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Two Variables per Linear Inequality as anAbstrat DomainAxel Simon1 Andy King1 Jaob M. Howe21Computing Laboratory, 2Department of Computing,University of Kent, Canterbury, UK. City University, London, UK.fa.m.king, a.simong�uk.a.uk jaob�soi.ity.a.ukAbstrat. This paper explores the spatial domain of sets of inequalitieswhere eah inequality ontains at most two variables { a domain thatis riher than intervals and more tratable than general polyhedra. Wepresent a omplete suite of eÆient domain operations for linear sys-tems with two variables per inequality with unrestrited oeÆients. Weexploit a tati in whih a system of inequalities with at most two vari-ables per inequality is deomposed into a series of projetions { one foreah two dimensional plane. The deomposition enables all domain oper-ations required for abstrat interpretation to be expressed in terms of thetwo dimensional ase. The resulting operations are eÆient and inludea novel planar onvex hull algorithm. Empirial evidene suggests thatwidening an be applied e�etively, ensuring tratability.1 IntrodutionThe value of spatial domains suh as intervals [13℄, aÆne spaes [19℄ and poly-hedra [8℄ has been reognized sine the early days of program analysis. Onereourring theme in program analysis is the trade-o� between preision of thedomain and the tratability of the domain operations. In this regard, the polyhe-dral sub-domain that onsists of sets of linear inequalities where eah inequalityontains at most two variables has reently attrated attention [26, 27, 33, 35℄.In fat, beause of its tratability, this lass of linear inequalities has reentlybeen proposed for onstraint logi programming [15, 18℄. This paper adapts thiswork to the requirements of program optimization and program development byequipping this domain with the operations needed for abstrat interpretation.Two variable inequality domains have already proven useful in areas as diverseas program veri�ation [29, 34℄, model heking of timed automata [22, 28℄, par-allelization [2℄, loating seurity vulnerabilities [36℄, deteting memory leaks [33℄and verifying program termination in logi programming [24℄. Thus the applia-bility of the domain extends beyond logi programming [4, 17℄ to other analysisproblems in veri�ation and program development.The work of Min�e [26℄ represents the state-of-the-art for program analysiswith domains of inequalities restrited to two variables. He uses the so-alledOtagon domain [26℄ where inequalities have unit oeÆients of -1, 0 or +1. Adi�erene-bound matrix (DBM) representation is employed that uses a 2d� 2d



matrix to enode a system of inequalities, S say, over d variables (the dimension).One key idea in this work is that of losure. Closure strengthens the inequalitiesof S (represented as a DBM) to obtain a new system S0 (also represented as aDBM). For example, if x+y � 0 2 S0, then 0 �  whenever S implies x+y � .Thus applying losure maximally tightens eah inequality, possibly introduingnew inequalities. Projetion, entailment and join apply losure as a preproessingstep both to preserve preision and simplify the domain operations themselves.For example, the join of two inequalities with idential oeÆients, say x�y � 1and x � y � 2, is simply x � y � max(1; 2). Closure enables this simple jointo be lifted point-wise to systems of inequalities. Sine most domain operationsrequire one or both of their arguments to be losed, these operations inherit theO(d3) omplexity of the DBM losure operation. In this paper, we show howlosure is also the key onept to takle the two variable per inequality domainwith unrestrited oeÆients. Heneforth, our losure operator is referred to asompletion to distinguish it from topologial losure.This paper draws together a number of strands from the veri�ation, analysisand onstraints literature to make the following novel ontributions:{ We show that a polynomial ompletion algorithm whih makes expliit allthe two-dimensional projetions of a system of (unrestrited) two variableinequalities enables eah domain operation to be omputed in polynomialtime. Inredibly, suh a ompletion operator already exists and is embeddedinto the satis�ability algorithm of Nelson [29℄.{ We explain how lassi O(m logm) onvex hull algorithms for sets of mplanar points, suh as [11℄, an be adapted to ompute the join eÆiently.The ruial point is that ompletion enables join to be omputed point-wiseon eah two-dimensional projetion whih neessarily desribes a planar ob-jet. Surprisingly little literature addresses how to eÆiently ompute on-vex hull of planar polyhedra (without the full omplexity of the standardd-dimensional algorithm [6, 23℄) and as far as we are aware, our onvex hullalgorithm is unique (see [32℄ for a reent survey). Projetion and entailmentoperators are also detailed.{ We also address salability and present empirial evidene that the numberof inequalities in eah two-dimensional projetion is small. This suggests anatural widening: limit the number of inequalities in eah projetion by aonstant. This trivial widening obtains an O(d2) representation, like DBMs,without enforing the requirement that oeÆients are �1; 0 or +1. Notethat in ontrast to DBMs, our representation is dense { spae is only re-quired for those inequalities atually ourring in the system. The wideningalso auses ompletion to ollapse to an O(d3(log d)2) operation whih isompetitive with the O(d3) DBM approah, taking into onsideration theextra expressiveness.{ We also argue that the domain operations themselves are oneptually sim-ple, straightforward to ode and therefore more likely to be implementedorretly.



