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Conservative reasoning about epistemic uncertainty for the 
probability of failure on demand of a 1-out-of-2 software-based 

system in which one channel is “possibly perfect” 

 
Bev Littlewood, Andrey Povyakalo 

Centre for Software Reliability, City University, London 
 

Abstract 
In earlier work, (Littlewood and Rushby 2011) (henceforth LR), an analysis was 
presented of a 1-out-of-2 system in which one channel was “possibly perfect”. It 
was shown that, at the aleatory level, the system pfd could be bounded above by 
the product of the pfd of channel A and the pnp (probability of non-perfection) 
of channel B. This was presented as a way of avoiding the well-known difficulty 
that for two certainly-fallible channels, system pfd cannot be expressed simply 
as a function of the channel pfds, and in particular not as a product of these. One 
price paid in this new approach is that the result is conservative – perhaps 
greatly so. Furthermore, a complete analysis requires that account be taken of 
epistemic uncertainty – here concerning the numeric values of the two 
parameters pfdA and pnpB. This introduces some difficulties, particularly 
concerning the estimation of dependence between an assessor’s beliefs about the 
parameters. The work reported here avoids these difficulties by obtaining results 
that require only an assessor’s marginal beliefs about the individual channels, 
i.e. they do not require knowledge of the dependence between these beliefs.  

 

1 Introduction 
Intellectual diversity has been used from time immemorial to improve the dependability 
of human activities. Most people believe that, for many activities, “two heads are better 
than one”: e.g. it is often better to have another person check your work than to do it 
yourself. The use of diversity to build reliable systems long pre-dates the use of 
computers. For example, the use of diverse multi-channel safety protection systems based 
on physically different variables (temperatures, pressures, flow-rates…) has for a long 
time been an attractive design approach. 
The intuition here is very simple. We must expect that humans will make mistakes when 
designing and building systems, and that these mistakes will eventually result in failures 
of the systems during operation. But if we force two or more systems to be built 
differently, their resulting failures may also be different. So if, in a 1-out-of-2 protection 
system, channel A fails on a particular demand, there may be a good chance that channel 
B will not fail. 
Design diversity of this kind has been applied to software-based systems for several 
decades, and there are reports of successful industrial applications to critical systems, see, 
e.g., (Littlewood, Popov et al. 2002; Wood, Belles et al. 2010). For example, the safety-
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critical flight control systems of Airbus fleets (Rouquet and Traverse 1986) have 
experienced massive operational exposure (Boeing 2010) with apparently no critical 
failure. We might conclude that these systems are very reliable (although we are not 
aware that any figures have been published that would tell us how reliable). 
However, there remain serious difficulties in assessing the reliability of such systems 
before operational use. The stringent dependability requirements for safety-critical 
systems – e.g. 10-9 probability of failure per hour for critical avionics systems in civil 
aircraft (FAA 1988; RTCA 1992) – usually mean that black-box operational testing 
would require infeasible times on test (Butler and Finelli 1993; Littlewood and Strigini 
1993). Furthermore, it is well-known that it is not possible to claim, with certainty, 
independence between the failures of multiple software-based channels of a system: see 
(Knight and Leveson 1986; Eckhardt, Caglayan et al. 1991) for experimental evidence, 
and (Eckhardt and Lee 1985; Littlewood and Miller 1989) for theoretical reasons for this 
assertion. In fact in general for a 1-out-of-2 demand-based system it must be assumed 
that  
pfdsys > pfdA × pfdB  (1) 

because there will usually be positive association between the failures of channel A and 
those of channel B.1 So, for example, if the two channels of a 1-out-of-2 system each 
have probability of failure on demand (pfd) 10-3, it would be wrong to claim prima facie a 
pfd of 10-6 for the system. In fact, statistical independence is probably a rather rare 
phenomenon in the world: see (Kruskal 1988) for an amusing but serious discussion of 
inappropriate assumptions of independence. 
If independence cannot be assumed between channel failures, the problem of assessing 
the reliability of the system becomes difficult: we need to know how dependent the 
failures of the channels are. All this was formalized some years ago with the introduction 
of the “difficulty function” (Eckhardt and Lee 1985; Littlewood and Miller 1989). This 
can be thought of as a function θ(x) over the demand space, representing the probability 
that a randomly selected program fails on demand x: i.e. demands with a large value can 
be thought of as more failure-prone, or “difficult”. Typically, the difficulty functions for 
channels A and B will be different because they have been “built differently”. It is shown 
in (Littlewood and Miller 1989) that the probability of system failure on a randomly 
chosen demand is 
pfdsys = pfdA × pfdB +Cov(θA,θB )              (2) 
So an assessor’s beliefs about the channel reliabilities are not sufficient for them to 
reason about the system reliability: they also need to know the covariance of the difficulty 
functions, which is unlikely to be known.  

