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SUMMARY

This paper combines the finite impulse response filtering with the Kalman structure (predictor/corrector)
and proposes a fast iterative bias-constrained optimal finite impulse response filtering algorithm for linear
discrete time-invariant models. In order to provide filtering without any requirement of the initial state, the
property of unbiasedness is employed. We first derive the optimal finite impulse response filter constrained
by unbiasedness in the batch form and then find its fast iterative form for finite-horizon and full-horizon
computations. The corresponding mean square error is also given in the batch and iterative forms. Extensive
simulations are provided to investigate the trade-off with the Kalman filter. We show that the proposed
algorithm has much higher immunity against errors in the noise covariances and better robustness against
temporary model uncertainties. The full-horizon filter operates almost as fast as the Kalman filter, and its
estimate converges with time to the Kalman estimate. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

After more than four decades of developments, the finite impulse response (FIR) filtering is still
out of the traditional scope of control and state estimation [1–6]. The computational burden associ-
ated with large dimensions of vectors and matrices [7, 8], which cause slow operation, makes the
batch FIR estimator highly unattractive for engineering applications, that is, in spite of its inher-
ent bounded input/bounded output stability [9], better robustness [7, 10], and lower sensitivity to
noise [11] against the Kalman filter (KF). The tremendous progress in the computational resources
did not bring about essential change, and the batch FIR estimators [12–21] still remain mostly on a
theoretical level.

Beginning with the work by Kwon, Kwon, and Lee [20], in which recursive forms were shown
for FIR filters, there has been some recovery in fast FIR filtering. A receding horizon Kalman FIR
filter was designed by Kwon, Kim, and Park in [21]. In [22], Han, Kwon, and Kim have suggested a
relevant algorithm for deterministic time-invariant control systems, and Shmaliy derived an iterative
algorithm [11] for the p-shift time-invariant unbiased FIR (UFIR) estimator. The latter was further
extended in [23] to time-variant models. A distinctive advantage of the iterative UFIR algorithm [24]
is that it completely ignores the noise statistics and the initial error statistics, thus, leading to many
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applications in diverse areas [25–27]. However, it does not guarantee optimality in the mean square
error (MSE) sense, although its output becomes statistically consistent to the optimal estimate when
an averaging horizon of N points occurs to be large, N ! 1.

An in-between solution is the minimum variance unbiased (MVU) FIR filter [7, 16, 28, 29]. It
has been shown in [29] that the MVU FIR filter can be obtained by minimizing the variance in
the UFIR estimate and that it is equivalent to the optimal FIR (OFIR) filter with the embedded
unbiasedness (OFIR-EU). Compared with KF, their filters inherit the aforementioned advantages of
the FIR-type methods and do not require initial conditions. All these properties are useful in practical
applications, and it is thus highly desirable to have fast and computationally efficient algorithms of
the OFIR-EU and MVU FIR methods. This motivated our work presented later.

In this paper, we derive iterative algorithms for the OFIR-EU filter and its MSE and show that the
OFIR-EU (or the MVU FIR filter) is full-horizon and Kalman-like. The rest of the paper is organized
as follows. In Section 2, we describe the model and formulate the problem. The derivation of the
OFIR-EU filter is given in Section 3. The full-horizon form and convergence to the KF are shown in
Section 4. Estimation errors are discussed in Section 5. Simulations are provided in Section 6, and
conclusions are drawn in Section 7.

2. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete time-invariant linear model represented in state space with

xn D Axn!1 C Bwn ; (1)

yn D Cxn C vn ; (2)

where n is a discrete time index, xn 2 RK is the state, yn 2 RM is the measurement, and A 2
RK"K , B 2 RK"P , and C 2 RM"K are some identifiable [30, 31] time-invariant matrices. The
process noise wn 2 RP and measurement noise vn 2 RM are zero mean,E¹wnº D 0 andE¹vnº D
0, and white sequences with the covariances Q D E¹wnwTn º and R D E¹vnvTn º, respectively. The
property E¹wivTj º D 0 holds for all i and j , and .A; C / is assumed to be observable.

The KF estimate referred to (1) and (2) can be given, for our further purposes, in the
following form:

Oxn D A Oxn!1 C PnC T .RC CPnC T /!1
# .yn $ CA Oxn!1/ ;

(3)

PnC1 D APnAT C BQBT $ ATPnC T

# .RC CPnC T /!1CPnAT ;
(4)

where the initial state x0 and error P0 are assumed to be known and Oxn !D Oxnjn is the estimate
obtained via measurements from 0 to n.

To estimate xn on a horizon ofN points fromm D n$N C1 to n using FIR filtering, the models
(1) and (2) need to be represented on an interval Œm; n! as follows [11]:

Xn;m D An!mxm C Bn!mWn;m ; (5)

Yn;m D Cn!mxm CHn!mWn;m C Vn;m ; (6)

where xm is the initial state at m and Xn;m 2 RNK"1, Yn;m 2 RNM"1, Wn;m 2 RNP"1, and
Vn;m 2 RNM"1 are specified as Xn;m D ŒxTn xTn!1 : : : xTm!T , Yn;m D ŒyTn yTn!1 : : : yTm!T , Wn;m D
ŒwTn w

T
n!1 : : : w

T
m!
T , and Vn;m D ŒvTn vTn!1 : : : vTm!T , respectively.