To summarize, we remove a serious limitation of the Otagon domain { that theoeÆients must be unitary { without ompromising tratability. Appliationsthat employ the Otagon domain or related weaker domains [22, 28, 33℄ willtherefore diretly bene�t from this work.The paper is strutured as follows. Setion 2 presents the abstrat domain.Setion 3 explains how Nelson's satis�ability algorithm [29℄ an be adapted toomplete a system. The next three setions explain how ompletion provides thebasis for the domain operations. Setion 7 presents empirial evidene for thepratiality of the domain. The future and related work setions onlude.2 Abstrat domainTo speify the domain algorithms and argue their orretness, we start the ex-position by detailing some theoretial properties of polyhedral domains.2.1 Convex hull and losureAn �-ball around y 2 Rn is de�ned as B�(y) = fx 2 Rn jPni=1(xi � yi)2 < �g.A set S � Rn is open if, given any y 2 S, there exists � > 0 suh that B�(y) � S.A set S � Rn is losed i� Rn nS is open. Note that if Si � Rn is losed for eahmember of an index set i 2 I then \fSi j i 2 Ig is also losed. The (topologial)losure of S 2 Rn is de�ned l(S) = \fS0 � Rn j S � S0 ^ S0 is losedg. Theonvex hull of S 2 Rn is de�ned onv(S) = f�x+(1��)y j x;y 2 S^0 � � � 1g.2.2 Two-variables per inequality domainLet X denote the �nite set of variables fx1; : : : ; xng so that X is ordered lexio-graphially by xi � xj i� i < j. Let LinX denote the set of (possibly rearranged)linear inequalities of the form axi + bxj �  where a; b;  2 R. Let TwoX denotethe set of all �nite subsets of LinX . Note that although eah set T 2 TwoX is�nite, TwoX is not �nite. Syntati sugar of the form x � y is used instead of(+1)x+ (�1)y � 0 2 LinX as well as by + ax �  instead of ax+ by � .De�nition 1. The mapping [[:℄℄ : LinX ! Rn is de�ned: [[axi + bxj � ℄℄ =fhy1; : : : ; yni 2 Rn j ayi+ byj � g and the mapping [[:℄℄ : TwoX ! Rn is de�ned[[T ℄℄ = \f[[t℄℄ j t 2 Tg.For brevity, let t= represent the boundary of a given half-spae, that is, de�net= = faxi + bxj � ;�axi � bxj � �g when t � axi + bxj � . TwoX isordered by entailment, that is, T1 j= T2 i� [[T1℄℄ � [[T2℄℄. Equivalene on TwoXis de�ned T1 � T2 i� T1 j= T2 and T2 j= T1. Moreover T j= t i� T j= ftgand t1 � t2 i� ft1g � ft2g. Let Two�X = TwoX=�. Two�X inherits entailmentj= from TwoX . In fat hTwo�X ; j=;u;ti is a lattie (rather than a ompletelattie) with [T1℄� u [T2℄� = [T1 [ T2℄� and [T1℄� t [T2℄� = [T ℄� where [[T ℄℄ =l(onv([[T1℄℄ [ [[T2℄℄)). Note that in general onv([[T1℄℄ [ [[T2℄℄) is not losed andtherefore annot be desribed by a system of non-strit linear inequalities as isillustrated below.



Example 1. Let X = fx; yg, T1 = fx � 0;�x � 0; y � 1;�y � �1g andT2 = f�x � 0; x� y � 0; y � x � 0g so that [[T1℄℄ = fh0; 1ig and [[T2℄℄ = fhx; yi j0 � x^ x = yg. Then onv ([[T1℄℄[ [[T2℄℄) inludes the point h0; 1i but not the rayfhx; yi j 0 � x ^ x+ 1 = yg and hene is not losed.
-60 1 2 3 x0123y r[[T1℄℄�������[[T2℄℄ -60 1 2 3 x0123y r�������The domain TwoX is a generi abstrat domain that is not limited to a spe-i� appliation. No onretization map is de�ned in this paper sine suh a mapis spei� to an appliation. However, if an appliation used the onretizationmap (T ) = [[T ℄℄ then no abstration map � : }(Rn )! TwoX would exist sinethere is no best abstration e.g. for the set fhx; yi j x2 + y2 � 1g. The prob-lem stems from the fat that TwoX an ontain an arbitrarily large number ofinequalities. This ontrasts with the Otagon domain where eah planar objetwill be desribed by at most eight inequalities.We will augment hTwo�X ; j=;u;ti with projetion 9 and widening to aom-modate the needs of abstrat interpretation.De�nition 2. Projetion operator 9xi : Two�X ! Two�X is de�ned 9xi([T1℄�) =[T2℄� where [[T2℄℄ = fhy1; : : : ; yi�1; y; yi+1; : : : ; yni j y 2 R ^ hy1; : : : ; yni 2 [[T1℄℄g.Projetion an be alulated using Fourier-Motzkin variable elimination andfrom this it follows that T2 2 TwoX if T1 2 TwoX .2.3 Complete form for the two-variables per inequality domainThe omplete form for the two-variables per inequality domain is de�ned interms of those variables that our in a set of inequalities.De�nition 3. The mapping var : LinX ! }(X) is de�ned:var (ax+ by � ) = 8>><>>: ; if a = b = 0fyg if a = 0fxg if b = 0fx; yg otherwiseThe mapping var aptures those variables with non-zero oeÆients. Observethat var (t1) = var (t2) if t1 � t2. In ontrast, note that var (0u+ 0v � 1) = ; =var (0x+ 0y � �1). If T 2 TwoX then let var(T ) = [fvar(t) j t 2 Tg.De�nition 4. Let Y � X . The restrition operator �Y is de�ned:�Y (T ) = ft 2 T j var (t) � Y g



