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Abstract

We show that a Coulomb gas Vertex Operator representation of 2D Conformal Field

Theory gives a complete description of abelian Hall fluids: as an euclidean theory in two space

dimensions leads to the construction of the ground state wave function for planar and toroidal

geometry and characterizes the spectrum of low energy excitations; as a 1 + 1 Minkowski

theory gives the corresponding dynamics of the edge states. The difference between a generic

Hall fluid and states of the Jain’s sequences is emphasized and the presence, in the latter

case, of of an Û(1) ⊗ ŜU(n) extended algebra and the consequent propagation on the edges

of a single charged mode and n − 1 neutral modes is discussed.
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1. Introduction

Since the fractional quantized Hall effect (FQHE) was first observed by Tsui,

Stormer and Gossard1 in 1982, considerable experimental and theoretical progress2

has been made toward a physical understanding and a formal characterization of this

intrinsically collective phenomenon. An important element, common to many recent

developments, is a better understanding of the interplay between the physics of the

incompressible Hall fluid of the bulk and the dynamics of the gapless excitations on

the edges of the sample. Indeed, for the simple case of filling ν = 1, the quantization

of the Hall conductance may be related to the perfect transmission of free electrons

edge states3 and, more generally, even in the case of multiple edge channels, stability

of the edge currents against impurity perturbation is expected to be crucial for

explaining the experimentally observed Hall plateaux.

A natural and unified description of the properties of the bulk and of the edges

of a Hall system is provided by a 2D Conformal Field Theory (2DCFT) approach4.

In this framework the main tool is a Coulomb gas Vertex Operator representation,

that translates in a precise mathematical form the physical idea that the quasiparti-

cles of the Hall fluid arise from the binding of electrons and magnetic vortices. In the

case of the Laughlin states5, corresponding to a filling factor ν = 1/m, the electron

Vertex Operator (VO) is a U(1) field of conformal weight m/2 and the correspond-

ing ground state wave function (gswf) is given by an appropriate correlator of such

fields. Therefore the Laughlin wave function satisfies a Knizhnik-Zamolodchikov

equation for an abelian Wess-Zumino model6, expressing the existence of a non triv-

ial connection due to the presence of infinitely thin magnetic flux tubes located at

the positions of the particles. Furthermore, one can show that in order to build the

Laughlin gswf’s on a compact Riemann surface one needs a set of VO’s, charac-

terized by the integer lattice Z/mZ, in one-to-one correspondence with the m-fold

degeneracy of the gswf’s on a torus, leading to a field theoretical characterization of

topological order and providing the spectrum of low lying excitations.
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It has been stressed7,8 that FQHE on closed Riemann surfaces, although exper-

imentally inaccessible, dictates the structure of the edge dynamics. The same U(1)

2DCFT, that as an euclidean theory in two space dimensions leads to the construc-

tion of the gswf’s, gives, as a theory in 1 + 1 space-time dimensions, the dynamics

of the chiral edge states. Indeed, by looking at the edge states on a cylinder, one

recognizes the existence of m sectors of fractionally charged excitations, that are

described by means of the same set of m VO’s required to build the gswf’s on a

torus, expressed in this case in terms of a chiral field propagating on the edge.

The purpose of this paper is to extend this picture in the general case of an

abelian quantum Hall fluid, that can be characterized9 by a symmetric integer valued

n × n matrix, K. We shall see that in order to have well defined gswf’s on the

torus the K matrix must be positive definite. We may recall that this requirement

implies that the multiple channel edge currents move all in the same direction10,

and, as a consequence, the total current is not altered by scattering events and the

conductance is quantized. Furthermore it has been shown11,12, for Jain’s states13

corresponding to K matrix not positive definite, that it is necessary to take into

account the effect of disorder to explain the observed Hall conductance quantization.

Therefore in the following we shall assume that the positivity condition for the

K matrix is fulfilled and we shall show that a complete 2DCFT description of

a multi component abelian Hall fluid can be achieved by introducing n properly

compactified, holomorphic scalar fields. The complete set of inequivalent VO’s will

be characterized by the n dimensional integer lattice Zn/KZn, whose points are in

one-to-one correspondence with the det K degenerate gswf’s on the torus. This set

of VO’s will also lead to a full characterization of the low energy fractionally charged

excitations and the corresponding edge states.