Extended matrices An!m 2 RNK"K , Bn!m 2 RNK"NP , Cn!m 2 RNM"K , and Hn!m 2
RNM"NP are represented as respectively:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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Ai D Œ.Ai /T .Ai!1/T % % %AT I !T ;

Bi D

2
666664

B AB % % % Ai!1B AiB
0 B % % % Ai!2B Ai!1B
:::

::: % % %
:::

:::
0 0 % % % B AB
0 0 % % % 0 B

3
777775
;

(7)

Ci D NCiAi D Œ.CAi /T C Ti!1!T ; (8)

Hi D NCiBi D
!
CB CA NBi!1
0 Hi!1

"
; (9)

with NCi D diag. C C % % %C„ ƒ‚ …
iC1

/, where NBi!1 denotes the first row vector of Bi!1. Note that xm in (5)

and (6) is assumed to be known and wm is thus zero valued.
The convolution-based FIR estimate of xn is given by the following:

Oxn D KN!1Yn;m ; (10)

whereKN!1 is the FIR filter gain determined by a given cost function or specific constraints. In the
minimum MSE sense, the OFIR was derived in [11] for the purposes of system identification [32,
33] (both wn and vn are filtered out) and in [23] as a regular filter (only vn is filtered out). In turn,
the UFIR filter shown in [24] satisfies only the unbiasedness constraint:

AN!1 D KN!1CN!1 : (11)

We now formulate the problem. Given the models (1) and (2), we would like to find a fast iter-
ative Kalman-like form for the batch OFIR-EU, which gain KN!1 is defined by the minimization
problem:

OKN!1 D arg min
KN!1

E¹.xn $ Oxn/ .xn $ Oxn/T º (12)

subject to the constraint (11), where E¹%º means averaging. We also wish to investigate properties
of this filter and compare it to the UFIR filter [24] and the KF under diverse operation conditions.

3. OPTIMAL FINITE IMPULSE RESPONSE FILTER WITH
THE EMBEDDED UNBIASEDNESS

Following the derivation procedure given in [34], we substitute xn in (12) with the first row of (5)
and Oxn as (10), use the trace operator, and embed (11) to get the following:

OKN!1 D arg min
KN!1

E¹trŒ..KN!1HN!1 $ NBN!1/Wn;m

CKN!1Vn;m/.% % % /T !º ;
(13)

where .% % % / denotes the term that is the same as the previous term. For uncorrelated noise sources,
(13) becomes

OKN!1 D arg min
KN!1

trŒ.KN!1HN!l $ NBN!1/QN!1.% % % /T

CKN!1RN!1KTN!1! ;

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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where the matrices with respect to the noises are given by QN!1 D diag.QQ % % %Q„ ƒ‚ …
N

/ and

RN!1 D diag.RR % % %R„ ƒ‚ …
N

/, respectively. Following [7], a solution to (13) can be found as follows:

OKN!1 D AN!1.C TN!1Z!1wCv;N!1CN!1/!1C TN!1
#Z!1wCv;N!1 C NBN!1QN!1HT

N!1Z
!1
wCv;N!1

# .I $ CN!1.C TN!1Z!1wCv;N!1CN!1/!1

# C TN!1Z!1wCv;N!1/ ;

(14)

in which ZwCv;N!1 D Zw;N!1 C RN!1 and Zw;N!1 D HN!1QN!1HT
N!1. Provided (14), the

batch OFIR-EU is summarized by the following theorem.

Theorem 1
Given models (1) and (2) with zero mean white Gaussian and mutually uncorrelated noise
components, the batch OFUR-EU estimate is as follows:

Oxn D AN!1.C TN!1Z!1wCv;N!1CN!1/!1C TN!1
#Z!1wCv;N!1Yn;m C NBN!1QN!1HT

N!1Z
!1
wCv;N!1

# .I $ CN!1.C TN!1Z!1wCv;N!1CN!1/!1C TN!1
#Z!1wCv;N!1/Yn;m :

(15)

As can be deduced, the batch form (15) is complex and computationally inefficient from the
engineering perspective. Fast Kalman-like computation is thus required.

3.1. Iterative form

In order to avoid matrices of large dimensions, later, we find for (15) an iterative form that involves
original matrices of small dimensions.

If to introduce an iterative variable l and define

N!1l D C Tl Z!1wCv;lCl ; (16)

Fl D NBlQlH
T
l ; (17)

then (15) can equivalently be rewritten at mC l as follows:

OxmCl D OxamCl C OxbmCl $ OxcmCl ; (18)

where

OxamCl D AlNlC Tl Z!1wCv;lYmCl;m ; (19)

OxbmCl D FlZ!1wCv;lYmCl;m ; (20)

OxcmCl D FlZ!1wCv;lClNlC Tl Z!1wCv;lYmCl;m : (21)

Employing the decomposition of Hl specified by (9) and taking into account that

NBlQl
NBTl D BQBT C A NBl!1Ql!1 NBTl!1AT ; (22)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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we further provide

Zw;l D
!

