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Abstract: One of risk measures’ key purposes is to consistently rank and distinguish between di�erent risk
pro�les. From a practical perspective, a risk measure should also be robust, that is, insensitive to small per-
turbations in input assumptions. It is known in the literature [14, 39], that strong assumptions on the risk
measure’s ability to distinguish between risks may lead to a lack of robustness. We address the trade-o� be-
tween robustness and consistent risk ranking by specifying the regions in the space of distribution functions,
where law-invariant convex risk measures are indeed robust. Examples include the set of random variables
with bounded second moment and those that are less volatile (in convex order) than random variables in a
given uniformly integrable set. Typically, a risk measure is evaluated on the output of an aggregation func-
tion de�ned on a set of random input vectors. Extending the de�nition of robustness to this setting, we �nd
that law-invariant convex risk measures are robust for any aggregation function that satis�es a linear growth
condition in the tail, provided that the set of possible marginals is uniformly integrable. Thus, we obtain that
all law-invariant convex risk measures possess the aggregation-robustness property introduced by [26] and
further studied by [40]. This is in contrast to the widely-used, non-convex, riskmeasure Value-at-Risk, whose
robustness in a risk aggregation context requires restricting the possible dependence structures of the input
vectors.
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1 Introduction
Since the wide-spread adoption of Value-at-Risk (VaR) frameworks in the 1990s, risk measures have con-
stituted an integral part of �nancial risk management. The use of risk measures is prescribed by banking
[6, 7] and insurance regulation [23] for calculating the capital requirements of portfolios of future losses. Fur-
thermore, the use of risk measures, evaluated using internally developed statistical models, is increasingly
embedded in the operations of insurance companies [45, 46].

As a consequence, the discussion of desirable properties of risk measures has been the focus of much
academic and industry debate. A �rst set of considerations relates to risk measures’ ability to re�ect diversi-
�cation appropriately, by the properties of subadditivity [4] and convexity [28, 30], and to order risk consis-
tently [5, 18]. These issues are interrelated: law-invariant convex risk measures, introduced by [28, 30] and
subsuming coherent riskmeasures [4], rank risks in away that preserves �rst-order and second-order stochas-
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tic dominance [5]. The risk measure Expected Shortfall (ES) is the convex risk measure used most widely in
the practice of risk management.

A second set of considerations acknowledges that risk measures need to be estimated from historical
and/or simulated data and thus require reliable estimators. A fundamental concept is the question of ro-
bustness, that is, whether risk measure estimates remain relatively insensitive to small perturbations in the
underlying distribution from which data are generated [33, 34]. A growing academic literature is concerned
with robustness in the context of risk measurement [8, 14, 26, 38–40]. A key �nding of this literature is that
robustness is to an extent contradictory to a consistent ordering of risks. In particular, there does not exist a
law-invariant convex risk measure that is robust (following the de�nition of [33, 34]) on the whole space of
integrable random variables. This fact has been used as an argument against the use of convex riskmeasures
such as ES and in favour of the non-convex risk measure VaR [14]. Such arguments have coloured much of
the policy discussion surrounding the relative merits of ES and VaR for use in capital regulation [6, 7, 35].

One way to address the apparent con�ict between consistency of risk ranking and robustness, is to con-
sider alternative, less restrictive, de�nitions of robustness [38, 39]. Another approach also taken in [40],which
we follow in this paper, is to relax the requirement that risk measures be robust on the whole space of in-
tegrable random variables, given that “... this case is not generally interesting in econometric or �nancial
applications since requiring robustness against all perturbations of the model is quite restrictive...” [14]. This
approach suggests an analysis of regions on which risk measures are robust. Consequently, since in di�erent
applications di�erent regions of distributionsmay formplausible input spaces, selection of a riskmeasure for
a particular application should re�ect the extent to which the riskmeasure is robust on the region of interest.

In this paper, we study robustness regions for convex riskmeasures and show that they are characterised
by the property of uniform integrability – through examples we demonstrate that this is not an excessively
strong requirement on the input space. Furthermore, we consider the realistic case where risk measures are
evaluated on (possibly non-linear) functions of random vectors of risk factors, such that the input space con-
sists of multivariate distributions [46, 50]. This case, typical in the risk modelling performed by insurance
companies, is generally not considered in the literature on robustness, with the exception of [26, 40] who
focus on �xed marginals. However, robustness as de�ned in [33, 34], that is, insensitivity to small deviations
from the underlying distribution, includes both perturbation in the marginals and the dependence structure
of the random vector of input risk factors. Allowing for uncertainty in the marginal distributions, we show
that weak restrictions on the marginals (uniform integrability) and the aggregation function (linear growth
in the tail) ensure robustness of convex risk measures. Consequently, we argue that in applications where
risk aggregation takes place and uncertainty around the dependence structure is high, convex risk measures
such as ES have attractive robustness properties, compared to, say, VaR.

In Section 2 notation and mathematical preliminaries are stated. In Section 3, the robustness of convex
riskmeasures is studied. First, in Section 3.1, robustness is formally de�ned and its relationship to continuity
of risk measures (Hampel’s theorem) is presented. A key result for the rest of the paper (that also follows
from [40]) is then shown: convex risk measures are robust on uniformly integrable sets. Subsequently, in
Section 3.2, examples of such uniformly integrable sets are given. Uniform integrability is a constraint on the
tail behaviour of a set of distributions. Thus convex risk measures are robust on sets including parametric
families with bounded second moment; sets of random variables that are less volatile (in convex order) than
those in a givenuniformly integrable set. Section 3.3 presents examples of sets onwhich convex riskmeasures
are not robust and Section 3.4 points at possible extensions to risk measures de�ned on the set of random
variables with �nite p-th moment.

In Section 4, robustness is studied in the context of risk aggregation, where a risk measure is applied on
real-valuedaggregation function of a randomvector of risk factors;we call the composition of the riskmeasure
with the aggregation function an aggregation measure. In Section 4.1, robustness of aggregation measures is
de�ned with respect to distributions of random vectors. A direct multivariate extension of Hampel’s theorem
is given, associating robustnesswith continuity of the aggregationmeasure. Consequently, if the riskmeasure
is convex and the aggregation function continuous, the aggregationmeasure is robust as long as the aggregate
risk position belongs to a uniformly integrable set. In Section 4.2 we show that for robustness of aggregation
measures it is su�cient that the marginals of the vector of risk factors belong to uniformly integrable sets
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and that the aggregation function possesses a linear growth condition in the tail. Signi�cantly, no constraints
on the dependence structure of risk factors are placed. This includes, as a special case, aggregation via the
ordinary sum and thus generalises the results on aggregation robustness in [26] to the class of law-invariant
convex risk measures and the results in [40] to uncertainty in the marginal distributions. In Section 4.3 it
is shown that robustness is also satis�ed for aggregation via compound distributions, a typical setting in
actuarial science, as long as the frequency and severity distributions are dominated (in �rst-order stochastic
dominance) by integrable random variables.

Finally, in Section 5, a comparisonwith the robustness regions of the (non-convex) VaRmeasure ismade.
VaR is robust as long as the distribution function is strictly increasing. We argue that in applications, this can
be a stronger requirement than the uniform integrability that is requiredwhen convex riskmeasures are used.
Non-linear aggregation functions, such as the ones arising in the context of reinsurance, can lead to constant
parts of the aggregate distribution function and thus to non-robustness. Furthermore, it is known from the
literature on dependence uncertainty that dependence structures can be designed such that the distribution
of the sum is not strictlymonotonic in the tail, when themarginal distributions satisfy particular (‘mixability’)
conditions [9, 25, 53–55]. Thus, robustness of VaR requires restrictions both in the aggregation function and
the dependence structure. In applications such as the internal capital modelling performed by insures, we
believe that such constraints are unrealistic, compared to those applying to convex risk measures. Thus our
paper indicates that in applications where non-linear aggregations and high dependence uncertainty are
present, convex risk measures such as ES, may be preferable to VaR.

2 Preliminaries
Throughout the paper, we consider an atomless probability space (Ω,A, P). We denote the space of real-
valued random variables by L0 = L0(Ω,A, P), the subspace of integrable random variables by L1 = {X ∈
L0 | ‖X‖1 = E(|X|) < +∞} and the subset of (essentially) bounded random variables by L∞. For X ⊂ L0 we
de�ne the corresponding set of distribution functions by D(X) = {P ◦ X−1 | X ∈ X}. We denote by FX(·) =
P(X ≤ ·) the distribution function of X and write X ∼ FX, so that D(X) = {FX |X ∈ X}. Note that we identify
distribution functions on R with the corresponding probabilities on the Borel σ-�eld B(R). We write M =
D(L0) for the set of all distribution functions on R, andM1 = {F ∈M |

∫
R |x|dF(x) < +∞} = D(L1).

On the spaceM we consider the Prokhorov distance de�ned for F, G ∈M through

dP(F, G) = inf{ε > 0 |F(B) ≤ G(Bε) + ε, for all Borel sets B on R},

where Bε = {x ∈ R | infy∈B |x − y| ≤ ε}.
The following de�nition is of central importance throughout the paper. A set of distribution functions

U ⊂M1 is uniformly integrable if

lim
K→+∞

sup
F∈U

∫
|x|>K

|x|dF(x) = 0.

We say a set of random variablesU ⊂ L1 is uniformly integrable ifD(U) is uniformly integrable, equivalently

lim
K→+∞

sup
X∈U

E
(
|X|1{|X|>K}

)
= 0.

