relative to other approaches, as it
is observed that when these nodes are removed they lead to the highest degradation in network performance in terms
of the achieved network throughput, the average network delay, the average network jitter and the number of dropped
packets.

Keywords: Algebraic connectivity, Spectral partitioning, Network Utility Maximization, Node criticality, Fiedler
vector.

1. Introduction

The identification of critical nodes is vital for access-
ing network vulnerability and security [1]. The failure of a
few critical nodes can have an adversarial effect on network
performance varying from slight degradation in the Qual-
ity of Service up to the complete breakdown of the network
[2][3][4][5]. The significance of critical nodes has been high-
lighted in a number of examples. In Wireless Sensor Net-
works (WSNs), the energy depletion rate is high at a few
nodes rendering them critical for assessing and improv-
ing network lifetime [6]. Likewise, the use of clustering in
WSNs introduces the risk of eavesdropping by a malicious
node on a large amount of information through the clus-
terheads, making these clusterheads critical for ensuring
network privacy [7]. Similarly, in computer networks, the
penetration of a virus can be prevented by simply taking
a few critical nodes offline, thus ensuring normal network
functionality for the rest of the network [8]. Moreover, the
effect of a few critical nodes on the overall network con-
nectivity was highlighted in [9], where removal of only 4%
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of the nodes in a Peer to Peer Gnutella Network resulted
in major fragmentation of the whole network [10]. Finally
in a wired telecommunications network, the identification
of critical nodes can aid in jamming the network by sup-
pressing the communication between a few critical nodes
in the network [11]. The significance of critical nodes goes
beyond computer networks to encompass other types of
networks such as the transportation network, the power
network and the water pipe network. In transportation
networks, the identification of critical junctions can aid in
forming suitable re-routes in case of an unexpected disrup-
tion [11][12]. Similarly, the identification of critical nodes
in the power grid network is vital for avoiding network
partitioning and large area blackouts [13].

A number of algorithms have been proposed in liter-
ature to identify critical nodes in a network. We differ-
entiate between connection based schemes and topology
based schemes. Topology based schemes use the underly-
ing topology of the considered network whereas, connec-
tion based schemes take into account the users of the net-
work and their source destination paths. Examples of con-
nection based schemes include: the average shortest path
length metric [14][15] which calculates the average short-
est path length over all possible node destination paths,
the closeness centrality metric [16][17], which utilizes the
distance of a node to every other node in the network, the
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rank matrix approach [18], which is based on the effect a
node has on the rank of the adjacency matrix of a network
upon its removal, the controllability based adaptation of
[18] for power networks in [19], and the betweenness cen-
trality [20][14][17] and ego centrality [21] metrics, which
assess the criticality of a node based on its participation
in forming the shortest path routes, with the former using
global information and the later taking into account the
two hop neighbours. Betweenness centrality metric exists
in various forms in literature, such as shortest-path be-
tweenness centrality, flow betweenness centrality and the
random-walk betweenness centrality [22]. In this work, we
refer to the shortest-path betweenness centrality proposed
by Freeman in his seminal paper [20].

On the other hand, examples of topology based schemes
include: the eigenvector centrality metric [23], which uses
the largest eigenvector of the adjacency matrix, the Hy-
brid Interactive Linear Programming Rounding (HILPR)
algorithm [13], which analyses the effect that a node has
on the pair-wise connectivity of a network upon its re-
moval, the GREEDY Critical Node Detection Problem
approach (GREEDY-CNDP) [24] and the β − disruptor
approach proposed in [25], both of which propose an ef-
ficient algorithm to minimize pairwise connectivity upon
removal of k nodes, the degree centrality metric [16][17]
which uses the degree of each node, the dynamic program-
ming approach in [26] which proposes polynomial time al-
gorithms to find maximally disconnected graphs with max-
imum number of maximal connected components and min-
imum largest component sizes and algebraic connectivity
based approaches [27][28][29][30][31][32] which attempt to
minimize the algebraic connectivity upon node removal.

Some of these algorithms are based on intuition, whereas
others are based on mathematical abstractions of networks
of arbitrary topology and are thus characterized by prop-
erties which can be verified analytically prior to implemen-
tation. In this paper, we adopt the latter approach and we
cast the node criticality problem in an optimization based
framework. We formulate two optimization problems: an
algebraic connectivity minimization problem, which ad-
dresses the topological aspects of node criticality and a
min-max aggregate utility problem which addresses the
connection oriented nature of the node criticality. The
problems are related in depth as the connections can only
establish source-destination paths on the underlying topol-
ogy. However, we treat them as two separate problems and
we consider suboptimal solutions for both problems which
are combined to yield the proposed criticality identifica-
tion scheme. We consider suboptimal solutions for both
problems which are combined to yield the proposed criti-
cality identification scheme.

In order to characterize the topological notion of node
criticality, we consider a node to be critical when it con-
tributes mostly to keeping the network connected or alter-
natively when its removal leads to a minimization of the
network connectivity. A popular metric which character-
izes the connectivity of a network is the algebraic connec-

tivity. The metric was introduced by Fiedler in [27] and is
defined as the second smallest eigenvalue of the Laplacian
matrix of the network. It has been established in a number
of studies [27][33][34] that algebraic connectivity serves as
a good measure of connectivity robustness in the sense that
the smallest its value is, the closer the network is in becom-
ing disconnected. So, the first optimization problem that
we consider in this work is the problem of finding the nodes
which, when removed, minimize the algebraic connectiv-
ity of the network. A basic but tedious approach to solve
the aforementioned problem is to use an exhaustive search
over all sub-graphs which result from the removal of each
node of the network. This approach assumes knowledge
of the entire network topology and can thus become com-
putationally expensive when dealing with large network
structures. In addition, when multiple critical nodes need
to be found the approach becomes computationally expen-
sive with the number of subgraphs that need to be con-
sidered increasing combinatorially with the network size.
For this reason, a number of suboptimal solutions have
been proposed in literature [30][31][28][29]. These subop-
timal solutions utilize the elements of the Fiedler vector
which is the eigenvector associated with the second small-
est eigenvalue of the Laplacian of the network. Each el-
ement of the eigenvector naturally corresponds to a node
in the network. The most popular suboptimal node criti-
cality metric is the aggregate squared difference of Fiedler
vector elements between neighbouring nodes [30][31] which
has been shown to approximate the optimal solution using
both analysis and simulations. Recent advances, which al-
low the distributed calculation of the Fiedler vector values
[35] have enabled the distributed implementation of the
proposed criticality metric. However, the main drawback
of the distributed implementation is that a global maximi-
sation consensus algorithm must be employed which can
be slow and significantly increases the convergence time.

In this work we adopt an alternative approach to ob-
taining a suboptimal solution of the original algebraic con-
nectivity minimization problem by employing spectral par-
titioning concepts. It is well known that the elements of
the Fiedler vector assume positive and negative values in
the range [−1, 1] and that a splitting value s can be used
to partition the network in two clusters (the first cluster
containing all the nodes with corresponding Fiedler vector
values less than s). Different values of s yield different
types of cuts such as bisection, ratio cut, sign cut and
gap cut [27]. The Fiedler clusters are known to be well
connected [35] and in addition it has been shown that for
various types of networks [36], which go beyond double
community structures, they possess the desired property
that they have nearly equal number of vertices with mini-
mum number of edges in-between them [34]. In this work,
based on the latter property, we consider as critical, the
nodes which lie on the boundary of the Fiedler clusters.
We adopt the sign cut approach and we thus consider as
critical, the nodes which have at least one neighbour with
a corresponding Fiedler vector value of different sign. This
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approach is attractive to be implemented in a distributed
manner and allows each node to decide by itself whether
it is a critical node. In addition, we demonstrate that this
approach is directly related to the approach in [30][31] as
the nodes which lie on the boundary of the Fiedler clusters
report high values of the aggregate squared Fiedler vector
value differences, which is the criticality metric proposed
therein. However, when a single critical node is required
and a maximization algorithm needs to be employed, the
proposed algorithm offers the advantage that it signifi-
cantly reduces the distributed computational complexity
as the maximization algorithm needs to be applied only
over a reduced set of nodes, namely the ones which have
the same Fiedler vector element sign. We demonstrate
through simulations the significant reduction in conver-
gence time achieved, and in addition we show that the
solution is near optimal, in the sense that it approximates
to a very good extent, a lower bound on the achieved al-
gebraic connectivity which we derive analytically.

