

City, University of London Institutional Repository

Citation: Stankovic, V. (2008). Performance Implications of Using Diverse Redundancy for

Database Replication. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/17440/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Performance Implications of Using Diverse

Redundancy for Database Replication

by

Vladimir Stankovic

v.stankovic@city.ac.uk

Centre for Software Reliability

City University

London EC1V 0HB

United Kingdom

February 2008

List of Contents
1. Introduction..1

1.1. Motivations and Aims ...1

1.2. Summary of Work...3

1.3. Thesis Outline ...5

2. Concepts and Background ..6

2.1. Fault Tolerance via Diverse Redundancy ...6

2.2. Database Definitions ...9

2.2.1. Transactions ...9

2.2.2. Isolation Levels ..11

2.2.3. Concurrency Control and Correctness Criteria ..13

2.2.4. Liveness..16

2.3. Database Replication...17

2.3.1. ROWAA-Based Replication ..18

2.3.2. Correctness in Replicated Databases ...19

2.3.3. Conflicts and Deadlocks ..23

2.3.4. Transaction Atomicity..24

2.4. TPC-C – an On-Line Transaction Processing Benchmark25

3. Architecture of DivRep Middleware ..28

3.1. DivRep – Replication with Diverse Database Servers......................................28

3.1.1. Dependable Replication Algorithm (DRA) ...32

3.1.2. DRA Optimisations..40

3.1.3. Distributed Deadlock Avoidance ...42

3.2. Correctness of DRA ..46

3.2.1. Safety ...46

3.2.2. Liveness..48

3.3. Hybrid Approach of DivRep...49

3.4. Discussion ...50

3.4.1. Comparing DivRep to Other Replication Techniques51

3.4.2. Possible Changes to DivRep ..53

4. Experimental Evaluation of DivRep Performance ...56

4.1. Test Harness ..57

 iii

4.2. Preliminary Experiments – Systematic Differences in the Performance of

Diverse Servers .. 64

4.3. When Diverse Redundancy Performs Better than Non-Diverse Redundancy .68

4.3.1. Confidence in the Results .. 70

4.3.2. Performance Comparison of Different DBMS Configurations 70

4.4. Performance Implications of Improving Dependability 74

4.4.1. SI-Rep Simulation ... 75

4.4.2. DivRep vs. a ROWA-Based Replication (SimSI-Rep) 76

4.4.3. Discussion of DivRep vs. SimSI-Rep Comparison 84

4.4.4. User-Centric Analysis.. 86

4.5. Minimising Replication Overhead Using Priority Mechanisms..................... 100

4.5.1. The Problem... 100

4.5.2. The Solution... 103

4.5.3. Discussion.. 107

4.5.4. Related Work ... 110

5. Uncertainty-Explicit Assessment of DivRep Components 111

5.1. Motivation for Using Uncertainty-Explicit Assessment................................. 112

5.2. Bayesian Approach to Assessment of a Single Attribute 114

5.3. A Model for Assessment of 2 Non-Independent Attributes 115

5.4. A Numerical Example .. 117

5.4.1. Prior Distributions ... 119

5.4.2. Observations .. 120

5.4.3. Posteriors ... 121

5.5. Discussion and Related Work... 123

6. Related Work ... 126

6.1. A Multitude of Database Replication Solutions ... 126

6.2. Load Balancing and Adaptability ... 130

6.3. Consistency Guarantees.. 133

7. Conclusions... 135

7.1. Research Assessment.. 136

7.2. Future Directions .. 138

Bibliography... 141

List of Acronyms.. 152

Appendix A... 153

 iv

Database Schema of the Log Database ..153

 v

List of Tables
TABLE 4-1 ..80
TABLE 4-2 ..81
TABLE 4-3 ..91
TABLE 4-4 ..91
TABLE 4-5 . ..99
TABLE 4-6 ..107
TABLE 5-1 ..116
TABLE 5-2 ..120
TABLE 5-3 ..121
TABLE 5-4 ..122

 vi

List of Figures
FIGURE 2-1... 24

FIGURE 3-1... 29

FIGURE 3-2... 30

FIGURE 3-3... 31

FIGURE 3-4... 32

FIGURE 3-5... 34

FIGURE 3-6... 41

FIGURE 3-7... 42

FIGURE 3-8... 43

FIGURE 3-9... 45

FIGURE 3-10... 46

FIGURE 4-1... 58

FIGURE 4-2... 66

FIGURE 4-3... 67

FIGURE 4-4 .. 68

FIGURE 4-5... 71

FIGURE 4-6... 71

FIGURE 4-7... 73

FIGURE 4-8... 73

FIGURE 4-9... 74

FIGURE 4-10... 79

FIGURE 4-11... 79

FIGURE 4-12... 88

FIGURE 4-13... 96

FIGURE 4-14... 96

FIGURE 4-15... 97

FIGURE 4-16... 97

FIGURE 4-17... 98

FIGURE 4-18... 98

FIGURE 4-19... 102

FIGURE 4-20... 103

FIGURE 4-21... 106

FIGURE 5-1... 114

 vii

To my parents, for their love.

Acknowledgements

I would like to express my gratitude to several people who have, in distinct ways,
contributed to producing the research work.

I would like to thank my supervisor, Peter Popov, for the indispensable help in many
aspects. First, I thank him for offering me the opportunity to conduct the research. He
provided continuous support and conveyed great enthusiasm throughout the course of
the research. Together with his prompt and precise guidance, the motivation helped
me in outstanding the obstacles of the research work.

I wish to thank Ilir Gashi for his friendship and thoughtful remarks on many facets of
research. Sharing the working space with him made the research life easier.

While presenting the work at local departmental meetings, my colleagues in CSR
offered scientific advice and suggested constructive alternatives for the research. This
helped me gain a deeper insight and improve the research work. Optimistic comments
from Andrey Povyakalo encouraged me in persevering during the writing up. Peter
Bishop provided useful comments on the presentation of the thesis. I am grateful to
Basi Isaacs for the smooth running of the administrative parts of the research life.

I am thankful to Prof. Ricardo Jimenez-Peris and Prof. Alexander Romanovsky for
accepting the invitation to be the external examiners.

Special thanks goes to my dear friend Marko Ivin, whom I am indebt for fruitful
technical discussions and, more importantly, the encouragement throughout the
research.

In addition, I would like to thank Phil Parkin for useful editorial suggestions for the
parts of the thesis.

Last, but certainly not least, I am particularly grateful to my family and my wife for
their love. They have been supportive and understanding; the effort would not have
been possible without them.

I grant powers of discretion to the University Librarian to allow this thesis to be

copied in whole or in part without further reference to me. This permission covers

only single copies made for study purposes, subject to normal conditions of

acknowledgement.

Abstract
Using diverse redundancy for database replication is the focus of this thesis.
Traditionally, database replication solutions have been built on the fail-stop failure
assumption, i.e. that crashes are believed to cause a majority of failures. However,
recent findings refuted this common assumption, showing that many of the faults
cause systematic non-crash failures. These findings demonstrate that the existing,
non-diverse database replication solutions, which use the same database server
products, are ineffective fault-tolerant mechanisms. At the same time, the findings
motivated the use of diverse redundancy (when different database server products are
used) as a promising way of improving dependability. It seems that using a fault-
tolerant server, built with diverse database servers, would deliver improvements in
availability and failure rates compared with the individual database servers or their
replicated, non-diverse configurations.
Besides the potential for improving dependability, one would like to evaluate the
performance implications of using diverse redundancy in the context of database
replication. This is the focal point of the research. The work performed to that end can
be summarised as follows:
- We conducted a substantial performance evaluation of database replication using

diverse redundancy. We compared its performance to the ones of various non-
diverse configurations as well as non-replicated databases. The experiments
revealed systematic differences in behaviour of diverse servers. They point to the
potential for performance improvement when diverse servers are used. Under
particular workloads diverse servers performed better than both non-diverse and
non-replicated configurations.

- We devised a middleware-based database replication protocol, which provides
dependability assurance and guarantees database consistency. It uses an eager
update everywhere approach for replica control. Although we focus on the use of
diverse database servers, the protocol can be used with the database servers from
the same vendor too. We provide the correctness criteria of the protocol. Different
regimes of operation of the protocol are defined, which would allow it to be
dynamically optimised for either dependability or performance improvements.
Additionally, it can be used in conjunction with high-performance replication
solutions.

- We developed an experimental test harness for performance evaluation of
different database replication solutions. It enabled us to evaluate the performance
of the diverse database replication protocol, e.g. by comparing it against known
replication solutions. We show that, as expected, the improved dependability
exhibited by our replication protocol carries a performance overhead.
Nevertheless, when optimised for performance improvement our protocol shows
good performance.

- In order to minimise the performance penalty introduced by the replication we
propose a scheme whereby the database server processes are prioritised to deliver
performance improvements in cases of low to modest resource utilisation by the
database servers.

- We performed an uncertainty-explicit assessment of database server products.
Using an integrated approach, where both performance and reliability are
considered, we rank different database server products to aid selection of the
components for the fault-tolerant server built out of diverse databases.

 Chapter 1. Introduction

 1

1. Introduction

There never were, in the world, two opinions alike, no

more than two hairs, or two grains;

the most universal quality is diversity.

Michel Eyquem de Montaigne

1.1. Motivations and Aims

A vast family of computer technologies, commonly referred to as Commercial-Off-

The-Shelf (COTS) products, has emerged as the alternative to building bespoke

developments. The use of COTS is stimulated by a desire to reduce overall system

development cost and time to deployment. Although using COTS software has

become pervasive in the past two decades and many governments and businesses

mandate their use, doubts are often raised due to the increased cost of integration and

insufficient level of dependability. The latter has motivated the research on using

software fault tolerance, as the only viable way of obtaining the required system

dependability when COTS components are used (Popov, Strigini et al. 2000),

(Hiltunen, Schlichting et al. 2000), (Valdes, Almgren et al. 2003).

The field of fault tolerance is well-established (Anderson and Lee 1990). This is true

for hardware fault tolerance as well as for its software counterpart (Lyu 1995): both

have been providing techniques for building highly reliable, continuously available

and extremely safe software. There are many proven concepts of software fault

tolerance, such as recovery blocks (Randell 1975), used primarily for error detection

(beside facilitating recovery and providing continuity of service), but also more

mature and able forms: N-version-programming, of which a replication with diverse

products is an instance (Avizienis and Kelly 1984) or self-checking modular

redundancy (Laprie, Béounes et al. 1990). Using N-version programming in the form

of diverse modular redundancy became more practicable with the advent of COTS

components.

Note that despite the possibility of classifying Off-The-Shelf (OTS) components as

commercial or non-commercial (Popov, Strigini et al. 2000), the cost incurred by

 Chapter 1. Introduction

 2

either is significantly less than if a corresponding purpose-built product was being

developed. The distinction between the two families of components is, therefore,

unimportant for the research described in this thesis. In addition, despite the term

COTS being commonly used to refer to both software and hardware products, the

work in this thesis focuses on the former.

Using products diverse by design in a fault-tolerant configuration (diverse redundancy

or design diversity) with the aim of increasing system dependability is an attractive

idea. Diverse redundancy can be applied to a number of (complex) software e.g.

application or web servers, Business Process Execution Language (BPEL) engines

etc. The effectiveness of design diversity will depend on the achievable dependability

gains, implementation difficulties and associated cost (developmental, operational

etc.). Recently, a thorough research (Gashi, Popov et al. 2007), (Gashi, Bishop et al.

2007) was conducted to explore and estimate the possible advantages of using diverse

redundancy with Database Management Systems (DBMS), a category of complex

COTS. The results obtained showed that considerable dependability gains can be

achieved. Some of the most distinct findings are as follows:

- Using the fault (“bug”) scripts from four DBMSs and subsequently executing

them against each, Gashi et al. demonstrated that very few bugs cause failures in

more than one product and none causes failures in more than two. Hence, a simple

two-diverse configuration using different DBMS products would detect most of

the failures.

- If a single DBMS product is replaced with a 1-out-of-2 diverse redundant system,

an order of magnitude increase in reliability gains is possible.

These results warrant the use of diverse redundancy for improved dependability when

a particular family of products is considered, i.e. DBMSs. Dependability gains aside,

the use of redundancy has inevitable implications on system performance (Gray,

Helland et al. 1996). The same applies to diverse redundancy as a particular form of

redundancy. The research described in this thesis focuses specifically on investigating

the performance implications of using diverse redundancy in the context of database

replication. The underlying principle of database replication is database consistency,

which guarantees that users perceive a replicated system as a reliable and available

centralised database with adequate performance. This requirement poses difficulties

that are exacerbated when diverse servers are used. Therefore, this thesis aims to help

 Chapter 1. Introduction

 3

database practitioners in answering the following questions with respect to

practicality and performance of database replication with diverse DBMSs:

- Performance:

o What is the magnitude of performance penalty incurred when database

replication is based on diverse redundancy?

o Are there any characteristics of diverse database servers that can be

exploited for performance gain? Can these characteristics bring

performance benefits under (at least) relaxed dependability requirements?

o Are there ways of trading off dependability assurance for performance

improvement?

- Practicality:

o How can data consistency be ensured when diverse database servers are

used for database replication?

1.2. Summary of Work

The work described in the thesis has been performed as a part of the wider research

initiative in the Centre for Software Reliability (City University London) to evaluate

the usefulness of diverse redundancy for potential improvements in dependability and

performance of COTS software components. In this respect, the central point of this

thesis is evaluation of performance implications of such an approach applied to

database replication. In particular, the research work encompasses the following:

A replication algorithm that ensures database consistency. We have devised a novel

replication algorithm that ensures eager, update-everywhere replication and

guarantees consistency of diverse databases. Little complexity is added to the

concurrency control mechanisms of underlying databases to achieve this. In this way

no significant performance overhead due to possibly complex replication protocol is

incurred. A proof of correctness of the algorithm has been provided.

Middleware-based database replication with diverse servers. A practical middleware-

based database replication solution that uses diverse redundancy has been developed.

Two main regimes of operation of the replication solution are identified, tailored for

either improving dependability or performance. Also, a hybrid approach is proposed,

in which the two regimes of operation are brought together to provide integrated

quality of service. The replication solution advocates that a pair of diverse database

 Chapter 1. Introduction

 4

servers be employed in a fault-tolerant configuration (FT-node). Certain optimisation

techniques have been introduced in the middleware to improve performance of the

FT-node.

Extensive performance evaluation of the proposed replication solution. The research

described in the thesis includes extensive experimental results of performance

implications when diverse database servers are used for replication. We obtain our

experimental results on a real implementation that evaluates the feasibility of the

middleware-based solution in the real environment. Despite inherent complexity this

experimental method is preferred over simulation studies that have limited capabilities

and often produce misleading results (Jain 1991). The experimental evaluation

includes a comparison of diverse and non-diverse database servers when the

replication solution is optimised for either maximum dependability or maximum

performance. The main findings of the experimental studies are as follows:

- The results of preliminary experiments (Gashi, Popov et al. 2004) demonstrate

that systematic differences between performances of diverse servers exist, i.e. one

of the servers exhibits better performance on particular (sets of) SQL operations.

This observation suggests that performance improvement might be observed when

a pair of diverse database servers is used: if the execution of SQL operations is

distributed in the way that each server executes only the portions of operations it

is faster on, the diverse pair performance will be better than the performance of

individual servers.

- Under a workload with a single modifying client, a significant performance gain

can be obtained with a pair of diverse database servers when compared to non-

diverse pairs or single server configurations (Stankovic and Popov 2006).

- We compare our replication solution against an instance of Read-Once-Write-All-

Available (ROWAA) (Bernstein, Hadzilacos et al. 1987), a well-known

replication approach. The results show that under specific application conditions,

dependability assurance might be costly due to the performance penalty it

introduces. We propose a solution for decreasing the performance penalty. Also,

we identify significant difference in the performance of diverse servers as an

important factor in the recorded performance deterioration.

Uncertainty-explicit assessment for selection of DivRep components. The probabilistic

model using Bayesian inference (Littlewood, Popov et al. 2000) was adapted and

applied in assessing a single software product from two perspectives:

 Chapter 1. Introduction

 5

- performance, represented by timeliness of the product’s results and

- reliability, represented by correctness of the product’s results.

The model is applied for ranking a set of DBMS products using experimental data

(based on the TPC-C benchmark (TPC 2002a)) as evidence. In this way the selection

of the components to be included in an FT-node has been conducted using both

reliability and performance.

1.3. Thesis Outline

The thesis is organized as follows: Chapter 2 gives background on design diversity

and database replication and it details definitions and explains terms regarding

DBMSs. It introduces an industry standard benchmark from the Transaction

Processing Council, TPC-C (TPC 2002a), used as the basis for the experimental

evaluation performed in the course of the research. Chapter 3 describes the

architecture of the middleware-based replication solution that uses diverse database

servers as underlying components. The replication algorithm that ensures database

consistency is explained in this section and a proof of its correctness is provided.

Detailed discussions on the comparison with the existing replication protocols, as well

as possible optimisations of the replication solution are given in this chapter. Chapter

4 reports the extensive experimental evaluation of diverse servers’ performance and

the proposed replication solution. We show a potential for performance improvement

through use of diverse servers revealing systematic differences in server response

time. Under certain types of workload a pair of diverse servers performs better than

non-redundant or non-diverse server configurations. We compare the performance of

the replication protocol to a solution based on ROWA replication. Also, the results of

minimising the performance overhead introduced by the replication are presented. In

Chapter 5 we present a Bayesian model for assessing attributes of COTS components.

We use the assessment method in an empirical study to rank database servers in order

to select the ones to be included in FT-node. Chapter 6 contains a critical review of

the related literature. The emphasis is on database replication. Finally, Chapter 7

summarises the main conclusions and suggests directions for future work.

 Chapter 2. Concepts and Background

 6

2. Concepts and Background

Physical concepts are free creations of the human mind, and are not, however it may

seem, uniquely determined by the external world.

 Albert Einstein

2.1. Fault Tolerance via Diverse Redundancy

Dependability (Laprie, Randell et al. 2004) is the term used to precisely describe

those system properties that allow us to rely on a system functioning as required.

Dependability includes, among other attributes, reliability, safety, security, and

availability. From the dependability point of view, we will be concerned in particular

with the reliability of the database replication solutions.

When systems are built using “off-the-shelf” products, fault tolerance is often the only

viable way for obtaining required system dependability (Popov, Strigini et al. 2000),

(Hiltunen, Schlichting et al. 2000). Fault-tolerant systems are able to continue

operation properly in the event of failures, after some faults have manifested

themselves. Hence the concept of fault tolerance (Anderson and Lee 1990) assumes

that faults are present in the system, and that it is possible for the system to handle

them without external interventions. The goal of fault tolerance is to ensure that

system faults do not result in system failure. There is, however, an inherent cost in

building and maintaining fault tolerant systems, e.g. due to developing multiple

versions of complex software. This cost is usually high and therefore it tends to be

employed mostly in applications where a system failure would cause catastrophic

accidents, perhaps resulting in a loss of life, or where a system failure would lead to

large economic losses. Fault tolerance can be achieved through both software and

hardware. One of the best known hardware fault-tolerance techniques is Triple

Modular Redundancy (TMR). TMR builds on the early work by the computer pioneer

Johann Von Neumann who advocated the use of redundancy, in the form of Triple

Redundancy (von Neumann 1956), as a fault tolerant technique. A simplified

description of Triple Redundancy is as follows: three systems perform a process and

the results are processed by a voting system (voter) to produce a single output. A

http://thinkexist.com/quotation/physical_concepts_are_free_creations_of_the_human/260233.html
http://thinkexist.com/quotation/physical_concepts_are_free_creations_of_the_human/260233.html

 Chapter 2. Concepts and Background

 7

drawback of Triple Redundancy is that a failure of the voter causes the overall system

failure. To remedy the single point of failure, TMR configuration employs three

identical voting systems instead of one. Note that the use of term voter is somewhat

imprecise – it is the underlying redundant systems that perform the voting rather than

the voting system itself, which instead makes a decision based on the votes. Thus,

possibly, a more accurate term for a voting system would be a decider (N.B. von

Neumann called it a majority organ). The concept of TMR has been also applied to

software redundancy; the most notable example is N-Version Programming (NVP)

(Avizienis and Chen 1978). NVP uses redundancy, i.e. multiple functionally

equivalent programs are independently created from the same initial specification,

with the aim to improve reliability of a system. The assumption is that when one of

the channels fails the others will perform correctly.

We are concerned with the use of diverse database servers for building database

replication solution that exhibits improved dependability. Diverse redundancy, often

referred to as design diversity, involves bespoke development or reuse of multiple

diverse versions of a piece of software with the goal of increasing availability or

reliability of a system. The saying “Two heads are better than one” expresses the

widespread belief that the use of redundancy and diversity is a suitable way for

reducing the risk of failures. Charles Babbage (Babbage 1974) advocated such a

principle by stating that humans would more likely trust the results of complex

arithmetic calculation if two persons have arrived independently at the same output.

The premise that software suffers exclusively from design faults and not from

physical faults, which are hardware specific, has been known for many years. Let us

consider the simplest definition of a design fault to be the following: “a fault that is

introduced in software during its development”. This implies that design faults will be

simply replicated if non-diverse redundant copies of the same software product are

used. Such a fault-tolerant mechanism is incapable of protecting the system against

design faults. The ideal claim, on the other hand, of employing diverse redundancy

would be: “Software product A does not fail when software product B does”. The lack

of dependence between the failure modes of the software products would be highly

desirable – if it existed, one could claim that the probability of failure of the diverse

system can be calculated by just conservatively multiplying the probability of failures

of the individual software products in the diverse system. However virtually all of the

experimental studies conducted for measuring benefits of diverse redundancy, such as

 Chapter 2. Concepts and Background

 8

(Knight and Leveson 1986), (Kelly and Avizienis 1983) and (Eckhardt, Caglayan et

al. 1991), demonstrated that this goal is unlikely to be attainable in practice. Despite

the experiments pointing to the lack of independence of failures between different

software versions, there is evidence that diverse redundancy would deliver some

increase in reliability compared to using a software system built out of a single

version. The review in (Littlewood, Popov et al. 2001) explores the extent of such an

increase with a particular focus on the modelling of reliability of systems using

diverse redundancy.

Gashi et al. (Gashi, Popov et al. 2007) have experimentally evaluated the potential for

dependability gains from diverse redundancy when using DBMSs. The results suggest

that diverse redundancy would be effective for tolerating design faults. By

experimenting with publicly available fault reports of diverse DBMSs, the authors

showed that a very small percentage of the collected faults would cause coincident

failures in diverse database servers - only in very few cases, a demand that triggers a

bug in one server would cause failure in another one. Also, no demand caused a

coincident failure in more than two servers. Therefore, a fault-tolerant server built

with two diverse servers is likely to ensure a high failure detection rate.

Further means of achieving effective fault tolerance are presented in (Gashi and

Popov 2006). The authors propose a data diversity approach, based on the work of

(Ammann and Knight 1988). Data diversity in DBMSs is possible due to the

redundancy in the SQL language. The underlying idea is that one, or several, SQL

operations can be "rephrased" into a workaround, a syntactically different but

semantically equivalent sequence, to produce redundant executions. By executing the

workarounds, the failures are less likely, e.g. the rephrased operation might follow

different execution path from the original one and the failure would be avoided. The

authors defined a set of rephrasing rules that would tolerate at least 60% of the faults

examined in the study. In addition to failure detection, they showed that the

rephrasing can aid failure diagnosis (identification of the failed DBMS) and recovery

of the state of the failed product.

 Chapter 2. Concepts and Background

 9

2.2. Database Definitions

2.2.1. Transactions

We are concerned with database transactions, logical units of work within a database

management system that are treated reliably and independently of each other. A

transaction represents a unit of interaction with a DBMS and consists of any number

of read and write operations and finishes with either commit or abort. Let D = {x1, x2,

…, xn} be a representation of data items stored in a database and let r(xk) and w(xk) be

a read and a write operation on data item xk: xk∈D respectively, and let c and a be the

commit and abort operations. We define (Bernstein, Hadzilacos et al. 1987) a

transaction Ti to be a partial order with ordering relation <i where:

1. Ti ⊆ {ri(xk), wi(xk)| x∈D } {aU i, ci};
2. ai ∈Ti iff ci ∉Ti;
3. let o be ai or ci, whichever is in Ti, for all other operations o’∈Ti : o’ <i o; and
4. if ri(xk), wi(xk) ∈Ti then either ri(xk) <i wi(xk) or wi(xk) <i ri(xk);

An implicit assumption is made in the above model: a transaction writes a particular

data item only once. This is the reason why in the property 4. a pair of write

operations is not considered.

We use a structure called history (Bernstein, Hadzilacos et al. 1987) to model

(concurrent) execution of transactions. It indicates the relative order in which the

operations of transactions have executed. Since the operations might execute

concurrently, a history is defined as a partial order. Let T = {T1, T2, …, Tn} be a set of

transactions. A complete history H over T is a partial order with ordering relation <H

where:

- H = TU
n

i 1= i;

- <U
n

i 1= i ⊆ <H; and
- for any two conflicting operations p, q ∈H, either p <H q or q <H p;

Following the established criterion (Papadimitriou 1986), a conflict between two

transactions is defined as follows: if two operations, belonging to different

concurrently executing transactions, read or write the same data item and not both are

read operations, the corresponding transactions conflict.

 Chapter 2. Concepts and Background

 10

A history is a prefix of a complete history. While a history could contain a transaction

that has neither committed nor aborted (active transaction), a complete history

contains no such transactions. We are specifically interested in the committed

projection of history H, denoted as C(H): it is the history obtained from H by

removing all operations that do not belong to any of the committed transactions in H.

C(H) is a complete history over the set of committed transactions in H. We provide a

definition of a partial order prefix with the aim to disambiguate the term (Bernstein,

Hadzilacos et al. 1987):

Prefix P` = { , <`} is a prefix of a partial order P = {∑` ∑ , <}, where ∑ is the

domain of the partial order P and < is an irreflexive, transitive binary relation on ∑ ,

if:

- ∑∑ ⊆`

- e∀ i ∑∈ ` , e1 <` e2 iff e1 < e2

- e∀ i ∑∈ ` , if e∃ j ∑∈ and ej < ei, then ej ∑∈ `

A first formal discussion of database transaction properties can be found in (Gray

1981). Since then a standard approach has emerged in the literature through ACID

properties. The acronym ACID stands for the following:

- Atomicity – ability to guarantee that either all of the tasks of a transaction are

performed or none of them is.

- Consistency – ability to preserve the legal states imposed by the integrity

constraints. More informally, this means that no rules are broken as a

consequence of transaction execution.

- Isolation - ability to make operations in a transaction appear isolated from all

other operations executed by other transactions. This property guarantees that,

although transactions could execute concurrently, the outcome of the execution is

equal to the outcome of a serial transaction execution.

- Durability – ability to guarantee that changes made by a transaction are permanent

once the transaction successfully completes (commits).

We are interested in distributed transactions, which are characterised by the execution

of one or more operations that, individually or as a group, update data on two or more

 Chapter 2. Concepts and Background

 11

distinct nodes of a distributed database. They are commonly observed in replicated

database systems. A distributed transaction must provide ACID properties among

multiple participating databases, which are dispersed among different physical

locations. The isolation property poses a special challenge for multi database

transactions, since the requirement that transactions execute in a serial manner is

exacerbated in a distributed setting.

2.2.2. Isolation Levels

Of particular interest to our work is the isolation property (it has appeared for the first

time under the term Degrees of Consistency in (Gray, Lorie et al. 1975)). Isolation

guarantees that if a conflict between transactions is possible then the transactions must

be isolated from each other. Different types of isolation have been proposed. The

ANSI SQL standard specifies four levels of isolation (ANSI 1992): serializable,

repeatable read, read committed and read uncommitted. The highest level of isolation

is the serializable level, which requires every history to be equivalent to a serial

history, i.e. history in which transactions appear to have executed one after another

without overlapping. Lower isolation levels are less restrictive but they can introduce

inconsistencies during transaction executions, i.e. they offer better performance at the

expense of compromising consistency. Due to its impact on system performance,

isolation is the most frequently relaxed ACID property.

In order to characterise transactional isolation property and allow for different

implementations ANSI SQL defines three phenomena. A description of the

phenomena is given in (Berenson, Bernstein et al. 1995) and an additional one, dirty

writes, is specified:

- Dirty writes – Assume a transaction, Ti, modifies a data item, and another

transaction, Tj, then modifies the same data item before Ti ends (commits or

aborts). Subsequently, after Tj ends, it will be unclear what the correct value of the

data item should be. Subsequently, if any of the two transactions perform an abort,

it is unclear what the correct data value should be.

- Dirty reads – Assume a transaction, Ti, modifies a data item, and another

transaction, Tj, then reads the data item before Ti performs a commit or abort. If Ti

then performs an abort, Tj has read a data item that never really existed because it

was never committed.

 Chapter 2. Concepts and Background

 12

- Non-repeatable (fuzzy) reads – Assume a transaction Ti reads a data item and

another transaction, Tj, then modifies or deletes that data item and commits. If Ti

then attempts to reread the data item, it receives a modified value or discovers that

the data item has been deleted.

- Phantoms – Assume a transaction Ti reads a set of data items satisfying some

search condition. Transaction Tj then creates data items that satisfy Ti’s search

condition and commits. If Ti then repeats its read with the same search condition,

it gets a set of data items different from the first read.

Preventing dirty writes is a prerequisite for database consistency and automatic

transaction rollback (Gray, Lorie et al. 1975), (Berenson, Bernstein et al. 1995). The

ANSI isolation levels are defined in terms of the above phenomena, and in particular,

according to the ones they are disallowed to experience:

- Read uncommitted prevents dirty write.

- Read committed prevents dirty writes and dirty reads.

- Repeatable read prevents dirty writes, dirty reads and non-repeatable reads.

- Serializable prevents dirty writes, dirty reads, non-repeatable reads and

phantoms.

The ANSI isolation levels have been criticised in (Berenson, Bernstein et al. 1995)

and (Adya, Liskov et al. 2000) because they do not accurately capture the isolation

levels offered by many database management systems. The work has shown that the

three phenomena defined by ANSI are ambiguous and they fail to characterise all

possible anomalous behaviour of different isolation levels. The work in (Berenson,

Bernstein et al. 1995) defines an additional isolation level, snapshot isolation (SI),

which is offered in leading commercial and open-source database systems (Oracle,

Microsoft SQL Server, with certain variations, PostgreSQL etc.). Snapshot isolation

avoids the phenomena defined in ANSI but exhibits inconsistent behaviour in some

situations because it can produce other types of anomalies, such as write skew

(Berenson, Bernstein et al. 1995) and read skew (Fekete, Liarokapis et al. 2005),

(Fekete, O'Neil et al. 2004). The two anomalies can be described as follows:

- Write skew - Assume two data items, x and y, are related by a constraint that x + y

> 0, and the initial values of the two data items satisfy the constraint. Further

assume that the following order of operations, belonging to two transactions, Ti

and Tj, is executed: ri(x), ri(y), rj(x), rj(y), wi(x), wj(y). It is possible that the

 Chapter 2. Concepts and Background

 13

transactions modify the data items in the way that the constraint is violated, e.g. Ti

sets x to 100, but Tj sets y to -150.

- Read skew - Assume two data items, x and y, are related by a constraint that x + y

> 0, and the initial values of the two data items satisfy the constraint. Further

assume that the following order of operations, belonging to two transactions, Ti

and Tj, is executed: ri(x), wj(x), wj(y), cj, ri(y). It is possible that the reading of the

sum x + y by transaction Ti returns a result that violates the constraint.

2.2.3. Concurrency Control and Correctness Criteria

Concurrency control mechanisms in DBMSs ensure that transactions execute

concurrently without violating data integrity of a database. The main goal of

concurrency control mechanisms is providing different degrees of isolation to

transaction execution. However they should also prevent concurrent executions,

which exhibit worse performance than a serial execution (Second Law of

Concurrency Control (Gray and Reuter 1993)).

A component in a DBMS, referenced as a scheduler, manages the overlapping

executions of transactions. A scheduler receives operations from users and makes sure

that they are executed in a correct way, according to the specified isolation levels.

Typically, correctness implies that an execution of a set of concurrent transactions

produces a serializable history, i.e. one that demonstrates the same effects as a serial

execution of the same set of transactions.

Serializability theory (Bernstein, Hadzilacos et al. 1987) has been developed to

provide criteria for deciding whether a history is serializable. The concept of

equivalence was introduced in order to provide syntactical rules for transforming one

history to another. In this way it becomes possible to determine if two histories have

the same effect and if a history is serializable. In database concurrency control

literature there are in fact two established approaches for deciding equivalence of

histories and deciding if a history is serializable: conflict serializability and view

serializability (Papadimitriou 1986), (Bernstein, Hadzilacos et al. 1987). The former

is usually applied to concurrency control of a single-version DBMSs, while the latter

is used for multi-version DBMSs.

In conflict serializability two operations are considered to conflict if they both access

the same data item and at least one of them is a write. The end result will depend on

the order of execution of two conflicting operations. It should be noted that the same

 Chapter 2. Concepts and Background

 14

result would be produced if the order of non-conflicting operations, belonging to

different concurrent transactions, was interchanged in the history. The order imposed

by conflicting operations determines dependencies of precedence between the

transactions that contain those operations. A structure called serialization graph

captures these dependencies for a history H. It is a directed graph denoted as SG(H).

The graph contains one node for each transaction in the committed projection of the

history; there exists an edge between Ti and Tj if and only if there are two conflicting

operations, pi and qj such that pi comes before qj. It can be shown that two histories

are conflict-equivalent if their serialization graphs are identical. A history is

serializable if the serialization graph has no cycles.

On the other hand, two histories, H and H’, are view-equivalent if:

- They are over the same set of transactions and have the same operations.

- They have the same reads-from relation: for any two committed transactions Ti

and Tj and for any data item x, if Ti reads x from Tj in H then Ti reads x from Tj in

H’.

- They have the same final writes: for each data item x, if wi is the final write of x in

H then it holds for H’ too.

Then view-serializability is defined as follows: A history H is view-serializable if for

any prefix H’ of H, the committed projection C(H’) is view equivalent to some serial

history.

Traditionally, locking-based protocols (Bernstein, Hadzilacos et al. 1987), (Gray and

Reuter 1993) have been used to implement different isolation levels. In particular,

strict 2-Phase locking (S2PL) has been traditionally used to implement the serializable

isolation level, though the ANSI SQL standard (ANSI 1992) does not mandate its use

– another type of mechanism can be used to provide serializable isolation level as

long as in an interleaved execution the transactions see the same values and leave the

same final state as is the case in a serial execution. S2PL avoids the phenomena

described in the ANSI standard (ANSI 1992) and also the ones identified in

(Berenson, Bernstein et al. 1995). Both read and write locks are acquired: a shared

lock when reading a data item and an exclusive lock when writing a data item. The

former, acquired by a transaction on a data item, allows only the access of concurrent

reads, while the latter prevents both reading and writing of the same data item by

other transactions. All locks are released at the end of the transaction, following the

commit or abort operation. Hence, the “strictness” property of S2PL is preserved – the

 Chapter 2. Concepts and Background

 15

locks are released only after the transaction had ended. This is different from standard

two-phase locking (2PL), which also consist of two phases: acquiring locks without

releasing any (Phase 1) and releasing locks without acquiring any (Phase 2), but it

does not require that the Phase 2 happens only after transaction has ended.

Snapshot Isolation

Of particular interest to the work described in the thesis is the snapshot isolation. SI is

commonly implemented using extensions of multiversion mixed method described in

(Bernstein, Hadzilacos et al. 1987). A transaction executing in snapshot isolation

operates on a snapshot of committed data, which is taken upon the transaction’s

begin. Snapshot isolation guarantees that all reads of a transaction see a consistent

snapshot of the database. Additionally, any write performed during the transaction

will be seen by subsequent reads within that same transaction. A transaction aborts

only due to write-write conflicts when some of its operations try to modify data

item(s) that had been updated by concurrent transactions. For a begin operation, b,

and a commit operation, c, where bi, ci ∈Ti and cj ∈Tj, we say that the two

transactions, Ti and Tj, are concurrent if the following holds:

bi < cj < ci

The absence of conflicts between readers and writers in snapshot isolation improves

performance and makes it more appealing than the traditional serializable isolation

level. This is particularly evident in the workloads characterised with long-running

read-only transactions and short modifying transactions.

In most real-world DBMSs the snapshot isolation is implemented using S2PL by

acquiring exclusive locks for writing data items. Instead of waiting for transaction

commit these concurrency control mechanisms check for write-write conflicts during

transaction executions using first-committer-wins and first-updater-wins rules

(Fekete, O'Neil et al. 2004).

Let us explain the mechanism in somewhat more detail. In order to write a data item x

transaction Ti has to obtain the exclusive lock. There are two possibilities:

a) if the lock is available Ti performs a version check against the executions of the

concurrent transactions. Two outcomes are likely: if a concurrent transaction had

modified the same data item and it had already committed, Ti has to abort (first-

updater-wins); otherwise it performs the operation.

 Chapter 2. Concepts and Background

 16

b) in the case the lock is unavailable, because another transaction Tj has an exclusive

access, Ti is blocked. If Tj commits, the version check results in aborting Ti (first-

committer-wins). On contrary, if Tj aborts, the version check results in granting the

lock to Ti so that it can subsequently proceed.

In both cases, a) and b), the key is that the version checks are performed at the same

time Ti attempts to create a version. We call this version-creation-time conflict check.