Uniform integrability of a set posits that the contribution of the distributions’ far tails can be uniformly con-
trolled across the elements of the set. Thus, it is a stronger condition than requiring that all elements of a set
are integrable.

A riskmeasure ρ : L1 → R is a function that associates to every integrable randomvariable a real number.
The argument of ρ is assumed throughout to represent a �nancial loss. Possible properties of a risk measure
are:
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i) Law-invariance: ρ(X) = ρ(Y) for X, Y ∈ L1 with FX = FY .
ii) Translation invariance: ρ(X + m) = ρ(X) + m for X ∈ L1, m ∈ R.
iii) Monotonicity: ρ(X) ≤ ρ(Y) for X, Y ∈ L1 with X ≤ Y , P-a.s.
iv) Convexity: ρ

(
(1 − λ)X + λY

)
≤ (1 − λ)ρ(X) + λρ(Y) for X, Y ∈ L1, λ ∈ [0, 1].

A convex risk measure is a risk measure ful�lling ii), iii) and iv), see [29, 30] and references therein. A law-
invariant risk measure ρ(·) : L1 → R induces a functional on the corresponding set of distribution functions,
ρ[·] : M1 → R, through ρ[FX] = ρ(X) for FX ∈ M1. For instance, we write E(X) = E[FX]. (Throughout the
paper, we denote law invariant functionals using round brackets (·)when the argument is a random variable,
and square brackets [·]when the argument is a distribution.) We say a risk measure ρ : L1 → R is continuous
on X ⊂ L1 with respect to the Prokhorov distance if the restriction of the induced functional ρ[·] to D(X)
is continuous with respect to dP. That is, for all F0 ∈ D(X) and ε > 0 there exists δ > 0 such that for all
F ∈ D(X) we have dP(F0, F) < δ implies |ρ[F0] − ρ[F]| < ε. The property of law invariance is standard in risk
management applications, requiring that risk assessments only depend on the distribution of random losses.
Therefore all risk measures in this paper are tacitly assumed to be law-invariant without this being explicitly
stated in the sequel.

Remark 2.1. A substantial part of the early literature considers risk measures, axiomatically introduced in
[3, 4], de�ned onL∞; however, insurance and �nancial portfolios are primarily exposed to unbounded risks.
Therefore we choose L1 as our model space. In fact, the natural model space for law-invariant convex risk
measures is L1, since outside this space the risk measure can only take value +∞ [27, 47]. Selected literature
on riskmeasures de�ned on a broader space thanL∞ are [16] for general probability spaces, [37, 47] on sets of
randomvariableswith �nite p-thmoment, [13, 32, 39] onOrlicz spaces and [27] for extensions of riskmeasures
from L∞ to L1.

An example of a convex risk measure that is �nite onL1 is Expected Shortfall (ES) at level α ∈ [0, 1), de�ned
by

ESα[F] =
1

1 − α

1∫
α

F−1(u)du.

Expected Shortfall belongs to the class of spectral risk measures, introduced in [1, 56],

ρ(X) =
1∫

0

F−1X (u)ϕ(u)du, for X ∈ L1,

where F−1X (u) = inf{y ∈ R | FX(y) ≥ u}, u ∈ (0, 1), is the generalised inverse and we identify inf ∅ = −∞. The
weight function ϕ : [0, 1] → [0, +∞) is non-decreasing and normalised, that is

∫ 1
0 ϕ(u)du = 1. Spectral risk

measures are generally not �nite onL1. However, �niteness is guaranteed if theweight functionϕ is constant
on (1 − ε, 1] for ε > 0, as is the case for Expected Shortfall, corresponding to ϕ(u) = 1

1−α1{u>α}.

3 Robustness

3.1 Robustness of convex risk measures

The classical de�nition of statistical robustness [33], considers estimators as functionals of empirical distribu-
tion functions. For a distribution function F ∈M1 and sample size k ≥ 1 the empirical distribution function
is de�ned by the randommeasure

F̂k(t, ω) =
1
k

k∑
i=1

1{Xi(ω)≤t}, (t, ω) ∈ R × Ω,
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where X1, . . . , Xk ∈ L1 are independent with common distribution function F. In the sequel we consider the
sequence of estimators {ρ̂k}k of a risk measure ρ : L1 → R by evaluating the risk measure on the empirical
distribution functions. That is, for F ∈M1 and k ≥ 1, we de�ne

ρ̂k[F](ω) = ρ[F̂k(·, ω)], ω ∈ Ω. (1)

Note that the estimator ρ̂k[F] is a random variable. Ideally, the estimator {ρ̂k}k should be consistent and
robust. The sequence of estimators is consistent if it converges to the true value, ρ̂k[F]→ ρ[F] in probability.
Robustness, according to Hampel [33, 34], is understood as insensitivity of estimators to small perturbations
in the distribution F.

De�nition 3.1. ([33])
A risk measure ρ : L1 → R is robust on X ⊂ L1 (equivalently ρ[·] is robust onD(X)) if for any F0 ∈ D(X) the
sequence of estimators {ρ̂k[F0]}k, as de�ned in (1), ful�ls that for all ε > 0 there exists δ > 0 and k0 ∈ N such
that, for all F ∈ D(X) and k ≥ k0, we have

dP(F0, F) < δ ⇒ dP
(
D
(
ρ̂k[F0]

)
,D
(
ρ̂k[F]

))
< ε.

By the celebrated theorem of Hampel [33], given consistency, robustness of a risk measure is equivalent to
continuity with respect to the Prokhorov distance.

Theorem 3.2. ([33], Theorem 2.21 in [34])
Let ρ : L1 → R be a risk measure and X ⊂ L1. Assume that the sequence {ρ̂k}k, as de�ned in (1), is consistent
for all F0 ∈ D(X). Then ρ is continuous on D(X) with respect to the Prokhorov distance if and only if the risk
measure is robust onD(X).

For convex risk measures we obtain a one-to-one correspondence between robustness and continuity, since
they are consistent onM1.

Proposition 3.3. Let ρ : L1 → R be a convex risk measure and X ⊂ L1. Then, ρ is continuous with respect
to the Prokhorov distance onD(X) if and only if it is robust onD(X).

Proof. We show strong consistency of convex risk measures, that is for F0 ∈M1 we have ρ̂k[F0](ω) → ρ[F0]
for almost every ω ∈ Ω. Let {F̂0k(·, ω)}k , ω ∈ Ω, be the corresponding sequence of empirical distribution
functions. By Glivenko-Cantelli {F̂0k(·, ω)}k converges to F0(·) for almost every ω ∈ Ω in the Prokhorov dis-
tance. The strong law of large numbers implies that for X0,i ∼ F0, i = 1, . . . , k and almost every ω ∈ Ω

∫
R

|x|dF̂0k(x, ω) =
1
k

k∑
i=1
|X0,i(ω)| −→ E(|X0|) =

∫
R

|x|dF0(x), as k → +∞.

Applying Lemma A.1 {F̂0k(·, ω)}k converges to F0(·) in the Wasserstein distance (see Appendix for the de�-
nition and properties of such distance) for almost every ω ∈ Ω. Since convex risk measures are continuous
with respect to the Wasserstein distance, Theorem 2.8 in [39], ρ̂k[F0](ω) = ρ[F̂0k(·, ω)] → ρ[F0], as k → +∞,
for almost every ω ∈ Ω.

No convex risk measure is robust on the whole of L1, as shown in Lemma 3.4 below.

Lemma 3.4. There does not exist a convex risk measure that is robust on L1.

Proof. [5, 14, 39] show that there does not exist a convex risk measure that is continuous with respect to the
Prokhorov distance on the whole space of integrable random variables. Applying Proposition 3.3 gives the
claim.
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Given the importance of both convexity and robustness for risk management, the need emerges to study sub-
sets ofL1 on which convex risk measures become robust. Uniformly integrable sets are at the core of charac-
terising robustness regions for convex risk measures.

Theorem 3.5. A convex risk measure is robust on X ⊂ L1 if the set X is uniformly integrable.

Proof. Convex risk measures are continuous onM1 with respect to the Wasserstein distance, Theorem 2.8 in
[39]. On auniformly integrable set the topology inducedby theWasserstein distance is equivalent to the topol-
ogy induced by the Prokhorov distance, see Lemma A.1 or Theorem 2 in [20]. Hence, onX the risk measure is
continuous with respect to the Prokhorov distance and we can apply Proposition 3.3.

Alternatively, the proof of Theorem 3.5 follows from Theorem 2.6 in [40].

Remark 3.6. The general concept of robustness is based on continuity with respect to the weak topology on
M [34]. Due to its tractability, the Lévy distance is frequently used for de�ning robustness [14]. Since both
the Prokhorov and the Lévy distance generate the weak topology on M, they give rise to the same notion
of robustness [34]. We adopt the Prokhorov distance since it allows for a natural extension to multivariate
distribution functions, see Section 4.

3.2 Robustness regions of convex risk measures

In this section, we provide some examples of classes of sets that are uniformly integrable and on which, by
Theorem 3.5, convex risk measures are robust. It is seen throughout that uniform integrability puts a con-
straint on the tail behaviour of the risks considered.

First, we note that a convex risk measure is robust when evaluated on a set of empirical distribution
functions.