C NBlQl
NBTl C T CA NBl!1Ql!1HT

l!1
Hl!1Ql!1 NBTl!1ATC T Hl!1Ql!1HT

l!1

"
;

Rl D
!
R 0
0 Rl!1

"
:

Now, ZwCv;l can be decomposed as ZwCv;l D "l C‚l to have the components

"l D
!
R 0
0 ZwCv;l!1

"
; ‚l D

!
CUlC

T CAFl!1
F Tl!1A

TC T 0

"
;

where Ul D NBlQl
NBTl . By the matrix inversion lemma [35]

.X C Y /!1 D X!1 $X!1
#
I C YX!1

$!1
YX!1 ; (23)

we represent the inverse of ZwCv;l as follows:

Z!1wCv;l D "!1l .I C‚l"!1l /!1 : (24)

Later, we derive iterative algorithms for all of the functions involved in (18) and come up with
the iterative form for (15).

3.1.1. Iterations for (16). Using (24), referring to (8), and doing some arrangements, we first
transform (16) to

N!1l D
h
Al
T
C TR!1 C Tl!1Z

!1
wCv;l!1

i #
I C‚l"!1l

$!1
Cl

D
h
Al
T
C TR!1 C Tl!1Z

!1
wCv;l!1

i
S!1l Cl ;

(25)

where Sl D I C ‚l"
!1
l D

!
Sl11 Sl12
Sl21 Sl22

"
has components Sl11 D I C CUlC

TR!1, Sl12 D
CAFl!1Z!1wCv;l!1, Sl21 D F Tl!1A

TC TR!1, and Sl22 D I . With the Schur complement of Sl11
[36] described by the following,

NSl11 D I C C„lC TR!1 ; (26)

„l D Ul $ AFl!1Z!1wCv;l!1F Tl!1AT ; (27)

the inverse matrix S!1l can be computed using

S!1l D
! NS!1l11 $ NS!1l11Sl12S!1l22
$S!1l22Sl21 NS!1l11 S!1l22.I C Sl21 NS!1l11Sl12S!1l22/

"

D
! NS!1l11 $ NS!1l11Sl12
$Sl21 NS!1l11 I C Sl21 NS!1l11Sl12

"
:

At this point, (25) reduces to

N!1l D ŒLl C Tl!1Z
!1
wCv;l!1 $ LlSl12!Cl

D C Tl!1Z!1wCv;l!1Cl!1 C Ll.CAl $ Sl12Cl!1/
D N!1l!1 C Ll NXl ;

(28)

where

Ll D XTl C TR!1 NS!1l11 ; (29)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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Xl D Al $ AFl!1Z!1wCv;l!1Cl!1 ; (30)

NXl D CXl : (31)

Using (23), we provide

Nl D Nl!1 $Nl!1.I C Ll NXlNl!1/!1Ll NXlNl!1 : (32)

3.1.2. Iterations for OxamCl . Reasoning similarly, (19) can be decomposed as follows:

OxamCl D AlNlC Tl!1Z!1wCv;l!1YmCl!1;m C AlNlLl NymCl (33)

with

NymCl D ymCl $ CAFl!1Z!1wCv;l!1YmCl!1;m : (34)

Next, substituting the first Nl on the right-hand side of (33) with (32) yields

OxamCl D AlNl!1C Tl!1Z!1wCv;l!1YmCl!1;m
$ AlNl!1.I C Ll NXlNl!1/!1Ll NXlNl!1
# C Tl!1Z!1wCv;l!1YmCl!1;m C AlNlLl NymCl
D A OxamCl!1 $ AlNlLl Oxa!cmCl!1 C AlNlLl NymCl ;

(35)

in which

Oxa!cmCl!1 D CA
#
OxamCl!1 $ OxcmCl!1

$
: (36)

3.1.3. Iterations for OxbmCl . In order to find a similar form for OxbmCl , we first define Fl recursively
by the following:

Fl D
%
UlC

T AFl!1
&
: (37)

Accordingly, by referring to (25), OxbmCl becomes

OxbmCl D
h
ƒl AFl!1Z!1wCv;l!1 $ƒlSl12

i
YmCl;m

D A OxbmCl!1 Cƒl NymCl ;
(38)

where

ƒl D „lC TR!1 NS!1l11 : (39)

3.1.4. Iterations for OxcmCl . By combining (21) and (34), OxcmCl can be rewritten as follows:

OxcmCl D .AFl!1Z!1wCv;l!1Cl!1 Cƒl NXl/Nl
# .C Tl!1Z!1wCv;l!1YmCl!1;m C Ll NymCl/

and further transformed to

OxcmCl D AFl!1Z!1wCv;l!1Cl!1NlC Tl!1Z!1wCv;l!1YmCl!1;m
Cƒl NXlNlC Tl!1Z!1wCv;l!1YmCl!1;m
C AFl!1Z!1wCv;l!1Cl!1NlLl NymCl
Cƒl NXlNlLl NymCl :

(40)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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Finally, substituting Nl with (32), taking into account (27) and (30), and doing some rearrange-
ments, we have

OxcmCl D A OxcmCl!1 $ AFl!1Z!1wCv;l!1Cl!1NlLl Oxa!cmCl!1
C AFl!1Z!1wCv;l!1Cl!1NlLl NymCl
Cƒl NXlNlLl NymCl Cƒl Oxa!cmCl!1
$ƒl NXlNlLl Oxa!cmCl!1 ;

(41)

where Oxa!cmCl!1 is specified by (36).