However there are important differences in the structure of the 2DCFT between

the case of a generic- in a sense to be later specified- K matrix and the case of

the matrix corresponding to a Jain’s state of filling ν = n/(2np + 1). We shall
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see that in the latter case the lattice characterizing the inequivalent VO’s may be

taken as Z/(2np+1)Z, in complete analogy with the Laughlin states. Furthermore,

an extended algebra Û(1) ⊗ ŜU(n) will naturally appear and, by introducing a

formal description of the transport mechanism, we shall see that only the Û(1)

mode contributes to the conductance, while the ones corresponding to ŜU(n) are

neutral. The important consequence for the dynamics of the edge states is that,

while in the generic case there will be n charged modes propagating on the edges,

in the Jain’s case there will be a single charged mode and n − 1 neutral ones. This

picture, that confirms the results obtained in refs. 12,14, may be a starting point

for understanding the experimental evidence showing that the most prominent Hall

plateaux belong to the Jain’s sequences.

This paper is organized as follows. In sec. 2 we briefly review the results

relative to the Laughlin states, stressing the correspondence between the 2DCFT

description on the bulk and on the edge. Sec. 3 is devoted to a general abelian Hall

fluid. Once a complete set of VO’s is identified, the corresponding gswf’s on the

torus are constructed, their properties under modular transformations and magnetic

translations are analyzed and the response to an applied electric field is evaluated.

In sec. 4 the corresponding description for the edge states is given. The Jain’s

states are discussed in sec. 5, where it is shown that in a basis that diagonalizes K

an Û(1) ⊗ ŜU(n) structure naturally arises; only the Û(1) mode contributes to the

conductance and the center of charge theta function can be decomposed as a sum of

products of factors relative to the charged and the neutral modes. Taking the ŜU(2)

and ŜU(3) cases as specific examples, the corresponding character decomposition is

exhibited. Finally, sec. 6 is devoted to concluding remarks and perspectives.

2. Laughlin sequence

In order to present the basic ideas relative to the description of the quantum

Hall effect by means of 2DCFT and fix the basic notations, we recall briefly the well

known results for the Laughlin sequence4. The starting point is the introduction of
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a holomorphic scalar field φ(z), with two point correlator:

〈φ (z1) φ (z2)〉 = − ln (z1 − z2) . (1)

The mode expansion for the field φ (z) is given by

φ (z) = q̂ − ip̂ ln z + i
∑

n 6=0

an

n
z−n, (2)

with coefficients satisfying the usual commutation relations. By taking the field φ(z)

compactified on a circle of radius R =
√

m, i.e. φ ≡ φ + 2π
√

m, one identifies a set

of m inequivalent VO’s:

Vl (z) =: exp

[
i

l√
m

φ (z)

]
:=: exp

[
il
√

νφ (z)
]

: , l ∈ Z

mZ
. (3)

The operators Vl are primary fields of conformal weight ∆ = l2/2m. Their physical

meaning is easily recognized by looking at the braiding relation:

Vl (z) Vl′ (z
′) = (z − z′)

ll′

m : Vl (z) Vl′ (z
′) := eiπ ll′

m Vl′ (z
′) Vl (z) , (4)

showing that the VO Vl describes a particle with statistical factor l2/2m, carrying

l units of magnetic flux and electric charge l/m. The electron field corresponds to

the choice l = m and the analytic part of the Laughlin gswf is given by

〈
V√

m (z1) . . . V√
m (zN )

〉
=

N∏

i<j

(zi − zj)
m , (5)

where by definition
〈

N∏

i=1

V√
m (zi)

〉
≡
〈

N
√

m

∣∣∣∣∣

N∏

i=1

V√
m (zi)

∣∣∣∣∣ 0
〉

(6)

and

〈p| p̂ = p 〈p| , 〈p| a−n = 0 , n > 0 . (7)

Due to the finite energy gap existing for an incompressible Hall fluid, the full

spectrum of low energy excitations, corresponding to the full set of operators given

by eq. (3), will not play a crucial role at very low temperature. However, their

theoretical relevance is due to the one-to-one correspondence between the set of
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VO’s eq. (3) and the set of vacuum states |g = 1, l〉, that enter in the construction

of the Laughlin gswf’s on a compact genus one Riemann surface:

〈
N∏

i=1

V√
m (zi)

〉g=1

l

≡
〈

N
√

m

∣∣∣∣∣

N∏

i=1

V√
m (zi)

∣∣∣∣∣ g = 1, l

〉
(8)

More explicitly, on a torus described by z/L = ξ + τη, Imτ > 0, with ξ ≡ ξ + 1

and η ≡ η + 1, pearced by an integer number NΦ of magnetic fluxes, in the Landau

gauge ~A = 2πNΦ(η, 0), one has

〈
N∏

i=1

V√
m (zi)

〉g=1

l

=
N∏

i<j

[θ1 (zij |τ)]m Θ




l/m

0


 (mZ|mτ) ≡ Fl ({zi} |τ) , (9)

where Z =
∑N

i=1 zi/L is the center of charge variable and zij = (zi − zj)/L. Here we

have introduced the theta functions with rational characteristics15 defined by

Θ




a

b


 (z|τ) =

∑

h∈ Z

exp
[
πi (h + a)2 τ + 2πi (h + a) (z + b)

]
=

= SbTaΘ




0

0


 (z|τ) . (10)

where a, b ∈ Q.

