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The IFACD model

1 INTRODUCTION

This paper develops an independent factor model for the conditional density of financial returns with

time-varying skewness and kurtosis. In the presence of nonnormally distributed asset returns, optimal

portfolio selection techniques require estimates of variance-covariance parameters, along with estimates

of higher-order moments and co-moments of returns. The importance in portfolio analysis of modelling

higher conditional moment dynamics has been highlighted by, inter alia, Barone Adesi et al. (2004),

Beaulieu et al. (2007, 2009), Chabi-Yo et al. (2008), Harvey and Siddique (1999), Martellini and

Ziemann (2010), Mencia and Sentana (2009, 2012), Sentana (2009), and Wilhelmsson (2009). In the

univariate context, models that include higher moments dynamics have received growing attention.

See for example Jondeau and Rockinger (2003, 2009), Harvey and Siddique (1999), Rockinger and

Jondeau (2002), and Wilhelmsson (2009). However, little effort has been devoted to incorporate such

dynamics in a multivariate context, mainly because of the difficulty to parameterize marginal and

joint distributional parameters. There are very few notable exceptions. Mencia and Sentana (2009)

adopt a flexible family of multivariate asymmetric distributions, known as location-scale mixtures of

normals, which nests as particular cases several important elliptical symmetric distributions. When the

distribution of asset returns can be expressed as a location-scale mixtures of normals, then the portfolio

conditional distribution has time-varying higher moments arising from the interaction of the dynamics

of the location, scale and skew parameters. On the other hand, Jondeau and Rockinger (2009) propose

an asymmetric DCC-skew-T model with higher moment dynamics, but the presence of the skew and

shape parameters in the conditional likelihood makes the estimation feasible only for a few assets.

Broda and Paolella (2009) propose a Conditionally Heteroskedastic Independent Component Analysis

of Generalized Orthogonal GARCH of van der Weide (2002), the CHICAGO model, which is based

on a multivariate affine representation of the Normal Inverse Gaussian (maNIG), originally proposed

by Schmidt et al. (2006). In the CHICAGO model higher moments of the conditional distribution

of asset returns are explicitly modelled albeit they are constant. The estimation of the CHICAGO

model is based on the Independent Components Analysis (ICA) method used in Chen et al. (2008)

and Zhang and Chan (2009). Unlike other models, independence offers a greater deal of flexibility

in modelling the full marginal dynamics within a multivariate affine factor framework, enabling the

calculation of conditional portfolio density used in risk management applications.

In this paper, we propose an Independent Factor Autoregressive Conditional Density model (IFACD)
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which extends the CHICAGOmodel by allowing for a flexible parametrization of the dynamics of factor

higher moments. The marginal density of each independent factor is supposed to be a one-dimensional

Generalized Hyperbolic (GH) distribution, with skew and shape parameters modelled with autoregres-

sive dynamics, as in the Autoregressive Conditional Density (ACD) model of Hansen (1994). This

entails that the conditional density of returns is the multivariate affine GH (maGH) of Schmidt et al.

(2006). An interesting implication of this factor representation is that conditional higher moments of

asset returns and portfolios have a closed-form expression, and the portfolio conditional density can

be obtained by Fast Fourier Transform (FFT).

The paper is organized as follows. Section 2 introduces the IFACD model. In Section 3, we

introduce the conditional maGH distribution with higher moments dynamics. Key features such as

the conditional higher comoment tensors are presented in Section 4, where we also propose a portfolio

conditional density representation. The estimation of the model and the ICA algorithm are outlined

in Section 5, where we report the results of a risk and portfolio management application, comparing

IFACD to CHICAGO and DCC(T) models, using a representative dataset of international equity

indices spanning the last two decades. Section 6 concludes. In Appendices A and B, we details the

GH density and its characteristic function.

2 THE INDEPENDENT FACTOR MODEL

Factor ARCH models, originally introduced by Engle et al. (1990) and with foundations in the Arbi-

trage Pricing Theory of Ross (1976), are based on the assumption that returns are generated by a set

of unobserved underlying factors that are conditionally heteroscedastic. The dependence framework

is static as a consequence of large scale estimation in a multivariate setting. Consider a set of N

assets whose returns rt are observed for T periods, with conditional mean E[rt|Ft−1] = mt, where

Ft−1 is the σ-field generated by the past realizations of rt, i.e. Ft−1 = σ(rt−1, rt−2, . . .). The Gener-

alized Orthogonal GARCH (GO-GARCH) model of van der Weide (2002) maps rt −mt onto a set of

unobserved independent factor f t (or ”structural errors”)

rt = mt + ǫt t = 1, . . . , T (1)

ǫt = Af t (2)
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The IFACD model

where A is invertible and constant over time and may be decomposed into the de-whitening Σ1/2,

representing the square root of the unconditional covariance matrix, and orthogonal matrix, U

A = Σ1/2U , (3)

and f t = (f1t, . . . , fNt)
′. In this model it is assumed that the factors have the following specification

f t = H
1/2
t zt (4)

where Ht = E[f tf
′
t|Ft−1] is a diagonal matrix with elements (h1t, . . . , hNt) which are the conditional

variances of the factors, and zt = (z1t, . . . , zNt)
′. The random variable zit is independent of zjt−s ∀j 6= i

and ∀s, with E[zit|Ft−1] = 0 and E[z2it] = 1, this implies that E[f t|Ft−1] = 0 and E[ǫt|Ft−1] = 0.

The factor conditional variances, hi,t, can be modelled as a GARCH-type process. The unconditional

distribution of the factors is characterized by

E[f t] = 0 E[f tf
′
t] = IN (5)

which, in turn, implies that

E[ǫt] = 0 E[ǫtǫ
′
t] = AA′. (6)

It follows that the returns can be expressed as

rt = mt +AH
1/2
t zt. (7)

The conditional covariance matrix, Σt ≡ E[(rt −mt)(rt −mt)
′|Ft−1] of the returns is given by

Σt = AH tA
′. (8)

The estimation of GO-GARCH by maximum likelihood suffers severely from dimensionality issues.

Alternative approaches such as nonlinear least squares and method of moments for the estimation of

U have been proposed in Boswijk and van der Weide (2006, 2011). In this paper, we estimate the U by

ICA as in Broda and Paolella (2009) and Zhang and Chan (2009). One of the computational advantages

offered by the generalized orthogonal approach is that following the estimation of the independent
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factors, the dynamics of the marginal density parameters of those factors may be estimated separately.