                                                
1 Whilst negative association is theoretically possible (Littlewood, B. and D. R. Miller (1989). "Conceptual Modelling 
of Coincident Failures in Multi-Version Software." IEEE Trans on Software Engineering 15(12): 1596-1614.)  – thus 
reversing the inequality in (1) – we are not aware of any means of claiming this with high confidence in a particular 
instance. 
2 This kind of reasoning is more common at the aleatory level. We have seen arguments in which pessimistic claims 
have been made for each channel pfd and then these have been multiplied together to obtain a figure for the system pfd. 
The trade-off here is between channel failure dependence and channel pfd pessimism.  See Bishop, P., R. Bloomfield, 
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It is this problem of assessing how dependent the channel failures are that lies at the heart 
of multi-channel system dependability assessment. The individual channel pfds can be 
estimated from operationally representative statistical testing, so long as the levels 
required are reasonably modest. If we could assume failure independence, strong claims 
could be made about the system pfd from modest channel pfds, simply by multiplying 
them. But in the absence of independence, it is necessary know how dependent the 
channel failures are – represented by the covariance term above. Estimating this, e.g. 
from testing, seems as hard as estimating the system pfd directly, and this is known to be 
infeasible in those cases where very high system reliability is required. 
This presents us with an impasse. Whilst there is plentiful evidence that the multi-version 
approach is effective, at least in some average sense, in achieving high reliability, we 
cannot assess the reliability of a particular such system. Such assessment does seem 
essential, of course, when these systems are critical and their failure may involve the loss 
of life. 
In recent work, a way around this difficulty has been proposed for certain special 
architectures (Littlewood and Rushby 2011). The idea here is that in some 1-out-of-2 
systems, one channel (say A) may be highly functional and complex, and so (effectively 
certainly) failure-prone, but the other channel (B) may be very simple and thus possibly 
perfect. By “perfect” we mean that this channel cannot fail in its entire life, no matter 
how much exposure it receives, i.e. its pfd is zero. By “possibly perfect” we mean that 
such perfection will not be known with certainty. Claims about A will be expressed as a 
probability of failure on a randomly selected demand (pfdA); claims about B will be 
expressed as a probability that it is not perfect (pnpB). 
The key idea in LR is that, at the aleatory level, it can be shown that there is conditional 
independence between the events “A fails on a randomly selected demand” and “B is not 
perfect,” given that the probabilities of these events, respectively pfdA and pnpB, are 
known. It is then shown that a conservative bound for the system’s (conditional) 
probability of failure on demand is simply the product of the probabilities of these two 
events, i.e. 
pfdsys ≤ pfdA × pnpB  (3) 

where the conservatism arises by assuming that, if B is imperfect, it always fails when A 
does. See (Littlewood and Rushby 2011) for proof. An assessor can then use the right 
hand side of (3) for the probability of failure on demand of the system, and be confident 
that this is conservative. 
In other words, when pfdA and pnpB are known, they are jointly sufficient for computing 
an upper bound on the value of pfdsys. The important point here is that there is no 
equivalent simplification in the case where both channels must be assumed to be fallible 
– it is not sufficient to know pfdA and pfdB. In addition, knowledge of the nature of the 
dependence between the channel failures is also needed: see (2). 
The new result is useful because it provides a conservative numerical bound for the 
system pfd which is simply the product of two (hopefully small) numbers, and is thus 
(hopefully) a very small number. In other words, we have a result that is similar in nature 
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to the one we would use if we could assume channel failures to be independent (the 
product of two small channel pfds). 
So far the discussion here has concerned only aleatory uncertainty, or “uncertainty in the 
world”. In reality, of course, none of the values of the parameters in this discussion will 
be known with certainty. This is where epistemic uncertainty – or “uncertainty about the 
world” – comes in, as a result of the imperfect knowledge of the assessor. In LR the 
assessor beliefs are represented formally by a distribution: 
F(pA, pB ) = P(pfdA < pA, pnpB < pB )  (4) 

which is best thought of as a Bayesian posterior distribution that incorporates all the 
evidence that the assessor has about the unknown parameters. 
The assessor’s probability of system failure on a randomly selected demand is then 
bounded by the posterior mean of the product, from (3): 

pA × pB dF(pA, pB )
0≤pA≤1
0≤pB≤1

∫  (5) 

The value of the LR approach, compared with one that treats each channel as certainly 
fallible, is two-fold. Firstly – at the aleatory level – we can multiply two small numbers 
together to obtain a (conditional, conservative) small probability of failure on demand for 
the system. Secondly, at the epistemic level things are simpler because an assessor “only” 
needs to express his beliefs as a bivariate distribution, (4). In contrast, in the earlier case, 
he would need to express his beliefs as a three dimensional distribution for the two 
channel pfds together with the difficulty covariance, (2). As we have remarked, 
information about the covariance is unlikely to be available. Furthermore, the assessor 
would be unlikely to be able to express his beliefs about the dependencies between the 
three parameters. 
Nevertheless, in spite of the simplification that LR brings, the assessor faces a difficult 
challenge in expressing his beliefs in a distribution, (4). It is this problem that we address 
in the rest of the paper. 
If F factorised, i.e. the assessor’s beliefs about the two parameters were independent, then 
(5) would simplify into the product of the means of the posterior marginal distributions of 
the parameters. Unfortunately, assessors’ beliefs are unlikely to be independent in this 
way, and this epistemic dependence poses a serious problem. 
In (Littlewood and Rushby 2011) a way of conservatively simplifying (5) is proposed. 
Here, the notion of “possibly independent” is introduced: the assessor has a probability 
(1-C) that there do not exist any factors inducing dependence (and consequently a 
probability C that there is dependence). The analysis proceeds conservatively by 
assuming that, in the event that there is dependence, the system fails with certainty on a 
randomly selected demand. It is shown that system pfd can be bounded as follows: 
P(system fails on randomly selected demand)

≤C + (1−C)× pA × pB dF(pA, pB )
0≤pA<1
0≤pB<1

∫  (6) 
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€ 

=C + (1−C)×PA
* ×PB

*  (7) 
where PA* and PB* are the means of the posterior distributions representing the assessor’s 
beliefs about the two parameters, each conditional on the parameter not being equal to 
one (i.e. A not certain to fail, B not certain to be imperfect). 
If C is small (as is likely in the contexts in which such reasoning takes place in real life), 
(1-C) is approximately 1, and we can substitute the unconditional posterior marginal 
means, PA and PB, into (7) to yield the conservative approximation: 
C +PA ×PB  (8) 