3.1.5. An iterative form for (15). Recursions (33), (38), and (41) can now be combined in (18)
along with NymCl $ Oxa!cmCl!1 D ymCl $ CA OxmCl!1, in order to compute (18) iteratively as follows:

OxmCl D A OxmCl!1 Cƒl.ymCl $ CA OxmCl!1/
C .Al $ AFl!1Z!1wCv;l!1Cl!1 $ƒl NXl/NlLl
# . NymCl $ Oxa!cmCl!1/
D A OxmCl!1 Cƒl.ymCl $ CA OxmCl!1/
C .I $ƒlC/XlNlLl.ymCl $ CA OxmCl!1/ :

(42)

By (29) and (39), the estimate (42) attains the Kalman form of

OxmCl D A OxmCl!1 C‰l .yl $ CA OxmCl!1/ ; (43)

in which

‰l D Œ„l CXlNlXTl $„lC T .RC C„lC T /!1

# CXlNlXTl !C T .RC C„lC T /!1 :
(44)

Note that ‰l depends on „l , Xl and Nl and is still given in the batch form. To find an iterative
form for (44), later, we first represent Nl given by (32) as follows:

Nl D Nl!1 $Nl!1ŒI CXTl C T .RC C„lC T /!1

# CXlNl!1!!1XTl C T .RC C„lC T /!1CXlNl!1
(45)

and then derive similar relations for „l and Xl .
Transforming (27) with respect to l C 1 by opening the aforementioned defined functions leads

to the iterative form of the following:

„lC1 D AUlAT C BQBT

$ A
h
ƒl AFl!1Z!1wCv;l!1 $ƒlSl12

i

#
!
CU Tl
F Tl!1A

T

"
AT

D A„lAT C BQBT $ AƒlC„lAT ;

(46)

which, using (39), can further be represented at l as follows:

„l D A„l!1AT C BQBT $ A„l!1C T

# .RC C„l!1C T /!1C„l!1AT :
(47)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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In a similar manner, we represent XlC1 as follows:

XlC1 D AlC1 $ AFlZ!1wCv;lCl
D .A $ AƒlC/Xl ;

and transform it to

Xl D ŒA $ A„l!1C T .RC C„l!1C T /!1C !Xl!1 :

Finally, by introducing an auxiliary variable ‡l ,

‡l D C T .RC C„lC T /!1 ; (48)

the iterative OFIR-EU is stated by the following theorem.

Theorem 2
Given the batch OFIR-EU estimate (15), then its iterative algorithm is the following:

OxmCl D A OxmCl!1 C Œ„l C .I $„l‡lC/XlNlXTl !‡l
# .ymCl $ CA OxmCl!1/ ;

(49)

where ‡l is given by (48), and

„l D A„l!1AT C BQBT $ A„l!1‡l!1C„l!1AT ; (50)

Xl D A.I $„l!1‡l!1C/Xl!1 ; (51)

Nl D Nl!1 $Nl!1.I CXTl ‡lCXlNl!1/!1

#XTl ‡lCXlNl!1 ;
(52)

with initial states

„˛!1 D NB˛!1Q˛!1 NBT˛!1
$ AF˛!2Z!1wCv;˛!2F T˛!2AT ;

(53)

X˛!1 D A˛!1 $ AF˛!2Z!1wCv;˛!2C˛!2 ; (54)

N˛!1 D
#
C T˛!1Z

!1
wCv;˛!1C˛!1

$!1
; (55)

OxmC˛!1 D
#
A˛!1N˛!1C T˛!1 C NB˛!1Q˛!1HT

˛!1
$ NB˛!1Q˛!1HT

˛!1Z
!1
wCv;˛!1C˛!1

#N˛!1C T˛!1
$
Z!1wCv;˛!1YmC˛!1;m ;

(56)

where Fl is specified by (17), ˛ D max¹K; 2º (K is the number of the states) guarantees the
invertibility of the matrix N˛!1, and l ranges from ˛ to N $ 1.

Proof
Proof is provided by (16)–(48).

As a result, instead of the slow and computationally inefficient batch form (15), we now have a fast
iterative one (49)–(56) stated by Theorem 2. The question then arises whether further algorithmic
progress is possible in OFIR-EU filtering or not, which is the subject of the next section. !

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
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4. FULL-HORIZON FORM AND CONVERGENCE TO KALMAN FILTER

As the OFIR-EU minimizes the MSE and the variance of the white Gaussian noise is reduced by
averaging as a reciprocal ofN , one may suppose that the optimal horizonNopt for the OFIR-EU lies
at infinity. If that is the case, the OFIR-EU filter is full-horizon. This section analyzes this, and we
show that the OFIR-EU estimate becomes exactly the Kalman one when N reaches infinity.