In this context, we propose to extend the dynamics to the full conditional density parameters to

model in a multivariate setting time-varying higher moments. We consider the dynamics of the

independent factors in the context of an expanded GO-GARCH model with dynamics for the full

conditional parameters. While any multivariate distribution, admitting an affine representation may

be used in this setup, we choose the GH distribution of Barndorff-Nielsen (1977), in the multivariate

affine representation introduced by Schmidt et al. (2006), for its flexibility and rich parametrization,

capturing some of the most important features of observed returns such as asymmetry and fat tails.

3 AUTOREGRESSIVE CONDITIONAL GH DISTRIBUTION

The GH distribution is a variance-mean mixture of normal and Generalized Inverse Gaussian (GIG)

distributions. It is a flexible distribution, allowing for skewness and fat tails, nesting a large number of

distributions such as the Hyperbolic, Normal Inverse Gaussian, Variance Gamma, skew-Laplace, and

as limiting cases, the Normal and skew-T distributions. The n-dimensional GH distribution allows for

different marginal skewness. However, Schmidt et al. (2006) point out that the margins of a random

vector that is GH distributed are not mutually independent for some choice of the scaling matrix.

As a consequence, they propose an alternative, non-elliptical, maGH distribution with independent

margins allowed to take separate values for skewness and shape. See also Ferreira and Steel (2006) for

a multivariate skew-T density with independent margins.

Based on the parametrization of Schmidt et al. (2006), the vector of returns rt, which is expressed

as a linear transformation of independent factors f t ∈ R
N as in (7), is conditionally maGH distributed

rt|Ft−1 ∼ maGHN (mt,Σt,ωt), (9)

where ωt = (ω1t, . . . , ωNt)
′ and ωit = (λi, αit, βit)

′ represent the time-varing conditional shape and

skew parameter vectors, respectively. In the IFACD model we assume that the standardized random

variables zit are conditionally distributed as a standardized GH. In general, the GH density of the

random variable Y is given by

gh (y;λ, µ, δ, α, β, ) =
Kλ−1/2

(
α
√
δ2 + (y − µ)2

)
eβ(y−µ)

c(δ2 + (y − µ)2)(1/2−λ)/2
, (10)
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where

c =

(
α2 − β2

)λ/2
√
2παλ−1/2δλKλ

(
δ
√
α2 − β2

) .

Alternative distributions are nested in (10), e.g. the NIG distribution is obtained by setting λ = −1
2 ,

the Hyperbolic with λ = n+1
2 , and the skew-Student by setting λ = −ν

2 (with ν representing the

degrees of freedom) and α → |β|, where parameters β and α are the skewn and shape parameters

of the distribution, respectively. A number of location and scale invariant parameterizations of the

GH distribution have been proposed in the literature. For the standardized GH distribution of zit we

choose the location scale invariant representation (ρ, ζ) because we are interested in ACD modelling

of skewness and kurtosis,

ζ = δ
√
α2 − β2 , ρ =

β

α
. (11)

The relation between the parameters (ρ, ζ) and (α, β, δ, µ) and the standardization of the GH random

variable are detailed in Appendix 6. The skew and shape parameters (ρ, ζ) jointly determine the

skewness and kurtosis (Appendix 6 reports the expressions of skewness and kurtosis of the NIG

distribution). Bläesild (1981) proved that a linear transformation such as aX+ b of a random variable

X following a GH distribution in (10) is GH distributed with parameters λ∗ = λ, α∗ = α/ |a|,

β∗ = β/ |a|, δ∗ = δ |a|, and µ∗ = aµ + b. The choice of alternative parameterizations involves

the appropriate transformation. Given (4), the single factors, fit, i = 1, . . . , N , are conditionally

distributed as a gh(fit;λi, µit
√
hit, δit

√
hit, αit/

√
hit, βit/

√
hit).

We now turn to the specification of the time-varying skew and shape parameters. We adopt

a quadratic dynamics for the skew parameter (ρ̆i,t) and a piece-wise linear dynamics for the shape

parameter (ζ̆i,t)

ρ̆it = χ0i + χ1iκ1izit−1 + χ2iz
2
it−1 + ξ1iρ̆it−1

ζ̆it = κ0i + κ1izit−11[zit−1<−1] + κ2izt−11[zit−1>1] + ψ1iζ̆it−1,

(12)

where 1 is the indicator function such that positive (negative) standardized innovations, larger (smaller)

than one standard deviation, have a different impact on the skew dynamics. In this way the shape

responds only to shocks larger (or smaller) than one conditional standard deviation, because shocks

below this threshold are less likely to be relevant and could introduce excess noise. The logistic
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transform is then used to map the unconstrained processes ρ̆i,t and ζ̆i,t into ρi,t and ζi,t:

ρit = −0.99 +
1.98

1 + e−ρ̆it
(13)

ζit = 0.1 +
24.9

1 + e−ζ̆it
(14)

where the bounds of the distributional parameters are [−0.99, 0.99] and [0.1, 25] for ρ and ζ, respec-

tively. We limit the upper bound of ζ to 25, since values beyond this point lead to very little change in

the skewness and kurtosis, with the range 0.1 to 25 representing most of the cases, whereas the bounds

for ρ are simply dictated by the GH distribution. In theory, the GIG shape parameter λi is allowed

to vary for each factor, but this introduces an added layer of complexity since different combinations

of λ, ρ and ζ lead to the same or close likelihood. Alternatively, choosing a value of λ equal to −0.5,

which corresponds to the NIG distribution, we have enough flexibility to account for the observed

non-Gaussian features of financial time series. This is our choice in the empirical implementation of

IFACD model in Section 5.

In the next section, we present the conditional co-moments and portfolio conditional density im-

plied by the IFACD model, employed in the approximation of the expected utility in Section 5.4.