See (Littlewood and Rushby 2011) for a detailed discussion about this. 
As we have remarked, this approach is considerably simpler at the aleatory level than one 
that treats both channels as fallible, because of the great difficulties associated with 
estimating the dependence between channel failure processes. However, it has to be said 
that the estimation problem at the epistemic level here is hard, even though it is also 
much simpler than the corresponding one for the case of two fallible channels. 
The parameter for which it is easiest for an assessor to obtain an estimate is PA, the 
probability of failure on demand of channel A. There is a large literature, for example, on 
operational testing, from which a direct estimate, and confidence bounds, can be 
obtained: see (May, Hughes et al. 1995), for an example of estimating the pfd of a 
channel of a real nuclear protection system, and (Littlewood and Wright 1997) for a 
Bayesian treatment. This kind of evidence can often be augmented from less direct 
sources, such as the quality of the processes used to build the system, or of the experience 
of the team involved, etc. 
 The parameter PB, the probability that channel B is not perfect, poses some difficulties: 
see (Littlewood and Rushby 2011) for an extensive discussion about this issue. 
(Littlewood and Wright 2007) show how testing and verification evidence can be used, 
via a Bayesian Belief Net (BBN), to obtain confidence in perfection of a channel. We 
shall report elsewhere on some of our recent work on this problem. 
Finally, the parameter C seems to present the hardest problem. Judging dependence 
between random variables seems to be a harder task for people than judging marginal 
mean values, or marginal percentiles. In addition, there is usually a paucity of evidence to 
support claims about dependence (or independence). The problem seems particularly 
difficult in the case of epistemic dependence, as here. 
The aim of the current paper is to devise ways around this latter difficulty. In the next 
sections we present different approaches that avoid the need to estimate dependence. 
These new results rely solely upon assessors’ marginal beliefs about the individual 
channel parameters – pfdA, pnpB – and do not require epistemic dependence between them 
to be estimated. There is a price paid, not surprisingly, for this simplification: further 
conservatism is introduced into the claims that can be made about the system pfd. 
Nevertheless we believe that these new bounds will be of practical utility. 
In what follows we shall use the LR result concerning aleatory uncertainty, but the 
treatment of epistemic uncertainty will be different. 
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2 Conservative bounds on mean system pfd 
We begin with the result (3). Instead of dealing with the complete bivariate distribution, 
(4), representing the assessor’s posterior beliefs about the parameters pfdA and pnpB, we 
shall assume only that the assessor can tell us something about his separate marginal 
distributions for these parameters, which we shall call F(pA) and F(pB) in an obvious 
notation. Clearly this places upon the assessor a much less onerous requirement in 
describing his epistemic uncertainty, inasmuch as he does not need to say anything about 
the dependence in his beliefs about the parameters. 
Initially, we assume that the assessor is able to give us only a single percentile for each 
distribution: 

€ 

P(pfdA < pA ) =1−αA

P(pnpB < pB ) =1−αB

 (9) 

So pA is his 100(1-αA)% upper confidence bound for the parameter pfdA; equivalently, αA 
can be thought of as his doubt that pfdA is smaller than pA, etc. 
We have the following: 

Theorem 1 
 If  

€ 

P(pfdA < pA ) =1−αA and P(pnpB < pB ) =1−αB   
represent the assessor’s marginal posterior beliefs about the parameters, and without loss 
of generality 

€ 

αA ≤αB, 
then 

€ 

E(pfdsys ) ≤ pA × pB × (1−αB )+ pA ×αB + (1− pA )×αA (10) 

Proof 
Denote the unknown joint probability, 

€ 

P(pfdA >αA , pnpB >αB ) , i.e. of lying in BCFE in 
Figure 1, by z. Now 
pfdsys ≤ E(pfdA × pnpB )  

= pA × pB × (1−αA −αB + z)+ pA × (αB − z)+ pB × (αA − z)+ z  (11) 

= pA × pB × (1−αA −αB )+αA × pB +αB × pA + z× (1− pA − pB + pA × pB )  

€ 

≤ pA × pB × (1−αA −αB )+αA × pB +αB × pA +min(αA,αB )× (1− pA − pB + pA × pB ) 

€ 

= pA pB (1−αB )+ pAαB + (1− pA )αA 
because 

€ 

0 ≤ z ≤min(αA,αB ) =αA  
and  
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€ 

1− pA − pB + pA × pB ≥ 0  
 
 

 
 

Figure 1. The random variable (pfdA,pnpB) is defined on the unit square. Note that 
this figure has been exaggerated for clarity: in reality E would be very close to 
the origin. 

 
The result (11) can be seen as follows. Consider the four rectangles in Figure 1: DEHG, 
ABED, EFHK, BCFE. The product 

€ 

pfdA × pnpB  is a random variable which is 
everywhere smaller than 

€ 

pA × pB  within DEHG. The probability associated with DEHG 
is 

€ 

(1−αA −αB + z). Thus the contribution to 

€ 

pfdsys = E(pfdA × pnpB ) associated with 
DEHG is bounded above by the product 

€ 

pA × pB × (1−αA −αB + z). Hence the first term 
in (10). Similarly, within the rectangle ABED, the product 

€ 

pfdA × pnpB  is a random 
variable which is everywhere smaller than pA (which value it takes at the point B); and 
the probability associated with this rectangle is 

€ 

(αB − z); so the contribution to the mean 
of this rectangle is bounded by the product of these. Hence the second term in (11). 
Similar reasoning about EFHK, BCFE give the third and fourth terms of (11), 
respectively. 
This completes the proof. 
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Example 1 
If the assessor can provide a single percentile (i.e. a bound with associated confidence 
level) for each marginal posterior distribution (i.e. for pfdA and for pnpB) then the theorem 
provides a means of computing a conservative posterior mean of pfdsys. 
So, if the assessor is 95% confident that pfdA is smaller than 10-5, and 95% confident that 
pnpB is smaller than 10-2 we have, from (10): 

€ 

E(pfdsys ) ≤10
−5 ×10−2 × (1− 0.05)+10−5 × 0.05+ (1− 0.05)× 0.05 ≈ 0.05 (12) 

which of course is very conservative.  
If the assessor is 99% confident that pfdA is smaller than 10-3, and 99.9% confident that 
pnpB is smaller than 10-1, the bound on his posterior mean for the system pfd is about 

