

City, University of London Institutional Repository

Citation: Foster, H. & Spanoudakis, G. (2011). Advanced service monitoring configurations

with SLA decomposition and selection. Proceedings of the ACM Symposium on Applied
Computing, pp. 1582-1589. doi: 10.1145/1982185.1982519

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/1597/

Link to published version: https://doi.org/10.1145/1982185.1982519

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Advanced Service Monitoring Configurations
with SLA Decomposition and Selection

Howard Foster and George Spanoudakis
Department of Computing, City University London,

Northampton Square, EC1V 0HB, London,
England, United Kingdom

{howard.foster.1,g.e.spanoudakis}@city.ac.uk

ABSTRACT
Service Level Agreements (SLAs) for Software Services aim
to clearly identify the service level commitments established
between service requesters and providers. The commitments
that are agreed however can be expressed in complex no-
tations through a combination of expressions that need to
evaluated and monitored efficiently. The dynamic allocation
of the responsibility for monitoring SLAs (and often differ-
ent parts within them) to different monitoring components
is necessary as both SLAs and the components available for
monitoring them may change dynamically during the oper-
ation of a service based system. In this paper we discuss an
approach to supporting this dynamic configuration, and in
particular, how SLAs expressed in higher-level notations can
be efficiently decomposed and appropriate monitoring com-
ponents dynamically allocated for each part of the agree-
ments. The approach is illustrated with mechanical support
in the form of a configuration service which can be incorpo-
rated into SLA-based service monitoring infrastructures.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Service-oriented Archi-
tecture (SOA)

General Terms
Algorithms, Design, Management, Reliability

Keywords
Service Level Agreements, Service Composition, Monitoring

1. INTRODUCTION
As a key part of monitoring and management, systems de-

veloped with the Service-Oriented Architecture (SOA) de-
sign pattern should utilise negotiated agreements between
service providers and requesters. Typically the result of this
negotiation is specified in Service-Level Agreements (SLAs),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 21-MAR-2011, TaiChung, Taiwan
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

which are then used to monitor levels of service provided
and to optionally specify pre-conditions and actions to take
in the event of such levels being violated. The dynamic
availability and allocation of the responsibility for monitor-
ing SLAs (and often different parts within them) to different
monitoring components is necessary as both SLAs and the
components available for monitoring them may change dy-
namically during the operation of a service based system [4].
The complexity of SLA terms however means that several
monitoring components may need to be selected for a single
SLA guaranteed term expression (e.g. availability > 90%)
since each part of the expression may be reasoned by a phys-
ically different provider. Existing work has shown examples
of decomposition based upon simple decomposition of ex-
pressions [4] but there is also need to consider how varia-
tions between different monitors (e.g. trustworthiness or ac-
cess constraints) can be considered in a dynamic monitoring
configuration process.

In this work we show how complex service agreement
terms can be decomposed in to manageable monitoring con-
figurations, whilst also including a mechanism to support
preferred monitoring component selection requirements. Ad-
vanced configuration is supported by a MonitoringManager
component which mechanically parses an SLA, generates a
formal Abstract Syntax Tree (AST) and decomposes the
terms of the AST in to expressions for monitoring. Each
expression is then used to select appropriate reasoning or
service sensor monitoring components. The main contribu-
tion of this work is that both the monitoring configurator
and the monitoring configuration specification are generic,
reusable artifacts, that can be incorporated in to other mon-
itoring frameworks where configuration of monitoring com-
ponents is required. In the case of the configurator, it is
already offered as a reusable service using standard web ser-
vice protocols and enables the use of replaceable selection
criteria for candidate monitors which can be driven from
preferences for monitor provider and offered features.

The paper is structured as follows. In section 2 we provide
a brief background and related work section discussing how
work has progressed on service monitoring frameworks and
configuration. In section 3 we present an example monitor-
ing architecture whilst in section 4 we describe the overall
approach to monitoring configuration. In section 5 we dis-
cuss in detail the parsing and decomposition of SLA speci-
fications and in section 6 we discuss the selection and spec-
ification of a monitoring system configuration. In section 7
we briefly discuss an application of the configuration mod-
ule and in section 8 conclude the paper with a discussion of

present and future work.