4 CONDITIONAL CO-MOMENTS AND

PORTFOLIO CONDITIONAL DENSITY

The novelty of the IFACD model is that the co-moments are now time-varying, as a consequence of

the ACD specification of the conditional density of the standardized innovations. The conditional

co-moments of rt of order 3 and 4 are represented as tensor matrices

M3
t = A′M 3

f,t(A⊗A), M4
t = A′M 4

f,t(A⊗A⊗A), (15)

where M3
f,t and M4

f,t are the (N × N2) conditional third comoment matrix and the (N × N3)

conditional fourth comoment matrix of the factors, respectively. M3
f,t and M4

f,t, are defined as

M 3
f,t =

[
M3

1,f,t,M
3
2,f,t, . . . ,M

3
N,f,t

]
(16)

M 4
f,t =

[
M4

11,f,t,M
4
12,f,t, . . . ,M

4
1N,f,t| . . . |M4

N1,f,t,M
4
N2,f,t, . . . ,M

4
NN,f,t

]
(17)
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where M3
k,f,t, k = 1, . . . , N and M 4

kl,f,t, k, l = 1, . . . , N are the (N × N) submatrices of M3
f,t and

M 4
f,t, respectively, with elements

m3
ijk,f,t = E[fi,tfj,tfk,t|Ft−1]

m4
ijkl,f,t = E[fi,tfj,tfk,tfl,t|Ft−1].

Since the factors fit can be decomposed as zit
√
hit, and given the assumptions on zit, then E[fi,tfj,tfk,t|Ft−1] =

0. It is also true that for i 6= j 6= k 6= l, E[fi,tfj,tfk,tfl,t|Ft−1] = 0 and when i = j and k = l

E[fi,tfj,tfk,tfl,t|Ft−1] = hithkt.

Thus, under the assumption of mutual independence, all elements in the conditional co-moments

matrices with at least 3 different indices are zero. Finally, we standardize the conditional co-moments

to obtain conditional coskewness and cokurtosis of rt

Sijk,t =
m3

ijk,t

(σi,tσj,tσk,t)
, Kijkl,t =

m4
ijkl,t

(σi,tσj,tσk,tσl,t)
, (18)

where Sijk,t represents the coskewness between elements i, j, k of rt, σi,t the standard deviation of

ri,t, and in the case of i = j = k represents the skewness of asset i at time t, and similarly for the

cokurtosis tensor Kijkl,t.
1

An important question that can be addressed in this framework is the determination of the portfolio

conditional density, an issue of vital importance in the risk management application. Let Rt be the

portfolio return

Rt = w′
trt = w′

tmt + (w′
tAH

1/2
t )zt (19)

where H
1/2
t is obtained from the ACD dynamics of estimated f t. The portfolio conditional variance,

1A natural application of return co-moments matrices is the news impact surface (as first suggested by Kroner and
Ng, 1998, and extended by Jondeau and Rockinger, 2009) which provides additional insights on the effect of factor shocks
on the asset co-moments. The results of this application are available upon request.
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skewness and kurtosis in closed form are

σ2R,t = w′
tΣtwt,

sR,t =
w′

tM
3
t
(wt ⊗wt)

(w′
tΣtwt)

3/2
,

kR,t =
w′

tM
4
t
(wt ⊗wt ⊗wt)

(w′
tΣtwt)

2 ,

(20)

where Σt, M
3
t and M4

t are derived in (8) and (15), respectively. The portfolio conditional density

may be obtained via the inversion of the characteristic function through the FFT method as in

Chen et al. (2007) (see Appendix 6 for details) or by simulation. We implement the FFT for its

accuracy and speed. While the N -dimensional NIG distribution is closed under convolution, when the

distributional parameters α and β are allowed to be different across assets, as in the case of IFACD

model, this property no longer holds. Provided that zt is a N -dimensional vector of innovations,

marginally distributed as 1-dimensional standardized GH, the density of weighted asset return, witrit,

is

wi,tri,t = (wi,tmi,t + wi,tzi,t) ∼ maGH1

(
wi,tµi,t + wi,tmi,t, |wi,t| δi,t, λi,

αi,t

|wi,t|
,
βi,t
|wi,t|

)
(21)

where w′
t is equal to w′

tAH
1/2
t , and wi,t is the i -th element of wt, mi,t the conditional mean of the

i -th underlying asset. In order to obtain the density of the portfolio, we must sum the individual

weighted densities of zi,t. The characteristic function of the portfolio return Rt is

ϕR(u) =

n∏

i=1

ϕw̄Zi
(u) = exp


iu

d∑

j=1

µ̄j +

d∑

j=1

(
λj
2

log
(γ
υ

)
+ log

(
Kλj

(δ̄j
√
υ)

Kλj
(δ̄j

√
γ)

))
 (22)

where, γ = ᾱ2
j − β̄2j , υ = ᾱ2

j − (β̄j + iu)2, and (ᾱj , β̄j , δ̄j , µ̄j) are the scaled versions of the parameters

(α, βi, δi, µi) as shown in (21). The density is accurately approximated by FFT as follows

fR(r) =
1

2π

∫ +∞

−∞

e(−iur)ϕR(u)du ≈ 1

2π

∫ s

−s
e(−iur)ϕR(u)du. (23)

Expression (23) is the base for the calculation of VaR in the empirical application reported in Section

5.

10



The IFACD model

5 EMPIRICAL APPLICATION

In this section, we report results of an empirical exercise using data on 14 MSCI Global Equity indices

representing a cross section of countries in North America (U.S., Canada, Mexico), Asia (Australia,

Hong Kong, Japan, Singapore) and Europe (Germany, France, Spain, Italy, U.K., Switzerland, Swe-

den), from 12/08/1996 to 28/12/2011, and obtained from Yahoo Finance. The period includes the

Asian Financial Crisis of 1997, the Russian Financial Crisis of 1998, the Dot-Com bubble of 2000 and

subsequent economic downturn of 2002, the Chinese Stock Bubble of 2007, the US Bear Market of

2007-2009, the European sovereign debt crisis of 2010 as well as the flash crash of May 2010.2 First,

we report (Section 5.2) an in-sample comparison of the IFACD and CHICAGO models in order to

obtain some insight into the types of dynamics and parametrization of the factors. In Section 5.3, we

report the results of an out-of-sample risk forecast evaluation using randomly weighted portfolios to

avoid any bias arising from the uncertainty in selecting any particular set of weights. In Section 5.4,

a Taylor series expansion of the Constant Absolute Risk Aversion (CARA) utility function is used for

an out-of-sample portfolio allocation to contrast the time-varying versus the static representation of

higher conditional co-moment matrices.

In the following subsection, we briefly describe the ICA method, used to estimate the independent

factors, and we introduce the likelihood function.