The above equation defines implicitly the magnetic translation operators S and

T . The presence of the product of theta functions of the relative particle positions

in eq. (9) is expected because [− ln θ1(zi−zj |τ)] is the singular part of the Coulomb

propagator on the torus as [− ln(zi − zj)] is on the plane. On the other hand, the

center of charge theta function is required in order to satisfy the correct boundary

conditions in each particle variable and to give a uniform charge distribution in the

thermodynamical limit, as can be easily shown provided the condition NΦ = mN ,

expressing the cancellation (in the average) between the external magnetic field and

the statistical one, is fulfilled.

The gswf’s eq. (9) realize a natural splitting between local and global proper-

ties: while the local part is unaffected by total magnetic translations, the center of
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charge theta functions, and henceforth the complete gswf’s, provide an irreducible

representation of the subgroup of the total magnetic translation group generated by

SL/NΦ
and TL/NΦ

:

S L
NΦ

Fl = exp
[
2πi l

m

]
Fl ,

T L
NΦ

Fl = Fl+1 .
(11)

The Hall conductance quantization can be seen as a global property: by introducing,

along the B cycle of the torus, a magnetic flux tube of strength 2πλ the Laughin

gswf’s are transformed as follows:

Fl → Fl+λ = T λL
NΦ

Fl , (12)

implying4 a pure Hall conductance σH = 1/m in natural units.

Although the Hall effect on closed Riemann surfaces is not experimentally ac-

cessible, the above argument has immediate consequence on the structure of the

edge state excitations. Indeed, consider the cylinder resulting from cutting the

torus along the A cycle; then, from eq. (12), one sees that the variation of one unit

of flux implies the transfer of a charge 1/m from one edge to the other. The charge

spectrum of edge states excitations is then in one-to-one correspondence with the

set of VO’s eq. (3). Furthermore, the same VO’s give bosonized field operators

representing the charged edge excitations, where now φ = φ(x − vt) is a chiral field

in 1 + 1 space-time, and x is a coordinate along the edge.

The 2DCFT provides a complete description of the dynamics of the edge states

as the Hamiltonian density of the neutral excitations and the electric current are

completely expressed in terms of the chiral field φ = φ(x − vt):

H =
v

8π

[
1

v2
(∂0φ)2 + (∂xφ)2

]
, (13)

j =

√
ν

2π
∂xφ , (14)

The current satisfies a Û(1) Kac-Moody algebra that in terms of Fourier components

reads

[jn, jm] = νnδn+m,0 , (15)
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and the following commutation relation with the Hamiltonian

[H, jn] = −vnjn . (16)

In order to stress the difference with an ordinary Fermi liquid, Wen7 has introduced

the term chiral Luttinger liquid to describe such a system.

3. Abelian Hall Fluid

A general n component Hall fluid may be characterized9 by a symmetric integer

valued matrix K, where the element KIJ is the braiding factor between an electron

of the I th component and an electron of J th component. To describe such a system

in the framework of 2DCFT we introduce a set of n independent holomorphic scalar

fields φi(z) whit correlators

〈φi (z1) φj (z2)〉 = −δij ln (z1 − z2) . (17)

The correct braiding properties between any two electrons are obtained by defining

the VO’s

V ~βI
(z) =: exp

[
i ~βI · ~φ (z)

]
: , (18)

where the vectors ~βI satisfies ~βI · ~βJ = KIJ . A more explicit form for ~βI will be given

below. The conformal weight, and therefore the spin, of the VO’s eq. (18) is given

by ~β2
I /2, leading to the requirement KII odd. The explicit form of the generalized

Laughlin wave function on the plane is given by
〈

n∏

I=1

NI∏

i=1

V~βI

(
zI

i

)〉
=

n∏

I=1

NI∏

i<j

(
zI

i − zI
j

)KII
n∏

I<J

NI∏

i=1

NJ∏

j=1

(
zI

i − zJ
j

)KIJ

. (19)

In order to obtain a complete characterization of the low energy excitations of the

system, we proceed as in the case of the Laughlin states and introduce a full set

of VO’s. To this purpose, we compactify the field ~φ as follows: ~φ ≡ ~φ + 2πR~h,

where ~h ∈ Zn, and RT R = K; the explicit form of R can be easily obtained by

the diagonalization of K. As a consequence, a complete set of inequivalent VO’s is

given by

V~l (z) =: exp
[
i~lT R−1~φ (z)

]
: , ~l ∈ Zn

KZn ≡ Zn
K . (20)
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Notice that the electronic VO’s V~βI
correspond to the choice ~l = K~δI , where (~δI)J =

δIJ . The VO’s eq. (20) represent excitations currying a vector of magnetic flux ~l

and ”charges”

QI =
(
K−1

)

IJ
lJ , (21)

as it can be seen from the braiding relation

V~l (z) V~l′ (z
′) = exp

[
iπ~lT K−1~l′

]
V~l′ (z

′)V~l (z) . (22)

By evaluating the Hall conductance, we shall see shortly that the electrical charge

is given by Q =
∑

I QI . Notice that the electron charge is one as it should.