De�nition 5. The set of omplete �nite subsets of LinX is de�ned:Two 0X = fT 2 TwoX j 8t 2 LinX : T j= t ) �var(t)(T ) j= tgProposition 1. Suppose T 2 TwoX . Then there exists T 0 2 Two 0X suh thatT � T 0 and T � T 0.Proof. De�ne [Tx;y℄� = 9Xnfx;yg([T ℄�) for all x; y 2 X and T 0 = T[Sx;y2X Tx;y.Sine eah Tx;y is �nite, T 0 is �nite, hene T 0 2 Two 0X . By the de�nition of 9,T j= Tx;y, hene T [ Tx;y � T for all x; y 2 X , thus T � T 0. Moreover T � T 0.Corollary 1. Two�X = Two 0X=�.2.4 Ordering the two-variables per inequality domainLet Y = fx; yg � X suh that x � y and onsider T = ft1; : : : ; tng 2 TwoY .Eah ti de�nes a half-spae in the Y plane and therefore T an be ordered bythe orientation of the half-spaes as follows:De�nition 6. The (partial) mapping � : LinY ! [0; 2�) is de�ned suh that�(ax+ by � ) =  where os( ) = �b=pa2 + b2 and sin( ) = a=pa2 + b2.The mapping � atually returns the anti-lokwise angle whih the half-spaefhx; yi j y � 0g has to be turned through to oinide with fhx; yi j ax+ by � 0g.2.5 Entailment between three inequalitiesThis setion demonstrates how entailment heks of the form ft1g j= t andft1; t2g j= t an be omputed in onstant time. The following proposition ex-plains how this hek redues to applying the Cramer rule for the three inequalityase and simple saling for the two inequality ase.Proposition 2. Let ti � aix+ biy � i for i = 1; 2 and t � ax+ by � . Thenft1g j= t () 8>>>><>>>>: false if a1b� ab1 6= 0false else if a1a < 0 _ b1b < 0(a=a1)1 �  else if a1 6= 0(b=b1)1 �  else if b1 6= 01 < 0 _ ( � 0 ^ a = 0 ^ b = 0) otherwiseft1; t2g j= t () 8>><>>:ft1g j= t _ ft2g j= t if d = a1b2 � a2b1 = 0false else if �1 = (ab2 � a2b)=d < 0false else if �2 = (a1b� ab1)=d < 0�11 + �22 �  otherwise.If the inequalities t1 and t di�er in slope, then the determinant of their oeÆientsis non-zero and they annot entail eah other. Suppose now that the determinantis zero. Observe that the two inequalities have opposing feasible spaes whenevera1 and a or b1 and b have opposite signs. In this ase t1 annot entail t. If t1 has



a non-zero oeÆient, then entailment redues to a simple omparison betweenthe onstants of the inequalities, suitably saled. The �fth ase mathes thepathologial situation of tautologous and unsatis�able inequalities.The entailment between three inequalities redues to the former ase if t1 andt2 have equal slope (the determinant is zero). Otherwise an inequality is on-struted whih has the same slope as t and whih passes through the intersetionpoint [[t=1 ℄℄ \ [[t=2 ℄℄ using the Cramer rule. Again, a omparison of the onstantsdetermines the entailment relationship. If either �1 or �2 is negative, the feasiblespae of the ombination of t1 and t2 will oppose that of t, thus ft1; t2g annotentail t.3 Completion: A variant of Nelson's satis�abilityalgorithmIn this setion we show how to omplete a system of inequalities. This operationorresponds to the losure operation of Min�e. We follow the approah that Nelsonused for heking satis�ability [29℄. One key onept in his algorithm is the notionof a �lter that is formalized below.De�nition 7. Let Y = fx; yg � X . The mapping �lterY : TwoY ! TwoY isde�ned suh that:1. �lterY (T ) � T2. �lterY (T ) � T3. for all T 0 � T and T 0 � T , j�lterY (T )j � jT 0j.The role of �lterY is to remove redundant elements from a set of inequalities overthe variables Y . If the inequalities are ordered by angle, redundany removal anbe done surprisingly eÆiently as illustrated in Fig. 1. The funtion �lter returnsa single ontraditory inequality if the ompleted system S is unsatis�able, andotherwise removes tautologies before sorting the inequalities. The loop then it-erates over the inequalities one in an anti-lokwise fashion. It terminates whenno more redundant inequalities an be found, that is, when (1) the whole setof inequalities has been traversed one (ag f is true) and (2) the inequalitieswith the largest and smallest angle are both non-redundant. Sine the entail-ment hek between three inequalities an be performed in onstant time, thealgorithm is linear. Note that di�erent subsets of the input an be minimal. Thisours, for example, when the system is unsatis�able. Then �lterY returns oneof these subsets.The map �lterY lifts to arbitrary systems of two-variable inequalities asfollows:De�nition 8. The mapping �lter : TwoX ! TwoX is de�ned:�lter(T ) = Sf�lterY (�Y (T )) j Y � X ^ jY j = 2g