An alternative to the particular use of S2PL is the possibility for transaction Ti to

execute on the particular snapshot (taken at the time it starts) in the private universe

(Fekete 2005). In this way, the transaction acquires the lock, performs version check

(using first-committer-wins rule) and transfers the version from the private universe to

the database only in the end of the transaction. We call this commit-time conflict

check. This approach brings unnecessary delay because it postpones the validation of

the updates until the end of transaction. In any case the locking is necessary for this

approach too, as stated in (Fekete 2005):

“While it is not mentioned in (Berenson, Bernstein et al. 1995), implementations of SI

such as Oracle's ensure that a version of an item x produced by an SI transaction T

must be protected by an exclusive lock from the time it leaves any private universe of

T, until (and including the instant when) the version is installed because T commits”.

2.2.4. Liveness

Traditionally database replication protocols have been more concerned with safety

than liveness properties. The latter is usually characterised with only blocking/non-

blocking nature of a protocol – if a transaction eventually terminates, commits or

aborts, the protocol is classified as a non-blocking one. This goes against the frequent

concern of a database user, who would like to know if a transaction (eventually)

commits. To reason about this matter we use the classification of liveness from

(Pedone and Guerraoui 1997) where three liveness degrees are specified:

- Liveness 3 (the highest degree) ensures that every transaction commits.

- Liveness 2 ensures that read-only transactions are never aborted.

- Liveness 1 ensures that every transaction eventually terminates (i.e. commits or

aborts).

 Chapter 2. Concepts and Background

 17

2.3. Database Replication

Database replication is a process of sharing data between redundant resources, which

typically belong to a system of physically distributed nodes (commonly referred to as

replicas). A replicated database system implements either a full replication (every

node stores a copy of all data items) or a partial replication (each node has a subset of

data items). Database replication is a thoroughly studied subject. Two main challenges

of database replication are concurrency control and replica control. The former aims

at isolating transactions with conflicting operations, while the latter ensures the

consistency of data on the replicas. The work of (Gray, Helland et al. 1996) showed

that replication solutions can be categorised according to the:

- Place where the writes take place.

- Time when the writes happen.

The first parameter divides the solutions into primary copy and update everywhere

approaches. Primary copy approach designates only one replica to accept the writes.

By contrast, in the update everywhere approach, writes are executed on all (available)

replicas (Bernstein, Hadzilacos et al. 1987). The forwarding of updates to remote

replicas incurs an overhead in the primary copy approach while the most common

challenge in update everywhere replication is conflict resolution. The second

parameter divides the solutions into eager and lazy replication. Eager solutions

guarantee that the writes are propagated to all replicas before transaction commit. This

has a negative impact on system performance, but ensures database consistency in a

straightforward way. Lazy solutions perform writes after commit. They offer

improved performance at the possible expense of compromising database consistency.

If two transactions update different copies for the same data item with different

values, data becomes inconsistent.

Another classification of database replication protocols identifies two broad groups:

middleware-based and kernel-based. The protocols of the former group are easier to

develop and can be maintained independently from the database servers they operate

on. On the other hand, they are at a disadvantage because no access to the potentially

useful concurrency control mechanism of the database server kernel is available. In

this way concurrency control might have to be performed on a coarser level of

granularity.

 Chapter 2. Concepts and Background

 18

2.3.1. ROWAA-Based Replication

Eager replication protocols have been based on the read-one/write-all ROWA

protocol (Bernstein, Hadzilacos et al. 1987). While read operations are executed only

at one site in ROWA, updates are performed on all the replicas. However the main

disadvantage of the protocol is its blocking nature, i.e. when a replica fails ROWA

cannot continue. To remedy the deficiency, a refined version of the protocol was

suggested, read-once/write-all-available (ROWAA). In ROWAA replica failures are

tolerated by updating only the available copies of data items.

As suggested in (Kemme 2000) one of the drawbacks of traditional ROWAA

solutions is the message overhead. If the updates of a transaction are executed

immediately on all replicas, an update message involves a request and an

acknowledgement per each copy of data item. Clearly, this will have a significant

impact on the scalability of this approach. It is also the case that aborting a transaction

will cost less if the update has been executed only on a single replica than if the

updates have been immediately propagated to all replicas. Deferred writing

(Bernstein, Hadzilacos et al. 1987) was proposed as an alternative to immediate

writing. All the writes are executed on one replica and at the end of a transaction they

are bundled together in one message and sent to all other replicas. Deferred writing,

however, exhibit an overhead because the commitment of each transaction will be

delayed by possible large volume of writes to be executed. The execution of writes in

the critical path is alleviated with the use of writesets – the modifications of a

transaction are extracted, propagated and applied in a single unit instead of executing

full SQL operations. This drawback does not exist when using immediate writing

approach where processing of the writes happens in parallel. Another drawback of

deferred writing is that detection of possible conflicts among transactions is delayed.

While immediate writing might detect conflict during the execution of transactions,

the conflict detection is performed at the end of transaction executions when deferred

writing is the technique of choice.

A suite of replication protocols based on ROWAA has been offered as an alternative

to the traditional quorum solutions (Kemme 2000). The underlying idea of quorum

protocols is that read and write operations have to access a subset (quorum) of

replicas. Each operation succeeds if the quorum agrees to execute it. It has been

argued that, although quorums could decrease execution and communication overhead

 Chapter 2. Concepts and Background

 19

their main disadvantage is that they do not scale well. In addition, complexity of read

operations, commonly observed in many real life applications is better suited to

ROWAA than quorums, since reads are done only on one replica in the case of the

former. The work of Jimenez-Peris et al. (Jimenez-Peris, Patino-Martinez et al. 2003)

provides a comparison of ROWAA and quorum solutions and indicates that the

former is the replication protocol of choice for many types of applications. On the

other hand Wool et al. (Wool 1998) argued that, due to the increasing speed of

networks compared to hard disk drives, quorum solutions might be able to offer a way

of scaling up throughput in heavily loaded environments.

2.3.2. Correctness in Replicated Databases

The strongest correctness criterion for replicated databases is 1-copy serializability

(1SR) (Bernstein, Hadzilacos et al. 1987). It represents an extension of the conflict-

serializability defined for centralized databases (Section 2.2.3). It utilizes two types of

histories for representing the correctness of replication protocols: Replicated Data

(RD) histories and one-copy (1C) histories. The former characterizes the execution of

operations on the replicated database and the latter characterizes the user’s view of the

replicated database as a single copy database - although a replicated database

comprises multiple copies of data items, users perceive each data item as one logical

copy. Most importantly, the criterion states that a replication protocol ensures 1SR if

for any interleaved execution of transactions there is an equivalent serial execution of

those transactions performed on the logical copy of the database. Testing the

correctness of replication protocols has been traditionally performed using replicated

data serialisation graphs (RDSG), which are extensions of SGs to replicated data.

Similar to a history and the corresponding SG in a centralised database, a replicated

data history that can be represented by an acyclic RDSG is 1-copy serializable

(Theorem 8.5 from (Bernstein, Hadzilacos et al. 1987)). Additionally, atomicity of

transactions guarantees that each transaction executes successfully (commits) on all,

or at none of the replicas, even in the presence of failures. Different replica control

solutions vary in level of isolation they offer and some of them violate the atomicity

property.

Lin et al. (Lin, Kemme et al. 2005) defined criteria for correctness of replicated

databases when each of the underlying replicas offers snapshot isolation. The

correctness criterion, referred to as 1-copy snapshot isolation (1-copy-SI), guarantees

 Chapter 2. Concepts and Background

 20

that an execution of transactions over a set of replicas produces a global schedule that

is equivalent to a schedule produced by a centralised database system which offers

snapshot isolation. The authors provide the following three definitions to formalise 1-

copy-SI correctness:

Definition 1 (SI-Schedule). Let T be a set of committed transactions, where each

transaction Ti is defined by its readset RSi and writeset WSi. An SI-schedule S over T

is a sequence of operations o ∈ {b, c}. Let (oi < oj) denote that oi occurs before oj in

S. S has the following properties.

i. For each Ti ∈ T: (bi < ci) ∈ S.
ii. If (bi < cj < ci) ∈ S, then WSi ∩ WSj = {}.

The read and write operations are excluded from Definition 1 because the transaction

boundary operations, begin (b) and commit (c), implicitly determine the logical time

of their executions: a begin of transaction Ti indicates when its reads have taken place

and similarly the commit of Ti indicates when the write operations take effect. This

reasoning is based on the characteristics of SI (Section 2.2.2 and 2.2.3)

Definition 2 (SI-Equivalence). Let S1 and S2 be two SI-schedules over the same set of

transactions T. S1 and S2 are SI-equivalent if for any two transactions Ti, Tj T the

following holds:

∈

i. if WSi ∩ WSj ≠ {} : (ci < cj) ∈ S1 ⇔ (ci < cj) ∈ S2.
ii. if WSi ∩ RSj ≠ {} : (ci < bj) ∈ S1 ⇔ (ci < bj) ∈ S2.

Definition 2 is based on the equivalence definitions as specified for the non-replicated

database systems using serializability theory. Condition i. ensures that the order of

committed transactions with overlapping writesets is the same in both schedules.

Thus, the final writes (a write performed by a committed transaction after which no

other committed transaction modified the same data item) are the same in the two

schedules and each prefix of the partial order of committed transactions in both

schedules is an SI schedule. Condition ii. ensures that if in one schedule a transaction,

Tj, reads data modified by a committed transaction, Ti, the same will be true for the

other schedule – the begin of Tj will follow the commit of Ti. The condition, on the

other hand, does not specify which transaction exactly Ti reads from in either of the

schedules.

 Chapter 2. Concepts and Background

 21

In order to define 1-copy-SI criterion the authors of (Lin, Kemme et al. 2005) assume

the following:

- Each replica produces SI schedules.

- Replication is based on ROWA approach: each transaction is executed on a local

replica and only its writes are propagated to the remaining ones. To formalise the

ROWA approach the authors use a mapper function rmap. The input to the

function is a set of transactions T and a set of replicas R. Each update transaction

is transformed into a set of transactions {Ti
k|Rk ∈ R}, one for each replica. Only

one of these transformed transactions contains both, the read and the write set of

the original transaction - this is the local transaction. The rest of the transactions

are remote and consist of only the writeset of the transaction. Every read

transaction, on the other hand, has a single transformation into a local transaction.

Definition 3 (1-Copy-SI). Let R be a set of replicas following ROWA approach. Let

T be a set of submitted transactions for which Ti ∈ T committed at its local site. Let

Sk be the SI-schedule over the set of committed transactions Tk at replica Rk ∈ R.

Then R ensures 1-copy-SI if the following is true:

i. There is ROWA mapper function, rmap, such that TkU
k = rmap (T, R)

ii. There is an SI-schedule S over T such that for each Sk and Ti
k, Tj

k ∈ Tk being
transformations of Ti, Tj ∈T:

a. if WSi
k ∩ WSj

k ≠ {} : (ci
k < cj

k) ∈ Sk ⇔ (ci < cj) ∈ S,
b. if WSi

k ∩ RSj
k ≠ {} : (ck

i < bj
k) ∈ Sk ⇔ (ci < bj) ∈ S.

From the condition i., we infer an existence of an rmap function that maps committed

transactions as a subset of the set of submitted ones. Condition ii. ensures equivalence

between a schedule produced by a replica, Sk, and the global schedule, S, over the set

of all transactions T. Due to the use of ROWA approach, the definition of equivalence

as stated in Definition 2 has to be modified. The condition i. from the Definition 2

holds between every Sk and S for all committed transactions, because the writes are

executed on all replicas. However, the reads-from relation of a schedule Sk is the same

as in S (condition ii. from Definition 2) for only the subset of the readsets obtained at

the replica Rk. There are two consequences of the 1-copy-SI definition:

- The position of the begin operations of remote transactions is arbitrary since they

do not include read operations.

 Chapter 2. Concepts and Background

 22

- The position of the commits of the read-only transactions is arbitrary since they do

not include any write operations.

Similarly to 1-copy-SI, Elnikety et al. (Elnikety, Zwaenepoel et al. 2005) defined

Generalised Snapshot Isolation (GSI) - a correctness criterion for replicated databases

that offer snapshot isolation. GSI is an extension to the snapshot isolation as found in

centralized databases. The authors formalize the “centralized” snapshot isolation and

refer to it as Conventional Snapshot Isolation (CSI). To model the timing

relationships between transactions the following definitions of the operations in a

transaction, Ti, are given:

- snapshot(Ti) – the time when Ti’s snapshot is taken.

- start(Ti) – the time of the first operation of Ti.

- commit(Ti) – the time of commit of Ti.

- abort(Ti) – the time of abort of Ti.

In addition, they showed that serializability can be guaranteed under GSI by ensuring

that either a static property, which can be checked by examining the transactional

profile, or a dynamic one, which checks the intersection between the readsets and

writesets of overlapping transactions, is satisfied.

The definitions of GSI and CSI, and the corresponding definitions of impacting

transactions, are as follows:

Generalised Snapshot Isolation (GSI) Definition:
 G1. (GSI Read Rule)

∀ Ti, Xj such that Ri(Xj) ∈ h :

1. Wj(Xj) ∈ h and Cj ∈ h;
2. commit(Tj) < snapshot(Ti);
3. T∀ k such that Wk(Xk), Ck ∈ h :

commit(Tk) < commit(Tj) or snapshot(Ti) < commit(Tk);

 G2. (GSI Commit Rule)
∀ Ti, Tj such that Ci, Cj ∈ h :

1. (T¬ j impacts Ti)

Definition of Impacting Transactions for GSI:
- Ti impacts Tj iff:
snapshot(Ti) < commit(Tj) < commit(Ti) and writeset(Ti) ∩ writeset(Tj)≠ {}

Conventional Snapshot Isolation (CSI) Definition:
 C1. (CSI Read Rule)

 Chapter 2. Concepts and Background

 23

∀ Ti, Xj such that Ri(Xj) ∈ h :

1. Wj(Xj) ∈ h and Cj ∈ h;

2. commit(Tj) < snapshot(Ti);

3. ∀ Tk such that Wk(Xk), Ck ∈ h :

commit(Tk) < commit(Tj) or start(Ti) < commit(Tk);

 C2. (CSI Commit Rule)
∀ Ti, Tj such that Ci, Cj ∈ h :

1. (T¬ j impacts Ti)

Definition of Impacting Transactions for CSI:

- Ti impacts Tj iff:
start(Ti) < commit(Tj) < commit(Ti) and writeset(Ti) ∩ writeset(Tj)≠ {}

CSI states that the last snapshot, committed on any of the database replicas, in respect

to the transaction start time, is available. CSI is a special case of GSI as the latter does

not specify which database snapshot should a transaction observe, i.e. snapshot(Ti) =

start(Ti) in CSI. We aid the description of the difference between GSI and CSI with

the following example. Let history h = Wi(Xi), Ci, Wj(Xj), Cj, Rk(Xi), Wk(Yk), Ck. The

history is not permitted by CSI because Tk reads an “old” snapshot, snapshot(Ti),

instead of the last one, snapshot(Tj). However h is a GSI history since snapshot(Tk) =

commit(Ti) is allowed.

2.3.3. Conflicts and Deadlocks

As detailed in (Gray, Helland et al. 1996), a severe drawback of eager, update-

everywhere replication is the high conflict rate and probability of deadlocks. The

work showed that, in some situations, the probability of deadlocks is directly

proportional to n3, where n is the number of replicas. The observation is not

surprising: as the number of replicas increases, the time to lock the resources will

increase too and transaction execution times will deteriorate. Furthermore, the longer

transaction times are caused by the additional communication overhead when the

number of replicas increases. Certain database replication solutions are prone to a

distributed deadlock, a more complicated form of deadlock. This happens if a

resource lock is acquired in different order on different replicas. Figure 2-1 shows two

concurrent transactions T1 and T2, which are competing for resource A while

executing in a replicated database system with two replicas Rx and Ry. The order of

 Chapter 2. Concepts and Background

 24

lock requests by T1 and T2 is different on the two replicas, i.e. T2 is blocked waiting

for T1 on Rx and vice versa is true on Ry. As a result, in replication schemes where a

transaction commits only after all the replicas are ready to do so, the transactions

would be deadlocked without possibility to progress further.

T1

T2

Lock A - Granted

Lock A - Wait

Time

T1

T2

Lock A - Wait

Lock A - Granted

Rx

Ry

T1

T2

Lock A - Granted

Lock A - Wait

Time

T1

T2

Lock A - Wait

Lock A - Granted

Rx

Ry

Figure 2-1 An example of distributed deadlock.

It has been suggested that group communication systems (Hadzilacos and Toueg

1993) be used as a means of reducing conflicts and avoiding deadlocks as well as

ensuring consistent data on multiple replicas. These systems are capable of ensuring

that a message multicast in a group will be delivered in the same total order on all

group members. This holds for the sender of the message too. Many replication

protocols, e.g. (Agrawal, Alonso et al. 1997), (Kemme and Alonso 2000a), combine

group communication primitives with deferred updates technique, in which, usually,

the write operations of a transaction are executed on one replica, grouped in one

message (writeset) and delivered to all the replicas in the same total order.

2.3.4. Transaction Atomicity

In replicated databases atomicity of a transaction has to be guaranteed - it is necessary

to make sure that all replicas terminate the transaction in the same way, i.e. all

replicas either commit or abort a transaction. As described in (Weismann, Pedone et

al. 2000) there are two techniques to ensure transaction atomicity in a replicated

database system: voting and non-voting techniques. Voting techniques, traditionally,

use atomic commitment protocols to terminate transactions. A well-known variant of

the atomic commitment protocol is the 2-Phase Commit (2PC) protocol (Skeen 1981).

The phases of a 2PC protocol could be summarised as follows:

 Chapter 2. Concepts and Background

 25

- A coordinator sends a request to each replica for a vote (to commit or abort).

- Upon receiving the request each replica replies with a message, YES (commit) or

NO (abort). If the vote is NO the replica aborts the execution.

- Upon collecting all the votes the coordinator decides on the outcome of the

transaction:

o If all replicas have voted YES, the coordinator notifies the replicas to

commit.

o If a replica voted NO, the coordinator notifies the replicas to abort.

- Upon receiving the notification (commit or abort) from the coordinator, a replica

decides accordingly.

2PC is a blocking implementation of a more general atomic commitment solution.

Atomic commitment protocols suffer long transaction times because the

synchronisation point is dependant on the performance of all the replicas. It is the

slowest server that determines the response time of a transaction.

In non-voting techniques each server must independently decide on the same

serialisation order among transactions. For example, when using group

communication primitives, total order detects possible conflicts between transactions

and warrants the same serialisation order on all replicas. Since an abort may happen

due to different reasons in a database, e.g. due to an interaction with a local operation

or a violation of a consistency constraint, additional measures have to be taken to

guarantee atomic termination of a transaction. To that end a certification step

(Pedone, Guerraoui et al. 2003) has to be performed or a commit order has to be

decided by sending an additional message to all replicas, like in SER-D protocol

(Kemme 2000). Using non-voting techniques each replica is allowed to terminate a

transaction without waiting for all other replicas to finish. This is a performance

improvement towards shorter response times.

2.4. TPC-C – an On-Line Transaction Processing Benchmark

In order to evaluate performance implications of using diverse redundancy we used

our own implementation of the industry-standard benchmark for online transaction

processing - TPC-C (TPC 2002a). A real workload, the one being observed on a

system under normal operations in true environment, is preferred choice in

performance studies (Jain 1991). However, these workloads are not repeatable and

 Chapter 2. Concepts and Background

 26

therefore not suitable as test workloads. Consequently, we chose TPC-C, a synthetic

benchmark, as the basis for our performance evaluation. Its representativeness of an

order-entry system and wide adoption in industry and academia warrants the choice.

TPC-C defines five types of transactions: New-Order (NO), Payment (P), Order-

Status (OS), Delivery (D) and Stock-Level (SL) and sets the probability of execution

of each. NO, P and D are update transactions with a different number of read and

write operations while SL and OS are read-only transactions consisting of only read

operations. In our implementation of TPC-C, OS transaction consists of three and SL

of two SELECT operations. NO and P transactions are the most frequently executed

ones. The minimum probability of execution for each transaction type is as follows: P

– 43%, OS – 4%, D – 4% and SL – 4%. TPC-C does not specify the minimum

frequency for NO transactions because the throughput measure of interest is the

number of NO transactions per minute (under the specified mix of transaction types).

The benchmark provides for performance comparison of the database servers from

different vendors, with different hardware configurations and operating systems.

The workload of TPC-C is highly write-intensive and in particular the application is

limited with a random I/O access pattern. This is why it is not unusual that

commercial TPC-C results report the use of several CPU cores with multiple RAID

controllers and hundreds, or even thousands, of disk drives (Hewlett-Packard 2005).

One relation, warehouse, is used as the base unit of scaling, e.g. the standard specifies

that the number of clients is 10 times greater than the number of warehouses. To

model the time spent by interactive clients on interpreting results, the standard

introduces think times, with an additional consequence of reducing conflict rates, e.g.

a conflict happens when multiple clients modify the same warehouse record. Greater

think times decrease the contention and load on the system by increasing time breaks

between transactions requested by a particular client. The values of the mean think

times for each transaction type are as follows: NO – 12 sec, P – 12 sec, OS – 10 sec,

D – 5 sec and SL – 5 sec.

The standard defines the upper bounds on the 90th percentile for each transaction type

and the proposed constraints are as follows: SL – 20 sec and 5 sec for all other

transaction types. In the case of Delivery transaction, the specified value is pertinent

to the interactive part only, while the value of 80 sec is specified for the whole

transaction, including the deferred portion. The fixed upper bounds for 90th percentile

response time are set based on the assumption that the utilization level of the

 Chapter 2. Concepts and Background

 27

hardware is near 100%. The choice for the values used as response time constraints

was made by vote at TPC. Several values were proposed and the values that obtained

a majority agreement were included in the standard benchmark. These values are

somewhat loose, even 10 years ago when they were set, and could easily be changed

to something shorter (Raab 2005). These values are inherently dependant on the

characteristic of the system under test (SUT), such as hardware and database size as

well as the load and the profile of the experiments.

The access pattern of TPC-C benchmark is characterised with a high degree of

locality when the warehouse table is accessed. Multiple clients read and modify a

single row in the table. While this access hotspot might be beneficial in terms of

keeping data in memory, it has a significant disadvantage of generating frequent

conflicts and incurs a performance cost as a result of resolving these conflicts. This is

exacerbated in workloads with slow-running transactions that cause the conflicts to

persist for long periods of time.

Our implementation of the TPC-C did not require the use of any proprietary features

from any of the servers. The SQL operations were implemented using the common

subset of SQL.

 Chapter 3. Architecture of DivRep Middleware

 28

3. Architecture of DivRep Middleware

 A pessimist is an optimist with experience

Anonymous

3.1. DivRep – Replication with Diverse Database Servers

We have developed a middleware-based database replication solution, DivRep, which

uses redundant database servers as the underlying components. Although non-diverse

database servers can be deployed, we propose that DivRep is used to build a fault-

tolerant server (FT-node) employing diverse redundancy. Figure 3-1 depicts the

architecture of an FT-node with two diverse replicas. DivRep supports interactive

transactions and replication is done at the SQL operation level. Hence, dependence

between SQL operations within a transaction is allowed, a feature unavailable in

many replication solutions, e.g. in some replication solutions clients are assumed to

submit a whole transaction at once and as a consequence SQL operations created by

an operator on the fly, possibly using results of previous operations, are impossible to

handle. The middleware propagates the operations generated by the client applications

to both diverse replicas for execution. The results from the replicas are collected by

the middleware, and in the case of a positive adjudication, the middleware reports a

result back to the client application(s). In this way the parallel-redundant architecture

using two diverse DBMS products provides high error detection rate (Section 2.1) via

comparison of results. Clearly, this architecture differs from ROWAA scheme. In the

new architecture both diverse replicas execute all operations (including the reads),

while in ROWAA scheme all active replicas execute only the writes submitted to any

replica and the respective local read operations.

The overall performance of the system that is shown in Figure 3-1 depends on the

performance of the diverse replicas deployed and on the performance characteristics

of the middleware itself. For instance, the middleware can use different adjudication

mechanisms. A few reasonable alternatives are listed below:

- Slowest response regime. The middleware collects the results of the individual SQL

operations (a multitude of which constitute a whole transaction) executed by the

 Chapter 3. Architecture of DivRep Middleware

 29

Figure 3-1 Fault-tolerant server node (FT-node) with two diverse DBMSs (DBMS 1 and DBMS 2) as a
UML 2.0 deployment diagram. The middleware “hides” the servers from the clients (1 to n) for which

the data storage appears as a single DBMS.

diverse replicas. Once a sufficient number of responses are collected, they are

adjudicated and only if identical responses from both replicas are observed a

successful completion of the operation is reported back to the client application.

Subsequently the client sends the following operation to the middleware for

processing.

- Pessimistic response regime. Alternatively, the middleware may buffer the

operations coming from a client application and make them available to the diverse

replicas as soon as the operations are placed in the respective buffers. Each diverse

replica collects the next available operation from its respective buffer, executes it,

marks it as being completed and makes the response from the operation available to

the middleware. As soon as the middleware receives the first response to an

operation from a replica, it is immediately passed on to the client application, thus

letting the client application proceed with the other operations within the

transaction. The fastest response comes from either of the DBMSs, depending on

the SQL operation (Figure 3-2). Responses from the diverse replicas to the same

operation are adjudicated later, after both replicas produce them, but before the end

of the transaction (the condition of eager replication is satisfied). Buffering the

operations in the middleware allows the diverse replicas to work at a maximum

speed within transactions, as shown in Figure 3-2 (DBMS 1 would start execution

of the next SQL operation even though the DBMS 2 has not finished the previous

 Chapter 3. Architecture of DivRep Middleware

 30

one, as indicated with the dashed rectangle). The transactions are committed (or

aborted) based on the outcome of adjudicating the results of the operations.

Commit is only applied if the replicas execute all operations successfully and all

responses are positively adjudicated. Otherwise, the transaction is aborted.

1

2

3

4 Client n SQL
operation

SQL
operation

SQL
operation

DBMS 1

DBMS 2

Middleware

SQL SQL SQLith

Figure 3-2 Timing diagram of a client communicating with two, possibly diverse, database servers and
the middleware running in the pessimistic or the optimistic response regime. The meanings of the

callouts are: 1 – the client sends an SQL operation to the middleware; 2 – the middleware translates the
request to the dialects of the servers and places the resulting SQL operations, or sequences of SQL

operations, in the respective server buffers; 3 – the fastest response is received by the middleware; 4 -
the middleware sends the response to the client. Processing of only a subset of SQL operations in a

transaction is depicted. The dashed rectangle shows an alternative effect of asynchronous execution by
the two DBMSs - it indicates that DBMS 2 will not be ready to start jth SQL operation at the same time

with DBMS 1.

- Optimistic response regime. This is similar to the pessimistic response except:

o No adjudication of the responses from the diverse replicas is applied.

o A skip feature (Figure 3-3) is implemented in the middleware as follows.

Before a replica, e.g. DBMS 1, executes a read (i.e. SELECT) operation it

checks if a response to this operation has already been received from the

other replica, DBMS 2. If so then DBMS 1 does not execute the operation

(i.e. skips it). The modifying SQL operations (DELETE, INSERT and

UPDATE) are executed on all servers, i.e. they cannot be skipped. The

functionality of looking up the next operation and the skip feature is, of

course, implemented in the middleware, which relays to the DBMSs the

operations for execution. If a read operation is to be skipped, then the

middleware simply does not pass it to the respective DBMS for execution.

Clearly, this regime of operation does not offer the same level of protection

as the previous ones. It may, however, be adequate in many cases.

… … kthj

th

Time

 Chapter 3. Architecture of DivRep Middleware

 31

DBMS 2

DBMS 1Nth

(N – 1)th (N + 2)th(N + 1)th

(N + 1)th (N + 3)th

Time

(N + 3)th

…

…

…

… DBMS 2

DBMS 1Nth

(N – 1)th (N + 2)th(N + 1)th

(N + 1)th (N + 3)th

Time

(N + 3)th

…

…

…

…

Nth

(N – 1)th (N + 2)th(N + 1)th (N + 2)th(N + 1)th

(N + 1)th (N + 3)th

Time

(N + 3)th

…

…

…

…

Figure 3-3 Implications of using skip feature in the optimistic regime of operation. Let us assume that
two replicas, DBMS 1 and DBMS 2, are executing a read-only transaction and only a subset of read
operations is depicted. Due to the variable duration of the reads (represented by the corresponding

rectangles) the load on each replica will be decreased: DBMS 1 would omit the execution of (N+2)th
read and similarly DBMS 2 would skip the Nth read operation.

There might exist systematic differences between the times it takes diverse DBMSs to

execute the same operation. This may be due to, for example, the respective execution

plans being different, the concurrency control mechanisms being implemented

differently, etc. When the slowest response regime is used, such differences will

inevitably lead to the FT-node being slower than the respective DBMSs it consists of.

The slowest response regime incurs an unnecessary performance penalty: the

processing of client’s requests is suspended until all the replicas have produced the

results for a particular operation and the adjudication has completed. When the

optimistic regime is used, however, the systematic difference might lead to improved

performance. If the mix of operations within a transaction is such that both servers

‘skip’ operations, then the transaction might take the FT-node less time than either of

the DBMSs it uses. In the pessimistic response regime the skip feature is not used and

the best that the FT-node can do during transaction execution is to process SQL

operations as fast as the faster of the two servers can. However, the FT-Node waits for

both servers to complete all operations and performs adjudication, and thus diversity

cannot bring any performance gains. Due to the synchronous execution of SQL

operations and result adjudication in the slowest response regime, DivRep is primarily

concerned with the remaining two regimes of operation: pessimistic and optimistic

response regimes.

We propose that a pair of replicas is deployed within an FT-node for improved

detection of non-crash failures (Gashi, Popov et al. 2007), (Gashi 2007). Should a

higher level of replication be required, e.g. for better scalability, then the FT-node can

be combined with another database replication scheme, which is considered adequate

 Chapter 3. Architecture of DivRep Middleware

 32

for a particular set of requirements. These can be schemes for eager database

replication, e.g. based on group communication primitives, or even lazy replication. In

either case the FT-node will replace a replica of a particular DBMS used by the

particular database replication scheme (Figure 3-4).

DBMS 1

DivRep 1

DBMS 2

Scalable Replication Protocol

FT-node 1

…
DBMS 1

DivRep n

DBMS 2

FT-node n

DBMS 1

DivRep 2

DBMS 2

FT-node 2

DBMS 1

DivRep 1

DBMS 2

Scalable Replication Protocol

FT-node 1

…
DBMS 1

DivRep n

DBMS 2

FT-node n

DBMS 1

DivRep 2

DBMS 2

FT-node 2

Figure 3-4 A scalable replication protocol (SRP) deploying FT-nodes as underlying replicas instead of
using non-diverse replicas as in its original configuration. Error detection is provided with FT-nodes (1

to n) – each one deploys two diverse servers (DBMS 1 and DBMS 2). High-performance and
scalability are provided by the SRP. Database consistency is provided via the interaction of DivRep and

the SRP.

Whichever regime the FT-node operates under, data consistency between the diverse

replicas must be guaranteed, which is typically defined as 1-copy serialisability

(Bernstein, Hadzilacos et al. 1987), although recently definitions of correctness when

DBMSs offer snapshot isolation have been specified, (Lin, Kemme et al. 2005),

(Elnikety, Zwaenepoel et al. 2005) (Section 2.3.2).

3.1.1. Dependable Replication Algorithm (DRA)

The choice of a particular replica control mechanism is, to certain extent, dependant

on the isolation level provided by the underlying database servers (Sections 2.2.2 and

2.3.2). In our solution we propose a mixed mode for concurrency control, where we

combine the mechanisms of the database servers with the additional replica control

performed by the middleware. Concurrency control mechanisms of database systems

are effective, yet they use complex algorithms and introduce specific features. When

designing the replication algorithm we wanted to reuse the effectiveness of these

algorithms, but at the same time add least complexity and assure DRA is independent

from the specifics of different servers.

We assume that the underlying database servers offer snapshot isolation, thus only

concurrent writes of the same data item cause conflicts. In addition we assume that the

 Chapter 3. Architecture of DivRep Middleware

 33

replicas, instead of waiting for transaction commit, check for write-write conflicts

during transaction executions – they perform version-creation-time conflict check (see

Snapshot Isolation in 2.2.3).

We have implemented a database replication algorithm, Dependable Replication

Algorithm (DRA), which guarantees database consistency when DivRep middleware

is employed. The algorithm guarantees that the replicated system produces transaction

execution histories equivalent to a history of a centralized SI scheduler, thus it

guarantees 1-copy Snapshot Isolation (1-Copy-SI) (Lin, Kemme et al. 2005). 1-copy-

SI is based on the traditional serializability theory and it describes the correctness

criteria for transaction executions in a replicated system consisting of SI-compliant

servers. Moreover, DRA preserves conventional snapshot isolation as described in

(Elnikety, Zwaenepoel et al. 2005) and similarly strong SI as explained in (Daudjee

and Salem 2006). Analogous to the regimes of operation of DivRep middleware there

are two variants of DRA, which implement the pessimistic and the optimistic regimes

of operation.

Figure 3-5 presents a pseudo-code of the DRA algorithm executing in the pessimistic

regime of operation. It describes an execution of a transaction submitted by a

particular client; multiple such executions are taking place concurrently at DivRep –

each client’s requests are served by a dedicated DivRep’s thread. Both DML (Data

Manipulation Language) operations (SELECT, DELETE, INSERT and UPDATE)

and transaction boundary operations (begins, commits and aborts) are submitted to the

middleware. The middleware, i.e. the dedicated execution context for a particular

client, forwards the operations to the replicas. The communication with each replica

deployed in the FT-node is performed by a separate thread of execution. Replicas

communicate with the middleware but not with each other. The most up-to-date

versions of data are stored on every replica.

Managing DML Operations

Upon receiving a read or a write request from a client the middleware forwards it to

the deployed replicas. As soon as the fastest response is received, the middleware

returns it to the client. The client then sends the following request, possibly using the

results of the previous response. If a write-write conflict is signalled by a replica,

upon an attempt to execute a write operation, an exception is raised and the

middleware records a “vote” for abort. Recall from Snapshot Isolation subsection in

 Chapter 3. Architecture of DivRep Middleware

 34

 1) Upon SQL Operation OP from Ti

A) if OP is the begin then
I) obtain tb_mutex
II) begin Ti on both replicas /*create snapshot for Ti*/
III) release tb_mutex
IV) return to client /*return control*/

B) else if OP is a read operation
I) send the read to both replicas
II) receive fastest response
III) return to client /*return control and the response*/

C) else if OP is a write operation
I) send the write to both replicas
II) if a write-write conflict reported then

(i) set transaction abort /*vote for abort*/
III) else

(i) generate control read and send it to both replicas
(ii) receive fastest response for the write
(iii) return to client /*return control */

D) else if OP is an abort /*client sends the abort operation*/
I) abort Ti on both replicas

E) else /*it is a commit operation - use 2PC-DR*/

I) Upon both replicas and the Comparator voted
(i) if (an abort vote) /*a write-write conflict and/or a result comparison

 failed*/
(a) abort Ti on both replicas

(ii) else /*both ready to commit and no mismatch between the results*/
(a) obtain tb_mutex
(b) commit Ti on both replicas
(c) release tb_mutex

Comparator Function
1) Upon all results of a read or all results of a control-read operation ready

A) Compare the results from both replicas
B) If a mismatch is found then

I) set transaction abort /*vote for abort*/

Figure 3-5 Pseudo-code of DRA algorithm when DivRep middleware operates in the pessimistic

regime.

 Chapter 3. Architecture of DivRep Middleware

 35

2.2.3 that when the first-committer-wins rule is not enforced as part of a version-

creation-time conflict check, a write-write conflict could be reported only once after a

commit request (commit-time conflict check). If this was the case in DivRep, a replica

would not be reporting the write-write exception at line 1.C.II., but after 1.E.I.ii.b

(Figure 3-5). As a result an abort would have to be initiated, and the replicas would

diverge had the commit already been executed on the other replica. Clearly the

replication algorithm would have to change to prevent such inconsistencies. As

mentioned previously, however, databases that offer snapshot isolation enforce the

first-committer-wins rule as part of the write operation execution. Furthermore,

without the specific application of the rule the abort rate might be higher because

transactions would last longer due to the conflicts being detected in the end of a

transaction.

The middleware compares the results (Comparator Function) of already executed

SQL operations in parallel with forwarding client requests to replicas. The results of

SELECT operations are compared in a straightforward way i.e. using the respective

result sets returned by the replicas. After checking that the same number of rows is

retrieved, an exhaustive value-for-value comparison is performed between the results

from different replicas. If a particular order has not been specified in the query (using

an ORDER BY clause) it is possible that the values will be ordered differently in the

result sets. The comparison algorithm of DivRep makes sure that no inconsistency is

reported only due to different ordering in the result sets.

