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SUMMARY 

A new methodology for the development of bridge-specific fragility curves is proposed with a 
view to improving the reliability of loss assessment in road networks and prioritizing retrofit of 
the bridge stock. The key features of the proposed methodology are the explicit definition of 
critical limit state thresholds for individual bridge components, with consideration of the effect 
of varying geometry, material properties, reinforcement and loading patterns on the component 
capacity; the methodology also includes the quantification of uncertainty in capacity, demand, 
and damage state definition. Advanced analysis methods and tools (nonlinear static analysis 
and incremental dynamic response history analysis) are used for bridge component capacity 
and demand estimation, while reduced sampling techniques are used for uncertainty treatment. 
Whereas uncertainty in both capacity and demand is estimated from nonlinear analysis of de-
tailed inelastic models, in practical application to bridge stocks the demand is estimated through 
a standard response spectrum analysis of a simplified elastic model of the bridge. The simplified 
methodology can be efficiently applied to a large number of bridges (with different character-
istics) within a road network, by means of an ad-hoc developed software involving the use of a 
generic (elastic) bridge model, that derives bridge-specific fragility curves. 

KEY WORDS: Bridges; fragility curves; damage states; uncertainty analysis;  nonlinear anal-
ysis; loss estimation; road network. 

1. INTRODUCTION 

Damage due to recent earthquakes worldwide highlights the role of bridges as arguably the 
most vulnerable component of a road or railway system. In view of this, during the last two 
decades, several methodologies have been developed for the assessment of bridge vulnerability, 
mainly in the context of developing fragility curves [1]. Since fragility is the probability that 
bridge damage exceeds a specific limit state (damage state) threshold for a given level of earth-
quake intensity, the key issues, within all the methodologies available in the literature, are the 
probabilistic seismic demand model assumed, the intensity measure used for fragility analysis, 
the selection of engineering demand parameters (EDPs) and relevant limit state thresholds for 
capacity estimation, the analysis method for demand estimation, the correlation of system and 
critical component damage, and, finally, the treatment of uncertainty. 

Multiple bridge components, namely piers, bearings, abutments and foundations, are com-
monly considered during the assessment of seismic performance and estimation of bridge sys-
tem fragility [2], although consideration of a single critical component (i.e. bridge piers) has 
also been an option [3]. Either way, the differentiation among existing methodologies lies pri-
marily on damage definition, since component damage may be directly related to system limit 
states using global engineering demand parameters and fragility can be estimated directly at 
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system level thereafter [4], or be defined using local EDPs for each component independently, 
and component fragility can be related to system fragility assuming a certain correlation be-
tween multiple components [5] (i.e. joint probabilistic seismic demand models, series or parallel 
connection of components [6], [7]). 

Several engineering demand parameters (local or global) were proposed for the quantitative 
definition of damage in critical components, based on experimental results [8, 9] while multiple 
failure modes of components were also taken into consideration [10]. It has to be pointed out 
that in most cases the available values of local EDPs do not cover the range of all possible pier 
types, and even when they do [10], they concern solely the serviceability and ‘ultimate’ limit 
state (member failure), which may result in conservative assessment of bridge damage and 
functionality. 

Numerous analysis methods were proposed for demand evaluation, covering a range of lev-
els of complexity and computational cost. In particular, elastic response spectrum analysis [11] 
and inelastic pushover analysis of a detailed inelastic model [4], or a simplified single-degree-
of-freedom model [2] (e.g. capacity spectrum method [12]) are common options. Notwithstand-
ing its computational cost, non-linear response history analysis is broadly considered to be the 
most rigorous and reliable method for demand estimation [13]. Therefore, this method was ap-
plied in various methodologies available in the literature [14, 6, 7], using appropriately selected 
accelerograms consistent with the probabilistic seismic demand model considered, i.e. the cloud 
approach or incremental dynamic analysis (IDA). 

The evaluation of the total uncertainty in a fragility curve requires the quantification of un-
certainty in capacity, demand and damage state definition [15, 16], considering all uncertainty 
sources (aleatory and epistemic [17]). Uncertainty in capacity estimation is in principle defined 
on the basis of experimental results [8]; alternatively, numerically analysis of a statistically 
reliable sample can be used [14], adopting statistical models for the materials available in the 
literature. Uncertainty in demand is typically evaluated through inelastic analysis of bridge 
models, assuming randomness in the ground motion suite along with bridge modelling and pa-
rameter uncertainties [7].  

The probability distribution of the response can be analytically derived from functional re-
lationships of the random input variables using metamodels, therefore, in this case, no a priori 
assumption for the type of demand distribution is necessary [18]. Alternatively (and in most 
cases), each component demand is represented by a probabilistic seismic demand model (cloud 
approach or IDA), estimating the parameters of the lognormal distribution of demand through 
regression analysis [6, 7]. It is also noted that the logarithmic mean and dispersion value could 
be estimated simultaneously using the maximum likelihood method [19]. 

The selection of the optimal intensity measure (IM) for fragility analysis is a rather contro-
versial and case-dependent issue. Several researchers argue that spectral parameters at the fun-
damental period of the bridge are the most appropriate, since they tend to reduce uncertainty in 
the demand model, whereas others [4, 20] believe that (the historically used) peak ground ac-
celeration (PGA) is a proper choice. 