To state that the OFIR-EU is full-horizon, one needs to show that its estimate converges to the KF
estimate by putting N to infinity. We prove it with a theorem.

Theorem 3
The iterative OFIR-EU given by (49)–(56) is full-horizon; that is, its Nopt lies at infinity.

Proof
The full-horizon iterative OFIR-EU algorithm appears from (49) to (56) by substituting N D nC 1
and l D n [24]:

Oxn D A Oxn!1 C
%
„n C .I $„n‡nC/XnNnXTn

&
‡n

# .yn $ CA Oxn!1/ ;
(57)

where ‡n is given by (48), and

„n D A„n!1AT C BQBT $ A„n!1‡n!1C„n!1AT ; (58)

Xn D A.I $„n!1‡n!1C/Xn!1 ; (59)

Nn D Nn!1 $Nn!1.I CXTn ‡nCXnNn!1/!1

#XTn ‡nCXnNn!1 :
(60)

The initial conditions are specified with (53)–(56).
By introducing Gn!1 D „n!1‡n!1C , (59) becomes

Xn D A.I $Gn!1/Xn!1 : (61)

Considering the fact that the spectral radius #.Gn!1/ of Gn!1 does not exceed unity in stable
filtering, # .Gn!1/ < 1, and using the Lyapunov property [37], we have lim

n!1Xn D 0, which
transforms the full-horizon OFIR-EU estimate (57) at n D1 to the Kalman estimate given by (3),

Oxn D A Oxn!1 C„n‡n.yn $ CA Oxn!1/
D A Oxn!1 C„nC T .RC C„nC T /!1
# .yn $ CA Oxn!1/ :

(62)

The proof is complete.
The convergence of OFIR-EU estimate to KF estimate is also supported by the fact that the KF

has infinite impulse response (IIR) and the full-horizon OFIR-EU with n D 1 turns to the optimal
IIR filter with EU filter. On the other hand, a complete convergence of the OFIR-EU with N D 1
to KF means that the unbiasedness no longer affects the estimate. Thus, the full-horizon OFIR-EU
with n! 1 is essentially the OFIR filter. It can also be shown that this filter combines the properties
of the UFIR filter with n < Nopt and of the OFIR filter with n > Nopt.

To demonstrate the full-horizon form more clearly, a code of the full-horizon OFIR-EU filtering
algorithm is given in Table I.
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Table I. Full-horizon OFIR-EU algorithm code

Input: yn, Q, R, ˛=max{K,2}

1: Initialization:

2: F˛!2 D NB˛!2Q˛!2HT
˛!2

3: „˛!1 D NB˛!1Q˛!1 NBT˛!1 $ AF˛!2Z!1wCv;˛!2F T˛!2AT

4: X˛!1 D A˛!1 $ AF˛!2Z!1wCv;˛!2C˛!2
5: N˛!1 D .CT˛!1Z!1wCv;˛!1C˛!1/!1

6: ‡˛!1 D CT .RC C„˛!1CT /!1

7: Ox˛!1 D .A˛!1N˛!1CT˛!1 C NB˛!1Q˛!1HT
˛!1

$ NB˛!1Q˛!1HT
˛!1Z

!1
wCv;˛!1C˛!1N˛!1C

T
˛!1/

#Z!1wCv;˛!1Y˛!1;0
8: for n=˛:1 do

9: „n D A„n!1AT C BQBT $ A„n!1‡n!1C„n!1AT
10: Xn D A.I $„n!1‡n!1C/Xn!1
11: Nn D .N!1n!1 CXTn ‡nCXn/!1

12: ‡n D CT .RC C„nCT /!1

13: ‰n D „n‡n C .I $„n‡nC/XnNnXTn ‡n
14: Oxn D A Oxn!1 C‰n.yn $ CA Oxn!1/
15: and for

Output: Oxn

5. ESTIMATION ERRORS

We finish our investigations with an analysis of the MSEs in the OFIR-EU. Most generally, the
instantaneous MSE in the OFIR-EU estimate can be defined at time index n by the following:

Jn D E¹eneTn º ; (63)

where en D xn $ Oxn is the estimation error, Oxn is given by (10), and xn can be expressed with the
first vector row of (5) as follows:

xn D AN!1xm C NBN!1Wn;m : (64)

With (10) and (64), invoke the orthogonality condition, and provide the averaging, then (63) can
be written as follows:

Jn D Jn;x C Jn;w C Jn;v ; (65)

where Jn;x , Jn;w , and Jn;v are given by Jn;x D .KN!1CN!1 $ AN!1/ˆm.% % % /T , Jn;w D
.KN!1HN!1 $ NBN!1/QN!1.% % % /T and Jn;v D KN!1RN!1KTN!1, respectively, and ˆm D
E¹xmxTmº.