Lemma 3.7. Let F ∈M1. A convex riskmeasure is robust on the sequence of empirical distribution functions{
F̂k(·, ω) | k ≥ 1

}
⊂M1 for almost every ω ∈ Ω.

Proof. In the proof of Proposition 3.3 it was shown that the sequence F̂k(·, ω) converges in the (Prokhorov
and) Wasserstein distance to F for almost every ω ∈ Ω. By Lemma A.1 this implies that the sequence is, for
almost every ω, uniformly integrable and we can apply Theorem 3.5.

More generally, a convex risk measure is robust on sets of uniformly bounded random variables, that is {X ∈
L1 | |X| ≤ M, P-a.s.} for M > 0, see [22, p. 220]. Instead of restricting the support of the random variables we
could restrict their moments. A convex risk measure is robust on the set of distribution functions U ⊂ M1

having uniformly bounded second moments or, more generally, satisfying [11, p. 218]

sup
F∈U

∫
R

|x|1+εdF(x) < +∞, for some ε > 0.

Subsequently, a convex risk measure is robust on a family of parametric models, {Fθ | θ ∈ Θ}, if the family
ful�ls

∫
R |x|

2dFθ(x) < M, for all θ ∈ Θ. For example, consider the exponential dispersion family, a parametric
family of distribution functions with density

f (x; θ, ϕ) = exp
{ xθ − b(θ)

ϕ/w + c(x, ϕ, w)
}
, x ∈ R

with weight w > 0, dispersion parameter ϕ > 0 and normalising function c(·, ·, ·). The canonical parameter
of the exponential dispersion family is θ ∈ Θ, where Θ ⊂ R and b : Θ → R is the cumulant function such that
the density is well-de�ned and has identical support for all θ ∈ Θ, [43]. The exponential dispersion family
includes the Poisson, Negative-Binomial, Gamma, Gaussian and Inverse Gaussian.
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Lemma 3.8. A convex risk measure is robust on the exponential dispersion family if the parameter space Θ
is compact and the function b twice continuously di�erentiable on Θ.

Proof. Let X follow a distribution that belongs to the exponential dispersion family. Then E(X) = b′(θ) and
Var(X) = ϕ

w b
′′(θ), [57]. Both the �rst and second derivative b′, b′′ are continuous and hence bounded on the

compact set Θ.

We refer to [40] for a broader discussion and examples involving parametric models such as the Normal,
Pareto, Gamma and Gumbel distributions.

Now we consider the relationship between uniform integrability and stochastic orderings. A convex risk
measure is robust on a set of non-negative random variables that are smaller (in �rst-order stochastic domi-
nance) than those in a given uniformly integrable set.

Lemma 3.9. Let U be a uniformly integrable set of non-negative random variables. A convex risk measure is
robust on the set

N = {Y ∈ L1 |Y ≥ 0 and there exists X ∈ U such that E(f (Y)) ≤ E(f (X)) for all increasing f}.

Proof. For K > 0, the function f (x) = x1{x>K} is increasing. Hence we have, by uniform integrability of U,

lim
K→+∞

sup
Y∈N

E
(
Y1{Y>K}

)
≤ lim
K→+∞

sup
X∈U

E
(
X1{X>K}

)
= 0.

The conclusion follows by Theorem 3.5.

An example of the application of Lemma 3.9 is the Generalised Pareto Distribution (GPD) denoted by Gξ ;σ,
with shape and scale parameters, ξ ∈ R and σ > 0 respectively, de�ned through

Gξ ;σ(x) =
{
1 −
(
1 + ξ xσ

)−1/ξ ξ ≠ 0
1 − exp

{
− x
σ
}

ξ = 0,

where x ≥ 0, if ξ ≥ 0, and 0 ≤ x ≤ −σ/ξ , if ξ < 0. The GPD is often used in insurance and operational
risk management to model portfolios that can produce very large claims, since it is the limit distribution
of conditional excesses over high thresholds [24]. The expectation of a GPD is �nite if the shape parameter
satis�es ξ < 1. For a set of GPDs to be uniformly integrable it is necessary that their shape parameters be
bounded away from 1; see Proposition 3.14 for the necessity of this condition in the more general case of
regularly varying distributions. A convex risk measure is robust on the set of distributions {Gξ ;σ | σ ≤ σ, ξ ≤
ξ}, where ξ < 1. This follows from Lemma 3.9 and the observation that, for �xed σ and 0 < ξ < 1 the family
Gξ ;σ is �rst-order stochastically ordered in ξ (for �xed σ) and in σ (for �xed ξ ).

Similarly, a convex risk measure is robust on a set of random variables that are less volatile (in con-
vex order) than those in a given uniformly integrable set. An example is the set of conditional expectations
{E[X|G] |G sub-σ-algebra ofA} for X ∈ L1, see [11, p. 469].

Lemma 3.10. Let U be a uniformly integrable set. A convex risk measure is robust on the set

N = {Y ∈ L1 | there exists X ∈ U such that E(f (Y)) ≤ E(f (X)) for all convex f}.

Proof. For K > 0, the function f (x) = (|x| − K)1{|x|>K} is convex. Hence we have, for Y ∈ N and X ∈ U

dominating Y in convex order,

E
(
|Y|1{|Y|>K}

)
= E
((
|Y| − K

)
1{|Y|>K}

)
+ KP(|Y| > K)

≤ E
((
|X| − K

)
1{|X|>K}

)
+ KP(|Y| > K)

≤ E
(
|X|1{|X|>K}

)
+ KP(|Y| > K).
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By De la Vallée Poussin’s Theorem [19], there exist a non-decreasing convex function ψ : [0, +∞) → [0, +∞)
with ψ(0) = 0, such that limx→+∞

ψ(x)
x = +∞ and supX∈U E

(
ψ(|X|)

)
< +∞. Applying Markov’s inequality, we

have

KP(|Y| > K) ≤ K
ψ(K)E

(
ψ(|Y|)

)
≤ K
ψ(K)E

(
ψ(|X|)

)
.

By uniform integrability of U,

lim
K→+∞

sup
Y∈N

E
(
|Y|1{|Y|>K}

)
≤ lim
K→+∞

sup
X∈U

(
E
(
|X|1{|X|>K}

)
+ K
ψ(K)E

(
ψ(|X|)

))
= 0.

The conclusion follows by Theorem 3.5.

Note that Lemma 3.10, in the special case when U is a singleton, follows from Proposition 3.3 in [42].
We now consider how larger uniformly integrable sets are constructed from other uniformly integrable

sets. Finite unions of uniformly integrable sets are uniformly integrable, so that a convex risk measure that
is robust on �nitely many uniformly integrable sets is also robust on their union. Moreover, to any uniformly
integrable set on which a convex riskmeasure is robust we can add �nitely many distribution functions with-
out losing robustness. The next proposition shows that a convex risk measure that is robust on a uniformly
integrable set U ⊂M1 is also robust on the larger set of all possible mixtures of elements of U. Mixtures are
used to model experimental error or contaminations, by assuming that the underlying distribution function
F is contaminated with an error, with distribution G, that occurs with (small) probability λ ∈ (0, 1), so that
the contaminated distribution is (1 − λ)F + λG.

Proposition 3.11. For a uniformly integrable set U ⊂ M1, a convex risk measure is robust on the set of
mixtures

{
(1 − λ)F + λG | F, G ∈ U, λ ∈ [0, 1]

}
.

Proof. By Theorem 3.5 it is enough to show that
{
(1− λ)F + λG | F, G ∈ U, λ ∈ [0, 1]

}
is uniformly integrable.

For λ ∈ [0, 1] and F, G ∈ U we calculate

sup
F,G∈U,λ∈[0,1]

∫
|x|>K

|x|d[(1 − λ)F(x) + λG(x)]

≤ sup
F,G∈U,λ∈[0,1]

(1 − λ)
∫

|x|>K

|x|dF(x) + sup
F,G∈U,λ∈[0,1]

λ
∫

|x|>K

|x|dG(x)

= sup
F∈U

∫
|x|>K

|x|dF(x),

which goes to zero, as K → +∞, by uniform integrability of U.

Let {Fθ | θ ∈ Θ} describe possible model inputs and assume that the set is uniformly integrable, for example
a parametric family with bounded second moment. By Theorem 3.5, any convex risk measure is robust on
{Fθ | θ ∈ Θ}. Assume however, that the data is contaminated, throughmeasurement errors or the parametric
family does not �t su�ciently, and the risk measure is evaluated on the mixture

(1 − λ)Fθ + λG, for small λ ∈ (0, 1), θ ∈ Θ, G ∈ N,

whereN ⊂M1 denotes the collection of possible error distributions. If we have additional knowledge on the
elements of N, such as bounded support or (uniformly) bounded mean and variance, then the convex risk
measure is robust on the set of all possible mixtures, see Proposition 3.11.

3.3 Non-robustness of convex risk measures

In this section we present examples of sets on which convex risk measures fail to be robust. Such situations
can emergewhen the set is closed undermixtures and positive shifts. These conditions allow the construction
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of convergent sequences of distributions with divergent means. Thus situations arise where small changes in
distribution can result in huge variations in the value of the risk measure.

Proposition 3.12. No spectral risk measure ρ : L1 → R is robust on X ⊂ L1, wheneverD(X) is closed under
mixtures and contains a sequence of distribution functions whose means diverge to +∞. Then, spectral risk
measures are not robust at any distribution function F ∈ D(X).