€ 

1.1×10−3 . 
In fact, since “doubts” will usually be considerably greater than “claims”, this way of 
bounding the assessor’s posterior pfd for the system will give a result that is 
approximately the same as the smallest of the two doubts. 
So these results are very conservative. One reason for this is that it is assumed that there 
is probability mass over the whole unit square: that is, the assessor cannot rule out the 
possibility of the parameters taking any value. This probability mass is assigned most 
pessimistically in each of the rectangles making up the unit square, e.g for the random 
variable (pfdA, pnpB) lying in the upper right rectangle, all probability is assigned to the 
point (1,1), i.e. it is assumed with this probability that channel A fails, and channel B is 
imperfect, so that the system fails with certainty. This is similar to the LR reasoning. 
Such beliefs may be too pessimistic for real assessors. An assessor may say: “I have 
confidence (1-αA) that channel A’s pfd is smaller than pA, but I am certain that it is 
smaller than pA

U, where pA<<pA
U”, with similar certainty that pnpB is smaller than pB

U. 
This is illustrated in Figure 2, where now there is non-zero probability mass only in the 
rectangle QSWG: outside this rectangle the distribution (4), 

€ 

F(pA, pB ), takes the value 1 
everywhere. 
We can now obtain a tighter conservative bound as follows: 

Theorem 2 
If  

€ 

P(pfdA < pA ) =1−αA and P(pnpB < pB ) =1−αB  
and 

€ 

P(pfdA < pA
U ) =1 and P(pnpB < pB

U ) =1  
represent the assessor’s marginal posterior beliefs about the parameters, and without loss 
of generality 

€ 

αA ≤αB, 
then 
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€ 

E(pfdsys ) ≤ pA × pB × (1−αB )+ pA × pB
U ×αB + pB

U × (pA
U − pA )×αA  (13) 

 
 

 
 

Figure 2. As Figure 1, except that now, in addition, the assessor is certain that 
pfdA does not exceed pA

U and pnpB does not exceed pB
U. So there is zero 

probability mass outside QSWG. 

 

Proof 
This is similar to the proof of the previous theorem, in terms of the four rectangles 
making up QSWG. Once again, denote by z the unknown probability mass associated 
with RSVE. 
In DEHG, the random variable pfdApnpB is bounded above by pApB and the probability 
mass here is (1-αA-αB+z). So the contribution of DEHG to the posterior mean of the 
system pfd is bounded above by pApB(1-αA-αB+z). 
By similar reasoning, the contribution from QRED is bounded by pApB

U(αB-z); that from 
EVWH by pA

UpB(αA-z); that from RSVE by pA
UpB

Uz.  
Adding all these contributions together, and using the fact that 

€ 

0 ≤ z ≤min(αA,αB ) =αA , 
the result follows as in the previous theorem after some rearragement. 
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Notice that, as expected, (13) reduces to (10) when pA
U=pB

U=1. 

Example 2 
As Example 1 with, additionally, pA

U=10-3, pB
U=10-1. 

€ 

E(pfdsys ) ≤10
−7 × 0.95+10−4 × 0.05+ 0.05× (10−3 −10−5 )×10−1

≈ 0+ 0.5×10−5 + 0.5×10−5
 

€ 

=1×10−5  (14) 
Clearly this is better than the bound in Example 1. And it is an order of magnitude 
improvement on the very crude bound that simply multiplies the two marginal upper 
bounds, i.e. 10-4. 
 
We now obtain some conservative bounds for the system pfd for situations in which the 
assessor knows the first two moments of his marginal distributions for the parameters, 
rather than percentiles as above: 

Theorem 3 
E(pfdsys ) ≤ E(pfdA × pnpB )  

< E(pfdA )
2 +Var(pfdA )( ). E(pnpB )2 +Var(pnpB )( )!

"
#
$         (15) 

< E(pfdA )+ SD(pfdA )( ). E(pnpB )+ SD(pnpB )( )               (16) 

Proof 
By the Cauchy-Schwarz inequality 

E(pfdA.pnpB )( )2 < E(pfdA2 ).E(pnpB2 )

= E(pfdA )
2 +Var(pfdA )( ). E(pnpB )2 +Var(pnpB )( )

      

which gives (15). And 

E(pnpB )
2 +Var(pnpB )< E(pnpB )+ SD(pnpB )( )2     

with a similar expression involving pnpB, so (16) follows. 

Example 3 
The result requires knowledge of the first two moments of the marginal distributions of 
the two model parameters. In particular, the closeness of the bound to the “ideal” 
independence result (i.e. product of the marginal means of the parameters) depends on 
the relative sizes of the marginal standard deviations and marginal means. So, if  
SD(pfdA)<4.E(pfdA) and SD(pnpB)<4.E(pnpB)  
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we have  
E(pfdsys)<25. E(pfdA). E(pnpB) 
 
Another way in which (16) might be used is as follows. One way that we have heard 
assessors reason in the presence of difficult-to-assess dependence is to make a trade-off 
between “lack of independence” and “pessimism of channel claims”. The reasoning is 
something like this: “I realize I cannot simply multiply my marginal beliefs about the pfd 
of channel A and the pnp of channel B to obtain a bound for the system pfd, so I will 
instead multiply together pessimistic values for these two channel beliefs. The pessimism 
here will counteract the optimism of the independence assumption implicit in the simple 
multiplication of the numbers2.” The result (16) provides a formalism for this kind of 
reasoning. It shows how much pessimism is needed to justify such reasoning: a system 
claim made in this way will be a conservative one if each channel claim is conservative 
by an amount equal to the standard deviation of the marginal distribution.  
Finally, we present conservative bounds for the situation where an assessor’s beliefs 
about the two marginal distributions involve both means and percentiles as follows: 

Theorem 4 
If 
P(pfdA > pA ) =αA  and P(pnpB > pB ) =αB  

and 
E(pfdA ) ≤ pA  and E(pfdB ) ≤ pB  

then 
E(pfdsys ) ≤ E(pfdA × pnpB )  

           (17) 
 

≤
pA × pB
αA ×αB

                (18) 

Proof 
We require the following 
Lemma:  

                                                
2 This kind of reasoning is more common at the aleatory level. We have seen arguments in which pessimistic claims 
have been made for each channel pfd and then these have been multiplied together to obtain a figure for the system pfd. 
The trade-off here is between channel failure dependence and channel pfd pessimism.  See Bishop, P., R. Bloomfield, 
et al. (2011). "Towards a formalism for conservative claims about the dependability of software-based systems." IEEE 
Trans Software Engineering 35(5): 708-717. 