As pointed out above, the proposed change of sign
method can lead to multiple nodes being detected as crit-
ical and so, when a single node is required, a metric must
be utilized to decide on the most critical node among the
ones which lie on the boundary of the Fiedler clusters. In
our recent work in [37], we have adopted the metric in
[30][31], however, in this work we consider an alternative
metric which takes into account the users of the underlying
network and their source destination paths. The algebraic
connectivity depends only on the topology of the underly-
ing network and the criticality metric must thus be com-
plemented to account for the intuitive notion that the users
of the network must also be taken into consideration when
assessing the criticality of a node. This complementary
information is offered by the second optimization problem
that we consider in this work. It has been well established
in the literature that the rate allocation algorithms of the
network users attempt to maximize the aggregate utility of
the network over the capacity constraints [38]. So, we con-
sider as critical, the nodes which, when removed degrade
the network performance to the greatest extent i.e. they
minimize the maximum of the aggregate utility function.
This optimization problem requires full network informa-
tion in order to be solved and in addition the complexity
of the exhaustive search solution increases combinatori-
ally with the network size when multiple nodes need to
be selected. We thus derive a suboptimal solution which
identifies as critical, the nodes which maximize the square
root of the number of active connections at each node mul-
tiplied by the aggregate input data rate. We thus combine
the suboptimal solutions of the two optimization problems
to derive the proposed criticality metric which considers
as critical the nodes which maximize the latter criticality
metric over the nodes which lie on the boundary of the
Fiedler clusters.

We evaluate the performance of the proposed criticality
metric using extensive simulations conducted on Matlab
and the Ns-3 simulator. Since the criticality metric is ob-

tained by combining suboptimal solutions of two optimiza-
tion problems we first establish that these suboptimal so-
lutions are not conservative. When a single critical node is
removed, the proposed suboptimal solutions are very close
to the optimal ones which are obtained using the exhaus-
tive search approach. When multiple nodes are removed
the suboptimal solutions are close to a lower bound which
is obtained analytically. We then compare the proposed
metric against other metrics which have been proposed
in literature: the betweenness centrality [20], the closeness
centrality, the degree centrality [16], the Hybrid Interactive
Linear Programming Rounding (HILPR) proposed in [13],
the Controllability of complex networks (Cont) in [18], the
suboptimal solution of Eq (6) [28][29] and the suboptimal
solution of Eq (7) [30][31]. The evaluation is based on
the degradation in performance reported when nodes se-
lected using the criticality metrics under consideration are
removed from the network. The considered network is a
wireless ad-hoc network where the x and y coordinates of
the nodes are randomly chosen according to uniform distri-
butions. We establish that the proposed criticality metric
outperforms the other approaches in terms of the achieved
network throughput, the average network delay, the aver-
age network jitter and the number of dropped packets.

The rest of the paper is organised as follows. In Section
2, we introduce the relevant mathematical framework and
formulate the considered optimization problems, in Sec-
tion 3, we present the suboptimal solutions of the formu-
lated optimization problems which are combined to yield
the proposed criticality metric, in Section 4, we derive the
lower bound on the algebraic connectivity upon node re-
moval, in Section 5, we evaluate the performance of the
proposed approach using simulations and finally in Sec-
tion 6 we conclude our work.

2. Problem Formulation

The proposed method for identifying critical nodes is
based on the solution of two optimization problems: the al-
gebraic connectivity minimization problem and a min-max
aggregate utility problem. In this section we introduce the
relevant mathematical framework which is used to formu-
late these problems mathematically and also present some
of the relevant approaches present in the literature.

2.1. Algebraic Connectivity Minimization

We consider an undirected graph G = (V,E) where
|V | = n and |E| = m are the number of nodes and edges
respectively. The existence of an edge l ∈ E between nodes
i and j defines the lth column al of the incidence matrix
A ∈ <n×m of the graph such that ali = 1, alj = −1 and 0
otherwise. The Laplacian matrix is then defined as:

L = AAT =

m∑
l=1

ala
T
l (1)
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L is positive semi-definite and thus has an orthonormal
basis of real eigenvectors with corresponding real eigen-
values. It also holds that L1 = 0 where 1 is the vector
of all ones. The latter property guarantees that at least
one eigenvalue of the Laplacian matrix is equal to zero
[39]. We rearrange the eigenvalues of the Laplacian ma-
trix in ascending order such that 0 = λ1 ≤ λ2 ≤ ... ≤ λn.
The second smallest eigenvalue µ = λ2 is known as the
algebraic connectivity of the graph with the correspond-
ing normalized eigenvector being referred to as the Fiedler
vector [27].The algebraic connectivity is related to the con-
nectivity of the graph as a result of the following theorem
[40].

Theorem 1. G=(V,E) is disconnected if and only if µ = 0

Further, the algebraic connectivity has been observed
to serve as a connectivity robustness measure in the sense
that the lower its value is, the closer the network is in be-
coming disconnected. The latter property has motivated
the use of the algebraic connectivity in assessing node crit-
icality. A node is considered as a Critical Node (CN),
when it contributes mostly to keeping the network con-
nected. One may thus define as critical, the nodes which
when removed minimize the algebraic connectivity of the
network. This optimization problem, referred to as opti-
mization problem P , is shown formally below:

P : CN = arg min
α∈V

µ(G(V − α)) (2)

One way of solving P when a single node is removed is
through exhaustive search. However this approach is com-
putationally expensive. In addition, when multiple nodes
are removed, the complexity of the exhaustive search so-
lution increases combinatorially with increasing network
size. So, people have sought suboptimal solutions which
are simple to implement in a distributed manner. The
most popular solutions are inspired from the following
characterization of the algebraic connectivity [41] using
the Rayleigh quotient of y with respect to L:

µ(L) = min{y
TLy

yT y
|y 6= 0,1Ty = 0} (3)

If we substitute y with the normalized vector v =
y/||y|| in Eq (3) then, it can be written as:

µ(L) = min{vTLv| ||v|| = 1,1Tv = 0} (4)

which can also be expressed in the form:

µ(L) = min{1

2

n∑
i=1

∑
j∈Ni

(vi − vj)2| ||v|| = 1,1Tv = 0} (5)

where Ni is the set of neighbours of node i. The mini-
mum is achieved when v is the Fiedler vector of the Lapla-
cian L. Each Fiedler vector entry naturally corresponds to
a node in the graph. It can thus be deduced from Eq (5)

that the node which contributes the most to the algebraic
connectivity is the one with the maximum sum of squared
Fiedler vector value differences with neighbouring nodes
i.e
∑
j∈Ni

(vi − vj)2. Based on this, the authors in [28],
[29] have considered as critical, the nodes which solve the
following optimization problem:

CN = arg max
i∈V

∑
j∈Ni

(vi − vj)2 (6)

The variant shown below has also been proposed in [30]
and [31]

CN = arg max
i∈V

∑
j∈Ni

vj(vi − vj)
1− v2i

(7)

The solutions of (6) and (7) constitute suboptimal so-
lutions of the optimization problem P as indicated in [30].
More specifically, in [30] the metrics are derived using ap-
proximations of the difference in the algebraic connectivity
when a particular node is removed. Bounds on the esti-
mation error are then established which can be used to
characterize how conservative these approximations are.
The distributed criticality metrics and their analysis are
generalized in [32]. Therein, the authors show that under
certain conditions the distributed metrics create the same
importance order as the approximation based centralized
solutions. As a result of recent advances in the distributed
calculation of Fiedler vector values [35], these suboptimal
solutions are amenable for implementation in a distributed
manner. The main drawback of the distributed implemen-
tations, as indicated by the authors in [30][29], is that,
a maximization consensus algorithm must be employed
over the entire set of nodes present in the relevant graph
which increases significantly the computational overhead.
In this work, we offer an alternative suboptimal solution
which alleviates the aforementioned problem thus report-
ing smaller convergence times.