2. BACKGROUND AND RELATED WORK
Background and related work in this paper falls within

two areas. First, we consider the definition and translation
of SLAs and second the runtime monitoring of service based
systems based upon monitoring features. Several projects
have focused on SLA definitions and provisioning in the con-
text of both Web and Grid services. The Adaptive Services
Grid (ASG) project for example, has designed an architec-
ture for establishing and monitoring SLAs in Grid environ-
ments [6]. In this architecture, the monitoring rules and
parameters as well as the architecture for SLA monitoring
are statically defined and cannot be updated at runtime.
The TrustCOM project has also produced a reference im-
plementation for SLA establishment and monitoring [15].
This implementation, however, does not involve the dynamic
setup of monitoring infrastructures. The SLA Monitoring
and Evaluation architecture presented within the Gridipedia
project [5] has several similarities with the approach pre-
sented in this paper, such as the need to separate SLA from
service management. Their focus of work, however, is on
statically binding services and monitors, whilst ours is on
dynamically allocating monitors to SLA parts, based upon
matching the exact terms that need to be monitored and
the monitoring capabilities available in different services.
For SLA translation, in [17, 9] the authors describe decom-
posing an SLA of resource requirements (with the purpose
of building a system which represents the SLA required).
Their approach is more focused on building a system rather
than monitoring existing services. However, it also employs
techniques to optimise and arrange efficient configurations
based upon the SLA expressions stated. In [10], the authors
consider evaluating expressions for conditions of properties
of services (e.g. response time), however their SLA format
appears to offer only single assertions rather than complex
expressions.

Work on runtime monitoring of service based systems has
developed different types of monitors. These monitors re-
alise either intrusive or event-based monitoring. Intrusive
monitoring relies on weaving the execution of monitoring ac-
tivities at runtime within the code that realises the service
itself or the orchestration process. In the case of compos-
ite services, this can be done directly in a process engine,
by interleaving monitoring code with the process executable
code as in [2, 3, 1, 7]. The assessment of monitoring ser-
vice properties required by SLAs can not be easily achieved
through this paradigm, since the properties to be monitored
and the actions required for monitoring must be interleaved
with service execution code and, therefore, known a priori by
the system designer. Event-based (aka non-intrusive) mon-
itoring [13, 16, 8] requires the establishment of mechanisms
for capturing runtime information on service execution, e.g.
service operation calls and responses. In this way, the busi-
ness logic and the monitoring logic remain separate. The
approaches cited above for non-intrusive monitoring, how-
ever, take for granted the availability of events required for
monitoring and cannot cope with dynamic changes in SLAs.

The work described in this paper extends an existing ap-
proach on dynamic generation of monitoring system config-
urations [4]. Specifically, we consider individual guarantee
terms within an SLA by decomposition of complex guaran-
tee expressions, a wider spectrum of monitoring components

(e.g. effectors) and support complex monitoring configura-
tions that can engage different monitoring components for
checking the same SLA term if necessary.

3. ARCHITECTURE
The overall architecture for our Monitoring System is il-

lustrated in Figure 1. The Planning and Optimization Com-
ponent (POC) is a local executive controller for a Service-
Manager. It is responsible for assessing and customizing
SLA offers, evaluating available service implementations and
planning optimal service provisioning and monitoring strate-
gies. The POC generates a suitable execution plan for mon-
itoring (based upon a configuration obtained from the Mon-
itoringManager component) and passes this to the Provi-
sioning and Adjustment Component (PAC). The PAC col-
lects information from the Low Level Monitoring System,
analyzes the incoming events and decides if a problem has
occurred or it is about to occur, identifies the root cause and
if possible decides and triggers the best corrective or proac-
tive action. In case the problem cannot be solved at a local
level, PAC escalates the issue to a higher level component,
namely the POC. In case of an SLA violation, Adjustment
can trigger re-planning, re-configuration and/or alerting to
higher-level SLA. These capabilities are considered to be
important in order to guarantee best user perception pre-
serving underlining resources.

