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High- and Low-Frequency Correlations in European Government
Bond Spreads and Their Macroeconomic Drivers.

Abstract

We propose to adopt high-frequency DCC-MIDAS models to estimate high- and low-

frequency correlations in the 10-year government bond spreads for Belgium, France, Italy,

the Netherlands and Spain relative to Germany, from 1-June-2007 to the 31-May-2012. The

high-frequency component, reflecting financial market conditions, is evaluated at 15-minute

frequency, while the low-frequency component, fixed through a month, depends on country

specific macroeconomic conditions. We find strong links between spreads volatility and

worsening macroeconomic fundamentals; in presence of similar macroeconomic fundamentals

relative spreads move together; the increasing correlation in spreads during the burst of the

sovereign debt crisis cannot be entirely ascribed to macroeconomic factors but rather to

changes in market liquidity.

Keywords: High-Frequency MIDAS Models, Government Bond Spreads, Macroeco-

nomic Variables, Correlations, Volatilities.

J.E.L. Classification Numbers: E44, G12, H63, C32, C58.
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1 Introduction

According to the covered interest parity condition, two otherwise equivalent bonds issued

in two different currencies should have the same yield expressed in one currency. However,

deviations from covered interest parity condition evaluated on sovereign bond yields may

occur because of different default risk of the issuer, different liquidity conditions and char-

acteristics of the bonds, and also because of imperfect market integration either preventing

or slowing down trading arbitrage to eliminate yield differences. If we consider European

government bonds of the same maturity, and similar liquidity, any difference between two

or more countries should be ascribed to credit risk which itself depends on country-specific

macroeconomic and financial fundamentals. Therefore there should exist a linkage between

macroeconomic fundamentals and government bond spreads.

Investigating the existence and the nature of the relationship between market volatility

and macroeconomic fundamentals is crucial in understanding issues relevant to policy makers

and institutional investors. For instance, by analyzing the comovements during the current

sovereign debt crisis, we could assess market perception of sovereign debt risk. In particular,

one would expect countries with larger fiscal deficits or with worst economic fundamentals

to be characterized by higher volatility in their bond markets with respect to more stable

countries, with this differential becoming more pronounced during crisis periods. In addition,

we may verify whether all countries experience a worsening in government bond spreads

because of a regime shift in the market pricing of government credit risk during a turmoil

period. These issues are relevant not only to macroeconomists and policy makers studying

systemic risk but are also of interest to financial investors working in derivatives pricing,

portfolio selection and risk management since they help to uncover linkages between price

movements and underlying risk factors or business cycle state variables.

There is a rich empirical literature investigating the impact of macroeconomic fundamen-

tals on stock market volatility since the seminal paper by Schwert (1989). Focusing on longer

horizon bond returns, Attinasi et al. (2011) identify several important factors as possible

3



determinants of risk premia paid by governments relative to the benchmark country, the

most relevant being country’s creditworthiness as reflected by its fiscal and macroeconomic

position. Other factors affecting government bond spreads are liquidity risk, international

risk aversion, macroannouncements and fiscal policy events. Bikbov and Chernov (2010)

also find that the 10-year premium is more responsive to macroeconomic conditions than the

1-year premium, while the term premia declines in response to good economic conditions,

captured by the increase in either real activity or inflation. Aizenman et al. (2013) estimate

the pricing of sovereign risk for sixty countries based on fiscal space and other economic

fundamentals showing that, although these variables significantly determine market-based

sovereign risk, the explanatory power of fiscal stance measures (e.g. debt-to-GDP) drops

during the crisis period. In particular, they found that risk pricing of the peripheral coun-

tries i.e. Greece, Ireland, Italy, Portugal and Spain is not predicted accurately, as these

countries default risk was priced much higher than the risk for the other core European

countries. Aizenman et al. (2013) ascribe the failure of macroeconomic fundamentals to

explain volatilities even to the fact that markets are not pricing on current but on expected

fundamentals and therefore the inability of models to capture such high spreads is due to

the market expectation that peripheral countries fundamentals will deteriorate. Thus, they

suggest to incorporate in the model not only real economy measures but also forward looking

indicators. Similarly, von Hagen et al. (2011) show that although bond yield spreads can

be largely explained by the impact of fiscal imbalances, the increasing risk aversion experi-

enced since the burst of the financial crisis, as measured by corporate credit spreads, was

the main driving force of the increase in the spread on non-benchmark bonds. Mody (2009)

shows that before the start of the subprime crisis in July 2007, weekly changes in European

government bond spreads were essentially random with no obvious determinants while, once

that the crisis burst and through to the rescue of Bear Stearns, the movements in spreads

reflect global factors, in particular a flight to quality and global financial sector instability.

Attinasi et al. (2011) analyze the impact of unemployment, industrial production and infla-
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tion measures on European spreads concluding that real activity is only weakly correlated

with yields while inflation strongly contributes to explain spreads. This result is in contrast

with Ludvigson and Ng (2009) and Lustig et al. (2014) where the importance of industrial

production in explaining returns for both bonds and foreign exchange is assessed1.

Ang and Piazzesi (2003) are the first to analyze the sensitivity of the entire term structure

to macroeconomic fundamentals providing evidence that macro factors explain the 85% of

bond yields variance.

In addition to macroeconomic factors, market liquidity can be a very relevant market

driver. Beber et al. (2009) show that although most of the yield spread differences in the

Euro-zone sovereign markets (years 2003-2004) can be ascribed to different sovereign credit

quality, liquidity too plays a role and this holds true especially for high rated countries and

in times of financial stress, when investors tend to prefer liquidity with respect to quality.

This evidence is confirmed in Friewald et al. (2012) and Duffi e et al. (2007), the latter

paper identifying in higher inventory holding and search costs and asymmetric information

the factors leading to a rising relevance of liquidity during distress periods.

In this paper, we assess whether and how the 10-year European government bond spreads

intraday co-movements were driven by macroeconomic fundamentals, both in terms of volatil-

ities and correlations. The main issue we focus on is of relevance given the strong increase

in government bond spreads, especially those of peripheral countries, experienced during the

recent European sovereign crisis. This has generated ample debate among economists about

whether spreads reflect worsening economic conditions or rather speculative trading activity

1The role of macroeconomic drivers is also important in modelling other asset classes. Paye (2012) shows
that macroeconomic variables (including commercial paper-to-Treasury spread, default return, default spread
and the investment-to-capital ratio) significantly explain S&P 500 market volatility, particularly pronounced
during recession periods. Christiansen et al. (2012) evaluate the dependence of volatility of a broad range
of asset classes (equity, bond, commodities and foreign exchange) on macroeconomic and financial variables
providing evidence of the significant role played by proxies for credit risk, funding liquidity and time-varying
risk premia, while inflation and industrial production turned out to be less informative. A similar result is
reported in Baele et al. (2010) where, using a dynamic factor model to study comovements between stock
and bond returns, the authors report that macroeconomic factors (output gap, inflation and short rate)
mildly contribute to explain stock and bond return correlations while other factors, such as liquidity proxies,
play an important role. Finally, relationship between volatile fundamentals and volatile stock markets in a
cross-section of countries is also reported in Diebold and Yilmaz (2010) and Hilscher and Nosbusch (2010).
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leading to an overshooting of spreads.

With the purpose of analyzing the outlined empirical question, this paper introduces a

new methodology relying on the Dynamic Equicorrelation (DECO) proposed by Engle and

Kelly (2012) and the MIxed Data Sampling (MIDAS) approach, proposed in the seminal

papers by Ghysels, Santa-Clara and Valkanov (2004, 2005, 2006) and Ghysels, Sinko, and

Valkanov (2007). With respect to the classical DCC à la Engle (2002), the DECO model

substantially reduces computational issues in high-dimensional problems by assuming equal

short-term correlations for all pairs of assets. The MIDAS framework allows linking finan-

cial market data, sampled at high-frequency, in general daily, and data on macroeconomic

fundamentals recorded at lower frequency, in general monthly or quarterly. Moreover, by

letting the low frequency component being driven by macroeconomic variables, we extend

the Colacito et al. (2011) DCC-MIDAS based upon a pure time series approach. The DECO

model, by imposing equal pairwise correlations in the long-run, allows us to derive a simple

multivariate MIDAS framework which therefore generalizes the Conrad et al. (2014) model,

which adopts a simple bivariate DCC-MIDAS framework to investigate the driving macro-

economics factors of the correlation between oil and stock market. In addition, we exploit

the main feature of the DCC-MIDAS model which allows to model in a single step both

financial and macroeconomic data. This feature constitutes a great advantage over more

traditional approaches like the one proposed in Aslanidis and Christiansen (2012) where, in

a first step, it is computed the realized correlation which, in a second step, is regressed on

relevant macroeconomic variables.

Moreover, the MIDAS approach is extended to the case when tick-by-tick financial market

data are available though resampled at an appropriate frequency; in details we combine 15-

minute frequency data on spreads with monthly macroeconomic data. To the best of our

knowledge, there has been no previous attempt to apply MIDAS framework to such high-

frequency data.

Finally, another important contribution of the paper is that, by exploiting high- and low-
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frequency correlations, we evaluate time-varying possible phenomenon of ongoing economic

and financial markets integration amongst European countries, highlighting the role played

by changing market liquidity conditions.

The remainder of the paper is organized as follows. In Section 2, we discuss the dataset

and the macroeconomic variables. Section 3 presents the high-frequency MIDAS regression

models and discusses some data preparation procedures. In Section 4, we report the results

for both univariate and multivariate GARCH-MIDAS models. Section 5 concludes.

2 Data Description

2.1 Spreads

We use data for the 10-year government bonds of Belgium, France, Germany, Italy, Spain and

the Netherlands over the period 1st June 2007 - 31st May 2012. The choice of the countries

is determined by consideration of market depth. We study bid, rather than mid, data as

more representative of the spreads during crisis periods. The 10-year bond benchmarks are

identified according to maturity and liquidity criteria. Morningstar provided us with this

unique tick-by-tick dataset that we resampled at the microstructure noise robust 15-minute

frequency using calendar time, excluding time intervals with missing values for at least one

country.