funtion �lterfx;yg(S 2 TwoX) beginif 9s 2 S : s � 0x+ 0y � �1 then return fsg;T := fs 2 S j s 6� 0x+ 0y � 1g;let T = ft1; : : : ; tmg suh that �(t1) � �(t2) � : : : � �(tm);f := false;looplet ft; tn; : : : ; tlg = T ; if jT j > 1 ^ ftn; tlg j= t then T := ftn; : : : ; tlg; else beginif �(t) � �(tl) ^ f then return T ;if �(t) � �(tl) then f := true ;T := ftl; t; tn; : : :g;end;end;end Fig. 1. Algorithm for redundany removalThe seond key idea of Nelson is the result map that makes expliit thoseinequalities that are indiretly expressed by the system. The basi step is togenerate all possible ombinations of pairs of inequalities by eliminating theirommon variable.De�nition 9. The resultants map result : TwoX ! TwoX is de�ned by:result(T ) =8>><>>:aez � dby � af � d �������� t1; t2 2 T ^t1 � ax+ by �  ^t2 � dx+ ez � f ^a > 0 ^ d < 0 9>>=>>;The following example demonstrates how result works on a hain of dependentvariables:Example 2. Let T0 = fx0 � x1; x1 � x2; x2 � x3; x3 � x4g. We alulateT1 = result(T0) and T2 = result(T0 [ T1).result(T0) = fx0 � x2; x1 � x3; x2 � x4gresult(T0 [ T1) = T1 [ fx0 � x3; x0 � x4; x1 � x4gNote that T3 = S2i=0 Ti is a �xpoint in T3 = result(T3).An important property of T [ result(T ) is the way it halves the number ofvariables required to entail a given inequality t. Spei�ally, suppose T j= t. Thenthere exists T 0 � T [ result(T ) suh that T 0 j= t and T 0 ontains no more thanhalf the variables of T . Lemma 1 formalizes this and is basially a reformulationof Lemma 1b of [29℄.Lemma 1. Let T 2 TwoX and t 2 LinX suh that T j= t. Then there existsY � X suh that jY j � bjvar(T )j=2+ 1 and �Y (T [ result(T )) j= t.



Lemma 1 suggests the following iterative algorithm for alulating ompletionthat takes (approximately) log2(jvar (T )j) steps. Theorem 1 asserts its orret-ness.De�nition 10. The mapping omplete : TwoX ! TwoX is de�ned:omplete(T0) = Tdlog2(jvar(T0)j�1)e where Ti+1 = �lter(Ti [ result(Ti))Theorem 1. omplete(T ) � T and omplete(T ) 2 Two 0X for all T 2 TwoX .Proof. Let f : N ! N where f(n) = bn=2+1. The following table details m 2 Nfor whih fm(n) � 2. Observe that fdlog2(n�1)e(n) � 2.n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 . . .m 0 1 2 2 3 3 3 3 4 4 4 4 4 4 4 4 5 . . .Observe that T � T [ result(T ) � �lter(T [ result(T )) and by indution T �omplete(T ). Let t 2 LinX suh that omplete(T ) j= t. Then T j= t. Let T0 = Tand Ti+1 = �lter(Ti [ result(Ti)). By indution and by Lemma 1, there ex-ists Yi � var(T ) suh that �Yi(Ti) j= t and jYij � f i(jvar (T )j). ThereforejYdlog2(jvar(T )j�1)ej � 2, hene �var(t)(omplete(T )) j= t as required.Note that applying an additional ompletion step makes expliit all inequali-ties over one variable. Furthermore, applying it one more reates tautologousand ontraditory inequalities. Applying these two additional ompletion stepsenables �lter to detet unsatisfability without employing any extra mahinery.Example 3. To illustrate how unsatis�ability is deteted onsider the systemT0 = f�x+ y � �1;�2x� 3y � �6; 4x� 2y � �4g. The system is omplete buttwo more ompletion steps are neessary to detet unsatis�ability. The alula-tion T1 = �lter(T0 [ result(T0)) = T0 [f�y � �2;�5x � �9; x � �3g makes allinequalities over one variable expliit. Unsatis�ability beomes expliit when al-ulating 0 � �24 2 result(T1). Finally �lter(result(T1)) = f0 � �24g ollapsesthe system to a single unsatis�able onstraint.3.1 Complexity of the omplete operationNelson shows that his satis�ability algorithm is polynomial in the number ofinput inequalities [29℄. For omparison with the DBM approah, onsider theomplexity of �lter(Ti [ result(Ti)) where d = jvar(Ti)j and k = maxfj�Y (Ti)j ji 2 [0; dlog2(jvar (T )j � 1)e℄ ^ Y = fx; yg � var (Ti)g. Sine eah Ti may haved(d�1)=2 restritions, a linear pass over O(kd2) inequalities is suÆient to parti-tion the set of inequalities into d sets, one for eah variable. Eah set has at mostO(kd) elements, so alulating the resultants for eah set is O(k2d2), hene al-ulating all the resultants is O(k2d3). The omplexity of applying the linear �lteris in O(kd2 + k2d3) = O(k2d3) whih with sorting requires O(k2d3 log(k2d3)) =O(k2d3(log(k)+log(d))) time. The omplete operation runs result O(log d) timeswhih leads to an overall running time of O(k2d3 log(d)(log(k) + log(d))). InSetion 7 we show that k is typially small and therefore an be limited by aonstant with hardly any loss of expressiveness. This ollapses the bound toO(d3(log(d))2) whih is only slightly worse than the O(d3) losure of Min�e [26℄.