The MonitoringManager (MM) coordinates the genera-
tion of a monitoring configuration of the system. It de-
cides, for an SLA specification instance it receives, which
is the most appropriate monitoring configuration according
to configurable selection criteria. A monitoring configura-
tion describes which components to configure and how their
configurations can be used to obtain results of monitoring
Guarantee States. The Low Level Monitoring Manager is a
central entity for storing and processing monitoring data. It
collects raw observations, processes them, computes derived
metrics, evaluates the rules, stores the history and offers all
this data to other components (accessible through the Ser-
viceManager). It implements the monitoring part of a Provi-
sioningRequest, containing constraint based rules (time and
data driven evaluations) and ServiceInstance specific Sensor
related configurations. It is general by design, so capable of
supporting Infrastructure, Software and Services and other
use cases.

There are three types of Monitoring Features in the Moni-
toring System. First, Sensors collect information from a ser-
vice instance. Their designs and implementations are very
much domain-specific. A sensor can be injected into the
service instance, e.g., service instrumentation, or it can be
outside the service instance intercepting service operation
invocations. A sensor can send the collected information to
the communication infrastructure or other components can
request (query) information from it. There can be many
kinds of sensors, depending on the kind of information they
want to collect, but all of them should implement a com-
mon interface. The interface provides methods for start-
ing, stopping, and configuring a sensor. Second, Effectors
are components for configuring service instance behaviour.
Their designs and implementations are very much domain-
specific. An effector can be injected into a service instance,
e.g., service instrumentation, or can interface a service con-
figuration interface. There can be many kinds of effectors,
depending on the service instance to be controlled, but all of

Figure 1: A Core Monitoring Architecture

them should implement a common interface. The interface
should provide methods for configuring a service. The third
type of monitoring feature is a Reasoning Component Gate-
way (RCG). An RCG provides the interface for accessing a
Reasoning Engine. A Reasoning Engine (or short name as
Reasoner) performs a computation based upon a series of
inputs provided by the events or messages sent from a sen-
sor or an effector. An example RCG may provide a function
to compute the average completion time of service requests.
In this case the RCG accepts events from sensors detecting
both request and responses to a service operation. RCGs
also provide access to generic runtime monitoring frame-
works such as EVEREST [12].

3.1 SLA Specification
The main input to the monitoring system is an instance

of an SLA specification. In this work we reuse the model as
defined in the European Union SLA@SOI project [11]. This
SLA specification provides an abstract syntax for expressing
the content of SLA agreements. The specification describes:

• The various parties to the agreement, in particular the
service provider and consumer,

• The functional properties of offered services - i.e. ser-
vice descriptions (operations etc).

• The terms of one or more agreements - i.e. the various
obligations that parties commit to. These obligations
are encoded in the form of guarantees, which come in
two basic flavours:

• Guaranteed states; expressed as constraints over non-
functional (QoS) service properties, and

• Guaranteed actions; concerning, for example, require-
ments for reporting SLA status, or for the payment of
penalties in case of SLA violation.

A Standard Terms vocabulary (of which a partial list is
given in Table 1 and also provided in [11]), defines tokens
to be used by concrete instantiations of the abstract SLA
syntax. These terms include constraint expressions, logical
and comparison operators, arithmetic functions, time-series
and scheduling functions and common QoS Metrics (such as
completion-time, availability etc). All the standard terms
are defined as URIs, such that different namespaces may be
employed to signify local variations. Domain-specific appli-
cations can define their own additional terms as required.

An example instance of an SLA specification is illustrated
in Figure 2. Here the SLA instance represents one Agree-
mentTerm. Within the AgreementTerm (AG1) are variable
declarations (VariableDeclr) and a number of obliged Guar-
anteed states. The variable VAR1 defines a reference vari-
able for the effectiveDate of the AgreementTerm. The obli-
gations of the service operation (identified in a complete
SLA specification) are one or more Guaranteed states, which
specify constraint expressions as a pair of values and do-
mains. The value is either a function or another expression
(or indeed a variable substitution). The domain refers to
the operator of the expression and the value to be evaluated.
Hence, a Guaranteed state can be built from an expression
tree of constraint expressions and their domain values. For
example, AG1 in Figure 2 has a Guaranteed state (ID as
Availability) which specifies that the availability of the ser-
vice should be greater than 60 percent. Using this form of
specifying SLAs, complex Agreement Terms and Guaran-
teed states can be built.