Proof. Let F ∈ D(X) and denote by Gk ∈ D(X) the sequence of distribution functions with limk→+∞ E[Gk] =
+∞. Choose C > 0 and de�ne the mixture

F(k) = (1 − λk)F + λkGk , where λk = min
{ C
|E[Gk] |

, 1
}
.

Note that λk ∈ [0, 1] converges to 0, as k → +∞, hence F(k) converges in the Prokhorov distance to F. Spectral
risk measures are concave with respect to mixtures, [52], and exceed the expectation, [17], so that

lim inf
n→+∞

ρ[F(k)] ≥ lim inf
k→+∞

(
(1 − λk)ρ[F] + λkρ[Gk]

)
≥ lim inf
k→+∞

(
(1 − λk)ρ[F] + λkE[Gk]

)
= lim
k→+∞

(
(1 − λk)ρ[F] + λkE[Gk]

)
= ρ[F] + C.

A similar result is now proved for general convex risk measures. For this, we need the additional assumption
that the set D(X) is closed under positive shifts, that is F(· − c) ∈ D(X) for all c > 0, and F ∈ D(X). Note
this is stronger than assuming the existence of a sequence of distribution functions with divergent mean.
This additional assumption was not needed in the proof of Proposition 3.12, where instead the property of
concavity with respect to mixtures of spectral risk measures [52] was used.

Proposition 3.13. No convex risk measure ρ : L1 → R is robust on X ⊂ L1, whenever the set of distribution
functionsD(X) is closed under mixtures and positive shifts. In this case, the risk measure is not robust at any
distribution function F ∈ D(X).

Proof. By Proposition 6.8 in [47] the risk measure is continuous with respect to ‖ · ‖1. Therefore the risk mea-
sure admits theKusuoka representation, Theorem6.44 in [47], that is there exists a set of probabilitymeasures
P on [0, 1) such that the risk measure can be written as

ρ[G] = sup
µ∈P

( 1∫
0

ESα[G]dµ(α) − β(µ)
)
, for G ∈M1,

where β(·) is a penalty function on P, see [47] for the de�nition. For C > 0, de�ne the mixture F(k) = (1 −
λk)F + λkGk, where λk = min{C/k, 1} and Gk(·) = F(· − k), k ≥ 1. Note that the mixture F(k) converges in the
Prokhorov distance to F. Since ESα is concave with respect to mixtures [52], we obtain for k ≥ 1,

lim inf
k→+∞

ρ[F(k)] = lim inf
k→+∞

sup
µ∈P

{ 1∫
0

ESα
[
(1 − λk)F + λkGk

]
dµ(α) − β(µ)

}

≥ lim inf
k→+∞

sup
µ∈P

{ 1∫
0

(
(1 − λk)ESα[F] + λkESα[Gk]

)
dµ(α) − β(µ)

}

= lim inf
k→+∞

sup
µ∈P

{ 1∫
0

ESα[F]dµ(α) − β(µ) + λk

1∫
0

(
ESα[Gk] − ESα[F]

)
dµ(α)

}
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= lim inf
k→+∞

sup
µ∈P

{ 1∫
0

ESα[F]dµ(α) − β(µ)
}
+ C

= ρ[F] + C.

In Section 3.2 we have seen that for robustness of convex risk measures on the space of heavy tailed distri-
bution functions, in particular GPDs, it is necessary that the shape parameter be bounded away from 1. The
following proposition considers the case of regularly varying distribution functions. A distribution function
F ∈M on (0, +∞) is regularly varying with tail index α > 0, if for all t > 0 it holds that

lim
x→+∞

1 − F(xt)
1 − F(x) = t−α . (2)

Note that, for ξ > 0, the GPD Gξ ;σ is regularly varying with tail index 1/ξ . The next proposition sheds some
light on the trade-o� between robustness of riskmeasures and their sensitivity to the tail of distribution func-
tions, see also the discussion in [39].

Proposition 3.14. No convex risk measure is robust on the set of regularly varying distribution functions
with tail index α > 1.

Proof. Let Fα1 , Fα2 ∈ M1 be regularly varying with indexes α1 > 1, respectively α2 > 1. We �rst show that
the set of regularly varying distribution functions is closed under mixtures, that is

F = (1 − λ)Fα1 + λFα2

for λ ∈ [0, 1], is regularly varying. Note that 1−F = (1−λ)(1−Fα1 )+λ(1−Fα2 ). It is clear that both (1−λ)(1−Fα1 )
and λ(1−Fα2 ) satisfy the limit in (2). Proposition 1.5.7 in [12] implies then that the sum 1−F of these two func-
tions satis�es again the limit in (2) with tail index equal tomin{α1, α2}. Hence, F is a regularly varying distri-
bution function with tail indexmin{α1, α2} > 1. Clearly, any shifted regularly varying distribution function
is regularly varyingwith the same tail index. The sequence of Pareto distributions with shape parameter 1+ 1

k
and scale 1, that is Fk(x) = 1− x−(1+1/k), x ≥ 1, belongs to the class of regularly varying distribution functions
and its mean, E[Fk] = 1+1/k

1+1/k−1 = k + 1, diverges to +∞. Applying Proposition 3.13 yield the assertion.

Remark 3.15. In this paper, we consider the classical notion of robustness, de�ned via continuity with re-
spect to the Prokhorov distance. A spectrum of di�erent types of robustness, de�ned using alternative dis-
tances on M, are introduced by [39]. If a weaker notion of robustness were de�ned through the Wasserstein
distance, see Appendix, the constructed sequence of mixtures appearing in the proof of Proposition 3.13,
(1− λk)F + λkGk, with F ∈M1 and Gk(·) = F(· − k)would not generate a discontinuity. The mixture converges
in the Prokhorov distance to F, however, its mean diverges, hence it does not converge in the Wasserstein
distance, see Lemma A.1.

3.4 Generalisation to risk measures de�ned onLp

Let p ∈ [1, +∞) and de�ne the space of random variables with �nite p-th moment by Lp = {X ∈
L0 |E(|X|p) < +∞}. Requiring a risk measure to be real-valued on the entire space of integrable random
variables excludes interesting examples such themean-deviation risk measures de�ned by

ρ(X) = E(X) + cE
(
|X − E(X)|p

)1/p , X ∈ Lp , c ≥ 0.

Note that, for every p ∈ [1, +∞), the mean-deviation risk measure is convex and �nite on Lp but not on the
larger space Lr , 1 ≤ r < p [47].

The De�nition 3.1 of robustness can be generalised straightforwardly by replacing the space L1 with Lp.
Then, Theorem 3.5 generalises as follows.
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Theorem 3.16. Let ρ : Lp → R be a convex risk measure. Then ρ is robust on X ⊂ Lp if X is uniformly p-
integrable, that is

lim
K→+∞

sup
X∈X

E
(
|X|p1{|X|p>K}

)
= 0.

The proof follows by reasoning similar to that in the proof of Theorem 3.5. Alternatively, it follows directly
from [40]. We refer to [40] for a thorough study of robustness of risk measures de�ned on Orlicz hearts.

4 Aggregation

4.1 Robustness of aggregation measures

In riskmanagement applications, riskmeasures are often evaluated on the output of a complexmodel, which
generates portfolio losses through a non-linear function of a vector of risk factors. A typical example is the
aggregated loss of an insurance portfolio, represented through the insurance company’s internal model. We
describe this setting through a (measurable) function g : Rn → R, called aggregation function, that maps
an n-dimensional vector into a real number. Applying the aggregation function to a random vector of input
risk factors, X = (X1, . . . , Xn) with (multivariate) cumulative distribution function FX, we can evaluate a
risk measure at the (one-dimensional random) output g(X). We denote the space of n-dimensional random
vectors byL0 = L0(Ω,A, P) and the set of the corresponding (multivariate) distribution functions on Rn by
M = D(L0). By equipping L0 with the norm ‖X‖1 =

∑n
i=1 E(|Xi|) we write L1 = {X ∈ L0 | ‖X‖1 < +∞} and

M1 = D(L1).
Throughout this section, we restrict to aggregation functions g that satisfy g(X) ∈ L1 whenever X ∈ L1.

This is guaranteed by, for example, the linear growth condition of De�nition 4.7; see also the discussion
following Theorem 4.8. Weaker conditions on g could be required if more restrictions were placed on X, con-
sistently with the discussion of Section 3.4.

De�nition 4.1. For an aggregation function g : Rn → R and a risk measure ρ : L1 → R we de�ne the aggre-
gation measure ρg(·) : L1 → R by ρg(X) = ρ(g(X)).

Thus, an aggregation measure is a functional of the input vector of risk factors. An aggregation function
g : Rn → R induces a functional Tg[·] : M → M through Tg[FX] = D

(
g(X)

)
. The functional Tg takes

the (multivariate) distribution functions FX ∈ M of the vector X and returns the (univariate) distribution
function Tg[FX] ∈ M of g(X). Since risk measures are assumed to be law-invariant, all considered aggrega-
tion measures are law-invariant and can be described by a functional on the space of distribution functions
ρg[·] : M1 → R through

ρg[FX] = ρg(X) = ρ
[
Tg[FX]

]
, for FX ∈M1.