≤
E(pfdA )×E(pnpB )

αA ×αB
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If 
0≤X≤1, and P(X>p)=α, and E(X)≤p, 
then 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

Proof: see appendix 
From the lemma we have: 

E(pfdA
2 ) ≤ E(pfdA)

2

αA

≤
pA
2

αA

 

and 

E(pnpB
2 ) ≤ E(pnpB)

2

αB

≤
pB
2

αB

 

And by the Cauchy-Schwarz inequality: 

E(pfdA × pnpB ) ≤ E(pfdA
2 )×E(pnpB

2 )  

from which the result follows. 

Example 4 
If the assessor has a single percentile for each marginal distribution, as in Example 1: 
pA=10-5, αA=0.05, and pB=10-2, αB=0.05 
and the assessor is certain that E(pfdA)≤pA and E(pnpB)≤pB, then 

E(pfdsys ) ≤
10−5 ×10−2

0.05×0.05
= 2×10−6  

Obviously this is a tighter bound than in Example 1, using Theorem 1. In general, bounds 
(17) and (18) will be better than (10) and (13) whenever αA >> pA  and αB >> pB , which 
will generally be the case (claims will usually be much smaller numerically than doubts). 
In fact it is even tighter than the bound in Example 2. At first glance this is surprising, 
since the latter requires the assessor to know with certainty upper bounds on the 
parameters, in addition to a percentile for each. The result here, however, similarly 
depends upon the assessor being certain that the marginal means are smaller than pA, pB 
respectively. This is so even though the weaker bound of Theorem 4, (18), which is used 
in the example, does not depend on the numerical values of these marginal means.  
In summary, the assessor does not need to know both the marginal means and the 
percentiles to use the theorem. Useful bounds on system pfd can be obtained by knowing 
either 

(a) E(pfdA ),  E(pnpB ),  αA,  αB  for result (17) 

or 
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(b) pA,  pB,  αA,  αB  for result (18) 

but in each case he must be certain that, in addition, the marginal means are smaller than 
the corresponding percentiles (even if the exact values of some of these are not known to 
him). 
Of the two options, (a) gives the tighter bound and thus can be regarded as preferable in 
those cases where the assessor knows each of E(pfdA ),  E(pnpB ),  αA,  αB,  pA,  pB . In both 
cases, the bounds will be tighter for larger values of αA,  αB . But of course larger values 
of αA,  αB  are associated with smaller values of pA,  pB , and if these are too small the 
bounds on the marginal means in Theorem 4 will be violated.  
The tightest bound would occur if the assessor’s percentiles ( pA,  pB ) coincided exactly 
with his marginal means E(pfdA ),  E(pnpB )  - in which case (a) and (b) give the same 
bound.  Is it feasible that an assessor would be able to make them coincide in this way? In 
some cases an assessor may be prepared to specify a complete marginal distribution for 
each parameter (e.g. by accepting a parametric family, such as a 2-parameter Beta 
distribution, that is “fixed” by the determination of two percentiles – see Section 3). In 
that case the assessor will know E(pfdA ),  E(pnpB ) , he can choose pA, pB to coincide with 
these values, and then compute the corresponding αA,  αB  which will give the tightest 
bound. 

3 Confidence bounds for system pfd 
A different approach from the above obtains conservative confidence bounds for the 
system pfd, again without requiring estimation of the dependence of the assessor’s beliefs 
about the unknown parameters pfdA and pnpB. 
As before, we assume that the expert can provide a marginal percentile for each 
parameter, as in (9). We again use the LR result concerning aleatory uncertainty. 
Given these beliefs of the assessor concerning the individual channels of the 1-out-of-2 
system, we are interested in obtaining a confidence bound for the system pfd. That is, we 
want to evaluate the probability 

€ 

P(pfdsys < psys )   (19) 

for some value of psys. 

Theorem 5 
Given the confidence bounds in (9), i.e. 

€ 

P(pfdA < pA ) =1−αA

P(pnpB < pB ) =1−αB

 

we have 

€ 

P(pfdsys < pA × pB ) >1− (αA +αB ) (20) 
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Proof: 
From (2) 

€ 

P(pfdsys < pA × pB ) > P(pfdA × pnpB < pA × pB ) (21) 

Now 

€ 

P(pfdA × pnpB > pA × pB )
< P(pfdA > pA )+P(pnpB > pB )−P(pfdA > pA, pnpB > pB )

 (22) 

This is because the left hand side is the probability mass associated with the area above 
the hyperbola in Figure 3; this is smaller than the probability mass associated with the L-
shaped region comprising rectangles ABED, BCFE, EFKH; which in turn is equal to 
probability masses of BCKH plus ACFD minus BCFE; these three probability masses 
correspond to the three terms on the RHS of (22), in the same order. 
 

 
 

Figure 3. Essentially as Figure 1. Here the probability mass associated with the 
area below the hyperbola, pfdApnpB= pApB, corresponds to the probability on the 
right hand side of equation (17).  