Table 1: Sample list of QoS Terms as defined in
SLA@SOI project

QoS Terms
Numerical Measures: S-Service
availability(S) probability service S is running
accessibility(S) probability that S is accessible
arrival rate(S) operation invocation rate in S
data volume(S) data volume processed per request
throughput(S) max. arrival rate for operations in S
completion time(S) operation completion time in S
mttr(S) mean-time-to-repair
mttf(S) mean-time-to-failure
Standards Conformance: S-Service
non repudiation(S) possibility to deny use of S
supported standards(S) set of standards supported by S
regulatory(S) set of regulations supported by S
Security: S-Service
authentication(S) proper methods used by S
auditability(S) logs are maintained by S
Infrastructure: R-Resource
vm cores(R) number of cores of R
cpu speed(R) processing speed of R
memory(R) amount of memory of R
persistence(R) vm image of R is persisted
vm image(R) virtual image for R

Figure 2: Partial SLA as XML Elements

3.2 Monitoring Features Specification
In addition to an SLA specification, the MonitoringMan-

ager requires a set of monitoring features specifications for
monitoring feature types (introduced at the beginning of this
section). Component Monitoring Features are specified for
a type of monitoring component and offered for a type of
service. A ComponentMonitoringFeature specification has
two instance variables. The type variable holds the type of
the component. The permitted types are: SENSOR, EF-
FECTOR, and REASONER. A sensor provides information
about a service, an effector changes the properties of a ser-
vice, whilst a reasoner processes information to produce a
monitoring result, e.g. it consumes information provided by
sensors and reports whether an SLA is violated or not. The
uuid variable uniquely identifies the component that has the
monitoring features. This variable has the same value as the
service UUID. Furthermore, a Feature contains a list of Mon-
itoringFeatures. MonitoringFeatures are constructed as one
of two types, being basic or a function.

Basic monitoring features are used to distinguish between
event and primitive monitoring features. It has a single
parameter type for the type of the basic monitoring fea-
ture. In the case of Primitive monitoring features allowed

types correspond to the Java primitive types, e.g., Long,
Boolean, String. In the case of an Event monitoring fea-
ture allowed types are currently REQUEST, RESPONSE
and COMPUTATION (result of a function). A basic moni-
toring feature with a sub-type of primitive is used to adver-
tise abilities to report about primitive service information,
e.g., cpu load, logged users, available memory. Sensors are
the typical components exposing this kind of feature. A
primitive feature has two instance variables: type: holds the
variable type. It can be, for instance, one of the Java stan-
dard primitive type. It can also be any other type defined
in an SLA standard vocabulary. unit : holds the monitor-
ing feature unit of measurement, e.g., mt, km, kg. Event
monitoring features are used to advertise abilities to report
about service interactions or service state, e.g., service op-
eration requests and responses, service failures. Sensors and
Reasoner are the typical components exposing this kind of
feature. An Event basic sub-type has one instance variable
type, which holds the event type as one of REQUEST, RE-
SPONSE, COMPUTATION. Domain specific event types
can also be defined and used here.

Function monitoring features are used to advertise abil-
ities to perform a computation and report its result, e.g.,
availability, throughput, response time. Reasoners are the
typical components exposing this kind of feature. The class
Function has two instance variables: input : holds the list
of the function input parameters, output : holds the output
parameter. Reasoner features are described by a type (the
term or operator performed), one or more input parameters
and one output.

The example in Figure 3 illustrates the features of an ex-
ample service. A sensor feature has two monitoring features;
one for events reporting cpu-load and one the number of
logged-users. The example also illustrates a reasoner feature
with two monitoring features. One providing a greater-than
comparison of two input parameter numbers. The other
providing an MTTR (Mean-Time-To-Repair) computation
output based upon request and response input events.