In order to compare the effects of write operations the middleware generates control

read operations. A control read is constructed by parsing the respective write

operation (DELETE, INSERT or UPDATE), so that it queries the rows modified by

the write. A control read is executed immediately after the write to retrieve the

modified records. Under snapshot isolation each transaction observes its own writes

and thus each control read operation captures the modification performed by the

preceding write operation. Clearly, it is necessary for the comparison that the same

state of the replicas is maintained for each transaction execution. Since the underlying

database servers offer snapshot isolation and execution order of transaction

boundaries is the same on both servers, the algorithm provides the necessary replica

determinism. If no failure occurs the replicas produce the same results of SQL

operations. The comparison of the results has to be performed before transaction

commits. In this way the detection rate of server failures is increased and further,

 Chapter 3. Architecture of DivRep Middleware

 36

well-known, mechanism for improved fault-tolerance (e.g. error containment,

diagnosis and correction) can be performed. Applying these techniques to database

replication using diverse redundancy is discussed in (Gashi, Popov et al. 2007) and

(Gashi 2007). The use of the comparator function can help DRA cope with non-

deterministic operations, a feature rarely guaranteed by most replication solutions. For

example, execution of a non-deterministic function that returns the current date on

two replicas can produce, legitimately, different results and the inconsistency can be

detected and appropriately corrected using DRA. DivRep middleware could, for

instance, calculate the value and rephrase the SQL operation or, on the other hand the

use of non-deterministic functions could be simply avoided in the client application.

A performance overhead is imposed when using the comparator function because the

control reads force more round-trips, additional communication overhead, between

the middleware and the replicas. Also the processing time of the comparison might be

significant if large data sets are compared. These issues can be alleviated using

different approaches. Using SQL extensions for data-change operations (DELETE,

INSERT, UPDATE) (Behm, Rielau et al. 2004), which return a result set containing

modified rows, would eliminate this overhead. This type of SQL operations is offered

by DB2 database engine (IBM 2007). Using the capabilities of data-change

operations, application developers can:

“… retrieve a result set containing the final column values of all rows that are updated

or inserted. This is particularly useful for operations against tables with automatically

generated columns, columns with default values, or columns whose values are altered

by BEFORE triggers. Similarly, a result set containing the old values of updated or

deleted rows can be retrieved” (IBM 2007).

An alternative option is to use after triggers (PostgreSQL 2007), (Borland 1999), (ISO

2003) for extraction of modified rows once DELETE, INSERT or UPDATE operation

is executed. Either statement level or per-row triggers could be used. Another

possibility, orthogonal to the use of control-reads and triggers, can be used for

performance improvement. By hashing the results, of control reads or triggers, the

results’ comparison processing may be reduced. The network overhead might be

minimised if instead of potentially large results only hash codes, generated by each

replica, are sent to the middleware for comparison. However, to avoid the difference

in hash functions of diverse replicas, the results could be propagated to the

middleware, which then generates hash codes for comparison. In this case the network

 Chapter 3. Architecture of DivRep Middleware

 37

overhead would not be eliminated (it is usually insignificant in LANs), while the

result comparison processing would be improved. Hash collisions (when two distinct

inputs into a hash function produce identical outputs) could possibly compromise the

results’ comparison. This would happen when the results from two replicas to the

same operation are inconsistent but their hash values are the same. Nevertheless, these

events are usually rare: hash collisions are rare per se (at least in well-designed

functions) and it is unlikely that two databases produce different results with the same

hash value. The aim of DivRep middleware to improve error detection can be

undermined if its own fault-tolerant feature, result comparison, produces faulty

responses. Namely it is possible that either control reads or triggers generate different

results; but, in this case, the algorithm behaves the same as if the corresponding writes

have produced divergent results – it reports inconsistency of replicas’ results.

Similarly the comparator function might be faulty – if it falsely declares that different

results from diverse replicas are consistent the states of the databases might diverge.

Due to its simplicity, though, we could assume perfect correctness of the comparator

function with high confidence.

Managing Transaction Boundary Operations

When a client indicates the begin of a transaction Ti the corresponding middleware

thread obtains tb_mutex, a global mutex for which all the middleware threads serving

different clients are contending, and starts the transaction on the replicas. No

boundary operation, commit or begin, from any other transaction Tj can execute while

Ti holds tb_mutex. Therefore, the middleware admits execution of only one

transaction boundary at the time, i.e. an overlap in execution of boundary operations

from different transactions is prevented. This imposes total order on transaction

boundary operations guaranteeing that the identical schedule of commits and begins is

applied to both replicas. Atomic execution of boundary operations guarantees that a

transaction operates on the equivalent snapshot of data on both replicas.

DRA uses an atomic commitment building block to handle commit operation received

from the client. A variant of Two-Phase Commit protocol (2PC) (Gray 1978), (Skeen

1981) is used. The implementation is denoted as 2PC-DR in the rest of the document.

It represents a blocking implementation of the general atomic commitment problem

and as such satisfies the following properties:

 Chapter 3. Architecture of DivRep Middleware

 38

- Agreement
o No two replicas and the Comparator decide different values (abort or

commit). See 1.E.I.i.a, (“abort Ti on both replicas”), and 1.E.I.ii.b
(“commit Ti on both replicas”) in Figure 3-5.

- Validity
o If a replica or the Comparator votes abort then abort is the only possible

decision value. See 1.E.I.i in Figure 3-5 – it follows from 1.C.II.i in the
algorithm and 1.B.I in the Comparator function.

o If both replicas and the Comparator vote commit, then commit is the only
possible decision value, see 1.E.I.ii in Figure 3-5.

- Weak Termination
o If there are no crash failures then both replicas and the Comparator

eventually decide.

The strong termination property, which satisfies the following: “All correct processes

eventually decide” is unattainable with 2PC-DR. This does not come as a surprise

since in general it is impossible to achieve strong termination in asynchronous

systems subject to crash failures (Guerraoui 1995).

Once the replicas and the Comparator have “voted”, the middleware ends the

transaction on both replicas. A replica either successfully completes all operations in a

transaction or it raises an exception. The middleware regards the former as a “vote”

for the commit and the latter as a “vote” for the abort. Similarly, only if the

Comparator reports no inconsistencies between the results a commit “vote” is

recorded. In this way the time complexity of 2PC-DR is represented with two rounds

(Bernstein, Hadzilacos et al. 1987). In the first round the participants, i.e. replicas,

send their votes to the coordinator, i.e. middleware, and in the second the coordinator

broadcasts the decision. There is no explicit request for voting (VOTE-REQ) sent by

the coordinator. Hence, in the absence of replica or communication failures, the

message complexity in 2PC-DR is 2n; in each phase there are n messages exchanged.

The execution of commits is similar to the execution of begins - concurrent execution

of the transaction boundary operations is prohibited. In order to minimise the

performance overhead DRA broadcasts an abort message to the replicas as soon as

one is reported by any of the replicas, instead of performing agreement phase once the

replicas have finished the SQL operations and the comparison of results has been

completed. This behaviour is similar to first-committer-wins rule: as soon as the

destiny of a transaction is known on a replica (a write-write conflict is reported) the

remaining one and the Comparator are notified, and the transaction is aborted. In this

way transaction duration is shorter and the resource utilisation on replica machines is

 Chapter 3. Architecture of DivRep Middleware

 39

more efficient. DivRep notifies the client that the transaction has been aborted.

Subsequently the client repeats the transaction and the competition for the resources is

reinitiated. Alternatively, DivRep could notify the client that a conflict has occurred

and only subsequently, after the client has sent the abort message, end the transaction.

However, since the conflict had been raised, the faith of the transaction is decided and

thus it would be wasteful to first notify the client and only then abort the transaction –

the locks on the resources would have been kept unnecessarily long and the

transaction latency would increase. Application level aborts are conducted in a

transparent manner – as soon as a client sends an abort DivRep ends the transactions

on both replicas and notifies the client. DRA does not serialise the execution of the

aborts, i.e. it does not obtain tb_mutex, because the changes created by the transaction

will be invalidated and no snapshot will be created. The contention for tb_mutex is

decreased in this way and thus shorter response times are observed.

Although DRA enables non-synchronised processing of SQL operations inside a

transaction (the replicas execute SQL operations at their own pace), its performance is

limited due to transaction boundaries being ordered serially (by synchronising begins

and commits). This holds even in the cases when transactions do not have overlapping

writesets. Nonetheless, serialisation of transactions and atomic commitment are

needed to ensure the “latest” database snapshot (Elnikety, Zwaenepoel et al. 2005) has

been installed on both replicas. In this way DRA guarantees that a transaction T

obtains a particular snapshot – the snapshot of the database which reflects the writes

of all transactions which committed globally (on both replicas) before T started. Thus

DRA prohibits transaction inversions (Daudjee and Salem 2006), observed in lazy

replication schemes when transaction see stale database states, e.g. a read-only

transaction does not observe the writes of the previous transaction performed by the

same client. Likewise, using the terminology of (Zhuge, Garcia-Molina et al. 1998),

the system provides completeness, since non-conflicting transactions are installed in

the same order; the one imposed by the acquisition of the tb_mutex. This is necessary

to preserve the same reads-from relations and enable dependability improvement by

comparing the corresponding results of SQL operations from different replicas. On

the other hand, DRA is more restrictive than a concurrency control mechanism

providing SI. DRA synchronises the begin operations, while it is not the case for SI,

and as a result the SI’s objective of high concurrency (concurrent transactions with

disjoint writesets execute successfully without restraints) is not preserved.

 Chapter 3. Architecture of DivRep Middleware

 40

When executing in the optimistic regime of operation (Figure 3-6), DRA does not

generate control read operations because no comparison of the results is performed.

Furthermore, a read operation is executed by a replica only if the corresponding result

has not been already produced by the other, faster, replica. On the other hand, in both

optimistic and pessimistic regime, DRA offers the same replica control mechanism.

The global synchronisation of the transaction boundary operations, begins and

commits, and the use of 2PC-DR still apply.

3.1.2. DRA Optimisations

DRA guarantees strict consistency between replicas by imposing the same order of

transaction boundary operations (begins and commits) on both of them. We can

optimise the algorithm, when executing in either the pessimistic or the optimistic

regime of operation, in the following ways.

Firstly, we could relax the requirement that the order of begin operations is identical

on the replicas. As long as no commit operation is executed in between a sequence of

begins, different orderings of begin operations are allowed on different replicas. For

example, let us consider three concurrent transactions T0, T1 and T2 executing over

two replicas Rx and Ry. Let us assume a schedule of the transaction boundary

operations on Rx is: c0, b1, b2, c1, c2; then an equivalent order of transaction

boundaries: c0, b2, b1, c1, c2 is allowed on Ry (Figure 3-7). The figure shows that the

“granularity” of the synchronisation would change (see the dashed rectangle around

the sequence of the two begins): a sequence of two begins, instead of a single one, is

executed synchronously on both replicas. In this way a sequence of begin operations

would be allowed to execute in parallel, though any commit operation remains

executed synchronously and it would be blocked until the sequence of the begin

operations is executed on both replicas. Although Figure 3-7 implies execution of

transaction boundaries at the same physical time on different replicas, the executions

occur with a time lag between them. However it does not invalidate the premise of

total order, i.e. equivalent histories of transaction boundaries are preserved.

The tight synchronisation of transaction boundaries can be further relaxed. A

sequence, Commit_SEQ, of commit operations belonging to non-conflicting

transactions (of which the respective writesets are disjoint) can be executed in

different order on the two replicas. Let us denote the writesets of these transactions,

grouped in a set, as WS. Similarly to the preceding optimisation of the begin requests,

 Chapter 3. Architecture of DivRep Middleware

 41

 1) Upon SQL Operation OP from Ti

A) if OP is the begin then
I) obtain tb_mutex
II) begin Ti on both replicas /*create snapshot for Ti*/
III) release tb_mutex
IV) return to client /*return control*/

B) else if OP is a read operation
I) execute SKIP procedure
II) receive fastest response
III) return to client /*return control and the response*/

C) else if OP is a write operation
I) send the write to both replicas
II) if a write-write conflict reported then

(i) set transaction abort /*vote for abort*/
III) else

(i) receive fastest response for the write
(ii) return to client /*return control */

D) else if OP is an abort /*client sends the abort operation*/
I) abort Ti on both replicas

E) else /*it is a commit operation - use 2PC-DR*/

I) Upon both replicas voted
(i) if (an abort vote) /*a write-write conflict reported*/

(a) abort Ti on both replicas
(ii) else /*both ready to commit and no mismatch between the

 results*/
(a) obtain tb_mutex
(b) commit Ti on both replicas
(c) release tb_mutex

SKIP procedure /*executed by each thread communicating with a replica*/
1) if no response produced for the read

A) send the read to the replica

Figure 3-6 Pseudo-code of DRA algorithm when DivRep middleware operates in the optimistic regime.

 Chapter 3. Architecture of DivRep Middleware

 42

the synchronisation “granularity” would change from a single commit operation to a

sequence of commit operations. Ensuring that any begin operation is blocked until

Commit_SEQ members are executed guarantees the same reads-from relations on both

replicas. Although such an ordering of transaction boundaries ensures consistency and

allows for correct result comparison, it is too restrictive. To illustrate this point let us

introduce a set of readsets, RS, that are disjoint with any of the WS members. Then

replicated database consistency would be preserved if the begin of a transaction

having a member of RS as a readset is not blocked and executes concurrently with the

members of Commit_SEQ.

T1 b1 c1

Time

Ry

Rx

T0 c0

T1 b1 c1

T2 b2 c2

T0 c0

T2 b2 c2

Rx: T0, T1, T2

Ry: T0, T1, T2

Equivalent schedules

Figure 3-7 Equivalent schedules of transaction boundary operations on two replicas Rx and Ry.

Finally, it seems unnecessary to synchronize the commits of read-only transactions. In

that respect there are two possibilities. A commit of a transaction will be synchronized

with the transaction boundaries of concurrent transactions if a list of SQL operations,

maintained by DivRep, does not contain any write operations or DRA makes sure that

the transaction’s writeset, WSi, is empty. The latter is similar to the functionality of

other replication schemes (Lin, Kemme et al. 2005), (Kemme and Wu 2005), (Patino-

Martinez, Jimenez-Peris et al. 2005) and can be performed using triggers for writeset

retrieval or extracting writeset from the transactional logs. These techniques are

readily available in many leading database servers, e.g. Oracle, Microsoft SQL,

PostgreSQL etc.

3.1.3. Distributed Deadlock Avoidance

To avoid distributed deadlocks, DRA relies on a deadlock prevention scheme that

uses a specific parameter, referenced as NOWAIT. When the underlying databases

guarantee SI, the parameter ensures that an exception is raised as soon as concurrent

 Chapter 3. Architecture of DivRep Middleware

 43

transactions attempt to modify the same data item. Figure 3-8 shows the functionality

of the parameter using an example when two transactions, T1 and T2, execute against

a centralized database. Each transaction requires exclusive locks on two resources, A

and B, but the order of lock acquisition is different for two transactions. Once T2

attempts to acquire a conflicting lock, lock A, an exception will be raised since T1

already holds the lock, and T2 will have to abort. Note that if NOWAIT parameter was

not enabled the opposite order of lock acquisition would have lead to a deadlock. The

behaviour of the parameter is different from first-committer-wins and first-updater-

wins rules (Fekete, O'Neil et al. 2004) since no waiting for one of the transactions to

end is necessary. The use of NOWAIT might lead to an increase in the number of

transaction aborts, and corresponding restarts (Bernstein and Goodman 1981) than if a

deadlock detection scheme was used, but incurs no extra overhead needed for the

construction of potentially complex waits-for graphs, which incur the principal

overhead in deadlock detection schemes. The use of the NOWAIT parameter seems to

be attractive due to its simplicity, especially for the workloads with low probability of

deadlocks/aborts.

Time

T1

T2

Lock A - Granted

Lock A - Denied

Lock B - Granted Commit

Lock B - Granted Abort

Resource A unavailable

Time

T1

T2

Lock A - Granted

Lock A - Denied

Lock B - Granted Commit

Lock B - Granted Abort

Resource A unavailable

Figure 3-8 Deadlock avoidance using NOWAIT parameter on a non-replicated database exemplified
with two concurrent transactions, T1 and T2 (the corresponding begin operations are omitted). As soon
as transaction T2 requests a conflicting lock for resource A, the database server will raise an exception

and T2 will have to abort.

A number of database servers offer the behaviour of NOWAIT parameter, such as

Oracle, PostgreSQL, InterBase, Firebird etc., although the respective implementations

might differ. For example, on Firebird the NOWAIT parameter is specified for a

database connection, while on PostgreSQL the behaviour is available through the

SELECT … FOR UPDATE operation, which locks the selected rows against

concurrent updates.

In order to avoid distributed deadlocks in a replicated database not all, but exactly n-1

replicas should be configured with the NOWAIT parameter (where n is the number of

 Chapter 3. Architecture of DivRep Middleware

 44

replicas). Otherwise, if the number of replicas that enabled NOWAIT parameter is less

than n-1, a distributed deadlock, that spans replicas which have not enabled the

parameter, could be observed. Hence the liveness in the replicated database will be

compromised. We assume deployment of two replicas with DivRep and one has the

NOWAIT parameter enabled. Despite enabling NOWAIT parameter on one of them,

other types of concurrency conflicts might be reported, since the replicas use 2-Phase

locking for write operations. In particular it is possible that a replica, which has not

enabled NOWAIT, reports a centralized deadlock (when concurrent transactions

executing on the same replica try to acquire a set of locks in different order). In this

case DivRep follows the decision made by the replica and aborts the victim

transaction. Similarly it should be noted that on the replica which has enabled

NOWAIT an exception due to the first-updater-wins rule could be observed, i.e. not all

exceptions would be raised as a result of the NOWAIT parameter.

One is interested in how much impact NOWAIT parameter has on the abort rate. We

reason about the matter informally using Figure 3-9. Let us assume an FT-node, a

system with two replicas, in which only one of the replicas, RA, has NOWAIT

parameter enabled (clearly FT-node is a special case of a system with more than two

replicas). Two overlapping transactions, Ti and Tj, both try to modify data item x. The

moment transaction Tj tries to acquire exclusive lock on x, NOWAIT exception will be

raised and the middleware will abort the transaction on both replicas. Following the

abort of Tj on RB the first-committer-wins rule is enforced, exclusive lock will be

granted to T

B

i and the transaction will successfully commit on both replicas.

However had NOWAIT parameter been enabled on replica RB too, transaction Ti

would have been also aborted, following the NOWAIT exception raised as part of Tj

execution. Hence, in the cases when more than one replica has NOWAIT parameter

enabled the deadlock avoidance scheme might result in unnecessarily many aborts.

This is not possible in DivRep, however, where only one replica enables the

parameter (in this way DivRep obeys that n-1 replicas have NOWAIT enabled).

Moreover, despite having NOWAIT on both replicas, unnecessary aborts might be an

infrequent event in practice: it is likely that the abort of Tj happens earlier, in global

calendar time, than the request for the writing of x by Ti on RB – in this way TB j would

release the locks, NOWAIT exception would not be triggered by RBB and Ti would

commit successfully.

 Chapter 3. Architecture of DivRep Middleware

 45

wi(x)

wj(x)wi)R A

R B
wj(x)

NOWAIT exception raisedNOWAIT exception raised

aj

aj c i

ci bi bj

bj b i

Blocked

wi(x)

w

Time

j(x)wi(x)R
aj

A

R B
w(x) aj j c i

ci bi b

bj b i

Blocked

Time
Figure 3-9 Deadlock avoidance using NOWAIT parameter in a replicated database system with two

replicas, RA and RB. Two transactions TB i and Tj execute concurrently and access the same data item x.
Only transaction boundary operations (begins (b), aborts (a) and commits (c)) and the write of the

common data item are shown. The interaction between the replicas and the middleware and similarly
between the clients and the middleware is omitted for clarity.

There is an exception to the claim that DivRep does not produce unnecessary aborts:

the aborts are possible in specific situations where one of the database engines in an

FT-node provides deadlock detection mechanism, which might make contrary

decisions to a replica with NOWAIT enabled. Consequently, it is possible that two

replicas resolve conflicting transactions in a different order. An instance of this

situation is depicted in Figure 3-10, which shows executions of two transactions Ti

and Tj on two replicas RA and RB. Replica RB A will report concurrency conflict

exception as soon as Tj tries to acquire lock for data item x and as a result the

transaction will have to be aborted. Correspondingly, on replica RB (which has

NOWAIT disabled) a deadlock detection scheme will decide that Ti should be aborted

due to the centralised deadlock. Without imposing execution determinism in DivRep

both transactions will be aborted. However, the particular series of events are unlikely

- the value of the deadlock timeout should, e.g. according to the best practice guides

for database administrators, exceed the typical transaction time, and in that way avoid

possibility that inconsistent decisions are made by different replicas (transaction Tj

would be aborted before deadlock detection mechanism is triggered on RBB and as a

consequence transaction Ti would commit).

FT-node uses two database servers, one of which has NOWAIT parameter enabled.

When selecting the pair of servers a particular database engine might not offer

NOWAIT parameter, and ruled out as an inappropriate choice for FT-node.

Nonetheless the selection process should verify if the functionality of NOWAIT could

be simulated using other configuration parameters – many database servers offer a

 Chapter 3. Architecture of DivRep Middleware

 46

lock timeout parameter that prevents indefinitely long blocking, e.g.

LOCK_TIMEOUT in Microsoft SQL server or innodb_lock_wait_timeout in MySQL.

Commonly, setting the values of the parameters to zero simulates NOWAIT

functionality; or at least fine-grained timeout values (e.g. in milliseconds) could

achieve the same.

NOWAIT exception raisedNOWAIT exception raised

wj(y)

wj(x)wi(x)RA

RB wi(y)

aj

aj ai

aibi bj

bjbi

Local Deadlock: Ti chosen as “victim”

Time

wj(x) wi(x)

wi(y)

NOWAIT
Disabled

wj(y)

wj(x)wi(x)RA

RB wi(y)

aj

aj ai

aibi bj

bjbi

Local Deadlock: Ti chosen as “victim”

Time

wj(x) wi(x)

wi(y)

NOWAIT
Disabled

Figure 3-10 An example of unnecessary aborts in DivRep. Two transactions Ti and Tj execute
concurrently and both access the two data items, x and y, on the two replicas, RA and RB. Only

transaction boundary operations (begins (b), aborts (a) and commits (c)) and the writes of the common
data items are shown. The interaction between the replicas and the middleware and similarly between

the clients and the middleware is omitted for clarity.

B

3.2. Correctness of DRA

3.2.1. Safety

In this section we provide the proof of correctness of DRA algorithm. There are two

versions of the proof. The first one is based on the definition of 1-copy-SI (Section

2.3.2) and the second one uses the formalism of CSI (Section 2.3.2). The correctness

of DRA is not limited by the use of two replicas with DivRep – it is ensured when an

arbitrary number of replicas are deployed.

Safety of DRA using 1-copy-SI

The following definition, Strict 1-copy-SI, is based on the corresponding definition of

1-copy snapshot isolation from (Lin, Kemme et al. 2005). We use the definition of SI-

Equivalence (Section 2.3.2) for formalising Strict 1-copy-SI. The difference is in

removing the ROWA restriction, where reads are executed only at a local site. We are

interested only in the set of committed transactions (Bernstein, Hadzilacos et al.

1987).

 Chapter 3. Architecture of DivRep Middleware

 47

Strict 1-copy-SI. Let S be a set of schedules, R a set of replicas and T a set of

submitted transactions. Let Sk be an SI-schedule over the set of committed

transactions on replica Rk. We say that R provides Strict 1-copy-SI if all schedules

from S are SI-equivalent.

Assumption 1: The underlying replicas provide Snapshot Isolation.

Proposition 1: All replicas commit the same set of transactions.

Proof: After a transaction is submitted, it commits either on all replicas or at none.

This follows from the fact that a transaction termination is performed using an atomic

commitment protocol, 2PC-DR (see the part E. in Figure 3-5), where all replicas agree

on an outcome, commit or abort, i.e. uniform agreement is guaranteed.

Q.E.D.

Theorem 1. DRA guarantees Strict 1-copy-SI.

Proof: Assume it does not. Then there exists a pair of schedules (S1, S2) S and a

pair of transactions (T

∈

i, Tj) ∈ T for which the following holds:

i. WSi ∩ WSj ≠ {} : (ci < cj) ∈ S1 and (c j< ci) ∈ S2.
or

ii. WSi ∩ RSj ≠ {} : (ci < bj) ∈ S1 and (bj < ci) ∈ S2.

Both i. and ii. are impossible because Proposition 1. holds and the transaction

boundary operations are executed atomically in DRA – the same order of transaction

boundary operations is preserved on the replicas (see 1.E.I.ii.(a-c) and 1.A.(I-III) in

Figure 3-5).

Q.E.D.

The above proof holds for both pessimistic and optimistic regime of DRA. In the

optimistic response regime, some of the reads might be skipped, but the uniform

agreement and the identical order of transaction boundary operations is preserved.

Safety of DRA using CSI

Assumption 1: Underlying replicas ensure CSI

Theorem 1: DRA ensures CSI

- DRA ensures conditions C1.1 and C1.2 of CSI (see 2.3.2) because the underlying

replicas are assumed to guarantee CSI where only updates of committed

transactions are visible i.e. no dirty reads are allowed.

 Chapter 3. Architecture of DivRep Middleware

 48

- DRA guarantees condition C1.3 of CSI - every transaction observes the last

committed snapshot on any replica.

Assume C1.3 was not ensured. Then it is possible for a transaction to read an

“old” snapshot (we denote this property ¬C1.3):

∃Ti, Tk, Xj such that Ri(Xj) ∈ h and Wk(Xk), Ck ∈ h :

commit(Tj) < commit(Tk) and commit(Tk) < start(Ti);

o C1.3 is possible only if a replica produces such a schedule since every

transaction starts atomically on both (all) replicas using tb_mutex and an

identical order of begins and commits is ensured (see 1.A.I-III and

1.E.I.ii.a-c in

¬

Figure 3-5).

o However ¬C1.3 contradicts Assumption 1.

- DRA enforces C2 (CSI Commit Rule)

Assume it does not. Then it is true that impacting transactions are allowed (we

denote the property ¬C2):

∃Ti, Tj such that Ci, Cj ∈ h :

start(Ti) < commit(Tj) < commit(Ti) and writeset(Ti) ∩ writeset(Tj) {} ≠

This is impossible since replicas provide snapshot isolation and a transaction will

be aborted by DRA if an “impact” i.e. write-write conflict, has been detected on

any of the replicas (see 1.C.II.i. in Figure 3-5).

Q.E.D.

3.2.2. Liveness

In addition to the guarantee that no distributed deadlock is possible, i.e. that Liveness

1 (Section 2.2.4) is guaranteed, DRA ensures a higher degree of liveness. Since it is

assumed that replicas guarantee snapshot isolation in DivRep Liveness 2 is

guaranteed.

As to prevent repeated aborts and guarantee progress of a modifying transaction, DRA

could use the following technique. After a transaction Ti had been aborted a

predefined number of times DivRep enters a special mode of operation, write

bottleneck (Popov, Strigini et al. 2004), where no concurrency of the modifying

transactions is allowed – only one modifying transaction executes at the time. Once Ti

has been executed successfully the middleware restores the default regime of

operation. In this way DRA would guarantee that any transaction, read-only or

modifying, eventually commits. Note that this property is not as strict as Liveness 3

 Chapter 3. Architecture of DivRep Middleware

 49

because the predefined number of aborts might precede a successful transaction

termination.

3.3. Hybrid Approach of DivRep

DivRep middleware is configurable to run in different regimes of operation depending

on the specific client requirements. The pessimistic regime of operation offers

improved fault–tolerance, by comparing the results of SQL operations from different

replicas, while the complementary optimistic regime delivers performance

improvements by executing the read operations only on a single replica.

It is worth noting that these two regimes are not mutually exclusive and they can be

combined into a configurable quality of service. By deploying learning capabilities,

e.g. using Bayesian inference (Gorbenko, Kharchenko et al. 2005), the middleware

may process the individual SQL operations switching intelligently between different

regimes of operation. The switch between the regimes will be driven by confidence

gradually built by the middleware that a particular type of operation is unlikely to

cause a disagreement between the responses of the deployed diverse replicas. Before

the predefined level of confidence is reached, whenever the middleware recognises

the operation it will process it under the pessimistic regime. As the number of

instances of the same type of operation (e.g. the same query but with different values

of the parameters) grows, and no disagreements are observed between the responses

of the replicas, so will the confidence that the particular type of operation is unlikely

to lead to disagreements between the diverse replicas. Eventually, the predefined level

of confidence will be reached, from which point the middleware will execute the

subsequent instances of the same operation under the optimistic regime. A

disagreement between the replica responses during the learning period will either lead

to the middleware processing all future instances of the operation under the

pessimistic regime or will require a significantly increased number of identical

responses for the predefined level of confidence to be reached.

In the cases where multiple applications execute against the same FT-node, and some

of them are not subjected to runtime assessment using learning capabilities, a special

care has to be taken. This is because database inconsistencies might be introduced

with the applications that do not use the hybrid approach for dependability assurance,

and determining the switching point between the two regimes of operation, for

 Chapter 3. Architecture of DivRep Middleware

 50

applications that seek improved dependability, could be invalidated. To guard against

these possibilities DivRep can initiate periodic consistency checks, after the switch

between the regimes had occurred and executing in the optimistic regime of operation

is taking place. This will also help reveal the cases where, despite the initial execution

in the pessimistic regime of operation, an inconsistency is triggered after the

switching point. At the same time dependability improvement might be sought by

augmenting the optimistic regime of operation with a fault-tolerant feature –

inconsistencies in a replicated database can be uncovered by executing control-reads

as part of the optimistic regime.

In parallel with determining the switching point between the two regimes of operation

learning capabilities could be used for determining which replica is faster for a

particular type of read operation. Consequently, as a part of a new regime of

operation, the read is executed only on the faster replica. The load of the read

operations would be divided between the replicas once the middleware learns which

replica is the fastest for all the reads. This could be more efficient than the skip feature

because no read operation would be executed on more than one replica. Some

feedback data would need to be provided to the load balancing technique so that

changes in response times, e.g. a faster server starts to work more slowly under

different workload, are detected. The technique would resemble ROWA, but it would

be more flexible than the well-known approach, because the middleware would have

alternatives in deciding on which replica to execute a particular read operation e.g.

using additional load balancing information a read could execute on a slower replica

in the cases where it is being subjected to a lighter load.

3.4. Discussion

This chapter has introduced a middleware-based database replication solution. We

have described different modes of operation of DivRep middleware, explained

replica-control algorithm and stated the possibilities for a hybrid solution. Also, we

have proved the correctness of DRA algorithm ensuring replica consistency. What

follows is the discussion about strengths and weaknesses of DivRep, and possible

changes for improved dependability and better performance.

 Chapter 3. Architecture of DivRep Middleware

 51

3.4.1. Comparing DivRep to Other Replication Techniques

A standard fault-tolerant architecture (Figure 3-1) dictates adjudication of the

responses from diverse replicas. The adjudication is applied at the level of individual

operations. Hence, fault-tolerance will lead to performance penalty and the FT-node is

guaranteed to perform worse than the slower replica. In addition the transaction

termination is achieved using an implementation of a 2PC protocol. Clearly these

characteristics limit the scalability of the replication protocol, which, however, is not a

serious problem since we envisage FT-node as primarily consisting of two diverse

replicas. The schemes adopted for practical database replication provide no protection

against design faults. A common assumption is made that node crashes are the main

concern, an assumption under which various optimistic regimes of operations are

used, e.g. ROWA. These do not require operation adjudication and as a result the

adjudication overhead is simply avoided. Thus, there is no scope for trading-off

intelligently performance for dependability assurance.

There are numerous applications which use operations that are handled correctly by

the deployed DBMSs. Even if diverse DBMSs are deployed most of the operations

will be handled correctly by the diverse replicas. Thus, most of the time adjudicating

the responses of diverse replicas will reveal no discrepancy, making the adjudication

overhead appear as a waste of time. The point, of course, is that we will never know

which operation will turn out to trigger a fault in the DBMSs and revealing a

discrepancy between the replica responses. In some extreme cases, however, one may

know with certainty, that all the operations used by the application will be processed

by the DBMSs correctly; hence one may be prepared to use regimes in which the

adjudication is eliminated. One such example is the implementation of the optimistic

regime. Its advantage compared with the well-known ROWA regime of operation lies

in the fact that under ROWA the load is statically distributed between the replicas – in

the ideal case a fair load-balancing between the replicas is sought. Instead, when the

FT-node operates under the optimistic regime its diverse replicas naturally get the

load that they are better at executing. As a result the optimistic mode has the potential

for good performance.

DivRep is a type of update everywhere replication in which the role of the delegate

server, a node to which client requests are submitted (Weismann, Pedone et al. 2000),

is performed by the middleware. Although the possibility of executing SQL

 Chapter 3. Architecture of DivRep Middleware

 52

operations on any of the replicas, instead of using a primary copy approach, seems

appealing, there are reasons why the traditional update everywhere approach is not

always called upon for performance improvement. The most important one is that the

performance is dependant on the workload. If there is a significant number of update

operations in the workload the processing will be replicated on all sites. This is

exacerbated in DivRep where extra dependability assurance, guaranteed by the

pessimistic regime, necessitates the execution of read operations on all replicas.

Furthermore the linearity, which denotes propagation of operations to all replicas, in

message exchanges (Weismann, Pedone et al. 2000) hinders the performance of

DivRep.

DivRep uses a simple approach to replica control: execution of transaction boundary

operations are controlled using tb_mutex (Figure 3-5) to ensure replica consistency

and the conflict detection is performed using the concurrency mechanism of the

underlying servers. In this way no complex replica control mechanism is performed in

the middleware as is the case in many other solutions (Plattner and Alonso 2004),

(Patino-Martinez, Jimenez-Peris et al. 2005), (Lin, Kemme et al. 2005), (Pedone and

Frolund 2005). Conflicts are detected early in DivRep, as soon as a replica reports

them, instead of waiting for a certification phase to complete and report them.

Moreover, DivRep is advantageous in comparison to the replication schemes where

declaration of transaction characteristics prior to their execution is required, e.g. pre-

declaration of the tables and the particular types of operations (read or write) used in

a transaction (Amza, Cox et al. 2003). DivRep has an advantage over other database

replication solutions in which SI is assumed to be guaranteed by the replicas, such as

(Kemme and Wu 2005), (Daudjee and Salem 2004), (Elnikety, Zwaenepoel et al.

2005): it guarantees SI as found on centralised database systems, where each

transaction operates on the latest database snapshot i.e. it provides Conventional

Snapshot Isolation as described in (Elnikety, Zwaenepoel et al. 2005). Thus if a

transaction T2 starts after a committed transaction T1, it is guaranteed that T2 observes

the committed database state that includes T1’s changes. Note that according to the

original definition of SI in (Berenson, Bernstein et al. 1995) it would be possible that

system chooses an older snapshot, excluding T1’s changes, for T2 to operate on,

despite the fact that T2 starts after T1 commits. In this way DivRep provides read-only

transactions with the most recent snapshot, a property commonly unavailable in other

replication solutions, which permit stale data to be read. In centralised databases, by

 Chapter 3. Architecture of DivRep Middleware

 53

providing the latest snapshot the abort rate of update transactions is reduced, as the

number of overlapping transactions is reduced.

3.4.2. Possible Changes to DivRep

Error detection of the pessimistic regime requires consistent snapshots of data from

both replicas. One might be interested in what would be the consequences if the

replication protocol of DivRep was modified so that instead of the latest committed

snapshot a transaction observes an “older” one. In this way DivRep would ensure GSI

(Elnikety, Zwaenepoel et al. 2005). The pessimistic regime would still use the

comparator function for improved error detection but it would not (necessarily)

operate on the snapshot installed by the last committed transaction. It is, however, far

from obvious that this could bring any performance benefits. This argument is

workload-dependant and if a high conflict rate was observed this change to DivRep

would have negative impact on performance, since the probability of overlaps

between transactions would be higher. For example, let the following schedule of

transaction boundaries, belonging to two transactions T1 and T2, be produced: b1, b2,

c2, c1. Then the logical start of another transaction, T3, which conflicts with T1 will be

crucial for decreasing the abort rate: if b3 is placed immediately after c1 (the latest

snapshot is available) then the conflict will be avoided; but if it is placed in between

c2 and c1 (the changes of c1 are unavailable) then T1 and T3 will overlap and the

conflict will lead to an abort.

It is possible to extend fault tolerance features of DivRep by devising an error

detection mechanism for handling SQL DDL (Data Definition Language) operations,

which are used to define database structure (e.g. CREATE TABLE operation), and

stored procedures (precompiled pieces of code available to applications accessing

database through DBMS APIs). Although DDL operations are usually less frequent

than DML operations, ensuring the consistency of their results on different replicas is

as important. Nevertheless, this is far from a trivial task since comparing the results of

DDL operations from diverse replicas requires the access to different database

metadata information. Concerning stored procedures, the task is more intricate. Let us

assume that comparing the effects of a stored procedure execution on diverse replicas

could be done using the returned results. However this is not adequate. Firstly, there

are cases when a stored procedure does not return a result. Secondly, the execution of

a stored procedure could involve both DMLs and DDLs and, thus, developing a

 Chapter 3. Architecture of DivRep Middleware

 54

generic solution for checking the consistency of the results created by a stored

procedure across diverse replicas is not obvious. Database triggers, pieces of code

that automatically execute in response to an event, could help in providing error

detection among results of DDL operations and stored procedures. In particular,

schema-level triggers, which exist in the Oracle DBMS and fire when a database

schema object is modified, could be useful.

We propose the use of the FT-node for tolerating design faults in order to increase

failure detection. It is evident, however, that the middleware itself represents a single

point of failure. Standard techniques, such as primary-backup replication (Budhiraja,

Marzullo et al. 1993) or implementing decentralised DivRep, could be used to

alleviate this problem and improve availability and scalability. The middleware is

likely to be relatively simple and, thus, we can achieve high confidence in its being

implemented correctly, i.e. free of design faults. Therefore, presuming fail-stop (only

crashes) failures becomes reasonable assumption. Hence the solutions based on this

assumption become relevant.