2.2. Min-Max Aggregate Utility

The algebraic connectivity, which has so far been used
to assess node criticality, only takes into account the topol-
ogy of the underlying network. However, intuition sug-
gests that apart from the network topology, the network
users also have a key role to play when assessing the crit-
icality of a particular node. Nodes which are utilized by
many source destination paths, or nodes which accommo-
date large amounts of data traffic, can be considered more
critical than others. In this section, we utilize the Net-
work Utility Maximization (NUM) framework proposed by
Kelly in [42] to cast these intuitive notions in a formal op-
timization based framework.

We consider a network which consists of a set of traf-
fic sources S and a set of links L. Each network user
s ∈ S injects data into the network with a rate denoted
by xs. The data is transferred from its source s ∈ S to its
destination via a route which comprises of a set of links
collected in the set L(s) representing the route. Each link
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l ∈ L is characterized by a finite capacity cl. To each
user xs we assign a utility function Us(xs) which repre-
sents the satisfaction a user gets from a particular sending
rate allocation. The utility functions are assumed to be
strictly increasing, continuously differentiable and strictly
concave. The objective of the network user collaboration
is to maximize the aggregate utility function subject to
the capacity constraints. Therefore, a node is considered
as critical if its removal results in the highest degradation
in the aggregate utility function of the network. This is
expressed formally below:

Q : CN = arg min
k∈V

max
s∈(S\k)

∑
s

Us(xs) (8)

subject to
∑

s:l∈(L(s)\L(k))

xs ≤ cl ∀l (9)

over xs ≥ 0 (10)

The optimization problem of Eq (8) is a mixed integer
discrete continuous problem, discrete in the minimization
over the set of nodes and continuous in the maximization
over the sending rates. One may employ the exhaustive
search approach to obtain the optimal solution when a
single node is removed. However, this approach is compu-
tationally expensive and requires full network information.
In addition, when multiple nodes are removed the com-
plexity of the exhaustive search approach increases com-
binatorially with network size. A number of algorithms
have been proposed in literature to obtain more efficient
optimal and suboptimal solutions [43][44]. In this work we
offer, a suboptimal solution which leads to a distributed,
simple to evaluate node criticality metric.

3. Proposed Algorithm

In this section, we describe the proposed criticality
metric which is based on suboptimal solutions of the op-
timization problems P and Q described in the previous
sections. The rationale behind the offered suboptimal so-
lutions is explained.

3.1. Algebraic Connectivity Minimization

The proposed suboptimal solution of problem P is based
on spectral partitioning considerations. Spectral partition-
ing, refers to the methodology with which a graph can be
partitioned into connected clusters using spectral proper-
ties of the graph, namely the elements of the Fiedler vector.
As a result of the property 1Tv = 0 in Eq (5) the elements
of the Fiedler vector attain both positive and negative val-
ues in the range [−1, 1]. The following theorem establishes
how the Fiedler vector elements can be used to partition
the graph into clusters which are well connected [40].

Theorem 2. Let G be a finite connected graph with N
vertices and vi be the Fiedler vector value corresponding
to node i. Then for any s ≥ 0:

M(s) = {i ∈ N |vi + s ≥ 0} (11)

the sugbraph G(s) induced by G on M(s) is connected.

A similar theorem exists for s ≤ 0. Different values of s
yield different types of cuts [40]. In this work we adopt the
sign cut approach in which case s is equal to 0. The above
theorem only establishes the connectivity of the obtained
clusters. However, a number of other results indicate that
spectral partitioning can produce cuts with a good ratio of
cut edges to separated vertices [45]. This implies that spec-
tral partitioning methods yield strongly connected clusters
of approximately equal size, loosely connected between
them. This property motivates the proposed solution. As
we are looking for nodes which when removed minimize the
algebraic connectivity we expect that if an edge lying in
the spectral partitioning cut-set is removed from the net-
work, it will render the clusters even less loosely connected
thus significantly decreasing the algebraic connectivity of
the network. We thus consider as critical the nodes whose
removal will result in the removal of an edge from the
spectral partitioning cut-set. As mentioned above, in this
work we adopt the sign cut approach which partitions the
network into two well-connected clusters. All the nodes of
the first cluster have positive corresponding Fiedler vec-
tor elements whereas, all the nodes of the second cluster
have negative Fiedler vector elements. The cut-set thus
comprises of all the edges which connect nodes with cor-
responding Fiedler value elements of different sign. We
thus consider as critical the nodes which have at least one
neighbouring node with a Fiedler vector element of differ-
ent sign. In mathematical terms a node i ∈ V is critical if
j ∈ Ni which satisfies:

sign(vi) 6= sign(vj) (12)

where sign is the sign function and vi ∈ V are the
elements of the Fiedler vector.

Figure 1: Example network where the Fiedler values are indicated
at the corresponding nodes.

We demonstrate these concepts through the sample
network of Fig. 1. The network consists of two well con-
nected subgraphs. These are loosely connected between
them by means of a single link. The Fiedler vector values
are calculated and indicated on the diagram. We observed
that the Fiedler vector values corresponding to the nodes
in the left-hand subgraph have positive values, whereas,
the Fiedler vector values corresponding to nodes in the
right-hand subgraph have negative values. Intuition sug-
gests that the nodes which are critical are the ones which
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(a) (b)

Figure 2: Example network where at each node we highlight a)
Fiedler vector values, b) Difference in Fiedler vector value across
the network.

connect the two subgraphs via the single edge and can
be observed in Fig. 1. The nodes that connect the two
subgraphs have Fiedler vector values of different signs.

The question that arises is whether the proposed crite-
rion is indeed a suboptimal solution of the algebraic min-
imization problem P in (2). In subsequent sections we
demonstrate the suboptimality using simulations. In this
section we demonstrate the suboptimality by highlighting
its relation to the criticality criterion in Eq (6) which has
been demonstrated [28] to constitute a suboptimal solu-
tion. In particular, we show that the nodes which are
detected as being critical according to the proposed crite-
rion of Eq (12) also report high aggregate squared Fiedler
difference values

∑
j∈Ni

(vi − vj)2 which implies that they
are also critical according to criterion (6). The analytical
verification of this observation is an open problem. This
observation is important as it suggests that the maximiza-
tion of (6) does not have to be done over the entire set of
nodes but only over the ones which have Fiedler element
values of the same sign. This can significantly reduce the
implementation complexity of (6).