The trading period considered is 8 a.m.-3:30 p.m. coordinated universal time (UTC). We

detect and remove holidays and outliers by applying a filter which is a modification of the

procedure to remove outliers proposed in Brownlees and Gallo (2006). Following the steps

suggested by Barndorff-Nielsen et al. (2011, p. 156), the implementation can be summarized

as follows.

Let pt,i be a tick-by-tick time series of yields, where t = 1, ..., T denotes day and i =
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1, ..., N the time interval within day t, then an observation is removed iff:

∣∣pt,i − pt,i (kL)∣∣ > max {4MDt,i(k), nγ} ∧
∣∣pt,i − pt,i (kR)∣∣ > max {4MDt,i(k), nγ} (1)

where k is the bandwidth, pt,i
(
kL
)
and pt,i

(
kR
)
are sample medians of the k/2 observations

respectively before (L for left) and after (R for right) (t, i), MDt,i(k) is the mean absolute

deviation from the median of the whole neighborhood of length k, ∧ is the intersection

operator, γ is the granularity parameter and it is computed as the mean of the k absolute

returns and n is γ−multiplier. k and n are set equal to 20 and 10 respectively, in order to

ensure that the neighborhood of ticks does not get too wide and that the threshold adopted

to identify outliers is reasonable.

The advantage of this rule lies in the separate comparison of the (t, i)−th trade against

the left and right neighbours while the measure of dispersion is calculated on the whole

bunch of k trades. This approach is specifically designed to avoid detecting jumps as false

outliers.

Finally, we also remove the first return of the day that occurs at 8 a.m. as it largely

reflects the adjustment to information accumulated overnight and hence exhibits a spurious

excess variability compared to any other 15-minute interval. The data selection procedure is

summarized in Table 1.

[Insert here Table 1]

For each time series, we report the overall number of ticks available from which we remove

holidays, weekends and trades occurred outside the trading period 8 a.m. - 3:30 p.m. UTC.

Following the filtering procedure in (1), we detect a percentage of outliers ranging from 0.09%

for Germany to the 0.16% for Belgium. In addition, we also report some descriptive statistics

to get useful insights about market liquidity. In particular, we compute the mean number of

trades per day and the time elapsed between two consecutive trades, where both statistics

indicate that the most liquid market is the German one with a daily average number of trades
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of 2,345 and a trade duration of 14 seconds, followed by France (828 trades, 38 seconds),

Spain (764 trades, 38 seconds), Italy (736 trades, 43 seconds), Belgium (659 trades, 47

seconds) and the Netherlands (513 trades, 60 seconds). After resampling at the 15-minute

frequency and removing the 8 a.m. return for each day, we end up with 38,370 returns,

covering 1,279 days corresponding to 30 observations per day. In Table 1, we also report

descriptive statistics about yields and spreads with respect to German Bund: Italy has the

highest average yield (4.66%), while Germany has the lowest equal to 3.18%; the average bid

spread with respect to Germany is equal to 150 bps for Italy, 140 for Spain, 83 for Belgium,

42 for France and 30 for the Netherlands. Information offered from the average indicator is

limited in the light that government bond spreads vary quite a lot throughout our sample

period as Figure 1 shows.

[Insert Figure 1 here]

Government bond spreads move very closely until May 2010, when markets start to pay

more attention to sovereign debt risk in response to the burst of Greek crisis. In May 2010,

the Greek government deficit was revised and estimated to be 13.6% of GDP leading to

reduction of confidence in Greece’s ability to repay its debt. Despite the approval of the

first rescue package by European countries and the IMF, concerns about Euro countries

solvability began to raise together with spreads.

2.2 Macroeconomic Variables

We select two real economy variables, employment and industrial production, and a forward

looking indicator, the economic sentiment. Our choice is motivated by the existing literature

such as, amongst others, Mody (2009) and Aizenman et al. (2013). Macroeconomic data are

available at monthly frequency and were obtained from the Eurostat website, starting from

January 2005 up to May 2012. The economic sentiment is also provided by Eurostat and it

is composed of five sectoral confidence indicators with different weights: industrial, services,
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consumer, construction and retail trade.

Given that the dependent variable in our study is expressed in terms of difference of

the 10-year government bond yields of each country and Germany, also the macrovariables,

reported in Figures 2-4, are expressed in terms of difference between each country and

Germany macrovariables.

[Insert Figures 2-4 here]

All the macroeconomic variables considered capture very well the worsening macroeco-

nomic conditions starting from the last quarter of 2008, with the dramatic drop of the level

of employment for Spain and the strong contraction of industrial production, especially ev-

ident for Spain, Italy and France. It is worth noticing that the literature on the topic (see

for instance Barrios et al. 2009, and Gros 2011), often consider as potential macroeconomic

drivers measures of fiscal sustainability such as debt-to-GDP. First, there is the case that

Spain was experiencing a very high spread despite it had a debt-to-GDP ratio (69.3% in 2011

and 84.2% in 2012, defined as consolidated general government gross debt to GDP) below or

approximately equal to the German one (80.4% and 81.9%), on the contrary Belgium showed

a low spread despite a debt-to-GDP (97.8% and 99.6%) higher than the Spanish one (Note

that it was 85.8% and 90.2% for France, 120.8% and 127.0% for Italy, 106.4% and 117.6% for

Ireland, 65.5% and 71.2% for the Netherlands). This suggests that debt-to-GDP may not be

able to describe the movements of government bond spreads during the sovereign crisis. In

addition, the debt dynamics is determined by economic growth perspectives which are well

captured by the macroeconomic variables considered in our analysis. Finally, debt-to-GDP

is available at quarterly frequency while all the other macroeconomic indicators are available

at monthly frequency. For all these reasons we choose not to consider this indicator in our

analysis.

In addition to the level of macroeconomic fundamentals, we are going to investigate also

the impact of their volatilities on government bond spreads: ceteris paribus, a country with
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more volatile fundamentals is more likely to experience a severe weakening of its macroeco-

nomic conditions which may force it into default. Volatility of macroeconomic fundamentals

is estimated, following Schwert (1989), by fitting an autoregressive model for each macrovari-

able Yτ augmented by some dummy variables Dj
τ corresponding to the aggregation period

of interest U (e.g. months, quarters, years):

Yτ =

U∑
j=1

αjD
j
τ +

U∑
i=1

βiYτ−i + ετ (2)

The squared residuals ε̂2τ provide an estimate of macroeconomic volatility whose frequency

corresponds to the frequency at which macrovariables are sampled.

3 Modelling Mixed-Frequency Times Series

MIDAS represents a simple, parsimonious and flexible class of time series models that al-

low the left- and right-hand variables of time series regressions to be sampled at different

frequencies, without the need of applying any a priori filter. Traditionally, the literature

on MIDAS deals with high-frequency data measured at daily frequency while the data at

low-frequency are sampled monthly and quarterly.

In this paper, we extend the MIDAS approach into intraday frequency domain and pro-

pose to evaluate the impact of the slowly moving component measured at monthly frequency

on high-frequency returns sampled using a 15-minute time window. This intraday frequency

is fast enough to capture intraday movements and it is robust to both asynchronicity and

microstructure noise. In particular, we compare models estimated using a pure time series

approach, where both high- and low-frequency components are obtained from asset returns,

with the case where the slowly moving components, in both volatilities and correlations,

are driven by macroeconomic variables measured at monthly frequency. For this purpose,

we extend the GARCH-MIDAS model of Engle et al. (2013) and the DCC-MIDAS model
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proposed by Colacito et al. (2011).

3.1 High-Frequency MIDAS Models

Let us consider a (M × 1) vector of returns for the i-th subinterval belonging to month τ

rτ ,i =
[
r1τ ,i, ..., r

M
τ,i

]′
distributed as a multivariate normal variable with mean vector µ and

variance covariance matrix Hτ ,i of order (M ×M). Following the classical DCC model by

Engle (2002), the variance-covariance matrix Hτ ,i can be decomposed as Dτ ,iRτ ,iDτ ,i with

Dτ ,i diagonal matrix of volatilities and Rτ ,i conditional correlation matrix. By applying the

GARCH-MIDAS by Engle et al. (2013), where the overall volatility can be decomposed into

two parts, one pertaining to short term fluctuations, gτ ,i and the other to a long-run secular

component, ψτ , the univariate volatilities can be modeled as:

rτ ,i = µ+
√
ψτgτ ,iετ ,i (3)

where ετ ,i|Φτ ,i−1 ∼ N(0, 1) with Φτ ,i−1 the information set available up to (τ , i− 1).

The volatility dynamics of the high-frequency component gτ ,i is modeled as a GARCH(1,1)

process:

gτ ,i = (1− α− β) + α
ε2τ ,i−1
ψτ

+ βgτ ,i−1 (4)

while the low-frequency component can be modeled using a pure time series approach with

ψτ being a smooth average of the most recent U monthly realized volatilities RVτ on a fixed

span window as described in:

logψτ = m+ ϑ
U∑
u=1

ϕu (ω)RVτ−u (5)

with ϕu (ω) being the weighting scheme which can be based on either a beta or an exponential
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function:

ϕu (ω) =


(u/U)ω1−1(1−u/U)ω2−1∑U
j=1(j/U)

ω1−1(1−j/U)ω2−1 Beta

ωu/
(∑U

j=1 ω
j
)

Exponential
(6)

In our empirical applications, in the light that the two weighting functions are equivalent in

terms of goodness of fit (see Engle et al. 2013), we use the beta exponential function where

the parameter ω1 is set to 1 in order to assure that weights are slowly decaying. We call this

the Time Series GARCH-MIDAS (TS GARCH-MIDAS) model.

The second specification for the low-frequency component ψτ depends on macroeconomic

variables. We adopt the following specification:

logψτ = m+
S∑
s=1

ϑs,l
U∑
u=1

ϕu
(
ωs,l
)
Xs,l
τ−u +

S∑
s=1

ϑs,v
U∑
u=1

ϕu (ωs,v)Xs,v
τ−u (7)

where Xs,l
τ−u is defined as abs

(
Y s,lτ−u
Y s,lτ0

− Y s,l,DEτ−u
Y s,l,DEτ0

)
, Y s,l

τ indicates the level (l) of the macroeco-

nomic variable s at month τ so that Y s,l
τ0
is the first available value, Y s,l,DE

τ refers to the

same macrovariable s for Germany which acts as benchmark country. Xs,v
τ−u is specified as

abs
(
Y s,v
τ−u − Y s,v,DE

τ−u

)
where Y s,v

τ is the volatility (v) of macrovariable s defined as in (2).