5.1. Batch form

Due to (11), prior knowledge of the initial state is not required by the OFIR-EU. This means that
the OFIR-EU estimate does not depend on the mean square initial state ˆm and we thus can let
Jn;x D 0. By virtue of this, the MSE can be found in the batch form using (65) with OKN!1 (14)
as follows:
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Jn D . OKN!1HN!1 $ NBN!1/QN!1.% % % /T

C OKN!1RN!1 OKTN!1 :
(66)

5.2. Iterative form

Similarly to the batch estimate, the batch MSE can also be represented with an iterative form.
Towards this end, by changing a variable to mC l and substituting (43) into (63), we get

JmCl D E ¹ŒAemCl!1 C BwmCl
$‰l .ymCl $ CA OxmCl!1/! Œ% % % !T

¯
:

(67)

Next, express ymCl in terms of xmCl!1 as follows:

ymCl D CAxmCl!1 C CBwmCl C vmCl ; (68)

combine (67) with (68), and arrive at

JmCl D E ¹Œ.A $‰lCA/ emCl!1 C .B $‰lCB/wmCl
$‰lvmCl ! Œ% % % !T

¯
:

(69)

Assuming white Gaussian components, (69) can further be transformed to the iterative form of
the following:

JmCl D .A $‰lCA/ JmCl!1.% % % /T C .B $‰lCB/
#Q.% % % /T C‰lR‰Tl
D .I $‰lC/.AJmCl!1AT C BQBT /.% % % /T

C‰lR‰Tl ;

(70)

where l ranges from ˛ to N $ 1, ‰l is the l-variant filter gain (44), and the MSE at n corresponds
to l D N $ 1. Using (66), the initial MSE JmC˛!1 can be found as follows:

JmC˛!1 D
'
OK˛!1H˛!1 $ NB˛!1

(
Q˛!1 .% % % /T

C OK˛!1R˛!1 OKT˛!1 ;

where OK˛!1 is the batch filter gain at mC ˛ $ 1 specified by

OK˛!1 D A˛!1N˛!1C T˛!1Z!1wCv;˛!1
C NB˛!1Q˛!1HT

˛!1Z
!1
wCv;˛!1

# .I $ C˛!1N˛!1C T˛!1Z!1wCv;˛!1/ :
(71)

5.3. Full-horizon form

Because the OFIR-EU is full-horizon, its MSE can also be represented in a fast full-horizon form.
To get the relevant algorithm, we first specify the initial MSE J˛!1 at time ˛ $ 1 using Table I
as follows:

J˛!1 D . OK˛!1H˛!1 $ NB˛!1/Q˛!1.% % % /T

C OK˛!1R˛!1 OKT˛!1 ;

where OK˛!1 is given by (71). The MSE for the full-horizon OFIR-EU can then be found by
transforming (70) to the following:

Jn D .I $‰nC/.AJn!1AT C BQBT /.% % % /T

C‰nR‰Tn ;
(72)

where n ranges starting with ˛ and ‰n is given by (44).
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Let us finally show that, if n!1, the MSE (72) converts to the a posteriori estimate covariance
NJn of the KF, which can be written as follows:

NJn D Pn $ PnC T .RC CPnC T /!1CPn : (73)

With n ! 1, we have lim
n!1‰n D „n‡n, and (72) transforms to Jn D „n $ „n‡nC„n $

„nC
T‡Tn „

T
n C „n‡n.R C C„nC T /‡Tn „Tn . By (48), the last two terms become identically 0,

and we get

Jn D „n $„nC T .RC C„nC T /!1C„n ; (74)

which is the a posteriori estimate covariance (73) of KF.

6. SIMULATIONS

In this section, we test the batch and iterative OFIR-EU algorithms by a two-state polynomial model
in different environments. The UFIR filter [24] and KF are chosen as benchmarks. Towards this end,
(1) and (2) are specified with B D I , C D Œ1 0!, and

A D
!
1 $
0 1

"
;

where $ is a constant in unit of time. Note that this model is used in moving target tracking [38] and
some related results can be found in [7, 21, 24].

6.1. Estimation accuracy

To learn a trade-off in the estimation accuracy, we let $ D 0:1 s, %2w1 D 0:1, %2w1 D 0:1=s2, and
%2v D 10. The initial values are set as x10 D 1 and x20 D 0:01=s. The model and noise statistics
are assumed to be known exactly. The process was simulated at 400 points, and the optimal horizon
for the UFIR filter found to be Nopt D 60. Typical instantaneous estimation errors are given in
Figure 1. What can be concluded from this figure is that the OFIR-EU and KF estimates are very
consistent and almost indistinguishable. The UFIR filter also produces good estimates, but with a bit
larger MSE.

We further learn effect of N on the FIR estimates for %2v D 102. The root square of tr .Jn/ for
three filters is given in Figure 2 as a function of N . We first notice that the KF has IIR and is thus
N -invariant, whereas the UFIR filter minimizes MSE at Nopt D 35. As has been shown before,
the OFIR-EU is essentially the UFIR filter with N < Nopt, and it approaches the KF estimate with
N > Nopt. By virtue of this, we have another proof that the OFIR-EU is full-horizon.

Figure 1. Typical estimation errors in the unbiased finite impulse response (UFIR), optimal finite impulse
response filter with the embedded unbiasedness (OFIR-EU), and Kalman filter (KF) estimates: (a) first state

and (b) second state.
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Figure 2. Root mean square errors computed by
p

tr .Jn/ as functions of N . OFIR-EU, optimal finite
impulse response filter with the embedded unbiasedness; UFIR, unbiased finite impulse response; KF,

Kalman filter.