5.1 Estimation Procedure

The estimation procedure of the IFACD model can be summarized as follows. First, we compute the

ICA of the data zt = Σ̂
−1/2

ǫ̂t, where ǫ̂t are the OLS residuals, i.e. ǫ̂t = rt− m̂t, and Σ̂
1/2

is obtained

from the eigenvalue decomposition of the OLS residual covariance matrix. ICA provides an estimate of

the orthogonal matrix U in (3) as in Broda and Paolella (2009) and Zhang and Chan (2009). The ICA

is a computational method for separating multivariate mixed signals, x = [x1, ..., xn]
′, into additive

statistically independent and non-Gaussian components, s = [s1, ..., sn]
′, such that x = Bs. The esti-

mate of the linear mixing matrix B can be obtained via the algorithm, proposed and implemented by

Hyvärinen and Oja (2000). The FastICA algorithm is based on negentropy, which is an optimal esti-

mate of non-Gaussianity, as shown by Comon (1994), is invariant to invertible linear transformations.

Thus the estimated f t are obtained as f̂ t = Σ̂
−1/2

Ûzt. Second, because of the assumption of indepen-

2The tickers of these iShare tradeable indices, in the order presented are: SPY, EWC, EWW, EWA, EWH, EWJ,
EWS, EWG, EWQ, EWP, EWI, EWU, EWL, EWD.
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dence, the likelihood function of the IFACD model is greatly simplified. The conditional log-likelihood

function is expressed as the sum of the individual conditional log-likelihoods, derived from the condi-

tional marginal densities of the factors, i.e., gh(f̂it) ≡ gh(f̂it;λi, µit
√
hit, δit

√
hit, αit/

√
hit, βit/

√
hit),

plus a term for the mixing matrix A, estimated in the first step by FastICA

L(ǫ̂t |θ,A) = T log
∣∣A−1

∣∣+
T∑

t=1

N∑

i=1

log
(
gh(f̂it|θi)

)
(24)

where θ is the vector of unknown parameters in the marginal densities. The possibility of modelling the

independent factors separately not only increases the flexibility of the model but also its computational

feasibility, since the multivariate estimation reduces to N univariate optimization steps plus a term

which depends on the factor loading matrix.

5.2 In-sample Estimation

In Table 1, we report the results of the first in-sample fit of the IFACD and CHICAGO models for the

period 19/03/1996 to 17/03/2000, in order to illustrate the factors’ dynamics and their significance.

The CHICAGO model consists of (1)-(8), but with the conditional distribution of fit which has only

the second moment time-varying and constant higher moments, and the matrix U in (3) estimated by

FastICA. Both models are estimated under the maNIG distribution. Because of the presence of first

degree autocorrelation in the MSCI index dataset, the returns were demeaned and filtered with an

AR(1) model prior to applying the FastICA algorithm. In both models, the factor variance dynamics

follow a GARCH(1,1) model with parameters (ω,α1, β1), and in the IFACD the skew and shape

dynamics follow a first order quadratic and piece-wise linear model with parameters (χ0, χ1, χ2, ξ1)

and (κ0, κ1, κ2, ψ1) respectively, as in (12). Given that ICA is conceived as a linear noiseless model, the

standard errors are computed only in the estimation of the factors’ conditional distribution parameters.

Starting with the CHICAGO model, the very small absolute value and lack of significance of

the skew parameter ρ indicates that skewness is not very pronounced in this sample, and the skew

dynamics of the IFACD model somewhat bear this out since very few factors appear to have significant

skew dynamics. The same cannot be said of the shape parameter ζ which is significant in the majority

of factors and varies between 1.7 and 2.5, with the exception of Factor 10 which does not appear

to have significant skew or shape, and in combination with a zero skew parameter translates to an

excess kurtosis of between 1.7 and 1.2 respectively. The shape dynamics are also significant for the

12
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majority of the factors in the IFACD model. With regard to the variance dynamics, they appear to be

the same across the two models, though there is some evidence from Factors 1, 12 and 14 that when

persistence is very high in the CHICAGO model, the IFACD model persistence instead is much lower

as the shape dynamics accommodate expansions and contractions in the conditional density shape

which would otherwise be completely captured by the GARCH variance dynamics. Finally, while the

factor log-likelihoods (and hence model log-likelihood) of the IFACD model are always higher than

those of the CHICAGO model, the higher BIC of the former indicates that there is a small penalty

for the overparametrization.

5.3 Out-of-sample Risk Forecast

The out-of-sample comparison is based on one-step ahead forecasts. We estimate the models every

five days, keeping a constant sample size, for a total of 522 re-estimations resulting in 2610 forecasts.

Starting from 17/03/2000, the last 4 years of daily log returns are used to estimate IFACD models,

CHICAGO, and DCC(T). In order to evaluate the contribution that the ACD specification gives to

the model’s performance, in addition to the IFACD model with the time-varying ρt and ζt, we consider

two restricted versions of the model which have constant skew and time-varying shape, i.e. (ρ, ζt), and

time-varying skew and constant shape, i.e. (ρt, ζ), respectively. We also include the DCC(T) model so

as to gauge the cost of IFACD which is based on unconditional independence. The model is specified

and estimated as in Bauwens and Laurent (2005).

The consistency between the IFACD and CHICAGO models was guaranteed by using the same

mixing matrix A across the two models for each estimation window so that the only difference is purely

in the dynamics of the factors. Because of the non-dynamic nature of the mixing matrix in the IFACD

model, the rolling window re-estimation scheme with a fixed size of 4 years enables to capture any

change to the loadings, though tracking such changes is not trivial since the independent components

are identified only up to a permutation and scaling of the sources. To evaluate the forecast performance

of the models, a weighted linear combination of the forecast density was used in order to form portfolios

from which measures could easily be calculated. To avoid bias from any particular weighting scheme,

1000 + 1 random portfolios are generated by sampling weights from the exponential distribution (the

1001th is the equally weighted portfolio) and dividing by the sum of the randomly generated deviates

to create the full investment constraint. The weighted densities of the IFACD and CHICAGO models

are estimated using the FFT method described in Section 4 from which quantile and distribution
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functions are easily created. For DCC(T) model the portfolio moments used to compute functions of

the density are obtained using the standard linear and quadratic transformations of the forecast mean

and covariance matrix. The following tests are used to evaluate the forecasting accuracy of the risk

models: Berkowitz (2001) for testing the predictive density, Kupiec (1995) and Christoffersen (1998)

for VaR exceedances, and Christoffersen and Pelletier (2004) for VaR Durations.