Note that a continuous aggregation function g induces, by the continuous mapping theorem, an aggregation
functional Tg : M → M that is continuous with respect to the Prokhorov distance, M, M both endowed
with the Prokhorov distance. The Prokhorov distance onM is de�ned for F, G ∈M through

dP(F, G) = inf{ε > 0 |F(B) ≤ G(Bε) + ε, for all Borel sets B on Rn},

where Bε = {x ∈ Rn | infy∈B |x − y| ≤ ε} and, for a vector x = (x1, . . . , xn) ∈ Rn, we denote |x| =
∑n

i=1 |xi|. We
say an aggregation measure ρg : L1 → R is continuous onX ⊂ L1 with respect to the Prokhorov distance if
the restriction of the induced functional ρg[·] on D(X) is continuous with respect to dP. That is, for all F0 ∈
D(X) and ε > 0 there exists δ > 0 such that for all F ∈ D(X)we have dP(F0, F) < δ implies |ρg[F0]−ρg[F]| < ε.

We extend Hampel’s de�nition of robustness to aggregation measures, in order to re�ect the sensitivity
of the risk assessment to small perturbations in the distribution of the vector of risk factors. Clearly, for an
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aggregation measure ρg : L1 → R a small deviation in the n-dimensional input vector includes both pertur-
bations in the marginals and the dependence structure (copula). Analogously to the one-dimensional case,
we consider estimators of risk measures evaluated at the multivariate empirical distribution function. For a
distribution function F ∈M1, sample size k ≥ 1 and independent random variables X1, . . . , Xk with com-
mon distribution function F, themultivariate empirical distribution function is given by the randommeasure

F̂k(t, ω) =
1
k

k∑
i=1

1{X i(ω)≤t}, (t, ω) ∈ Rn × Ω.

For an aggregation measure ρg : L1 → R and a distribution function F ∈ M1 we de�ne the sequence of
estimators {ρ̂g,k}k≥1 through its evaluation at the multivariate empirical distribution function. That is, for
k ≥ 1 we de�ne

ρ̂g,k [F](ω) = ρg[F̂k(·, ω)], ω ∈ Ω. (3)

Note that for �xed t ∈ Rn the multivariate empirical distribution function, F̂k(t, ·), is a random variable and
for �xed ω ∈ Ω a distribution function. Hence, the estimator ρ̂g,k [F] is a random variable.

De�nition 4.2. Let ρg : L1 → R be an aggregation measure and {ρ̂g,k}k the sequence of estimators de�ned
in (3). We say that the aggregation measure ρg is robust on X ⊂ L1 (equivalently ρg[·] is robust on D(X)) if
for any F0 ∈ D(X) it holds that for all ε > 0, there exists δ > 0 and k0 ∈ N such that for all F ∈ D(X) and
k ≥ k0 we have

dP(F0, F) < δ ⇒ dP
(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F]

))
< ε.

We obtain a generalisation of Hampel’s theorem, Theorem 3.2, to the multivariate case. The proof follows
mostly the steps of the proof of Hampel’s theorem, Theorem 3.2, for distribution function on the real line [34].

Theorem 4.3. Let ρg : L1 → R be an aggregation measure andX ⊂ L1. Assume that the sequence of estima-
tors {ρ̂g,k}k, de�ned in (3), is consistent for all F0 ∈ D(X). Then, the aggregation measure ρg is continuous on
D(X) with respect to the Prokhorov distance if and only if it is robust onD(X).

Proof. Assume the aggregation measure ρg is continuous with respect to dP onD(X) and let F0 ∈ D(X). Let
ε > 0 and k ∈ N then for all F ∈ D(X) it holds that

dP
(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F]

))
= dP

(
D
(
ρg[F̂0k]

)
,D
(
ρg[F̂k]

))
≤ dP

(
D
(
ρg[F̂0k]

)
,D
(
ρg[F0]

))
+ dP

(
D
(
ρg[F0]

)
,D
(
ρg[F̂k]

))
. (4)

Note that ρg[F0] is a degenerate random variable. For all F ∈ D(X), the multivariate version of Glivenko-
Cantelli states that the empirical distribution function F̂k(·, ω) converges for almost every ω to F, as k → +∞,
see [21, 48]. The �rst term on the right hand side in (4) can be made arbitrarily small (say ε/2) by choosing
k large enough since the aggregation measure is consistent at F0, that is ρ̂g,k [F0] = ρg[F̂0k] → ρg[F0] in
probability. Next we show that the second term in (4) is smaller than ε/2. By continuity of the aggregation
function at F0 there exists δ > 0 such that, for any F ∈ D(X), dP(F0, F) < δ implies |ρg[F0]− ρg[F]| < ε

2 . Thus,
we obtain

P
(∣∣ρg[F0] − ρg[F̂k]∣∣ ≤ ε2) ≥ P(∣∣ρg[F0] − ρg[F]∣∣ + ∣∣ρg[F] − ρg[F̂k]∣∣ ≤ ε2)

= P
(∣∣ρg[F] − ρg[F̂k]∣∣ ≤ ε2 − ∣∣ρg[F0] − ρg[F]∣∣),

where ε
2 −

∣∣ρg[F0] − ρg[F]∣∣ > 0. As the aggregation measure is consistent, for all γ > 0 we have P
(∣∣ρg[F] −

ρg[F̂k]
∣∣ ≤ γ)→ 1 as k → +∞. Hence, choosing k large enough, we obtain

P
(∣∣∣ρg[F0] − ρg[F̂k]∣∣∣ ≤ ε2) ≥ 1 − ε2 ,
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which, by Strassen’s theorem [49], is equivalent to dP
(
D
(
ρg[F0]

)
,D
(
ρg[F̂k]

))
< ε

2 .
For the converse assume that the aggregationmeasure is robust onD(X). Note that for degenerate distri-

bution functions on R the Prokhorov distance reduces to the absolute value. Let F0, F ∈ D(X) and interpret-
ing ρg[F], ρg[F0] as degenerate random variables we obtain for k ∈ N∣∣ ρg[F0] − ρg[F] ∣∣ = dP(D(ρg[F0]),D(ρg[F]))

≤ dP
(
D
(
ρg[F0]

)
,D
(
ρ̂g,k [F0]

))
+ dP

(
D
(
ρ̂g,k [F0]

)
,D
(
ρ̂g,k [F]

))
+ dP

(
D
(
ρ̂g,k [F]

)
,D
(
ρg[F]

))
.

The second term can be made small by robustness of the aggregation measures. The other two distances can
be made arbitrarily small since the sequence of estimators is consistent for any F ∈ D(X).

An aggregation measure composed by a continuous aggregation function and a convex risk measure is con-
sistent at each F ∈ M1, that is ρ̂g,k [F] → ρ̂g[F] in probability (even P-a.s.). Hence, as a generalisation of
Proposition 3.3 we obtain a one-to-one correspondence between robustness and continuity with respect to
the Prokhorov distance.

Proposition 4.4. Let g : Rn → R be a continuous aggregation function, ρ : L1 → R be a convex riskmeasure
and X ⊂ L1. Then, the aggregation measure ρg : L1 → R is continuous with respect to dP on D(X) if and
only if it is robust onD(X).

Proof. Let F0 ∈M1. It is enough to show that for a continuous g and a convex riskmeasure ρ the aggregation
measure ρg = ρ ◦ Tg is consistent. We even show strong consistency, that is ρg[F̂0k](ω) → ρg[F0] for almost
everyω ∈ Ω. Since convex riskmeasures are continuouswith respect to theWasserstein distance, Proposition
6.8 in [47], we have to show that dW

(
Tg[F̂0k(·, ω)], Tg[F0]

)
→ 0 for almost every ω.

Themultivariate empirical distribution function F̂0k(·, ω) converges for almost everyω to F0, as k → +∞,
see [21, 48]. In particular, for almost every ω, dP

(
F̂0k(·, ω), F0

)
→ 0, as k → +∞, and by continuity of the

aggregation function, that is Tg : M→M is continuous w.r.t dP, dP
(
Tg[F̂0k(·, ω)], Tg[F0]

)
→ 0, as k → +∞.

For k ∈ N and ω ∈ Ω denote by X0
ω
k a random variable that has distribution function F̂0k(·, ω). Note that, by

de�nition, Tg[F̂0k(·, ω)] = D(g(X0
ω
k )) ∈M1 and we have∫

R

|y|dTg
[
F̂0k(·, ω)

]
(y) =

∫
Rn

|g(y)|dF̂0k(y, ω) =
1
k

k∑
i=1

∣∣g(X0 i(ω)
)∣∣.

By the strong lawof largenumbers 1
k
∑k

i=1
∣∣g(X0 i

)∣∣→ E( | g(X0) | ) < +∞, P-a.s. Hence for almost everyω ∈ Ω∫
R

|y|dTg
[
F̂0k(·, ω)

]
(y) →

∫
R

|y|dTg[F0](y), as k → +∞.

The conclusion follows from Lemma A.1.

Analogously to Theorem 3.5, robustness of the aggregation measure ρg depends on uniform integrability of
the set of losses produced by the aggregation function g.

Theorem 4.5. Let g : Rn → R be a continuous aggregation function and ρ : L1 → R a convex risk measure.
Then the aggregation measure ρg : L1 → R is robust onX ⊂ L1 if the set g

(
X
)
is uniformly integrable.

Proof. If g(X) is uniformly integrable the risk measure is continuous with respect to dP, see Theorem 3.5.
Therefore the composition ρg = ρ ◦ Tg is continuous with respect to Prokhorov distance and by Proposition
4.4 the aggregation measure ρg is robust onX.