Y s,v,DE
τ refers to the volatility of the same macrovariable s for Germany. ϕu (ω) are beta

weights as in (6) and U is the maximum lag for macrovariable s, with s = 1, ..., S with

S representing the total number of macroeconomic variables. We refer to this model as the

GARCH-MIDAS with Macroeconomic Variables (MV GARCH-MIDAS) model.

Similarly to the TS GARCH-MIDAS in (5), the long run component is a smooth average

of the most recent U values of each macrovariable s, for which we consider both level and

volatility. Unlike Engle et al. (2013), we allow each macrovariable s, in both level l and

volatility v components, to enter the model with a specific coeffi cient ϑs,l/v. In this way, the

model is more flexible and it also allows to measure the role played by each macroeconomic

variable in explaining the long run volatility.

Engle et al. (2013) propose a measure of the amount of volatility explained by the
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long-term component on the overall volatility, the so-called variance ratio specified as:

V ar (log (ψτ ))

V ar (log (gτ ,iψτ ))
(8)

Once univariate volatilities are estimated, the main focus is on the correlation dynamics.

Colacito et al. (2011) show that the high-frequency correlations obey a standard DCC

scheme but here the intercept is a slowly moving process that reflects the fundamental or

long-run causes of time variation in correlations.

Based on the DCC framework by Engle (2002), the conditional correlation matrix Rτ ,i

for month τ and subinterval i can be decomposed as:

Rτ ,i = diag
(
Q
−1/2
τ ,i

)
Qτ ,idiag

(
Q
−1/2
τ ,i

)
(9)

where Qτ ,i is a (M ×M) symmetric matrix which can be decomposed as:

Qτ ,i = (1− a− b)Qτ + aξτ ,i−1ξτ ,i−1 + bQτ ,i−1 (10)

where the intercept Qτ is time dependent and it is specified as a smooth weighted average

of the most recent Ukj correlation matrices of standardized residuals ξτ ,i = D−1τ ,i (rτ ,i − µ)

so that its elements qkjτ can be expressed as:

qkjτ =
Ukj∑
u=1

ϕu
(
ωkj
)
ckjτ,i−u (11)

ckjτ,i−u =

τ ,i∑
l=τ ,i−Ukj

ξkl ξ
j
l√

τ ,i∑
l=τ ,i−Ukj

(
ξkl
)2√ τ ,i∑

l=τ ,i−Ukj

(
ξjl
)2 (12)

where ϕu
(
ωkj
)
is the beta weighting function in (6).
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The model proposed in Colacito et al. (2011) is a pure time series approach where the long

run correlation is allowed to be time dependent. In this paper, we propose to link the long

run correlation ρkjτ to relevant macroeconomic variables. The intuition is that the long-term

correlation component should be interpreted as the predicted or the expected correlation

given a certain state of the economy, while deviations of the short-run correlations from the

long-run should be influenced by other factors related to trading activity. In addition, we take

advantage of the DECOmodel proposed by Engle and Kelly (2012) and make the assumption

of equicorrelation only in the long-run while we allow short-run pairwise correlations to vary

in the cross-section. The novelty of this approach consists in allowing for a time-varying

long-term component in correlations while keeping the model tractable, in both number of

parameters and parameter restrictions, even for large dimensional systems.

Thus, starting from (10), we recall the DECO expression for Qτ :

Qτ = (1− γτ ) IM + γτJMM (13)

where IM is the (M ×M) identity matrix while JM is a (M ×M) matrix of ones. The

γτ component captures the long-term component of correlations that in our case takes the

following form:

γτ = F

(
γ̄ +

S∑
s=1

ϑs,l
U∑
u=1

ϕu
(
ωs,l
) ∣∣∣∆Y s,l

τ−u

∣∣∣+

S∑
s=1

ϑs,v
U∑
u=1

ϕu (ωs,v)
∣∣∆Y s,v

τ−u
∣∣) (14)

where F is the transformation F (x) =
(
1 + 1

n−1
) exp(x)
1+exp(x)

− 1
n−1 that ensures that x is in the

interval
[
− 1
n−1 , 1

]
.

Given that correlations follow stationary processes, we consider the rate of changes of

levels of the macroeconomic variable (l) with respect to the previous period defined as

∆Y k;s,l
τ = 100 ×

[
ln
(
Y k;s,l
τ

)
− ln

(
Y k;s,l
τ−1

)]
for the macroeconomic fundamental s of coun-

try k between months τ and τ − 1. Moreover, we expect that the correlation between

country k and country j increases when the absolute difference in fundamentals of the two
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countries vanishes and to decrease when the fundamentals diverge. Therefore, we consider

a measure of the absolute difference in the rate of change for macrovariable s during the

period (τ , τ − 1) between two countries k and j defined as
∣∣∆Y k;s,l

τ −∆Y j;s,l
τ

∣∣ . Finally, in the
spirit of DECO model, we build a synthetic indicator averaging these differences for all the

possible pairs of countries
∣∣∣∆Y s,l

τ−u

∣∣∣. For the volatility component, we compute the volatility
of changes for macroeconomic fundamental s occurred during the period (τ , τ − 1) for coun-

try k defined as ∆Y k;s,v
τ . As for the level, we consider the absolute difference between the

volatility of changes for macrovariable s for the two countries k and j which takes the form∣∣∆Y k;s,v
τ −∆Y j;s,v

τ

∣∣ . Again the assumption is that as the absolute difference of fundamentals
volatility between two countries tends to zero, countries should move in a more similar way

and vice versa. Finally, we obtain the synthetic indicator averaging the differences between

all pairs of countries
∣∣∆Y s,v

τ−u
∣∣.

The assumptions that guarantee the positive definiteness of Rτ ,i are a > 0, a + b < 1

as well as the positive definiteness of Qτ . Based on the specification in (13), Qτ is positive

definite if and only if the long-run equicorrelation γτ is in the interval
[
− 1
n−1 , 1

]
(see Engle

and Kelly, 2012). The F transformation guarantees this assumption.

The two-stage estimation procedure of the standard DCC model can also be applied for

the estimation of the proposed multivariate component model. In the first stage, univariate

MIDAS GARCH models are estimated for each return series. In the second stage, returns

standardized by their standard deviations estimated at the first stage are used to estimate

the parameters of the dynamic MIDAS correlation model.

Note that the proposed model is more restrictive compared to the MIDAS DCC model

by Colacito et al. (2011) which does not assume equicorrelation either in the long-run or the

short-run and allows for different weighting schemes on the MIDAS correlation component.

However, estimation of the more general MIDAS DCCmodel becomes diffi cult as the number

of asset increases and more importantly, it does not facilitate a direct inclusion of exogenous

variables. On the contrary, an advantage of the proposed methodology is that it can easily
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accommodate a large number of assets as well as macroeconomic variables on the long-run

correlation component weighting scheme.

The assumption of equicorrelation in the long-run may appear restrictive in a number of

financial applications, e.g. across equities, raising the need for richer cross-sectional variation.

The MIDAS DECO model can be generalized by exploiting the concept of block matrices

for the specification of the long-term correlation matrix model. Engle and Kelly (2012)

introduced the Block Dynamic Equicorrelation model by assuming a block structure for

the dynamic short-term equicorrelation matrix. The same concept may be adopted for the

long-term equicorrelation matrix by imposing equicorrelation only within and between asset

classes, industries, country groups etc. The MIDAS DECOmodel extends to a Block MIDAS

DECO model by partitioning returns into K groups and substituting (13) with the following

equation:

Qτ =


(1− γ11τ ) IM1

0 0

0 ... 0

0 0
(
1− γKKτ

)
IMK


M

+

¯
γ11τ JM1

γ12τ JM1×M2
...

γ12τ JM2×M1 ...

... γKK
τ
JMK


(15)

The above specification for Q̄ allows distinct long-term correlation for each of theK diagonal

blocks and K(K−1)/2 off-diagonal blocks. Engle and Kelly (2012) provide the assumptions

for γkkτ and γkjτ in order for the block equicorrelation matrix to be positive definite in the

two blocks case, i.e.:

− 1

M1 − 1
< γ11τ < 1

− 1

M2 − 1
< γ22τ < 1

−

√
(γ11 (M1 − 1) + 1) (γ22 (M2 − 1) + 1)

M1M2

< γ12τ <

√
(γ11 (M1 − 1) + 1) (γ22 (M2 − 1) + 1)

M1M2

where M1 and M2 are the number of assets in the first and second block, respectively. In a
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more general case (K > 2), the composite likelihood method can be used that requires the

calculation of quasi-likelihoods for each pairs of blocks. Thus, within and between blocks

equicorrelations, γkkτ and γkjτ respectively, are modeled using the MIDAS mechanism but here

we adopt an alternative transformation F ∗ for between block equicorrelations, γkjτ , ensuring

the positive-definiteness of Q̄τ .

F ∗(x) = 2 ∗

√
(γ11 (M1 − 1) + 1) (γ22 (M2 − 1) + 1)

M1M2

exp(x)

1 + exp(x)√
(γ11 (M1 − 1) + 1) (γ22 (M2 − 1) + 1)

M1M2

(16)

3.2 Data Preparation

From Figure 1, it is clear that spreads were not stationary through the time period considered

and therefore in the remainder of the paper we are going to take into consideration their

first differences.

With the purpose of removing all the noisy information in our data, we pre-process our

data. Therefore, for both model specifications, we identify jumps for all the returns series

so that variance estimates obtained from GARCH models are not influenced by large jump

deviations. For the identified jumps, we substitute the value of the threshold used to test for

the presence of jumps. For instance, we identify jumps using the robust Lee and Mykland

(2008) test filtered for the intraday periodicity ŝt,i as proposed by Boudt et al. (2011):

FJt,i =
|rt,i|
σ̂tŝt,i

(17)

where |rt,i| is the absolute value of log-return on day t and time-interval i and σ̂t is the

bipower volatility of day t. Having adopted the Lee and Mykland (2008) test, the threshold

is given by:

(STβ
∗ + CT )

(
σ̂tŝt,i

)
sgn(rt,i) (18)

18



where ST = 1/ (2 log (T ×N))1/2, (T ×N) time series length, β∗ = − ln(− ln (1− α)) with

α the significance level of the test, and

CT = (2 log (T ×N))1/2 − log π + (log (log (T ×N))) /
(

2 (2 log (T ×N))1/2
)

where sgn indicates the sign function.