A key drawback of the existing methodologies is that they are either based on advanced 
analysis tools, increasing dramatically the computational cost when applied to a large bridge 
stock, or on approximate methods that do not account for the seismic performance of all critical 
structural components, hence risking to miss potential failure modes in some cases. Moreover, 
the main goal of the available methodologies, irrespective of considering multiple or single 
critical components, is to provide fragility curves for particular bridge types and structural sys-
tems (typical bridges of specific categories, defined on the basis of a selected classification 
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system [9]), hence reducing the reliability of loss assessment when these are applied to bridge 
stocks that include bridges with  substantial variability in the  properties of bridges assigned to 
a certain class. Furthermore, the majority of existing methodologies do not account for the ef-
fect of bridge-specific component properties on capacity, limit state thresholds, demand and, 
eventually, system fragility. Although the effect of bridge properties on pier capacity is recog-
nised  and closed-form relationships were proposed in [21] for the quantification of bridge ca-
pacity, uniform limit state thresholds are commonly proposed, ignoring the effect of bridge 
structural properties on damage thresholds and failure modes. Finally, it should be noted that 
in most cases uncertainties in demand and capacity are considered in a ‘lumped’ way, rather 
than being defined for individual key components of the bridge. 

In the context of the foregoing review, the key objective of this paper is to put forward a new 
methodology for the derivation of bridge-specific fragility curves, feasible for application to a 
bridge stock of realistic size, with a view to estimating seismic losses in the bridges, as well as 
in the road network [22]; the latter aspect is part of the same study, but is no further addressed 
herein. In general, bridges in a road network have different geometries, structural systems and 
component properties, due to differences in the topography and the construction method se-
lected. Therefore, the proposed methodology aims to reconcile two conflicting requirements, 
namely the need for a detailed and reliable estimation of bridge capacity, demand and the asso-
ciated uncertainties, as well as the broad and efficient application. To this end, the backbone of 
the proposed methodology is the development of a database, including critical bridge compo-
nents and a variety of geometric, material, reinforcement and loading patterns, in order to ex-
plicitly define the case-dependent component capacity and limit state thresholds. The inherent 
correlation of component properties and limit state thresholds is recognised; therefore empirical 
relationships are proposed to quantify component capacity limits for different performance lev-
els in terms of global engineering demand parameters (relating local to global damage), con-
sidering different boundary conditions (pier-to-deck connection) and failure modes. 
Furthermore, component demand for different levels of earthquake intensity is calculated based 
on either a detailed inelastic or a simplified elastic model, and multiple stripe (enhanced IDA) 
or response spectrum analysis, respectively, according to the desired level of accuracy and com-
putational cost (related to whether a single bridge or a bridge stock is addressed). Component 
fragility is then calculated and is used to estimate system fragility (of the entire bridge), assum-
ing series connection between components. Finally, in the frame of the proposed methodology, 
the uncertainty in demand, component capacity, and limit state definition are explicitly defined 
for each component and limit state, while a total uncertainty value is also proposed for different 
bridge types.  

2. METHODOLOGY FOR THE DERIVATION OF BRIDGE-SPECIFIC FRAGILITY 
CURVES 

The methodology proposed herein consists of three distinct ‘steps’ (each consisting of a number 
of actions), considering the definition of capacity thresholds for the quantification of component 
damage and the associated uncertainties, the calculation of component demand and the uncer-
tainties in demand estimation and, finally, the correlation of component fragilities to evaluate 
system fragility for various levels of earthquake intensity. It is important to note that the proce-
dure (in particular Step 2) is different when a single bridge or a bridge stock (typically that in 
the road or railway network analysed) is considered. The basic procedure followed at each step 
is outlined in the following. 

Step 1: Component limit state thresholds (capacity) and associated uncertainty 
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In the general case of a bridge stock the procedure is as follows: 

 
Figure 1. Component (pier) limit state thresholds in displacement terms 

(a) Definition of the basic configurations of critical bridge components (piers, bearings, 
abutments) for the bridge stock.  

(b) Compilation of a database consisting of different pier section types, with varying geo-
metric, material, reinforcement and loading patterns. 

(c) Definition of pier limit state thresholds (for all pier sections in the database) using a local 
engineering demand parameter, by means of section analysis and correlation of material 
strain (related to crack width) to section curvature (local damage parameter). 

(d) Consideration of a sufficiently broad range of heights for each pier section type, devel-
oping a database that encompasses practically all bridge piers found in the studied bridge 
stock. 

(e) Definition of pier capacity limit state thresholds in terms of a global engineering demand 
parameter (displacement), correlated to local damage (pier critical section) by means of 
inelastic pushover analysis of the equivalent cantilever (pier segment up to contraflexure 
point); multiple failure modes (flexural and shear) and P-delta effects are considered. 
Empirical relationships for the calculation of component-specific limit state thresholds 
(in terms of displacement) are derived for all pier types, accounting for the effect of 
different component characteristics on component capacity. 

(f) Correlation of threshold values calculated in terms of displacement at the control point 
(tip of equivalent cantilever), to the displacement at the top of a pier having specific 
boundary conditions (pier connection to the deck and the foundation). An analytical ex-
pression for the correlation of equivalent cantilever displacement to the displacement at 
the top of the actual pier is proposed (section 2.1). 

(g) Definition of limit state thresholds for bearings, in terms of a global engineering demand 
parameter, based primarily on experimental data. 

(h) Definition of limit state thresholds for abutments, in terms of a global engineering de-
mand parameter, based on available proposals in the literature and nonlinear analysis of 
the critical part of the abutment (the backwall). 

(i) Consideration of material properties, ultimate concrete strain, and plastic hinge length 
(Lpl) as random variables and application of a reduced sampling technique, such as Latin 
Hypercube Sampling [23], for the quantification of uncertainty in capacity (βc) for all 
pier types studied. 
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(j) Estimation of uncertainty in limit state definition (βLS for capacity thresholds), critically 
considering the range of values proposed in the literature and calculating the dispersion 
(adopting the assumption of lognormal distribution).  