The set of VO’s eq. (20) realizes a consistent description of the system, as it

can be seen analyzing the Laughlin gswf’s on the torus. We work in the Landau

gauge ~A = 2πNΦ(η, 0) and we assume that the condition

KIJNJ = NΦ , (23)

expressing the cancellation (in the average) between statistical and external mag-

netic field, is fulfilled, implying that the system is at filling factor ν =
∑

I NI/NΦ =
∑

I,J (K−1)IJ .

Then the Laughlin gswf’s on the torus are given by

F~l

({
zI

i

}
|τ
)

=

〈
n∏

I=1

NI∏

i=1

V~βI

(
zI

i

)〉g=1

~l

, (24)

where we have used again the one-to-one correspondence existing in 2DCFT between

the set of VO’s (20) and the g = 1 vacuum states on the torus. The explicit form

of the gswf’s is given by

F~l

({
zI

i

}
|τ
)

=
n∏

I=1

NI∏

i<j

[
θ1

(
zII

ij |τ
)]KII

n∏

I<J

NI∏

i=1

NJ∏

j=1

[
θ1

(
zIJ

ij |τ
)]KIJ ×

× Θ




K−1~l

0



(
K ~Z|Kτ

)
, ~l ∈ Zn

K , (25)

where zIJ
ij = (zI

i − zJ
j )/L, and ZI =

∑NI

i=1 zI
i /L is the center of charge coordinate

of the I th component. For the sake of simplicity, in the following we will use the

9



shorthand notation
∏′ [θ1] for the products of θ1-functions appearing in the right

hand side of the eq. (25). Here we also have introduced the theta functions of

several variables with rational characteristics15:

Θ




~a

~b


 (~z|Ω) =

∑

~h∈Z
n

exp
[
πi
(
~h + ~a

)

T
Ω
(
~h + ~a

)
+ 2πi

(
~h + ~a

)
·
(
~z +~b

)]
, (26)

where ~a,~b ∈ Qn and Ω is a n × n symmetric complex valued matrix with positive

definite imaginary part. As Imτ > 0 , it is now clear why we have taken K to be

positive definite. Provided that the condition (23) is verified, one can show that the

gswf’s eq. (25) give a complete set of states with the correct boundary conditions

in each particle variable16.

There is a strict correspondence between modular invariance of 2DCFT and

gauge invariance of the physical system. Indeed, by using the usual modular trans-

formations for the θ1-functions15 and appropriate transformation properties for the

center of charge theta functions under the transformation τ → τ̃ = − 1
τ
, and

z → z̃ = z
τ
, namely

Θ




K−1~l

~0



(
Kτ−1 ~Z| − Kτ−1

)
= det

(
K−1τ

i

)1/2

exp
[
πi~ZT Kτ−1 ~Z

]
×

×
∑

~l′∈ Zn
K

exp
[
−πi~lT K−1~l′

]
Θ




K−1~l

~0



(
K ~Z|Kτ

)
, (27)

one sees that, provided the condition (23) is satisfied, the following equation holds

F~l

({
z̃I

i

}
|τ̃
)

=
c√

det K
exp



πi

τ
NΦ

n∑

I=1

NI∑

i=1

(
zI

i

)2




∑

~l′∈ Zn
K

exp
[
−2πi~lT K−1~l′

]
F~l′

({
zI

i

}
|τ
)

,

(28)

where c is an inessential constant. The physical meaning of the above equation is

more easily understood when we complete the gswf Ψ~l by multiplying its analytic

part eq. (25) by the appropriate gaussian factor, obtaining

Ψ~l → Ψ̃~l =
c′√

det K
exp



2πiNΦ

n∑

I=1

NI∑

i=1

(
ξI
i η

I
i

)



∑

~l′∈ Zn
K

exp
[
−2πi~lT K−1~l′

]
Ψ~l′ (29)
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As the exponential factor correspond to the gauge transformation taking from the

gauge ~A1 = 2πNΦ (η, 0) to the gauge ~A2 = 2πNΦ (0,−ξ), we see that the eq. (29)

express the gauge invariance of the theory.