Figure 3. Typical computational time consumed by different optimal finite impulse response filter with the
embedded unbiasedness (OFIR-EU) algorithms applied to the two-state polynomial model.

6.2. Computation time

Any batch FIR algorithm consumes more computation time than KF because of larger order and
matrix complexity. The iterative algorithm operates faster and the full-horizon one much faster.
Later, we give an evidence to this preliminary analysis by measuring the computation time in the
FIR and KF algorithms. The process was simulated at 200 points. Figure 3 sketches the computa-
tion time consumed by the batch OFIR-EU algorithm, iterative OFIR-EU algorithm, full-horizon
OFIR-EU algorithm, and KF. As expected, the batch algorithm demonstrates low efficiency, because
its complexity grows with N . Iterations allow the OFIR-EU filter to operate much faster, although
its computation time still grows with N . A dramatic progress is achieved in the full-horizon algo-
rithm (Table I), which estimate becomes N -invariant and the computation time almost as large as in
the KF.

6.3. Sensitivity to errors in noise covariances

An important issue in optimal estimation is a typically insufficient knowledge about the noise
statistics. Referring to the worst case of errors in the noise covariances, we introduce a correction
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coefficient p as p2Q and R=p2. The root MSEs computed by tr.Jn/ are sketched in Figure 4 for
0:1 6 p 6 10. Inherently, the UFIR filter ignoring the noise statistics is p-invariant, although it
produces a bit larger errors with p D 1 than in optimal filters. The KF is most sensitive to p,
and the OFIR-EU filter occupies an intermediate position: It is almost insensitive to p with p < 1
and is as sensitive to p as the KF when p > 1. We consider it as an important advantage of the
OFIR-EU filter.

Figure 4. Typical mean square errors in the unbiased finite impulse response (UFIR), optimal finite impulse
response filter with the embedded unbiasedness (OFIR-EU), and Kalman filter (KF) estimates caused by the

correction coefficient p.

Figure 5. Robustness against temporary model uncertainties in a gap of 160 6 n 6 180: (a) first state and
(b) errors in optimal finite impulse response filter with the embedded unbiasedness (OFIR-EU) with p 6 1.

UFIR, unbiased finite impulse response.
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Figure 6. Basic operation diagrams of the Kalman-like unbiased finite impulse response (UFIR) filter and
Kalman filter (KF). OFIR-EU, optimal finite impulse response filter with the embedded unbiasedness.

6.4. Robustness against model uncertainness

Robustness against temporary model uncertainties is often required from optimal estimators. We
simulate an uncertainty by setting $ D 5 s from 160 6 n 6 180 and $ D 0:1 s otherwise for
%2v D 102 and N D 40. The process is generated at 400 points. Typical responses in the estimates
of the first state with p 6 1 are shown in Figure 5a. It is seen that the OFIR-EU and UFIR estimates
converge with p D 0:2 that is in agreement with our early inference. In contrast, KF demonstrates
worst robustness for any p < 1. Figure 5b gives a more precise picture of what goes on with the
OFIR-EU estimates when p < 1. One infers here that errors in the noise covariances do not affect
the OFIR-EU estimates essentially. The estimation errors in the second state are sketched in Figure 6
for p > 1. As can be seen, the OFIR-EU is a bit more successful in accuracy than KF when p D 1.
However, this advantage vanishes with an increase in p that is also in agreement with the early
results shown in Figure 4.

7. CONCLUSIONS

The iterative OFIR-EU algorithm developed in this paper has several useful engineering properties.
For practical use, it offers two options. The basic algorithm relying on the horizon lengthN > Nopt,
where Nopt refers to the optimal horizon of the UFIR filter, can be used whenever the bounded
input/bounded output stability, robustness against uncertainties, and low sensitivity to errors in the
noise covariances are required. It performs almost as the UFIR filter when p < 1; however, its
computation time increases with N . The full-horizon algorithm has the KF structure and consumes
almost as much computation time as the KF. But, unlike the KF, it ignores the initial conditions. An
overall conclusion that can be made is that the iterative computation of OFIR-EU estimates is the
next breakthrough solution in FIR filtering. We now work on its practical applications and hope to
present the results in the near future.

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (61603155) and the 111
project (B12018).

REFERENCES

1. Kailath T, Sayed AH, Hassibi B. Linear Estimation. Prentice-Hall: Upper Saddle River, 2000.
2. Sorenson HW. Kalman Filtering: Theory and Application. IEEE Press: New York, 1985.
3. Simon D. Optimal State Estimation: Kalman,H1 and Nonlinear Approaches. John Wiley & Sons: Honboken, 2006.
4. Wang Y, Ding F. The filtering based iterative identification for multivariable systems. IET Control Theory and

Applications 2016; 10:894–902.
5. Yang L, Jiang L, Xia Y, Fu M. State estimation and data fusion for multirate sensor networks. International Journal

of Adaptive Control and Signal Processing 2016; 30:3–15.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
DOI: 10.1002/acs



S. ZHAO ET AL.

6. Hu G, Gao S, Zhong Y, Gao B, Subic A. Modified strong tracking unscented Kalman filter for nonlinear state
estimation with process model uncertainty. International Journal of Adaptive Control and Signal Processing 2015;
29:1561–1577.