Table 2 reports the result under the different tests for the equally weighted (EW) and average of

the randomly weighted (RAND) portfolios. For the Berkowitz test, there is no significant difference

between the factor models, with a rejection rate among the randomly weighted portfolios of about 16%

and 14% for the IFACD(ρt, ζt) and CHICAGO models respectively, indicating that overall both models

fit the out-of-sample forecast density well. The same is true for the IFACD models with constrained

ACD dynamics. The DCC(T) model on the other hand does not fit the conditional weighted forecast

densities very well, with more than 50% rejection rate.

For the VaR tests, both at the 1% and 5% coverage rates, the IFACD(ρt, ζt) model performs better

than the other two IFACD models and the CHICAGO, as evidenced by the large difference in rejection

rates. In the VaR Duration test with 1% coverage, the IFACD(ρt, ζt) and IFACD(ρ, ζt) dominate the

CHICAGO. However, the DCC(T) outperforms the factor models and this is indicative of the value of

dynamic correlation since the duration indirectly tests for clustering of tail events which is not likely

to be fully filtered out in a static independent factor framework.

5.4 Out-of-sample Optimal Portfolio Forecast

We consider an alternative approach to the standard quadratic model of Markowitz (1952) is based

on the approximation of the utility function via a Taylor series expansion. In each period, an investor

allocates capital to maximize the conditional expected utility, Et−1[U(Wt)], over the next period

wealth Wt, with initial wealth equal to 1. The optimal allocation problem may be formulated as:

max
wt

Et−1 [U (Wt)], s.t.

N∑

i=1

wti = 1, wti > 0 ∀i, (25)

where we assume the absence of a riskless asset, so that the sum of the weights wti sums to one;

we also exclude the possibility of short-selling. The expected utility can be written, using a Taylor

series expansion (see for analogous approach Jurczenko and Maillet (2006) and Jondeau and Rockinger
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(2006)), as

Et−1 [U (W )] = U
(
W̄t

)
+ U (1)

(
W̄t

)
Et−1

[
Wt − W̄t

]
+

1

2
U (2)

(
W̄t

)
Et−1

[(
Wt − W̄t

)2]

+
1

3
U (3)

(
W̄t

)
Et−1

[(
Wt − W̄t

)3]
+

1

4
U (4)

(
W̄t

)
Et−1

[(
Wt − W̄t

)4]
+O

(
W 4

t

)
, (26)

where W̄t = w′
tEt−1 [rt] is the expected portfolio return and O

(
W 4

t

)
represents the remainder of the

Taylor series due to the truncation.

Note that this approximation includes two moments more than the mean-variance criterion, with

the skewness and kurtosis are directly related to investor preferences (dislike) for odd (even) moments,

under certain mild assumptions given in Scott and Horvath (1980). The expected utility can then be

approximated as

Et−1 [U (Wt)] ≈ U
(
W̄t

)
+

1

2
U (2)

(
W̄t

)
σ2R,t +

1

3!
U (3)

(
W̄t

)
s̃R,t +

1

4!
U (4)

(
W̄t

)
k̃R,t. (27)

where s̃R,t ≡ Et−1

[(
Wt − W̄t

)3]
and k̃R,t ≡ Et−1

[(
Wt − W̄t

)4]
are the nonstandardized versions of

conditional skewness and kurtosis, namely the numerators in (20). When the CARA utility function

is used, then the approximation resolves to:

Et−1 [U (Wt)] = Et−1 [− exp (−ηWt)] ≈ − exp
(
−ηW̄t

) [
1 +

η

2
σ2R,t −

η3

3!
s̃R,t +

η4

4!
k̃R,t

]
, (28)

where η represents the investor’s constant absolute risk aversion, with higher (lower) values represent-

ing higher (lower) aversion. It is evident from (28) that the conditional kurtosis has a negative impact

on the expected utility while the positive conditional skewness has a positive one. We maximize this

function for all rolling forecasts using a nonlinear Sequential Quadratic Programming solver and mak-

ing use of the first order derivatives given in Jondeau and Rockinger (2006). Upper bounds (50%) are

imposed on the assets weights.

Table 3 shows the results for the IFACD, CHICAGO and DCC models of CARA utility portfolios

maximized under 4 different risk aversion coefficients from the mildly risk averse to extremely risk

averse investor. The results of this exercise confirm the benefit of considering higher conditional

moments in portfolio allocation. As the risk aversion coefficient increases, and consequently more

weight is given to the higher moments in the conditional expected utility, the IFACD(ρt, ζt) model

progressively outperforms the CHICAGO model. This is immediately evident from the p-value of the
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model confidence set (MCS) of Hansen et al. (2011), using as loss function the negative of the portfolio

returns, which overwhelmingly rejects both the CHICAGO and DCC(T) models from η = 10 onwards,

with 90% confidence.

Turning to IFACD models with constrained ACD dynamics, we have very similar results to those

of IFACD(ρt, ζt). This can be explained by the fact that both the skew and shape parameters jointly

determine the tail behavior in the NIG/GH distribution, so that when there is very little variation in

the conditional asymmetry, as in our sample, the skew parameter is mostly adjusting to compensate

for the fixed shape parameter in determining the dynamics in the tail behavior. The portfolios based

on IFACD models underweight securities with high predicted kurtosis and negative skewness, and as

a result, when η increases and more emphasis is placed on higher moments, the average return and

Risk-Reward (RR) ratio, in Table 3, are significantly higher than the CHICAGO and DCC(T) models.

A slow progression is seen when it comes to the significance of RR differences given by the test of

Ledoit and Wolf (2008), with the IFACD(ρt, ζt) model RR ratio significantly better at η = 25 with

90% confidence. Not surprisingly, the DCC model based on the CARA utility expansion with only 3

moments fares worse at all levels of risk aversion.

6 CONCLUSIONS

In portfolio and risk management analysis, it is important to consider not only asymmetric and

heavy tailed multivariate distributions but also time-varying skewness and kurtosis. Modelling the

conditional density dynamics in a multivariate setup has proved unfeasible mainly because of the

difficulty in dealing with tractable representations of non-elliptical multivariate distributions. In this

paper, we propose the IFACD model where the returns have a maGH distribution with time-varying

higher moments. These features allow us to model extreme behaviors of financial markets turmoils.

The IFACD model uses time-varying distributional parameters in a multivariate setting, for truly

large scale models. Further, the IFACD model has closed form higher moments and semi-analytic

expression for the portfolio density which have important implications for portfolio allocation and risk

management analysis. Modelling higher moments as a time-varying processes is highly appropriate

for periods of market stress, when GARCH models cannot accommodate extreme events. We report

evidence of this via large out-of-sample risk management and portfolio applications: using 14 MSCI

Global Equity indices at daily frequency, over the period 1996-2011, the IFACD model outperforms
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CHICAGO and DCC(T) models.