To demonstrate the relationship we use the network of
Fig. 2 which comprises 80 nodes. The network consists of
two well connected subgraphs loosely connected by a small
set of edges. Each node is coloured according to the mag-
nitude of the absolute value of the quantity under investi-
gation. In Fig. 2(a) we show at each node i the magnitude
of the calculated Fiedler element value vi whereas, in Fig.
2(b) we show the magnitude of the aggregate squared dif-
ference value

∑
j∈Ni

(vi − vj)2. We observe that there is
a tendency for the Fiedler elements to attain their lowest
value at nodes which lie in the sign cut-set. As we move
away from the sign cut-set the Fiedler values tend to in-
crease. In addition, we observe that nodes which lie in the
sign cut-set tend to attain large aggregate squared differ-
ence values. This demonstrates the relationship between
(12) and (6).

The proposed change of sign approach is amenable for
implementation in a distributed manner. Recent tech-
niques [35], allow the distributed calculation of Fiedler
values at each node. Then, the only thing that a node
needs to do in order to classify itself as critical is to check

whether at least one of its neighbours has a Fiedler value
with a different sign than itself. However, this approach
leads to multiple nodes being detected as critical. What
if a single node needs to be selected? Among the nodes
which lie in the sign cut-set how do we choose the one
which is the most critical? In our recent work in [37] we
have chosen the node which maximizes the sum of squared
differences

∑
j∈Ni

(vi − vj)2. In this work, we choose an
alternative criterion which is based on a distributed sub-
optimal solution of the problem Q in (8).

3.2. Min-Max Aggregate Utility

We relax the strict concavity of the utility functions to
assume linear utility functions Us(xs) = xs. We consider
two approaches to obtain suboptimal solutions which are
combined to obtain the proposed criticality metric. The
first approach is via the directional derivative along the
directions of rate deductions due to link removal. Let
F (x∗) =

∑
s Us(x

∗
s) denote the aggregate utility function

evaluated at the optimal sending rates x∗ at which the
maximum is achieved. When a link l ∈ L is removed from
the network then all the sources s which utilize link l de-
noted by S(l) will be deprived from the ability to send
data. This is expected to lead to a reduction in the cost
function F (.) along the directions xs, s ∈ S. Our aim
is to remove a link which will cause maximum reduction
in the cost function F (.). By employing steepest descent
considerations a removal which maximizes the directional
derivative is thus sought. We thus investigate the effect of
removing link l on F by considering the directional deriva-
tive of F along the unit vector ~yl =

∑
s∈S(l)

1√
nl

~is, where nl

is the cardinality of S(l) and ~is is the unit vector along the
direction xs, s ∈ S. The directional derivative denoted by
D~ylF evaluated at the equilibrium point x∗ is given by:

D~ylF = ~yl.5 Fx=x∗ = (13)

1
√
nl

∂F

∂x1
+

1
√
nl

∂F

∂x2
+ ...+

1
√
nl

∂F

∂xn

where 5Fx=x∗ denotes the divergence operator evalu-
ated at x∗. Since the utility functions are assumed linear:

D~ylF =
√
nl (14)

Since the objective is to minimize F (x∗) links l are
sought which maximize the directional derivative. The
other approach is by direct calculation of the reduction in
F (x∗) when a link l is removed. Due to the linear utility
function assumption, F (x∗) =

∑
s∈S

x∗s. When a link l is

removed, all the sources s which utilize link l will be de-
prived from the ability to send data. This will result in a
reduction in F (x∗) by an amount ∆y∗l =

∑
s∈S(l)

x∗s. Since

the objective is to minimize F (x∗), links l are sought which
report the highest input data rate ∆y∗l . We combine the

6



aforementioned approaches to classify as critical the links
which satisfy:

CN = arg max
l∈L

√
nl∆y

∗
l (15)

Despite the fact that the discussion has so far been
made with reference to link removal, the derived criterion
of Eq (15), also applies to node removal. n is the total
number of connections traversing the node, whereas ∆y∗

is the input data rate at the node. The dependence of
the criticality metric on n is in line with the well known
betweenness centrality criterion. The dependence on the
input data rate is in line with the intuitive notion that the
more data traverses a node the more critical it is. The
input data rate at a particular node is a quantity that can
be calculated locally. The number of active connections,
however, is readily available locally only in systems which
maintain per connection states at each node. When such
per connection states are not available, estimates of the ac-
tive connections can be used instead. Such estimates can
be generated online using parameter identification tech-
niques proposed in literature [46].

The obtained suboptimal solutions of the two consid-
ered optimization problems are then combined to yield the
methodology with which the most critical node in the net-
work is identified. The methodology is as follows. The
change of sign approach of Eq (12) is first used to iden-
tify all the nodes which lie in the sign cut-set. Among
the nodes which lie in the sign cut-set, the most critical
is the one which maximizes the cost function of (15). The
proposed approach is amenable for implementation in a
distributed manner. Recently proposed techniques [35] al-
low the distributed calculation of the Fiedler elements at
each node. After the Fiedler elements are calculated at
each node, the nodes employ beacon message exchange to
share their Fiedler elements with their neighbours. If a
node detects that the sign of the Fiedler value of one of its
neighbours is different than its own sign, then it identifies
itself as lying in the sign cut-set of the network graph. All
the nodes that lie in the sign cut-set calculate the

√
n∆y

cost of Eq (15) and initiate a blind flooding algorithm to
share their cost with all the other nodes lying in the sign
cut-set. When a node in the sign-cut set receives a cost
initiated from another node in the sign cut-set it compares
the two, and if the maximum is its own cost it identifies
itself as a critical node and rebroadcasts the maximum
of the two. This approach guarantees that when the al-
gorithm terminates, only one critical node is left within
the network which is the one which has the highest cost
among all the nodes which lie in the sign cut-set. Note that
the blind flooding algorithm is implemented only over the
nodes which share the same Fiedler element sign. This
achieves significant savings in computation effort relative
to other approaches. Below, we show a pseudocode of the
proposed method.

In the future we aim at finding more efficient distributed
algorithms which take into account the fact that the Fiedler

Algorithm 1 Distributed Critical Node Identification.

Initialization: Every node i shares corresponding Fiedler
vector component to its neighbouring nodes and stores
a flag bit fi = 1, set
t← 0
Step 1:
if vi > 0 and vj < 0 ∀ j ∈ Ni then

calculate 4βi(t) =
√
niyi. Each node i transmits

4βi(t) to its neighbours with vj > 0 and computes:
4βi(t) = max{4βi(t),4βj(t)}j ∈ Ni

else
fi = 0,
4βi(t) = 0

Step 2:
if (t mod D)= 0 then

each node checks weather fi = 1 or not
Critical Node = arg max{4βi(t),4βj(t)} , j ∈ Ni

else
At all nodes observing a sign change with vi > 0 and

vj < 0, set fi = 1. Each node i transmits 4βi(t) to its
neighbours with vj > 0 and computes:
4βi(t+ 1) = max{4βi(t),4βj(t)} j ∈ Ni

if 4βi(t+ 1) 6= 4βi(t) then
4βi(t+ 1)←4βi(t), t = t+ 1, set fi = 0

Return to Step 2

values are minimum at the nodes which lie in the sign cut-
set.

4. Analysis

In this section, we derive analytically a lower bound on
the algebraic connectivity when a single node is removed
from the network and use it iteratively to evaluate how
conservative our suboptimal solutions are when multiple
nodes are removed from the network.