 
The last term on the right hand side of (22) is (most likely) not known – it would require 
the assessor to know about dependence between beliefs about parameters (which is 
precisely what causes difficulties in the LR approach). So, conservatively, we have 
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€ 

P(pfdA × pnpB > pA × pB ) < P(pfdA > pA )+P(pnpB > pB ) (23) 
So finally 

€ 

P(pfdsys < pA × pB ) > P(pfdA × pnpB < pA × pB )
=1−P(pfdA × pnpB > pA × pB )

 

€ 

>1−P(pfdA > pA )−P(pnpB > pB ) =1− (αA +αB ) 
which completes the proof. 
 
Informally, the theorem states that the system claim is the product of the channel claims 
(pA × pB ) , and the doubt in this system claim is simply the sum of the channel claim 
doubts (αA +αB ) . 

Example 5 
For example, if he is 95% confident (5% doubt) that pfdA is smaller than 10-5, and 95% 
confident (5% doubt) that pnpB is smaller than 10-2, then he is at least 90% confident 
(5%+5%=10% doubt) that pfdsys is smaller than 10-7.  

Example 6 
If the assessor can provide two (or more) percentiles for each distribution, then multiple 
conservative percentiles can be generated for the distribution of pfdsys. So if, in additon to 
the two percentiles above, the assessor is 99% confident that pfdA is smaller than 10-3, and 
99.9% confident that pnpB is smaller than 10-1, the following conservative percentiles 
apply to his beliefs about the system pfd: 

1. Pfdsys is smaller than 10-4 with 98.9% confidence (doubt = 1.1%) 
2. Pfdsys is smaller than 10-5 with 94% confidence (doubt = 6%) 
3. Pfdsys is smaller than 10-6 with 94.9% confidence (doubt = 5.1%) 
4. Pfdsys is smaller than 10-7 with 90% confidence (doubt = 10%) 
 

Notice that the bounding confidence in 3 above is greater than that in 2, even though the 
claim in 3 is a stronger one (10-6 rather than 10-5): it should be recalled that these are 
conservative bounds, not exact values for confidence levels, and the “degree” of 
conservatism can vary. For example, an important contribution to the conservatism 
comes from ignoring the probability mass associated with the rectangle BCFE in Figure 
1, and this will vary according to the marginal claims pA, pB. 
This result can be generalized for the case where the assessor offers more than two 
percentiles for each distribution: 
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Corollary 
If the assessor offers several percentiles representing his beliefs about the parameters, as 
follows: 

€ 

P(pfdA < pA
(i) ) =1−αA

(i),  i =  1,  2,  ...,  m
P(pnpB < pB

( j ) ) =1−αB
( j) ,  j =  1,  2,  ...,  n

 (24) 

then all the following are conservative statements about the system pfd: 

€ 

P(pfdsys < psys = pA
(i) × pB

( j) ) >1− (αA
(i) +αB

( j) )  ∀(i, j)  (25) 

 
Notice that different (i,j) pairs may give the same “claim”, 

€ 

pA
(i) × pB

( j ) , for different values 
of the “doubt”, 

€ 

(αA
(i) +αB

( j) ) . Since all statements (25) are correct, it would be reasonable 
in such a case to use the smallest value of the doubt, since this will still be conservative. 
In some cases, an assessor may be prepared to provide complete distributions, FA, FB, to 
represent his marginal beliefs about the two parameters pfdA, pnpB. Typically this might 
happen when the assessor is prepared to accept some parametric family of distributions 
(e.g. Beta distributions) that approximate to his general beliefs, and he can “fix” a 
particular pair by declaring one or more percentiles for each. In that case there will be a 
continuous version of the corollary above. That is, there will be an infinite number of 
(αA,αB) pairs, each corresponding to one of an infinite number of (pA,pB) pairs. For each 
statement of the kind pfdsys< psys there will be an infinite number of conservative doubts, 
as in (25) above. It is appropriate, as above, to take the least conservative in each case, so 
we have: 

Theorem 6  
If, in a slightly extended notation, the functions  
P(pfdA > pA ) =αA (pA )  
and  
P(pnpB > pB ) =αB (pB )    
represent the assessor marginal doubts for all possible claims about the two parameters, 
there exists a bounding distribution for pfdsys: 

P(pfdsys < t) = max0<pA≤1
0, 1−αA (pA )−αB (t / pA )( )#$ %&  

Proof 
From (25) 
P(pfdsys < pA × pB )>1−αA (pA )−αB (pB )  
and  
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P(pfdsys < t)> maxpA . pB=t
0, 1−αA (pA )−αB (pB )( )"# $%= max0<pA≤1

0, 1−αA (pA )−αB (t / pA )( )"# $%  
and the result follows. 

         

                                          
                                

Figure 4 An example where the marginal distributions for pfdA and pnpB in the 
first two plots are respectively Beta(1.5, 3150) and Beta(1.5, 315). The third plot 
shows the resulting conservative (bounding) distribution for the system pfd. 

 
In the case where the marginal distributions are continuous, the function  
αA (pA )+αB (t / pA )  
has a stationary point at pA = pA

* satisfying the equation 

(pA
*)2 ⋅α 'A (pA

*) = t ⋅α 'B (t / pB
*)  
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and using this for all t we can obtain a bounding continuous distribution for pfdsys. 
Alternatively this can be found by numerical optimization. 
 
One way this result might be used is to take a particular level of doubt and propagate 
claims with this same fixed doubt throughout a case, or part of a case: 

Example 7 
Figure 4 shows a case where both of the marginal distributions for the parameters are 
Betas. In the Figure we show the percentiles corresponding to a doubt of 10% for each of 
the three distributions (the choice of 10% is purely for illustration – it is not intended to 
represent a realistic figure for real cases). At this level of doubt, claims of 1.0e-03 and 
1.0e-02 for pfdA and pnpB allow a claim of approximately 1.5e-05 to be made for the 
system pfd, and this is, of course, conservative. Readers may think that this near-product 
of the claims (1.5e-05 versus 1.0e-05), for the fixed 10% doubt, is rather a tight bound. 