Figure 3: Component Monitoring Features as XML
Elements

4. APPROACH TO CONFIGURATION

Figure 4: SLA Monitoring Configuration Activities

Our approach to dynamic configuration of monitoring in-
frastructures is based on the process illustrated in Figure 4.
The process takes as input an SLA specification and a se-
ries of Monitoring Features. Given these inputs, initially the
MM extracts the Guarantee States from Agreement Terms
of the SLA specification. The terms are in turn parsed in
to a formal Abstract Syntax Tree (AST) for the expressions
of the states. The AST is then used as input to select each
Guarantee State expression (by traversal of the AST) of each
state and match each left-hand side (lhs), operator and right-
hand side (rhs) of the expression with appropriate monitor-
ing features. The matching algorithms are discussed in sec-
tion 6. Following selection, the delegate components form
a SelectedComponents list, which in turn, is used to gen-
erate a complete Monitoring System Configuration (MSC)
result for an agreement. If no suitable monitoring configu-
ration can be formed (i.e. not all monitoring requirements
could be matched) then an empty configuration is returned
for a particular guarantee term. The approach can be used
for two perspectives; first, to configure the monitoring sys-
tem when a new SLA needs to be monitored, and second
to perform adjustments to an existing configuration when
requirements change or violations are detected. However,
main focus in this paper is the first, in that we assume that
a new SLA is to monitored and therefore do not consider how
this would affect the current state of monitoring. The end
result of the configuration process is an MSC representing
the configuration of selected Monitoring Components which
reason or provide events to monitor each Agreement Term
of the input SLA.

5. SLA TERM DECOMPOSITION
The Monitoring Manager abstracts the Guaranteed States

(a guarantee made by one of the parties involved in the
agreement) that a certain state of affairs will hold for the
service. We abstract these states from the Agreement terms
and parse the terms using a grammar which is based upon
the Backus Normal Form (BNF) specification of the SLA
specification [11]. The grammar for the parser is currently
only based upon the Agreement Term and Guaranteed State
expressions. A sample part of the grammar is listed in Fig-
ure 5.

1 /* **
2 * SLA: The Specification of AgreementTerms
3 ** */
4 void SLA() : {} {
5 AgreementTerm ()* }
6 /* **
7 * Agreement: AgreementTerms in SLA Model
8 ** */
9 void AgreementTerm () : {} {

10 GuaranteeTerm ()((TermOperator ())
11 GuaranteeTerm ())* }
12 /* **
13 * GuaranteeTerm : A Guaranteed State expression
14 ** */
15 void GuaranteeTerm () : {} {
16 <QUOTED_STRING > (Term ())(Comparator ())(Term ())}
17 /* **
18 * Term: One or more Term functions or Identifier
19 ** */
20 void Term() : {} {
21 LOOKAHEAD(TermFunction ()) TermFunction ()
22 | <STRING > | <QUOTED_STRING > }
23 /* **
24 * Comparator : Operators in term expression
25 ** */
26 void Comparator () : {} {
27 (<EQUALS > | <NOTEQUAL > | <LTHAN > | <GTHAN > |
28 <LEQUAL > | <GEQUAL > | <ISEQUALTO >) }

Figure 5: Partial JAVACC Grammar for SLA Term
Decomposition

The grammar is used as input to the Java Compiler Com-
piler (JAVACC) [14] which generates compiler source code
to accept and parse source files specified in a defined gram-
mar language. The resulting AST is built to represent the
SLA specification terms and expressions. Beginning with the
SLA declaration (lines 4-5) one or more AgreementTerms are
parsed. Each AgreementTerm (lines 9-11) is parsed as one or
more GuaranteeTerms, separated by a comparison operator.
Each GuaranteeTerm (lines 15-16) is then parsed as an iden-
tifer (which holds the id label of the GuaranteeTerm), and a
basic Term followed by a comparison operator and then fol-
lowed by another basic Term. Each basic Term (lines 20-22)
is represented by either one or more TermFunctions (similiar
to a normal function call syntax), a string identifier (repre-
senting a variable of the SLA specification. The JAVACC
function LOOKAHEAD informs the parser to check whether
the next symbol to parse is a function or string. Finally, the
comparator operators (lines 26-28) list the acceptable types
of operators that can be used between terms.