Theorem 3. Let G = (V,E) be a graph of n nodes with
eigenvalues 0 ≤ ∧2 ≤ ∧3 ≤ ... ≤ ∧n. Then, upon removal
of a node w node from the graph, the algebraic connectivity
of the resultant graph is lower bounded by:

λ ≥ ∧2 −
u22

1 + (bn − u22)/(∧2 − ∧n)
(16)

where
u2 =

∑
w∈n

∑
j∈Ni,i∈w

(vi − vj), (17)

bn = n(tr(A)− u2) +
√
n(1− n)f(A) (18)

and

f(A) = tr

(
A− tr(A)

2
I

)2

−

(
2

(
u2 −

tr(A)

2

)2
)

(19)

with
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tr

(
A− tr(A)

2
I

)2

= tr(A2)− (tr(A))2

2
(20)

Here, A is the Laplacian matrix defined by the node w
that is being removed from the graph.

Proof. We use the eigenvalue decomposition of L = QDQT

where D = Diag(0,∧2, .....,∧n) is the diagonal matrix
of ascending eigenvalues and Q is an orthogonal matrix
with corresponding eigenvectors of L in its columns. The
eigenvalues of a Laplacian matrix L can be found using
Lv = λv, therefore, in this expression we substitute L to
get [47]:

(QDQT )vj = ∧jvj (21)

Where vj is the linear combination of the eigenvectors
corresponding to the jth eigenvalue ∧j of L. The removal
of w nodes from the network reduces D by a factor uuT

where u = QThl and hl is lth column of the incidence
matrix A of the network [48]. Thus we have:

Q(D − uuT )QT vj = ∧jvj (22)

We know from [49] that, the eigenvalues of Eq (22) can
be obtained by solving D − uuT − λI for the determinant
of the matrix, where I is the identity matrix [49]:

det(D − uuT − λI) = 0 (23)

det(D − λI)det(I − (D − λI)−1uuT ) = 0 (24)

Eq (24) can be reduced to [49]:

n∏
i=1

(∧i − λ)

(
1−

n∑
i=1

u2i
(∧i − λ)

)
= 0 (25)

This shows that, the eigenvalue of Eq (22) can be com-
puted by finding the roots of the secular equation:

1 =

n∑
i=1

u2i
∧i − λ

(26)

We solve Eq (26) for the the eigenvalue λ of the network
that results after the removal of w node from the network.
Here, we know that u1 = 0 and u2 =

∑
w∈n

∑
j∈Ni,i∈w(vi−

vj). Therefore we have:

u22
∧2 − λ

= 1−
n∑
i=3

u2i
∧i − λ

(27)

This can be re-arranged into:

λ = ∧2 −
u22

1 +
∑n
i=3 u

2
i /λ− ∧i

(28)

According to the eigenvalue interlacing theorem, the
algebraic connectivity of network that results from the re-
moval of a node is bounded by 0 ≤ λ2 ≤ ∧2 [50].

Theorem 4. Let X be a graph with n vertices and let Y
be obtained by removing a vertex from X then [50]:

λi−1(L(X)) ≤ λi(L(Y )) ≤ λi(L(X))

We use Theorem 4 along with the observation in Eq
(28), that the LHS is a decreasing function whereas the
RHS is an increasing function of λ, therefore we obtain the
lower bound of λ by using the appropriate substitution of
λ = ∧2 > λ2. This gives us:

λ ≥ ∧2 −
u22

1 +
∑n
i=3 u

2
i /(∧2 − ∧n)

(29)

From [51] we know that
∑n
i=1 u

2
i ≤ bn, thus we approx-

imate
∑n
i=3 u

2
i with the difference bn − u22 to obtain the

final expression of Eq (16), where:

bn = n(tr(A)− u2) +
√
n(1− n)f(A) (30)

and f(A) is:

f(A) = tr

(
A− tr(A)

2
I

)2

−

(
2

(
u2 −

tr(A)

2

)2
)

(31)

In Eq (31) the square of the matrix can be avoided by
using Eq (32) [51].

tr

(
A− tr(A)

2
I

)2

= tr(A2)− (tr(A))2

2
(32)

Here tr(A2) = ||A||2f and ||A||f is the Frobenius matrix
norm of A.

5. Performance Evaluation

In this section, we evaluate the performance of the pro-
posed criticality metric using simulations conducted on
Matlab [52] and on the Network Simulator (Ns-3) [53]. We
first assess how conservative the suboptimal solutions are
with reference to the posed optimization problems, and
we then evaluate the ability of the proposed method to
choose the most critical nodes in the network. The crit-
icality of a fixed number of nodes is assessed by evaluat-
ing the degradation in performance achieved when these
nodes are removed from the network. We conduct a com-
parative study to investigate the performance of the pro-
posed metric against other approaches that exist in liter-
ature such as the betweenness centrality [20], the close-
ness centrality, the degree centrality [16], the exhaustive
search approach, the Hybrid Interactive Linear Program-
ming Rounding (HILPR) metric proposed in [13], the Con-
trollability of complex networks (Cont) approach in [18],
the suboptimal solution of Eq (6) which we refer to as
the Sum Squared Difference approach (SSD) [28][29], the
suboptimal solution of Eq (7) which we refer to as the Nor-
malized Sum Squared Difference approach (NSSD) [30][31]
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(a) (b)

(c) (d)

Figure 3: Algebraic Connectivity versus the trasnsmission radius
when: a) & b) a single node is removed from the network, c) & d)
five nodes are removed from the network.

and our previously proposed approach which we refer to as
Spectral Partitioning for Node Criticality approach (SPNC)
[37]. Our simulation results indicate that the subopti-
mal solutions are not conservative and that the proposed
criticality metric chooses the most critical nodes in the
network as it achieves the greatest degradation in perfor-
mance when these nodes are removed.

5.1. Algebraic Connectivity Suboptimality

In this section we evaluate, using simulations conducted
on Matlab, the ability of the change of sign approach, in-
corporated in the proposed metric, to serve as a subopti-
mal solution of the posed algebraic connectivity minimiza-
tion problem i.e. to identify nodes which when removed
achieve algebraic connectivity values which are close to the
minimum. We also compare the change of sign approach
with other approaches which have been proposed in liter-
ature in terms of the algebraic connectivity achieved. As
our objective is to focus on the topological aspects of the
proposed criticality metric we do not account for network
users. To find a single critical node we first employ the
change of sign approach to find the set of nodes which lie
in the sign cut-set and among these we find the one which
maximizes the

√
nl parameter. The parameter nl at a

particular node l is found by calculating the number of
times the node l participates in the shortest path, among
all shortest paths between all possible source destination
pairs.

We consider an area of 1000 × 1000m2 in which we
randomly deploy 100 nodes. The x and y coordinates of
the nodes are drawn from a uniform random distribution.
The nodes employ wireless communication to form a wire-
less ad hoc network. In order to evaluate the performance

of the considered criticality metrics as a function of the
transmission radius of the nodes, we consider transmis-
sion radius values in the range 100m to 200m. To avoid
random fluctuations due to single simulation run, simula-
tions were conducted for 20 different network topologies
and the results were then averaged.

In Fig. 3a & 3b, we show the algebraic connectivity of
the aforementioned network as a function of the transmis-
sion radius when only one node, the most critical in the
network, is removed. In each case we remove a node using
a different criticality metric. We compare the proposed
change of sign approach against the exhaustive search ap-
proach, the betweenness centrality, the closeness centrality,
the degree centrality, the HILPR, the Cont,the SSD and
the NSSD. Note that when a single node is removed the
optimal algebraic connectivity value can be found using
the exhaustive search approach i.e. the algebraic connec-
tivity is calculated when each node is removed from the
network and the minimum among all calculated values is
recorded.