3.2 Satis�ability and the omplete operationNelson [29℄ originally devised this ompletion operation in order to onstruta polynomial test for satis�ability. The following proposition explains how non-satis�ability an be observed after (and even during) the ompletion alulation.Spei�ally, the proposition asserts that non-satis�ability always manifests itselfin the existene of at least one ontraditory inequality.Proposition 3. Let T 0 2 Two 0X . Then [[T 0℄℄ = ; i� [[�;(T 0)℄℄ = ;.Proof. Let T 0 2 Two 0X . Suppose [[T 0℄℄ = ;. Then T 0 j= 0x + 0y � �1. Sinevar (0x+0y � �1) = ;, hene �;(T 0) j= 0x+0y � �1 and therefore [[�;(T 0)℄℄ = ;.Sine �;(T 0) � T 0 the onverse follows.4 Join: Planar onvex hull on eah projetionComputing the join orresponds to alulating the onvex hull for polyhedrawhih is surprisingly subtle. The standard approah for arbitrary d-dimensionalpolyhedra involves applying the Chernikova [6℄ algorithm (or a variant [23℄) toonstrut a verties and rays representation whih is potentially exponential [20℄.By way of ontrast, we show that onvex hull for systems of two variables perinequality an be omputed by a short polynomial algorithm.The onstrution starts by reformulating the onvex hull piee-wise in termsof eah of its planar projetions. Proposition 4 shows that this operation resultsin a omplete system whenever its inputs are omplete; equivalene with thefully dimensional onvex hull operation is stated in Proposition 5.De�nition 11. The piee-wise onvex hull g : TwoX2 ! TwoX is de�nedT1 g T2 = [fTx;y 2 Twofx;yg j x; y 2 Xg where [[Tx;y℄℄ = l(onv ([[�fx;yg(T1)℄℄ [[[�fx;yg(T2)℄℄)).Proposition 4. T 01 g T 02 2 Two 0X if T 01; T 02 2 Two 0X .Proof. Let t 2 LinX suh that T 01 g T 02 j= t. Let x; y 2 X and let [[Tx;y℄℄ =l(onv([[�fx;yg(T 01)℄℄ [ [[�fx;yg(T 02)℄℄)). Observe �fx;yg(T 01) j= Tx;y, thereforeT 01 j= T 01 g T 02. Likewise T 02 j= T 01 g T 02, hene it follows that T 01 j= t and T 02 j= t.Sine T 01; T 02 2 Two 0X , �var(t)(T 01) j= t and �var(t)(T 02) j= t, thus [[�var(t)(T 01)℄℄ �[[t℄℄ and [[�var(t)(T 02)℄℄ � [[t℄℄, hene [[�var(t)(T 02)℄℄ [ [[�var(t)(T 02)℄℄ � [[t℄℄. Therefore[[�var(t)(T 01g T 02)℄℄ = l(onv([[�var(t)(T 01)℄℄[ [[�var(t)(T 02)℄℄)) � l(onv([[t℄℄)) = [[t℄℄.Therefore �var(t)(T 01 g T 02) j= t as required.Proposition 5. [[T 01 g T 02℄℄ = l(onv([[T 01℄℄ [ [[T 02℄℄)) if T 01; T 02 2 Two 0X .Proof. Sine T 01 j= T 01gT 02 and T 02 j= T 01gT 02, it follows that l(onv ([[T 01℄℄[[[T 02℄℄)) �[[T 01 g T 02℄℄. Suppose there exists h1; : : : ; ni 2 [[T 01 g T 02℄℄ suh that h1; : : : ; ni 62[[T 0℄℄ where [[T 0℄℄ = l(onv([[T 01℄℄[[[T 02℄℄)). ThusSni=1fxi � i; i � xig 6j= T 0, henethere exists axj + bxk �  � t 2 T 0 with Sni=1fxi � i; i � xig 6j= axj + bxk � .