Since the term decomposition is based upon a generated
parser, other SLA specification formats may generate their
own parsers and transform their SLA specification to the
AST input required by the MonitoringManager. In this
way, the implementation of the configurator is generic and
reusable. In addition, the generated AST compiler can be
reused by Monitorability Agents (which accept the monitor-
ing system configuration as a result of matching monitoring

components) who can translate the SLA terms in to their
own language specification. As an example, we have already
performed such a translation for the EVEREST monitoring
language [12] that is based on Event Calculus, which is used
to reason about the expressions in the SLA@SOI project
SLA examples.

6. MONITORING CONFIGURATION

6.1 Monitoring Terms
The main configuration algorithm (illustrated in Figure 6)

is responsible for selecting all the term expressions from the
prepared SLA term tree (TermAST), obtaining a match for
the expression terms with available monitoring component
features and then building a suitable monitoring system con-
figuration. The algorithm begins by selecting the root of
each Agreement Term expression, which in turn holds one
or more Guarantee State expressions.

Function: Given an agreement, select the most appro-
priate monitoring components.

Input(s): 1) TermAST - An AST of the Guaranteed
Agreement Terms. 2) Features - a list of ser-
vice monitoring features.

Output(s): A set of monitoring components with
configurations.

Algorithm: Given the TermAST and a set of Monitoring
Features
1) select root of AST and extract expres-
sions
2) extract lhs, rhs, operation and select
input-types
3) set M1 to MonitorConfig(lhs)
4) if node.lhs is expression then

(a) set M2 to MonitorConfig(rhs)
otherwise set M2 to rhs.value

5) set RM to SelectMonitor(input-
types,operation,Features)
6) store delegate for expression

Figure 6: Algorithm for MonitorConfig

The Agreement Term expression is pre-defined as a set of
boolean expressions (where all must be true for the Agree-
ment Term to be upheld). Each Guarantee State has a left
and right-hand side term and an operator. From the terms
a set of input-types is determined. Two term monitors (M1
and M2) are set to reason about the terms and a reasoner
monitor is set to reason about the main expression. If the
left-hand side of the expression is itself an expression then
the second monitor (M2) is recursively configured using the
same algorithm (MonitorConfig). If it is not, then the value
of the right-hand side of the expression is used as the mon-
itor. Furthermore, a reasoner monitor is assigned to the
selection of an appropriate monitor for the input-types, op-
eration and with the list of Features supplied.

6.2 Monitor Selection
The MonitorConfig algorithm uses a SelectMonitor algo-

rithm (Figure 7) to match the required types and operations
(or term names) to the monitoring component features. The
algorithm begins by iterating through the monitoring com-
ponent features available and building an appropriate fea-
ture list (FeaturedMonitors) by selecting the monitors that

match the type of term or operator. Each FeaturedMoni-
tor is then selected and checked for appropriate input-types.
For example, the operator < (less than) can be provided for
boolean, numbers or other data types. If the feature and
types match then the FeaturedMonitor is added to a list
of selected monitors (SelectedMonitors). In the current im-
plementation of the work we simply select the first monitor
matched as an appropriateness measure. It is envisaged for
an enhanced implementation to use some optimisation algo-
rithm (at step 3. of the algorithm) based upon a criteria
passed by the user (or indeed, specified as part of the over-
all SLA). This could also include assessing using the same
provider of features to reduce financial cost, optimise mes-
saging and to group related monitors.

Function: Given a set of input-types and a monitor
term, select the first monitor that matches
the term or event types required.

Input(s): 1) Input-Types - A set of types (e.g. Num-
ber, Event) etc. 2) Term - A term or opera-
tion to be monitored (e.g. completion-time
or < (operator). 3) Features - a list of ser-
vice monitoring features.

Output(s): A monitoring component offering the types
and operation/term.