A similar problem is considered in [40], when the marginal distributions are �xed. Note that our extension of
Hampel’s classical de�nition of robustness to aggregation measures, De�nition 4.2, requires the aggregation
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measure to be (relatively) insensitive to perturbations in the underlying distribution. Since the input of the
aggregationmeasure is a randomvector of risk factors, perturbation in thedistribution canarise fromchanges
in themarginals and/or the copula. Given Theorem 4.5, in order to characterise robustness of the aggregation
measure ρg, it is necessary to study which properties of g and the set X produce a set of losses g(X) that is
uniformly integrable. The next section investigates this issue.

Remark 4.6. It is not necessarily the case in practice that the multivariate distribution function of F is esti-
mated by the empirical distribution of historical data; parametric statistical methods are typically used in-
stead. Nonetheless, the de�nition of robustness used here remains relevantwhen calculating ρg[F] byMonte-
Carlo simulation. In that context,X is simulated frommodel F and F̂k is interpreted as the empirical distribu-
tion function of the simulated observations. Then ρg[F] is calculated via evaluation of ρg[F̂k], as is typically
done in insurance internal models [46]. It is desirable that small changes in the assumed distribution F of
risk factors does not produce excessive variation in the estimated aggregate risk.

4.2 Aggregation robustness and linear growth

A typical setup in risk management is linear risk aggregation, for example when aggregating di�erent lines
of business or positions in a portfolio, such that

ρ
(
g(X)

)
= ρ(X1 + · · · + Xn), for X ∈ L1. (5)

By Sklar’s theorem the distribution of vector X = (X1, . . . , Xn) is speci�ed through its marginals and its de-
pendence structure (copula). Statistically, estimating copulas can be very challenging and often relies on
expert judgement. Since diverse dependence structures can lead to substantial di�erences in aggregate risk,
risk management is especially concerned about misspeci�cation in the copula. A substantial literature ex-
ists on dependence uncertainty, including calculations of upper and lower bounds for (5), for �xedmarginals
Xi ∼ Fi , i = 1, . . . , n and an unspeci�ed copula, see [9, 25, 55] and references therein.

Furthermore, [26] show that, when ρ is a spectral riskmeasure, the aggregationmeasure de�ned through
(5) is robust on the set {(X1, . . . , Xn) | Xi ∼ Fi , i = 1 . . . , n}, where F1, . . . Fn ∈M1 are �xed marginal distri-
butions. Taking a step further, [40] consider robustness of convex risk measures composed with non-linear
aggregation functions for �xed marginals, see discussion after Theorem 4.8. Here, we build on [26, 40] by
considering robustness in the more general case of uncertainty in both the dependence structure and the
marginals of the model input X. Theorem 4.8 below shows that robustness is guaranteed if the aggregation
function satis�es a linear growth condition in the tail, similar to that of [40], and the marginals belong to
uniformly integrable sets.

For sets of univariate distribution functions Ni ⊂ M1, i = 1, . . . n, we de�ne the set of all possible
random vectors X = (X1, . . . , Xn) with marginals FXi belonging to the corresponding sets Ni, i = 1, . . . , n,
through

C(N1, . . .Nn) =
{
(X1, . . . , Xn) | FXi ∈ Ni ⊂M1, i = 1, . . . n

}
⊂ L1.

De�nition 4.7. We say an aggregation function g : Rn → R possesses the linear growth condition in the tail,
if there exist A, L,M > 0 such that

|g(x)| ≤ A + L|x|, for all |x| > M.

Continuity of g combined with linear growth in the tail as in De�nition 4.7 guarantee that g(X) ∈ L1 for
X ∈ L1.

Theorem 4.8. Let the setsU1, . . .Un ∈M1 beuniformly integrable, the function g be continuousand satisfy the
linear growth condition in the tail, and ρ be a convex risk measure. Then the aggregation measure ρg : L1 → R
is robust on C(U1, . . .Un).
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Proof. By Theorem 4.5 it is enough to show that g
(
C(U1, . . .Un)

)
is uniformly integrable. The aggrega-

tion function g is continuous on the compact set {x ∈ Rn | |x| ≤ M}, hence there exists C > 0 such that
sup|x|≤M |g(x)| ≤ C.

Let X ∈ C(U1, . . .Un). For K > max{A, C} we have that {|X| ≤ M ∩ |g(X)| > K} = ∅, thus

sup
g(X)∈g(C(U1 ,...Un))

E
(
|g(X)|1{|g(X)|>K}

)
= sup

X∈C(U1 ,...Un)
E
(
|g(X)|1{|g(X)|>K}1{|X|>M}

)
≤ L sup

X∈C(U1 ,...Un)
E
( n∑
i=1
|Xi|1{L∑n

i=1 |Xi|>K−A
})

+ A sup
X∈C(U1 ,...Un)

P
(
L

n∑
i=1
|Xi| > K − A

)
. (6)

The �rst term in (6) can be bounded as follows. Note that for d ≥ 0 and x1, . . . , xn ∈ R, there exists j such
thatmaxi=1,...,n |xi|1{maxi=1,...,n |xi|>d} = |xj|1{|xj|>d} ≤

∑n
i=1 |xi|1{|xi|>d}. Therefore,

L sup
X∈C(U1 ,...Un)

E
( n∑
i=1
|Xi|1{L∑n

i=1 |Xi|>K−A
}) ≤ L sup

X∈C(U1 ,...Un)
E
(
n max
i=1,...,n

|Xi|1{nL max
i=1,...,n

|Xi|>K−A
})

≤ nL sup
X∈C(U1 ,...Un)

n∑
i=1

E(|Xi|1{|Xi|>(K−A)/(nL)})

≤ nL
n∑
i=1

sup
FXi∈Ui

E(|Xi|1{|Xi|>(K−A)/(nL)})→ 0,

as K → +∞, by uniform integrability of each Ui. For the second term in (6) we use Markov’s inequality

A sup
X∈C(U1 ,...Un)

P
( n∑
i=1
|Xi| >

K − A
L

)
≤ AL
K − A

n∑
i=1

sup
FXi∈Ui

E(|Xi|),

which goes to zero as K → +∞.

Note that Theorem 4.8 requires assumptions on the marginal distributions of X, but not on its dependence
structure. Hence robustness of convex risk measures holds even in the presence of complete dependence
uncertainty, where no information on the copula exists. Theorem4.8 o�ers a slight generalisation of Theorem
4.23 in [40] to the case of uncertainty in the marginal distributions. Also, [40] require a global linear growth
condition, while we use linear growth in the tail combined with continuity of g.

An immediate consequence of Theorem 4.8 involves linear aggregation.

Corollary 4.9. Let the function g be given by g(x) =
∑n

i=1 xi , x ∈ Rn. For a convex risk measure ρ, the
aggregation measure ρg is robust on C(U1, . . .Un), with Ui , i = 1, . . . , n, uniformly integrable.

There also exist many relevant continuous non-linear aggregation functions that satisfy the linear growth
condition of De�nition 4.7. It is easiest to envisage such situations arising in the context of reinsurance, with
the elements of the random vector X representing insurance liabilities (losses from lines of business or indi-
vidual policies). Then, by standard considerations of insurable interest and moral hazard, it is not plausible
to have (re)insurance portfolio losses that increase in X faster than linearly. Note that optimal Pareto rein-
surance contracts are typically Lipschitz continuous [15] and hence possess the linear growth condition. For
example, a reinsurance company faces the aggregate risk of excess-of-loss reinsurance contracts on individ-
ual risks X1, . . . , Xn with deductibles di and limits ci > di , i = 1, . . . , n, such that

g(X) =
n∑
i=1

(Xi − di)+ − (Xi − ci − di)+,
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where (x)+ = max{x, 0}. Alternatively, a reinsurance company taking the risk that an aggregated portfolio
exceeds c > 0, faces claim

g(X) =
( n∑
i=1

Xi − c
)
+
.

Note that in the �rst example g is constant for large x and in the second case it is linear in itsmarginals, hence
ful�lling in both cases the linear growth condition in the tail.

Alternatively, one could view g(X) as a portfolio of �nancial derivatives with underlyings X, such that
g(X) =

∑n
i=1 hi(Xi). Standard options, even leveraged ones with pay-o�s of the form hi(x) = (λx − c)+, λ > 1,

satisfy the linear growth condition. However, note that other exotic options, such as powered options of the
form hi(x) =

(
(x − c)+

)p, with p > 1, do not satisfy the linear growth condition. To achieve robustness for
such pay-o�s, one would need to restrict X toLp, see Section 3.4. For details on such derivatives see [36], pp.
168-169.

4.3 Aggregation through compound distributions

A common form of aggregation in insurance (as well as operational and credit risk modelling), takes place
via compound distributions that model the future total claim amount as a random sum of individual claims.
Within a speci�c (homogeneous) line of business, individual claims are modelled as independent and iden-
tically distributed positive random variables Xi and the (unknown) number of claims through a (discrete and
random) count variable N independent of the Xi. The total claim amount X1 + · · · + XN cannot be readily ex-
pressed via an aggregation function g : Rn → R. However, the distribution function of the random sum can
be straightforwardly de�ned through an aggregation operator T acting on distributions, namely

T[·, ·] : M1 ×M1 →M1; T[F, G] = D
( N∑
i=1

Xi
)
, Xi ∼i.i.d. F independent of N ∼ G. (7)

Therefore, T[F, G] =
∫ +∞
0 F*(n)(·)dG(n), where F*(n) is the n-th convolution of F.