We identify a variable percentage of jumps: 1.37% for Spain, 1.31% for Belgium, 1.14%

for Italy, 0.74% for France, and 0.60% for the Netherlands. The mean absolute size of jumps

ranges from a minimum of 3.70% for the Netherlands to a maximum of 6.28% for Italy.

As far as the periodicity component ŝt,i is concerned, we adopt a non-parametric for-

mulation, namely the Weighted Standard Deviation (WSD). See Boudt et al. (2011) for a

detailed description.

Once jumps have been filtered out, returns are standardized by the intraday periodicity

ŝt,i, in order to control for the U-shape. Finally, on the standardized and jump-free returns,

we fit an ARMA(1,1) model. Estimates are not reported here but are available upon request.

4 Empirical Results

4.1 Univariate Models

4.1.1 Time Series GARCH-MIDAS Models (TS GARCH-MIDAS)

The first model we estimate is the GARCH-MIDAS where the long run component is a

smooth weighted average of monthly realized volatilities (RV) computed on a fixed span

window as described in (5). In Table 2, we report estimates for the TS GARCH-MIDAS. The

monthly frequency is adopted as this is the shortest frequency at which the macroeconomic

variables are available. Following Engle et al. (2013), we put special care in selecting the

lag structure in each MIDAS polynomial specification for ψτ (U in our notation). To this

aim, we estimate three alternative specifications corresponding to 3, 6 and 12 months and
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comparing the log-likelihoods we choose the MIDAS lag equal to 6 months. As per the

weight function, we select the beta lag function in (6) setting ω1 = 1 so that weights are

monotonically decreasing over the lags, with the shape of weights governed by ω2. Moreover,

following Engle et al. (2013) and in order to avoid numerical instability in the estimation

procedure, we set an upper bound equal to 300 for ω2.

[Insert Table 2 here]

Almost all coeffi cients in Table 2 are statistically significant, both those related to stan-

dard GARCH (α and β) and those related to the MIDAS model (m, ϑ, and ω2). As expected,

the sum of the parameters α and β is close to 1. Estimates of ϑ indicate that long run volatil-

ity at time (τ , i) depends positively on past realized volatilities. The beta weight parameters

ω2 assume values greater than 1 ranging from 3.37 to 6.84, implying that weights follow a

decaying pattern with higher weights attributed to more recent RVs and lower weights to

the past RVs.

Another result worth to mention in Table 2 is the high values of the variance ratios mea-

suring the amount of the overall volatility explained by the long term component. There is

evidence that the long run variance contributes substantially to explain the overall volatility,

ranging from a maximum of 0.85 for Spain to a minimum of 0.37 for the Netherlands.

In Figure 5, we report the estimated volatility, at high-frequency (blue line) and at low-

frequency (black line) components obtained from the estimates reported in Table 2.

[Insert Figure 5 here]

There is evidence that the volatility of government bond spreads increased substantially

for all the countries, and this pattern is particularly pronounced for Italy and Spain and to

a less extent for France, Belgium and the Netherlands.
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4.1.2 GARCH-MIDAS Models with Macroeconomic Variables (MV GARCH-

MIDAS)

In the second GARCH-MIDAS specification, the low-frequency component is driven by

macroeconomic variables (employment, industrial production and economic sentiment) as

described in (7). As macroeconomic variables are measured at monthly frequency, the long

run component of volatility remains constant through each month. Finally, in order to be

able to compare the results of this model with those reported in Table 2, we fix the MIDAS

lag equal to 6 months and in the beta lag function in (6) we set ω1 = 1, estimating the pa-

rameter ω2 with an upper bound for ω2 equal to 300. We report the results of the estimated

MV GARCH-MIDAS in Table 3.

[Insert Table 3 here]

Overall, the macroeconomic variables are statistically relevant in explaining the volatility

of European sovereign spreads. In particular, the most important driver is the absolute

difference between each country industrial production with respect to Germany: an increase

of that difference determines a correspondent increase in volatility of Belgian, French, Italian

and Spanish spreads and a decrease in Dutch spread. This finding is supported also by

Ludvigson and Ng (2009) and Lustig et al. (2014). As far as the economic sentiment is

concerned, an increase in the absolute difference with respect to Germany implies a higher

spread volatility for Belgium, Italy and Spain while it is negative for the Netherlands. In line

with findings in Aizenman (2013) and Veronesi (1999), this result suggests that volatility has

a forward looking nature reflecting the uncertainty about future macroeconomic conditions:

the higher the uncertainty, the lower the economic sentiment is and the higher the market

volatility becomes. Finally, increasing absolute difference in employment level with respect

to Germany determines an increase in spreads just for the Netherlands while it has a negative

effect on France and Italy. Considering now the differences between each country and German

volatility fundamentals, it is possible to conclude that they are less important than the levels.
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Moreover, no clear pattern is identifiable as, in case of employment, an increase in volatility

difference determines a lower volatility in France, Italy and Spain and a higher one for the

Netherlands. Higher volatility difference for industrial production generates higher volatility

for France while an increase in volatility difference of economic sentiment implies a lower

spread volatility for France and the Netherlands. A final important result reported in Table

3 relates to the variance ratios, which appear quite high for each country, ranging from a

minimum of 0.42 for Belgium to a maximum of 0.87 for Spain. This indicates that the

long term component modeled by macroeconomic variables explains a great amount of total

volatility. In Figure 6, we depict the low and the high-frequency components of volatility

obtained from the estimates reported in Table 3.

[Insert Figure 6 here]

4.1.3 Comparison Between the TS GARCH-MIDAS and MV GARCH-MIDAS

Specifications

In Table 4, we report the results of the comparison between TS GARCH-MIDAS and MV

GARCH-MIDAS specifications as well as with standard GARCH models2.

[Insert Table 4 here]

Both TS and MV GARCH-MIDAS specifications provide a better fit in terms of log-

likelihood with respect to classical GARCH: the likelihood ratio test (LR) rejects the null

hypothesis of model equivalence for all the countries. This result indicates that the assump-

tion of constant long run volatility over time in GARCH models is restrictive, as it can also

be seen from a visual inspection of Figures 5-6 that report a strong break in the volatility

pattern from 2010 onwards.

When comparing the two GARCH-MIDASmodel, the Akaike information criterion selects

the MV GARCH-MIDAS specification for all the countries but Belgium while the Schwarz

2The estimates of standard GARCH models are not reported in the paper but available upon request.
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information criterion favours the TS GARCH-MIDAS, with the only exception being the

Netherlands.

Focusing now on the variance ratio, indicating the amount of total variability explained by

the long run component, we find evidence supporting MV GARCH-MIDAS on TS GARCH-

MIDAS for Italy (0.80 vs. 0.74), Spain (0.87 vs. 0.85) and the Netherlands (0.67 vs. 0.37);

on the contrary, the TS GARCH-MIDAS is selected for Belgium (0.70 vs 0.42) and France

(0.65 vs 0.63).

4.2 Multivariate Models

Correlation matrices are estimated using two classes of methodologies, the first one relying on

pure financial data while the second one mixing financial and macroeconomic data. In details,

in the TS DCC-MIDAS model univariate volatilities are obtained from the TS GARCH-

MIDAS, where the long run component is a weighted average of past RVs presented in

Table 2, and the long-run component is a weighted average of correlation matrices of past

standardized residuals as in Colacito et al. (2011) model described in (11) and (12). In

addition to the TS DCC-MIDAS model, we are going to estimate even a TS DECO-MIDAS,

where volatilities at the first step are those obtained in Table 2 while in the second step, the

long run correlations are estimated as an average of all the pairwise correlations, which in

turn are computed as a weighted average of past standardized residuals.

In the second specification, the MV DECO-MIDAS, the univariate volatilities are ob-

tained from the MV GARCH-MIDAS, where the slowly varying component is modeled

through macroeconomic variables as presented in Table 3, while as per correlation matrix,

the long run component is inferred from macroeconomic fundamentals of the countries in

analysis as described in (14). Again, the DECO model imposes that all the long run cor-

relations are identical. Therefore, we propose even a Block-DECO model, the MV Block

DECO-MIDAS, where the correlation matrix is given by (14)-(15) and where the two groups

are composed by peripheral (Italy and Spain) and core countries (France, Belgium and the
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Netherlands).

4.2.1 The TS DCC-MIDAS and TS DECO-MIDAS Models

Starting from the TS DCC-MIDAS model, we estimate the long-run correlation matrix using

a fixed step so that the long run correlation matrix is computed on the first day of each month

on previous month standardized residuals and then it is kept fixed through the current month.

This choice is motivated to assure the comparison between the TS DCC-MIDAS model with

the MV DCC-MIDAS as macroeconomic fundamentals are observed monthly and therefore

the long run component of correlation is fixed through the month. As already done for the

univariate GARCH-MIDAS, we impose a beta lag structure for weights loading the past

correlation matrices of standardized residuals in (11) and, as in Colacito et al. (2011), we

set ω1 to 1 in the beta function. In the multivariate framework, we deal with the MIDAS lag

selection corresponding to Ukj in (11) and therefore we test some alternative specifications,

ranging from 2 to 12 months. Based on the log-likelihoods, we choose the MIDAS with lag

equal to 3 months. The same lag structure is set for all the 10 covariances.

We also estimate a TS DECO-MIDAS model by using similar specifications, i.e. monthly

fixed step window, beta lag structure with ω1 = 1 and 3-month lags. In Table 5, we report

the estimates of the TS DCC-MIDAS and TS DECO-MIDAS models (10):

[Insert Table 5 here]

By comparing results reported in Table 5, we note that the autoregressive parameter b is

quite high and close to 1 throughout all the models considered, suggesting that correlations

at each 15-minute interval are strongly determined by their past values. As per the TS DCC-

MIDAS model, the parameter governing the weight function ω2 is greater than 1 implying

that weights are decaying with time: higher weights are attributed to most recent correlation

matrices of standardized residuals. The same observation can be drawn as per the TS DECO-

MIDAS model, although ω2 is by far higher and equal to 21.3, indicating that in this second

model, higher weights are attributed to the most recent lags.