The global properties of the gswf’s are encoded in the center of charge theta

function. Let us introduce the total magnetic translation group

SbF~l

({
zI

i

})
= F~l

({
zI

i + b
})

,

TaF~l

({
zI

i

})
= exp

[
2πiNΦ

(
a
L

∑n
I=1 ZI + τ a2

2L2

∑n
I=1 NI

)]
F~l

({
zI

i + aτ
})

.
(30)

Sb e Ta are non commuting operators, in particular by taking a = b = L/NΦ, one

has

S L
NΦ

T L
NΦ

= exp



2πi
n∑

I,J=1

(
K−1

)IJ



 T L
NΦ

S L
NΦ

= e2πiνT L
NΦ

S L
NΦ

. (31)

The gswf’s
{
F~l ,

~l ∈ Zn
K

}
provide a basis for an irreducible representation of the

subgroup of the magnetic translation group generated by SL/NΦ
e TL/NΦ

. In the

language of 2DCFT such operators are explicitly realized in terms of holomorphic

field ~φ (z) as follows

S L
NΦ

= exp
[
~1TR−1

∮
A dz∂~φ (z)

]
,

T L
NΦ

= exp
[
~1TR−1

∮
B dz∂~φ (z)

]
,

(32)

where ~1T = (1, ..., 1), and the integrals are taken along the homology cycles of the

torus. The translation operator along the B cycle enters directly the evaluation of

the conductance of the system. As for the Laughlin states, we introduce a magnetic

flux line of strength ∆Φ = 2πλ along the B cycle of the torus. The corresponding

change in the periodicity of the gswf’s along the A cycle implies the transformation

F~l → F~l+λ~1 , (33)

that can be explicitly realized by means of the action of the operator TλL/NΦ
on F~l

:

F~l+λ~1

({
zI

i

}
|τ
)

= T λL
NΦ

F~l

({
zI

i

}
|τ
)

=
[∏′

θ1

]
Θ




K−1
(
~l + λ~1

)

0



(
K ~Z|Kτ

)
. (34)

11



As the electric field corresponding to the change of flux is along the A cycle and the

translation is along the B cycle, the conductance is purely transverse and is given

by Faraday law:

σH =
Q

∆Φ
=

n∑

I,J=1

(
K−1

)

IJ
=

ν

2π
. (35)

4. Edge states for the generic abelian case

As in the simple case of the Laughlin states ν = 1/m, the dynamics of the

edge states is, for the generic abelian case, completely dictated by the same 2DCFT

leading to the bulk gswf’s. As a consequence the hamiltonian for the edge excitations

is simply given as a superposition of the free hamiltonian relative to each component

of the chiral field ~φ propagating on the edge of the sample, φI = φI(x − vIt):

H =
n∑

I=1

HI =
n∑

I=1

vI

8π

[
1

v2
I

(∂0φI)
2 + (∂xφI)

2

]
(36)

where vI is the propagation velocity of the I th mode. The electromagnetic field does

not couples with the same strength to each component of the field ~φ. In order to find

the correct structure of the electromagnetic current we require that it should lead

to the physical value of the Hall conductance. We can therefore read its structure

out of the form of the magnetic translation operator eq. (32). Then

J =
n∑

I=1

jI , (37)

where

jI =
n∑

J=1

1

2π

(
R−1

)

IJ
∂xφJ . (38)

Notice that currents satisfy the Û(1)
n

Kac-Moody algebra, that in terms of Fourier

components reads
[
jI
k , j

J
k′

]
=
(
K−1

)

IJ
kδk+k′,0 , (39)

in agreement with the results of ref. 10.

The hamiltonian eq. (36) can be rewritten in terms of the physical edge currents

12



instead of the chiral field ~φ:

H = 2π
n∑

I,J=1

∑

k>0

V IJjI
kj

J
−k, (40)

where
(
R−1

T V R−1
)

IJ
= vIδIJ . (41)

Notice that a non diagonal compactification matrix implies an interaction between

edge currents.

The spectrum of all possible charged edge excitations is again given by the set

of det K VO’s, eq. (20), written in terms of the chiral field ~φ defined on the edge,

and the corresponding charge is obtained trough the equation
[
J (x) , V~l (x

′)
]

= δ (x − x′)
∑

I

(
K−1

)

IJ
lJV~l (x) . (42)

We see that the normalization of the currents chosen in eqs. 37, (38) in order to be

consistent with the Hall conductance determines the correct value of the charge as

is given by eq. (21). The introduction of the n component vector ~φ leads then for

a generic abelian Hall fluid to the existence of n branches of charged excitations,

each corresponding to a Û(1) current. We shall see in next section that for a certain

set of K matrices a different structure for 2DCFT arises. As a consequence, the

structure of the edge states will be correspondingly modified.