Example 8 
Because complete marginal distributions for the parameters, and the distribution of the 
system pfd, are known in this case, it follows that the corresponding means are known: 
E(pfdA) = 0.000476, E(pnpB) = 0.00474 
and 
E(pfdsys) = 6.97e-06 
This compares favourably with the (unattainable) “perfect independence” case: 
E(pfdA). E(pnpB) = 2.26e-06. 
In fact, the Cauchy-Schwarz bound in this case, (15), is 3.75e-06 and is even tighter.  
However, the point of this approach, via a bounding distribution, is that it allows all 
bounding percentiles of the system pfd to be computed, not merely the mean.  

4 Discussion 
Problems concerning different kinds of dependence have dogged the use of multi-version 
design diversity to achieve high system reliability since the approach was first proposed 
in the 1970s. We would like to be able to build a 1-out-of-2 system from two design-
diverse software-based channels, assess the probabilities of failure on demand (pfds) of 
each, and then multiply these two numbers (each hopefully small) to obtain a very small 
number for the pfd of the overall system. Unfortunately, there is overwhelming evidence 
that the assumption of independence of failures of the two channels, required to allow the 
multiplication here, is not justified. Instead, it must be assumed that the channels will fail 
dependently, and the system pfd will be dependent on the degree of this dependence as 
well as on the individual channel pfds. Assessing this dependence directly, say from 
observation of the failure behavior of the channels in operational testing, seems to be as 
difficult as assessing the system pfd directly as a “black box”. When the required 



Reasoning about epistemic uncertainty   19 

 

reliability is very high – as is the case for some safety-critical systems – this is infeasible 
(Butler and Finelli 1993; Littlewood and Strigini 1993). 
This presents us with an impasse. Whilst there is plentiful evidence that the multi-version 
approach is effective, at least in some average sense, in achieving high reliability, we 
cannot usually assess the reliability of a particular diverse system. Such assessment does 
seem essential, of course, when these systems are critical and their failure may involve 
the loss of life. 
These problems of dependence concern aleatory uncertainty, i.e. uncertainty “in the 
world” about the failure behaviour of the different channels. The problems are 
compounded when epistemic uncertainty (uncertainty “about the world”) is also taken 
into account. So, for a 1-out-of-2 system we would not know the channel pfds with 
certainty, and, more importantly (and more problematically), there would be uncertainty 
about the dependence between the channel failure processes. Furthermore, there would be 
dependencies between these different epistemic uncertainties as well: for example, an 
assessor’s epistemic beliefs about the value of pfdA would usually be affected by his 
knowing the size of pfdB.  
Clearly, to assess the reliability or safety of a fault tolerant system – for example, for use 
in a wider system safety case – both aleatory and epistemic uncertainty need to be taken 
into account. Assessment of channel pfds is relatively straightforward (although it may be 
very costly). Quite simple statistical analysis from operational testing will allow estimates 
of individual channel pfds to be obtained, together with confidence bounds that are one 
way of quantifying epistemic uncertainty. Much more difficult, however, is the problem 
of expressing jointly an assessor’s uncertainty about two pfds and their dependence, 
when (as seems likely) these three are not independent. 
The work reported here continues our earlier research on these problems. In particular, it 
extends earlier work so that conservative assessments of system reliability can be 
obtained without the need to understand any of the dependencies described above. 
In the LR work, it was shown how to avoid these problems at the aleatory level. We 
showed that, for a 1-out-of-2 system in which one channel is possibly perfect, the system 
pfd is bounded above by the simple product of pfdA and pnpB: that is, the (presumed) 
aleatory dependence between failures of the channels is not required to be known. The 
result may be very pessimistic (compared, for example, with an estimate of the system 
pfd obtained from black-box estimation following massive real-life operational 
exposure). 
In the present work we extend these results by addressing the problem of dependence at 
the epistemic level. The work here was partly prompted by the difficulties we found in 
implementing the original approach in (Littlewood and Rushby 2011). There we 
introduced a parameter, C, to represent the probability that an assessor’s beliefs about 
pfdA and pnpB are not independent. In the event that these beliefs are not independent, it is 
assumed conservatively that the system fails on a randomly selected demand with 
certainty; in the event that they are independent, the system pfd is simply the product of 
the means of the assessor’s marginal distributions for the parameters.  
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It seems likely that this approach will be very conservative: the system pfd can never be 
better than C. In addition, C seems very difficult to reason about – at least to produce a 
convincing numerical estimate. 
We have presented here two alternatives to the original treatment of epistemic uncertainty 
in (Littlewood and Rushby 2011). In each case, knowledge of epistemic dependence is 
not required: the (conservative) results depend only on the two marginal distributions of 
(i.e. assessor beliefs about) the parameters.  
The first approach, in Section 2, obtains bounds as in LR on system pfd – or, more 
precisely, on the assessor’s posterior mean pfd. The different bounds are based upon 
different representations of the assessor’s beliefs about the parameters – i.e. what he 
knows, or is prepared to declare. The first bound is a function only of the four numbers 
that define a single percentile of the assessor’s beliefs about pfdA and a percentile of pnpB. 
This bound turns out to be very conservative: it is dominated by the smallest channel 
“doubt”, αA, and so is rather similar to the LR result in which the “independence doubt”, 
C, plays a similar role. We therefore considered a refinement in which the assessor is 
prepared, in addition, to provide for each parameter an upper bound which he believes the 
parameter cannot exceed. This second bound, not surprisingly, turns out to be less 
conservative. The third bound requires knowledge of the first two moments of the 
assessor’s marginal distributions for the parameters. Finally, the fourth bound involves 
both means and percentiles of the assessor’s marginal distributions for the parameters. 
We presented illustrative numerical examples for the different bounds. We might expect 
that the more the assessor knows about the channels, the stronger the claims he can make 
about the system. This seems to be the case here, where the bounds arising from Theorem 
4 involve both means and percentiles and seem to be tighter than the earlier ones. 
In our second approach to epistemic uncertainty we obtain a conservative confidence 
bound for the system pfd. This takes a particularly simple form in the case where the 
assessor provides only a single percentile for the distribution of each parameter: for an 
assessor’s channel percentiles in (claim, doubt) form, i.e. (pfdA,αΑ), (pnpB,αΒ), the system 
pfd is smaller than the product of the channel claims, with doubt equal to the sum of the 
channel doubts. We generalize this result to the case where the assessor can provide 
multiple percentiles for the two marginal distributions, and finally to the case where he 
has a complete distribution for each parameter, for which we obtain a bounding 
distribution for the system pfd. 
Some of these new results are, we believe, better than those arising from the epistemic 
analysis in (Littlewood and Rushby 2011). Most importantly, they seem likely to be 
easier to obtain in practice because of the difficulties in arriving at a value for C in that 
work. That is because the results here avoid completely the difficult problems of 
estimating dependence, either at the aleatory or at the epistemic levels. 
It is an interesting question which of our two approaches is preferable. It seems likely that 
considerable conservatism has been the price for obtaining all these results – including 
the original LR result based upon aleatory independence between A failure and B 
(non)perfection. The results in Sections 2 and 3 all introduce further conservatism: is 
there a case to be made that one is less conservative than the other? This is hard to answer 
since they are so different. In terms of the assessor’s posterior distribution for system pfd, 
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the results in Section 2 concern only a conservative value for the mean of this 
distribution: this is the number that the assessor might use in answer to the question 
“what is the pfd of this system?” and be confident that his answer was conservative. The 
results of Section 3, in contrast concern, in their simplest form, a single point on the right 
tail of the distribution of the system pfd (via a conservative estimate of a percentile). The 
more general results provide several conservative percentiles, and in their most general 
form a complete conservative distribution. 
We think there is a tentative case to be made that this confidence bound, or bounding 
distribution, approach of Section 3 may be less conservative in some useful sense that is 
worth further study. Being able to make a system claim that is the product of the channel 
claims, at a price “only” of the sum of the channel doubts seems attractive. For example, 
consider an assessor who is “happy” to make claims at channel level with 1% doubt. It 
seems reasonable that he would be “quite happy” with a claim at system level with 2% 
doubt. If so, he has a strong claim at system level, namely the product of the channel 
claims, according to the simplest result of Section 3. 
Of course, choice between the two approaches is likely to depend upon how the results 
will be used, and in particular upon the demands of a wider safety case for which claims 
about the present 1-out-of-2 system (e.g. a protection system) are only a part. The 
motivation in the original LR work for obtaining a bound for the assessor’s posterior 
expected system pfd (as we have done here in Section 2) was that, for a Bayesian 
assessor, this is his system probability of failure on demand. It is the number he would 
give in answer to the question: “What is the probability that the system will fail on a 
randomly selected demand?” However there are some subtleties here that provide pitfalls 
for the unwary. For example, the answer to the question “What is the probability that the 
system will survive the n demands it will experience in its lifetime?” is not a simple 
function of the posterior expected system pfd of section 2. That is: 