24



In Figure 7, we report the pattern of the high- and low-frequency correlations obtained

from the TS DCC-MIDAS and in Figure 8 those from the TS DECO-MIDAS model. To

save space, we only report correlations between some pairs of countries, i.e. the peripheral

(Italy and Spain), the core (France and the Netherlands) and the peripheral-core (Italy and

the Netherlands and Spain and the Netherlands). All the other combinations follow a very

similar pattern.

[Insert Figures 7 and 8 here]

A very interesting feature is the jump in the high-frequency correlations that emerge for

all the pairs of countries between December 2010 and July 2011, when a series of important

events occur including the second Greek bailout and the Portuguese bailout. Moreover, at

the beginning of December 2010, the ECB announces the purchasing of government bonds

in large scale and Ireland asked for financial help. All these events determined a sensible

increase in risk aversion, with the consequence that market movements were heavily news-

driven and traders operated in a synchronized way across the different markets3.

4.2.2 The MV DECO-MIDAS Model

We now turn to the MV DECO-MIDAS specification where the long run component is

modelled by synthetic indicators of countries macroeconomic fundamentals as described in

(14). As discussed in Section 3, macroeconomic variables enter the model via a measure of

the average absolute distance between the rate of change of macroeconomic drivers of all the

countries in the sample. We expect that, as the fundamentals of the countries get closer, and

therefore the absolute difference tends to zero, the government bond spreads become more

correlated and vice versa. As macroeconomic factors, we use again employment, industrial

3We also estimate correlations using alternative techniques robust to both microstructure noise and
asynchronous trading, e.g. inter alia Aït-Sahalia et al. (2010) and Barndorff-Nielsen et al. (2011), finding
the same pattern during the period December 2010 - July 2011. The pattern of the estimated correlations over
that period can be explained by negative correlations between Germany and the other European countries, as
the result of completely opposite trading activity of German Bund with respect to bonds of other countries.
Results are available from authors upon request.
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production and economic sentiment. In order to keep comparability with results in Table

5, we fix the MIDAS lag equal to 3 months and we adopt the beta lag specification, always

fixing ω1equal to 1. We report estimates in Table 6.

[Insert Table 6 here]

Overall, macroeconomic variables turned out to be statistically significant drivers of cor-

relations between countries. Starting from the level of macroeconomic variables, an increase

in the absolute differences in the rate of change of employment, industrial production and

economic sentiment determine a statistically significant decrease in correlations. Therefore,

there is a confirmation of our assumption about a negative dependence between the corre-

lation of countries and the absolute difference between their macroeconomic fundamentals:

as countries get more similar in terms of their macroeconomic fundamentals, the respective

government bond spreads start to move more closely.

Focusing now on the absolute difference in volatility of the rate of change of fundamen-

tals, our results support the empirical evidence highlighted for the level of macroeconomic

variables. In fact we can note that both divergences in employment volatility and economic

sentiment determine a decrease in countries correlations. Instead, differences in countries

uncertainty on industrial production do not seem to be statistically significant.

Therefore, not only convergence in rates of change of macroeconomic variables determines

an increase in correlation but the volatility of the rate of change too explains correlations

in the same direction: as two countries get more similar in terms of volatilities of their

fundamentals, their government bond spreads get even more correlated.

In Figure 9, we report the pattern of correlations according to estimates reported in Table

6. We only report correlations for the same pairs of countries as in Figures 7 and 8.

[Insert Figure 9 here]

Figure 9 shows that the DECO-MIDAS model is less able than the pure time series DCC

model in describing the high frequency movements in correlations. This can be explained by
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the fact that macroeconomic variables cannot fully describe what happened at high-frequency

level in the markets, and this is particularly true during the most distressed periods.

To better evaluate the impact of macroeconomic fundamentals, we proceed to estimate

the Block DECO-MIDAS described in eq. (13), (14), and 15), where the countries are

grouped into two blocks, the first containing the peripheral (Italy and Spain) and the core

(France, Belgium and the Netherlands) block, and the the second containing the peripheral-

core countries group (Italy and the Netherlands, and Spain and the Netherlands). In this

model the macroeconomic drivers are obtained as averages of the distance between the rate

of change of macroeconomic drivers in the three groups, peripheral, core and peripheral-core

countries. Results are reported in Table 7.

[Insert Table 7 here]

Results reported in Table 7 confirm the conclusions drawn from the DECO-MIDAS macro

model, i.e. diverging economic conditions led to a decrease in correlations in government

bond spreads, as the sign associated to the coeffi cients loading average absolute differences

in macroeconomic fundamentals witness. A milder evidence is found with respect to the

average measures of volatilities. In Figure 10 we report the pattern followed by high and low

frequency correlations.

[Insert Figure 10 here]

What is interesting to note about Figure 10 is the visual representation of the alternative

patterns followed by the alternative groups of countries, peripheral (Italy vs. Spain), core

(France and the Netherlands) and peripheral-core (Italy vs the Netherlands and Spain vs

the Netherlands).

We now compare the alternative models we have estimated so far. With this purpose,

we have to take into account that the DCC-MIDAS models are not nested to the standard

DCC model. Thus, likelihood ratio tests are not valid. An alternative to the likelihood ratio

test for non-nested models is the test procedure proposed by Rivers and Vuong (2002).
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Results are reported in Table 8.

[Insert Table 8 here]

Fist we can note that the DECO restriction does not outperform the DCC model, as both

Rivers and Vuong′s test and the information criteria indicate. This finding is relevant given

that, as already discussed for the volatilities, the classical assumption that the unconditional

or long run correlation is fixed over time is rejected by the data. Allowing the long run

correlation to be time varying, independently from which DCC-MIDAS specification we

adopt, improves substantially the explanatory power of the model. This conclusion is also

evident from a visual inspection of Figures 7-10, which show a strong break in the pattern

of correlations during the period December 2010 - July 2011. Moreover, between the two

pure time series models, the TS DCC-MIDAS and the TS DECO-MIDAS, we can see that

the second one is slightly preferred as the Schwarz criterion indicates, suggesting perhaps

the existence of a common factor driving the low frequency component of correlations.

Moving to the two DECO-MIDAS specifications involving macro variables, MV DECO-

MIDAS and Block DECO-MIDAS, we can see that the second one underperforms the first

one, corroborating the idea of the existence of a systemic factor governing the pattern of low

frequency correlations. We can read this result as an evidence that what drove correlations

in government bond spreads during the period analysed is not anything related to single or

groups of countries, as the long term component is defined in Block DECO-MIDAS macro,

rather to all the European countries, as the long run component is defined in the DECO-

MIDAS macro model. In fact, in the Block DECO-MIDAS, we are de facto considering

three alternative equations for the low frequency component, each of them obtained just

with variables from the specific blocks of countries, i.e. peripheral, core and peripheral-core

countries. Finally, the MV DECO-MIDAS model outperforms specifications not involving

macrovariables, suggesting that diverging macroeconomic fundamentals did have a key role

in determining correlations during that very distressed period. Anyway, when examining

Figure 9 we can see that the sharp break occurred between December 2010 and July 2011

28



cannot entirely be described by macroeconomic variables, with this evidence being clearer

with reference to the pair Italy-Spain and France-Netherlands. This result suggests that

macroeconomic factors, although contribute in ameliorating the model goodness of fit, cannot

fully explain what happened in the financial markets during the recent distressed period.

This result sheds light in identifying the possible sources of the increasing systemic risk

experienced: the substantial break in correlations in government bond spreads which cannot

fully be ascribed to countries fundamentals, shows that the increase in risk can be largely

attributed to financial markets rather than to shocks coming from the real economy. The

sharp increase in correlations is most likely due to a change in market sentiment as during

crisis markets become more volatile and investment activities myopic. In particular, during

the recent sovereign crisis, markets penalized more peripheral European countries in favour

of Germany considered a "safe heaven".

Figure 9 highlights interesting linkages of our findings to the concept of contagion (Forbes

and Rigobon 2002, Bekaert et al. 2005, 2012), defined as increasing correlations not entirely

explained by macroeconomic fundamentals, and are also in line with some studies on systemic

risk. For instance, Ang and Longstaff (2011) highlight that the stronger linkage among

CDS spreads of Eurozone countries with respect to the US indicates that systemic risk is

not directly caused by macroeconomic integration but it has its roots in financial markets.

Kodres and Pritsker (2002), Brunnermeier and Pedersen (2009) and Allen et al. (2009) show

that systemic risk is created through channels such as capital flows, funding availability, risk

premia and liquidity shocks rather than macroeconomic shocks. Finally, Baele et al. (2010)

report that liquidity proxies and risk aversion have a more prominent role in explaining the

dynamics of the correlation between stock and bond returns.

4.2.3 An Eigensystem Decomposition of the Correlation Matrix

In this final section, we implement a conceptually simple and yet powerful tool proposed by

Muller et al. (2005) for detecting and characterizing time dependent phase-shape correlations
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in a multivariate framework. This final exercise allows to interpret the main findings reported

earlier in the paper in terms of time-varying integration among European countries, with

implications in terms of the presence of contagion and/or systemic risk during the sovereign

crisis.

Muller et al. (2005) show that changes in the degree of synchronization in all or a

subset of signals are reflected in coordinated changes in the highest and lowest eigenvalues:

if the highest eigenvalue decreases, the lowest eigenvalue increases, and vice versa. Thus,

information on the interaction between the European countries in this paper can be extracted

from the temporal evolution of eigenvalues and eigenvectors of the correlation matrix. Based

on the eigensystem decomposition of the correlation matrix, Muller et al. (2005) propose to

calculate the participation ratio that is a measure evaluating how many principal components

contribute to the dynamic of correlation matrix. More formally, let aij be the expansion

coeffi cient of eigenvector vi, the participation ratio is defined as:

Np
i =

1

M
∑M

j=1 |aij|
4

(19)

When all the basis states j contribute equally to the expansion of the eigenvector i, Np
i takes

values close to 1, while when the eigenvector vi is driven by few components, N
p
i takes values

close to 1/M , where M represents the number of countries.