In order to enhance DivRep so that the replicas are able do decide on the outcome of a

transaction (to commit or abort) even in the presence of failures, it is possible to

substitute 2PC-DR (Figure 3-5) protocol with an implementation of the Non-Blocking

Atomic Commitment (NB-AC) protocol. For example the well-known Three-Phase

Commit algorithm (Skeen 1981), which assumes synchronous systems and bounded

communication delays, can be used to solve NB-AC problem. Alternatively DivRep

could be equipped with Paxos Commit algorithm (Gray and Lamport 2006) in order

to solve the atomic commitment problem between the replicas and the comparator

function. This is likely to decrease response time at the expense of complicating the

replication protocol.

One possibility to further improve the performance of the optimistic regime of

DivRep is to introduce cancellation of read operations. Load balancing using skip

feature is effective only in certain scenarios. Let us assume there are two replicas, Rx

and Ry, executing a read operation r(a), as part of transaction Ti. If the replica Rx

starts and completes r(a) while the other replica, Ry, is executing the preceding

operations in Ti, the skip feature will cause replica Ry to leave out the execution of

r(a). However the skipping is impossible if the executions of r(a) overlap, in global

calendar time, on two replicas (it is in fact more restrictive: no skip occurs if DivRep

receives the result to r(a) only after the thread serving the slower server has sent the

 Chapter 3. Architecture of DivRep Middleware

 55

read to the replica). The best that the middleware can do in that situation is to cancel

the execution of the read on the slower replica, once it obtains the result of r(a) from

the faster one. Nevertheless, the cancellation would carry a performance overhead and

it is unclear whether cancellation will improve the situation or make things worse.

The effectiveness would depend on its overhead and the decreased load on the slower

replica. From implementation point of view the cancellation requires the support from

the database engine, a feature not available on all servers, and a separate thread of

execution on the client side due to which undesirable race conditions might ensue.

Moreover this could lead to a wrong SQL operation being cancelled. For example, in

between issuing a cancel operation, from a dedicated client thread, and executing it in

the database, the long-running read (the operation to which the cancel was directed)

might finish and another operation would start executing. Therefore, the cancel will

wrongly terminate the execution of the subsequent operation.

DivRep uses active replication with the aim to compare results and provide error

detection. One might be interested in using an alternative for the active replication in

order to improve performance. To that end deferred writes technique (Bernstein,

Hadzilacos et al.) (Section 2.3.1) is one such possibility. For example, aborting a

transaction during its execution on a local replica, before the updates are sent to the

other one, would be less costly. Likewise, by localising the execution of multiple

updates on a replica and propagating them together, the number of messages in the

network would be reduced. However, the use of deferred writes is unacceptable for

DivRep, at least when the pessimistic regime of operation is considered. The

technique involves execution of the writes on a local replica and propagation of the

respective results (e.g. the redo log records) to the other replicas. This would prevent

the error detection deployed in the pessimistic regime because of the following:

- The input to the comparison function (see Figure 3-5) is indeterminate – the

changes produced by the local replica are just applied to the remote one.

- Incorrect results, produced by a faulty replica, would be propagated.

This could be alleviated with the propagation of full SQL operations, instead of the

log records, to the remote replica. Even in this case, the advantage of executing result

comparison in parallel with SQL operations will be lost - the results would have to be

compared in the critical path, in the end of the transaction. Moreover, the active

replication will have to be continued for SELECT operations, so that the results of the

reads could be compared.

 Chapter 4. Experimental Evaluation of DivRep Performance

 56

4. Experimental Evaluation of DivRep

Performance

There are three principal means of acquiring knowledge:

observation of nature, reflection, and experimentation.

Observation collects facts; reflection combines them;

experimentation verifies the result of that combination.

Denis Diderot

This chapter provides an extensive evaluation of the performance when diverse

database servers are used for replication. In the course of the evaluation we have

performed a multitude of experiments, varying different experimental parameters such

as transactional mix, load, FT-node and server configurations etc. The different types

of experiments we have performed can be coarsely categorised as follows:

- Initially, to justify motivations for the use of diverse DBMSs for database

replication, we have performed experiments without the use of DivRep

middleware. These experiments focused on the exploration of variability in

performance of diverse servers.

- Then we conducted a performance comparison between DivRep middleware

employing diverse servers and DivRep middleware employing non-diverse

products. This comparison is based on a specific mix of transactions where multiple

clients were executing a read-only mix of transactions in parallel with a single

modifying client communicating with the replicated system. Like in the initial set

of experiments, only an early prototype of DivRep middleware was employed,

without the use of DRA algorithm to ensure the consistency among deployed

replicas.

- Subsequently we present the results of DivRep scheme where multiple modifying

clients were communicating with the replicated system. The central goal of these

experiments was to evaluate the performance implications of increased

dependability guaranteed with DivRep by comparing it to a known database

 Chapter 4. Experimental Evaluation of DivRep Performance

 57

replication solution based on ROWA approach. A fully operational DivRep

middleware was used in this set of experiments.

We have performed a thorough analysis, beyond the use of summary statistics such as

mean, variance etc., of the experimental results in order to get a more informative

insight of DivRep’s performance. We show that in certain cases, when users are

primarily interested in improved performance and possible dependability deterioration

can be tolerated, DivRep scheme can deliver better service than the one provided by

the conventional non-diverse replication.

Moreover, we have devised a possible solution for decreasing the performance

overhead incurred by sequential execution of transaction boundary operations in

DivRep. The solution is based on the use of process prioritisation for database servers

processes. We have performed a set of experiments to evaluate the effectiveness of

the solution.

4.1. Test Harness

One of the contributions of the thesis is the development of a test harness for

performance evaluation of different database replication solutions as well as non-

replicated server configurations. The testbed (Figure 4-1) provides for rigorous and

replicable experimentation with various database servers’ configurations. It is

implemented as a distributed application using Java programming language in a form

of a three-tier architecture. The client and middleware parts of the testbed execute as a

multithreaded application. They include the following:

- A client application (TPC-C.jar in Figure 4-1). This is our own implementation of

TPC-C (TPC 2002a), an industry standard benchmark for On-line Transaction

Processing (OLTP) (see Section 2.4). A number of TPC-C parameters are

configurable in the testbed, e.g. the probability of execution of each type of

transaction. A separate thread executes the logic of each TPC-C client. A dedicated

database connection, opened in the beginning of an experiment and closed upon its

end, is used by each TPC-C client.

- A replication middleware (Replication Middleware.jar in Figure 4-1). The

middleware is based on the multi-master (Wikipedia 2007) synchronous replication

approach. Multi-master systems allow writes to be submitted at multiple replicas

independently and exchange them synchronously (before transaction ends) or

 Chapter 4. Experimental Evaluation of DivRep Performance

 58

Figure 4-1 The architecture of the testbed for the database replication as a UML 2.0 deployment

diagram.

 Chapter 4. Experimental Evaluation of DivRep Performance

 59

asynchronously (after transaction ends). The replication is done at the SQL

operation level (i.e. the applications are assumed to access the data via SQL

operations). The middleware offers to the clients a JDBC interface for database

access. For each client the middleware spawns two threads, one per each replica in

the FT-node (Figure 3-1). The middleware provides for experimentation with

various database replication schemes and allows for different combinations of

servers to be deployed. The servers can belong to the same database vendor (non-

diverse redundancy) or servers from different database vendors could be used

(diverse redundancy). Hence, comparison of the performance of our diverse

replication scheme (DivRep) against a known non-diverse alternatives, e.g. read

ROWA schemes, is possible.

- Logging utility (Logger.jar in Figure 4-1) The utility collects experiment’s

measurements and stores them in a log database on a remote machine. Inter-thread

communication is used between the replication middleware and the logging utility.

The log database holds extensive information about each experiment e.g. details

about all transactions, SQL operations, exceptions raised, as well as details of

possible inconsistencies between the results from different replicas. Appendix A

contains the schema of the log database.

- Database comparison utility (DBComparison.jar in Figure 4-1). The utility

compares the states of databases after experiments and reports possible

inconsistencies. It reads data items from the database servers one-by-one and

reports an inconsistency if corresponding values do not match. When an experiment

involves more than one modifying client we cannot compare the states of databases

across experiments, due to the inherent non-determinism in the client application.

In those cases we, only, compare the states of the replicas at the end of the

experiment in which redundant server configurations were used.

- Data loader utility (DataLoader.jar in Figure 4-1). The utility creates and

populates TPC-C databases on (diverse) servers following the specification detailed

in the standard. Configurable parameters of Data Loader enable us to create

differently scaled databases.

Replication middleware.jar implements the Comparator function (Section 3.1.1). The

control reads for the three types of write operations (DELETE, INSERT and

UPDATE) are generated as follows:

- DELETE FROM table [WHERE condition]

 Chapter 4. Experimental Evaluation of DivRep Performance

 60

We first extract the value from the FROM clause to obtain the table name (notice

that the possible extension to the SQL standard (ANSI 1992) which allows for

joining of the tables in the FROM clause is catered for in this case). If the write

operation has no WHERE clause the control read has the following syntax:

SELECT * FROM table. Otherwise we extract the value of the WHERE clause and

produce the corresponding control-read: SELECT * FROM table WHERE

condition.

- INSERT INTO table

[(column [, ...])]

{ VALUES ({ NULL | expression } [, ...]) | query }

When the column list is specified, the first part of the control-read operation has the

following syntax: SELECT column [, …] FROM table. The second part, i.e. the

WHERE clause of the control-read, is built by pairing each value of the column list

with the corresponding value from the VALUE clause, or the supplied query, in the

original INSERT operation. As long as the primary key column(s) are specified in

the columns list, only the rows inserted with the INSERT operation are retrieved.

However, it is possible that the table has a sequence generator (ANSI 1992) as the

primary key and that the column list does not contain it. Therefore, multiple rows,

with the same values of the specified columns, could be retrieved by the control-

read. This is unlikely, however, since in these cases usually the set of specified

column values in the original INSERT operation, without the omitted sequence

generator value, uniquely identifies a row in the database.

If the column list is not specified the values of all the columns must be supplied by

the original INSERT operation. This is the standard behaviour of INSERT

operation as specified by SQL standards. We do not cater for extensions of the SQL

functionality by some database engines, whereby default values are inserted when

column list is omitted but not all the table’s columns are filled from the VALUES

clause or the query. We read the database metadata to retrieve the list of the column

names in the table (we do this only once, in the beginning of an experiment, for

each table and store it for future use). Subsequently we build the SELECT clause of

the control-read operation using these column names. Analogous to the case when

the column list is given, the WHERE clause of the control-read operation is

generated by pairing the column names with the corresponding values specified in

the VALUES clause, or the query, of the original INSERT operation.

 Chapter 4. Experimental Evaluation of DivRep Performance

 61

One observation is worth pointing out. If the table does not have a primary key

constraint, and the supplied values of the INSERT operation match existing row(s),

the control-read returns excessive result, i.e. additional rows, with the same values

as the ones inserted, would be retrieved. However, these circumstances are rare

since database normalisation, a technique for designing relational databases without

data anomalies (different structural and logical problems), requires the use of

primary keys (Date 1994).

- UPDATE table

SET { column = { NULL | expression} [, ...]

WHERE condition

The SELECT clause of the control-read is generated by extracting the column

names from the SET clause of the UPDATE operation. The FROM clause of the

control-read is generated using the table name. The arbitrary WHERE clause is the

same in the control-read and the original UPDATE operation – this is because we

require the condition in WHERE clause to include the primary key of the updated

table. In this way, only the rows affected by the UPDATE are retrieved by the

control-read operation.

We, additionally, relax the requirement that the primary key has to be specified in

the WHERE clause. This, however, comes with an expense in a general case – it is

possible that additional rows apart from the modified ones are retrieved by the

control-read. Also, even after the requirement is relaxed, if there are overlaps of the

columns in the WHERE clause with the columns in the SET clause a special care

has to be taken. In the case of the overlaps, values of the columns specified in the

SET clause should take precedence, i.e. they should be the ones used in the control-

read operation. Let us look at an example. If the original write operation is

UPDATE t1 SET x = 100 WHERE x = 0, the control-read is SELECT x FROM t1

WHERE x = 100. It is possible, however, that if the column x is not the primary

key (generally primary keys do not change and some DBMSs even dictate that by

preventing modification of primary keys through an UPDATE operation) there had

been rows with x = 100 value in the database before the update took place. Hence

the control-read would retrieve more rows than modified by the write operation.

In addition to the database servers themselves responsible for handling the client

transactions, the server part of the testbed (the third tier) includes a Remote Method

Invocation (RMI) server run as a daemon (a background process) on each database

 Chapter 4. Experimental Evaluation of DivRep Performance

 62

server machine (RMI Server 1.jar and RMI Server 2.jar in Figure 4-1). The main

purpose of the RMI server is to enable maintenance tasks. For example, database

backups, restores and machine reboots between experiments are performed as needed

to ensure the identical initial state of system resources and databases used in the

experiments. To perform these tasks each of the RMI servers communicates with the

client machine through the RMI client (RMI Client.jar in Figure 4-1). Additionally,

we developed User Defined Functions (PG UDFs and FB UDFs in Figure 4-1) as part

of the mechanism for minimising replication overhead (a detailed description is given

in Section 4.5).

The testbed consists of four physical machines:

- A client machine (Client (Windows 2000) in Figure 4-1). The TPC-C Client

application and the middleware execute on this machine although the clients and

the middleware can be deployed on different machines. We have monitored the

resource utilisation on the client machine before performing measured experiments.

The monitoring showed that the client machine does not become a bottleneck in

any of the experiments.

- A logging machine (Logging Machine (Windows 2000) in Figure 4-1). The

experiment results are stored on this machine. The data is stored using a Microsoft

SQL server. The selection of Microsoft SQL server is mainly for convenience in

analysing the results due to the familiarity of the author with Transact-SQL

(Microsoft 2000). The logging itself does not depend on any Microsoft SQL

proprietary feature and the database server can be replaced by a different product.

- Two server machines (Server 1 (Fedora Core 6) and Server 2 (Fedora Core 6) in

Figure 4-1). These machines host the database servers under the experiment, which

are offered by either the same or different vendors. In our studies we have mainly

used two open-source database servers, namely Firebird and PostgreSQL (Firebird

and PostgreSQL in Figure 4-1). These two database servers are denoted as FB and

PG, respectively, in the rest of the document. Different configurations of servers

can be used: e.g. a single server – 1FB, 1PG, or two servers – 2FBs, 2PGs,

1FB1PG. In our initial studies we have used Firebird’s predecessor – Interbase

(IB). Borland (Borland 2007) offered IB as an open source product while in version

6. However the company reverted to the proprietary development from version 6.5,

announcing that it would no longer actively develop the open source project.

Firebird, an open source fork of the InterBase 6 code, however, remains actively

 Chapter 4. Experimental Evaluation of DivRep Performance

 63

developed. The particular choice of the servers is due to the same concurrency

control mechanism, i.e. they employ Multi Version Concurrency Control to ensure

snapshot isolation. In fact both products have a long history of support for multi-

versioning - Borland’s Interbase being one of the first systems to offer Snapshot

Isolation (Thakur 1994). Although we have implemented TPC-C client for use with

two commercial servers we have not focused the experimentation on these products

partly because the licenses constrain the users’ rights to publish performance

related results. However, we have used different versions of the open-source

DBMSs, both PG and FB, during the evaluation of DivRep, as well as for the

selection of its components (Section 5), with the aim of gaining a thorough

perception of its performance.

It should be noted that no restriction in the testbed exists regarding the choice of

hardware and software. Different hardware platforms, operating systems and database

servers are deployable in the testbed. The modular design of the testbed allows for the

use of different client applications. Therefore, it is possible to deploy another type of

benchmark, or a real-life application in order to evaluate server performances under a

different operational profile. Our measurements are more detailed than those required

by the standard, e.g. we record the response times of the individual SQL operations.

The testbed features a set of configuration parameters that enable us to run different

types of experiments. Some of the more important ones are as follows:

- Server configuration - We can experiment with either single servers or replicated

setups. If evaluating the performance of replicated setups we can use the servers

from the same vendor (non-diverse replication) or from different ones (diverse

replication).

- Number of clients (load) – We control the concurrency degree with this parameter.

Additionally, the concurrency level of the TPC-C application is configurable

through think times parameter too (Section 2.4). Think times represent the time

spent, by the operator, to read the result of the transaction at the terminal before

requesting another transaction (TPC 2002a).

- Operational profile - We can change the probabilities for the transaction types

specified by the TPC-C standard, e.g. instead of the default write-intensive profile a

read-only mix can be executed.

- Workload size - We control the workload size by varying the number of

transactions in an experiment.

 Chapter 4. Experimental Evaluation of DivRep Performance

 64

4.2. Preliminary Experiments – Systematic Differences in the

Performance of Diverse Servers

When DivRep is deployed, the faster responses for SQL operations might come from

different replicas. The phenomenon is somewhat related to mirrored disk

configurations, where one can take advantage of the random difference between the

physical disks' response times to reduce the average response time on reads (Chen,

Lee et al. 1994). The variability in SQL operations’ durations is true for both diverse

and identical server configurations. In the case when the optimistic regime is used, the

fact can be turned into a performance improvement because the overall transaction

response time might be shorter than the corresponding transaction time of the

individual servers. Evidently, the observation is dependant on the type of workload

(transactional mix) used and it will manifest if both servers skip (a subset of) SQL

operations. Moreover the response times of DivRep deploying diverse servers might

be shorter than the corresponding response times when non-diverse servers are used.

This is true if systematic differences are observed in the response times of the diverse

database servers (Gashi, Popov et al. 2004).

We conducted a preliminary empirical study to assess the performance effects of

using the pessimistic and optimistic regimes of DivRep when either diverse or non-

diverse servers are used and investigate differences in response time with the different

setups. In this study we have used two open-source servers PostgreSQL (PG) 7.2.4

and Interbase (IB) 6.0. We used TPC-C as the client application. We used several

identical machines (Intel Pentium 4 (1.5 GHz), 640MB RAMBUS RAM) with

different operating systems:

- Microsoft Windows 2000 Professional for the client(s) and the IB servers.

- Linux Red Hat 6.0 for the PG servers.

The servers ran on four machines: two replicas of IB (IB1 and IB2) and two replicas

of PG (PG1 and PG2). Before the measurement sessions, the databases on all four

servers were populated as specified by the standard. We ran two experiments with

different loads on the servers:

- Experiment 1: A single TPC-C client for each server.

- Experiment 2: 10 TPC-C clients for each server, each client using one of 10 TPC-C

databases managed by the same server, so that we could measure the servers’

 Chapter 4. Experimental Evaluation of DivRep Performance

 65

performance under increased load. In this way conflicts between different clients

were avoided and consistency was trivially preserved.

In both experiments each client executed 10,000 transactions. Our objective in the

study was not just to repeat the benchmark tests for these servers, but also to get

preliminary indications about the performance of an FT-node using diverse servers,

compared to one using identical servers and to a single server. Our measurements

were more detailed than the ones required by the TPC-C standard. We recorded the

response times for each individual transaction, for each server. We were specifically

interested in comparing two architectures:

- Two diverse servers concurrently process the same stream of transactions.

- A reference, non-diverse architecture in which two identical servers concurrently

process the same stream of transactions.

All four servers were run concurrently, receiving the same stream of transactions from

the test harness, which produced four copies of each transaction/SQL operation. The

overhead that the test harness introduces (mainly due to using multi-threading for

communication with the different database servers) is the same with and without

design diversity. The comparison between the two architectures is based on the

transaction response times, neglecting all extra overheads that DivRep middleware

would introduce.

We compare the performances among all four server replicas. For each pair of server

replicas we calculate the minimum and maximum response time pertaining to a

particular transaction by comparing the respective replica results. The former

approximates the performance of the pessimistic regime of operation and in the same

way the latter approximates the performance of the optimistic regime of operation, for

this particular mix of transactions and setup.

We used the following measures of interest:

- Mean transaction response times for all five transaction types (Figure 4-2).

- Mean response times per transaction of each type (Figure 4-3).

Firstly we examine the results obtained with the Experiment 1. With two identical

database servers (last two server pairs in Figure 4-2), the difference between the

mean times is minimal, within 10%. The mean times under the optimistic and

pessimistic regimes of operation remain very close (differences of <10% for IB and

<15% for PG). IB is the faster server, being almost twice as fast as PG, for this set of

transactions.

 Chapter 4. Experimental Evaluation of DivRep Performance

 66

When we combine two diverse database servers we get a very different picture. Now

the optimistic regime can deliver dramatically better performance than the faster

server (IB). The mean response time is almost 3 times shorter than for IB alone

(compare the first two bars for the first four pairs). When we consider the pessimistic

regime (represented by the values of MAX(Server1, Server2)), the value of the mean

response time is larger than the respective value of the slower server, PG, but the slow

down is within 40% of PG’s mean response time. This approximates the cost of the

improved dependability assurance.

 Mean Response Times - All 5 Transactions

46
9

46
9

44
1

44
1 46
9

81
9

15
8

17
8

15
5

17
5

42
9

76
6

11
31 11

80

11
06 11

56

48
2

94
3

81
9 89

0

81
9 89

0

44
1

89
0

0

200

400

600

800

1000

1200

1400

Server1:IB1
Server2:PG1

Server1:IB1
Server2:PG2

Server1:IB2
Server2:PG1

Server1:IB2
Server2:PG2

Server1:IB1
Server2:IB2

Server1:PG1
Server2:PG2

Server Pairs

M
ea

n
Ex

ec
ut

io
n

Ti
m

e
(m

se
c)

Server 1 MIN(Server1,Server2) MAX(Server1,Server2) Server 2

Figure 4-2 Mean response time for all five transaction types over 10,000 transactions for two replicas
of Interbase 6.0 and two of PostgreSQL 7.2.4. The X-axis lists the servers grouped as pairs (Server1

and Server2). Each server may be of type Interbase (IB) or PostgreSQL (PG). For each of the 6 server
pairs the vertical bars show: mean response times of the individual servers and mean response times of
the approximations for the optimistic and the pessimistic regime of operation, MIN(Server1, Server2)

and MAX(Server1, Server2) respectively.

In order to understand why a diverse pair is so different from a non-diverse pair we

looked at the individual transaction types. The mean response times of the five

transaction types individually are shown in Figure 4-3. The figure indicates that the

servers “complement” each other in the sense that when IB is slow (on average) to

process one type of transaction, PG is fast (New-Order and Stock-Level) and vice

versa (Payment, Order-Status and Delivery). These systematic differences illustrate

why a diverse pair outperforms a non-diverse one so much when the optimistic regime

is used, and why it is worse than the slower server when the pessimistic regime is

used (Figure 4-2).

 Chapter 4. Experimental Evaluation of DivRep Performance

 67

Mean Response Times per Transaction

0

100

200

300

400

500

600

700

800

900

1000

New-Order Payment Order-Status Delivery Stock-Level

Transaction Type

M
ea

n
R

es
po

ns
e

Ti
m

e
(m

se
c)

IB1 IB2 PG1 PG2

Figure 4-3 Mean response times by two replicas of Interbase 6.0 and PostgreSQL 7.2.4 for all five

transaction types. The X-axis lists the transaction types (New-Order, Payment, Order-Status, Delivery
and Stock-Level). The Y-axis gives the values of the mean response time in milliseconds for each of

the servers (IB1, IB2, PG1 and PG2) for a particular transaction type.

In addition to the mean execution times, we have calculated the percentage of the

faster responses coming from either IB or PG for each transaction. For three

transaction types the situation is clear-cut. IB is always the faster server for Order-

Status and Delivery transactions, while PG is always the faster server for Stock-Level

transactions. For New-Order and Payment transactions instead, the server that is faster

on average does not provide the faster response for each individual transaction.

Consider the pair {IB1, PG1}. For New-Order transaction, PG1 is faster than IB1 on

81.2% of the transactions but slower on 15.6% (3.2% of the response times were

equal). The situation is reversed for Payment transaction: 77.2% of the faster

responses come from IB1, 15.3% from PG1. This fluctuation is further revealed in

Figure 4-4. Both observations indicate that diverse servers under the optimistic regime

would have performed better (for this transaction mix and load) than a pair of

identical servers.

This pattern of the two database servers “complementing” each other was also

observed in Experiment 2, under increased load with 10 TPC-C clients. During this

experiment the servers were “stretched” so much that the virtual memories of the

machines were exhausted. Similarly to the observations of Experiment 1, when two

identical servers are used the difference between the mean response times is minimal,

within 10%, and the difference between the mean response times of the optimistic and

 Chapter 4. Experimental Evaluation of DivRep Performance

 68

pessimistic regime remain less than 10% for both servers. Again IB is the faster

server.

The mean response times when two diverse servers are considered under the

optimistic regime are around four times shorter than for IB alone. Under the

pessimistic regime, the mean response time is of course larger than the value of the

slower server (on average), PG, but the slow down is within 60% of PG’s mean

response time (it was 40% in Experiment 1, when a single client was used).

Figure 4-4 Response times for New-Order and Payment transactions. The dots represent the response
times of two servers for an instance of the respective transaction type. If the times were close to each

other, most of the dots would be concentrated around the unit slope (observed for the pairs of identical
servers, IB1 vs. IB2 and PG1 vs. PG2). If the dots are mostly below the slope, Interbase is slower (as
with New-Order). If the dots are concentrated above the unit slope – PostgreSQL is slower (as with

Payment). Similar results were obtained for the other three diverse server pairs.

4.3. When Diverse Redundancy Performs Better than Non-

Diverse Redundancy

In the previous section we have described a study performed to gather preliminary

results on performances of diverse servers. In order to evaluate the effectiveness of

diversity in a different setup we performed additional experiments. The results have

been reported in (Stankovic and Popov 2006). Instead of communicating with an

exclusive database, each client in the new study had communicated with the same

database. In order to experiment with the database servers that exhibit comparable

performance we have performed the following:

- Deployed a more recent version of the server that showed as marginally slower,

PostgreSQL, in the first study. The new version used was 7.4.0 instead of 7.2.4.

New-Order Transaction: IB1 vs PG1

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

IB1 (msec)

PG
1

(m
se

c)

Payment Transaction: IB1 vs PG1

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

IB1 (msec)

PG
1

(m
se

c)

 Chapter 4. Experimental Evaluation of DivRep Performance

 69

- Deployed the other database server, InterBase 6.0 on the same operating system as

PostgreSQL. The operating system used was Linux Red Hat 6.0 (Hedwig).

The same hardware was used as in the first study. Again, the TPC-C implementation

as used as the basis for client application. We ran a set of experiments ww ith the

plicas of IB.

plicas of PG.

uence of 10,000 transactions and was

idence in the results, as detailed below.

lients were deployed they executed a mix of read-only

stead of the mix of transactions recommended by the TPC-C.

clients with the middleware and of the

following server configurations:

- 1IB1PG, an FT-node with a copy of IB and PG.

- 1IB, a single replica of IB.

- 1PG, a single replica of PG.

- 2IB, an FT-node with two re

- 2PG, an FT-node with two re

Each experiment comprises the same seq

repeated five times in order to get higher conf

The server machines were restarted and databases restored between the repetitions.

All the measurements were associated with a single TPC-C client under different

server loads as follows:

- No additional clients.

- 10 additional clients.

- 50 additional clients.

Whenever additional c

transactions (RO mix) in

The RO mix consists of the two read-only transactions: Order-Status and Stock-Level

of almost equal proportion. The readers and writers do not conflict in the two

DBMSs, since both IB and PG feature a scheduler based on MVCC (Multi-Version

Concurrency Control). Hence data consistency between the replicas is guaranteed.

This was experimentally confirmed by successfully running a comparison between the

databases at the end of the experiments.

The overhead that the test harness introduces (mainly due to using Java multi-

threading for communication of the

middleware with the different DBMSs) is the same irrespective whether a single or

two replicas are used in the experiment. It has been measured to be negligible

compared with the time taken by the respective DBMSs to process the 10,000

transactions.

 Chapter 4. Experimental Evaluation of DivRep Performance

 70

4.3.1. Confidence in the Results

Each experimental setup (with a fixed configuration and load) was repeated five times

so that we could detect significant variation between the observed results due to

factors beyond our control (e.g. fragmentation of files on the servers).

Figure 4-5 shows the mean transaction times for all transactions together in a 10,000-

transaction run, grouped by experiment repetitions when only a single TPC-C

compliant client is deployed. There is no significant variation between the results

across the repetitions. The same effect was observed for a particular transaction type

too.

A similar picture, consistent across the repetitions, was established for the increased

load of 10 and 50 additional clients. Figure 4-6 shows the results with 50 additional

clients. The only configuration with a noticeable variation between the repetitions was

1IB. In particular, the first run is 25% faster than the remaining four in terms of the

mean transaction time with all transaction types. A noticeable variation also exists

between the specific transaction types, for which the percentages vary between 20%

and 25%. This variation, however, does not change the ordering between the

configurations.

In addition, the ordering between the configurations does not change even if we

execute a different sequence of transactions. This was experimentally confirmed by

using different seed values for the particular pseudo-random number generator to

execute 10,000 transactions in different orders with either a single TPC-C compliant

client or with ten additional clients.

Such consistency between the observations, in particular the fact that the ordering

between the configurations remains unchanged across the repeated experiments, is the

reason why in the rest of the section we compare the performances using a single run

per configuration.

4.3.2. Performance Comparison of Different DBMS Configurations

To compare different DBMS configurations we used the following measures of

interest:

- Mean transaction time (for all five transaction types).

- Mean transaction time for a particular type of transaction.

- Cumulative transaction time, i.e. experiment duration.

 Chapter 4. Experimental Evaluation of DivRep Performance

 71

Consistency of Results (1+0 Clients Experiment)

0

50

100

150

200

250

300

350

1IB 1PG 1IB1PG 2IB 2PG

Server Configuration / Experiment Repetition

R
es

po
ns

e
Ti

m
e

(m
se

c)
1 2 3 4 5

Figure 4-5 Mean transaction response times for each of the 5 repetitions and a particular server

configuration (1IB, 1PG, 1IB1PG, 2IB or 2PG), when the load was generated by a single TPC-C
compliant client.

Consistency of Results (1+50 Clients Experiment)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1IB 1PG 1IB1PG 2IB 2PG

Server Configuration / Experiment Repetition

R
es

po
ns

e
Ti

m
e

(m
se

c)

1 2 3 4 5

Figure 4-6 Mean transaction response times for each of the 5 repetitions and a particular server

configuration (1IB, 1PG, 1IB1PG, 2IB or 2PG), under the increased load with 50 additional read-only
clients.

 Chapter 4. Experimental Evaluation of DivRep Performance

 72

Figure 4-7 depicts the response time when only a single TPC-C client communicates

with the FT-node configurations. 1PG is on average the best configuration under this

load, though transactions of type Delivery and Order-Status are faster on 1IB. The

ranking changes when the load increases (Figure 4-8). Now the fastest configuration

on average is the diverse pair, albeit not for all transaction types (1IB is the fastest for

Order-Status and Payment, while 1PG is the fastest for Stock-Level). The figure

indicates that the diverse DBMSs “complement” each other in the sense that when IB

is slow to process a transaction then PG is fast (New-Order and Stock-Level) and vice

versa (Payment, Order-Status and Delivery). The same observations have been

recorded in the preliminary set of experiments. These systematic differences illustrate

why the diverse pair, 1IB1PG, is the best configuration on average. In addition the

skip feature enables the diverse pair to augment this advantage by omitting the read

SQL operations on the slower DBMS.

Although a DBMS is fastest on average for a particular transaction type, within the

transactions the fastest responses to SQL operations may come from different

DBMSs. This fact is utilised by the diverse pair. Hence, it is not surprising that IB

executes more SELECT operations in an experiment than PG when the two are

employed as a diverse pair (IB executes 70%, while PG executes 51%). There is

nothing unusual in the fact that the sum, 70% + 51%, is greater than 100%. It simply

means that there are reads which are executed by both servers. If the faster server has

not completed a read by the time the slower is ready to start, then both will process

the particular operation. Similar results were obtained under the load with 50

additional clients.

Figure 4-9 shows how the ordering changes between the configurations as a result of a

load increase. An experiment comprising 10,000 transactions under the ‘lightest’ load

(0 additional clients) is the fastest with 1PG. Under increased load, however, the

diverse pair, 1IB1PG, becomes the fastest configuration. The experiment duration

with the diverse pair is shorter than with the individual DBMSs, or with either of the

non-diverse (homogenous) DBMS pairs. The diverse pair is 20% faster than the

second best configuration (1PG) with 10 additional clients and more than 25% faster

than the second best configuration (2PG) with 50 additional clients. The benefits of

the systematic difference in transaction times between the diverse DBMSs and the

efficiency of the skip feature become more clearly pronounced when the load

increases.

 Chapter 4. Experimental Evaluation of DivRep Performance

 73

Mean Response Time (1+0 Clients Experiment)

27
2

56
8

38
0

82

17
7

25
6

15
5

61
7

18
8

41
9

59 49

24
3

65
5

28
1

19
9

16
3

28
530
7

62
1

40
5

13
6 18

9

35
9

21
4

84
4

26
1

20
3

12
1

57

0

200

400

600

800

1000

All 5 D NO OS P SL

Transaction Type

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB
1PG
1IB1PG
2IB
2PG

Figure 4-7 Mean transaction times for each transaction type and for all transactions together under a
load generated by a single TPC-C compliant client. The configurations compared under this load are as
follows: configurations with a single DBMS (1IB, 1PG), a configuration with a diverse pair of DBMSs

(1IB1PG) and configurations with homogenous pairs of DBMSs (2IB, 2PG).

Mean Response Time (1+10 Clients Experiment)

12
02

30
45

20
60

18
7 36

7

12
5

83
6

42
22

10
09

68
1

41
4

90

69
7

26
27

88
8

49
4

39
2

10
7

17
58

42
98

28
98

38
3 65

4

22
1

87
4

39
40

97
6

60
1

56
8

11
7

0

1000

2000

3000

4000

5000

All 5 D NO OS P SL
Transaction Type

R
es

po
ns

e
Ti

m
e

(m
se

c)

1IB
1PG
1IB1PG
2IB
2PG

Figure 4-8 Mean transaction times for each transaction type and for all transactions together under an

increased load with 10 additional read-only clients. The configurations compared under this load are as
follows: configurations with a single DBMS (1IB, 1PG), a configuration with a diverse pair of DBMSs

(1IB1PG) and configurations with homogenous pairs of DBMSs (2IB, 2PG).

 Chapter 4. Experimental Evaluation of DivRep Performance

 74

Cumulative Transaction Time (Experiment Duration)
under Different Loads

48

320

26

141

40

113

448

51

292

36

146

1339
631 908

606

1

10

100

1000

10000

1+0 Clients 1+10 Clients 1+50 Clients
Load

R
es

po
ns

e
Ti

m
e

(m
in

)

1IB
1PG
1IB1PG
2IB
2PG

Figure 4-9 Cumulative transaction time (experiment duration) for the five DBMS configurations under

different load (0, 10 and 50 additional read-only clients).

4.4. Performance Implications of Improving Dependability

DivRep middleware operating in the pessimistic regime improves dependability by

guarding against non-crash failures in addition to tolerating crash failures. Such a

degree of fault-tolerance is impossible with non-diverse solutions that deploy

traditional ROWA (Bernstein, Hadzilacos et al. 1987) replication. However, the

performance of the pessimistic regime incurs an overhead, by executing SQL

operations on all replicas and then comparing the respective results; thus the

performance is likely to deteriorate in comparison with ROWA. In order to evaluate

the overhead, we implemented a simulation of a known middleware-based database

replication solution (Lin, Kemme et al. 2005), SI-Rep, which is based on the ROWA

approach. The principal goal was to use a ROWA-based replication protocol as a

baseline when evaluating the performance of DivRep, and not directly compare the

performances of the two replication schemes. The latter would be difficult to perform

cleanly: the two schemes have somewhat dissimilar aims and evaluating their

performances in the same framework, e.g. using the same programming language, is

not easy.

 Chapter 4. Experimental Evaluation of DivRep Performance

 75

4.4.1. SI-Rep Simulation

SI-Rep middleware provides replica control mechanism on top of the concurrency

control offered by the underlying databases. Each of the replicas is assumed to

provide snapshot isolation (Section 2.2.3) for concurrent transaction executions. SI-

Rep guarantees data consistency by combining group communication primitives with

the replica control system ensuring 1-copy Snapshot Isolation (Lin, Kemme et al.

2005) in the replicated system. SI-Rep performs load balancing statically since the

load is divided among all replicas. Each client submits its transactions to a local

replica. After a transaction is executed on the local replica the writesets are extracted

and delivered, using total order multicast, to all replicas (including the originating

one). The total order multicast ensures that all conflicting writesets are validated in

the same order, namely the order of writeset delivery. In the case of read-only

transactions the commit follows immediately after the local execution.

Potential conflicts between the writesets, originating from concurrent transactions, are

validated by the decentralized middleware. The validation proceeds in two steps, in

each middleware replica. The local validation step, on a middleware Mx, checks for

write-write conflicts between a local transaction, Ti, and writesets of concurrent

remote transactions (the check against possible conflicts with local concurrent

transactions is performed by the database replica). If the local validation succeeds,

Ti’s writeset is multicast, otherwise Ti is aborted. However, the validation does not

stop here. The reason is that the middleware replicas might send the writesets

concurrently and a number of writesets, received between sending and receiving Ti’s

writeset, would not be validated by Mx. These writesets are validated as part of the

global validation step using the writeset delivery order imposed by total order

multicast.