5. Jain’s sequences

The description of a generic abelian Hall fluid, as a n component 2DCFT char-

acterized by an integer valued, non singular symmetric matrix K, is essentially kine-

matical in nature, and does not lead to specific dynamical prediction on the stability

of the different states. In contrast, there is a striking experimental evidence that

the most prominent Hall plateaux are seen at the fillings of the principal sequence

ν = n/(2n ± 1) and of the next stable sequence at ν = n/(4n ± 1). It was first sug-

gested by Jain13 the idea of looking at the FQHE for electrons at filling n/(2pn± 1)

as a manifestation of the integer effect for composite fermions, obtained by attach-

ing to each electron an even number of flux units opposite to the external magnetic

13



field. This approach has found further evidence in observation that the energy gaps,

measured for the principal sequence17, correspond to the cyclotron energies relative

to the reduced magnetic field B − B1/2 and from the analysis of the accumula-

tion point of the principal sequence at ν = 1/2, showing the existence of many

features typical of a Fermi surface18. Furthermore, in this framework there is a nat-

ural explanation for measurements of non-local four terminal magneto-resistance19,

showing that there is no indication of edge state dissipationless conduction near

filling ν = 1/2. However it has been shown that Jain’s approach can be extended

to an arbitrary abelian Hall fluid by introducing a non trivial connection that takes

into account the braiding factor between any two particles20. All efforts to clarify

the specific nature of Jain’s states is, therefore, extremely relevant.

Let us then recall that for the Jain’s sequences corresponding to filling factors

ν = n/(2pn + 1) the structure of the K matrix is the following:

K = 1 + 2pC , (43)

where 1 is the unit n× n matrix and C is an n× n matrix with all entries equal to

1. The corresponding compactification matrix is given by

R = 1 + 1
n
(
√

n
ν
− 1)C . (44)

Notice that R is transformed in its inverse by sending ν into the integer value

ν ′ = n2/ν. By recalling that ~βI = R~δI we see that

~βI − ~βJ = ~δI − ~δJ . (45)

We shall call a matrix K, such that the difference between two of the corre-

sponding vectors ~βI has integer entries, degenerate. The rational behind this de-

nomination is that, as it has been shown by Cappelli, Trugenberger and Zemba14,

the corresponding Hall fluid is characterized by a degenerate representation of the

W1+∞ algebra.

In order to unveil the consequence of the peculiar structure of the K matrix

given by the eq. (43), we recall that it can be diagonalized by means of an orthogonal

14



transformation, K = OTKdiagO, where

O =




1/
√

2 −1/
√

2 0 ... ... ... 0

1/
√

6 1/
√

6 −2/
√

6 0 ... ... 0

1/
√

12 1/
√

12 1/
√

12 −4/
√

12 0 ... 0

... ... ... ... ... ... 0

1/
√

n 1/
√

n ... ... ... ... 1/
√

n




(46)

We introduce the new set of fields

Φi = Oijφj, i = 1, 2, . . . n − 1 , (47)

Φ+ = Onjφj =
1√
n

(φ1 + φ2 . . . φn) . (48)

As the matrix O is orthogonal the new fields are still independent:

〈Φi(z)Φj(z
′)〉 = −δij ln(z − z′) . (49)

We can then write the scalar product ~βI · ~φ(z) in the form

~βI · ~φ(z) =
1√
ν
Φ+(z) + ~uJ · ~Φ(z) , (50)

where the n, (n− 1)-dimensional vectors ~uI are given by the columns of the matrix

O with the last row omitted:

O =




~u1 ~u2 ... ~un

1/
√

n 1/
√

n ... 1/
√

n


 . (51)

They satisfy the following relations

n∑

I=1

~uI = 0,
n∑

I=1

(~uI)a(~uI)b = δab, ~uI · ~uJ = δIJ − 1

n
, (52)

and are strictly related to the lattice of roots and weights of SU(n): the simple roots

~αI are explicitly given by

~αI = ~uI − ~uI+1, (53)

and the fundamental weight ~ΛI by

~ΛI =
I∑

J=1

~uJ , I = 1, ..., n − 1 . (54)
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Out of the VO’s V~uI
=: exp(i ~uI · ~Φ) : one can build the currents corresponding to

the off-diagonal generators of the affine ŜU(n) algebra21

J~α =: ei~uI ·~Φe−i~uJ ·~Φ : , (55)

where ~α = ~uI − ~uJ is a root of SU(n). In order to close the ŜU(n) affine algebra,

one has to introduce the diagonal currents

JI =: ei~uI ·~Φe−i~uI ·~Φ := i∂ΦI , I = 1, . . . , n − 1. (56)

The group structure can be easily seen by looking at the operator product expansion

(OPE) for the currents:

JI(z)JJ (w) ∼ 0 , (57)

J~α(z)J−~α(w) ∼ 1

(z − w)2
+

∑n−1
I=1(~α)IJI(w)

(z − w)
, (58)

JI(z)J~α(w) ∼ −(~α)IJ~α(w)

(z − w)
, (59)

J~α(z)J~α′(w) ∼ J~α+~α′(w)

(z − w)
, (60)

where the last equation holds if ~α + ~α′ belongs to the root lattice, otherwise the

right hand side is zero.