We apply the Muller et al. (2005) framework to the time varying correlation matrices

estimated via the MV Block DECO-MIDAS reported in Table 7 in order to get some insights

about time varyingn integration in financial markets, evaluated on the basis of the high-

frequency component, and in country macroeconomic fundamentals, on the basis of the low-

frequency correlations. Neither the TS DCC-MIDAS nor the TS DECO-MIDAS allow us to

analyze at the same the two dynamics, in financial markets and in economic fundamentals,

as they are both based on pure financial data. Finally, the MV DECO-MIDAS model, by

imposing the same long-run correlation between all pairs of countries makes meaningless its
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decomposition.

[Insert Figures 11 and 12 here]

Figure 11 reports the contribution of each eigenvector to the evolving structure of low-

frequency correlation matrix. The Figure shows that Belgium, France, Italy, Spain and the

Netherlands correlations estimated via macroeconomic factors were mainly driven by a lead-

ing eigenvector explaining a percentage of variability between 35% and 55%. In addition, the

amount of variability explained by the leading eigenvector shows a noticeable drop starting

from the end of 2008 and lasting up to the end of 2009 in correspondence of the subprime

crisis; we also note the existence of another drop starting from the beginning of 2012. On

the contrary, no systematic pattern is found over the period December 2010 - July 2011. In

Figure 12, we report the participation ratio computed on the time varying long-term cor-

relation matrix. The Figure shows a sharp drop during the period September 2008 - April

2009, corresponding to the burst of the subprime crisis with the default of Lehman Brothers,

followed by another drop around September 2009. These results can be interpreted jointly

with what reported in Figures 2-4: a sharp increase in the Spanish level of unemployment

starting in the mid of 2008, when also the industrial production differential for Belgium and

the Netherlands vs Germany decreases much less than for France, Italy and Spain; finally,

no evidence of increase in participation ratio is found during the period December 2010 -

July 2011.

The analysis carried out so far is based on the low-frequency correlations providing an

indication of time-varying integration between European real economies. We turn now to

the analysis of the high-frequency correlations to assess whether a similar pattern is present

in the financial markets of the countries in analysis. Figure 13 reports the percentage of

variability of the low-frequency correlation matrix explained by its eigenvectors.

[Insert Figures 13 and 14 here]

31



The principal eigenvector explains on average a 50% of the total variability of the corre-

lation matrix confirming the existence of a global risk factor through the period considered.

Moreover, as already seen when analyzing the pairwise correlations in Figures 9, we find

evidence of a substantial increase in the variability explained by the eigenvector associated

to the largest eigenvalue during the first phase of the sovereign crisis corresponding to De-

cember 2010 - July 2011. The other four eigenvectors explain a similar amount of variability

of the evolution of correlation matrix with a drop in correspondence of the period December

2010 - July 2011 due to an increasing importance of the leading eigenvector. In Figure 14,

we report the participation ratio as defined in (14). It is interesting to see that, although

the participation ratio takes very high values throughout the entire period of our analysis,

it is persistently close to 1 during the crisis period between December 2010 and July 2011,

meaning that all countries in that period contributed equally to the expansion of the maxi-

mum eigenstate. This result supports the evidence that there was no leading country during

the crisis period, no country determined contagion, but all the European countries in our

sample play a similar role in the development of the sovereign crisis. This result suggests

the presence of a dominant global market factor resulting from the interactions of all local

markets.

To identify the nature of this global factor, that cannot be ascribed to macroeconomic

fundamentals, we focus our attention on two other market drivers, namely market liquidity

and EU-IMF policies4.

With respect to market liquidity, we consider the bid-ask spreads for all the countries con-

sidered, including Germany, and evaluate whether the principal eigenvalue can be ascribed

to varying bid-ask spreads. The bid-ask spreads are set by market makers in order to protect

themselves against traders possessing superior information about a security’s fundamental

value and it can therefore be seen as a proxy of the amount of asymmetric information as-

sociated with each security. In addition to that, Fleming (2003) finds that bid-ask spread is

4We wish to thank Erich Ghysels and Robin Lumsdaine for having suggested this point.
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a better measure of liquidity with respect to some alternative metrics, e.g. quote and trade

size.

As bid-ask spreads of the countries in our sample are de facto representative of different

market depths, we weight bid-ask spreads by bonds outstanding.

Turning now to the policies, we note that the sharp increase of high frequency correlations

occurred in correspondence of the set up of extraordinary measures by policy authorities to

prevent the most distressed countries from defaulting. In particular, Greece, Ireland and

Portugal asked and obtained assistance to EU and IMF, with the first rescue package for

Greece being approved on 2nd May 2010, the one for Ireland on 26th November 2010 and the

one for Portugal on 17th May 2011. A second package for Greece was agreed in an emergency

summit of European leaders on 21st July 2011. These dates are extremely relevant for the

unfolding of the sovereign crisis as they are symptomatic of the severe economic conditions

that some peripheral countries were experiencing and of the systemic consequences that a

default in one country could have had on the entire European Union.

We now regress the first factor driving high frequency correlations on bid-ask spreads and

on a dummy variable identifying the days when a rescue package was asked or approved.

[Insert Table 9 here]

The results reported in Table 9 indicate that the first factor of high frequency correlations

can be attributed to the bid-ask spreads of all the countries, denoting that during the first

period of the sovereign crisis liquidity played an important role in determining the time

evolution of government bond yields. In particular, we can see that the highest coeffi cient is

associated to Germany, probably reflecting the tightening of the bid-ask spreads associated to

a higher demand of German Bund during the unfolding of the crisis. This result is in line with

Bai et al. (2012) where it is shown that prior to the global financial crisis, spread movements

were mostly driven by liquidity concerns, but during the sovereign crisis the role of country

specific credit risk became predominant. The role of liquidity in driving government spreads
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is assessed also in Monfort and Renne (2014), where it is found that liquidity-related parts of

the spreads turn out to account for a substantial part of their changes during the sovereign

crisis, with this relationship holding true especially for the less indebted countries, namely

Finland and the Netherlands.

To summarize, when considering 15-minute (high-) frequency component of correlations,

reflecting financial market conditions, we note a sharp rising in integration during the period

December 2010 - July 2011 shown by both an increase in the overall amount of variability

of the correlation matrix explained by the leading eigenvector and by the participation ratio

being very close to one, with little or no variability indicating that all countries have a

similar role in explaining the increase in integration. This movement can largely be ascribed

to increasing bid-ask spreads for the core European countries and to the set-up of rescue

packages for the most distressed countries. The improved liquidity conditions created by the

ECB intervention in the second phase of the crisis, contributed in restoring high frequency

correlations closer to the low frequency ones.

5 Conclusions

Since the introduction in 1999 of the Euro with the single monetary policy under the author-

ity of the ECB, the 10-year yields converged significantly from highs in excess of 300 basis

points to a maximum of 30 basis points one year after the birth of the common currency.

The resulting remarkable compression of sovereign risk premium differentials was considered

a hallmark of successful financial integration in the Euro area but it also raised doubts about

the ability of financial markets to impose fiscal discipline across union members and to dis-

criminate between the qualities of fiscal policies coherently based on economic rationality.

With the explosion of the sovereign debt crisis in 2010-2011, financial markets became more

careful in monitoring the fiscal performance of member states and restarted to exert disci-

plinary pressure on governments. The main question was whether the high spreads reflected
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the fundamentals of a country or rather they were determined by a regime shift in the mar-

ket pricing of government credit risk as, during crisis periods, market penalization of fiscal

imbalances can be higher than during normal times.

In this paper, we propose a set of DCC-MIDAS models for jointly estimating the high-

and low-frequency components for both volatilities and correlations of European government

bond spreads. Starting from the DCC-MIDAS by Colacito et al. (2011) and the DECO by

Engle and Kelly (2012), we introduce the DECO-MIDAS and Block DECO-MIDAS models,

where the long run component of the correlation matrix depends on macroeconomic variables,

while keeping the models tractable.

We consider 10-year benchmarks for Belgium, France, Italy, the Netherlands and Spain

with respect to Germany, over the period 1st June 2007 - 31st May 2012. The high-frequency

component of volatilities and correlations, supposed to reflect financial markets conditions,

is evaluated at 15-minute sampling while the low-frequency component, remaining fixed

through a month, is expected to depend on country specific macroeconomic conditions.

We provide evidence of the strong linkage between increasing volatility of European

government bond spreads and deteriorating countries macroeconomic fundamentals with

respect to German ones. In particular, we show that the model augmented by macroeconomic

fundamentals provides a better fit than the pure time series model, stressing the role of

macroeconomic variables in driving government bond spreads even during the sovereign

crisis. In addition, by estimating a DCC-MIDAS model where the long run component is

driven by macroeconomic fundamentals, we show that as two countries get more similar

in terms of their macroeconomic fundamentals, their bond spreads tend to move together.

Finally, we analyze the time-varying degree of integration of European countries and we

show that the increasing integration in financial markets during the period December 2010

- July 2011 is not fully supported by a similar increasing integration of countries in terms of

their macroeconomic fundamentals, rather by time varying market liquidity conditions and

by policies set up by the IMF and the European Union with the purpose of supporting some
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European peripheral countries.

The findings in this paper suggest further developments. We showed that among the

factors which contribute the most to explain the pattern in European government bond

spreads are country specific macro fundamentals together with the expectation about future

economic outlook as conveyed by the economic sentiment. During the recent crisis, future

expectations played a prominent role. In particular, government’s ability to set up proper

measures to face the crisis together with political uncertainty were priced in government

bonds. In this respect, the case of Italy is very exemplary as the country experienced an

abnormal increase in its government bond spread both in November 2011, in correspondence

of Berlusconi’s government downturn. On the other side, the Irish case, with the spread

moving from highs of 800 bps in June 2011 to the actual (October 2015) 65 bps, against 113

bps for Italy and 128 for Spain, shows as government’s ability to undertake proper reforms

can lead investors to revise their judgment on a country creditworthiness.