While DivRep imposes equivalent order of begins and commits on the replicas,

effectively guaranteeing that a client reads the same snapshot of data from any replica,

SI-Rep allows for a certain degree of concurrency of transaction boundaries.

Transaction begins run concurrently on different replicas in SI-Rep since reads are not

performed on all replicas. Their order relative to commit operations is potentially

different at different replicas, e.g. two concurrent transactions T1 and T2, executing on

two replicas Rx and Ry, are allowed to produce the following schedules of transaction

boundaries: b1, b2, c1, c2 on Rx and b1, c1, b2, c2 on Ry.

 Chapter 4. Experimental Evaluation of DivRep Performance

 76

In our simulation of SI-Rep, referred to as SimSI-Rep in the rest of the document, we

have ignored the group communication system and the overhead it might incur. As in

DivRep, the total order of transaction executions was established using tb_mutex

(Section 3.1.1). The same Two-Phase Commit protocol, 2PC-DR (Section 3.1.1),

which we used in DRA, is used in the simulation too - it guaranteed the transaction

termination on the replicas. We have simulated the static load balancing mechanism

by dividing the load equally between deployed replicas, i.e. a DivRep experiment with

2 replicas interacting with 50 clients was compared to a SimSI-Rep experiment, in

which each replica was assigned 25 clients. Although a replica executes the read-only

load of only half of the clients, in a SimSI-Rep experiment, it executes the write

operations generated by all the clients. However, instead of propagating the writesets

in the end of transaction (deferred writes) to the remote replicas we have executed the

updates in parallel (immediate writes) on both replicas. This is a deviation from the

original implementation of SI-Rep and it has implications on the comparison between

two schemes. On the one hand, the execution of the SQL operations might be more

expensive than the application of writesets. On the other hand, the retrieval and

propagation of the writesets, the essential components of SI-Rep, are eliminated. As a

result, and in addition to the lack of group communication, the simulation of SI-Rep

might be favoured over DivRep. When executing read-only transactions with SimSI-

Rep we have ignored the use of tb_mutex for the serialisation of the commits. This is

because the position of the commit operations of the read-only transactions is

irrelevant since no writeset is associated with them. Similarly, since readsets of the

remote transactions are empty in SI-Rep, we discarded the synchronisation of their

begin operations.

4.4.2. DivRep vs. a ROWA-Based Replication (SimSI-Rep)

Experimental Setup and Results

To experimentally compare the performance of DivRep against the simulation of SI-

Rep scheme we again used the TPC-C implementation (Section 4.1). In the study we

used newer versions of both database servers: Firebird 2.0.1 and PostgreSQL 8.1.5,

referred to as FB and PG, respectively. The client and the logging machines ran

Windows 2000 Professional sp4 operating system, as in the previous experiments,

 Chapter 4. Experimental Evaluation of DivRep Performance

 77

while the two database servers ran atop Fedora Core 6. The hardware specifications

were as follows:

- Client machine: 1.5 GHz CPU, 1GB RAMBUS RAM and 20GB 5400 rpms IDE

disk.

- Logging machine: 1.5 GHz CPU, 512MB RAMBUS RAM and 40GB 5400 rpms

IDE disk.

- Server machines: 1.5 GHz CPU, 640MB RAMBUS RAM and 80GB 7200 rpms

IDE disk. The database servers were deployed using faster, more recent HDDs than

in the previous experiments, i.e. we used Seagate Barracuda IDE HDDs (ST-

380011A) instead of Maxtor DiamondM IDE HDD with 40GB and 5400 rpms.

Initially we have performed various experiments with the original TPC-C profile and

database load. For example, we have deployed a TPC-C database with 20 warehouses

in order to run experiments with varying number of clients. Due to the limited

capabilities of our data storage, we observed an I/O bottleneck. Therefore, the CPU

was underutilised and the throughput dropped to only several transactions per minute.

We had decreased the think times to increase the concurrency, but the change resulted

in a high conflict rate. In order to increase throughput and minimise the abort rate we

changed the transactional profile to a read-oriented one. The read-only transactions,

OS and SL, were made the most frequently executed ones; amounting to

approximately 86% of executions, while each of the modifying transaction types (D,

NO and P) amounted to at least 4% of all executions. Clearly, executing the read-

oriented mix reduces the likelihood of conflicts. Although the optimistic response

regime might consequently exhibit improved performance, the workload is

advantageous for SI-Rep – the ROWA-based replication will improve the

performance by distributing the reads among the deployed replicas. Despite the

frequencies of transaction types being altered, the representativeness of the modified

workload still holds, i.e. activities of an order-entry system are modelled. In order to

measure the impact of high concurrency, we have changed the values of the think

times – the mean values of think times’ distribution were decreased by an order of

magnitude compared with the values specified in the standard.

We have performed several types of experiments to test the performance of DivRep.

The following replication configurations were used in the experiments:

- DivRep middleware running in the pessimistic regime (1FB1PG-Pess.).

- DivRep middleware running in the optimistic regime (1FB1PG-Opt.).

 Chapter 4. Experimental Evaluation of DivRep Performance

 78

- DivRep middleware running in the optimistic regime and using a pair of non-

diverse servers (2PG-Opt).

- Simulation of SI-Rep middleware using a pair of PG servers (2PG - SimSI-Rep).

- Simulation of SI-Rep middleware using a pair of FB servers (2FB - SimSI-Rep).

The load on the servers varied by changing the number of clients: 25, 50, 100 or 200

clients were deployed. The different loads have been used in conjunction with the

read-intensive profile. Each test consisted of 50,000 transactions. Moreover,

experiments with 20 clients executing the original, write-intensive workload specified

by the TPC-C were performed (this is the only load under TPC-C profile for which

we have not observed I/O bottleneck and the conflict rate was small). The mean of the

think times distribution was decreased an order of magnitude as in the experiments

with read-oriented profile. In the tests with TPC-C compliant profile 150,000

transactions were executed in each experiment. Despite taking detailed experimental

logs (e.g. we recorded response times of individual SQL operations) we have chosen

experiment duration, a throughput statistic (it is directly proportional to tpmC, a

metric proposed by TPC-C standard), and average transaction response time to be the

measures of interest. We ran the same set of experiments with SimSI-Rep as with

DivRep. Each type of experiment was repeated at least five times to get higher

confidence in the results. In the rest of the chapter it is assumed that one FB and one

PG replica are deployed in DivRep middleware if not stated otherwise.

Figure 4-10 contrasts the experiment duration for DivRep middleware, running in

either the pessimistic regime (1FB1PG-Pess.) or the optimistic regime (1FB1PG-

Opt.), and SimSI-Rep middleware, when either Firebird replicas (2FB - Sim-SIRep) or

PostgreSQL replicas (2PG - Sim-SIRep) are used. In order to compare the two

replication schemes more fairly we deployed the same, non-diverse, servers in both.

We compared the performances of DivRep with two PGs (2PG – Opt.) against SimSI-

Rep with two PGs (Figure 4-11). Details about the response times of different

replication schemes are given in Table 4-1.

 Chapter 4. Experimental Evaluation of DivRep Performance

 79

DivRep vs. SimSI-Rep

0
5

10
15
20
25
30
35
40
45
50

25 50 100 200

Load (number of clients)

Ex
pe

rim
en

t D
ur

at
io

n
(m

in
)

1FB1PG - Pess. 1FB1PG - Opt. 2FB - SimSI-Rep 2PG - SimSI-Rep

Figure 4-10 Experiment duration of DivRep running in either the pessimistic regime (1FB1PG - Pess.)
or the optimistic regime (1FB1PG - Opt.) and the simulation of SI-Rep with FB (2FB - SimSI-Rep) and

PG (2PG – SimSI-Rep) under different loads.

DivRep (2PG) vs. SimSI-Rep (2PG)

0

5

10

15

20

25

30

35

25 50 100 200

Load (number of clients)

Ex
pe

rim
en

t D
ur

at
io

n
(m

in
)

2PG - DivRep 2PG - SimSI-Rep

Figure 4-11 Experiment duration of DivRep with two PG servers running in the optimistic regime (2PG
– Opt.) and the simulation of the SI-Rep with two PG servers (2PG - SimSI-Rep) under different loads.

 Chapter 4. Experimental Evaluation of DivRep Performance

 80

Table 4-1 The average transaction response times for different replication schemes.

Load Scheme Type Response Time (ms)
1FB1PG-Pess. 466
1FB1PG-Opt. 161
2FB - SimSI-Rep 168
2PG - SimSI-Rep 65
1FB1PG-Pess. 1812
1FB1PG-Opt. 813
2FB - SimSI-Rep 958
2PG - SimSI-Rep 227
1FB1PG-Pess. 4048
1FB1PG-Opt. 2027
2FB - SimSI-Rep 2303
2PG - SimSI-Rep 925
1FB1PG-Pess. 8921
1FB1PG-Opt. 4251
2FB - SimSI-Rep 4319
2PG - SimSI-Rep 2172

25

50

100

200

Discussion of the Results

When we look at Figure 4-10 we can observe that the performance of DivRep in the

pessimistic regime is worse than the performance of SimSI-Rep with either of the

servers. Also, SimSI-Rep with PGs is superior to the performance of its FB

counterpart. When the load is small (cf. 25 Clients in Figure 4-10) SimSI-Rep

deploying two FB replicas is 25% faster than DivRep and SimSI-Rep with PGs is

more than 30% faster. We observed that the CPU utilisation on the machine running

FB server was moderate under this load while PG demonstrated very low CPU

activity. As the load increases, the performance of 1FB1PG-Pess. degrades, while

SimSI-Rep exhibits a faster result (experiment duration decreases) by sharing the load

among replicas and utilising the spare CPU capacity. Hence the difference between

1FB1PG-Pess. and SimSI-Rep increases: the result of the 2PG SimSI-Rep experiment

is more than 70% faster than DivRep in the pessimistic regime under the highest load

(200 clients). It is worth noting that the performance of SimSI-Rep with FB

deteriorates under the highest load. The CPU becomes a bottleneck and consequently

the experiment duration is longer. This can be partly explained by different

architectures of the two servers: PG uses shared memory for multiple server backends,

i.e. processes, while FB (and in particular the architectural model we used in the

experiments, i.e. Classic server) allocates fixed amount of memory to each connection

for individual use.

 Chapter 4. Experimental Evaluation of DivRep Performance

 81

The results in Figure 4-10 show how the two schemes compare under the read-

intensive profile. A similar ratio between DivRep and SimSI-Rep, as in the

experiments under the read-oriented profile with 25 clients, was observed with the

experiments when the proper TPC-C profile and the load of 20 clients was used: the

SimSI-Rep deploying two FB replicas was again 25% faster than 1FB1PG-Pess. and

the SimSI-Rep with PGs was around 35% faster.

The difference between DivRep in pessimistic regime and SimSI-Rep configurations

is significant but it can be reduced if DivRep is deployed in the optimistic regime of

operation (see the blue line with the square marker in Figure 4-10). We can see that

SimSI-Rep with two PG servers is still the best configuration, although the difference

is less pronounced. The 2PG SimSI-Rep is superior under the highest load (cf. 200

Clients), when it is approximately 45% faster than 1FB1PG-Opt. On the other hand

the SimSI-Rep with FB is never better than the 1FB1PG-Opt. Under the highest load,

both DivRep and SimSI-Rep with FB exhibit poor performance because the CPU load

on the FB replicas becomes the bottleneck.

As expected, the reason for the improved performance of DivRep in the optimistic

regime is a form of dynamic load balancing achieved using the skip feature. In

contrast to the pessimistic regime the reads are not necessarily executed on every

replica. Moreover, the faster responses might originate from any of the replicas. This

is intensified with the use of diverse servers where systematic difference in duration

of SQL operations might be observed. The experimental logs confirmed this premise:

in the 1FB1PG-Opt. experiment under the load of 200 clients, approximately 58% of

SELECTs were skipped, i.e. they were executed only on a single replica ((100 –

80124/187882)%).

Table 4-2 Efficiency of skip feature.

Count of SELECTs on PG 165861

Count of SELECTs on FB 102145

Count of SELECTs on both 80124

Total count of SELECTs 187882

On the other hand, when the pessimistic regime is used, the systematic differences

have a negative impact on the performance. Both servers execute all operations and

both produce slower responses and, thus, the performance of DivRep is likely to be

 Chapter 4. Experimental Evaluation of DivRep Performance

 82

worse than the performance of the individually slower server (FB). One might want to

know if the better performance of the optimistic regime is caused, at least partially, by

the lack of error detection offered through the Comparator function. To evaluate this

assumption we have performed experiments in which the pessimistic regime of

operation was altered so that no comparison of the results was performed, though both

diverse replicas executed all operations. These experiments showed no significant

difference from the experiments with the fully featured pessimistic regime in place,

i.e. when the Comparator function was used the experiment durations, for the different

loads, ranged from 40 to 45 minutes. We acknowledge the possibility that the result is

application specific, i.e. if instead of the TPC-C client, an OLTP workload, an OLAP

(On-line Analytical Processing) application was used for experimentation, e.g. TPC-H

benchmark (TPC 2007), where complex SELECT operations return possibly large

result sets, the error detection mechanism could have more of an impact. However,

comparing the hash values of the result sets (Section 3.1.1), instead of their exhaustive

value-by-value comparison, would alleviate the drawback.

The difference between DivRep and SimSI-Rep is very significant if we look at the

average transaction response times for each scheme under the read-oriented profile

(see Table 4-1). The average response time of SimSI-Rep with two replicas of PG is

less than 15% of the average response time observed with DivRep running in the

pessimistic regime under the load of 25 and 50 clients. The difference, however,

decreases with the load increase. SimSI-Rep with two PGs is faster than DivRep

deployed in the optimistic regime, too, although the difference is less pronounced.

The superiority of SimSI-Rep is expected since, as pointed out above, an extreme

form of optimisation is applied to SI-Rep at the expense of limited dependability

assurance. However it is also due to the differences in performance of the two diverse

servers deployed in DivRep. This is confirmed with the comparison between SimSI-

Rep with two FBs and DivRep in the optimistic regime – the latter is always faster.

With the above evaluation we compare the performance of different replication

schemes. However the comparison is somewhat blurred by the significant differences

in performance of the individual servers. Certainly, the difference between DivRep

and SimSI-Rep would not be the same if we observed different performances of the

individual servers. That is why we have performed the experiments with DivRep

deploying a pair of the marginally faster server (PG) and compared it with the results

of the SimSI-Rep scheme using the same server (Figure 4-11). In this way we have

 Chapter 4. Experimental Evaluation of DivRep Performance

 83

eliminated the different servers as a source of variable performance. We can observe

that the performances of the two replication schemes differ only marginally. SimSI-

Rep is at most 20% faster than DivRep. This difference is observed under the highest

load with 200 clients. The reason for such a discrepancy is that the load balancing is

more effective with SI-Rep and as a result extra CPU cycles can be spent on

parallelizing clients’ requests. The dynamic load balancing with 2PG – Opt. is

ineffective because the non-diverse replicas do not exhibit systematic differences, the

skip feature is not utilised very often and most read operations are executed by both

replicas.

To further scrutinise the considerable differences in individual server performances,

and evaluate the overhead of the synchronisation introduced by the replication

middleware, we performed a baseline comparison between DivRep and non-replicated

server configurations. One of the goals of the experimentation was to check if

performance penalty exists (and if it does what is its magnitude) when DivRep is

used. To obtain the results for a non-replicated solution, with either one FB server or

one PG server, we have excluded the replication protocol (no acquisition of the global

mutex (tb_mutex) or 2PC-DR protocol was performed), and instead we let the

particular DBMS impose the order of transactions. We aborted and repeated the

transactions for which the DBMS had reported concurrency conflict exceptions. The

distinction between optimistic and pessimistic regime of operation is irrelevant with

non-replicated solutions and, thus, only one experiment type was performed. We used

the read-oriented profile under the load of 100 clients. The experiment durations, for

the two non-replicated configurations, are as follows:

- 1FB experiment: 45 minutes.

- 1PG experiment: 12 minutes.

Clearly, the difference between the performances of the individual servers is

considerable. The results show that the slowness of FB determines the performance of

DivRep – the duration of the 1FB experiment is the same as the one of DivRep

employing the diverse pair and executing in the pessimistic regime. The extra

dependability assurance achieved by results comparison in DivRep comes at no cost

since the performance of 1FB is poor. The overhead of the replication middleware is

insignificant.

To get more accurate result about the replication overhead we compare the

performance of the faster server, PG, against DivRep solution deploying the non-

 Chapter 4. Experimental Evaluation of DivRep Performance

 84

diverse pair, 2PG, executing in the optimistic regime (thus, no slowness of one of the

servers in DivRep blurs the evaluation of the replication overhead). The difference is

more pronounced now – the overhead due to the serialisation of DivRep is 1/3 (12

min. for 1PG experiment vs. 16 min. for 2PG DivRep experiment (Figure 4-11)). The

reasons that justify the choice of the optimistic response regime in comparison with

the non-replicated solution are as follows:

- The performance of the 2PG DivRep in the optimistic regime is similar to the

performance of the non-diverse server configuration in the pessimistic regime – the

performance boost due to skip feature is ineffective when a non-diverse pair is

deployed.

- The difference that remains is the results’ comparison. However this feature is

confounding in the evaluation of the performance overhead introduced by DivRep

– it is not a necessary element of the replication protocol.

The difference in performance of the replicated and non-replicated server

configuration can be partly attributed to the specifics of the workload – the difference

would have been less apparent if the transaction durations were longer relative to the

DivRep replication overhead. Had we executed a workload characterised with longer

running transactions, in which a transaction lasts significantly longer than the

corresponding processing needed for the proposed replica control in DivRep, the

contention for the global mutex (tb_mutex) would have been less frequent and the

abovementioned overhead of 1/3 could have been smaller.

4.4.3. Discussion of DivRep vs. SimSI-Rep Comparison

Although the empirical evidence presented in the previous subsection shows that

dependability assurance via design diversity might be expensive we would like to

point to a couple of important aspects.

Firstly, though performance penalty may appear excessive there are ways of reducing

it by deploying optimistic regime of operation of the middleware. In contrast with

other optimised schemes (e.g. the known ROWA replication) such an approach is not

merely sacrificing the dependability assurance, but can be confidence based, as

explained in Section 3.3. Executing the same SQL operation, with different parameter

values, sufficiently many times in the pessimistic regime and observing no

disagreement between replicas would gradually build the confidence that the

subsequent instances of the operation can be executed in the optimistic regime of

 Chapter 4. Experimental Evaluation of DivRep Performance

 85

operation.

Secondly, we concluded that the significant performance deterioration recorded in the

study can be attributed to the significant difference in the individual performances of

the servers with the particular application profiles. In all reported cases with the two

servers the chosen version of FB (2.0.1) turned out to be significantly slower in

comparison with the chosen version of PG (8.1.5). The replication middleware itself

(DivRep) is hardly an issue as it is only marginally slower in comparison with SI-Rep

when used with two replicas of the faster server (PG) (Figure 4-11). It seems that the

comparison DivRep vs. SI-Rep, when both replication schemes use two replicas of

PG, favours the latter. This is because when two identical replicas are used with

DivRep there are no systematic differences in the speed of processing the read

operations by the deployed replicas. As a result, under DivRep each of the replicas

will process a significantly larger proportion of all read operations generated by all

connections than only half of the reads (all reads generated by half of the connections)

it would under SI-Rep. This last observation just reiterates how important the

individual performance of the diverse servers is - the results clearly indicate an

important aspect for ‘optimal selection’ for diversity (we provide a formal approach

for the selection in Section 5). Minimising performance cost is a factor, which may

significantly affect the selection. We back up the assertion with the following result.

We repeated an experiment with DivRep in the optimistic regime using a commercial

server, instead of Firebird, in the diverse pair. We had only a trial version of the

commercial server on our disposal and, thus, only 50-client experiment was

performed. The experiment duration of DivRep in the optimistic regime was 18 min. –

this is a significant improvement compared to 24 min. it took 1FB1PG-Opt. (Figure

4-10) to complete the same type of experiment.

The particular ratio between the performance of DivRep with an FB and a PG and

SimSI-Rep with two PGs was recorded under the specific experiment parameters

(TPC-C profile and the read-oriented profile derived from it by altering the

frequencies of the transaction types). One can envisage a range of alternative profiles

(applications, configurations, etc.), on which the servers may behave differently, e.g.

by becoming individually close in terms of performance (score individually closely on

the chosen profile). For example, TPC-W (TPC 2002b) workload could have been

used in the experimentation. Under such regimes the difference between the

replication schemes compared here (DivRep vs. SI-Rep) may change: they may get

 Chapter 4. Experimental Evaluation of DivRep Performance

 86

closer or even the ordering may change, e.g. DivRep may outperform SI-Rep. The

rational for such an expectation is as follows. Suppose we have a server X and a

server Y, which for the chosen profile are comparable; but such that X is much faster

than Y on say 50% of the read operations, while Y is much faster than X on the other

50% of the read operations. Further assume that the reads are arranged in batches

which are read faster by the same server (‘X batch’ refers to reads on which X is

much faster than Y, while ‘Y-batch’ is a batch on which Y is much faster). Under this

new assumption, in extreme cases, Y will do only the first read of the ‘X-batch’ and

skip the rest of the batch, while X will do only the first read of the ‘Y-batch’ and skip

the rest of it. Clearly, under such a hypothetical arrangement not only will the fastest

response on the read operations be received faster than the response from SI-Rep (no

matter whether with X or Y servers), but also the transactions by the diverse pair in

DivRep will take shorter time to complete than the transaction by SI-Rep. Indeed, the

servers will almost only read their own batches in full and skip the batches of the

other server. The load generated for the servers by the reads under DivRep will then

be almost 50%, e.g. identical to the load under SI-Rep. In both replication schemes,

the servers execute all writes. Thus, it is plausible to expect that if the assumptions are

satisfied DivRep will be faster than SI-Rep. Whether such a hypothetical scenario will

ever materialise is (so far) unresolved; we failed to find a profile, derived from TPC-

C, which would demonstrate this possibility.

4.4.4. User-Centric Analysis

In order to further scrutinise the performance implications of DivRep and extend the

comparison with SI-Rep scheme we have performed an additional, user-centric,

analysis. The analysis centres upon the user’s perspective of transaction response

times. In DivRep scheme, the replication is performed on the level of SQL operations.

Recall from Section 3 the interaction between clients, middleware and replicas. A

client, i.e. an emulated user, sends an SQL operation to the middleware and the

middleware forwards it to the replicas for execution. When the faster result is received

the middleware relays it back to the client. Once the client has received results for all

SQL operations of a transaction, it sends the commit operation to the middleware.

After the replicas have performed the commits and the middleware reported the

outcome to the client, a new transaction can start. This is an inherent characteristic of

eager database replication and an atomic commitment protocol, of which 2PC (Gray

 Chapter 4. Experimental Evaluation of DivRep Performance

 87

1978) is the simplest and best-known example. In DivRep, due to the different pace of

processing of SQL operations by the diverse replicas, the client perceives extended

commit time because, apart from the genuine durations of the commit executions on

the replicas, they include the time needed for the slower server to “catch up”, i.e.

execute the remaining SQL operations. Performance could be improved if the client

regarded an alternative event as the end of the transaction – shorter response times

would be observed if the delivery of the result of the last DML operation was

considered as the transaction end. The transaction response time calculated in this way

is the focal point of the user-centric analysis. Although the response time observed by

the client might be improved in this case, the throughput would remain the same

because, if the consistency is to be preserved, the client needs to wait for the slower

server to execute all SQLs in a transaction before it starts the consecutive one.

In TPC-C benchmark, like in many real-world applications, the execution of

successive transactions by the same user is separated by a time delay. These delays, so

called wait times to use TPC-C terminology, represent the time needed for the user to

read results of the last transaction (think times), select the type of the following

transaction and enter the required parameters for its execution (keying times). The

characteristic of OLTP workloads that each client waits in between the execution of

consecutive transactions might be beneficial for performance of DivRep. The

middleware could notify the client that the transaction has been completed as soon as

the faster of the replicas produces the result of the last DML operation in a

transaction. The client would start waiting immediately following the notification,

instead of postponing it until both servers have completed. However the commit

would not happen until both replicas are ready to do so, i.e. both have executed the

operations. The early waiting would compensate for the tardiness of the slower server

and the throughput of DivRep might increase. Nonetheless two possibilities require

further scrutiny.

The first one regards the ratio between the wait time and the time needed for the

slower server to catch-up. A performance improvement would be observed only if the

wait time is longer than the time needed for the slower server to finish the transaction.

Otherwise a performance penalty would be incurred since the “catching-up” time

would delay the start of the subsequent transaction (Figure 4-12).

Secondly, is it possible that the slower server detects a concurrency conflict during the

catching up phase, and how should DivRep deal with it? If such an event happens the

 Chapter 4. Experimental Evaluation of DivRep Performance

 88

Ti+2 starts

Time

Ry

Rx

Waiti

CatchUpi
Waiti+1

CatchUpi+1

Waiti ends and Ti+1 starts Waiti+1 ends

Original Ti response time Original Ti+1 response time

Overheadi+1

Commit iTi UV response time Commit i+1Ti+1 UV response time

Ti starts Ti+2 starts

Time

Ry

Rx

Waiti

CatchUpi
Waiti+1

CatchUpi+1

Waiti ends and Ti+1 starts Waiti+1 ends

Original Ti response time Original Ti+1 response time

Overheadi+1

Commit iTi UV response time Commit i+1Ti+1 UV response time

Ti starts

Figure 4-12 The execution of two transactions, Ti and Ti+1, on two replicas Rx and Ry. The following

measures are depicted: the original transaction response times, respective wait times (Waiti and
Waiti+1), CatchUp times (CatchUpi and CatchUpi+1), commit times (Commiti and Commiti+1), User-

view transaction response times (Ti UV response time and Ti+1 UV response time) and (possible)
overhead (Overheadi+1). Ti+1 starts without delay once Waiti has completed, while Ti+2 has to wait until

CatchUpi+1 has finished and thus an overhead, Overheadi+1, is incurred. Waiting (Waiti and Waiti+1)
commences immediately after the respective UV transaction times (Ti UV response time and Ti+1 UV
response time) end. Note that the commit of a transaction is depicted as the sum of the maximum of
commit durations of the two replicas, e.g. MAX(Commiti(Rx), Commiti(Ry)), and the time spent on

acquisition of tb_mutex (Section 3.1.1). The interaction between the replicas and the middleware and,
similarly, between the middleware and the client, is omitted in the figure for clarity.

user would have to be notified that the middleware had falsely reported successful

transaction end. Although the client logic might have to be changed accordingly, no

reconciliation techniques are necessary on the replicas, because DivRep uses eager

replication and a variant of 2-Phase Commit, i.e. no replica would unilaterally abort or

commit a transaction. Most importantly, it is impossible that a concurrency conflict is

detected only when the slower server executes in the catching up phase. The conflict

must have been already reported by the faster server. This is true because replica

determinism is guaranteed by DivRep - transaction boundary operations are serialised

and 2-Phase locking mechanism, and in particular version-creation-time conflict

check (Section 2.2.3), of the replicas is employed for the identification of write-write

conflicts. As a result, all conflicting operations are detected on both replicas. This

behaviour is ensured by both pessimistic and optimistic regime of DivRep. Even if

replicas omit some read operations in the optimistic regime, it is ensured that a

concurrency conflict would be detected before the catching up phase, given that an

 Chapter 4. Experimental Evaluation of DivRep Performance

 89

operation has been executed on at least one replica and only write-write conflicts are

possible.

Since the client is notified of a successful transaction end once the faster server

finishes the last DML operation, one might think that, when placed in the user-centric

perspective, DivRep resembles lazy replication solutions. This is, however, not true

because the execution of updates on both replicas is performed as a part of a single

transaction using 2PC-DR protocol (Section 3.1.1) i.e. no separate transactions are

started for propagation of updates to the remote replica and database states on the

replicas never diverge.

We have used the set of experiments already described in Section 4.4.2 to evaluate the

performances of different replication schemes in regard to the user–centric approach.

In this section we are focusing on the comparison between three types of replication:

- DivRep scheme operating in the optimistic regime and employing a diverse pair of

servers, DivRep 1FB1PG.

- DivRep scheme using the marginally faster server, DivRep 2PG, while operating in

the optimistic regime.

- SI-Rep scheme using the marginally faster server, SimSI-Rep 2PG.

Evidently, user centric analysis has little meaning for centralised database systems

and thus we focus on replicated solutions. Each of the replication schemes are

scrutinised using three different load/workload combinations:

- Experiment 1: 20 clients executing the write-intensive profile specified by TPC-C.

- Experiment 2: 100 clients executing the read-oriented profile (Section 4.4.2)

consisting of TPC-C transactions with modified frequencies.

- Experiment 3: 200 clients executing the read-oriented profile consisting of TPC-C

transactions with modified frequencies.

Two measures are of main interest to us:

- User-view (UV) transaction response time (Figure 4-12), of which end timestamp is

the point in time when the client received the result of the last DML operation.

Clearly, the result is sent by the faster replica. The begin timestamp remains the

same as the one recorded for the original transaction response times when user-

centric analysis is not conducted. It is the timestamp taken before sending the begin

operation to the replicas. In the rest of this section both UV transaction response

time and, just, transaction response time, are terms used to denote the measure.

 Chapter 4. Experimental Evaluation of DivRep Performance

 90

- Overhead, which represents the delay incurred in the event of catching-up time

being longer than the corresponding wait time:

if (CatchUpi > Waiti)

 Overheadi = CatchUpi - Waiti;

else

 Overheadi = 0;

Clearly, no overhead exists if the wait time is longer than the catching-up time. As

keying time (TPC 2002a) has not been used in the experiments the waiting between

successive transactions consists of only think times. The think times had the

negative exponential distribution as defined by TPC-C, scaled down so that the

mean was an order of magnitude less than the values proposed in the standard.

Table 4-3 shows the results of Experiment 1 (when the three replication schemes were

subjected to the load of 20 TPC-C compliant clients). The values represent the mean

transaction response times for each client. In addition, we include the results for

experiments executed with individual servers as a reference. In this case the client

application executed against the single servers without using the replica control

features of DivRep. We can see that the replicated solutions are performing better

than the single server configurations – no possibility for improving the original

transaction response times (through early commencement of think times) exists with

single server configurations. Different clients, of the same replication scheme, exhibit

somewhat different response times, but the difference is insignificant (e.g. within ~5%

for DivRep). This is partly due to the limited accuracy of the results available on the

measurement machine in our testbed – the maximum resolution is 15 milliseconds

(Microsoft 2004). We can see that DivRep is performing better than SimSI-Rep for

this particular experiment type. DivRep, with both server configurations 1FB1PG and

2PG, demonstrates faster average transaction response times.

The results of DivRep with the pair of non-diverse servers, 2PG, are slightly better

than the results of the diverse pair. This observation can be explained with the

difference in CPU load of the two diverse servers under the particular workload.

When DivRep employed the diverse pair, FB server was considerably more CPU

bound than the PG server under Experiment 1 and as a result the faster responses for

the last DML operation in a transaction originate from PG server in most of the cases.

If we look at Table 4-4 we can see that the PG server is faster to execute all DML

operations in a transaction in almost 68% of the times. While the situation is similar in

 Chapter 4. Experimental Evaluation of DivRep Performance

 91

Experiment 2 (the percentage of times when the FB server was either faster than the

PG or it finished the last DML at the same time as the PG marginally dropped), it

changes in favour of FB in Experiment 3 in which both servers become CPU bound

and PG produces the fastest responses to the last DML in less than 50% of

transactions. This observation explains why in Experiment 3 DivRep with the diverse

pair exhibits faster average response times for all clients than when DivRep is used

with two PG servers. The average transaction response time, for all the clients

executing against 1FB1PG, during Experiment 3, is approximately 200 ms while it is

around 275 ms for 2PG configuration. This result shows that the use of diverse

redundancy could bring performance improvements over non-diverse configurations.

Table 4-3 The mean values of user-view transaction response times for the three replication schemes
(DivRep 1FB1PG, DivRep 2PG and SimSI-Rep 2PG) and single server configurations (1FB and 1PG),

given as a reference, in the Experiment 1, when TPC-C workload was employed with 20 Clients.

DivRep 1FB1PG DivRep 2PG SimSI-Rep 2PG 1FB 1PG
AVG (ms) AVG (ms) AVG (ms) AVG (ms) AVG (ms)

1 200 192 352 936 728
2 200 184 352 944 720
3 200 184 352 928 712
4 200 192 352 936 712
5 200 184 352 936 720
6 200 192 352 936 720
7 200 184 352 936 720
8 200 192 352 936 720
9 200 184 352 936 712
10 200 192 352 920 712
11 192 184 368 928 704
12 192 184 368 936 720
13 200 184 360 936 712
14 200 184 368 936 704
15 200 192 368 936 712
16 192 192 368 928 720
17 200 184 368 936 720
18 192 184 368 936 720
19 200 192 360 928 712
20 200 192 368 944 720

Client

Table 4-4 The percentage of times when a particular server (PG or FB) was faster to produce the result
for the last DML in a transaction. Note that the percentage values in “FB faster” column include the

occurrences when the logged times for the two servers were equal.

PG faster FB faster* PG faster FB faster* PG faster FB faster *
68% 32% 72% 28% 48% 52%

Exp. 1 Exp. 2 Exp. 3

Instead of using only summary statistics, such as mean and standard deviation, we

analyse the performances more thoroughly using cumulative distribution functions

 Chapter 4. Experimental Evaluation of DivRep Performance

 92

(CDFs). Figure 4-13 shows the CDFs of two random variables, UV transaction

response time and overhead, for the first type of experiment (Experiment 1). We first

examine the CDFs of UV transaction response times: T(DivRep 1FB1PG), T(DivRep

2PG) and T(SimSI-Rep 2PG). There is a stochastic ordering between SI-Rep and each

of the two versions of DivRep, with either 1FB1PG or with 2PG. This confirms that

DivRep performs better than SimSI-Rep. It also means that the use of diversity would

be beneficial. On the one hand, the result is not surprising because it is likely that UV

transaction response times are close to the corresponding original transaction

response times (in which the notification of the successful commit, and not the result

of the last DML, is regarded as the end time) when SimSI-Rep is used. In SimSI-Rep

only one server executes the read operations of each transaction and only the writes

are possible source of variability of the two servers - the end timestamps of UV

transactions are likely to be close to the end timestamps of the corresponding original

transactions. On the other hand, the load on the servers when SimSI-Rep is used is

smaller than the load imposed by DivRep, and as a result one would expect to see

shorter original transaction response times with SimSI-Rep so that UV transaction

response times are reduced, too.

However there is no stochastic ordering between the distributions of the two different

server combinations employed with DivRep. The ordering between the two

distributions changes. This is particularly evident if we look at the corresponding

CDFs between 45th and 60th percentile (T(DivRep 1FB1PG) and T(DivRep 2PG) in

Figure 4-13). This indicates that the pdfs (probability density functions) of the two

distributions have several cross-over points (Figure 4-14). The pdfs have a similar

spread: this is not surprising since PG is the individually faster server and it produces

the result for the last DML most of the times when the diverse pair is used.

Nevertheless, the use of the diverse pair can help decrease variability - the probability

density of 1FB1PG (represented by the green dashed line) has a smaller value of

standard deviation (an aggregate measure of variance) and a shorter tail and, thus, it is

favoured over the 2PG configuration. Besides, the usefulness of the latter

configuration with DivRep is limited, since no benefits in terms of dependability

assurance exist.

If we look at the overhead distributions (O(DivRep 1FB1PG), O(DivRep 2PG) and

O(SimSI-Rep 2PG)) we observe that DivRep exhibits greater performance penalty,

i.e. longer overhead times than SimSI-Rep. The overhead values are significant when

 Chapter 4. Experimental Evaluation of DivRep Performance

 93

compared to the UV transaction response times (T(DivRep 1FB1PG), T(DivRep 2PG)

and T(SimSI-Rep 2PG)) as the x-axis shows the logarithmic values. It is not

surprising that SimSI-Rep exhibits the least performance penalty. On one hand SimSI-

Rep has not got a potential to reduce the transaction times, by producing faster

responses with both replicas; but, conversely, no overhead would be induced due to

large catching up times of the slower server (more than 85% of all transactions incur

zero-valued overhead).

Note that the jagged lines of the CDFs representing the UV transaction response times

(Figure 4-13) are due to the time measurement quantisation. The horizontal steps are

multiples of 15 ms, which is the length of the clock interval in Windows NT

(Solomon and Russinovich 2000) (the machine on which the measurements were

taken was running Windows 2000). The actual clock frequency of 65Hz

(15.384615ms) explains the occasional tiny steps – 15ms vs. 16ms. The clock

resolution puts the limit on the accuracy of the measurements and this is especially

evident in short response times, e.g. experimental logs contained the following values

for the response times less than 100ms: 15ms, 16ms, 31ms, 32ms, 46ms, 47ms, 62ms,

63ms, 78ms, 79ms, 93ms, 94ms. This limit is not obvious in the measurements of

overheads because the values are “smoothed” after subtracting wait times from the

corresponding catching-up times.