funtion extreme(T 2 Twofx;yg) beginlet T = ft0; : : : ; tn�1g suh that �(t0) < �(t1) < : : : < �(tn�1);V := R := ;;for i 2 [0; n� 1℄ do let ti � ax+ by �  in begin// are the intersetion points of this inequality degenerated?dpre := (�(ti)� �(ti�1 mod n)) mod 2� � � _ n = 1;dpost := (�(ti+1 mod n)� �(ti)) mod 2� � � _ n = 1;if dpre then R := R [ fhb=pa2 + b2;�a=pa2 + b2ig;if dpost then R := R [ fh�b=pa2 + b2; a=pa2 + b2ig;else V := V [ fvg where v 2 [[t=i ℄℄ \ [[t=(i+1) mod n℄℄;if dpre ^ dpost then beginif n = 1 then R := R [ fh�a=pa2 + b2;�b=pa2 + b2ig;V := V [ fvg where v 2 [[t=i ℄℄endendreturn hV; Riend Fig. 2. Calulating the points and rays of a planar polyhedronBut T 01 j= T 0 j= t and T 02 j= T 0 j= t. Sine T 01 2 Two 0X and T 02 2 Two 0X , itfollows that �fxj ;xkg(T 01) j= t and �fxj ;xkg(T 02) j= t. Hene T 01 g T 02 j= t, thusSni=1fxi � i; i � xig j= T 01 g T 02 but h1; : : : ; ni 62 [[T 01 g T 02℄℄ whih is aontradition.Calulating the onvex hull for a set of points in the plane has been studiedextensively [32℄. The onvex hull of polytopes an be redued to this problemby onverting the polytopes into their vertex representation, alulating theonvex hull of all verties and onverting bak into the inequality representation.Although the generalization to planar polyhedra follows this three-step proess,it is muh more subtle and little literature has been written on this fundamentalproblem. Given a set of non-redundant inequalities, ordered by their orientation�, the auxiliary funtion extreme in Figure 2 alulates a set of verties and raysthat represent the polyhedron. Rays are reated when the angle between theurrent inequality ti and the previous inequality is greater or equal to � (dpreis true) and similarly for the next inequality (dpost is true). If both ags aretrue, we reate an arbitrary point on the boundary of the halfspae of ti to �xits representing rays in spae. A pathologial ase arises when the polyhedrononsists of a single halfspae (n = 1). In this ase a third ray is reated to indiateon whih side the feasible spae lies. Note that the maximum number of rays foreah polyhedron is four, whih ours when T de�nes two faing halfspaes.The main funtion join in Figure 3 uses extreme to ompute the vertiesand rays of eah input polyhedron and athes the simple ase of when bothpolyhedra onsist of the same single point. Otherwise we alulate a square whosesides have length 2m whih is entered on the origin and that ontains all verties



funtion join(T1 2 TwoX ; T2 2 TwoX) beginif 9t 2 T1 : t � 0x+ 0y � �1 then return T2;if 9t 2 T2 : t � 0x+ 0y � �1 then return T1;// note: eah Ti is non-redundanthV1; R1i := extreme(T1);hV2; R2i := extreme(T2);V := V1 [ V2; R := R1 [R2; // Note: jRj � 8if V = fhx1; y1ig ^ R = ; thenreturn fx � x1;�x � �x1; y � y1;�y � �y1g;m := maxfjxj; jyj j hx; yi 2 V g + 1;//add a point along the ray, goes through x; y and is outside the boxfor hx; y; a; bi 2 V1 [ V2 �R do V := V [ fhx+ 2p2ma; y + 2p2mbig;fv0; : : : ; vn�1g := graham(V ) suh that v0; : : : ; vn�1 are ordered anti-lokwiseand points on the boundary are not removedTres := ;; tlast := onnet (vn�1; v0);for i 2 [0; n� 1℄ do beginlet hx1; y1i = vi, hx2; y2i = v(i+1) mod n, t = onnet (vi; v(i+1) mod n)if (jx1j<m ^ jy1j<m)_ (jx2j<m ^ jy2j<m)^ �(t) 6= �(tlast ) then beginif (�(t)� �(tlast )) mod 2� = � ^ jx1j<m ^ jy1j<m thenif y1 = y2 then Tres := Tres [ fsgn(x1 � x2)x � sgn(x1 � x2)x1gelse Tres := Tres [ fsgn(y1 � y2)y � sgn(y1 � y2)y1gTres := Tres [ ftg; tlast := t;endendreturn Tresendfuntion onnet (hx1; y1i; hx2; y2i)return (y2 � y1)x+ (x1 � x2)y � (y2 � y1)x1 + (x1 � x2)y1Fig. 3. Convex hull algorithm for planar polyhedrain V1[V2. For eah ray r 2 R we translate eah vertex in V1[V2 in the diretionof the ray r. Note that the normalization of the rays and the translation by2p2m ensures that the translated verties are outside the square. We now applythe Graham onvex hull algorithm [11℄, modi�ed so that it removes all (stritly)interior verties but retains points whih lie on the boundary of the hull. Whatfollows is a round-trip around this hull, translating two adjaent verties into aninequality by alling onnet if the following onditions are met: the inequalitymust have a di�erent slope than the previously generated inequality and at leastone of the two verties must lie within the box. The two innermost if-statementsdeal with the pathologial ase of when V ontains only olinear points andadditional inequalities are needed to restrit the two opposing inequalities sothat an (unbounded) line is not inadvertently generated.The running time of this algorithm is dominated by the all to the onvexhull algorithm of Graham [11℄ whih takes O(n logn) time where n = jV jjRj.