E (1− pfdsys )
n( ) ≠ 1−E(pfdsys )( )

n  

It follows that the results of Section 2 do not provide an answer to this question, and other 
similar ones, directly. 
A different view is that the assessor is uncertain about the system pfd – his uncertainty 
being represented by his posterior distribution for this – and so he should propagate this 
uncertainty through the wider plant safety case (alongside, for example, uncertainties 
associated with other subsystems), so that any top-level plant claim will have an 
associated confidence. This is more in the spirit of the results of Section 3. However, it 
should be noted that such propagation of “complete” uncertainty throughout a complex 
wider case could be very difficult. 
Finally, it is worth emphasising that all the results here depend critically on the basic LR 
result concerning aleatory uncertainty: that system pfd can be conservatively bounded by 
the simple product of channel A’s pfd and channel B’s pnp. None of these results can be 
applied to the case of a 1-out-of-2 system in which pfd claims must be made about both 
channels (because each is too complex for a claim of “possibly perfect”). However, we 
maintain our belief that this special architecture is a very plausible one for certain 
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systems (e.g. some protection systems, e.g. some architectures in which the second 
channel is a simple monitor).   
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Appendix 
 
Lemma:  
If 
0≤X≤1, and P(X>p)=α, and E(X)≤p, 
then 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

Proof:  

Let E(X) =m  and E(X 2 ) = s2   

We show that there exists a two-point discrete random variable, Y, as follows: 
P(Y = y) =1−α
P(Y = z) =α

 

where  
0 ≤ y ≤m ≤ z ≤1 

and 
E(Y ) = y× (1−α)+ z×α =m
E(Y 2 ) = y2 × (1−α)+ z2 ×α = s2

       (A1) 

From (A1) we have y = m− z×α
1−α

 and 

E(X 2 ) = E(Y 2 ) =G(z) = (m− z×α)
2

1−α
+ z2α  

If α > 0  the equation G(z) = s2  has a positive real root: 

z =m+ (s2 −m2 )×1−α
α

 

since s2 −m2 =Var(X) ≥ 0 . 

It follows that the random variable Y always exists. 
Now, if z>0, then G(z) is increasing because 

dG(z)
dz

= −
2α(m− z×α)

1−α
+ 2zα = −2mα + 2α

2z+ 2αz− 2α 2z
1−α

=
2α(z−m)
1−α

≥ 0 ; 

and 
y≥0 implies z ≤m /α  
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therefore 

E(X 2 ) = E(Y 2 ) ≤m2 /α = E(X)2 /α ≤ p2 /α   

that is 

E(X 2 ) ≤ E(X)
2

α
≤
p2

α
 

 
QED 
 
 
 