The stochastic ordering of transaction response times between DivRep using the

diverse pair of servers and SimSI-Rep with the marginally faster server can be

observed in the other two experiments, when the read-oriented profile was used with

100 and 200 clients (Figure 4-15 and Figure 4-16 respectively). DivRep performs

better for any level of confidence. Nevertheless, as in Experiment 1 the overhead

values are greater when DivRep is used. Hence the gain achieved with the shorter

transaction times with DivRep is compromised with the long overhead times. An

interesting question, then, becomes: is it possible to minimise the impact of the

overhead? One possibility is to observe longer wait times (Figure 4-12), e.g. think

times, which would reduce the overhead by masking the catching up times. Longer

think times are realistic because we used 10-fold smaller values of the mean think

times in the experiments than the ones specified in the TPC-C standard. We

recalculated the CDFs of the overhead using the think times’ values as specified in the

TPC-C, applying 10-fold increase to the experimental think times recorded in the

logs. Consequently, the probability that we observe a zero-valued overhead increased

 Chapter 4. Experimental Evaluation of DivRep Performance

 94

from 10% to 40% for DivRep employing the diverse pair in Experiment 3. This

calculation neglects the fact that the load on the servers would have changed if longer

think times had been used. As a consequence, the overhead could have been further

decreased. The same effect could have been achieved had we, in addition to think

times, used other types of wait times, e.g. keying times, in our experiments.

At the same time, one would like to know why, especially under the higher loads (100

and 200 clients), the overhead times are so significant. In particular, is it the tardiness

of the slower server, that can be approximated as CatchUp - Commit time (Figure

4-12), or the execution of the transaction boundaries, e.g. Commit time in Figure 4-12,

which includes the waiting for tb_mutex (Section 3.1.1) acquisition, the main

contributor to the duration of overheads? We answer this question with Figure 4-17,

in which we plot the CDFs of the transaction boundary times (both commits and

begins) and the catching up time for the experiment with DivRep employing the

diverse pair (1FB1PG) under the highest load (Experiment 3). Clearly, the transaction

boundary times are the main contributor to the overhead times and thus minimising

their impact would benefit the performance of DivRep. This is the topic of the

following section (Section 4.5).

To understand further the relation between UV transaction response times and the

overheads we have calculated the correlation between the two variables (Table 4-4).

There exists somewhat strong positive correlation between the two variables when

DivRep is used with 2PGs, especially in the experiments with the read-intensive

workload. This might be attributed to the fact that the individual servers become

CPU-bound under these experiments. The values of the correlation for DivRep

scheme employing the diverse pair, though less pronounced, are still significant in all

experiments, while the correlation values are negligible for SimSI-Rep. The positive

correlation for the experiments with DivRep exists, as it is likely that if the faster

server takes long to execute all DMLs, i.e. long UV transaction response times are

observed, the same will hold for the slower server, i.e. relatively long catching up

times will be observed (particularly when the pair of the non-diverse servers is used).

This is not true for SimSI-Rep because the two servers execute last DML in a

transaction without (significant) time lag, the infrequent overheads are short and

mainly due to the transaction boundaries, whose durations do not change as a result of

variable database server processing.

 Chapter 4. Experimental Evaluation of DivRep Performance

 95

We can observe a trend of increased correlation when DivRep is used under higher

loads. This is because overhead values tend to be greater than zero under higher loads

(an overhead will have a non-zero value when the catch-up time is greater than the

corresponding think time). This is confirmed if we compare the magnitude of zero-

valued overhead frequencies in Figure 4-13, Figure 4-15 and Figure 4-16 – the first

figure depicts the highest frequency of zero-valued overheads. Thus, the correlation

between the transaction times and the overheads is stronger. The somewhat significant

correlation between the two variables is confirmed with the scatter plot in Figure 4-18

depicting the results of the experiment with the diverse pair. The data tends to move

from the lower left to the upper right corner, indicating positive correlation to some

extent. A similar picture has been observed in the other scatter plots representing

DivRep; when 2PG configuration was used as well as under the other types of

experiments. Most of the dots are placed above the unit slope indicating that the

overhead values are greater than the corresponding UV transaction response times -

the latter is relatively short compared to the durations of the catching-up times. The

different shades of green depict the degree of overlap of particular pairs of values. The

limited precision of the time measurement quantisation, described above, is evident in

this figure too. This is the reason why, for example, the leftmost vertical band of

values is thinner than the adjacent band, where two columns of dots are placed one

next to each other.

With the user-centric analysis we have shown that the variability in the results of the

diverse servers might be exploited for performance gain. Using user-view transaction

response time as the measurement, we showed that the diverse pair performs better on

average than the non-diverse pair of the marginally faster server deployed with

SimSI-Rep, or DivRep under Experiment 3. Also, the variability of the results can be,

to some extent, decreased using the diverse pair. However, the gain is achieved under

the specific provisions and high overhead values, observed with the diverse pair,

represent a considerable drawback. The impact of the overheads can be minimised if

the longer wait times are used. This seems to be a realistic possibility since the think

times used in the experiments were scaled down values of the ones specified in TPC-

C standard. Additionally, the use of other wait times’ types, e.g. keying times, would

decrease the overhead further. The overheads are caused mainly by the serialisation of

transaction boundaries and minimising the effect would be beneficial for the

performance of DivRep.

 Chapter 4. Experimental Evaluation of DivRep Performance

 96

Figure 4-13 The experimental CDFs of user-view transaction response times (T) and the overhead (O),
the performance delay incurred by the “catching up” of the slower server, calculated for Experiment 1
for the three replication schemes, DivRep with 1FB1PG, DivRep with 2PG and SimSI-Rep with 2PG.

Figure 4-14 Probability density function (pdf) of UV transaction response times for two different server
configurations (a non-diverse, 2PG, and a diverse, 1FB1PG) deployed with DivRep middleware under

Experiment 1.

 Chapter 4. Experimental Evaluation of DivRep Performance

 97

Figure 4-15 The experimental CDFs of user-view transaction response times (T) and the overhead (O),
the performance delay incurred by the “catching up” of the slower server, calculated for Experiment 2
for the three replication schemes, DivRep with 1FB1PG, DivRep with 2PG and SimSI-Rep with 2PG.

Figure 4-16 The experimental CDFs of user-view transaction response times (T) and the overhead (O),
the performance delay incurred by the “catching up” of the slower server, calculated for Experiment 3
for the three replication schemes, DivRep with 1FB1PG, DivRep with 2PG and SimSI-Rep with 2PG.

 Chapter 4. Experimental Evaluation of DivRep Performance

 98

Figure 4-17 The experimental CDFs of the transaction boundary times and the catching-up times

calculated for the diverse pair (1FB1PG) under Experiment 3.

Figure 4-18 A scatter plot of user-view transaction response times and the corresponding overhead

values for DivRep scheme using diverse pair (1FB1PG) under Experiment 3.

 Chapter 4. Experimental Evaluation of DivRep Performance

 99

Table 4-5 Correlation coefficient values between user-view transaction response time and the overhead
for the three replication schemes (DivRep with 1FB1PG, DivRep with 2PG and SimSI-Rep with 2PG)

under the three experiments.

Corr. Coefficient

1FB1PG - DivRep 0.18
2PG - DivRep 0.14
2PG - SimSI-Rep 0.00

1FB1PG - DivRep 0.20
2PG - DivRep 0.57
2PG - SimSI-Rep 0.01

1FB1PG - DivRep 0.29
2PG - DivRep 0.56
2PG - SimSI-Rep -0.02

TPC-C Profile (20 Clients)

Read-intensive Profile (100 Clients)

Read-intensive Profile (200 Clients)

 Chapter 4. Experimental Evaluation of DivRep Performance

 100

4.5. Minimising Replication Overhead Using Priority

Mechanisms

4.5.1. The Problem

Experimental evaluation presented in Section 4.4.4 revealed the following: imposing a

serial order of transaction boundaries (BEGIN and COMMIT operations) on different

replicas using DRA algorithm (Section 3.1.1) incurs performance overhead. Multiple

transactions, initiated by different clients, might be attempting to simultaneously

execute a transaction boundary. The middleware handles transaction boundary

requests using a mutex, tb_mutex. No provisions for a particular boundary execution

order are in place – it is the underlying implementation of the mutex that defines the

execution order, e.g. in our implementation of DivRep the order is dictated by the

underlying JVM (Java Virtual Machine). Only one transaction boundary is permitted

to execute at a time, thus a client might be blocked by others, without the possibility

to progress until it is granted the mutex. This serialisation of transaction boundaries

introduces lock convoy effect, (Rinard and Diniz 2003), (Lampson and Redell 1980)

and has negative impact on system performance. One strives to decrease or eliminate

the effect of the performance problem.

Naturally, the number of simultaneously blocked clients depends on the concurrency

degree. It, also, depends on the ratio between the duration of the transaction boundary

operations, Tb, and the duration of the transaction’s DML operations, TDML. The

larger the ratio between the two, Tb/TDML, the greater the chance many clients will be

blocked. If the ratio is small, i.e. the execution of the boundary operations is

significantly shorter than the execution of DML operations, it is likely that many

clients will be busy executing the DMLs and as a result the contention for the

boundary operations will be smaller. If the durations of transaction boundaries are

long relative to the DMLs, however, the chance that multiple clients wait for the

mutex is greater. When the COMMIT operation is executed, the Tb duration depends

on the transactional profile. If the transactional profile is write-intensive the

COMMIT operations will be longer because the changes will have to be flushed to the

disk i.e. there is an I/O overhead of writing out all pages affected by the transaction,

such as data and index pages and similarly REDO/UNDO log has to be written.

Correspondingly, long execution times of transaction BEGINs could be observed in

 Chapter 4. Experimental Evaluation of DivRep Performance

 101

DivRep. This observation can be explained as follows. We use a dummy SELECT

operation to start a transaction. The reason is that JDBC interface does not support

explicit BEGIN operation but assumes a transaction starts upon the first operation

after a COMMIT or an ABORT. In order to serialize transaction boundaries we

introduced the dummy SELECT operation that reads a table from the database.

Although the duration of the query is short on average, occasionally the data has to be

fetched from the disk, at which times the execution duration significantly increases.

This is the reason why in the cases when database does not reside fully in the main

memory, and cache hit ratio is poor, an expensive I/O operation has to be initiated.

The replication algorithm of DivRep middleware introduces an overhead due to the

serialisation of transaction boundaries. We have taken detailed measurements to

enable us to accurately evaluate the impact of this serialisation. In particular we

recorded the following measures of interest:

- Transaction response times, Tt. It is measured as the time between a client sends the

BEGIN command to start a transaction until it receives the notification that the

COMMIT has been successfully executed (after the middleware have executed

2PC-DR (Section 3.1.1)) so that it can start the following transaction. Clearly, this

time includes the execution of the transaction boundaries and the DMLs on both

servers.

- Client-view transaction boundary response time, Tb
C . In the rest of the document

Tb
C will be used to refer to response time of either BEGIN or COMMIT commands

if not explicitly specified otherwise.

- Server-view transaction boundary response time, Tb
S.

We make a distinction between client-view and server-view boundary response times

(Figure 4-19): Tb
S captures the execution of the actual SQL operation (BEGIN or

COMMIT) on a DBMS, while Tb
C includes the waiting time of each transaction to

acquire tb_mutex too, hence Tb
C ≈ Tb

S + TWAIT, where TWAIT represents the waiting

time for tb_mutex acquisition. TWAIT includes time spent by the DBMSs on execution

of DML operations from concurrent transactions, since both types of SQLs (DML and

transaction boundary operations) compete equally for the resources, i.e. it is possible

that execution of the DMLs blocks the concurrent transaction boundary operations. As

the number of clients increases, the difference between the two types of boundary

response times becomes greater. TWAIT increases because, under high load, the

contention is greater and the frequency of transaction boundary operations is higher.

 Chapter 4. Experimental Evaluation of DivRep Performance

 102

DivRep

Time

Client

Rx

Tb
S (Ry)

t1 t2 t3 t4 t5 t6 t7 t8

Ry

Tb
S (Rx)

TWAIT

Tb
c

Figure 4-19 Transaction boundary duration as perceived by different parts of a replicated system:
Client-view transaction boundary response time, Tb

C , calculated as t8 – t1, and server-view transaction
boundary response times, Tb

S (Rx), calculated as t7 – t4, and Tb
S (Ry), calculated as t6 – t5. The

difference between the Tb
C and a Tb

S might be significant due to the TWAIT, calculated as t3 – t2, time
needed to acquire the shared mutex. Please note that the execution of a transaction boundary on two
replicas might not overlap in real time, one of the servers might finish the execution before the other

one starts it.

We experimented with a replicated server configuration when two FB servers are

deployed. The reason why we used FB servers is that the implementation of a specific

solution (Section 4.5.2) we offer for minimising the serialisation overhead requires a

substantial change of PG’s functionality – the server processes should be runnable by

privileged (root) user (this feature is unavailable in PG by default). However the

results obtained with a pair of FB servers would apply to any replicated setup. The

solution does not depend on any specifics of FB server.

The choice of hardware was the same as in the experiments described in Section 4.4.

The client application was executing the write-intensive profile specified by TPC-C

standard. The database size was three times bigger than the available RAM. We

varied the number of clients to evaluate the impact of load on the serialization

overhead. We executed experiments with 20 and 50 clients.

Figure 4-20 shows the response times of client-view BEGIN operations (Tb
C BEGIN)

plotted against corresponding transaction response times, Tt. A significant portion of

the transaction response times is comprised of the corresponding client-view BEGIN

operations. This is not surprising since transaction latency includes the potentially

 Chapter 4. Experimental Evaluation of DivRep Performance

 103

long TWAIT times. The average response time of a BEGIN operation is almost exactly

one fifth of the average transaction response time. The figure shows, however, the

variability of both measures. Similar results were obtained for the COMMIT

operation too. During the experiments we measured the CPU utilisation on the

database server machines. We established that 25%-30% of the CPU resource was not

used – it was reported by the Linux resource consumption utilities as idle. Therefore

we could not achieve the maximum performance with the hardware used in the

experiments. Although the underutilisation of CPU can be explained with noticeable

I/O activity, it was clear that the serialisation of boundary operations has contributed

to the performance bottleneck, too. This was confirmed with greater performance

penalty once we increased the concurrency degree.

Transaction Boundary Overhead

10

100

1000

10000

100000

10 100 1000 10000 100000

Transaction Response Times (ms)

Cl
ie

nt
-v

ie
w

 B
EG

IN
s

(m
s)

Figure 4-20 Transaction response times and the corresponding client-view BEGIN response times for

the experiment with 50 Clients.

4.5.2. The Solution

In order to reduce the overhead of serialising transaction boundary operations we

introduced a prioritisation mechanism to improve their performance. We achieve this

using a particular process priority policy as follows. Prior to the execution of a

transaction boundary, we would programmatically increase the CPU priority of the

corresponding server process on each replica. A complementary operation to restore

 Chapter 4. Experimental Evaluation of DivRep Performance

 104

the default process priority would be called once the execution of transaction

boundary finishes. In this way boundary operations are executed using higher priority

values, while DML operations execute with lower priorities. The prioritisation of

transaction boundaries reduces the time a transaction waits to get hold of tb_mutex,

TWAIT time – contention for DBMS resources between transaction boundaries and

DMLs of concurrent transactions is reduced, since the servers do not schedule the

latter ones as long as there are boundary operations to be executed. Thus, the client

will observe shorter latency of transaction boundary operations, i.e. Tb
C

 will decrease.

Consequently we have implemented a User Defined Function (UDF) on each database

replica, referred to as setProcCPUPrio. The UDF invokes a kernel API function,

setpriority, for raising CPU priority of a particular database process. The UDF

has been implemented using C programming language and its source code is as

follows:

#include <sys/time.h>

#include <sys/resource.h>

int setProcCPUPrio(int* nice)
{

 return setpriority(PRIO_PROCESS,0,nice);

};

The PRIO_PROCESS parameter value in the invocation of the setpriority function

specifies that the priority of a process should be modified (alternatively, one can

change the priorities of a group of processes or the priorities of all processes

belonging to a specific user, by specifying PRIO_PGRP or PRIO_USER,

respectively). The value of zero specified for the second parameter in the invocation

of setpriority indicates that the priority of the current process (the one that invokes the

UDF) should be changed. Hence when the UDF is invoked from a database

connection, using the standard JDBC interface (Figure 4-1), the priority of the process

serving the connection will be changed. The value of the nice parameter indicates, by

manipulating the entries in the kernel’s scheduler, with which priority the process

should execute. Commonly, the values of the nice parameter range between -20,

which signifies the process of the highest priority, to +19, which represents the lowest

priority process. The default value of 0 is usually inherited from the parent process.

The priorities determine the time quantum of a process – the higher the priority (i.e.

 Chapter 4. Experimental Evaluation of DivRep Performance

 105

the lower the numerical value of the nice parameter) the longer the time quantum

(Bovet and Cesati 2005).

Prioritisation of the server processes on its own is insufficient for an effective

performance improvement of response times of transaction boundary operations. This

is because a corresponding prioritisation has to be implemented in the middleware

too. Therefore we have modified the priority of each middleware thread

communicating to a particular database replica: prior to execution of transaction

boundaries, each thread’s priority was increased and upon the end of the execution it

was restored to the default value (recall from Section 4.1 that the middleware is

implemented as a multithreaded application – each client is served with n number of

threads, where n is the number of deployed replicas).

As mentioned above, the execution of transaction boundaries might be an expensive

I/O operation. Hence, one might wonder why, beside the CPU prioritisation policy,

we do not manipulate the I/O priorities, too. The reason is that we do not attempt to

decrease the actual time spent by the DBMSs to execute the transaction boundary

operations (Tb
S time), by giving it a higher I/O priority. It is the time “wasted” for the

acquisition of tb_mutex, TWAIT time, which we want to minimise, by eliminating the

possibility that the execution of DMLs contend with concurrent boundary executions

for the CPU resources. Let us aid the understanding of the idea with Figure 4-21. Two

database processes, p1 and p2, execute a COMMIT operation and a DML operation

respectively, on a CPU. Panel a) shows an interleaved execution of the two operations

causing process switches, and corresponding scheduling, to occur due to the assigned

time quantum being longer than the respective durations (reschedule 1 and reschedule

2) or due to operation termination (reschedule 3). In this way, the execution of both

operations is performed in two parts. If the time quantum of the process p1 had been

made longer, by increasing the respective nice value, the COMMIT operation would

have terminated during its first epoch (panel b)). The subsequent process switch

(reschedule 4) would then assign the CPU time to p2. This would decrease the latency

of the transaction boundary operation and shorter TWAIT time would be observed. The

figure shows only a special case when two processes are contending for the CPU

time. When the same priority is applied to all processes, under the higher load the

overhead would be bigger – the execution of transaction boundaries would be

interleaved with multiple DML operations.

 Chapter 4. Experimental Evaluation of DivRep Performance

 106

reschedule 2

p1

reschedule 1 reschedule 3

p2

COMMIT

COMMIT (1)

DML (1)

COMMIT (2)

DML (2)

DML (1)

reschedule 4

p1

p2

a)

b)
…

reschedule 2

p1

reschedule 1 reschedule 3

p2

COMMIT

COMMIT (1)

DML (1)

COMMIT (2)

DML (2)

DML (1)

reschedule 4

p1

p2

a)

b)
…

Figure 4-21 An interleaved execution of (parts of) two processes on a CPU.

Table 4-6 shows the average response times and the corresponding standard

deviations for the two types of experiments under different loads of 20 and 50 clients:

- The results of the baseline experiment without the process prioritisation – Same

Prio.

- The results of the experiment with the variable process priorities – Different Prio.

The decrease in the average response times of transaction boundaries is evident. It is

reduced from approximately 50% for COMMITs to around 87% for BEGINs under

the load of 50 clients. In the experiment with variable process priorities the CPU

utilisation went up to 100%, i.e. the hardware resource was now fully utilised.

Although we can observe that average transaction response time decreases with

variable process priorities too, the performance improvement is not pronounced as

with transaction boundary operations. The relative improvement is 12% under the

load of 20 clients and 6% under the load of 50 clients. As a consequence the

experiment duration is shorter too. One of the factors that negate the performance

improvement of transaction boundaries is a new type of overhead we introduced,

namely the execution of the UDFs that promote and demote server processes, which

inevitably has consumed part of the underutilised CPU resource. More importantly,

while we successfully improve the performance of one part of transaction, Tb, we

inevitably slow down its other part, TDML. This behaviour of penalising low priority

processes is a characteristic of multitasking on a uniprocessor machine. An interesting

 Chapter 4. Experimental Evaluation of DivRep Performance

 107

observation is that the performance of transaction boundaries become more

predictable (compare the corresponding values of the standard deviation in Table 4-6).

Though to a lesser extent, the same is true for the transaction response time under the

load of 20 clients. Under the higher load, however, the standard deviation of

transaction response time increases once the manipulation of the process priorities is

introduced. The result would be a bad news for someone who seeks real-time

performance (the worst-case behaviour deteriorates), but it is beneficial for

conventional database systems that try to maximize average-case performance and

resource utilization.

Table 4-6 Experiment duration, average transaction response times, average response times of client-
view transaction boundaries and the respective standard deviations for the experiments with same and

different server process priorities. Apart from experiment duration, all values are given in milliseconds.

20 Clients 50 Clients

Ex
p.

 T
yp

e

Measure of
interest

AVG. (ms) ST. DEV. (ms) AVG. (ms) ST. DEV. (ms)

Exp. Duration 16 min. n/a 17 min. n/a

Tran. Time 3959 2776 7550 4948

BEGIN 357 515 1500 1172 Sa
m

e
Pr

io
.

COMMIT 1788 1614 3879 2954

Exp. Duration 14 min. n/a 15 min. n/a

Tran. Time 3472 2741 7123 6219

BEGIN 70 149 183 370 D
iff

. P
rio

.

COMMIT 852 1009 2026 2089

4.5.3. Discussion

The experimental results presented here show convincingly that the characteristics of

the replication algorithm can be improved using priorities. At first it may seem

paradoxical that adding more work to the database server machines (controlling the

priorities of the server processes serving the connections) makes the server run faster.

There is, however, nothing magical in this.

Without any explicit measures to reduce the duration of transaction boundaries

serialisation may become a bottleneck in the replication scheme. If this is the case the

concurrent database connections cannot run at a maximum pace. Instead, the pace is

limited by the delays on transaction boundaries. Increasing the number of concurrent

 Chapter 4. Experimental Evaluation of DivRep Performance

 108

transactions will make this problem more and more acute – the transactions will wait

longer and longer to enter a critical section to set transaction boundaries atomically

across the replicas.

This problem is not specific to our implementation. It would be observed whenever

clients may block each other if a scheduling mechanism of their requests operates

(e.g. at the middleware level) without control on how the CPU is allocated by the

DBMS. For example, imagine a replication scheme avoids conflicts between writing

transactions as follows. Whenever transactions access the same table for an update, all

but one are allowed to progress while the others are delayed until all previous

transactions which access the same table are done with their updates. This

“serialisation” itself is a bottleneck for the writing transactions. Then because the

DBMS resources are shared between concurrent writing and reading transactions, the

cost of the serialisation is also affected by the reading transactions. Had a

prioritization policy to favour writing transactions been in place, the cost due to the

reading transactions could be reduced.

A straightforward way to decrease the duration of BEGINs on the database servers

(reduction of the corresponding server-view, Tb
S, times), would be to execute a less

costly operation (e.g. a query that does not read any table or a call to an empty

function) instead of the dummy SELECT. However our experiments without the use

of the process prioritisation (Same Prio. experiments) revealed that the current

implementation of the BEGIN operations resulted in durations significantly shorter

than the corresponding client-view durations. This is not surprising because DBMSs

schedule DMLs as likely as concurrent BEGINs, and thus client might observe long

transaction boundaries delayed by the execution of several DMLs.

Once a bottleneck at transaction boundaries has occurred then the database servers

may receive a workload (amount of DMLs from the connections, which have passed

the serialisation bottleneck) lower than what their CPU(s) can handle. The particular

workload passed to the database servers is clearly dependent, as discussed in Section

4.5.1, on the level of concurrency and the particular types of transactions. With the

same level of concurrency (number of concurrent clients), the serialisation of

boundary operations will be more of a problem for ‘short’ transactions than for ‘long’

ones. Another dimension, which will affect whether the boundary serialisation may

become a bottleneck or not, is how powerful the CPU(s) is (are) on the database

servers. Given a particular type of transactions and a level of concurrency, the CPU

 Chapter 4. Experimental Evaluation of DivRep Performance

 109

underutilisation will be worse with more powerful machines than with less powerful

ones.

Whenever CPU resource is underutilised without priorities (i.e. the boundaries

serialisation has become a bottleneck), using priorities may help. The actual gain, of

course, will depend on how much of the CPU spare resource without priorities will be

consumed on manipulating the priorities of the processes on the database server

machine(s). The higher the underutilisation without priorities the better chance one

has to improve the server throughput by introducing priorities.

Clearly, if there is no CPU underutilisation without priorities, introducing priorities

will only make things worse. After we add more work for the database servers to do

(manipulate their process priorities) the performance will deteriorate, since the servers

would have been already overwhelmed by the workload generated by the clients.

In summary, the scheme that we presented is not guaranteed to always lead to

performance gains. Fortunately, in cases important in practice of very powerful

database servers (e.g. the ones using Symmetric Multiprocessing (SMP)), and short

transactions, the scheme is likely to deliver performance gains.

The particular implementation of the prioritisation scheme is tailored for the database

servers with the process-based architecture, where a dedicated server process serves

every client connection. It would be, however, straightforward to implement the

priority policy for thread-based architectures in which database server runs as a single

process and client connections are served by multiple threads.

It is possible to use an alternative prioritisation policy in order to improve the

performance of the replication algorithm. As detailed in Section 4.4.4 DivRep exhibits

a performance overhead as part of the “catching-up” phase, due to the use of

synchronous database replication scheme and an atomic commitment protocol. In

addition to promoting priorities of database processes while executing transaction

boundaries, the promotion could be applied to the slower server process, while

executing in the “catching-up” phase, too. The policy would be applied as follows.

Once the faster server executes the last DML operation of a transaction and the client

has sent the commit request to the middleware, the priority of the slower server is

promoted. The slower server continues the execution of the remaining SQL operations

on the promoted process priority. Once the slower server has finished all the SQL

operations in the transaction, the process priority of the faster server is increased and

both servers commit the transaction. The process priorities are restored to the default

 Chapter 4. Experimental Evaluation of DivRep Performance

 110

values only once the BEGIN operations of the following transaction is executed. In

this way we avoid performing the manipulation of server process priorities twice:

once the slower server enters the “catching-up” phase and the second time for the

transaction boundary operations.

Undoubtedly, the idea of giving priority to operations in the critical path has been

researched and applied in other contexts (some of which we describe in Section

4.5.4), but, to the best of the author’s knowledge, it has not been used to minimise

overhead incurred by database replication protocols.

4.5.4. Related Work

Similarly to database replication research, there is a vast literature on real-time

database management systems (RTDBMS) and database transaction scheduling.

Traditionally, these topics have had an impact on telecommunications, manufacturing

and avionics industry where conventional databases could not deliver the satisfactory

real-time performance. The early work of Abbott and Garcia-Molina (Abbott and

Garcia-Molina 1992) developed algorithms for scheduling real-time transactions that

operate on RAM-resident as well as disk-resident databases. The work of (Carey,

Jauhari et al. 1989) proposes specific priority-based schemes for managing resources

of database servers. The authors advocate that a buffer management policy has to

complement any CPU and disk scheduling used for minimising a resource bottleneck.

A more recent work (Ailamaki, McWherter et al. 2004) describes several non-

preemptive and preemptive prioritisation policies for database servers. It shows that a

few-fold improvement for high-priority transactions is possible using simple

scheduling policies, without imposing a significant overhead on the low-priority

transactions. The work of (Stankovic, Son et al. 1999) indicates the frequent

misconceptions about the real-time requirements for databases, such as that the

current database technology can solve real-time problems or that a real-time database

must reside in the main memory. The research of (Hall and Bonnet 2005) show that a

prioritized asynchronous I/O could help Linux-based database servers to fully utilize

available I/O bandwidth using an aggressive I/O submission policy.

As a part of parallel and distributed computing research, different solutions to

synchronisation overhead have been proposed. One such solution (Rinard and Diniz

2003) proposes adaptive replication technique that automatically eliminates

synchronization bottlenecks in multithreaded programs.

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 111

5. Uncertainty-Explicit Assessment of DivRep

Components

The quest for certainty blocks the search for meaning. Uncertainty is the very

condition to impel man to unfold his powers.

Erich Fromm

In Section 4 we reported on performance implications of DivRep middleware using

diverse database servers. One of the goals of the described studies was to measure the

amount of ‘diversity’ that exists between different servers, e.g. a particular server

might produce a fast response for a request the other one is slow on. While measuring

diversity was the topic of the previous section, here we concentrate on selection of the

servers, to be included in an FT-node .

We have observed in the previous section (Section 4) that the performance of DivRep

middleware is highly influenced by the choice of the particular servers. In the

experiments described in Section 4.4 a particular server (PG) is universally faster, for

the chosen workload and load settings, than its counterpart in the FT-node

deployment (FB). In this way the usefulness of deploying diverse database servers for

performance improvement is limited. We pointed out that the issue could be alleviated

with the use of another server, which performs considerably better than FB.

Consequently, the performance of the FT-node, deploying two diverse servers with

similar performance, could be improved.

One of the main goals of DivRep middleware, however, is to improve fault-tolerance

of replicated database systems. In order to fulfil the requirement, DivRep middleware

has to employ database servers with satisfactory level of dependability attributes. Yet

we would like to keep the performance penalty as low as possible. Looking at the

single attribute (e.g. PG server is universally faster than FB server), thus, is

insufficient. Similarly, looking at dependability assurance alone is also insufficient.

One would have to take into account both attributes when ranking the available

servers before deciding which to use in DivRep.

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 112

The assessment of the attributes of DivRep components can follow the usual practice

found in component-based software development, where assessment techniques

crucially depend on assuming that the values of the assessed attributes will be known

with certainty, at the end of the assessment (Kontio, Chen et al. 1995), (Jeanrenaud

and Romanazzi 1994), (Ncube and Maiden 1999). However, since the assessment is

carried out under various assumptions, which may not hold true in real operation, and

with limited resources of time and budget it is clear that the outcome is subject to

uncertainty. The assessors may never be 100% sure that what they concluded during

the assessment will be confirmed when the component is used in operation. This is

clearly true for some parameters, which can be estimated objectively, e.g. failure rate,

performance, etc. For failure rate, for instance, even after a very thorough testing one

can only identify a range of rates which are more likely than others. For instance,

Littlewood and Wright have shown (Littlewood and Wright 1997) that starting with

indifference between the values of the failure rate (i.e. uniform distribution of the

failure rate in the range [0, 1]) and seeing a protection system process correctly 4600

demands translates into 99% confidence that this system’s probability of failure on

demand (pfd) is no worse than 10-3.

In what follows we propose an assessment method in which the assessment results are

subject to explicitly stated uncertainty and discuss how this may impact the decisions

about the use of different servers. The method also enables representing the

dependencies that exist between the uncertainties associated with the values of the

component attributes which affect the decision about which of the available servers to

choose and also encourages assessing the dependent attributes simultaneously, thus

speeding up the assessment. We provide empirical results from a study with database

servers, which demonstrate how the assessment method can be used in practice.

Although the method has wide applicability, our main aim is to show that it could be

used for selecting components to be included in a fault-tolerant node employing

DivRep.

5.1. Motivation for Using Uncertainty-Explicit Assessment

The value of expressing the assessment results in the form (value, confidence) has

been recognized in some other technical areas which dealt with assessment. The best

performing software reliability-growth models which predict the failure rate from the

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 113

observed failures in the past, for instance, are those in which the model parameters are

treated as random variables (Brocklehurst, Chan et al.). In these models the ‘true’

values of the attributes being assessed are never assumed known with certainty.

Instead the attribute is characterized by a probability distribution from which the true

value of the attributes will come (i.e. are seen as drawn at random). For each

reliability target, then, the assessor can tell the probability that the true reliability is

lower than the target. Such models systematically outperformed the alternative

simplistic methods in which the parameters were assumed known with certainty (Lyu

1996). If the ‘uncertainty explicit’ models have been the best choice with one specific

method of assessment – software reliability – it seems natural to try similar

‘uncertainty explicit’ methods for other assessments, e.g. selecting the best database

server, from a set of comparable alternatives, for building the FT-node by evaluating

their respective attributes.

There are various methods for representing uncertainty (Wright and Cai 1994).

Bayesian approach to probabilistic modelling is one of the best-known ones and used

with some success in reliability assessment (Littlewood and Wright 1997), (Lyu

1996). It allows one to combine, in a mathematically sound way, the prior belief

(which may be ‘subjective’ and possibly inaccurate) about the values of a parameter

or a set of parameters to be assessed with the (‘objective’) evidence from seeing the

modelled artefact in operation. Combining the prior belief and the evidence from the

observations in a mathematically correct way leads to a posterior belief about the

values of the assessed attribute(s).

When selecting components for DivRep middleware we are particularly interested in

performance and reliability of the database servers being compared. The selection of a

particular database server is based on uncertain values of the attributes and as such

should take into account a possible dependence between them. Ignoring the possible

dependence between the attributes represents a particular form of belief: that assessing

one of the attributes one can learn nothing about the other one. This form of belief

might be justified in some cases, e.g. performance of a database server will hardly tell

anything about the quality of its documentation and vice versa. The same belief seems

ungrounded, however, in the case of assessing performance (e.g. response time) and

reliability (e.g. failure rate). We may assume the opposite: that the uncertainties

associated with these two attributes are independent, in the statistical sense. Under

this assumption learning something about reliability will tell us nothing about

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 114

performance and vice versa. Now, suppose that we have run a very long testing

campaign and have repeatedly observed that whenever the response was late it was

also incorrect and no other incorrect response has been observed. With such evidence

of a strong positive correlation between the failures (incorrect responses) and the

responses being late, we may accept that any change of our belief about the rate of

failure should also be translated into a change in our belief about the rate of late

responses. Therefore, it is reasonable to use the concept in which the uncertainties

associated with the assessed attributes may be dependent.

5.2. Bayesian Approach to Assessment of a Single Attribute

In this subsection we briefly summarize how the Bayesian approach to assessment is

normally applied to assessment of a single attribute. Assume that the attribute of

interest is the probability of failure on demand (pfd) of a DBMS. If the system is

treated as a black box, i.e. we can only distinguish between DBMS’s failures or

successes (Figure 5-1), the Bayesian assessment proceeds as follows.

 demands
DBMS

DBMS output

Figure 5-1. Black-box model of a DBMS. The internal structure of the component is unknown. Only its
output (success or failure) is recorded on each demand and used in the inference of DBMS’s pfd.

Let us denote the system pfd as p, with prior distribution (probability density function,

pdf) , which characterises the assessor’s knowledge about the DBMS’s pfd

prior to observing the server in operation. Assume further that the DBMS is subjected

to n demands, independently drawn from a ‘realistic’ operational environment (i.e. an

operational profile, which can be defined as a quantitative characterization of how the

component will be used in its ‘true’ environment (Musa 1993)), and r failures are

observed. The posterior distribution, , of p after the observations will be:

)(•pf

),|(nrxf p

)()|,(),|(xfxrnLnrxf pp ∝ , Eq. 5-1

where is the likelihood of observing r failures in n demands if the pfd were

exactly x, which in this case of independent demands is given by the binomial

distribution, . For any prior and any observation (r, n) the

posterior can be calculated for any of the DBMSs included in the assessment. To be

)|,(xrnL

rnr xx
r
n

xrnL −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=)1()|,(

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 115

precise, the posterior can be calculated either by using a conjugate prior distribution

(Dickey 1982), in which case the posterior distribution is guaranteed to be in the same

family as that of the prior for a given likelihood function (e.g. Beta distribution prior,

with Binomial Likelihood function, gives us a Beta distributed posterior) or it can be

calculated through numerical methods and approximations. In our case, since the

conjugate family has limitations (Littlewood, Popov et al. 2000) we have used

numerical methods to calculate the posterior.

Even if no failure is observed (i.e. r = 0), the posterior can be calculated. Other

measures of interest can also be derived from this posterior, e.g. the probability that

the DBMS will survive the next 5000 randomly chosen demands. This probability can

be calculated for each of the DBMSs included in the assessment as follows:

() ()∫
∞

−
0

5000 ,|1 dpnrpfp p

Then the best DBMS will be the one, for which the integral above gets a maximum

value.

5.3. A Model for Assessment of 2 Non-Independent Attributes

In the selection process of optimal components we assess two non-functional

attributes, DBMS’s pfd and performance, the latter assessed in the form of whether a

response is received on time or not, i.e. the probability of a late response on a

demand, pld. In terms of comparison of several DBMSs using a binary score – on

time vs. late – seems adequate. Any DBMS, which responds with an acceptable delay,

might be regarded equally good from the point of view of the system’s integrator.

Here we define a model to help with the comparison of DBMSs assessed by

subjecting them to a series of independently selected demands. Both, the pfd and the

pld of DBMSs, are used in the comparison and different comparison criteria are

discussed.

On each demand the response received from a DBMS is evaluated from two different

viewpoints: correct/incorrect and on time/late. Clearly 4 combinations exist, which

can be observed on a randomly chosen demand, as shown in Table 5-1. The four

probabilities given in the last column sum to 1. So if the last three probabilities are

0.2, 0.4 and 0.3, respectively, then the first one = 1 - (0.2 + 0.4 + 0.3) = 0.1. This

constraint remains even if we treat the probabilities in

10p

Table 5-1 as random variables:

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 116

their sum will always be 1. Thus, the joint distribution of any three of these

probabilities, e.g. , gives an exhaustive description of the DBMS’s

behaviour. In statistical terms, the model of the DBMS with two binary attributes has

three degrees of freedom.