Theorem 4.10. Let U be a uniformly integrable set of distribution functions on [0, +∞) and N a uniformly
integrable set of distributions on the non-negative integers, such that

+∞∫
0

x dF*(x) < +∞ and
+∞∫
0

x dG*(x) < +∞,

where F* and G* are distribution functions given by F* = infF∈U F and G* = infG∈N G respectively. Let the
operator T be de�ned by (7) and ρ be a convex risk measure. Then, the aggregation measure de�ned by ρ ◦
T : M1 ×M1 → R is robust on U ×N.

Proof. By Theorem 4.5 it is enough to show that the set {T[F, G] | F ∈ U, G ∈ N} is uniformly integrable. Note
that F* is a distribution function. Indeed, F* is non-decreasing, right continuous (the in�mum of a family of
right continuous non-decreasing, hence upper semi-continuous, functions is right continuous, see Lemma
2.39 [2]) and

lim
x→+∞

(1 − F*(x)) ≤ lim
x→+∞

sup
F∈U

x(1 − F(x)) ≤ lim
x→+∞

sup
F∈U

∫
y>x

ydF(y) = 0,

by uniform integrability. Analogously, infG∈N G is a distribution function on the non-negative integers.
Choose F ∈ U and G ∈ N and denote Xi ∼i.i.d. F and N ∼ G independent of the Xi. Similarly, denote
X*i ∼i.i.d. F* and N* ∼ G* independent of the X*i and note that X*i and N* �rst-order stochastically dominate
Xi and N, respectively. As �rst-order stochastic dominance is preserved under compounding, see Propo-
sition 3.3.31 in [18],

∑N
i=1 Xi is lower than

∑N*
i=1 X*i in �rst-order stochastic dominance. The result follows
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from Lemma 3.9 and the fact that the compound sum
∑N*

i=1 X*i is integrable, given the integrability of X*i and
N*.

Examples of sets of distribution functions on the non-negative integers ful�lling the assumptions of Theorem
4.10 include the Poisson distribution with parameter 0 < λ ≤ λ and the Geometric with p ≥ p > 0, see Table 3.1
in [18]. For the claim size distribution, an example is the family of Pareto distributions F(x) = 1 − xαmx−α with
parameters 0 < xm ≤ xm and α ≥ α > 1 or, more generally, the set of GPDs, {Gξ ;σ | σ ≤ σ, 0 < ξ ≤ ξ}, ξ < 1.

5 Comparison to robustness regions of Value-at-Risk
In this section we compare the robustness properties of the popular non-convex risk measure VaR to those of
the convex risk measures studied in this paper. Since di�erent risk measures are robust on di�erent sets, the
choice of riskmeasure should also re�ect information on the plausible sets of distribution functions expected
to be encountered in particular applications.

VaR at level α ∈ (0, 1) is de�ned as the left-sided α-quantile, VaRα[F] = F−1(α) = inf{y ∈ R | F(y) ≥ α}. It
is known that VaRα is not robust on the whole ofM1; however, it is robust on the set of distribution functions
that are strictly increasing in a neighbourhood of their α-quantile [14, 33]. In particular, VaR is not robust on
discrete random variables and hence the set where VaR is not robust is dense inM1.

The following insurance example, where strict increasingness is not satis�ed, leads to non-robustness of
VaR. Consider the risk exposure Y = min{X, d}, X ∈ L1, that occurs when an insurer with exposure X buys
reinsurance protection with deductible d ≥ 0. The distribution of Y, FY (x) = FX(x)1{x<d} + 1{x≥d}, is �at for
all x > d, hence VaRα is not robust at FY whenever α ≥ FX(d).

Thus, neither convex riskmeasures such as ES nor VaR, are robust onL1. VaR requires strictly increasing
distribution functions. Convex risk measures like ES place requirements on the tail of the underlying dis-
tribution functions via the uniform integrability condition, see Theorem 3.5. A comparative assessment of
those two risk measures thus relies on whether strict increasingness or uniform integrability is a more real-
istic constraint on the set of distributions on which the risk measure is to be evaluated. This depends on the
context of the application. For example, in reinsurance problemswhere distributions with constant parts can
occur, uniform integrability may be a more suitable assumption. On the other hand, when dealing with an
asset returnwith an approximately bell-shaped density but arbitrarily heavy tails, strict increasingness of the
distribution appears to be a more appropriate condition.

Turning now to the case of risk aggregation, consider the aggregation measure de�ned by VaRα,g : L1 →
R, where g : Rn → R is an aggregation function. The aggregation measure VaRα,g will not be robust if the
distribution of g(X) is constant in a neighbourhood of F−1g(X)(α). Such �at regions can emerge due to the nature
of function g. For instance, in a slight generalisation of the previous example, for an insurance company that
buys an unlimited layer of reinsurance protection for its portfolio, we have g(X) = min{

∑n
i=1 Xi , d}.

Flat regions in the distribution of g(X) can also appear through the e�ect of the dependence structure of
X. This is exempli�ed by the special case of linear portfolio aggregation, g(x) =

∑n
i=1 xi. Then the aggregation

measure VaRα,g is not robust on a set X ⊂ L1 if there exists an input vector X ∈ X such that X1 + · · · + Xn
is discrete for large values. Example 2.2 in [26] provides explicit choices of marginals and copulas that lead
to non-robustness of the aggregation measure VaRα,g through the construction of a degenerate aggregate
risk. The problem of the existence of a dependence structure of random variables X1, . . . , Xn, such that the
aggregated risk X1 + · · · + Xn is almost surely constant, is extensively studied in probability theory and risk
management [41, 44]. Examples of distribution functions include F1 = · · · = Fn being Gaussian or Cauchy;
we refer the reader to [55] and references therein in the context of risk management.

In quantitative risk management applications, one is often concerned about aggregate risks. Seldom is
a risk measure evaluated on a random loss that does not in turn depend on further risk factors. A particular
example is the use of internal models in insurance for calculating capital requirements across the portfo-
lio. Compared to evaluating a risk measure on a real-valued random variable, in risk aggregation, there is
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the additional complication of the dependence structure of the input vector. Thus, there are two sources of
uncertainty, in the marginal distributions and in the dependence structure. Modelling accurately the depen-
dence structure is usuallymore challenging thanmodellingmarginals, due to a lack of extensivemultivariate
datasets. Therefore, it is critical that the risk measure is robust to changes in the dependence structure.

We have seen that robustness of aggregation measures derived from convex risk measures, such as ES,
depends on weak assumptions on the aggregation function g and the marginals, while no requirements are
placed on the dependence structure. On the other hand, robustness of VaR requires restricting both the form
of the aggregation function g and the possible dependence structures of the input vector. In applications such
as the internalmodelling performedby insurers, such constraints are not necessarily realistic. Thus our paper
indicates that in applications where (non-linear) aggregations are present and high dependence uncertainty
persists, the use of convex risk measures may be preferable to that of VaR.

A Wasserstein space
For F, G ∈M1, the Wasserstein distance [20, 31] is given by

dW (F, G) =
∫
R

|F(x) − G(x)|dx =
1∫

0

|F−1(u) − G−1(u)|du,

where F−1(u) = inf{y ∈ R | F(y) ≥ u}, u ∈ [0, 1), is the generalised inverse and we identify inf∅ = −∞.

Lemma A.1. (Lemma 8.3 in [10])
For F, Fk ∈M1, k ≥ 1 the following are equivalent

i) dW (Fk , F)→ 0, as k → +∞.
ii) dP(Fk , F)→ 0 and

∫
R |x|dFk(x)→

∫
R |x|dF(x), as k → +∞.

iii) dP(Fk , F)→ 0 and the set {Fk | k ≥ 1} is uniformly integrable.

Lemma A.2. A risk measure ρ : L1 → R is continuous with respect to the norm ‖ · ‖1 onL1 if and only if it is
continuous with respect to the Wasserstein distance on L1.

Proof. Assume that the riskmeasure is continuouswith respect to ‖·‖1. OnL1 a sequence of randomvariables
Xn converges in the Wasserstein distance to X if and only if there exist random variables X̃n on L1 with the
same distribution as Xn and X̃ with the same distribution as X such that ‖X̃n − X̃‖1 → 0, see Theorem 3.5 in
[39]. Hence by law-invariance of the risk measure

ρ(Xn) = ρ(X̃n)→ ρ(X̃) = ρ(X), as n → +∞.

For X, Y ∈ L1 the inequality dW (X, Y) ≤ ‖X − Y‖1 implies that a sequence converging in ‖ · ‖1 also converges
in theWasserstein distance. Hence continuity with respect to dW implies continuity with respect to ‖ ·‖1.

On the set of integrable distribution functions over Rn, that is M1 = D(L1), the Wasserstein distance is
de�ned for F, G ∈M1 by

dW (F, G) = inf
{
E
(
‖X − Y‖1

) ∣∣∣X ∼ F, Y ∼ G
}
,

where the in�mum is taken over all joint distribution functions of dimension 2n with marginals F and G of
size n. Note that on the real line we have the dual representation dW (F, G) = inf{E(|X −Y|) | X ∼ F, Y ∼ G} =∫
R |F(x) − G(x)|dx, F, G ∈M1 [51].

Acknowledgement: The authors are grateful to two referees, whose feedback signi�cantly improved the pa-
per. Furthermore, we thank Alfred Müller and Ruodu Wang for helpful comments.