However, jRj is at most eight (and usually between zero and four). Sine O(jV j) =O(jT j) it follows that the overall running time is O((jT1j+ jT2j) log(jT1j+ jT2j)).5 ProjetionProjetion returns the most preise system whih does not depend on a givenvariable. We provide a onstrutive de�nition of projetion for (omplete) sys-tems. Proposition 6 states that this oinides with the spatial de�nition of pro-jetion. Furthermore we prove that this operation preserves ompletion.De�nition 12. The operator 9x : TwoX ! TwoXnfxg is de�ned 9x(T ) =[f�Y (T ) j Y = fy; zg � X n fxgg.Proposition 6. 9x([T 0℄�) = [9x(T 0)℄� and 9x(T 0) 2 Two 0X for all T 0 2 Two 0X .Proof. By Fourier-Motzkin 9x([T 0℄�) = [T ℄� where T = ft 2 T 0 [ result(T 0) jx 62 var(t)g. Observe that T j= 9x(T 0). Now suppose r 2 T 0 [ result(T 0) suhthat x 62 var (r). Then T 0 j= r, hene �var(r)(T 0) j= r and therefore 9x(T 0) j= r,and thus 9x(T 0) j= T , hene 9x(T 0) � T as required.Now let t 2 LinX suh that 9x(T 0) j= t. Moreover T 0 j= 9x(T 0) j= t, hene�var(t)(T 0) j= t. Sine x 62 var(t), �var(t)(9x(T 0)) j= t as required.Consider a omplete system that inludes y � x � 0 and x � z � 0. Projetingout x will preserve the inequality y� z � 0 whih ompletion has made expliit.6 EntailmentEntailment heking between systems of inequalities an be redued to hekingentailment on their two dimensional projetions. Moreover, entailment hekingfor a planar polyhedron an be further redued to heking entailment betweenthree single inequalities. We start by detailing the entailment relationship be-tween systems of inequalities and their two dimensional projetions.Proposition 7. Let T 0 2 Two 0X and T 2 TwoX . Then T 0 j= T i� �Y (T 0) j=�Y (T ) for all Y = fx; yg � X .Proof. Suppose T 0 j= T . Let t 2 �Y (T ). Then T 0 j= T j= t. Hene �var(t)(T 0) j= t.Sine var(t) � Y , �Y (T 0) j= t and therefore �Y (T 0) j= �Y (T ).Now suppose �Y (T 0) j= �Y (T ) for all Y = fx; yg � X . Let t 2 T . Thent 2 �var(t)(T ), hene T 0 j= �var(t)(T 0) j= �var(t)(T ) j= t.Note that the proposition does not require both systems of inequalities to beomplete. Due to Proposition 7 it suÆes to hek that entailment holds forall planar projetions. Therefore onsider heking entailment between two non-redundant planar systems T1; T2 2 Twofx;yg. To test T1 j= T2 it is suÆient toshow that T1 j= t for all t 2 T2. This redues to �nding ti; ti+1 2 T1 suh that�(ti) � �(t) < �(ti+1) (modulo 2�). If any of the tests fti; ti+1g j= t fail, falsean be returned immediately. If the inequalities are ordered by angle, planarentailment heking is linear time as shown in Fig. 4.



funtion entails(T1 2 Two0X ; T2 2 TwoX) beginif 9t 2 T1 : t � 0x+ 0y � �1 then return true ;if 9t 2 T2 : t � 0x+ 0y � �1 then return false;let ft1; : : : ; tng = T1 suh that �(t1) � �(t2) � : : : � �(tn);let ft01; : : : ; t0mg = T2 suh that �(t01) � �(t02) � : : : � �(t0m);u := 1; l := n;for i 2 [1; m℄ do beginwhile �(tu) < �(t0i) ^ u � n do beginl := u;u := u+ 1;endif ftl; t(u mod n)g 6j= t0i then return false;end;return true ;end; Fig. 4. Algorithm for heking entailment of planar polyhedra7 WideningFor domains that do not satisfy the asending hain property, widening is ne-essary to enfore termination of �xpoint alulations [7℄ (for example in loops).Widening an also be used to improve spae and time behavior. In the followingsetions we elaborate on both.7.1 Widening for terminationAny widening [7, 8℄ for polyhedra an be applied to planar polyhedra and thenlifted to systems of two variables per inequality. Sine the domain is struturedin terms of projetions, one tati for delaying widening, and thereby improv-ing preision, is to only apply widening when the number of projetions hasstabilized and the dimension of eah of the projetions is also stable. One sub-tlety is that applying ompletion after widening an ompromise termination byreintroduing inequalities that were removed during widening.7.2 Widening for tratabilityTo assess the tratability of the domain, we implemented a na��ve ompletionoperation and measured the growth both in the number of projetions and in-equalities. Our test data is obtained by generating random planar polytopesover di�erent pairs of variables. Eah polytope was onstruted by omputingthe onvex hull of a random set of points distributed aross a square in R2 . Weset up three di�erent senarios alled varying, onstant and sparse. In the vary-ing senario, we reated polytopes whih had between 3 and 13 inequalities eahuntil we reahed 147 inequalities in total. To make the results omparable, we
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Fig. 5. The number of inequalities seems to be restrited in pratiethen applied ompletion to those systems whih had exatly 100 non-redundantinequalities. Redundanies an our in the original system sine two polytopesmay share a ommon variable and a bound on this variable may propagate fromone sub-system to the other, rendering inequalities superuous. The onstantsenario reates 10 inequalities for eah pair of variables. Sine fewer non-emptyprojetions were initially generated (on average 143=10), the growth in the num-ber of projetions is larger { on average it inreased to 32 projetions. The lastase, sparse, orresponds to a system where inequalities are weakly oupled, thatis, few inequalities share variables. As expeted the number of extra projetionsgenerated by ompletion is marginal. The results are summarized in Figure 6.Sine randomly generated data o�ers no partiular advantage to our ompletionalgorithm over real data, it appears the ompletion will remain tratable in pra-tie. In partiular, the worst ase quadrati growth in the number of projetionsis unlikely to arise.An interesting observation is that the number of inequalities is not propor-tional to the number of points n over whih the onvex hull is alulated. Thissquares with probabilisti theory [5, 31℄. Spei�ally, the onvex hull of a set of npoints randomly distributed over a square is expeted to have O(log n) extremepoints [5℄, while a random set of n points restrited to a irle is expeted to haveO(n 13 ) extreme points [31℄. In our experiments, less than 1% of all projetionshad more than 30 inequalities (see Fig. 5 for the distribution). This suggests