The basic aspects of ‘step’ 1 are summarised in Figure 1 for the case of piers; similar, but 
less involved, procedures apply for abutments and bearings. When a single bridge is ana-
lysed, this step consists in the definition of the properties of piers, abutments and bearings, 
and their pushover analysis, taking uncertainty in properties into account and hence deter-
mining the uncertainty in capacity thresholds. 

 
Step 2: Component demand and associated uncertainty 

Depending on the purpose of the study, i.e. whether a single bridge is fully analysed (includ-
ing also the uncertainty quantification) or fragility curves are developed for a bridge stock 
(wherein uncertainty is estimated on the basis of the analysis of the ‘typical’ bridge in each 
typological class), the proposed procedure for demand estimation is different, characterised 
by different level of accuracy and computational cost. In both cases demand is calculated in 
terms of displacement of the component control point. 
(a) Single bridge analysis: Nonlinear response history analysis using an enhanced IDA pro-

cedure proposed herein (IDA combined with Multiple Stripe Analysis [24]). Different 
suites of ground motions are selected at bedrock level for different ranges of earthquake 
intensity (each set is used for a small number of consecutive intensity levels). Inelastic 
soil behaviour may additionally be considered (whenever soil properties are known) us-
ing site response analysis to define ground motions at foundation surface. The equivalent 
cantilever height is estimated for all piers, while displacement demand is recorded at the 
control point of each component. 

(b) Bridge stock analysis: Response spectrum analysis is carried out using a simplified elas-
tic model of the bridge for varying levels of earthquake intensity. Initial loading is based 
on the predominant mode pattern in each direction of the bridge (longitudinal, transverse) 
and the height of the equivalent cantilever (necessary for the calculation of component 
limit state thresholds) is estimated for each pier. Displacements developed at the control 
point of each critical component are recorded. 

(c) Uncertainty demand - bridge stocks: Bridges in the stock are divided into a number of 
typological classes; the scheme proposed in [4] is adopted here, wherein bridge classifi-
cation is made according to pier type, deck type and pier-to-deck connection type. In the 
context of practical loss assessment for a road or railway network, uncertainty in demand 
(βd) is assumed to be the same for bridges classified in the same category. The βd values 
are calculated for the representative bridge of each category (and each critical component) 
as described in (d). 

(d) For the specific bridge analysed or for the typical bridge in each class (see (c)), material, 
bearing, and soil properties, as well as gap size (of the deck joints or abutments), are 
considered as random variables (distribution, mean and dispersion values, as proposed 
in the literature). Bridge samples (typically N=100) are generated assuming uncertainty 
in bridge modelling parameters, by means of Latin Hypercube sampling. Subsequently 
all bridge samples are paired with different earthquakes (typically 10, which, according 
to the enhanced IDA scheme described in (a), are not the same for all intensity levels); 
these are scaled to different PGA levels (0.1~1g), hence typically resulting in a total of 
1000 analyses for the representative bridge of each typological class. Uncertainty in de-
mand (βd) is calculated for each key component (piers, abutments, bearings). 



  

6 

 

Step 3: Component and bridge system fragility  

(a) Bridge stock fragility: An elastic response spectrum analysis of the simplified model is 
carried out for each bridge in the stock and for different PGA levels (typically for 0.1~1g, 
at 0.1g intervals). Results in terms of displacement (d) demand at the control point of 
each critical component are plotted versus the earthquake parameter as depicted in Figure 
2 (evolution of damage, or primary vulnerability, curve); PGA (Ag) is used here, but 
other parameters, such as Spa are also worth being explored. Capacity limit state thresh-
olds are determined in terms of PGA (mean value), using the primary vulnerability curve 
and the definitions of damage in terms of d. Fragility curves for every limit state are then 
plotted assuming lognormal distribution: 
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The uncertainty βtot is that derived in the previous steps for the typical bridge in the class 
to which the specific bridge belongs. 

 
Figure 2. Evolution of damage (displacement demand versus earthquake parameter) 

(b) Single bridge fragility: The suite of inelastic response-history analyses (using the en-
hanced IDA procedure) for all bridge samples, earthquake motions and intensity levels 
have already been carried out in (d) of step 2; here the median displacement demand at 
the control point of every component is calculated, assuming lognormal distribution. Ca-
pacity limit state thresholds are defined in displacement terms for every bridge compo-
nent (see Step1) and fragility curves are derived for every limit state considering the total 
uncertainty value, calculated for every component 
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(c) Assuming (conservatively) that the components form part of a series system for fragility 
evaluation, the damage threshold for the entire bridge is the lowest PGA value for any 
component. The exception to this is collapse; only piers or abutments are considered to 
control this limit state and in addition, unseating is also checked. Any degree of correla-
tion between components can be considered. The degree of correlation is case-dependent 
and should be selected for every case separately, however the lower (full correlation) or 
upper (no correlation) bounds can  be used for simplicity. 

A flow chart of the methodology for the derivation of bridge specific fragility curves is shown 
in Figure 3. 
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Figure 3. Flow chart for proposed methodology 

2.1. Bridge Component Capacity and associated uncertainties 

Different geometric, reinforcement, material and loading parameters affect the available 
strength and ductility, and eventually the seismic performance, of piers. It is noted that a cylin-
drical pier designed according to current code provisions (e.g. the Eurocodes) will eventually 
have a different limit state threshold (considered limit states are 1 to 4, see Table І) compared 
to a similar pier not having been designed according to code provisions (reinforcement ratio, 
confinement) or a pier with different axial load and, even more so, compared to a hollow rec-
tangular or a wall-type pier. Therefore, a range of different characteristics (complying with code 
provisions, as well as substandard, in order to include older piers) is considered for every pier 
type; all plausible combinations of parameters are considered, hence creating a database that 
sufficiently describes bridge piers in the stock under consideration. Figure 4 shows a number 
of pier configurations representative of those commonly found in Southern Europe. Details of 
the range of parameters considered can be found in [25]; the longitudinal reinforcement ratio ρl 

ranges from 0.005 to 0.03, transverse reinforcement ratio ρw from 0.0025 to 0.015, concrete 
strength fc from 16 to 35 (MPa), steel yield strength fy from 220-500 (MPa) and normalised 
axial loading νd axial loading νd (N/(Acfcd), where Ac the section area and fcd the design com-
pressive strength of concrete) from 0.15 to 0.35. 