Unauthenticated
Download Date | 4/7/17 6:21 PM



366 | Silvana M. Pesenti, Pietro Millossovich, and Andreas Tsanakas

Previous versions of this paper have been presented at the 3rd European Actuarial Journal Conference
(Lyon) and the conference onModel Uncertainty and Robust Finance (Milan).

References
[1] Acerbi, C. (2002). Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Financ. 26(7),

1505–1518.
[2] Aliprantis, C. D. and K. Border (2006). In�nite Dimensional Analysis: a Hitchhiker’s Guide. Springer, Berlin.
[3] Artzner, P., F. Delbaen, J.-M. Eber, and E. Heath (1997). Thinking coherently. RISK 10, 68–71.
[4] Artzner, P., F. Delbaen, J.-M. Eber, and E. Heath (1999). Coherent measures of risk. Math. Finance 9(3), 203–228.
[5] Bäuerle, N. and A. Müller (2006). Stochastic orders and risk measures: consistency and bounds. Insurance Math.

Econom. 38(1), 132–148.
[6] BCBS (2012). Consultative DocumentMay 2012. Fundamental review of the trading book. Technical report, Basel Committee

on Banking Supervision, Bank for International Settlements.
[7] BCBS (2013). Consultative Document October 2013. Fundamental review of the trading book: A revised market risk frame-

work. Technical report, Basel Committee on Banking Supervision, Bank for International Settlements.
[8] Bellini, F., B. Klar, A. Müller, and E. Rosazza Gianin (2014). Generalized quantiles as risk measures. Insurance Math.

Econom. 54, 41–48.
[9] Bernard, C., X. Jiang, and R. Wang (2014). Risk aggregation with dependence uncertainty. Insurance Math. Econom. 54,

93–108.
[10] Bickel, P. J. and D. A. Freedman (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9(6), 1196–1217.
[11] Billingsley, P. (2008). Probability and Measure. Third edition. John Wiley & Sons, New York.
[12] Bingham, N. H., C. M. Goldie, and J. L. Teugels (1989). Regular Variation. Cambridge University Press.
[13] Cheridito, P. and T. Li (2009). Risk measures on Orlicz hearts. Math. Finance 19(2), 189–214.
[14] Cont, R., R. Deguest, and G. Scandolo (2010). Robustness and sensitivity analysis of risk measurement procedures. Quant.

Finance 10(6), 593–606.
[15] Dana, R.-A. and M. Scarsini (2007). Optimal risk sharing with background risk. J. Econom. Theory 133(1), 152–176.
[16] Delbaen, F. (2002). Coherent riskmeasures on general probability spaces. In Advances in Finance and Stochastics, pp. 1–37.

Springer, Berlin.
[17] Denneberg, D. (1990). Premium calculation: why standard deviation should be replaced by absolute deviation. Astin

Bull. 20(2), 181–190.
[18] Denuit, M., J. Dhaene, M. Goovaerts, and R. Kaas (2006). Actuarial Theory for Dependent Risks: Measures, Orders and

Models. John Wiley & Sons, Chichester.
[19] Diestel, J. (1991). Uniform integrability: an introduction. Rendiconti dell’Istituto di Matematica dell’Universitá di Trieste 23,

41–80.
[20] Dobrushin, R. (1970). Prescribing a system of random variables by conditional distributions. Theory Probab. Appl. 15(3),

458–486.
[21] Dudley, R. M. (2002). Real Analysis and Probability. Cambridge University Press.
[22] Durrett, R. (2013). Probability: Theory and Examples. Edition 4.1. 4th edition published by Cambridge University Press in

2010.
[23] EIOPA (2009). Directive 2009/138/EC of the European Parliament and of the Council. Technical report, European Insurance

and Occupational Pensions Authority.
[24] Embrechts, P., C. Klüppelberg, and T.Mikosch (1997).Modelling Extremal Events for Insurance and Finance. Springer, Berlin.
[25] Embrechts, P., G. Puccetti, and L. Rüschendorf (2013). Model uncertainty and VaR aggregation. J. Bank. Financ. 37(8),

2750–2764.
[26] Embrechts, P., B. Wang, and R. Wang (2015). Aggregation-robustness and model uncertainty of regulatory risk measures.

Finance Stoch. 19(4), 763–790.
[27] Filipović, D. and G. Svindland (2012). The canonical model space for law-invariant convex risk measures is L1. Math. Fi-

nance 22(3), 585–589.
[28] Föllmer, H. and A. Schied (2002). Convex measures of risk and trading constraints. Finance Stoch. 6(4), 429–447.
[29] Föllmer, H. and A. Schied (2011). Stochastic Finance: An Introduction in Discrete Time. Third edition. Walter de Gruyter,

Berlin.
[30] Frittelli, M. and E. Rosazza Gianin (2002). Putting order in risk measures. J. Bank. Financ. 26(7), 1473–1486.
[31] Givens, C. R. and S. M. Rae (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J. 31(2),

231–240.
[32] Haezendonck, J. and M. Goovaerts (1982). A new premium calculation principle based on Orlicz norms. Insurance Math.

Econom. 1(1), 41–53.

Unauthenticated
Download Date | 4/7/17 6:21 PM



Robustness regions for measures of risk aggregation | 367

[33] Hampel, F. R. (1971). A general qualitative de�nition of robustness. Ann. Math. Stat. 42(6), 1887–1896.
[34] Huber, P. and E. M. Ronchetti (2009). Robust Statistics. Second edition. Wiley, New York.
[35] IAIS (2014). Consultation Document December 2014. Risk-based global insurance capital standard. Technical report, Inter-

national Association of Insurance Supervisors.
[36] Jarrow, R. A. and S. M. Turnbull (2000). Derivative Securities. Second Edition. South-Western College Publishing, Cincinnati

OH.
[37] Kaina, M. and L. Rüschendorf (2009). On convex risk measures on Lp-spaces. Math. Methods Oper. Res. 69(3), 475–495.
[38] Kiesel, R., R. Rühlicke, G. Stahl, and J. Zheng (2016). TheWassersteinmetric and robustness in riskmanagement. Risks 4(3),

32.
[39] Krätschmer, V., A. Schied, and H. Zähle (2014). Comparative and qualitative robustness for law-invariant risk measures.

Finance Stoch. 18(2), 271–295.
[40] Krätschmer, V., A. Schied, and H. Zähle (2015). Domains of weak continuity of statistical functionals with a view toward

robust statistics. arXiv preprint arXiv:1511.08677.
[41] Makarov, G. D. (1982). Estimates for the distribution function of a sum of two random variables when the marginal distribu-

tions are �xed. Theory Probab. Appl. 26(4), 803–806.
[42] Mao, T. and R. Wang (2015). On aggregation sets and lower-convex sets. J. Multivariate Anal. 138, 170–181.
[43] Nelder, J. A. and R. W. M. Wedderburn (1973). Generalized linear models. J. R. Stat. Soc. Ser. A 135(3), 370–384.
[44] Rüschendorf, L. (1982). Random variables with maximum sums. Adv. Appl. Probab. 14(3), 623–632.
[45] Sandström, A. (2016). Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice. CRC Press, Boca Raton

FL.
[46] SCOR (2008). From principle-based risk management to solvency requirements, 2nd edition. Technical report, SCOR

Switzerland AG.
[47] Shapiro, A., D. Dentcheva, and A. Ruszczyński (2009). Lectures on Stochastic Programming: Modeling and Theory (Second

ed.). SIAM, Philadelphia PA.
[48] Shorack, G. R. and J. A. Wellner (2009). Empirical Processes with Application to Statistics. SIAM.
[49] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36(2), 423–439.
[50] Tsanakas, A. and P. Millossovich (2016). Sensitivity analysis using risk measures. Risk Analysis 36(1), 30–48.
[51] Vallender, S. (1974). Calculation of the Wasserstein distance between probability distributions on the line. Theory Probab.

Appl. 18(4), 784–786.
[52] Wakker, P. (1994). Separating marginal utility and probabilistic risk aversion. Theory and Decision 36(1), 1–44.
[53] Wang, B. andR.Wang (2011). The completemixability and convexminimization problemswithmonotonemarginal densities.

J. Multivariate Anal. 102(10), 1344 – 1360.
[54] Wang, B. and R. Wang (2016). Joint mixability. Math. Oper. Res. 41(3), 808–826.
[55] Wang, R., L. Peng, and J. Yang (2013). Bounds for the sumofdependent risks andworst Value-at-Riskwithmonotonemarginal

densities. Finance Stoch. 17(2), 395–417.
[56] Wang, S. (1996). Premium calculation by transforming the layer premium density. Astin Bull. 26(I), 71–92.
[57] Wüthrich, M. V. (2016). Non-Life Insurance: Mathematics & Statistics. Available at SSRN: 2319328.

Unauthenticated
Download Date | 4/7/17 6:21 PM


	1 Introduction
	2 Preliminaries
	3 Robustness
	3.1 Robustness of convex risk measures
	3.2 Robustness regions of convex risk measures
	3.3 Non-robustness of convex risk measures
	3.4 Generalisation to risk measures defined on Lp

	4 Aggregation
	4.1 Robustness of aggregation measures
	4.2 Aggregation robustness and linear growth
	4.3 Aggregation through compound distributions

	5 Comparison to robustness regions of Value-at-Risk
	A Wasserstein space