Algorithm: Given the Input-Types, MonitoringFeatures
and Term
1) for each MonitoringFeature in Features
do

(a) select FeaturedMonitors where type
equals the Term
2) for each Monitor in FeaturedMonitors
do

(a) for each type in Input-Types do
(i) if Monitor has Type then

(ia) add Monitor to SelectedMonitors
3) select the first Monitor in SelectedMon-
itors (*replaceable selection criteria)
4) return SelectedMonitor

Figure 7: Algorithm for SelectMonitor

6.3 System Configuration
As briefly discussed in section 4, the MSC defines an en-

tire configuration for monitoring an SLA within the moni-
toring system. An example MSC is illustrated in Figure 8
showing a REASONER component (for monitoring a Guar-
anteed State) and then a set monitoring feature components
for each part of the Guaranteed State expressions. The MSC
contains a list of components representing Sensor, Effector
or Reasoners selected to support the Guarantee Terms of
agreements in an SLA.

Each Component in an MSC contains one or more compo-
nent configurations for each of the different components. For
example, an MSC can contain a Reasoner component which
has component configurations for two Sensor components
and one additional Reasoner component. A Sensor compo-
nent configuration contains a MonitoringFeature (that which
was advertised in selection for the Sensor component) and
one or more OutputReceiver(s). An output receiver is an-
other component which expects the result (as an event or
value) to perform its own function. A Reasoner component
configuration also specifies one or more OutputReceivers but
a Specification replaces the MonitoringFeature with a list of

Figure 8: A Monitoring System Configuration

Guarantee States required for reasoning by the component.

6.4 Configuration Deployment
To dynamically setup the whole monitoring environment

many components need to be configured. The MSC spec-
ification generated in section 6.3 structures all the needed
information into a coherent inter-level representation. An
MSC instance can be created for two main purposes: to
configure the monitoring system when a new SLA needs to
be monitored, or to perform adjustments to an existing con-
figuration. Although the purpose of this paper is not to
define how the configuration is actually used to execute the
configuration of the monitoring environment we briefly out-
line this to aid the reader understand how the output is
leveraged in the environment.

As illustrated in Figure 1, a generated MSC is passed to
a Service Manager which links a service instance with a ser-
vice Managability Agent. The Manageability Agent exposes
a method to accept a configuration and then, on behalf of the
service under agreement, starts dependent components to
monitor the service activities and to generate any violations
as part of that agreement. For example, each Agreement-
Term has a reasonser (the sum of evaluating all Guarantee
States in the Agreement). Each Guarantee State also has
a reasonser (to evaluate the expression of each Guarantee
State). Once the service Managability Agent is initialised,
each reasoner is configured with the appropriate part of the
MSC (e.g. for a cpu load evaluation). The results gener-
ated by the reasoners and sensors in this configuration will
be monitored by the Managability Agent and appropriate
routed from the Event Bus. For further details of the archi-
tecture, the reader is invited to refer to [reference SLA@SOI
deliverable].

7. TOOL SUPPORT
The approach and modules described in this paper are

supported by a number of implementations. In particular
the MonitoringManager component is available as a JAVA
package, and is also available to be accessed as a Web Ser-
vice. Since it can be hosted, we have developed a test Web
application which accepts the inputs of the SLA specifica-
tion (as described in section 3.1) with Component Monitor-
ing Features (as described in section 3.2) and automatically
generates the Monitoring System Configuration as described
in section 6.3. The Web application is illustrated in Fig-
ure 9. The Web application provides a useful test harness

to check whether the configurations can be successfully gen-
erated. Possible errors which can be logged include whether
the specifications are appropriately defined, or whether there
are sufficient features described to fulfil each of the moni-
toring term requirements. Thus, it is a useful interactive
design tool but also can be accessed at runtime through the
Web Service interface. The MonitoringManager will be inte-
grated as part of a SLA@SOI project platform showcase and
will be available from: http://www.sla-at-soi.org/. A
full evaluation of the approach and results are being carried
out in-line with the SLA@SOI project functional integration
tests.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have described an approach to advanced

configuration of service systems, in particular, ones in which
an SLA agreement has been established and has services re-
quiring monitoring. The work aims to provide a generic
module applicable not only to the architecture illustrated
but also to other architectures (although still based upon
SLAs and Monitoring Component Features). Our work will
be extended to cover further elements of the SLA specifica-
tion (such as Guaranteed Actions, which are not presently
considered) and also including preferential selection of mon-
itoring components. Preferential selection of components is
useful where there are multiple monitoring components of-
fered for the same term. Preferences could be based upon
monitoring cost (both in computing resource or financially)
or non-functional requirements. The existing implementa-
tion is already part of the wider SLA@SOI project monitor-
ing platform, providing integration and validation testing,
and we seek to find other environments to test it within.