The findings in this paper suggest further developments. For instance, it would be interesting to

study consistent procedures able to provide more parsimonious independent factor representations.

Further, the use of IFACD model with high-frequency data or realized measures would be a useful

extension to mimic the evolution of volatilities in real time. We leave these issues to future research.

ACKNOWLEDGEMENT

This work started while the second author was visiting the Centre for Econometric Analysis at Cass

Business School in summer-fall 2009. We thank participants in the 4th CSDA International Conference

on Computational and Financial Econometrics (London, 10-12 December 2010), the Fourth Italian

Congress of Econometrics and Empirical Economics (Pisa, 19-21 January 2011). We wish to thank the

Editor, Esfandiar Maasoumi, an Associate Editor and two anonymous referees for useful comments

and suggestions which greatly helped to improve the paper. The usual disclaimer applies.

17



A
.
G
h
a
la
n
o
s
e
t
a
l.

Table 1: IFACD and CHICAGO Models: Parameter Estimates

IFACD Factors

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
ω 0.228*** 0.012 0.056 0.012 0.067* 0.012 0.059 0.040 0.085 0.054*** 0.018*** 0.203*** 0.430*** 0.139**
α1 0.090*** 0.055** 0.087 0.021 0.079*** 0.017 0.114 0.067 0.064 0.054*** 0.037*** 0.071 0.290 0.038***
β1 0.691*** 0.935*** 0.869*** 0.969 0.850*** 0.972** 0.832*** 0.888*** 0.846*** 0.898*** 0.946*** 0.731*** 0.350** 0.820***
χ0 0.077* -0.090 0.029 0.284 -0.277** 0.218 0.031 -0.230 0.028** -0.025 -0.036 0.061 0.056 -0.173
χ1 0.145** 0.133 0.234*** -0.286 0.008 0.050 0.125 0.303* 0.042 0.783** 0.193 0.109 0.227* 0.568
χ2 -0.068* -0.039 -0.061 -0.206 0.071* -0.178 -0.018 0.117 -0.025** -0.089 0.092 -0.020 0.012 0.382
ξ1 0.921*** 0.210 0.719 0.002 0.000 0.009 0.895*** 0.392* 0.929*** 0.438** 0.007 0.000 0.585 0.246
κ0 -2.373 -2.408*** -0.135 -1.096 -0.255* -2.317 -0.015 -0.010 -2.791*** 0.320 -1.614* 0.246 -2.273 -2.365***
κ1 0.489** 0.244 0.223*** 0.449 -0.392** 0.453 0.380 -0.052 0.479 0.174 -0.746 0.572* 0.681 -0.247
κ2 -0.943*** -0.045 -0.633*** -0.474 0.089 -0.289 -0.512*** -0.132 0.955* -1.000 0.981 -0.999 -0.998*** 1.000
ψ1 0.001 0.000 0.882*** 0.425 0.941*** 0.000 0.911*** 0.986*** 0.008 0.957*** 0.403 0.889*** 0.001 0.000

α1 + β1 0.781 0.990 0.956 0.989 0.929 0.989 0.946 0.955 0.911 0.951 0.983 0.802 0.641 0.858
FactorLL -1391.15 -1356.72 -1362.39 -1400.23 -1353.69 -1397.26 -1327.67 -1342.91 -1346.19 -1418.20 -1384.97 -1416.16 -1373.69 -1383.06
FactorBIC 2.83 2.76 2.78 2.85 2.76 2.85 2.71 2.74 2.74 2.89 2.82 2.88 2.80 2.82
ModelLL 41148
ModelAIC -5.80
ModelBIC -5.72

CHICAGO Factors

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
ω 0.044* 0.010 0.039 0.015 0.069* 0.012 0.081** 0.046** 0.063** 0.057 0.025 0.001 0.299* 0.004
α1 0.031* 0.050*** 0.045** 0.019** 0.096*** 0.018* 0.086** 0.070*** 0.060*** 0.052* 0.042** 0.000 0.135** 0.001
β1 0.926*** 0.942*** 0.915*** 0.967*** 0.835*** 0.971*** 0.826*** 0.883*** 0.873*** 0.893*** 0.934*** 0.999*** 0.561** 0.995***
ρ 0.071 -0.088 -0.102 0.065 -0.108* 0.010 0.048 -0.098 0.031 -0.011 0.009 0.007 0.086 0.005
ζ 1.781*** 1.944*** 1.840*** 2.343*** 1.781*** 1.832*** 1.860*** 1.654 1.610*** 15.000 2.573*** 2.550*** 1.917*** 1.743**

α1 + β1 0.957 0.992 0.960 0.986 0.931 0.989 0.912 0.952 0.933 0.944 0.976 0.999 0.696 0.996
FactorLL -1400.19 -1357.95 -1372.24 -1405.83 -1357.17 -1402.68 -1333.49 -1347.28 -1349.96 -1423.29 -1387.01 -1420.38 -1378.65 -1392.05
FactorBIC 2.81 2.73 2.75 2.82 2.72 2.81 2.68 2.70 2.71 2.86 2.78 2.85 2.77 2.79
ModelLL 41074
ModelAIC -5.80
ModelBIC -5.76

Note: The Table reports the parameter estimates under the IFACD and CHICAGO models, with maNIG distribution, for the log returns of 14 MSCI indices from 19/03/1996 to
17/03/2000 (1010 days). The conditional variance of the factors follows a GARCH(1,1) model: hi,t = ωj + αjf

2
i,t−1 + βjhi,t−1, i = 1, . . . , 14. The conditional skew dynamics of the

factors is bounded through a logistic transformation such that ρit = −0.99 + 1.98
1+exp−ρ̆it

, where the unconstrained parameters follow a first order quadratic model:

ρ̆it = χ0i + χ1izit−1 + θ2iz
2
it−1 + ξ1iρ̆it−1. The conditional shape dynamics of the factors is bounded through a logistic transformation such that ζit = 0.1 + 24.9

1+exp−ζ̆it
, where the

unconstrained parameters follow first order piecewise linear model: ζ̆it = κ0i + κ1izit−11[zit−1<−1] + κ2izt−11[zit−1>1] + ψ1iζ̆it−1.