),,(
111001 ,, •••pppf

Table 5-1 The outcomes, their frequencies and probabilities for a random demand.

Event Correct Response
(Reliability)

Response On-Time
(Performance)

Number of observations
in n demands Probability

α No Yes r1 10p
β Yes No r 2 01p
χ No No r 3 11p
δ Yes Yes r 4 00p

The marginal probabilities of getting an incorrect response on a random demand, let’s

denote it pI, and of getting the response late, pL, respectively, can be expressed as:

1110 pppI += and 1101 pppL += .

p11 represents the probability of receiving late an incorrect response and, thus, a

notation pIL ≡ p11 will capture better the intuitive meaning of the event it is assigned

to. Instead of using another distribution, which can be derived from

it through a functional transformation (Change of variables is a standard

transformation method in Calculus, which requires the calculation of the Jacobian

determinant), can be used. In this section we use

),,(
110110 ,, •••pppf

),,(,, •••
ILLI pppf , which is given by:

),|(),(),,(,,, LIpppppp ppfff
ILLIILLI
•••=•••

 Eq. 5-2

It can be shown that for a given observation (r1, r2, and r3 in N demands) the posterior

joint distribution can be calculated as:

∫∫∫

=

ILLI

ILLI

ILLI

ILLI

ppp
ILLIppp

ILLIppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,
321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

 Eq. 5-3

where

321321)1()()(
)!(!!!

!
),,|,,,(

321321

321

rrrN
LIIL

r
IL

r
ILL

r
ILI

ILLI

pppppppp
rrrNrrr

N
ppprrrNL

−−−−−+−−
−−−

=
 Eq. 5-4

is the multinomial likelihood of the observation (r1, r2, r3 , N).

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 117

A similar model has been used in the past in assessing reliability of various systems

built with components (Littlewood, Popov et al. 2000), (Popov 2002).

For the comparison of the DBMSs we define the following criterion:

Probability of an inadequate response, PSer, by the DBMS, which represents the event

of getting either an incorrect or a late response. Clearly, PSer = PI + PL – PIL. Its

posterior distribution,),,,|(321 rrrNf
Serp • , can be derived from the joint

posterior, , by first transforming it to, for example,),,,|,,(321,, rrrNf
ILLI ppp •••

),,,|,,(321,, rrrNf
SerLI ppp ••• , and then integrating out the nuisance parameters PI and

PL.

An often used selection method (Port and Chen 2004) in the literature is the weighted

sum of the values of the attributes. The weighted sum of the two attributes in our

study can be calculated as follows: PS = kPI + (1-k)PL, in which the constant k is

defined by the assessor. High values of k correspond to cases when incorrect results

are highly undesirable while late results may be tolerable. On the contrary, low values

of k correspond to cases when incorrect results may be tolerated by the system while

late responses may have serious consequences. In order to derive the marginal

distribution of PS first, the joint distribution),,,|,,(321,, rrrNf
ILLI ppp •••

is transformed

to),,,|,,(321,, rrrNf
SLI ppp ••• and then the nuisance parameters PI and PL are integrated

out, as we did above for PSer. However, we will not be using this method of selection

since the new variable PS does not have an obvious intuitive meaning. The difficulty

is compounded in our case since the uncertainty is stated explicitly. It is impossible to

say what a confidence of say 99% associated with a particular value of PS tells us

about the component being assessed.

5.4. A Numerical Example

In this section we demonstrate the approach of selecting a DBMS based on the

evaluation of the respective performance and reliability attributes. In total six database

servers from four different vendors were used. Four of the servers are open-source,

namely PostgreSQL 7.0, PostgreSQL 7.2, Interbase 6.0 and Firebird 1.0. The other

two servers are commercial closed development servers, anonymised here due to the

restrictive ‘End User License Agreements’. We refer to these components as CS1

(Commercial Server 1) and CS2 as they are from different vendors.

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 118

An ideal selection of a database server based on the results of statistical testing may

be problematic in practice. We highlight two circumstances in which these difficulties

can occur:

- Assume that we are interested in choosing between several DBMSs, based on their

performance. The ideal situation for choosing the most appropriate database server

based on measurements after deployment is clearly unrealistic since we would

like to select the best server before the application is developed.

- Assume that DivRep integrator would like to make a strategic choice of a

database server for use in the foreseeable future. In this scenario the

application(s), which may be developed in the future may be even unknown at the

time of making the selection; therefore performing statistical testing (which is

crucially dependent on knowing the operational profile in the targeted

environment) will be impossible.

Given these difficulties we can use an alternative option, i.e. we can use well-known

benchmark applications. In the context of database servers this might be TPC-C

benchmark. In this case, the performance of the components can be measured directly

on the target platform, but there might be problems observing failures. This is because

it would be reasonable to expect that a database server would correctly process the

operations defined in the benchmark application (despite different implementations of

the operations being possible). Thus, in this case the selection of the database server

would be significantly influenced by the performance attribute. Even if failures are

observed, such a measurement of the reliability may be very expensive; the likely

candidates to choose from will be reliable components. In that case the amount of

testing to observe a few failures may be prohibitively high (Adams 1984).

We illustrate the assessment method with data collected from experiments with our

own implementation of TPC-C benchmark (Section 2.4). In the empirical study we

recorded response times of each transaction. The test harness was similar to the one

used for the experiments described in previous sections. It consisted of two machines:

- A server machine, on which one of the six database servers was run.

- A client machine, which executed a Java implementation of TPC-C standard.

Each experiment comprised the same sequence of 1000 transactions. We ran two

types of experiments:

- Single client - a TPC-C compliant client modifies the database by executing the

specified transaction mix.

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 119

- Multiple clients - a TPC-C compliant client modifies the database and additional

10 clients concurrently execute read-only transactions (Order-Status and Stock-

Level). The choice of the workload was made in order to, straightforwardly, avoid

database inconsistencies caused by inherent non-determinism of the different

servers and prevent conflicts of concurrent transactions.

Multiple clients experiment enabled us to increase the load on the servers and measure

the effect of the increased load on their performance. A timeout value, specific to each

transaction type, was used to distinguish between late and timely responses. We

defined two sets of timeouts:

- The 90th percentile values specified by TPC-C (TPC-C timeout).

- One fifth of the 90th percentile values (short timeout).

The choice of the timeout values was made after a personal communication with a

TPC-C affiliate and auditor who confirmed that the values were conservative for a

wide range of on-line transaction processing applications (see Section 2.4). We

defined four scenarios, varying the number of clients and timeout values respectively:

- Scenario 1 - single client / TPC-C timeouts.

- Scenario 2 - single client / short timeouts.

- Scenario 3 - multiple clients / TPC-C timeouts.

- Scenario 4 - multiple clients / short timeouts.

The database servers were compared for each of the scenarios.

5.4.1. Prior Distributions

The prior, , was constructed under the assumption that P),,(,, •••
ILLI pppf I and PL are

independently distributed random variables, i.e.)()(),(, ••=••
LILI pppp fff . We

made this assumption since we did not have any objective evidence to believe

otherwise. In case there are reasons (objective or subjective) then the assumption of

independence may be dropped. In this case the particular form of should

be defined explicitly. Additionally, the conditional distributions

were defined for every pair of values of P

),(, ••
LI ppf

),|(,| LIPPp PPf
LIIL
•

I and PL, in the range [0, min(PI, PL)] since

the probability of incorrect and late responses cannot be greater than the probability of

either of the two individually. In passing we note that the choice of the prior is not

critical here since with this benchmark application an arbitrarily large number of

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 120

demands can be generated, which can correct any inaccuracies of the priors, i.e. ‘the

data will speak for itself’.

We anticipated observing mainly late responses while the incorrect result failures

were expected to be very rare. We have assumed ‘ignorance prior’ (Uniform

distribution) for performance in the range in the range []1,0∈LP . For incorrect result

failures we have also assumed ignorance but using an upper bound of 10-2, likely to be

very conservative in the context of TPC-C, i.e. we used the range []210,0∈IP . We

assumed ignorance priors for both PI and PL since we did not have any preference

regarding their values. In this study we used the same distribution for all the servers

since for the scenarios tested we did not have any reason to prefer one server over the

others. There might, however, be cases – some discussed later in Section 5.5 -

whereby the assessor may have different prior beliefs about the competing servers.

A summary of the distributions used and the range in which they are defined is given

in Table 5-2.

Table 5-2 The Prior distributions (identical for all six servers and all four scenarios).

Prior Distribution Range Distribution Type

Reliability)(•
Ipf 0 – 0.01 Uniform

Performance)(•
Lpf 0 – 1 Uniform

Conditional distribution:),|(,| LIppp PPf
LIIL
• 0 – min(PI, PL) Uniform

5.4.2. Observations

The observations from the TPC-C experiments are given in Table 5-3. The number of

demands for all servers is 1000. Five out of six servers exhibit late result failures only.

Incorrect result failures are observed only for CS2. In addition, whenever a result was

incorrect on CS2 it was late, too. The incorrect results observed were due to the

specific concurrency control mechanism used by CS2 (Popov, Strigini et al. 2004).

The locks on resources, e.g. database rows, were not released properly when the lock

holding transactions were completed. To resolve the problem we had to install

timeout watchdogs and abort transactions when the timeout expired. Each aborted

transaction was repeated as many times as necessary to eventually commit

successfully. We decided to use transaction repetition count as the criterion of an

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 121

incorrect response on CS2. In particular, we defined a threshold of 5 as the value,

beyond which the transaction would be considered to have failed.

We used transaction timeout values and transaction repetition count to classify each

demand on each server in the categories r1 to r4 (defined in Section 5.3).

Table 5-3 The observations of the six database servers for the four scenarios. The number of demands
(N) is 1000 for each server. We did not observe any incorrect-only failures, i.e. r1=0 for all servers.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
DBMS

r1 r2 r3 r1 r2 r3 r1 r2 r3 r1 r2 r3

PG 7.0 0 1 0 0 30 0 0 0 0 0 644 0

PG 7.2 0 6 0 0 33 0 0 3 0 0 489 0

IB 6.0 0 0 0 0 24 0 0 1 0 0 434 0

FB 1.0 0 0 0 0 1 0 0 0 0 0 439 0

CS1 0 0 0 0 33 0 0 19 0 0 303 0

CS2 0 0 0 0 4 0 0 0 1 0 329 1

5.4.3. Posteriors

The percentiles derived from the posterior distribution for the 4 scenarios are given in

Table 5-4. One can see that the ordering between the servers changes as the number of

clients and/or the timeout values vary (to improve the readability of the table we have

explicitly shown the ranking order of the servers in each scenario).

Under Scenario 1 (the least demanding scenario) four servers (IB 6.0, FB 1.0, CS1

and CS2) produce identical results since they completed without any failure (i.e. on

time and correctly) the 1000 transactions. We are indifferent in the choice among

them. The two versions of PostgreSQL exhibit late responses and they are ranked

lowest.

When we decrease the timeout value (Scenario 2) the ranking changes: now there are

late responses with all the servers. The two worst servers are PostgreSQL 7.2 and

CS1. Interestingly, Firebird 1.0, an open-source server, is ranked the best.

In Scenario 3 the percentile values are close again as in the first scenario, though the

earlier version of PostgreSQL, PG 7.0, is ranked the best, alongside Firebird 1.0 while

CS1 is the worst performing server. Firebird 1.0 is consistently among the best servers

in the first 3 scenarios. An interesting observation is the 50th percentile value of the

posteriors CS2 and IB 6.0. Even though the total number of failures for these two

servers were the same (1 each, see Table 5-3), the nature of the failure was different:

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 122

the result from CS2 was both incorrect and late whereas from IB 6.0 it was only late.

Exploring this dependence we can still see a difference in the 50th percentile values of

these two servers (even though the difference is marginal and on the chosen accuracy

of expressing the percentile values is not observed in the 99th percentile).

The ranking changes again in the most demanding scenario (Scenario 4). The best

server is now CS1.

Table 5-4 Percentiles (abbreviated to P-tile) for the distribution of the system quality PSer = PI + PL –
PIL classified per scenario. To improve the readability we have also provided the Ranking order for
each of the servers based on the percentile values. The prior distribution is the same for all servers

across all scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
P-tile COTS Prior

Posterior Rank Posterior Rank Posterior Rank Posterior Rank

PG 7.0 0.0021 5 0.0310 4 0.0012 1 0.6436 6

PG 7.2 0.0071 6 0.0340 5 0.0041 5 0.4888 5

IB 6.0 0.0012 1 0.0250 3 0.0021 4 0.4340 3

FB 1.0 0.0012 1 0.0021 1 0.0012 1 0.4392 4

CS1 0.0012 1 0.0340 5 0.0200 6 0.3032 1

0.5

CS2

0.502

0.0012 1 0.0051 2 0.0020 3 0.3300 2

PG 7.0 0.0076 5 0.0456 4 0.0060 1 0.6780 6

PG 7.2 0.0152 6 0.0492 5 0.0108 5 0.5256 5

IB 6.0 0.0060 1 0.0384 3 0.0076 3 0.4704 3

FB 1.0 0.0060 1 0.0076 1 0.0060 1 0.4756 4

CS1 0.0060 1 0.0492 5 0.0324 6 0.3376 1

0.99

CS2

0.992

0.0060 1 0.0124 2 0.0076 3 0.3652 2

The results of the ranking apply to the chosen servers, and may change if different

versions are used, e.g. the ordering between PostgreSQL 8.1.4 and Firebird 2.0.1 is

different, as shown in Section 4.4.

We can see that under the more ‘stressful’ profile in Scenario 4 the best DBMS is

CS1. However if the concurrency is low, then even with the rigid performance

requirements (Scenario 2) Firebird 1.0 server, which is open-source and freely

available, comes out as the best server. On the other hand the worst components are

PostgreSQL servers. We could also use the outcome of the study as a validation of the

proposed method. CS1, which came out best, is widely accepted as the best DBMS

and has by far the largest share in the market of database servers. This gives some

confidence that the data that we used is sufficiently informative to allow for

meaningful and accurate discrimination between the competing components and the

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 123

method itself is trustworthy to provide rigorous ground for accurate component

selection.

5.5. Discussion and Related Work

To assess the attributes of interest of DivRep components in a single framework and

handle the inherent uncertainty in the assessment we propose the use of “uncertainty

explicit” methods. We have illustrated in the previous subsections how the assessment

of the two attributes, performance and reliability, can be performed for ranking of

DBMS products. The ranking can be used for selecting components of DivRep

middleware - two servers that turn out to be the “best” according to the ranking would

be selected. This is not ideal because it is possible that two servers, which scored best

individually do not form the best pair, e.g. the servers’ performance might be different

once the replication protocol is in place. It is worth noting that the described method

is not intrinsically related to DivRep and it can be applied in a wider context where

need for similar ranking of other products arises.

In the example of the assessment method (Section 5.4) we have used somewhat

arbitrary definitions of incorrect response failures. A better alternative for more

representative assessment of reliability attribute can be found in (Gashi, Popov et al.

under review), where a set of faults (bugs) from four different database severs form a

demand space, which is used for more stressful testing of the components under

assessment. More interestingly, the results obtained from the related study also led to

CS1 being the best server. This gives an extra confidence that the method indeed

performs plausibly, i.e. does not lead to counterintuitive results, which would have

required further scrutiny to explain why the perception of CS1 as the best is not

supported by the results of the study.

Using the same approach Gashi et al. (Gashi and Popov 2007) show how an optimal

pair of components can be selected to form 1-out-of-2 fault-tolerant system. The focus

of the paper is on the assessment of the reliability and not performance. They use the

same Bayesian model described here, applied to a dataset of faults reported for four

database servers, to choose the pair with the lowest probability of the coincident

failure. In this way the authors cater for the possibility that the best pair might not be

built with the database servers which are the best individually (indeed they confirmed

this possibility). However the approach is applied to running the servers on their own,

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 124

i.e. a reported fault is executed against an individual server. It would be problematic

to apply the approach to performance only – an overhead due to the replication

(various synchronisations) may lead to performance significantly different from when

the servers are run on their own. In any case, the approach can be combined with what

is presented in this section with the aim to select the “best pair” taking into account

both fault logs and performance.

The definition of the prior distribution is fundamental in Bayesian assessment. In our

study we have assumed that prior distributions for each component are the same. This

was due to the unavailability of other known ‘objective’ evidence that we could use to

define more accurate priors. Anecdotal evidence about the servers does exist, but is

difficult to translate these subjective beliefs into priors in the form required by our

method. By assuming that the prior distributions were the same for each server, the

decision on which server is chosen is dictated by the observations only. As a result the

decision of the types of distributions for the random variables in our study becomes

less important.

However there are other ways of deriving more accurate priors. We could, for

example, utilize evidence from earlier versions of the servers and then do multiple

steps of inference, i.e. if we want to perform the assessment with later versions of the

servers in our study (e.g. with versions of PostgreSQL after release 7.2 or Firebird

after release 1.0) we can use the posteriors derived here as priors for the later versions,

collect the new evidence for the later versions and then use the model to derive the

posteriors for each. This approach has also been reported elsewhere (Littlewood and

Wright 1997).

The method of assessment proposed in this paper would be applicable to different

families of COTS components. The setup described in Section 5.3 and illustrated in

Section 5.4 is particularly relevant for COTS components with stringent reliability

and performance requirements. We provided empirical results using off-the-shelf

database servers. Java Virtual Machines (JVMs), various application servers, web

servers and Business process execution engines (Andrews, Curbera et al. 2003) are

also examples of COTS components were reliability and performance requirements

are usually the deciding attributes for selection. Fault and failure reports, which can be

used as observations, do exist for these products and so do performance benchmarks

(e.g. ab benchmarking tool for web servers (ApacheSoftwareFoundation 2008)).

Therefore, similar measurements to what we did for database servers are also possible

 Chapter 5. Uncertainty-Explicit Assessment of DivRep Components

 125

with these other families of COTS components. In many cases for these components

one may not need to deal with more than 2 attributes, which makes our 2-attribute

model proposed in Section 4 immediately applicable without any further

simplifications.

 Chapter 6. Related Work

 126

6. Related Work

Every extension of knowledge arises from making the conscious the unconscious.

Friedrich Nietzsche

Earlier sections discussed different topics related to the research and each of them

contains the references to the relevant work. In this section, we describe in detail the

work related to a particular topic, database replication, in order to emphasize it as one

of the central themes in the research work.

6.1. A Multitude of Database Replication Solutions

Database replication is a thoroughly studied subject. The main challenge of database

replication is replica-control and coordination of modification operations (DELETE,

INSERT and UPDATE). As mentioned in Section 2.3, the well-known paper (Gray,

Helland et al. 1996) categorised database replication solutions according to the place

where replication is performed (primary copy and update all approaches) and the

point in time when the replicas coordinate the updates to the database (eager and lazy

replications). Eager solutions (Kemme and Alonso 2000a), (Pedone and Frolund

2000), (Kemme, Bartoli et al. 2000) guarantee that the writes are propagated to all

replicas before transaction commit. This has a negative impact on system

performance, mainly because the scalability of the solution is limited, but ensures

database consistency in a straightforward way. Lazy solutions (Daudjee and Salem

2004), (Liskov, Rivka et al. 1992), (Pedone, Guerraoui et al. 1997), (Pacitti, Minet et

al. 2001), (Amza, Cox et al. 2003) perform writes after commit. They offer improved

performance at the possible expense of compromising database consistency.

Typically, reconciliation techniques have to be deployed once the states of replicated

databases diverge. Moreover, hybrid solutions, which combine the characteristics of

both eager and lazy solutions, have been proposed in the literature. For example,

(Elnikety, Dropsho et al. 2006) describes Tashkent, a database replication solution,

which on one hand uses eager certification technique to identify global write-write

 Chapter 6. Related Work

 127

conflicts in the system to provide replica consistency, while on the other hand once a

transaction has been certified, its writeset is propagated lazily to the remote replicas,

i.e. the remote changes are executed in separate transactions.

Numerous database replication solutions have been proposed in academia and

industry. In order to minimise the problems described in (Gray, Helland et al. 1996)

the solutions have been divided in regard to the degree of separation of the replica

control from the underlying database systems. The first approach is so called black-

box approach where replication mechanism is provided completely outside of the

database server. These solutions are usually middleware-based (Plattner and Alonso

2004), (Patino-Martinez, Jimenez-Peris et al. 2005), (Cecchet, Marguerite et al. 2004)

where further concurrency control is performed in an additional software layer. On

contrary, there exist replication solutions that extend the internals of database servers

in order to provide replica control. These solutions are referred to as kernel-based or

similarly, white box solutions (Kemme and Alonso 2000a), (Kemme and Wu 2005),

(Pedone, Guerraoui et al. 2003). There are examples of database replication which use

features of both approaches. The work of (Patino-Martinez, Jimenez-Peris et al. 2005)

is an example of a mixture of black-box and white-box approach, where specific

features of the database servers are combined with an external mechanism for

concurrency control. Middleware-based solutions are easier to develop than white box

approaches, which depend on knowing the internals of database servers. The former

can be maintained independently from the database servers they operate on. However

abort rates pose a problem in the middleware-based techniques since only partial

knowledge of the transactional conflicts is available. A lack of the real

implementation is a disadvantage of many replication solutions despite, usually, a

sound theoretical foundation (Kemme and Alonso 2000b), (Elnikety, Zwaenepoel et

al. 2005). Nonetheless there exist examples of advanced implementations for database

replication such as the one developed under C-JDBC (Cecchet, Marguerite et al.

2004) project. C-JDBC is an open source database cluster middleware designed for

high performance and improved fault tolerance. It features a load balancer that works

under one of the three types of algorithms: round-robin, weighted round-robin or least

pending request first. A query results cache is maintained and there are several

optimisations of transaction performance: 1) lazy transaction begin, 2) parallel

transaction execution and 3) early response to update commit, or abort. The last two

optimisations are similar to the processing of DivRep. C-JDBC executes write,

 Chapter 6. Related Work

 128

commit and abort (Section 2.4.2 in (Cecchet, Marguerite et al. 2004)) operations

sequentially, while in DivRep a more relaxed replica-control algorithm executes only

commits and begins serially. In terms of fault-tolerance C-JDBC provides

checkpointing, recovery logs and horizontal scalability, which prevents the system

becoming a single point of failure. However it does not have any potential for

protection against design faults as is the case in DivRep. Sequoia project (Continuent

2007), a descendant of C-JDBC, offers clustering, load balancing and failover

services for heterogeneous databases.

Further classification of eager database replication protocols can be found in

(Weismann, Pedone et al. 2000). Using three key parameters (server architecture,

server interaction and transaction termination) the authors identify eight classes and

for each of them examine respective requirements, capabilities and cost. The

pessimistic regime of DivRep performs a form of active replication (Wiesmann,

Pedone et al. 2000). Early variants of active replication can be found in (Garcia-

Molina and Pitelli 1989) and (Keidar 1994). The performance of an active replication

and its comparison to two-phase commit solutions is given in (Amir and Tutu 2002).

Several strands of research have been developing eager replication solutions using

group communication (Powell 1996). The early work of (Hadzilacos and Toueg

1993), (Agrawal, Alonso et al. 1997) and (Schiper and Raynal 1996) has provided the

foundation for proliferation of such solutions. The fundamental semantics of group

communication exploited in the database replication are ordering and atomicity of

message delivery and group maintenance. In particular, total order of message

delivery guaranteed by the group communication systems is used to ensure consistent

execution of transactions on all replicas. In (Agrawal, Alonso et al. 1997) a few

variants of replica management protocols using group broadcasts are presented.

Firstly a protocol that uses the state machine approach (Schneider 1982) where

operations are executed in the same order on all replicas is explained. Using atomic

broadcast, a transaction broadcasts all operations to the remaining sites and they

install all the conflicting operations in the same order – the one imposed by the

broadcast. To improve the performance of the protocol reads are localized and thus

the overhead imposed by sending them to all remote sites is alleviated. As a final

enhancement the authors decrease the number of messages exchanged per transaction

to one – all writes are bundled into one message and sent in the end of transaction to

the remote sites. Once the locks are granted for the writes and they are executed, the

 Chapter 6. Related Work

 129

transaction commits. Order of conflicting operations is guaranteed to be the same by

the properties of the underlying communication system and thus there is no need for

broadcasting commits.

A comprehensive comparison of database replication techniques based on total order

broadcast can be found in (Wiesmann and Schiper 2005). The techniques had been

compared separately in other studies, but usually only against a classic replication

scheme like distributing locking. The comparison is done in the same environment

using the same settings. A sound comparison of different protocols is given in (Alvisi,

Elnozahy et al. 2002), though the authors are concerned with rollback and recovery

and not database replication.

The commercial solutions usually give up consistency for better performance (Oracle

2005). There are, however, commercial solutions for eager replication. Oracle

DataGuard (Oracle 2002) replication uses primary copy approach where production

database is accompanied with two types of standby databases, physical standby

database and logical standby database. The former has identical on-disk database

structures as the primary database while the latter is an independent database that

contains the same data as the primary. Logical standby database is updated using SQL

operations and is frequently used for recovery purposes. The consistency between the

production database and the physical standby is maintained using online redo log

services, Log Transport Services and Log Apply Services. Similar replication solution

is offered by the DB2 HADR system. Ingres Replicator (Ingres 2006) is an example

of multi-master solution. It offers both full and partial replication and uses a 2-Phase

commit protocol to ensure atomicity of distributed transactions. There have been

several projects that are developing database replication solutions using the open

source database server PostgreSQL, such as PgPool, Sequoia, Slony and PGCluster.

They provide either update all or primary copy replication and some of them use

variants of 2-phase commit protocol. Postgres-R project, originally developed by Prof

Bettina Kemme (Kemme 2000) as a part of the PhD research, is another example of a

replication solution based on PostgreSQL.

All mentioned replication solutions deal with fault-tolerance in replicated databases

on the crash failure assumption, i.e. none of them are able to tolerate subtle faults that,

for example, cause databases to diverge or report incorrect results to client. One

exception to this is commit barrier scheduling (CBS) (Vandiver, Balakrishnan et al.

2007), a recently proposed replication protocol that guards against Byzantine faults in

 Chapter 6. Related Work

 130

transaction processing systems. The work is built on the research of (Castro and

Liskov 2002), (Castro, Rodrigues et al. 2003) and the early scheme for tolerating

Byzantine faults in database systems (Garcia-Molina, Pittelli et al. 1986). The authors

propose an implementation of CBS that ensures single-copy serializable view to

clients to be used in Heterogonous Replicated Database (HRDB). In contrast to

DivRep no possibility to handle multi-version concurrency control mechanisms that

guarantee snapshot isolation is possible in HRDB. As in DivRep the use of diverse

(the authors of (Vandiver, Balakrishnan et al. 2007) use term heterogeneous instead)

databases increases the possibility of detecting, and recovering, from non-fail-stop

failures. Their results about the potential for dependability improvement through

diverse redundancy are consistent with the ones reported in (Gashi, Popov et al. 2007)

– out of 251 tested bugs, most of them (131) caused incorrect answers, database

corruption or unauthorised access. HRDB is a primary copy replication scheme and

thus the performance of the replicated system is dictated by the processing of the

primary replica. To address the non-fail-stop failures HRDB postpones the commit of

a transaction until after majority of replicas have agreed on the results. Additionally

HRDB deals with the non-determinism of the locking mechanisms in diverse replicas

by requiring that a primary is sufficiently blocking – if the primary executes a pair of

SQL operations in parallel, it is guaranteed that all non-faulty secondaries will be able

to do so, too. In the cases where a primary is not sufficiently blocking performance

penalty might be observed, e.g. in a system consisting of 3 replicas if the primary is

not sufficiently blocking for the faster secondary, the commit will be executed only

once the slower secondary is ready and not after the faster secondary has reached the

end of the transaction. In DivRep conflicts are detected by both replicas, although

different transactions might be identified as “victims”. There is no need for a primary:

liveness is guaranteed by the use of NOWAIT parameter, without the need for

transaction-ordering rule and sufficiently blocking property to hold and, moreover,

there is a possibility to improve performance of the replicated system by exploiting

systematic differences between the diverse replicas.

6.2. Load Balancing and Adaptability

The research of (Zuikeviciute and Pedone 2006) proposes conflict-aware load-

balancing technique for certification-based replication protocols. The technique is

 Chapter 6. Related Work

 131

aimed at satisfying two requirements: increasing concurrency and simultaneously

decreasing the abort rate of certification-based protocols placed at the middleware

level. Commonly, one has to use opposing techniques to meet these requirements. The

authors propose a hybrid load-balancing technique which unifies two approaches

Maximizing Parallelism First (MPF), aimed at promoting high degree of parallelism

for transaction execution and distributing the load as evenly as possible between

replicas, and Minimizing Conflicts First (MCF), which tries to assign conflicting

transaction to the same replica so that the replica’s scheduler serializes the offending

operations, instead of waiting for the certification test to abort the transactions. An

example with TPC-C implementation is given and the results show that for a

particular workload scenario abort rate can be reduced without a high penalty in

response time.

Milan-Franco et al. (Milan-Franco, Jimenez-Peris et al. 2004) address the issue of

adaptability of a middleware-based replication to the changes imposed by different

transactional profiles and loads submitted to the replicas. For that matter dynamically

adaptive multiprogramming levels (MPL), which set the number of concurrently

executing transactions in a database system, are proposed. The authors suggest a two-

part solution to deal with the adaptability, local-level adaptation, which focuses on

maximizing the concurrency degree on each individual replica, and global-level

adaptation, which strives to improve the overall performance of the system by

distributing the load fairly between all replicas. The work recognizes two principal

goals for the dynamically adaptable middleware; the first one is identification of the

optimal MPL so that the admission of additional transactions is impossible once the

database system reaches the limit in number of simultaneous executions, and the

second one is a provision for an adjustment in MPL once a change in the load is

observed. This work differs from the previous research in that achieving optimal

throughput is sought using the techniques implemented in the middleware.

On the other hand, in (Brown, Mehta et al. 1994) a feedback-based algorithm, M&M,

is proposed, which is used to find optimum MPL and memory settings for a particular

type of workload class, so as to achieve the response time goals. The algorithm relies

on information from the internals of the system to build the algorithm, such as disk

buffer controller. M&M algorithm and the adaptive distributed middleware (Milan-

Franco, Jimenez-Peris et al. 2004) are complementary to the functions of DivRep and

both could be used to improve system performance.

 Chapter 6. Related Work

 132

Elnikety et al. (Elnikety, Dropsho et al. 2006) propose a middleware-based replication

solution that joins two properties of transaction execution, durability and transaction

ordering, so as to achieve better scalability and performance. In particular, the need

for the unification of the two properties in a replicated system is followed from the

practice observed in centralised databases, where multiple commits are grouped into a

single action and written to the disk in a single operation for increased efficiency.

Related configuration parameters, devised for performance improvement of standard

transactional logging performed by WAL (Write-Ahead Logging) component, exist in

PostgreSQL; they are commit_siblings and commit_delay. The authors propose two

types of solutions to unify the properties in a replicated system, where ordering is

guaranteed by the middleware while durability is provided by the individual replicas.

The first one, Tashkent-MW, is a pure middleware solution which disables

synchronous writes on the replicas and thus enhances the middleware with a feature to

log database writes. The second one, Tashkent-API, is an analogous solution that

extends the API of the underlying replicas with a feature that specifies the commit

order of the update transactions. Their results show that for different types of

workloads, ranging from update-only to read-oriented, both Tashkent-MW and

Tashkent-API exhibit better performance than a base system, in which transaction

ordering and durability are achieved separately.

Tashkent+ (Elnikety, Dropsho et al. 2007) is an enhanced version of Tashkent that

features a memory-aware load balancing algorithm (MALB). The algorithm uses

estimates of memory consumption for each type of transaction through querying the

respective execution plans to obtain information about tables and indexes used. These

working set estimates are used to group transactions so that their combined usage of

the memory can be optimally satisfied e.g. by allocating them to the least loaded

replicas. This effectively partitions groups of transactions across replicas. MALB uses

the knowledge to introduce an update filtering technique and reduce the load of

update transactions. This technique allows some tables to be dropped or their content

to become stale on some replicas, so the updates destined for the particular tables are

not processed. Tashkent+ is developed on assumption that transactions and their

respective parameters used in an application are known in advance. Authors report

superior performance of MALB when compared to other load balancing techniques.

They demonstrate it using varying workloads, memory and database sizes.

 Chapter 6. Related Work

 133

6.3. Consistency Guarantees

The effects of snapshot isolation (SI) on a centralized database have been studied in

(Fekete, Liarokapis et al. 2005) and (Fekete, O'Neil et al. 2004). The authors propose

a sufficient condition that guarantees serializable histories under SI. They show how

an application can be modified to satisfy the condition. Fekete et al. (Fekete 2005)

discuss the possibilities of allocating different isolation levels to a group of

transactions while still maintaining conflict serializability. Each subgroup of

transactions uses a distinct concurrency control mechanism to ensure the isolation

level of choice. The authors provide a simple graph-based algorithm for determining

the weakest acceptable allocation when transactions on both serializable and

snapshoot isolation level are executing jointly.

The work of (Elnikety, Zwaenepoel et al. 2005) defines generalised snapshot

isolation (GSI) for replicated databases (Section 2.3.2). A special case of GSI, prefix-

consistent snapshot isolation (PCSI), is presented as a suitable isolation level for

replicated databases. Instead of ensuring that each transaction operates on the latest

snapshot available on any of the replicas, PCSI guarantees that only the most recent

changes performed on the local database are available. Two possible implementations

are proposed: centralized and distributed certification. The former employs a master

database, which communicates with all replicas to certify the commits of the

modifying transactions. In this way only the master is guaranteed to have the latest

snapshot of the data. To alleviate the issue with the master database being a single

point of failure, the authors proposed distributed certification in which each replica

executes and certifies update transactions. This functionality is supported by the use

of an atomic broadcast for delivery of writesets, necessary information in certification

procedure, to all replicas. The work of (Beeri, Bernstein et al. 1989) has proposed

order-preserving serializability to address the differences between correctness criteria

defined in classical serializability theory and temporal precedence. The property has

been originally proposed for proving the correctness of nested transactions. An

execution is order-preserving serializable if it is serializable and the following holds:

whenever Ti commits before Tj begins, i.e. the operations of Ti execute before

operations of Tj, then there exists an equivalent serial execution in which Ti precedes

Tj. Concurrency control algorithm using 2-phase locking produces order-preserving

serializable executions. (Alonso 1997) discusses the use of the order-preserving

 Chapter 6. Related Work

 134

serializability as the criterion for guaranteeing consistency in partially replicated

database, and in particular for the systems where group communication primitives are

used. It gives an example that ensuring serializable schedules on all replicas in a

partially replicated system is not sufficient to guarantee global serializability. This is

due to the fact that serializability does not necessarily follow temporal precedence. As

a result 1-copy serializability is not order-preserving. Schmidt et al. (Schmidt and

Pedone 2007) analyse a common technique, known as deferred updates, for

propagating writes in replicated databases. The authors define a conceptual deferred

update protocol and formally characterize it. They prove that a weaker property than

order-preserving serializable is needed to ensure that replication protocols using

deferred update technique guarantee database consistency. They denote the new

property as active order-preserving serializable.

 Chapter 7. Conclusions

 135

7. Conclusions

This is not the end. It is not even the beginning of the end.

 But it is, perhaps, the end of the beginning

Winston Churchill

Diverse redundancy was originally conceived as an incarnation of fault-tolerance 30

years ago. Due to the high cost, however, the industry has been reluctant to use

diverse redundancy for guaranteeing sufficient levels of dependability. It was only

recently, as a consequence of proliferation of numerous off-the-shelf software, that the

use of diversity has become a realistic possibility for dependability improvement.

Nevertheless the results of assessing the potential dependability gains are still scarce.

The situation is even more acute when we consider performance – to the best of the

author’s knowledge no research that tries to use design diversity for performance

improvement has been reported elsewhere. Consequently, the research described in

this thesis is concerned with the implications of diverse redundancy (when multiple

heterogeneous products are deployed in a redundant configuration) on the

performance. We have chosen database servers, a concrete and mature type of

computer system, as the basis for the research. The research work has lead to several

major contributions:

- From the practical point of view a middleware-based database replication solution

has been devised and an algorithm that ensures database consistency has been

developed and proved correct.

- Also, a previously proposed Bayesian model (Littlewood, Popov et al. 2000) has

been adapted for selection of an optimal database server for inclusion in the FT-

node. We have taken two relevant attributes, performance and reliability, into

account when demonstrating the selection.

- From the empirical perspective we provided a thorough evaluation of the use of

diverse database servers for database replication.

Consequently, the whole research described in this thesis can be regarded as an initial

step toward building a fully operational fault-tolerant SQL server.

 Chapter 7. Conclusions

 136

7.1. Research Assessment

We have implemented a configurable database replication middleware (DivRep),

deployable with diverse database servers, to allow the clients to request quality of

service in line with their specific requirements for performance and dependability.

Clients with conflicting needs between dependability assurance and performance may

benefit from diverse redundancy according to their own priorities; because an FT-

node can apply different regimes for different clients. When performance is the top

priority the optimistic regime, which tends to execute read operations only on the

faster server, can be used. In many practical cases this is likely to produce significant

improvement. On the other hand, when dependability is the top priority, the

pessimistic regime with a fully featured middleware for fault-tolerance provides

significant level of dependability assurance, unattainable if traditional non-diverse

replication is used. To overcome the opposing requirements dictated by dependability

and performance we proposed a hybrid solution that combines two regimes of

operation to offer a configurable quality of service. This hybrid solution is one of the

reasons why we measured the performances of the two extremes, pessimistic and

optimistic regimes of operation. By deploying run-time assessment capabilities, based

on Bayesian inference, we propose that the middleware may process the individual

SQL operations switching intelligently between different regimes of operation.