It is interesting to notice that only the field Φ+ contributes to the Hall conduc-

tance, implying that it is the only charged mode. This can be seen by recalling that

the conductance is obtained through the action of the magnetic translation operator

along the B cycle of the torus, eq. (34), and noticing that

T L1
Nφ

= exp
[
~1tR

−1
∮

B
dz∂~φ (z)

]
= exp

[√
ν
∮

B
dz∂Φ+ (z)

]
(61)

This suggests of looking in some detail the structure of the center of charge

theta functions responsible for the global properties of the system. We first show

that they will decompose into a sum of terms, that are products of the contribution

of the charge and neutral modes. To this purpose, let us introduce the matrix Λ

16



given by Λ = DO where O is given by eq. (46) and D is a diagonal matrix with the

following entries

D = diag
(√

2,
√

6, ...,
√

i (i + 1), ...,
√

(n − 1)n,
√

n
)
. (62)

Its usefulness can be seen by noticing that it diagonalizes both K and K−1, ΛK =

KdiagΛ, ΛK−1 = K−1
diagΛ, that the new variables ~W = Λ~Z are such that only Wn =

Z1 + . . .+Zn is affected by total translations, while the remaining are left invariant,

and finally that the center of charge theta function can be written as a theta function

on the lattice ΛZn, namely:

Θ




K−1~l

~0



(
K ~Z|Kτ

)
= ΘΛ




K−1
diag

~L

~0



(
KdiagD

−2 ~W |KdiagD
−2τ

)
(63)

where ~L = Λ~l, and the function ΘΛ is defined as in eq. (26), except that the

sum over ~h runs on ~h ∈ ΛZn instead of ~h ∈ Zn. The vectors ~L, that belong

to ΛZn, are defined modulo ΛKZn = KdiagΛZn and one can show that a set

of inequivalent values is given by
{
~L = ln~δn; l = 1, . . . , 2pn + 1

}
, corresponding to

{
~l = l~1; l = 1, . . . , 2pn + 1

}
. Since the lattice ΛZn can be expressed as follows:

ΛZn =
⋃det Λ

a=1

{
~r (a) + D2Zn

}
(64)

where det Λ = n!, and the explicit expression for the integer vectors ~r (a) is easily

evaluated in any specific case, we obtain the following decomposition of the center

of charge theta function:

Θ




l
2pn+1

~1

~0



(
K ~Z|Kτ

)
=

det Λ∑

a=1





n−1∏

i=1

Θ




r
(a)
i

i(i+1)

0


 (Wi|i (i + 1) τ) ×

× Θ




r
(a)
n

n
+ νl

n

0




(
n

ν
Wn|

n2

ν
τ

)


. (65)

It is clear that in each term of the sum only the factor depending on Wn contributes

to the Hall conductance and corresponds then to the charged mode, while the re-

maining n − 1 correspond to the neutral ones.
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In order to stress the connection of this decomposition with the structure Û(1)⊗
ŜU(n) that we have discussed with reference to VO’s, we take ~Z = 0, recovering the

characters of our 2DCFT. For the sake of simplicity, we will analyze the case n = 2

and n = 3. In the first case one has:

Θ




l
4p+1

~1

~0


 (~0|Kτ) = Θ




0

0


 (0|2τ)Θ




1
2

+ l
4p+1

0


 (0|4τ/ν) +

+ Θ




1/2

0


 (0|2τ)Θ




l
4p+1

0


 (0|4τ/ν) , (66)

that correspond to the character decomposition

χl = χSU(2)1,Λ=0χ
l,1
U(1) + χSU(2)1,Λ=1/2χ

l,0
U(1) (67)

where χSU(2)1,s is the character of the affine ŜU(2) level 1 representation of highest

weight s and χl,i
U(1) is the the character of a Û(1) theory of conformal weight 1/2ν,

summed over the lattice 2Z+ i+ lν, where l (resp. i) is defined modulo 4p+1 (resp.