The *, ** and *** next to the parameters denote significance at the 10%, 5% and 1% levels respectively. Robust standard errors of White (1982) were calculated. The individual
factor volatility persistence (α1 + β1), log-likelihood and BIC are reported as is the overall model log-likelihood, AIC and BIC for comparison between the two models.
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Table 2: VaR Exceedances and Density Forecast Tests

Berkowitz V aRCC1%
V aRCC5%

V aRDur1%
V aRDur5%

IFACD (ρt, ζt)

EW
p-value 0.097 0.359 0.055 0.085 0.005
RAND
p-value 0.160 0.170 0.100 0.070 0.021
% Rejection 15.6 22.8 37.9 61.9 88.7

IFACD (ρ, ζt)

EW
p-value 0.084 0.150 0.094 0.027 0.009
RAND
p-value 0.160 0.200 0.100 0.130 0.030
% Rejection 20.3 27.9 40.0 40.7 85.0

IFACD (ρt, ζ)

EW
p-value 0.108 0.198 0.051 0.021 0.006
RAND
p-value 0.170 0.130 0.090 0.030 0.010
% Rejection 13.2 38.6 45.1 84.0 93.9

CHICAGO

EW
p-value 0.140 0.04 0.05 0.009 0.009
RAND
p-value 0.220 0.070 0.100 0.040 0.020
% Rejection 13.7 60.8 53.3 74.7 87.3

DCC(T)

EW
p-value 0.022 0.002 0.004 0.068 0.168
RAND
p-value 0.080 0.010 0.020 0.170 0.160
% Rejection 53.8 95.5 93.0 19.9 29.9

Note: The Table reports the out-of-sample performance of the IFACD, CHICAGO (maNIG), and
DCC(T) models for 14 MSCI indices for the period 11/08/2000 to 20/12/2010 (2615 days) based
on the density test of Berkowitz (2001), the conditional coverage test for VaR exceedances of
Christoffersen (1998) (V aRCC), and the Duration of VaR Exceedances test of Christoffersen and
Pelletier (2004) (V aRDur). The null hypothesis for all tests is that the models are correctly
specified for which the table reports the p-values of the test under an equally weighted (EW)
portfolio, and the average p-value of 1,000 random weighted (RAND) portfolios with full
investment budget constraint. For the RAND portfolio, the number of rejections of the null
hypothesis at the 5% level of significance is also reported.
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Table 3: Time-varying Higher Co-moments Portfolio with CARA

IFACD (ρt, ζt) IFACD (ρ, ζt) IFACD (ρt, ζ) CHICAGO DCC(T)
η = 1

W̄T 75.47 81.21 83.40 79.72 57.21
µ̂ 0.0018 0.0019 0.0019 0.0018 0.0017
σ̂ 0.0169 0.0190 0.0190 0.0170 0.0168
RR 1.69 1.56 1.57 1.71 1.60
LW [p-value] [0.276] [0.299] [0.224] [0.248]
MCS [p-value] [0.490] [0.490] [1.000] [0.490] [0.455]
log(Relative Wealth) 0.07 0.10 0.05 -0.28

η = 5

W̄T 94.07 93.56 94.70 58.60 43.46
µ̂ 0.0019 0.0019 0.0019 0.0017 0.0016
σ̂ 0.0175 0.0175 0.0175 0.0161 0.0159
RR 1.72 1.71 1.72 1.66 1.57
LW [p-value] [0.470] [0.863] [0.564] [0.228]
MCS [p-value] [0.871] [0.871] [1.000] [0.160] [0.057]
log(Relative Wealth) -0.01 0.01 -0.47 -0.77

η = 10

W̄T 64.20 62.85 62.00 39.84 25.33
µ̂ 0.0017 0.0017 0.0017 0.0015 0.0014
σ̂ 0.0163 0.0163 0.0163 0.0154 0.0151
RR 1.69 1.68 1.67 1.58 1.42
LW [p-value] [0.294] [0.185] [0.198] [0.020]
MCS [p-value] [1.000] [0.607] [0.607] [0.070] [0.005]
log(Relative Wealth) -0.02 -0.03 -0.48 -0.93

η = 25

W̄T 23.83 24.73 24.36 17.82 11.88
µ̂ 0.0013 0.0013 0.0013 0.0012 0.0010
σ̂ 0.0145 0.0145 0.0145 0.0142 0.0138
RR 1.44 1.46 1.45 1.34 1.20
LW [p-value] [0.121] [0.373] [0.107] [0.006]
MCS [p-value] [0.246] [1.000] [0.693] [0.069] [0.004]
log(Relative Wealth) 0.04 0.02 -0.29 -0.70

Note: The Table reports the out-of-sample performance of the IFACD, CHICAGO (maNIG), and DCC
(T) models from the optimization of the CARA utility approximation using only the first 4 co-moment
matrices, for 14 MSCI indices from 11/08/2000 to 28/12/2011 (2610 days). Starting on 10/08/2000
(T = 1), the last 4 years of data were used to estimate the 3 models, after which the estimates were used
to produce rolling forecasts for the next 5 days. The model parameters were re-estimated taking into
account new data every 5 days for a total of 522 re-estimations and 2610 out-of-sample forecasts. The
performance statistics reported are W̄T representing terminal wealth of a portfolio with a starting value
of 1, the mean (µ̂), average volatility (σ̂), the annualized risk-return (RR=

√
(252) (µ̂/σ̂)), the statistic

and p-value of the Ledoit and Wolf (2008) test for the difference in the RR ratio between the
IFACD(ρt, ζt) and other models, the p-value of the MCS procedure of Hansen et al. (2011) using as loss
function the negative of the portfolio returns and 10,000 bootstrap replications. The log(Relative
Wealth) is the log of the ratio between the terminal wealth of the model (at time T ) and the terminal
wealth obtained with the IFACD(ρt, ζt) model. The CARA utility was optimized under 4 different risk
aversion levels, from the mild (η = 1) to very risk averse investor (η = 25).

20



The IFACD model

References

Barndorff-Nielsen, O. (1977). Exponentially decreasing distributions for the logarithm of particle
size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,
353:401–419.

Barone Adesi, G., Gagliardini, P., and Urga, G. (2004). Testing asset pricing models with coskewness.
Journal of Business and Economic Statistics, 22(4):474–485.

Bauwens, L. and Laurent, S. (2005). A new class of multivariate skew densities, with application to
generalized autoregressive conditional heteroscedasticity models. Journal of Business and Economic

Statistics, 23(3):346–354.