The first thing to note is that, as expected, the alge-
braic connectivity increases monotonically as the transmis-
sion radius increases. The other thing to note is that at
almost all transmission range values, the proposed change
of sign approach, manages to yield the smallest algebraic
connectivity value which is surprisingly very close to the
optimal value calculated using the exhaustive search ap-
proach. This demonstrates that the proposed suboptimal
solution is not conservative in the sense that it yields al-
gebraic connectivity values which are close to the optimal.
We next conduct a similar evaluation study when 10 nodes
are removed from the network. When multiple nodes are
removed the exhaustive search approach becomes com-
putationally expensive, so in order to evaluate the sub-
optimality of the proposed approach we compare it with
the lower bound calculated in section IV. The results are
shown in Fig. 3c & 3d. The results indicate that all criti-
cality metrics report similar algebraic connectivity values
which are close to the lower bound. This again demon-
strates the fact that the proposed suboptimal solution is
not conservative.

5.2. Network Utility Maximization Suboptimality

The main objective of this set of simulation experi-
ments is to evaluate how conservative the proposed criti-
cality metric is in solving the min-max optimization prob-
lem (8). Since a suboptimal solution is proposed, it is
crucial to evaluate the degree with which the metric iden-
tifies nodes which when removed lead to aggregate utility
functions which are close to the optimal. The optimal cost
function is found by employing an exhaustive search ap-
proach i.e. the maximum aggregate utility is calculated,
when each node is removed from the network and the min-
imum is found among all values calculated. We consider
logarithmic utility functions which are common in the lit-
erature. In our simulation experiments we consider an
area of 100 × 100m where we deploy 50 nodes with the x
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and y coordinates drawn from a uniform random distribu-
tion. Each node is characterized by a transmission radius
of 30m. At each time instant, a particular number of users
inject data into the network along specific data routes. We
vary the number of users from 5 to 20 and the reported
results are averaged over 50 experiment repetitions, in or-
der to decrease the inaccuracies due to the random nature
of the setting. As the proposed criticality metric incor-
porates the number of users traversing the node which is
related to the betweenness centrality metric, we compare
the proposed approach not only with the optimal but also
with the betweenness centrality metric. For each consid-
ered number of users, we remove a single node from the
network according to the criticality metric under consider-
ation, and we record the maximum aggregate utility of the
resulting network. In order to appreciate the level of the
cost function reduction achieved we also indicate the max-
imum aggregate utility value prior to node removal which
we refer to as the original network. The incorrect selection
of the critical node is reported as the maximum network
utility, which in the considered scenario will be a node that
creates a bottleneck for the network and thus bounds the
maximum aggregate utility, such a node upon removal will
render the network with a higher aggregate utility. The re-
sults are shown in Fig. 4. We observe that the proposed
criticality metric yields smaller maximum aggregate util-
ity values than the betweenness centrality metric which are
close to the optimal values. This demonstrates the near
optimality of the proposed solution.

5.3. Computational Complexity

It has been established in section III that the proposed
change of sign approach is related to the sum of squared
differences approach of equation (6) in the sense that nodes
which lie in the sign cut-set report high sum of squared
difference values. However, the main benefit of our ap-
proach is that the maximization algorithm does not have
to be performed over the entire node set but only over the
nodes which report the same sign of the Fiedler value el-
ement. In order to demonstrate, the significant reduction
in computational effort achieved we compare the proposed
algorithm in 1 against the maximization consensus algo-
rithm proposed in [30] in terms of the computational time
required for the algorithm to reach an equilibrium. In the
simulation experiments that we conduct, we deploy nodes
in an area of 1000×1000m2 with their x and y coordinates
drawn from a uniform distribution. In order to evaluate
the computational effort for different node densities and
network sizes we consider number of node values in the
range 100 to 1000. Each node is assumed to have a fixed
transmission radius of 250m. The computational time for
the two approaches as a function of the number of nodes
is shown schematically in Fig. 5. We observe that the pro-
posed approach is able to achieve significant reductions in
the computational time. These reductions become larger
with increasing network size.

Figure 4: Aggregate network utility versus number of node in a net-
work when critical nodes are selected using various approaches.

Figure 5: Computational time versus the number of nodes for the
proposed approach and the maximization consensus algorithm of
[30].

5.4. Network Centric Evaluation

Having established the suboptimality of the proposed
solutions, and the significant reduction in implementation
complexity achieved, in our final set of experiments we
evaluate the performance of the proposed criticality metric
in a more realistic network scenario. We conduct the sim-
ulation experiments on the Ns-3 Simulator [53] and evalu-
ate the network performance using network centric perfor-
mance criteria such as the total network throughput, the
average per packet delay, the average per packet jitter and
the total number of packets dropped. In all the simula-
tions we compare the performance of the proposed met-
ric against metrics such as, betweenness centrality, close-
ness centrality, degree centrality, Hybrid Interactive Lin-
ear Programming Rounding (HILPR), the Controllability
of complex networks (Cont),the Sum Squared Difference
(SSD) approach, the Normalized Sum Squared Difference
(NSSD) approach and the previously proposed Spectral
Partitioning for Node Criticality (SPNC) approach [37].

The evaluation was conducted on an area of 1500 ×
1500m2, where 100 wireless adhoc network nodes were
placed using a uniform random distribution. Each node
was equipped with a 802.11b transceiver with a transmit
power of 7.5dbm. 15% of them had an option of transmit-
ting at a power 1.5 × 7.5dbm [7] thus forming long range
communication links. The degradation in signal strength
as a function of the distance covered was represented by
the Friss loss propagation model. A randomly selected set
of 20 source/sink pairs initiate the communication in the
network by transmitting packets at a rate of 2.048Kb/s
each. Packet based transmission was assumed with the
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(a) (b)

(c) (d)

Figure 6: Time evolution of network throughput for the original net-
work, and when a) & b) A single node, c) & d) 10% of the most
critical nodes are removed according to betweeness centrality, close-
ness centrality, degree centrality, Hybrid Interactive Linear Program-
ming Rounding (HILPR), the Controllability of complex networks
(Cont),the Sum Squared Difference (SSD) approach, the Normalized
Sum Squared Difference (NSSD) approach and the Spectral Parti-
tioning for Node Criticality (SPNC) approach.

packet size set to 64byte packets. Routing paths within
the network are formed using the OLSR (Optimized Link
State Routing) protocol [54]. All measurements are ob-
tained in the interval 100 − 300 seconds after the start
of the simulation. This provides sufficient time for the
OLSR algorithm to converge to its equilibrium state. The
degradation in network performance is evaluated after 10%
of the most critical nodes are removed from the network.
This process is repeated 10 times with the results averaged
to decrease the stochastic uncertainty of the obtained re-
sults. The standard deviation of the results is observed
between 10%− 15% for all the experiments that were con-
ducted.

We first compare the performance of the proposed ap-
proach against the metrics under consideration in this pa-
per for the network throughput that is achieved. The
throughput of a network is defined as the total number
of packets delivered to their destinations within the net-
work per unit time. The main goal of any network config-
uration is to maximize the achieved throughput. In Fig.
6a, 6b and Fig. 6c, 6d we show the achieved through-
put after a single and 10% of the most critical nodes are
removed from the network respectively. We observe that
the proposed approach reports the highest decrease in the
achieved throughput relative to the approaches that al-
ready exist in literature. This demonstrates that the pro-
posed algorithm is successful in identifying the most criti-
cal nodes of a network. The decrease in average through-

(a) (b)

(c) (d)

Figure 7: Time evolution of the per packet delay for the original net-
work, and when a) & b) A single node, c) & d) 10% of the most crit-
ical nodes are removed according to betweeness centrality, closeness
centrality, degree centrality, Hybrid Interactive Linear Programming
Rounding (HILPR), the Controllability of complex networks (Cont),
the Sum Squared Difference (SSD) approach, the Normalized Sum
Squared Difference (NSSD) approach and the Spectral Partitioning
for Node Criticality (SPNC) approach.

put observed at certain periods of time is due to the long
range link which have a higher transmitter power com-
pared to the rest of the nodes in the network. The increase
in power enables them to cover a larger distance for relay-
ing data and thus reserve a larger portion of the network,
increasing the probability of collision in the network. This
results in a similar trend observed by the original network
and all the criticality metrics under consideration of a de-
crease in throughput at around 200sec.