  

8 

 

Moment-curvature analysis is performed for all cross-sections included in the database using 
ad-hoc software [26] that incorporates stress-strain models for confined and unconfined con-
crete [27, 28], and for steel [29], producing a bilinear moment-curvature curve for each pier. 
Limit state thresholds are initially defined in curvature terms (local EDP) as depicted in Table 
І, related to the material strains developed. 

 
Figure 4. Pier types considered in the database and different boundary conditions   

Table І. Component: Piers - Limit state definitions  

Limit State (LS)  Threshold values of curvature (φ) 
Quantitative Performance  
Description  

LS 1 – Minor-
Slight damage 

φ1:φy 
Quasi-elastic behaviour – Cracks 
barely visible. 

LS 2 – Moderate 
damage 

φ2: min (φ: 0.004
c

ε >  , φ: 0.015
s

ε ≥ ) 
Spalling of the cover concrete; 
strength may continue to increase – 
Crack width 1-2mm. 

LS 3 – Major-Ex-
tensive damage 

φ3: min (φ: 0.004 1.4 yw

c w

cc

f

f
ε ρ≤ + ⋅ ⋅ ,  

φ: 0.06
s

ε ≥ ) 

First hoop fracture, buckling of lon-
gitudinal reinforcement, initiation of 
crushing of concrete core – Crack 
width>2mm. 

LS 4 –  
Failure-Collapse 

φ4: min (φ: 
max0.90M M< ⋅ , φ: 0.075sε ≥ ) Loss of load-carrying capacity - Col-

lapse 

Based on the results of moment-curvature analysis, empirical relationships for the estimation 
of the secant stiffness at yield (EIeff=My/φy) are derived for each pier type (as an example, equa-
tions 3 are empirical relationships for cylindrical piers).  
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D=2.0 (m) , fc= 33 (MPa), fy= 550 (MPa), v=0.20 

Figure 5. Yield moment and curvature of cylindrical section versus ρl and ρw. 
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The effect of longitudinal and transverse reinforcement ratio on yield moment and curvature 
of cylindrical sections is shown in Figure 5. Yield curvature, as well as yield and ultimate mo-
ment, are strongly affected by an increase in longitudinal reinforcement ratio, whereas an in-
crease in transverse reinforcement mainly affects the ultimate curvature. Since φu is correlated 
with εcu, the ultimate curvature is strongly dependent on confinement of the core. 

Pier sections are paired with different heights; a different height range is considered for each 
pier type, depicted in Figures 6 and 7, for the pier types shown in Fig. 4. The database should 
in principle include all pier types in the bridge stock analysed. Clearly, some lumping of similar 
types is necessary in real-life situations when large inventories are analysed (e.g. polygonal 
piers could be treated together with circular piers). Nonlinear static (pushover) analyses of the 
cantilever models are performed using appropriate software (here OpenSees [30]). For each 
pier type (and for both principal axes in non-symmetric cross-sections) from analysis that also 
considers P-delta effects, the displacement is recorded of the cantilever tip at the instant that 
the deformation of the plastic hinge exceeds limit state thresholds (φ1, φ2, φ3, φ4 in Table 2); 
this is done using ad-hoc software developed in Matlab [31] for batch analysis. The relationship 
adopted for plastic hinge length estimation (Lpl) affects the limit state thresholds calculated in 
displacement terms; therefore it should be carefully selected (here the relationships proposed in 
[32] and [33] have been used). Shear failure is also considered, since the shear demand at each 
step is compared with the ultimate shear capacity Vu [33], the associated displacement value is 
recorded and compared with the one derived considering flexural failure.   

If all possible combinations of properties and pier heights are considered, a substantial num-
ber of pushover analyses results (as an example, 77760 analyses were carried out here for the 
case of hollow rectangular piers); from these analyses limit state thresholds in displacement 
terms (d1, d2, d3, d4) are obtained. Analysis results are processed herein using the advanced least 
squares method (robust fit) and empirical relationships for threshold di values are provided for 
each pier type (equations 4 for the case of cylindrical piers, derived considering two different 
approximations for plastic hinge length estimation [32, 33]).  
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(4) 

Use of equations like (4) increases the cost  of analysis at the level of pier capacity determi-
nation but makes easier and more accurate the derivation  of bridge-specific fragility curves, 
since there is no subsequent need for interpolation or simplification when piers of the bridges 
in the stock are analysed.  

Capacity thresholds for the four limit states considered (Table I) are depicted in Figures 6 
and 7 in terms of dimensionless global engineering demand parameters, namely displacement 
ductility (μd) and drift (d/h). The variability in limit state thresholds, that depends on pier type 
and direction of loading, is evident; assuming a uniform value for the threshold may either 
overestimate or underestimate component capacity. It should be emphasised that Figures 6, 7 
depict mean values, calculated by means of inelastic analysis of components included in the 
database, having a specific range of different parameters (different geometry, material, rein-
forcement ratio, and normalised axial load for each pier type).  