senario varying onstant sparsedimension 10 10 100inequalities generated 147 143 139inequalities per polyhedron 3{13 10 10after redundany removalremaining inequalities 100 100 100avg. no of ineq. per polyhedron 5.3 7.0 7.1after ompletionavg. resultant inequalities 210 189 106inrease in no of projetions 56% 123% 9%projetions > 30 inequalities 0.22% 0.18% 0.00%Fig. 6. The impat of alulating ompletionthat pruning the number of inequalities down to a onstant bound will havelittle overall e�et on preision, yet obtains an attrative O(d3(log d)2) perfor-mane guarantee. One way to systematially drop inequalities is to remove thosethat ontribute least to the shape, that is, remove the inequality that ontributesthe shortest edge to the polyhedron.8 Future WorkUsing union-�nd an arbitrary T 2 TwoX an be partitioned in near-linear timeinto a system fT1; : : : ; Tpg suh that var (Ti) \ var(Tj) = ; whenever i 6= j.This deomposition enables the omplexity of ompletion to be redued toO(d3(log d)2) where d = maxfjvar(T1)j; : : : ; jvar(Tp)jg. This tati, whih is ap-pliable to any polyhedral domain, will be useful if the oupling between variablesis low.The ompletion of a system T is urrently omputed iteratively in approx-imately log2(jvar(T )j) steps. The ompletion operation ould bene�t from ap-plying a strategy suh as semi-na��ve iteration [3℄ that would fator out some ofthe repeated work.9 Related workThe Otagon domain [26℄ represents inequalities of the form axi+bxj �  wherea; b 2 f1; 0;�1g and xi; xj 2 X . The main novelty of [26℄ is to simultaneouslywork with a set of positive variables x+i and negative variables x�i and onsidera DBM over fx+1 ; x�1 ; : : : ; x+d ; x�d g where d = jX j. Then xi � xj � , xi + xj � and xi �  an be enoded respetively as x+i � x+j � , x+i � x�j �  andx+i �x�i � 2. Thus an 2d�2d square DBM matrix is suÆient for this domain.Note that this DBM representation ontains entries of the form x+i � x+j � 1whenever xi � xj is not onstrained (and likewise for xi + xj �  and xi � ).Closure is omputed with an all-pairs Floyd-Warshall shortest-path algorithm



that is O(d3) and ehos ideas in the early work of Pratt [30℄. Other earlier workon this theme onsidered the domain of inequalities of the form xi � xj � [25, 33℄, though the onnetion between bounded di�erenes [9℄ and abstratinterpretation dates bak (at least) to Bagnara [1℄. Very reently, Min�e [27℄ hasgeneralized DBMs to a lass of domains that represent invariants of the formx � y 2 C where C is a non-relational domain that represents, for example,a ongruene lass [12℄. This work is also formulated in terms of shortest-pathlosure and illustrates the widespread appliability of the losure onept.Another thread of work is that of Su and Wagner [35℄ who propose a poly-nomial algorithm for alulating integer ranges as solutions to two variable perinequality systems, despite the intratability of some of these problems [21℄.However, eÆient integer hull algorithms do exist for the planar ase [10, 14℄.Combined with our ompletion tehnique, this suggests a new tratable way ofalulating the integer onvex hulls for two variable systems that promises to beuseful in program analysis.It is well-known that the linear programming problem { the problem of max-imizing a linear funtion subjet to linear inequalities { is polynomial time (Tur-ing) equivalent to the problem of deiding whether a linear system is satis�able.Moreover, the problem of deiding whether a linear system is satis�able anbe transformed into an equivalent problem where eah inequality ontains atmost three variables (with at most a polynomial inrease in the number of vari-ables and inequalities). Thus an eÆient algorithm for solving this problem isalso an eÆient algorithm for solving the linear programming problem and vieversa. This equivalene, and negative results suh as [20℄, explains the interest inheking the satis�ability of systems of linear inequalities where eah inequalityontains at most two variables that dates bak to [29, 30, 34℄. Of all the propos-als for heking the satis�ability of a system T , the algorithm of [16℄ is most intune with the requirements of abstrat interpretation due to its suintness andits O(jT jjvar (T )j2 log(jT j)) running time whih is guaranteed without widening.This result (and related results) provide fast entailment heking algorithmswhih may be useful for eÆient �xpoint detetion.The trade-o� between expressiveness and tratability is also an importantonsideration in onstraint solving and in this ontext the lass of two variablesper inequality has also reeived attention [15, 18℄. Ja�ar et al [18℄ extend thelosure algorithm of Shostak [34℄ for heking satis�ability over the reals tothe integers by alternating losure with a tightening operation. However, thisproedure is not guaranteed to either terminate nor detet satis�ability. Ja�aret al [18℄ go onto show that two-variables per inequality onstraints with unitoeÆients an be solved in polynomial time and that this domain supportseÆient entailment heking and projetion. More reently, Harvey and Stukey[15℄ have shown how to reformulate this solver to formally argue ompleteness.
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