9. ACKNOWLEDGMENTS
The research reported in this paper has been supported

by the EU Commission as part of the F7 Integrated Project
SLA@SOI (grant agreement n. 216556).

10. REFERENCES
[1] L. Baresi, D. Bianculli, and C. Ghezzi. Validation of

Web Service Compositions. IET Software,
1(6):219–232, 2007.

[2] L. Baresi and S. Guinea. Towards Dynamic Monitoring
of WS-BPEL Processes. In International Conference
on Service-Oriented Computing (ICSOC), 2005.

[3] D. Bianculli and C. Ghezzi. Monitoring conversational
webservices. In 2nd International Workshop on Service
Oriented Software Engineering (IW-SOSWE), 2007.

[4] M. Comuzzi and G. Spanoudakis. Dynamic set-up of
monitoring infrastructures for service-based systems.
In 25th Annual ACM Symposium on Applied
Computing, Track on Service Oriented Architectures
and Programming (SAC 2010), Sierre, Switzerland,
2010. ACM.

[5] Gridipedia. SLA Monitoring and Evaluation
Technology Solution. Available from:
http://www.it-tude.com/?id=gridipedia, 2009.

[6] K. Jank. Reference Architecture: Adaptive Services
Grid Deliverable D6.V-1. Available from: http://asg-
platform.org/twiki/pub/Public/ProjectInformation,
2005.

Figure 9: Prototype Monitoring System Configuration Explorer

[7] A. Lazovik, M. Aiello, and M. Papazoglou. Planning
andMonitoring the Execution of Web Service
Requests. International Journal of Digital Libraries,
2006.

[8] K. Mahbub and G. Spanoudakis. Run-time monitoring
ofrequirements for systems composed of web
services:initial implementation and evaluation
experience. In International Conference on Web
Services (ICWS). Springer, 2005.

[9] J. Richter, C. Baruwal, R. Kowalczyk, B. Quoc Vo,
M. Adeel Talib, and A. Colman. Utility
Decomposition and Surplus Redistribution in
Composite SLA Negotiation. In IEEE International
Conference on Services Computing, 2010.

[10] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and
F. Casati. Automated SLA Monitoring for Web
Services. In IEEE/IFIP DSOM, pages 28–41.
Springer-Verlag, 2002.

[11] SLA@SOI. Deliverable D.A1a: Framework
Architecture. Available from:
http://sla-at-soi.eu/publications/deliverables, 2009.

[12] G. Spanoudakis, C. Kloukinas, and K. Mahbub. The
serenity runtime monitoring framework. In Security

and Dependability for Ambient
Intelligence,Information Security Series. Springer,
2009.

[13] G. Spanoudakis and K. Mahbub. Non Intrusive
Monitoring ofService Based Systems. International
Journal of Cooperative Information Systems,
15(3):325–358, 2006.

[14] Sun Microsystems. The Java Compiler Compiler
(JAVACC). Available from:
https://javacc.dev.java.net/, July 1999.

[15] TrustCOM. Deliverable 64: Final TrustCoM Reference
Implementation and Associated Tools and User
Manual. Available from:
http://www.eu-trustcom.com/, 2007.

[16] W. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat,
and E. Verbeek. Conformance checking of Service
Behavior. ACM TOIT, 8(3), 2008.

[17] C. Yuan, S. Iyer, X. Liu, D. Milojicic, and A. Sahai.
SLA Decomposition: Translating Service Level
Objectives to System Level Thresholds. In Fourth
International Conference on Autonomic Computing
(ICAC), 2007.