From Figures 6 and 7, it is clear that hollow sections exhibit lower threshold values for all 
limit states considered (minor to collapse), compared to the relevant solid section values. For 
hollow circular piers and when displacement ductility is used as EDP, the latter observation is 
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due to the neutral axis depth that is greater than the tube thickness for the usual high axial loads 
(νd>0.15) and reinforcement ratios, resulting in lower values of curvature ductility [34]. Since 
the results are dependent on the ultimate concrete strain value εcu it should be further noted that 
different constitutive models for confined concrete are used for the case of circular [27] and 
rectangular [28] sections, which has an effect on the results.  

 
Figure 6. Displacement ductility for all limit states and pier types 

 
Figure 7.  Drift values for all limit states and pier types 

Regarding the hollow rectangular sections, it is noted that the curvature at yield is lower in 
their strong direction, resulting in higher curvature ductility (and eventually displacement duc-
tility) than in the weak direction. When drift is used as an EDP, it is noted that limit state thresh-
olds for hollow rectangular and wall sections are lower for all limit states considered. Global 
EDPs (related to pier displacement) are strongly dependent on the plastic hinge length, therefore 
the results may vary according to the selected relationship for the plastic hinge length [32]. 

Both experiment measurements and analysis results should be duly considered for all differ-
ent pier types examined, to ensure consistency of the calculated capacity thresholds and verify 
the adequacy of the empirical relationships used for their calculation. Experimental tests on 
circular columns resulted in capacity thresholds for LS3 equal to 6.7 in terms of μd and 6.5% in 
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terms of d/h [8]. Likewise, μd values equal to 3.6 were recorded for the ultimate limit state (LS4) 
of hollow circular piers (compression-controlled section) [35], drift values equal to 7.8% for 
the ultimate limit state of rectangular sections [36], μd values equal to 5.7 [37] and drift values 
equal to 3.14% [38] for the ultimate limit state of hollow rectangular piers, and drift values 
equal to 1.5% for wall piers (LS3) [39]. These values are in agreement with the calculated 
threshold capacity values in terms of μd and drift presented in Figures 6 and 7. 
 Depending on the boundary conditions, i.e. the type of pier to deck connection and the type 
of foundation and supporting ground, the pier bending moment diagram varies, as shown in 
Figure 8.  Foundation flexibility is ignored in bridge stock analysis, which is a reasonable as-
sumption for relatively stiff ground types (A and B in Eurocode 8). However, boundary condi-
tions at pier top are considered; they vary according to deck properties and pier-to-deck 
connection (rotational springs, case C - Figure 8). Therefore the equivalent cantilever height Lo, 
corresponding to the level of the contraflexure point, should be estimated in order to use the 
proposed empirical relationships, derived from pushover analyses of a cantilever. Limit state 
thresholds (d1, d2, d3, d4), calculated for the equivalent cantilever height (Lo), should be subse-
quently correlated to top displacement of the restrained pier. All possible cases are shown in 
Figure 8; note that Cases A and B are the theoretical limits, case A is not applicable if the deck 
is a box girder, and case D is not addressed herein since foundation compliance is ignored. 

 
Figure 8. Location of contraflexure point for different boundary conditions 

 For relating the equivalent cantilever length to the displacement at the top of the pier, the 
three steps described in Figure 8 are applied. In the general case of the restrained pier (Step 1 – 
Figure 8), equation (5) expresses equilibrium, using the reduced (including boundary conditions) 
stiffness matrix of the structure.  
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Displacement dL is imposed at the top of the restrained pier (Step 2 – Figure 8). According 
to equation (5), the top rotation (θL) of the restrained pier is related to the top displacement (dL) 
(equation 6): 
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Therefore, using the elastic beam stiffness matrix and replacing θL, the internal shears and 
moments are expressed as: 
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Based on the above, the equivalent cantilever height (Lo) is calculated (equation 8):  
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 Finally (Step 3 – Figure 8), the top displacement (dLo) of the equivalent cantilever having 
height Lo, is related to the top displacement of the restrained pier (dL). External force V2 is 
applied, since base moment should be equal in both pier cases (restrained pier of Step 2 and 
equivalent cantilever of Step 3 – Figure 8, equation 9) : 
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The limit state thresholds of a restrained pier (height L) can be obtained from equation (10), 
in terms of the relevant values of the equivalent cantilever (height Lo); term x is further 
explained in Figure 8 (Case C). It should be mentioned at this point, that the above relationships 
are strictly valid for an elastic pier; however, on the basis of the equal displacement 
approximation (valid for T>Tc, where TC is the corner period of the design response spectrum, 
which is the case for the majority of bridges) equation (10) can be used for a reasonable 
prediction of the inelastic displacements as well. Finally it should be mentioned that equation 
(10) is also applicable to multicolumn piers, provided that Lo is defined for each pier, under the 
assumption that failure in the cap beam or the joints is prevented.  

Limit state definitions for the abutments are given in Table ІІ (based on [9]). Inelastic static 
(pushover) analysis is performed for the abutment subsystem (Figure 9) in order to define the 
threshold value in terms of displacement of the control point for the first limit state. The other 
three states are directly expressed in terms of fractions of the backwall height, based on recom-
mendations from the literature, also adopted by Caltrans. Threshold values are related to exper-
imentally observed soil damage, whereas a trilinear relationship between  initial stiffness and 
ultimate deformation is assumed to model nonlinear passive action. 