Beaulieu, M., Dufour, J., and Khalaf, L. (2007). Multivariate tests of mean-variance efficiency with
possibly non-Gaussian errors. Journal of Business and Economic Statistics, 25(4):398–410.

Beaulieu, M., Dufour, J., and Khalaf, L. (2009). Finite sample multivariate tests of asset pricing
models with coskewness. Computational Statistics & Data Analysis, 53(6):2008–2021.

Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of

Business and Economic Statistics, 19(4):465–474.
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APPENDIX A: STANDARDIZED GH DENSITY

In order to model zero-mean, unit variance processes, the distribution, which must posses the scaling

property, needs to be properly standardized. In the case of the GH distribution, because of the

existence of location and scale invariant parameterizations and the possibility of expressing the mean

and the variance in terms of one of those parametrization, namely the (ζ, ρ), the task of standardizing

the density can be broken down to one of estimating those 2 parameters, representing a combination

of shape and skewness, followed by a series of transformation steps to translate the parameters into

the (α, β, δ, µ) parametrization for which standard formulae of the density function exist. The (ξ, χ)

parametrization, which is a simple transformation of the (ζ, ρ), could also be used in the first step

and then transformed into the latter before proceeding further. In any case, moving between any of

these parameterizations is a simple matter of applying the appropriate transformation. The steps to

transforming from the (ζ, ρ) to the (α, β, δ, µ) parametrization, while at the same time standardizing

for zero mean and unit variance are given henceforth. Let X be a random variable distributed as a

GH(ζ, ρ), where

ζ = δ
√
α2 − β2, ρ =

β

α
, (29)

inverting (29) we can express α and β in terms of ζ, ρ and δ

α =
ζ

δ
√

1− ρ2
, (30)

β = αρ. (31)

For standardization we require that

E (X) = µ+
βδ√
α2 − β2

Kλ+1 (ζ)

Kλ (ζ)
= µ+

βδ2

ζ

Kλ+1 (ζ)

Kλ (ζ)
= 0

V ar (X) = δ2

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
))

= 1 (32)

it follows that

µ = −βδ
2

ζ

Kλ+1 (ζ)

Kλ (ζ)
(33)

δ =

(
Kλ+1 (ζ)

ζKλ (ζ)
+

β2

α2 − β2

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
))−0.5

(34)
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Since we can express, β2/
(
α2 − β2

)
as

β2

α2 − β2
=

ρ2

(1− ρ2)
, (35)

then we can rewrite the formula for δ in terms of the parameters ζ and ρ as

δ =

(
Kλ+1 (ζ)

ζKλ (ζ)
+

ρ2

(1− ρ2)

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
))−0.5

(36)

Transforming into the (α, β, δ, µ) parametrization proceeds by first substituting (36) into (30) and

simplifying

α =

ζ


Kλ+1(ζ)

ζKλ(ζ)
+

ρ2
(

Kλ+2(ζ)

Kλ(ζ)
−
(Kλ+1(ζ))

2

(Kλ(ζ))2

)

(1−ρ2)




√
(1− ρ2)

0.5

,

=




ζKλ+1(ζ)
Kλ(ζ)

(1− ρ2)


1 +

ζρ2
(
Kλ+2(ζ)
Kλ+1(ζ)

− Kλ+1(ζ)
Kλ(ζ)

)

(1− ρ2)






0.5

. (37)

Finally, the rest of the parameters are derived recursively from α and the previous results

β = αρ, (38)

δ =
ζ

α
√

1− ρ2
, (39)

µ =
−βδ2Kλ+1 (ζ)

ζKλ (ζ)
. (40)

APPENDIX B: THE GH CHARACTERISTIC FUNCTION

The moment generating function (MGF) of the GH Distribution is

MGH(λ,α,β,δ,µ)(u) = eµuM
GIG

(

λ,δ
√

α2−β2
)

(
u2

2
+ βu

)
,

= eµu
(

α2 − β2

α2 − (β + u)2

)λ/2Kλ

(
δ
√
α2 − (β + u)2

)

Kλ

(
δ
√
α2 − β2

)
(41)

where MGIG represents the moment generating function of the GIG which forms the mixing distri-

bution in this variance-mean mixture subclass. The standardized skewness and kurtosis for the NIG
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distribution have the following simplified expressions

K = 3 +
3
(
1 + 4β2

/
α2
)

δγ

S =
3β

α
√
δγ
.

(42)

Powers of the MGF, MGH(u)p, only have the representation in (41) for p = 1, which means that GH

distributions are not closed under convolution with the exception of the NIG, and only in the case

when the shape and skew parameters are the same for all assets. When the distribution is not closed

under convolution, numerical methods are required such as the inversion of the characteristic function

by FFT.

Because the MGF is a holomorphic function for complex z, with |z| < α − β, we can obtain the

characteristic function of the GH distribution, using the following representation

φGH(u) =MGHY P (iu), (43)

so that the characteristic function may be written as

φGH(λ,α,β,δ,µ)(u) = eµiu
(

α2 − β2

α2 − (β + iu)2

)λ/2Kλ

(
δ
√
α2 − (β + iu)2

)

Kλ

(
δ
√
α2 − β2

) . (44)

In order to find the portfolio density in the case of the IFACD model, the characteristic function

required for the inversion of the NIG density is given below

φport(u) = exp



iu

d∑

j=1

µ̄j +

d∑

j=1

δ̄j

(√
ᾱ2
j − β̄2j −

√
ᾱ2
j − (β̄j + iu)

2
)
 , (45)

where ᾱj , β̄j , δ̄j and µ̄j represent the parameters scaled as described in the main text of the paper. In

the case of the GH characteristic function, this is a little more complicated as it involves the evaluation
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of modified Bessel function of the third kind with complex arguments.3 Taking logs and summing

φport(u) = exp

{
iu

d∑

j=1

(
µ̄j +

λj
2

log
(
ᾱ2
j − β̄2j

)
− λj

2
log
(
ᾱ2
j − (β̄j + iu)2

)
+

log
(
Kλj

(
δ̄j

√
ᾱ2
j − (β̄j + iu)2

))
− log

(
Kλj

(
δ̄j

√
ᾱ2
j − β̄2j

)))}
(46)

which is more than 30 times slower to evaluate than the equivalent NIG function because of the Bessel

function evaluations.

3Routines for this exist for example on netlib, see http://www.netlib.org/amos/zbesk.f
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