2). In a similar fashion for n = 3 we have:

χl = χSU(3)1,~Λ=(0,0)χ
l,0
U(1) + χSU(3)1,~Λ=(1/

√
2,1/

√
6)χ

l,1
U(1) + χSU(3)1,~Λ=(0,1/

√
6)χ

l,2
U(1) (68)

where the notation relative to ŜU(3) characters is self explanatory and χl,i
U(1) is

the character of a Û(1) theory of conformal weight 1/2ν summed over the lattice

3Z + i + lν, with l modulo 6p + 1 and i modulo 3.

Finally, by eq. 36, it immediately seen that the extended algebra Û(1)⊗ ŜU (n)

introduced in terms of the VO’s correspond to a symmetry of the edge dynamics as

long as the difference in velocity among the components is disregarded. Furthermore

the structure of the edge excitations is again determined by the general forms of

chiral the VO’s eq. (20), on the edge. In terms of the new basis the generic VO is

given by

V~l(z) =: e
i

(√
ν

n

∑n−1

I=1
lI

)
Φ+

:: ei
∑n−1

I=1
lI~uI ·~Φ : , ~l ∈ Zn

KZn ≡ Zn
K (69)
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Notice that the electric current, eq. 37, is written only in terms of the Û(1) mode:

J =
1

2π

√
ν∂xΦ+ (70)

and has the same structure as in the Laughlin case. Therefore, the more general

excitation correspond to the propagation of a single charged mode and n−1 neutral

ones. It is also suggestive to notice that for the choice of inequivalent vectors ~l = l~1

with l = 1, 2, . . . , det K = 2np + 1 the set of independent VO’s takes the form

Vl(z) =: eil
√

νΦ+ : , l ∈ Z

(2np + 1)Z
, (71)

in complete analogy to the case of filling ν = 1/m, eq. 3.

6. Concluding remarks

In this paper we have shown how construct a consistent 2DCFT description

of an arbitrary abelian Hall fluid, under the requirement that the corresponding K

matrix is positive definite. Under this condition, that express the basic requirements

of having a consistent description on higher genus Riemann surfaces, one obtains a

complete characterization of all universal properties, such as the Hall conductance

and the spectrum of low energy excitations, that are experimentally accessible as

edge state excitations of the system. This theory is kinematical in nature and there-

fore is not expected to give any dynamical information on the relative stability of the

different Hall fluids. However it already leads to a natural distinction between the

case of a generic abelian fluid and the case of a fluid belonging to a Jain’s sequence,

where an extended Û(1) ⊗ ŜU(n) algebra appears. In view of the experimental

evidence showing that the most prominent Hall plateaux correspond to Jain’s se-

quences, it is then natural to ask whether this difference may play a dynamical role

in selecting the most stable abelian quantum Hall fluids. At an intuitive level the

analysis of sec. 5 seems to indicate that this should be the case. In fact any exci-

tation of a Hall fluid belonging to a Jain’s sequence may be described, as shown by

eq. (71), in complete analogy to a single component Laughlin’s state, regardless of

the number n of components.
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Looking at this problem more closely, it is interesting to notice that the confor-

mal properties of the VO’s corresponding to tunneling transitions between different

channels determine the relevance of the corresponding impurity driven transition

amplitudes, at least at a perturbative level. Therefore, the K matrix contains at a

perturbative level full information on the role of disorder for an abelian Hall fluid.

What is then typical of the Jain’s states12, under the positivity condition of the K

matrix, is that the renormalization group (RG) behaviour for the disorder driven

tunneling amplitudes is universal, that is independent on the values of p and n and

of the edge velocities. This leads to a new fixed point quadratic action, that takes

completely into accounts disorder and is insensitive to interactions between different

channels, leaving the charged mode uncoupled from the neutral ones.

The situation in completely different for a generic abelian Hall fluid, for which

all modes are charged and the RG behaviour of the transition amplitudes is deter-

mined by the detailed structure of the K matrix. This may leads, for a given system,

to transition amplitudes that are relevant or irrelevant according to the choice of

different couples of channels. This suggest that the study of the role of the disorder

for a generic abelian Hall fluid may be useful for understanding the experimental

observed stability of different fillings.
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3. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

4. For a review see e.g. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi,

Nucl. Phys. 33C, 119 (1993).

5. R. B. Laughlin, Phys. Rev. Lett. 50 1395 (1983)

6. A. De Martino and R. Musto, Knizhnik-Zamolodchikov equation and extended

symmetry for stable Hall states , preprint DPS-NA-19 /95, cond-mat 1995.

7. X. G. Wen, Phys. Rev. B 41, 12838 (1990).

8. G. Cristofano, G. Maiella, R. Musto and F. Nicodemi, Mod. Phys. Lett. 6A

2885 (1991).
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