The local EDP used to define limit state thresholds for elastomeric bearings is the shear 
strain (γ=d/tr, where tr is the thickness of the elastomer). Threshold values based on information 
from the literature [4, 6, 9] are given in Table ІІІ. For the first limit state the conservative value 
proposed in [4] is adopted, since the displacement for the proposed shear strain is 
approximatelly equal to the yield displacement of the bearing as proposed in [40]. For the 
ultimate limit state threshold, a strain of 300% is proposed, and an additional check is made 
that the critical buckling load [40] is not exceeded. In general, test results are used to relate the 
local EDP to experimentally observed damage (yield of shims, uplift, etc.). 
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Figure 9. Components: Abutments and bearings - Limit state thresholds in displacement terms 

Table ІІ: Component Abutments: Limit state thresholds (global EDP) 

Limit State   Threshold values 
Quantitative Performance  
Description  

LS 1 – Minor/Slight damage 
1.1 gapd d= ⋅  

,( 1.5)backwallϕμ =  
Cracking and significant damage to 
the backwall 

LS 2 – Moderate damage 0.01
backwall

d h= ⋅  First yield of the abutment soil 

LS 3 – Major/Extensive damage 0.035
backwall

d h= ⋅  Excessive deformation of abutment 
soil 

LS 4 – Failure/Collapse  (0.1~ 0.06)
backwall

d h= ⋅  Ultimate deformation of abutment 
soil (cohesive~cohesionless soil) 

Table ІІІ: Component Bearings: Limit state thresholds (global EDP) 

Limit State   
Threshold 
(γ) values  

Quantitative Performance Description  

LS 1 – Minor/Slight damage 20% 
Initiation of nonlinear behaviour (yielding dis-
placement of piers), potential yielding of anchor 
bolts and cracking of pedestals. 

LS 2 – Moderate damage 100% Visible damage to the bearing; yield of steel shims.

LS 3 – Major/Extensive damage 200% 
Lift off at the edge of the bearing, uplift and rock-
ing; may cause delamination, bonding failure be-
tween rubber layers and steel shim plates. 

LS 4 – Failure/Collapse  300% Lift-off, rotation; unseating, failure of bearings. 

Uncertainty analysis  

Uncertainty in capacity (βc) is considered, assuming the distribution of key random variables, 
namely material strengths, ultimate concrete strain and plastic hinge length, with mean and 
standard deviation values as shown in Table ІV, according to [9], [41]; the other parameters 
were treated as deterministic. Latin Hypercube sampling is used to generate N statistically dif-
ferent, yet nominally identical, pier samples (N=100) for two different pier heights, representa-
tive of tall and short piers. Analysis results were processed and βc values are proposed for each 
pier type and limit state in Table V. Based on the βc values presented in Table V, and noting 
that the average βc for all limit states varies from 0.31 to 0.41, if a uniform value for the uncer-
tainty in pier capacity is sought, this could be taken equal to 0.35.  
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Table ІV: Assumed distributions for random variables (uncertainty in pier capacity) 

Random Variable Distribution Mean COV 
fc (MPa) normal 34.5 18% 
fy (MPa) normal 463 8% 

εcu/εcu,(model) (%) normal 0.99 35.8% 
Lpl / Lpl(model) uniform 0.96 47.4% 

Uncertainty in limit state definition (βLS) is quantified considering the range of limit state 
threshold values proposed in the literature for different EDPs, and calculating the dispersion, 
assuming lognormal distribution. 

Table V: Uncertainty in capacity (βc) for various pier types  

Pier Type βc, LS1 βc, LS2 βc, LS3 βc, LS4 βc,LS1~4 

Cylindrical 0.14 0.36 0.48 0.49 0.37 

Hollow Cylindrical 0.10 0.15 0.48 0.55 0.32 

Rectangular (strong direction) 0.14 0.20 0.40 0.48 0.31 

Rectangular (weak direction) 0.14 0.32 0.42 0.48 0.34 

Hollow Rectangular (strong direction) 0.22 0.32 0.40 0.41 0.34 

Hollow Rectangular (weak direction) 0.22 0.36 0.42 0.43 0.36 

Wall (strong direction) 0.16 0.29 0.43 0.48 0.34 

Wall (weak direction) 0.23 0.33 0.40 0.50 0.41 

The range of limit state thresholds proposed in the literature for bridge piers, in terms of 
different EDPs, namely pier drift (d/H%), displacement ductility (μd), rotation ductility (μθ) and 
curvature ductility (μφ), is depicted in Figure 10. It was found that despite the fact that a greater 
logarithmic dispersion value (βLS) would be expected for higher limit states, this is not the case 
for all EDPs; for example in the case of ultimate drift, the dispersion is equal to zero. Uncer-
tainty in limit state definition is quantified for all limit states and EDPs considered, see Table 
VІ. Consideration of a uniform βLS value equal to 0.35 is, in general, a reasonable choice; bear-
ing in mind the aforementioned inconsistency regarding the higher limit states, βLS = 0.35 is 
proposed for the definition of  LS in the case of pier capacity. 

Table VІ: Uncertainty in limit state definition (βLS) for different engineering demand parameters 

EDP (for 
piers) 

βLS

LS1 LS2 LS3 LS4 
Drift (%) 0.34 0.41 0.12 0.00 

μδ 0.44 0.39 0.46 0.27 
μθ 0.31 0.34 0.21 0.57 
μφ 0.63 0.57 0.63 0.53 

βLS,mean 0.43 0.43 0.36 0.34 
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Figure 10. Range of limit state thresholds proposed in literature for piers (drift, μθ, μd, μφ) 

The range of limit state thresholds proposed in the literature for bearings and abutments is 
depicted in Figure 11. The dispersion is apparently greater for higher limit states, while a uni-
form βLS value equal to 0.20 and 0.47 is proposed the case of bearings and abutments, respec-
tively.  

Figure 11. Range of limit state thresholds values proposed in literature for bearings (left) and abutments 

Epistemic uncertainties arising from modelling assumptions and software used for the anal-
ysis, are not explicitly defined at this stage of development of the methodology. Therefore they 
can be considered in a simplified manner (βu=0.20) as proposed in [21], or quantified according 
to the methodology proposed in [16]. 