For policymakers it is important to identify the factors driving markets as this step helps

to estimate the probability that risk materializes and thus to take appropriate policy actions

which become particularly important in the presence of a highly integrated financial system.

Thus, it is also important to analyze whether other factors besides macroeconomic shocks,

such as for instance political uncertainty and procyclical behaviour of policy authorities,

impact on government bond spreads. This is part of an ongoing research agenda.
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Figures and Tables

Figure 1: 10-year Government Bond Spreads (bps)
The figure reports the 10-year government bond spreads with respect to Germany for Belgium, France, Italy,
Spain and the Netherlands over the period 1st June 2007 - 31st May 2012. Spreads are computed on bid
yields at 15-minute sampling frequency.

Figure 2: Employment - Level
The figure reports the difference in employment levels for Belgium, France, Italy, Spain and the Netherlands
with respect to Germany over the period January 2005 - May 2012. Series are normalized by the initial
value.
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Figure 3: Industrial Production - Level
The figure reports the difference in industrial production levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.

Figure 4: Economic Sentiment - Level
The figure reports the difference in economic sentiment levels for Belgium, France, Italy, Spain and the
Netherlands with respect to Germany over the period January 2005 - May 2012. Series are normalized by
the initial value.

41



Belgium France

Italy Spain

the Netherlands

Figure 5: TS GARCH-MIDAS Models
The figure reports the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained from the GARCH-MIDAS model where the long run component is a smooth weighted
average of previous six monthly realized volatilities. Estimates are reported in Table 2. The blue line is the
high-frequency (15-minute) component while the black line is the low-frequency (monthly) component.
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Figure 6: MV GARCH-MIDAS Models
Figure 6 plots the volatility estimates of 10-year government bond spreads with respect to the German
Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Volatilities are obtained by the GARCH-MIDAS model where the long run component is a function of the
absolute difference in macroeconomic fundamentals, namely employment, industrial production and economic
sentiment, observed over the last six months for each country with respect to Germany, as specified in (7).
Both levels and volatilities of macroeconomic fundamentals concur in determining the long run component
of volatilities. Estimates are reported in Table 3. The blue line is the high-frequency (15-minute) component
while the black line is the low-frequency (monthly) component.43
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Figure 7: TS DCC-MIDAS Models
Correlations are obtained from the TS DCC-MIDAS model where the long run component is a smooth
weighted average of previous three monthly correlation matrixes of standardized residuals. Univariate volatil-
ities are obtained from the TS GARCH-MIDAS reported in Table 2. DCC-MIDAS estimates are reported in
Table 5. The black line is the low-frequency (monthly) component while the blue line is the high-frequency
(15-minute) component.

44



Italy vs Spain France vs the Netherlands

Italy vs the Netherlands Spain vs the Netherlands

Figure 8: TS DECO-MIDAS Models
Correlations are obtained from the TS DECO-MIDAS model where the long run component is a smooth
weighted average of previous three monthly correlation matrixes of standardized residuals. DECO restrictions
impose that the long-run component is determined by an equicorrelation matrix. Univariate volatilities are
obtained from the TS GARCH-MIDAS reported in Table 2. DECO-MIDAS estimates are reported in Table
5. The black line is the low-frequency (monthly) component while the blue line is the high-frequency (15-
minute) component.
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Figure 9: MV DECO-MIDAS Models
The Figure plots the pairwise correlations estimates of 10-year government bond spreads with respect to the
German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May 2012.
Correlations are obtained from the MV DECO-MIDAS model where the long run component is a function of
the average absolute difference in macroeconomic fundamentals, namely employment, industrial production
and economic sentiment, observed over the last three months for each pair of countries as specified in (14).
Both levels and volatilities of macrovariables concur in determining the long run component of correlations.
Estimates are reported in Table 6. The black line is the low-frequency (monthly) component while the blue
one is the high-frequency (15-minute) component.
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Figure 10: Block DECO-MIDAS Models
The Figure plots the pairwise correlations estimates of 10-year government bond spreads with respect to the
German Bund for Belgium, France, Italy, Spain and the Netherlands during the period June 2007 - May
2012. Correlations are obtained from the MV Block DECO-MIDAS model where the long run component is
a function of the average absolute difference in macroeconomic fundamentals, namely employment, industrial
production and economic sentiment, observed over the last three months for each pair of countries as specified
in (14, 15). The blocks are peripheral, core and perpheral-core countries. Both levels and volatilities of
macrovariables concur in determining the long run component of correlations. Estimates are reported in
Table 7. The black line is the low-frequency (monthly) component while the blue one is the high-frequency
(15-minute) component.
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Figure 11: Eigenvectors Contribution to the Time Pattern of the Low-Frequency Correlation
Matrix

Figure 12: Participation Ratio Based on the Low-Frequency Correlation Matrix
The figure reports the participation ratio for the monthly correlation matrix computed using (19).

Figure 13: Eigenvectors Contribution to the Time Pattern of the High-Frequency Correlation
Matrix
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Figure 14: Participation Ratio Based on the High-Frequency Correlation Matrix
The figure reports the participation ratio for the 15-minute correlation matrix computed using (19).

Table 1: Government Bond Yields and Spreads: Data Selection and Descriptive Statistics

DE BE FR IT ES NL
No. ticks 3,077,442 841,854 1,096,247 978,261 978,357 657,249

Limiting trading time 2,928,107 831,094 1,027,268 917,455 969,129 645,773

No. trades per day: Mean (SD) 2,345 (1,889) 659 (481) 828 (596) 736 (526) 764 (512) 513 (378)

Trade duration: Mean (SD) [s] 14.2 (44.4) 47.0 (115.7) 38.0 (88.6) 42.9 (97.1) 38.1 (90.3) 60.4 (123.4)

15-minute intervals 39,649 39,649 39,649 39,649 39,649 39,649

Exclude 1st daily obs 38,370 38,370 38,370 38,370 38,370 38,370

Bid YTM
Mean (SD) [%] 3.18 (0.82) 4.01 (0.47) 3.61 (0.58) 4.66 (0.69) 4.58 (0.65) 3.48 (0.75)

Median (1st - 99th pct) [%] 3.20 (1.48 - 4.64) 4.08 (2.99 - 4.96) 3.56 (2.52 - 4.78) 4.57 (3.76 - 6.99) 4.41 (3.76 - 6.38) 3.54 (1.98 - 4.79)

Bid-Ask Spread of YTM
Mean (SD) [bps] 0.63 (0.05) 1 (0.06) 0.78 (0.08) 0.64 (0.05) 0.75 (0.05) 0.72 (0.05)

Median (1st - 99th pct) [bps] 0.62 (0.56 - 0.76) 1 (0.89 - 1.11) 0.79 (0.66 - 0.94) 0.64 (0.51 - 0.8) 0.75 (0.67 - 0.89) 0.72 (0.65 - 0.85)

Bid Spread
Mean (SD) [bps] - 83 (64) 42 (33) 150 (125) 141 (124) 30 (17)

Median (1st - 99th pct [bps]) - 65 (7 - 272) 34 (5 - 147) 117 (27 - 505) 82 (5 - 472) 26 (4 - 81)

Bid-Ask Spread of Spread
Mean (SD) [bps] - 0.34 (0.20) 0.16 (0.07) 0.01 (0.06) 0.12 (0.07) 0.09 (0.08)

Median (1st - 99th pct) [bps] - 0.39 (-0.62 - 0.48) 0.15 (-0.01 - 0.29) 0.03 (-0.12 - 0.13) 0.13 (0.00 - 0.24) 0.11 (-0.05 - 0.21)

The table reports data selection procedures on government bond yields and spreads together with some summary statistics. Limiting trading time means
removing all holidays, weekend days and considering trades occurred between 8:00 and 15:30 UTC. Outliers are detected as described in (1) in the text.
Tick-by-tick data are resampled using calendar time and 15-minute frequency. The 1st observation of each day is removed as it presents excess volatility. In
square brackets is the measurement unit.
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Table 2: Parameter Estimates for the TS GARCH-MIDAS Models

BE FR IT ES NL

α 0.0534 *** 0.0590 *** 0.0417 *** 0.0558 *** 0.0714 ***

β 0.9370 *** 0.9274 *** 0.9507 *** 0.9302 *** 0.9139 ***

m -6.3869 *** -6.6277 *** -6.3461 *** -6.2041 *** -7.2470 ***

ϑ 0.9080 *** 0.8685 *** 0.9042 *** 0.9749 *** 0.7047 ***

ω2 5.5888 *** 6.8412 *** 3.3698 6.8412 *** 5.5588 ***

LogL 124,087 128,523 111,814 114,503 129,831

Variance ratio 0.70 0.65 0.74 0.85 0.37

The table reports estimates for the TS GARCH-MIDAS. Realized volatilities are estimated
on a fix 6 months span while the high-frequency component is measured at 15-minute fre-
quency. Weights are computed according to the beta function where the first parameter ω1
is set to 1. ***, **, and * denote 1%, 5% and 10% significance level, respectively.