Next we conduct similar experiments, aiming at com-
paring the proposed criticality metric against other ap-
proaches using the average per packet delay of the net-
work. The delay experienced by packets in transit is an
important network attribute which describes its perfor-
mance. Low delays are preferable. In wireless ad hoc
networks, such as the one considered in this study, delays
are due to a number of reasons: network congestion result-
ing in queuing delays, poor channel behaviour resulting in
re-transmissions and contention resulting in large vacant
medium delay times due to the CSMA/CA mechanism.
In this work, we consider the average per packet delay as
the performance metric. This is calculated by dividing the
total number of delays observed with the number of pack-
ets transmitted throughout the simulation time. In Fig.
7 we show the time evolution of the average per packet
delay reported in the original network and when nodes are
removed according to approaches that exist in literature
and the proposed criticality metric. We observe that in
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most cases, the proposed metric is able to bring a major
degradation in performance as the average per packet de-
lay increases significantly when nodes are removed. This
is evidence of the fact that the proposed approach is more
accurate in identifying the most critical nodes of a net-
work. However, in Fig. 7a and partly in 7c we observe
that in some cases the performance of the proposed metric
is comparable to the performance of other metrics such as
the Cont and Closeness Centrality, as similar average per
packet delay values are reported when nodes are removed.
However, it must be noted that even in these cases the
proposed metric is the metric of choice, as it has been
demonstrated earlier in Fig. 6, that it outperforms the
other proposals in terms of the degradation in throughput
achieved.

We next consider the average per packet delay jitter
as the performance metric. This is calculated by dividing
the total delay jitter observed throughout the simulation
experiment with the total number of transmitted packets.
The delay jitter is calculated as the variation in packet
reception times at the receiver. Increasing delay jitter val-
ues indicate increasing congestion within the network, so
small delay jitter values are preferable. In Fig. 8, we show
the time evolution of the average per packet delay jitter
observed in the original network and when nodes are re-
moved according to various criticality metrics. We observe
that the proposed metric outperforms other metrics when
multiple nodes are removed and it reports a comparable
average per packet jitter when a single most critical node
is removed. Despite a comparable reduction in average per
packet jitter, the proposed approach is considered as the
better choice for identification of the most critical node
in the network due to the prominent reduction in average
throughput of the network reported in Fig. 6.

Finally, we consider the total number of dropped pack-
ets as the performance metric. High number of dropped
packets in the network due to buffer overflow, is a strong
indication of congestion. When nodes are removed from
the network, the number of available paths decreases and
the remaining paths are forced to accommodate all traffic.
This makes them more vulnerable to congestion. When
critical nodes are removed, congestion is expected to be
more severe and the number of dropped packets is thus
higher. The results of the conducted simulation experi-
ments are shown in Fig. 9. We observe that during the
whole simulation time the proposed scheme is able to bring
a major increase in the number of dropped packets com-
pared to other approaches thus making it a viable option
for identifying critical nodes in a network.

6. Conclusion

In this work, we propose a new metric with which crit-
ical nodes can be identified in computer networks. We
pose the problem in an optimization based framework and
we develop the metric by combining suboptimal solutions
of two optimization problems: the algebraic connectivity

(a) (b)

(c) (d)

Figure 8: Time evolution of the per packet jitter for the original net-
work, and when a) & b) A single node, c) & d) 10% of the most crit-
ical nodes are removed according to betweeness centrality, closeness
centrality, degree centrality, Hybrid Interactive Linear Programming
Rounding (HILPR), the Controllability of complex networks (Cont),
the Sum Squared Difference (SSD) approach, the Normalized Sum
Squared Difference (NSSD) approach and the Spectral Partitioning
for Node Criticality (SPNC) approach.

(a) (b)

(c) (d)

Figure 9: Time evolution of the number of dropped packets for the
original network, and when a) & b) A single node, c) & d) 10%
of the most critical nodes are removed according to betweeness cen-
trality, closeness centrality, degree centrality, Hybrid Interactive Lin-
ear Programming Rounding (HILPR), the Controllability of complex
networks (Cont), the Sum Squared Difference (SSD) approach, the
Normalized Sum Squared Difference (NSSD) approach and the Spec-
tral Partitioning for Node Criticality (SPNC) approach.
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minimization problem which captures the topological as-
pects of node criticality and the min-max aggregate util-
ity problem which captures its connection oriented nature.
We show that the suboptimal solutions are not conser-
vative and we demonstrate through extensive simulations
the effectiveness of the proposed method relative to other
approaches. The method was evaluated on a wireless ad-
hoc network. However, the problem formulation has been
general and it thus opens the way for its application in
other types of complex networks such as transportation
networks, biological networks and water pipe networks. In
the future, such extensions will be pursued in parallel with
the development of a more efficient distributed algorithm
that takes into account the change in the Fiedler vector
elements across the network.

References

[1] W. Asif, H. Qureshi, M. Rajarajan, M. Lestas, Cbdi: Combined
banzhaf amp; diversity index for finding critical nodes, in: IEEE
Global Communications Conference (GLOBECOM), 2014, pp.
758–763.

[2] M. Imran, M. A. Alnuem, M. S. Fayed, A. Alamri, Localized
algorithm for segregation of critical/non-critical nodes in mo-
bile ad hoc and sensor networks, Procedia Computer Science 19
(2013) 1167–1172.

[3] W. Asif, H. K. Qureshi, M. Rajarajan, M. Lestas, Combined
banzhaf & diversity index (cbdi) for critical node detection,
Journal of Network and Computer Applications 64 (2016) 76–
88.

[4] H. Zhou, J. Wu, H. Zhao, S. Tang, C. Chen, J. Chen, Incentive-
driven and freshness-aware content dissemination in selfish op-
portunistic mobile networks, IEEE Transactions on Parallel and
Distributed Systems 26 (9) (2015) 2493–2505.

[5] H. Zhou, J. Chen, J. Fan, Y. Du, S. K. Das, Consub: incentive-
based content subscribing in selfish opportunistic mobile net-
works, IEEE Journal on Selected Areas in Communications
31 (9) (2013) 669–679.

[6] M. Haenggi, Energy-balancing strategies for wireless sensor net-
works, in: Proceedings of the International Symposium on Cir-
cuits and Systems, ISCAS’03., Vol. 4, IEEE, 2003, pp. IV–828.

[7] W. Asif, H. K. Qureshi, M. Rajarajan, Variable rate adaptive
modulation (vram) for introducing small-world model into wsns,
in: 47th Annual Conference on Information Sciences and Sys-
tems (CISS), IEEE, 2013, pp. 1–6.

[8] A. Arulselvan, C. W. Commander, L. Elefteriadou, P. M. Parda-
los, Detecting critical nodes in sparse graphs, Computers & Op-
erations Research 36 (7) (2009) 2193–2200.

[9] S. Saroiu, P. K. Gummadi, S. D. Gribble, Measurement study of
peer-to-peer file sharing systems, in: Electronic Imaging, Inter-
national Society for Optics and Photonics, 2001, pp. 156–170.

[10] Y. He, H. Ren, Y. Liu, B. Yang, On the reliability of large-
scale distributed systems–a topological view, Computer Net-
works 53 (12) (2009) 2140–2152.