2.2. Bridge component seismic demand and associated uncertainties 

Seismic demand is calculated at the control point of every critical component based on the 
results of response-history analysis of a detailed inelastic model (single bridge case) or response 
spectrum analysis of simplified elastic model (bridge stock case) for varying levels of earth-
quake intensity (Step 2). In nonlinear response-history analysis of the inelastic model, statisti-
cally different yet nominally identical bridge samples are analysed (N=100) and the enhanced 
IDA procedure is applied. The random variables considered, having distributions and COV 
values as proposed in the literature [41, 42, 14] and mean values according to the properties of 
a typical bridge studied [25], are presented in Table VІI. Every bridge realization is paired 
(according to [43]), with selected earthquake ground motions (10 different motions for 10 earth-
quake levels), resulting in a total of 1000 analyses. 
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Table VІI: Assumed distributions for random variables (uncertainty in demand) in a typical bridge 

Random Variable Distribution Mean COV 
fc normal 28 MPa 18% 
fy normal 506 MPa 8% 

gap size normal 20 cm 20% 
bearings uniform G=0.9 MPa 22% 

soil properties uniform G=660 MPa 20% 

Regarding the ground motion selection, the 1st edition of the PEER NGA record database is 
used. A suite of 10 individual ground motions for each level of intensity (PGA from 0.1g to 
0.4g, 0.5g to 0.7g, 0.8 to 1g, scaled at 0.1g steps) is selected at bedrock [44], using the Eurocode 
8 elastic spectrum as target spectrum (Figure 12). Different suites of ground motions are se-
lected at bedrock level for various levels of earthquake intensity; appropriate division of the 
intensity levels into three groups is considered (Multiple Stripe Analysis [24]), assuming dif-
ferent initial constraints for magnitude (M) and epicentral distance (R) in every group (here, 
group 1: M<6.5, group 2: M≥6.5, R>30, group 3: M≥6.5, R<30). Inelastic soil behaviour may 
additionally be considered as described in (c) of Step 2 and Figure 12. 

  
Figure 12. Selection of ground motion suites for different intensity measures (Multiple Stripe Analysis) 

The quantification of uncertainties in seismic demand (βd) for bridge components is highly 
dependent on the selection of earthquake motions, the earthquake intensity, bridge geometry 
and structural system, as well as component properties. In the proposed methodology, classifi-
cation of bridges is made according to the scheme described in [4]; analysis of a representative 
bridge in each category is considered sufficient for bridge stock fragility analysis, wherein a 
uniform value for all bridges that fall within the same category is assumed (for each compo-
nent). Response-history analyses for the suite of earthquake ground motions for different inten-
sity levels are performed and uncertainty in demand is calculated for each component. 
 As an example, uncertainty in seismic demand of critical components (βd) is calculated for a 
simply-supported case study bridge (Figure 13, representative of #232 category [4], i.e. rectan-
gular hollow piers, deck consisting of simply-supported precast-prestressed beams, bearing-
supported on the piers) according to the proposed methodology, as depicted in Table VІIІ. It is 
clear that βd values vary among different components (maximum value for piers, minimum for 
abutments), and in general increase for higher levels of earthquake intensity. It appears that 
uncertainty in seismic demand may be equal, greater, or even less than the commonly adopted 
HAZUS value (βd=0.50, [21]). In line with the above, a uniform, but different for each critical 
component, value (average of all intensities) is recommended in a practical context (last column 
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of Table VІIІ). Different βd values have been estimated for different bridge categories; values 
are similar among bridges with monolithic pier-to-deck connections, and also among bridges 
with bearing-supported decks. 

  
Figure 13. Case Study of representative bridge of type ‘simply-supported prestressed beams’ 

Table VІIІ: Uncertainty in component demand (βd): bridges with simply-supported prestressed beams  

  

2.3.  Bridge system fragility 

Bridge-specific fragility curves can be generated according to Step 3 of the proposed method-
ology ((b) or (c) according to the problem at hand), based on component fragility, since both 
capacity and demand have been explicitly defined for each critical component. The total uncer-
tainty value is calculated at component level according to equation 11, under the assumption of 
statistical independence.  

                                            2 2 2

tot C D LSβ β β β= + +                                                (11) 

The estimation of total uncertainty at system level is related to the structural system of the 
bridge; it is governed by pier (total) uncertainty for the case of monolithic bridge to deck con-
nection, by bearings in simply supported bridges, and by abutments in single-span bridges. The 
same total uncertainty value is also used when seismic demand is estimated on the basis of 
elastic response spectrum analysis of the simplified model (bridge stock analysis), to approxi-
mately account for uncertainty due to inelastic behaviour and ground motion variability. 

Series connection between components is conservatively assumed for the derivation of 
bridge fragility curves, according to equation 12 (upper and lower bounds). The results pre-
sented herein are for the lower bound (completely correlated components), however the exact 
system fragility lies within these two bounds and depends on the component correlation level 
that can be calculated for each individual bridge.  
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Since collapse of the bridge system is not expected to occur if just the bearings reach LS4, 
limit state 4 at bridge (as a system) level is related to pier or abutment failure only. Therefore 
the series connection assumption is not invoked for the estimation of system fragility for the 
‘collapse’ limit state. 