Table 3: Parameter Estimates for the MV GARCH-MIDAS Models

BE FR IT ES NL

α 0.0447 *** 0.0611 *** 0.0398 *** 0.0582 *** 0.0921 ***

β 0.9536 *** 0.9234 *** 0.9534 *** 0.9209 *** 0.8658 ***

m -10.71 *** -12.56 *** -11.19 *** -11.40 *** -8.92 ***

ϑ1,l (Employment) -19.14 -9.39 *** -36.76 * -5.09 24.64 ***

ϑ2,l (Industrial production) 26.99 ** 20.21 *** 27.52 *** 13.56 *** -40.20 ***

ϑ3,l (Economic sentiment) 12.49 *** -0.38 1.70 * 3.33 *** -3.59 ***

ω2,1,l (Employment) 0.62 29.71 *** 29.40 * 29.22 *** 56.09

ω2,2,l (Industrial production) 1.87 ** 0.96 *** 0.98 *** 1.36 0.99 ***

ω2,3,l (Economic sentiment) 33.82 ** 39.75 ** 39.46 * 39.60 ** 3.23

ϑ1,v (Employment) -7.49 ** -2.7 *** -3.27 *** -9.24 *** 31.5 ***

ϑ2,v (Industrial production) -20.62 33.17 * -6.19 23.91 14.00

ϑ3,v (Economic sentiment) 13.88 -1.44 *** -1.28 3.48 -5.69 ***

ω2,1,v (Employment) 0.98 *** 1.08 *** 0.97 *** 1.02 *** 1.03 ***

ω2,2,v (Industrial production) 5.28 *** 2.12 *** 0.78 1.55 0.96 ***

ω2,3,v (Economic sentiment) 1.00 *** 0.69 *** 3.52 1.09 *** 1.40 ***

LogL 124,052 128,541 111,826 114,567 129,950

Variance ratio 0.42 0.63 0.80 0.87 0.67

The table reports estimates for the MV GARCH-MIDAS where the long run volatility is a function
of the absolute difference in macroeconomic variables (employment, industrial production and
economic sentiment) observed over the last six month for each country with respect to Germany as
specified in (7). Both levels and volatilities of macroeconomic fundamentals concur in determining
the long run component of volatilities. The low-frequency component is updated monthly, in
correspondence to new macroeconomic data, while the high-frequency component is evaluated
on a 15-minute time window. The absolute difference in volatilities were rescaled: employment
volatility by 10e4 while industrial production and economic sentiment volatility by 10e2. Weights
are computed according to the beta function where the first parameter ω1 is set to 1. ***, **, and
* denote 1%, 5% and 10% significance level, respectively.
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Table 4: GARCH MIDAS Models: A Comparison

IT FR ES BE NL

Log Likelihood

GARCH 111,739 128,403 114,335 123,992 129,751

TS GARCH-MIDAS 111,814 128,523 114,503 124,087 129,831

LR test (vs GARCH) 149.45 *** 239.25 *** 336.32 *** 190.74 *** 160.29 ***

MV GARCH-MIDAS 111,826 128,541 114,567 124,052 129,950

LR test (vs GARCH) 174.27 *** 275.56 *** 464.77 *** 120.02 *** 398.78 **

AIC

GARCH -6.333 -7.278 -6.480 -7.028 -7.354

TS GARCH-MIDAS -6.337 -7.284 -6.4901 -7.033 -7.358

MV GARCH-MIDAS -6.338 -7.285 -6.493 -7.030 -7.365

BIC

GARCH -6.333 -7.277 -6.480 -7.027 -7.354

TS GARCH-MIDAS -6.336 -7.283 -6.489 -7.032 -7.357

MV GARCH-MIDAS -6.334 -7.281 -6.489 -7.026 -7.361

Variance Ratio

TS GARCH-MIDAS 0.74 0.65 0.85 0.70 0.37

MV GARCH-MIDAS 0.80 0.63 0.87 0.42 0.67

The table reports a comparison of alternative volatilites estimates. GARCH is the clas-
sical GARCH(1,1) model by Bollerslev (1986). In the TS GARCH-MIDAS model, the
low-frequency component is a smooth weighted average of previous six monthly realized
volatilities and reported in Table 2. In the MV GARCH-MIDAS model, the low-frequency
component is a function of the absolute difference in macroeconomic variables (employment,
industrial production and economic sentiment) for each country with respect to Germany
and reported in Table 3. LR test is provided only with respect to classical GARCH as the
two GARCH-MIDAS specifications are not nested. AIC and BIC are Akaike and Schwarz
information criterion respectively, whose values are divided by T=38,370. Variance ratio, de-
fined in (8), indicates the overall amount of volatility explained by the long run component.
***, **, and * denote 1%, 5% and 10% significance level, respectively.

51



Table 5: Parameters Estimates for the TS DCC-MIDAS Models

DCC DECO TS DCC-MIDAS TS DECO-MIDAS

a 0.0045 *** 0.0115 0.0062 * 0.0039 ***

b 0.9953 *** 0.9874 *** 0.9893 *** 0.9948 ***

m -1.4808 ***

θ 4.0258 ***

ω2 - - 3.1333 * 21.3044 ***

LogL 629,410 628,006 630,019 630,145

The table reports estimates for the TS DCC-MIDAS model where the long run compo-
nent of correlation is a smooth weighted average of previous three monthly correlation
matrixes of standardized residuals. The long run component is kept fixed throughout
the month while the high frequency component is evaluated on a 15-minute time win-
dow. Weights are computed according to the beta function where the parameter ω1
is set to 1. Univariate volatilities are obtained by the TS GARCH-MIDAS reported
in Table 2. ***, **, and * denote 1%, 5% and 10% significance level, respectively.
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Table 6: Parameters Estimates for the MV DECO-MIDAS Models

Estimates

m 2.2172

ϑ1,l (Employment) -4.8547 **

ϑ2,l (Industrial production) -0.0836 ***

ϑ3,l(Economic sentiment) -0.0457 ***

ω2,1,l (Employment) 1.9785 *

ω2,2,l(Industrial production) 8.7085

ω2,3,l(Economic sentiment) 8.9127 **

ϑ1,v (Employment) -24.0090 **

ϑ2,v (Industrial production) 0.0006

ϑ3,v(Economic sentiment) -0.0598 **

ω2,1,l (Employment) 1.0010

ω2,2,v (Industrial production) 8.8647 *

ω2,3,v (Economic sentiment) 2.1399 **

DCC

a 0.0043 ***

b 0.9947 ***

LogL 631,158

The table reports estimates for the MV DECO-MIDAS model
where the long run component is a function of the average absolute
difference in macroeconomic fundamentals, namely employment,
industrial production and economic sentiment observed over the
last three months, computed on all the possible pairs of countries.
Both levels and volatilities of macroeconomic fundamentals con-
cur in determining the long run component of correlations. The
long run component is kept fixed throughout the month while
the high frequency component is evaluated on a 15-minute time
window. Weights are computed according to the beta function
where the first parameter ω1 is set to 1. Univariate volatilities are
obtained by the MV GARCH-MIDAS model where the long run
component is a function of macrovariables and reported in Table
3. Differences were rescaled. ***, **, and * denote 1%, 5% and
10% significance level, respectively.
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Table 7: Parameters Estimates for the MV Block DECO-MIDAS Models

Peripheral Core Mixed

m 1.872 ** 2.010 *** 2.293***

ϑ1,l (Employment) -1.557 ** -1.014 ** -2.668 ****

ϑ2,l (Industrial production) -0.087 -0.176 * -0.246 **

ϑ3,l(Economic sentiment) 0.090 -0.416 ** -0.056

ω2,1,l (Employment) 10.632 13.407 ** 1.001

ω2,2,l(Industrial production) 1.003 12.331 1.085 *

ω2,3,l(Economic sentiment) 3.471 2.372 ** 1.211

ϑ1,v (Employment) -8.314 ** -16.678 *** -2.408

ϑ2,v (Industrial production) 0.018 0.014 0.068 *

ϑ3,v(Economic sentiment) -0.027 * -0.010 -0.012 **

ω2,1,l (Employment) 1.361 ** 1.439 ** 10.321 **

ω2,2,v (Industrial production) 7.692 ** 1.015 1.001

ω2,3,v (Economic sentiment) 5.708 8.316 ** 8.752 *

DCC

a 0.0045 ***

b 0.9945 ***

LogL 629,811

The table reports estimates for the MV Block DECO-MIDAS model where the
long run component is a function of the average absolute difference in macro-
economic fundamentals, namely employment, industrial production and eco-
nomic sentiment observed over the last three months. We define three blocks:
peripheral, core and peripheral-core countries. Both levels and volatilities of
macroeconomic fundamentals concur in determining the long run component
of correlations. The long run component is kept fixed throughout the month
while the high frequency component is evaluated on a 15-minute time window.
Weights are computed according to the beta function where the first parameter
ω1 is set to 1. Univariate volatilities are obtained by the MV GARCH-MIDAS
model where the long run component is a function of macrovariables and re-
ported in Table 3. Differences were rescaled. ***, **, and * denote 1%, 5%
and 10% significance level, respectively.
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Table 8: DCC-MIDAS Models: A Comparison

LogL Rivers and Vuong’s test vs DCC AIC BIC

DCC 629,410 - -35.67 -35.67

DECO 628,006 -2,807 -35.59 -35.59

TS DCC-MIDAS 630,019 1,218 *** -35.71 -35.70

TS DECO-MIDAS 630,145 1,469 *** -35.71 -35.71

MV DECO-MIDAS 631,158 3,496 *** -35.77 -35.75

MV Block DECO-MIDAS 629,811 3.69 *** -35.69 -35.66

The table reports a comparison of alternative DCCmodels. In TS DCC-MIDAS
model, the low frequency component is a smooth weighted average of previous
three correlation matrixes of standardized residuals and reported in Table 5.
In the TS DCC-MIDAS univariate volatilities are obtained by the TS GARCH-
MIDAS In the MV DECO-MIDAS model, the low frequency component is a
function of the average absolute difference in macroeconomic fundamentals,
namely employment, industrial production and economic sentiment, observed
over the last three months for each pair of countries and reported in Table 6.
In the MV Block DECO-MIDAS, the long run components differ for blocks
of countries, i.e. peripheral, core and peripheral-core countries. Estimates of
this model are reported in Table 7. In both cases univariate volatilities are
obtained by the MV GARCH-MIDAS reported in Table 3. Vuonf. AIC and
BIC are Akaike and Schwarz information criterion respectively, whose values
are divided by T=35,286. ***, **, and * denote 1%, 5% and 10% significance
level, respectively.

Table 9: Driving factors of the first high-frequency correlations eigenvalue

Estimate

Intercept -2.3915 ***

BE Bid-Ask 0.0097 ***

DE Bid-Ask 0.2461 ***

ES Bid-Ask -0.0034 ***

FR Bid-Ask 0.0886 ***

IT Bid-Ask -0.0848 ***

NL Bid-Ask -0.0228 ***

Rescue package -0.0622 ***

R2 54.81

The table reports the results of the regression of the principal
eigenvalue of the high-frequency correlations on bid-ask spreads
in analysis, including Germany, and on dummy variables for dates
when rescue package to IMF and EU was asked and approved by
Greece, Portugal and Ireland. *** denote 1% significance level.
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