[11] A. Arulselvan, C. W. Commander, P. M. Pardalos, O. Shylo,
Managing network risk via critical node identification, Risk
management in telecommunication networks, Springer.

[12] M. Kutz, Handbook of transportation engineering, Vol. 768,
McGraw-Hill New York, NY, USA:, 2004.

[13] Y. Shen, N. P. Nguyen, Y. Xuan, M. T. Thai, On the discovery
of critical links and nodes for assessing network vulnerability,
IEEE/ACM Transactions on Networking (TON) 21 (3) (2013)
963–973.

[14] R. Albert, I. Albert, G. L. Nakarado, Structural vulnerability of
the north american power grid, Physical review E 69 (2) (2004)
025103.

[15] P. Holme, B. J. Kim, C. N. Yoon, S. K. Han, Attack vulner-
ability of complex networks, Physical Review E 65 (5) (2002)
056109.

[16] L. C. Freeman, Centrality in social networks conceptual clarifi-
cation, Social networks 1 (3) (1979) 215–239.

[17] D. Bader, K. Madduri, et al., Parallel algorithms for evaluating
centrality indices in real-world networks, in: International Con-
ference on Parallel Processing ICPP., IEEE, 2006, pp. 539–550.

[18] Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Controllability of com-
plex networks, Nature 473 (7346) (2011) 167–173.

[19] Y.-S. Li, D.-Z. Ma, H.-G. Zhang, Q.-Y. Sun, Critical nodes iden-
tification of power systems based on controllability of complex
networks, Applied Sciences 5 (3) (2015) 622–636.

[20] L. C. Freeman, A set of measures of centrality based on be-
tweenness, Sociometry (1977) 35–41.

[21] M. Everett, S. P. Borgatti, Ego network betweenness, Social
networks 27 (1) (2005) 31–38.

[22] M. E. Newman, A measure of betweenness centrality based on
random walks, Social networks 27 (1) (2005) 39–54.

[23] P. Bonacich, Some unique properties of eigenvector centrality,
Social Networks 29 (4) (2007) 555–564.

[24] M. Ventresca, D. Aleman, Efficiently identifying critical nodes
in large complex networks, Computational Social Networks 2 (1)
(2015) 1.

[25] T. N. Dinh, Y. Xuan, M. T. Thai, P. M. Pardalos, T. Znati, On
new approaches of assessing network vulnerability: hardness
and approximation, IEEE/ACM Transactions on Networking
20 (2) (2012) 609–619.

[26] S. Shen, J. C. Smith, Polynomial-time algorithms for solving
a class of critical node problems on trees and series-parallel
graphs, Networks 60 (2) (2012) 103–119.

[27] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak
Mathematical Journal 23 (2) (1973) 298–305.

[28] P. Wei, D. Sun, Weighted algebraic connectivity: An application
to airport transportation network, in: Proceedings of the 18th
IFAC World Congress, Milan, Italy, 2011.

[29] P.-Y. Chen, A. O. Hero, Local fiedler vector centrality for de-
tection of deep and overlapping communities in networks, in:
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), IEEE, 2014, pp. 1120–1124.

[30] H. Liu, X. Cao, J. He, P. Cheng, J. Chen, Y. Sun, Distributed
identification of the most critical node for average consensus,
IFAC Proceedings Volumes 47 (3) (2014) 1843–1848.

[31] T. Watanabe, N. Masuda, Enhancing the spectral gap of net-
works by node removal, Physical Review E 82 (4) (2010) 046102.

[32] H. Liu, X. Cao, J. He, P. Cheng, C. Li, J. Chen, Y. Sun, Dis-
tributed identification of the most critical node for average con-
sensus, IEEE Transactions on Signal Processing 63 (16) (2015)
4315–4328.

[33] N. M. M. de Abreu, Old and new results on algebraic connectiv-
ity of graphs, Linear algebra and its applications 423 (1) (2007)
53–73.

[34] R. Merris, Laplacian matrices of graphs: a survey, Linear alge-
bra and its applications 197 (1994) 143–176.

[35] A. Bertrand, M. Moonen, Distributed computation of the fiedler
vector with application to topology inference in ad hoc net-
works, Signal Processing 93 (5) (2013) 1106–1117.

[36] D. A. Spielman, S.-H. Teng, Spectral partitioning works: Pla-
nar graphs and finite element meshes, Linear Algebra and its
Applications 421 (2) (2007) 284–305.

[37] W. Asif, M. Lestas, H. K. Qureshi, M. Rajarajan, Spectral par-
titioning for node criticality, in: International Symposium on
Computers and Communication (ISCC), IEEE, 2015, pp. 877–
882.

[38] F. Kelly, Charging and rate control for elastic traffic, European
transactions on Telecommunications 8 (1) (1997) 33–37.

[39] G. Tian, T. Huang, S. Cui, Bounds on the algebraic connectivity
of graphs, Advances in Mathematics 41,(2012) (2).

[40] M. Fiedler, A property of eigenvectors of nonnegative symmet-
ric matrices and its application to graph theory, Czechoslovak
Mathematical Journal 25 (4) (1975) 619–633.

13



[41] B. Mohar, Y. Alavi, The laplacian spectrum of graphs, Graph
theory, combinatorics, and applications 2 (1991) 871–898.

[42] F. P. Kelly, A. K. Maulloo, D. K. Tan, Rate control for com-
munication networks: shadow prices, proportional fairness and
stability, Journal of the Operational Research society (1998)
237–252.

[43] D. P. Palomar, M. Chiang, Alternative distributed algorithms
for network utility maximization: Framework and applications,
IEEE Transactions on Automatic Control 52 (12) (2007) 2254–
2269.

[44] X. Xiaochun, W. Xiaoyan, A simple rate control algorithm
for maximizing total user utility, in: Proceedings of the Inter-
national Conference on Communication Technology, 2003, pp.
135–138.

[45] P. Christiano, J. A. Kelner, A. Madry, D. A. Spielman, S.-H.
Teng, Electrical flows, laplacian systems, and faster approxima-
tion of maximum flow in undirected graphs, in: Proceedings of
the forty-third annual ACM symposium on Theory of comput-
ing, ACM, 2011, pp. 273–282.

[46] M. Lestas, A. Pitsillides, P. Ioannou, G. Hadjipollas, A new
estimation scheme for the effective number of users in inter-
net congestion control, IEEE/ACM Transactions on Network-
ing (TON) 19 (5) (2011) 1499–1512.

[47] D. A. Spielman, N. Srivastava, Graph sparsification by effective
resistances, SIAM Journal on Computing 40 (6) (2011) 1913–
1926.

[48] A. Ghosh, S. Boyd, Growing well-connected graphs, in: 45th
IEEE Conference on Decision and Control, IEEE, 2006, pp.
6605–6611.

[49] G. H. Golub, Some modified matrix eigenvalue problems, Siam
Review 15 (2) (1973) 318–334.

[50] W. H. Haemers, Interlacing eigenvalues and graphs, Linear Al-
gebra and its applications 226 (1995) 593–616.

[51] O. Rojo, R. Soto, H. Rojo, Bounds for sums of eigenvalues
and applications, Computers & Mathematics with Applications
39 (7) (2000) 1–15.

[52] MathWorks, Matlab 2013, http://www.mathworks.com /sup-
port /sysreq /sv-r2013a/.

[53] NSNAM, Network simulator 3, https://www.nsnam.org/.
[54] C. Mbarushimana, A. Shahrabi, Comparative study of reactive

and proactive routing protocols performance in mobile ad hoc
networks, in: 21st International Conference on Advanced Infor-
mation Networking and Applications Workshops, Vol. 2, IEEE,
2007, pp. 679–684.

14