3. DEVELOPMENT OF TOOLS FOR FRAGILITY ANALYSIS  

As should be clear from the previous section, substantial amount of analytical work is inevitably 
required if bridge-specific fragility curves are sought; hence analysis tools (additional to the 
software for carrying out the dynamic analysis of the bridge models) are indispensable, partic-
ularly when bridge stocks are analysed. For this case, a Matlab-based software was developed 
for the implementation of the previously described methodology using the simplified elastic 
model and response spectrum analysis for the derivation of bridge-specific fragility curves, 
summarised in Figure 14. The software is based on a generic simplified 3D bridge model cre-
ated using the OpenSees platform [30]. Input data provided by the user are depicted in Figure 
14 and include general bridge geometry, (non-seismic) loading, component properties (piers, 
bearings, abutments), and the pertinent response spectrum. Limit state thresholds for piers are 
automatically calculated according to the properties and boundary conditions of the specific 
bridge analysed, while dispersion (uncertainty) values are also calculated following the previ-
ously described procedure. Different boundary conditions at abutments are considered for the 
case of open and closed gap; fragility curves are automatically calculated for the longitudinal 
and transverse directions separately, using the former model analysis results up to gap closure 
(Figure 14). 

 
Figure 14. Generic 3D bridge model and abutment boundary conditions before and after gap closure 

The developed software drastically reduces the time and effort required for the implementa-
tion of the proposed methodology to a large number of bridges within an inventory. The meth-
odology has been applied (as a pilot study) to the bridge stock of the Western Macedonia 
(Greece) section of Egnatia Motorway, as part of the seismic loss assessment of this road net-
work. The fragility curve derivation module has been included in a GIS-based software for the 
management of seismic risk of road networks.  

4. EXAMPLES OF BRIDGE-SPECIFIC FRAGILITY CURVES 

Fragility curves for a simply-supported bridge, shown in Figure 13, representative of cate-
gory 232 (see section 2.2) were calculated at system level using the methodology described 
herein, under the assumption of series connection between components (disregarding bearings 
in  LS4). The curves of Figure 15 correspond to the lower bound of equation 12 for the system 
fragility estimation, while the difference in the threshols (%) in case that the upper bound is 
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used (mean value for each LS) is also depicted in the legend; consistently with previous findings 
in the literature (e.g. [5]), the differences are smaller in the lower damage states. Both sets of 
fragility curves derived using inelastic response-history analysis of the detailed inelastic model 
for the demand estimation (IDA-MSA), and elastic analysis results (RSA) of the simplified 
model (using the software developed) and the uncertainty values proposed herein (Table VIII), 
are shown in Figure 15. It appears that approximate elastic analysis of the demand can lead to 
a reasonable (usually slightly conservative) estimation of the probability of damage of the 
bridge system for limit states 1 to 3 (taking IDA-MSA as the benchmark), whereas elastic anal-
ysis may result in non-conservative results for limit state 4, attributed basically to the nonlinear 
behaviour of piers.  

 Figure 15. Fragility curves of case study bridge (T5) in longitudinal and transverse direction (IDA and  RSA) 

5. FINAL REMARKS AND CONCLUSIONS 

The study presented herein aims at incorporating research on component capacity and demand 
and the associated uncertainties into a methodology for the derivation of bridge-specific fragil-
ity curves for different limit states. Procedures of different complexity and computational cost 
are adopted depending on whether a single bridge or an entire bridge stock is assessed; none-
theless, the derived fragility curves are bridge specific in either case, but inevitably the level of 
accuracy is higher in the former case. A key idea in this endeavour is that the fragility curves 
are readily derived for each individual bridge by extracting damage threshold values and the 
associated uncertainties for each component from a database of critical components. Clearly, it 
is impossible to compile a database encompassing all usual types of bridges within a single 
study; nevertheless the database presented herein may be used for a large number of bridges, 
with special focus on typologies commonly found in seismic-prone areas of Europe. It is envis-
aged that this bridge component fragility database will soon be made available on-line, along 
with the associated analysis tools; international users will be encouraged to carry out their own 
analyses and contribute additional pier, abutment and bearing fragility data to this open data-
base. Additional work is worth carrying out regarding the definition of limit state thresholds for 
abutments, using advanced models including both the abutment per se and the backfill system.  

The most important findings from the application of the methodology to a specific bridge 
stock (in Southern Europe) are summarised in the following. 
• All critical components should be considered for the derivation of bridge fragility curves. In 
addition to those addressed herein (piers, abutments, bearings), one could also consider foun-
dation elements that might be critical in some bridge types (e.g. failure of piles supporting the 
abutments). 
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• Limit state thresholds of components should be expressed in terms of global EDPs (typically 
displacements) and be correlated to local damage. Component-specific limit state thresholds 
should be explicitly defined considering different type, geometry, material, reinforcement ra-
tios, loading properties, and boundary conditions; all these affect component capacity and rel-
evant threshold values. 
• Uncertainty in capacity, demand, and limit state definition should be considered for each 
component and limit state separately; a total uncertainty value appropriate for the specific struc-
tural system should then be calculated. 
• Bridge-specific fragility curves should be based on explicit estimation of bridge component 
capacity and demand, as opposed to adopting uniform fragility values for bridges that fall within 
the same category according to a classification scheme; the latter is currently done for bridge 
and road network loss assessment studies. 
• To improve the reliability of fragility assessment, when inelastic response-history analysis 
(IDA) is used for demand estimation, selection of different suites of ground motions for differ-
ent ranges of earthquake intensity level (MSA) is in order.  
• When elastic (RSA) analysis is used for demand estimation, a simplified 3D model can be 
used, in preference to the, admittedly less demanding, equivalent single-degree-of-freedom 
model. This allows to account for the correlation between different components and the de-
pendence of the displacement profile on deck geometric properties and boundary conditions. 
• Elastic analysis of the demand for the simplified model seems to work well for the first three 
damage states, but to underestimate fragility for the ‘collapse’ limit state. 
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