7. Kwon WH, Han S. Receding Horizon Control: Model Predictive Control for State Models. Springer: London, 2005.
8. Shmaliy YS. GPS-based Optimal FIR Filtering of Clock Models. Nova Science Publishers: New York, 2009.
9. Jazwinski AH. Stochastic Processes and Filtering Theory. Dover Publishers: New York, 1970.

10. Jazwinski AH. Limited memory optimal filtering. IEEE Transactions on Automatic Control 1968; 13:558–563.
11. Shmaliy YS. Linear optimal FIR estimation of discrete time-invariant state-space models. IEEE Transactions on

Signal Processing 2010; 58:3086–3096.
12. Mullis CT, Roberts RA. Finite-memory problems and agorithms. IEEE Transactions on Information Theory 1974;

20:440–445.
13. Danyang L, Xuanhuang L. Optimal state estimation without the requirement of a prior statistics informantion of the

initial state. IEEE Transactions on Automatic Control 1994; 39:2087–2091.
14. Mirkin L. On the H1 fixed-lag smoothing: how to exploit the information preview. Automatica 2003; 39:1495–1504.
15. Ahn CK, Han S, Kwon WH. H1 finite memory controls for linear discrete-time state-space models. IEEE

Transactions on Circuits and Systems?II:Express Briefs 2007; 54:97–101.
16. Kwon BK, Han S, Kim OK, Kwon WH. Minimum variance FIR smoothers for discrete-time state space models.

IEEE Transactions on Signal Processing 2007; 14:557–560.
17. Shmaliy YS. Optimal gains of FIR estimations for a class of discrete-time state-space models. IEEE Transactions on

Signal Processing 2008; 15:517–520.
18. Ahn CK. Strictly passive FIR filtering for state-space models with external disturbance. International Journal of

Electronics and Communications 2012; 66:944–948.
19. Ahn CK. A new solution to the induced l1 finite impulse response filtering problem based on two matrix inequalities.

International Journal of Control 2014; 87:404–409.
20. Kwon OK, Kwon WH, Lee KS. FIR filters and recursive forms for discrete-time state-space models. Automat 1989;

25:715–728.
21. Kwon WH, Kim PS, Park P. A receding horizon Kalman FIR filter for discrete time-invariant systems. IEEE

Transactions on Automatic Control 1999; 99:1787–1791.
22. Han SH, Kwon WH, Kim PS. Quasi-deadbeat minimax filters for deterministic state-space models. IEEE Transac-

tions on Automatic Control 2002; 47:1904–1908.
23. Shmaliy YS, Manzano OI. Time-variant linear optimal finite impulse response estimator for discrete state-space

models. International Journal of Adaptive Control Signal Process 2012; 26:95–104.
24. Shmaliy YS, An iterative Kalman-like algorithm ignoring noise, conditions initial. IEEE Transaction Signal Process

2011; 59:2465–2473.
25. Ramlall RY. Method for Doppler-aided GPS carrier-tracking using p-step ramp unbiased finite impulse response

predictor, US Patent US 8,773,305 2014.
26. Kou Y, Jiao Y, Xu D, Zhang M, Liu Y, Li X. Low-cost precise measurement of oscillator frequency instability based

on GNSS carrier observation. Advances in Space Research 2013; 51:969–977.
27. Levine J. The statistical modeling of atomic clocks and the design of time scales. Review of Scientific Instruments

2012; 83:021101.
28. Lee YS, Han S. A minimum variance FIR filter with anH1 error bound and its application to the current measuring

circuitry. Measurement 2014; 50:115–120.
29. Zhao S, Shmaliy YS, Huang B, Liu F. Minimum variance unbiased FIR filter for discrete time-variant systems.

Automatica 2015; 53:355–361.
30. Ding F, Chen T. Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE

Transaction Circuits and Systemes–I: Regular Papers 2005; 52:1179–1187.
31. Ding F, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 2005;

41:315–325.
32. Feng D, Chen T. Hierarchical least squares identification methods for multivariable systems. IEEE Transactions on

Automatic Control 2005; 50:397–402.
33. Feng D, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems. Automatica 2005;

41:315–325.
34. Zhao S, Shmaliy YS, Liu F. Fast computation of discrete optimal FIR estimates in white Gaussian noise. IEEE Signal

Processing Letters 2015; 22:718–722.
35. Golub GH, van Loan GF. Matrix Computation (3rd). Johns Hopkins University Press: Baltimore, 1996.
36. Lewis FL. Optimal Control. John Wiley & Sons: New York, 1986.
37. Callier FM, Desoer CA. Linear System Theory. Springer Texts in Electrical Engineering: New York, 1991.
38. Jilkov VP, Li XR. Online Bayesian estimation of transition probabilities for Markovian jump systems. IEEE

Transaction Signal Process 2004; 52:1620–1630.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
DOI: 10.1002/acs