A novel replication algorithm, Dependable Replication Algorithm (DRA), guarantees

strong consistency between the replicas preserving conventional snapshot isolation

(Elnikety, Zwaenepoel et al. 2005) as found in centralised databases. It, also, ensures

strict 1-copy-SI, a consistency criterion based on 1-copy-SI (Lin, Kemme et al. 2005).

This form of consistency is not present in ROWA replication, where read operations

might not observe the latest modifications in the replicated system. DRA was

conceived with simplicity in mind - little complexity is added to concurrency

managers of DBMSs to preserve consistency among replicated databases, e.g. no pre-

declaration of objects used in a transaction or knowledge of write-sets is needed.

Thus, no artificial dependencies between transactions are possible.

Under the loads with high degree of concurrency, imposing total order of transaction

boundary operations to ensure database consistency might cause a performance

bottleneck - clients block each other due to contention for execution of transaction

boundaries. To overcome this performance overhead we propose a contention-aware

 Chapter 7. Conclusions

 137

scheduling at the middleware level that manipulates the priorities of the database

processes. By favouring the database processes that execute transaction boundaries we

show that prioritisation policy brings performance improvements when CPU of

database servers is underutilised, despite the extra work imposed due to adjusting

priorities of database processes.

We have presented some encouraging empirical results which suggest that diversity

can improve the performance of the fault-tolerant solution. This possibility is due to

the fact that different database server may “complement” each other, as we have

established empirically for two open-source servers: one of the servers is

systematically faster in processing some types of transactions while the other server is

faster processing other types of transactions. This is similar to the intuitive idea of

forming teams of individuals who have different skills, which is seen as a strength of

the teams in many areas.

We compared diverse with non-diverse redundancy using an optimistic architecture of

FT-node and observed that the differences between the execution times of the diverse

replicas are turned into a performance advantage. In those experiments, executed

under a specific workload, diverse redundancy is clearly beneficial compared with

non-diverse redundancy. In addition we also compared non-replicated solutions (a

single copy of a DBMS) with an FT-node, in which a diverse pair of DBMSs is

deployed. Diverse pair performed significantly faster than the non-replicated solutions

(Stankovic and Popov 2006).

Using a pair of diverse servers, the performance obtained with the two regimes of

operation of DivRep had been compared to a simulated version of a ROWA scheme.

Similarly to ROWA, the simulation uses static load-balancing optimised at the

expense of tolerating crash failures only. The results show that the performance

penalty due to the use of diverse redundancy via DivRep can be significant. Despite

being obtained for specific workloads, the results are instructive for those who are

keen on deploying diverse redundancy, but have concerns about performance.

It seems quite clear that increasing the number of replicas will make the issue more

severe (Gray, Helland et al. 1996) – further performance deterioration would ensue.

Therefore, while scaling the replication protocol is possible (DRA is not limited to the

use of two replicas), its usefulness is doubtful. We envisage that DivRep is used to

build fault-tolerant node (FT-node) with only two database servers, capable of

tolerating non-crash failures. FT-nodes can then be combined with a high

 Chapter 7. Conclusions

 138

performance replication scheme (eager or, even, a lazy one). Such a hybrid replication

scheme will allow one to have both – high dependability assurance (via the FT-nodes)

and improved performance (via the properties of the scalable replication scheme).

The results showed that the difference between the performances of DivRep and the

simulated version of a ROWA scheme can be attributed to the difference in the

individual performances of the diverse servers deployed in DivRep: one of the DBMS

products turns out to be significantly slower than the other on the selected suite of

application profiles (note, however, that the performance ranking between the DBMSs

is variable – a multitude of the experiments revealed that the ranking changes

depending on the particular choice of products’ versions). This led us to the important

conclusion that the selection of database servers for deployment in DivRep should

take into account both, the ability to deliver dependability assurance as well as the

ability to minimise performance penalty.

To address this issue we provide formalism for the selection procedure, in which both

dependability assurance and performance are taken into account. Using an adaptation

of the Bayesian model defined in (Littlewood, Popov et al. 2000) we assess servers

according to the two attributes, reliability and performance, in order to choose the best

one.

We have also shown that, under the provisions of user-centric analysis, the

transaction response times are shorter with DivRep than with the simulated replication

protocol based on ROWA approach. The results have been observed under different

types of workloads. The analysis demonstrates how the differences in performance of

diverse servers can be used for decreasing the transaction latencies in DivRep.

7.2. Future Directions

Besides the contributions presented in the preceding section, the work described in the

thesis gives rise to several possibilities for future work:

- Implementation of the hybrid regime of operation of DivRep. An assessment

method for dynamically switching between the dependability- and performance-

oriented regime of operation needs be developed.

- Extending the evaluation of DivRep using other isolation levels. Although

relevant, snapshot isolation is not the default isolation level in most DBMSs. For

example, further experimentation could be performed, using read committed

 Chapter 7. Conclusions

 139

isolation level, which is the mostly used one in practice (MicrosoftSQL, Oracle

and PostgreSQL specify it as the default isolation level).

- Potentially improving the performance of diverse database replication, and

especially the pessimistic i.e. dependability-oriented regime of operation, by

employing other replication techniques, e.g. deferred writes.

One of the issues that would have to be revisited, if DivRep is to employ deferred

writes technique, is the way to guarantee the consistency of the databases after

modifying operations are executed. Using standard log-shipping or write-set

extraction as a part of deferred writes replication, the results of modifying

operations, executed on a replica, are propagated and applied on others without

consistency checks. In this way error detection becomes problematic - there is no

possibility to adjudicate the results produced by different replicas. New

approaches to overcome this limitation are needed in order to make the error

detection viable. Only then the replication technique could be used so it

potentially improves the performance of the pessimistic regime. A straightforward

alternative to making error detection possible is to propagate SQL operations

instead of the changes made by the writes. In this case, however, the performance

benefits would be less likely.

- Devising a “fusion” replication protocol that integrates FT-node in a high-

performing replication solution and provides improved dependability (through FT-

node capabilities for error detection) as well as high scalability (through the use of

scalability properties of the underlying replication protocol).

- Developing the necessary middleware components for users to be able to try out

data replication with diverse DBMSs despite the issues with differences in SQL

dialects (e.g. in this way the replication with DivRep will be transparent to the

client applications). Deficiency of these components is a practical obstacle in the

way of the adoption and practical evaluation of these solutions. Some DBMS

vendors have recently made a move in that direction: EnterpriseDB Advanced

Server (EnterpriseDB 2006) and Fyracle (Janus-Software 2006) are Oracle-mode

implementations based on PostgreSQL and Firebird DBMS engines, respectively.

Also, there are a couple of software products developed for migration between

different databases: SQLFairy (SQLFairy 2007) and SwissSQL (SwisSQL 2007).

Both tools offer the possibility to port schema (DDL operations) and data between

different DBMSs. Additionally, SwisSQL provides for conversion of database

 Chapter 7. Conclusions

 140

“run-time” aspects – SQL queries and stored procedures can be translated between

different dialects. With these solutions the problem with SQL dialects is reduced.

- Further experimental studies for assessing the potential of diverse redundancy for

both dependability and performance improvement of COTS software are needed.

In the research work we have scrutinised only a particular replication protocol

when evaluating the performance implications of using diverse redundancy for

database replication. Furthermore, the evaluation has been performed with only

two open-source database servers. Thus, there is no definitive judgement of

implications of design diversity on system performance. Firstly, the experimental

evaluation can be extended by using other DBMSs, of different complexity, with

or without the particular replication protocol, to measure the potential of design

diversity further. A consequence of the extended evaluation would be beneficial

for assessment of the replication protocol, too. More generally, there is a myriad

of other COTS software that can be scrutinised, e.g. web-servers, application

servers etc., for evaluation of usefulness of diverse redundancy in regard to

dependability and performance.

 Bibliography

 141

Bibliography

R. K. Abbott and H. Garcia-Molina (1992). "Scheduling Real-Time Transactions: A
Performance Evaluation." ACM Transactions on Database Systems (TODS)
17(3): 513-560.

E. N. Adams (1984). "Optimizing Preventive Service of Software Products." IBM

Journal of Research and Development 28(1): 2-14.

A. Adya, B. Liskov and P. O'Neil (2000). Generalized Snapshot Isolation Levels.

IEEE International Conference on Data Engineering (ICDE), San Diego, CA.

D. Agrawal, G. Alonso, A. El Abbadi and I. Stanoi (1997). Exploiting Atomic

Broadcast in Replicated Databases. In Proceedings of EuroPar (EuroPar’97),
Passau (Germany).

A. Ailamaki, D. T. McWherter, B. Schroeder and M. Harchol-Balter (2004). Priority

Mechanisms for OLTP and Transactional Web Applications. 20th
International Conference on Data Engineering, Boston, USA.

G. Alonso (1997). Partial Database Replication and Group Communication

Primitives. 2nd European Research Seminar on Advances in Distributed
Systems (ERSADS'97), Valais, Switzerland.

L. Alvisi, E. N. Elnozahy, Y. Wang and D. Johnson (2002). "A Survey of Rollback-

Recovery Protocols in Message-Passing Systems." ACM Computing Surveys
(CSUR) 34(3): 374-408.

Y. Amir and C. Tutu (2002). From Total Order to Database Replication. 22nd

International Conference on Distributed Computing Systems (ICDCS'02),
IEEE Computer Society.

P. E. Ammann and J. C. Knight (1988). "Data Diversity: An Approach to Software

Fault Tolerance." IEEE Transactions on Computers 37(4): 418-425.

C. Amza, A. Cox and W. Zwaenepoel (2003). Distributed Versioning: Consistent

Replication for Scaling Back-End Databases of Dynamic Content Web Sites.
ACM/IFIP/Usenix International Middleware Conference, Rio de Janeiro,
Brazil.

T. Anderson and P. A. Lee (1990). Fault Tolerance: Principles and Practice. New

York, Springer-Verlag.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

Roller, D. Smith, S. Thatte and I. Trickovic (2003). Business Process

 Bibliography

 142

Execution Language for Web Services version 1.1. 2003, BEA, IBM,
Microsoft, SAP, Siebel, Systems

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

ANSI (1992). ANSI X3.135-1992, American National Standard for Information

Systems.

ApacheSoftwareFoundation (2008). ab - Apache HTTP server benchmarking tool,

http://httpd.apache.org/docs/2.0/programs/ab.html. 2008.

A. Avizienis and L. Chen (1978). N-Version Programming: A Fault-Tolerance

Approach to Reliability of Software Operation. IEEE Eighth Annual
International Symposium on Fault-Tolerant Computing Systems, FTCS-8,
Toulouse, France.

A. Avizienis and J. P. J. Kelly (1984). "Fault Tolerance by Design Diversity:

Concepts and Experiments." IEEE Computer 17(8): 67-80.

C. Babbage (1974). On the Mathematical Powers of the Calculating Engine

(Unpublished Manuscript, December 1837). The Origins of Digital
Computers: Selected Papers. B Randell, Springer: 17-52.

C. Beeri, P. A. Bernstein and N. Goodman (1989). "A Model for Concurrency in

Nested Transactions Systems." Journal of the ACM (JACM) 36(2): 230-269.

A. Behm, S. Rielau and R Swagerman (2004). Returning Modified Rows - SELECT

Statements with Side Effects. Proceedings of the Thirtieth International
Conference on Very Large Data Bases, Toronto, Canada, Morgan Kaufmann.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil and P. O'Neil (1995). A

Critique of ANSI SQL Isolation Levels. SIGMOD International Conference
on Management of Data, San Jose, California, United States, ACM Press New
York, NY, USA.

P. Bernstein and N. Goodman (1981). "Concurrency Control in Distributed Database

Systems." ACM Computing Surveys 13(2): 185-221.

P. Bernstein, V. Hadzilacos and N. Goodman (1987). Concurrency Control and

Recovery in Database Systems. Reading, Massachusetts, Addison-Wesley.

Borland (1999). Interbase 6.0 Operations Guide, Borland - The Open ALM Company:

314.

Borland (2007). Borland - The Open ALM Company.

P.B. Bovet and M. Cesati (2005). Understanding the Linux Kernel, O'Reilly.

S. Brocklehurst, Y. Chan, B. Littlewood and J. Snell (1990). "Recalibrating Software

Reliability Models." IEEE Transactions on Software Engineering 16(4): 458-
470.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://httpd.apache.org/docs/2.0/programs/ab.html

 Bibliography

 143

P. K. Brown, M. Mehta, J. M. Carey and M. Livny (1994). Towards Automated

Performance Tuning for Complex Workloads. Proceedings of the 20th
International Conference on Very Large Data Bases, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

N. Budhiraja, K. Marzullo, F. B. Schneider and S. Toueg (1993). The Primary-

Backup Approach. Distributed Systems. S. Mullender, ACM Press: 199-216.

M. J. Carey, R. Jauhari and M. Livny (1989). Priority in DBMS Resource Scheduling.

Proceedings of the 15th International Conference on Very Large Data Bases,
Morgan Kaufmann Publishers Inc.

M. Castro and B. Liskov (2002). "Practical Byzantine Fault Tolerance and Proactive

Recovery." ACM Transactions on Computer Systems (TOCS) 20(4): 398-461.

M. Castro, R. Rodrigues and B. Liskov (2003). "BASE: Using Abstraction to Improve

Fault Tolerance." ACM Transactions on Computer Systems (TOCS) 21(3):
236-269

E. Cecchet, J. Marguerite and W. Zwaenepoel (2004). C-JDBC: Flexible Database

Clustering Middleware. USENIX Annual Technical Conference, Freenix.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz and D. A. Patterson (1994). "RAID:

High-Performance, Reliable Secondary Storage." ACM Computing Surveys
(CSUR) 26(2): 145-185.

Continuent (2007). Sequoia Project - Database Clustering Technology. 2007.

C.J. Date (1994). An Introduction to Database Systems, Addison-Wesley.

K. Daudjee and K. Salem (2004). Lazy Database Replication with Ordering

Guarantees. 20th International Conference on Data Engineering.

K. Daudjee and K. Salem (2006). Lazy Database Replication with Snapshot Isolation.

Proceedings of the 32nd International Conference on Very Large Data Bases,
Seoul, Korea, VLDB Endowment

J. M. Dickey (1982). Conjugate Families of Distributions. Encyclopedia of Statistical

Sciences. S. Kotz and N. L. Johnson. New York, Wiley. 2: 135-145.

D. E. Eckhardt, A. K. Caglayan, J. C. Knight, L. D. Lee, D. F. McAllister, M. A.

Vouk and J. P. J. Kelly (1991). "An Experimental Evaluation of Software
Redundancy as a Strategy for Improving Reliability." IEEE Transactions on
Software Engineering 17(7): 692-702.

S. Elnikety, S. Dropsho and F. Pedone (2006). Tashkent: Uniting Durability with

Transaction Ordering for High-Performance Scalable Database Replication.
ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
Leuven, Belgium, ACM New York, NY, USA.

 Bibliography

 144

S. Elnikety, S. Dropsho and W. Zwaenepoel (2007). Tashkent+: Memory-Aware

Load Balancing and Update Filtering in Replicated Databases. EuroSys 2007,
Lisbon, Portugal.

S. Elnikety, W. Zwaenepoel and F. Pedone (2005). Database Replication Using

Generalised Snapshot Isolation. Proceedings of the 24th IEEE Symposium on
Reliable Distributed Systems (SRDS'05), IEEE Computer Society.

EnterpriseDB (2006). http://www.enterprisedb.com/.

A. Fekete (2005). Allocating Isolation Levels to Transactions. Proceedings of the

Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, Baltimore, Maryland, ACM New York, NY, USA.

A. Fekete, D. Liarokapis, E. O'Neil, P. O'Neil and D. Shasha (2005). "Making

Snapshot Isolation Serializable." ACM Transactions on Database Systems
(TODS) 30(2): 492-528.

A. Fekete, E. O'Neil and P. O'Neil (2004). "A Read-Only Transaction Anomaly Under

Snapshot Isolation." ACM SIGMOD Record 33(3): 12-14.

H. Garcia-Molina and F. Pitelli (1989). "Reliable Scheduling in a TMR Database

System." ACM Transactions on Computer Systems (TOCS) 7(1): 25-60.

H. Garcia-Molina, F. Pittelli and S. Davidson (1986). "Applications of Byzantine

Agreement in Database Systems." ACM Transactions on Database Systems
(TODS) 11(1): 27-47.

I. Gashi (2007). Software Dependability With Off-The-Shelf Components. Centre for

Software Reliability. London, City University: 278.

I. Gashi, P. Bishop, B. Littlewood and D. Wright (2007). Reliability Modelling of a 1-

Out-Of-2 System: Research with Diverse Off-The-Shelf SQL Database
Servers. 18th International Symposium on Software Reliability Engineering
(ISSRE '07), Trollhattan, Sweden, IEEE Computer Society Press.

I. Gashi and P. Popov (2006). Rephrasing Rules for Off-The-Shelf SQL Database

Servers. Sixth European Dependable Computing Conference, 2006. EDCC
'06.

I. Gashi and P. Popov (2007). Uncertainty Explicit Assessment of Off-The-Shelf

Software: Selection of an Optimal Diverse Pair. Proceedings of the Sixth
International Conference on COTS Based Software Systems, ICCBSS-2007,
Banff, Alberta, Canada, IEEE Computer Society Press.

I. Gashi, P. Popov and V. Stankovic (under review). "Uncertainty Explicit Assessment

of Off-The-Shelf Software." Elsevier Information and Software Technology
Journal.

http://www.enterprisedb.com/

 Bibliography

 145

I. Gashi, P. Popov, V. Stankovic and L. Strigini (2004). On Designing Dependable
Services with Diverse Off-The-Shelf SQL Servers. Architecting Dependable
Systems II. R. de Lemos, C. Gacek and A. Romanovsky, Springer. LNCS
3069: 191-214.

I. Gashi, P. Popov and L. Strigini (2007). "Fault Tolerance via Diversity for Off-The-

Shelf Products: A Study With SQL Database Servers." IEEE Transactions on
Dependable and Secure Computing 4(4): 280-294.

A. Gorbenko, V. Kharchenko, P. Popov and A. Romanovsky (2005). Dependable

Composite Web Services with Components Upgraded Online. Architecting
Dependable Systems III. R. de Lemos, C. Gacek and A. Romanovsky,
Springer. LNCS 3549: 92-121.

J. Gray (1978). Notes on Database Operating Systems. Operating Systems: An

Advanced Course, Springer Verlag, Berlin. Lecture Notes in Computer
Science: 393-482.

J. Gray (1981). The Transaction Concept: Virtues and Limitations. 7th International

Conference on Very Large Data Bases (VLDB), Cannes, France, IEEE
Computer Society.

J. Gray, P. Helland, D. Shasha and P. O'Neil (1996). The Dangers of Replication and

a Solution. ACM SIGMOD International Conference on Management of Data,
Montreal, Canada, SIGMOD.

J. Gray and L. Lamport (2006). "Consensus on Transaction Commit." ACM

Transactions on Database Systems (TODS) 31(1): 133-160.

J. Gray, R. Lorie, G. Putzolu and I. Traiger (1975). Granularity of Locks and Degrees

of Consistency in a Shared Data Base. IFIP Working Conference on
Modelling of Data Base Management Systems Freudenstadt.

J. Gray and A. Reuter (1993). Transaction Processing: Concepts and Techniques,

Morgan Kaufmann.

R. Guerraoui (1995). Revisiting the Relationship Between Non-Blocking Atomic

Commitment and Consensus. Proceedings of the International Workshop on
Distributed Algorithms (WDAG '95), Le Mont Saint Michel.

V. Hadzilacos and S. Toueg (1993). Fault-Tolerant Broadcast and Related Problems.

Distributed Systems. S. Mullander, Addison-Wesley: 97-145.

C. Hall and P. Bonnet (2005). Getting Priorities Straight: Improving Linux Support

for Database I/O. Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway.

Hewlett-Packard (2005). HP Integrity Superdrome - TPC-C Executive Summary,

Hewlett-Packard: 3.

 Bibliography

 146

M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte and G. T. Wong (2000). Survivability
through Customization and Adaptability: The Cactus Approach. DARPA
Information Survivability Conference & Exposition.

IBM (2007). DB2 Product Overview - SQL Data-Change Operations. 2007.

Ingres (2006). Replicator Option User Guide: 233.

ISO (2003). ISO/IEC 9075-1: 2003 Information Technology - Database Languages -

SQL - Part 1: Framework (SQL/Framework).

R. Jain (1991). The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling. New York,
NY, Wiley-Interscience.

Janus-Software (2006). Fyracle, http://www.janus-software.com/fb_fyracle.html.

J. Jeanrenaud and P. Romanazzi (1994). Software Product Evaluation: A

Methodological Approach. Proceedings of Software Quality Management II:
Building Software into Quality.

R. Jimenez-Peris, M. Patino-Martinez, G. Alonso and B. Kemme (2003). "Are

Quorums an Alternative for Data Replication?" ACM Transactions on
Database Systems 28(3): 257-294.

I. Keidar (1994). A Highly Available Paradigm for Consistent Object Replication.

Institute of Computer Science. Jerusalem, The Hebrew University of
Jerusalem: 52.

J. P. Kelly and A. Avizienis (1983). A Specification-Oriented Multi-Version Software

Experiment. 13th Fault-Tolerant Computer Symposium (FTCS), Milan, Italy.

B. Kemme (2000). Database Replication fo Clusters of Workstations. Swiss Federal

Institute of Technology. Zurich: 145.

B. Kemme and G. Alonso (2000a). Don't Be Lazy, Be Consistent: Postgres-R, a New

Way to Implement Database Replication. International Conference on Very
Large Databases (VLDB), Cairo, Egypt.

B. Kemme and G. Alonso (2000b). "A New Approach to Developing and

Implementing Eager Database Replication Protocols." ACM Transactions on
Database Systems (TODS) 25(3): 333-379.

B. Kemme, A. Bartoli and O. Babaoglu (2000). Online Reconfiguration in Replicated

Databases Based on Group Communication. Bologna, University of Bologna:
15.

B. Kemme and S. Wu (2005). Postgres-R(SI): Combining Replica Control with

Concurrency Control Based on Snapshot Isolation. International Conference
on Data Engineering, Tokyo, Japan, IEEE Computer Society.

http://www.janus-software.com/fb_fyracle.html

 Bibliography

 147

J. C. Knight and N. G Leveson (1986). "An Experimental Evaluation of the

Assumption of Independence in Multiversion Programming." IEEE
Transactions on Software Engineering 12(1): 96-109.

J. Kontio, S. Y. Chen, K. Limperos, R. Tesoriero, G. Caldiera and M. Deutsch (1995).

A COTS Selection Method and Experiences of Its Use. Twentieth Annual
Software Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, Maryland.

W. B. Lampson and D. D. Redell (1980). "Experience with Processes and Monitors

in Mesa." Communications of the ACM 23(2): 105-107.

J. C. Laprie, C. Béounes and K. Kanoun (1990). "Definition and Analysis of

Hardware- and Software-Fault-Tolerant Architectures." IEEE Computer 23(7):
39-51.

J. C. Laprie, B. Randell , A. Avizienis and C. Landwehr (2004). "Basic Concepts and

Taxonomy of Dependable and Secure Computing." IEEE Transactions on
Dependable and Secure Computing 1(1): 11-33.

Y. Lin, B. Kemme, M. Patino-Martinez and R. Jimenez-Peris (2005). Middleware

Based Data Replication Providing Snapshot Isolation. ACM SIGMOD
International Conference on Management of Data, Baltimore, Maryland, ACM
Press.

B. Liskov, L. Rivka, S. Liuba and G. Sanjay (1992). "Providing High Availability

Using Lazy Replication." ACM Transactions on Computer Systems (TOCS)
10(4): 360-391.

B. Littlewood, P. Popov and L. Strigini (2000). Assessment of the Reliability of Fault-

Tolerant Software: A Bayesian Approach. International Conference on
Computer Safety, Reliability and Security (SAFECOMP '00), Rotterdam, The
Netherlands, Springer.

B. Littlewood, P. Popov and L. Strigini (2001). "Modelling Software Design Diversity

- A Review." ACM Computing Surveys 33(2): 177-208.

B. Littlewood and D. Wright (1997). "Some Conservative Stopping Rules for the

Operational Testing of Safety-Critical Software." IEEE Transactions on
Software Engineering 23(11): 673-683.

M. R. Lyu (1995). Software Fault Tolerance. New York, NY, USA, John Wiley &

Sons, Inc.

M. R. Lyu (1996). Handbook of Software Reliability Engineering, McGraw-Hill and

IEEE Computer Society Press.

Microsoft (2000). Transact-SQL.

 Bibliography

 148

Microsoft (2004). Implement a Continuously Updating, High-Resolution Time
Provider for Windows.

J. Milan-Franco, R. Jimenez-Peris, M. Patino-Martinez and B. Kemme (2004).

Adaptive Middleware for Data Replication. Proceedings of the 5th
ACM/IFIP/USENIX International Conference on Middleware, Toronto,
Canada, Springer-Verlag, New York.

J. D. Musa (1993). "Operational Profiles in Software-Reliability Engineering." IEEE

Software 10(2): 14-32.

C. Ncube and N. Maiden (1999). PORE: Procurement Oriented Requirements

Engineering Method for the Component-Based Systems Engineering
Development Paradigm. Proceedings of the International Workshop on
Component-Based Software Engineering.

Oracle (2002). Oracle Data Guard: Ensuring Disaster Recovery for the Enterprise: 20.

Oracle (2005). Oracle 10g Advanced Replication: Replication Manual
246.

E. Pacitti, P. Minet and E. Simon (2001). "Replica Consistency in Lazy Master

Replicated Databases." Distributed and Parallel Databases 9(3).

C. Papadimitriou (1986). The Theory of Database Concurrency Control. New York,

Computer Science Press.

M. Patino-Martinez, R. Jimenez-Peris, B. Kemme and G. Alonso (2005). "MIDDLE-

R: Consistent Database Replication at the Middleware Level." ACM
Transactions on Computer Systems (TOCS) 23(4): 375-423.

F. Pedone and S. Frolund (2000). Pronto: A Fast Failover Protocol for Off-The-Shelf

Commercial Databases. 19th IEEE Symposium on Reliable Distributed
Systems (SRDS'00), Nuremberg, Germany, IEEE.

F. Pedone and S. Frolund (2005). Pronto: High Availability for Standard Off-The-

Shelf Databases. Lausanne, EPFL.

F. Pedone and R. Guerraoui (1997). On Transaction Liveness in Replicated

Databases. Proceedings of IEEE Pacific Rime International Symposium on
Fault-Tolerant Systems (PRFTS'97), IEEE Computer Society, Washington,
DC, USA.

F. Pedone, R. Guerraoui and A. Schiper (1997). Transaction Reordering in Replicated

Databases. 16th IEEE Symposium on Reliable Distributed Systems
(SRDS'97), Durham, NC, IEEE.

F. Pedone, R. Guerraoui and A. Schiper (2003). "The Database State Machine

Approach." Distributed and Parallel Databases 14(1): 71-98.

 Bibliography

 149

C. Plattner and G. Alonso (2004). Ganymed: Scalable Replication for Transactional
Web Applications. 5th ACM/IFIP/USENIX International Middleware
Conference, Toronto, Canada

P. Popov (2002). Reliability Assessment of Legacy Safety-Critical Systems Upgraded

with Off-The-Shelf Components. SAFECOMP'2002, Catania, Italy, Springer-
Verlag.

P. Popov, L. Strigini, A. Kostov, V. Mollov and D. Selensky (2004). Software Fault-

Tolerance with Off-The-Shelf SQL Servers. 3rd International Conference on
COTS-Based Software Systems, ICCBSS'04, Redondo Beach, CA USA,
Springer.

P. Popov, L. Strigini and A. Romanovsky (2000). Diversity for Off-The-Shelf

Components. International Conference on Dependable Systems & Networks
(FTCS-30, DCCA-8) - Fast Abstracts, New York, NY, USA.

D. Port and Z. Chen (2004). Assessing COTS Assessment: How Much is Enough?

Inetrnational Conference on COTS Based Software Systems, ICCBSS '04,
Redondo Beach, California, Springer-Verlag.

PostgreSQL (2007). PostgreSQL 8.1.10 Documentation, Chapter 33. Triggers.

D. Powell (1996). "Group Communication." Communications of the ACM 39(4): 50-

53.

F. Raab (2005). TPC-C 90th Percentile Response Time Constraints. .

B. Randell (1975). "System Structure for Software Fault Tolerance." IEEE

Transactions on Software Engineering 1(2): 220-232.

M. R. Rinard and P. C. Diniz (2003). "Eliminating Synchronization Bottlenecks Using

Adaptive Replication." ACM Transactions on Programming Languages and
Systems 25(3): 316-359.

A. Schiper and M. Raynal (1996). "From Group Communication to Transactions in

Distributed Systems." Communications of the ACM 39(4): 84-87.

R. Schmidt and F. Pedone (2007). A Formal Analysis of the Deferred Update

Technique. 11th International Conference on Principles of Distributed
Systems (OPODIS 2007), Guadeloupe, French West Indies.

F. B. Schneider (1982). "Synchronization in Distributed Programs." ACM

Transactions on Programming Languages and Systems 4(2): 125-148.

D. Skeen (1981). Nonblocking Commit Protocols. Proceedings of ACM SIGMOD

International Conference on Management of Data, Ann Arbor, Michigan,
ACM Press, New York, NY, USA.

D. Solomon and M. Russinovich (2000). Inside Windows 2000, Microsoft Press, U.S.

 Bibliography

 150

SQLFairy (2007). SQLFairy - SQL Translator. 2007.

J. Stankovic, H. S. Son and J. Hansson (1999). "Misconceptions About Real-Time

Databases." IEEE Computer 32(6): 29-36.

V. Stankovic and P. Popov (2006). Improving DBMS Performance through Diverse

Redundancy. 25th IEEE Symposium on Reliable Distributed Systems
(SRDS'06), Leeds, United Kingdom, IEEE Computer Society.

SwisSQL (2007). SwisSQL - Data Migration. 2007.

M. Thakur (1994). Transaction Models in InterBase 4. Proceedings of the Borland

International Conference.

TPC (2002a). TPC Benchmark C, Standard Specification, Version 5.0., Transaction

Processing Performance Council.

TPC (2002b). TPC Benchmark W (Web Commerce), Standard Specification, Version

1.8, Transaction Processing Performance Council.

TPC (2007). TPC Benchmark H (Decision Support), Standard Specification, Revision

2.6.1, Transaction Processing Performance Council.

A. Valdes, A. Almgren, S. Cheung, Y. Deswarte, B. Duterte, J. Levy, H. Saidi, V.

Stavridou and T. E. Uribe (2003). An Architecture for an Adaptive Intrusion-
Tolerant Server. Lecture Notes in Computer Science (LNCS) 2845 - Selected
Papers from 10th Int. Workshop on Security Protocols 2002, Springer.

B. Vandiver, H. Balakrishnan, B. Liskov and S. Madden (2007). Tolerating Byzantine

Faults in Transaction Processing Systems Using Commit Barrier Scheduling.
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles, Stevenson, Washington, USA, ACM New York, NY, USA

J. von Neumann (1956). Probabilistic Logics and the Synthesis of Reliable Organisms

from Unreliable Components. Automata Studies. C. E. Shannon and J.
McCarthy, Princeton University Press: 43-98.

M. Weismann, F. Pedone and A. Schiper (2000). Database Replication Techniques: A

Three Parameter Classification. 19th IEEE Symposium on Reliable
Distributed Systems (SRDS'00), Nurnberg, Germany, IEEE.

M. Wiesmann, F. Pedone, A. Schiper, B. Kemme and G. Alonso (2000).

Understanding Replication in Databases and Distributed Systems. Proceedings
of 20th International Conference on Distributed Computing Systems
(ICDCS'2000), Taipei, Taiwan, IEEE Computer Society Los Alamitos.

M. Wiesmann and A. Schiper (2005). "Comparison of Database Replication

Techniques Based on Total Order Broadcast." IEEE Transactions on
Knowledge and Data Engineering 17(4): 551-566.

 Bibliography

 151

Wikipedia (2007). Multi-Master Replication, Wikipedia, The Free Encyclopedia.

A. Wool (1998). "Quorum Systems in Replicated Databases: Science or Fiction?"

Data Engineering Bulletin 21(4): 3-11.

D. Wright and K. Y. Cai (1994). Representing Uncertainty for Safety Critical

Systems. London, Centre for Software Reliability, City University: 135.

Y. Zhuge, H. Garcia-Molina and J. L. Wiener (1998). "Consistency Algorithms for

Multi-Source Warehouse View Maintenance." Distributed and Parallel
Databases 6(1): 7-40.

V. Zuikeviciute and F. Pedone (2006). Conflict-Aware Load-Balancing Techniques

for Database Replication. Lugano, University of Lugano.

 List of Acronyms

 152

List of Acronyms

2PC – Two-Phase Commit Protocol

2PL – Two-Phase Locking

BPEL - Business Process Execution Language

COTS – Commercial-Off-The-Shelf

CSI – Conventional Snapshot Isolation

DBMS – Database Management System

DML – Data Manipulation Language

DRA – Dependable Replication Algorithm

FB – FireBird Database Management System

GSI – Generalised Snapshot Isolation

JDBC – Java Database Connectivity

MSSQL – Microsoft SQL Database Management System

MVCC – Multi-Version Concurrency Control

NB-AC - Non-Blocking Atomic Commitment

OLAP – On-Line Analytical Processing

OLTP – On-Line Transaction Processing

PCSI – Prefix-Consistent Snapshot Isolation

PG – PostgreSQL Database Management System

RAID - Redundant Arrays of Independent (or Inexpensive) Drives

ROWA – Read-Once-Write-All

ROWAA – Read-Once-Write-All-Available

S2PL – Strict Two-Phase Locking

SG – Serialization Graph

SI – Snapshot Isolation

TPC – Transaction Processing Performance Council

TPC-C – TPC’s Benchmark C

 Appendix A

 153

Appendix A

Database Schema of the Log Database

CREATE TABLE [dbo].[InconsistentResults] (

 [id] [int] IDENTITY (1, 1) NOT NULL ,

 [results] [text] NULL ,

 [SQL] [varchar] (1024) NULL ,

 [clientID] [int] NULL ,

 [txnID] [int] NULL

) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogCCs] (

 [LCC_ID] [int] IDENTITY (1, 1) NOT NULL ,

 [Data] [varchar] (2040) NULL ,

 [StartDate] [datetime] NULL ,

 [FinishDate] [datetime] NULL ,

 [StartTime] [numeric](18, 0) NULL ,

 [FinishTime] [numeric](18, 0) NULL ,

 [ConType] [int] NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogClientSQLs] (

 [LCQ_CLIENT_ID] [int] NOT NULL ,

 [LCQ_LCT_ID] [int] NOT NULL ,

 [LCQ_ID] [int] NOT NULL ,

 [Data] [varchar] (2040) NULL ,

 [StartTime] [bigint] NULL ,

 [FinishTime] [bigint] NULL

 Appendix A

 154

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogDataLoader] (

 [ID] [int] IDENTITY (1, 1) NOT NULL ,

 [CLoad] [int] NULL ,

 [CRun] [int] NULL ,

 [CTime] [datetime] NULL ,

 [Seed] [int] NULL ,

 [ConType] [int] NULL ,

 [Warehouses] [int] NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogExperimentParameters] (

 [LEP_ID] [int] IDENTITY (1, 1) NOT NULL ,

 [NUMBER_OF_CLIENTS] [int] NOT NULL ,

 [EXPERIMENT_TYPE] [int] NULL ,

 [REPETITION_ID] [int] NULL ,

 [NUMBER_OF_TRANSACTIONS] [int] NULL ,

 [SEED] [int] NULL ,

 [NUMBER_OF_BUFFERS] [int] NULL ,

 [SERVER_1] [int] NULL ,

 [SERVER_2] [int] NULL ,

 [SKIP] [bit] NULL ,

 [NUMBER_OF_WHOUSES] [int] NULL ,

 [PURGE_THRESHOLD] [int] NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogServerSQLs] (

 [LQ_CLIENT_ID] [int] NOT NULL ,

 [LQ_LCT_ID] [int] NOT NULL ,

 [lq_id] [int] NOT NULL ,

 Appendix A

 155

 [CONTYPE] [int] NOT NULL ,

 [StartTime] [bigint] NULL ,

 [FinishTime] [bigint] NULL ,

 [StartResultFetchTime] [bigint] NULL ,

 [FinishResultFetchTime] [bigint] NULL ,

 [Type] [tinyint] NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[LogTransactions] (

 [LCT_CLIENT_ID] [int] NOT NULL ,

 [LCT_ID] [int] NOT NULL ,

 [Data] [varchar] (2040) COLLATE NULL ,

 [StartDate] [datetime] NULL ,

 [FinishDate] [datetime] NULL ,

 [StartTime] [bigint] NULL ,

 [FinishTime] [bigint] NULL ,

 [conType] [int] NULL ,

 [exception] [tinyint] NULL ,

 [isPause] [bit] NULL ,

 [purgePeriod] [tinyint] NULL ,

 [T_ID] [int] NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[SQLType] (

 [Type] [int] NOT NULL ,

 [description] [varchar] (64) NULL

) ON [PRIMARY]

GO

CREATE TABLE [dbo].[exception] (

 [E_ID] [tinyint] NOT NULL ,

 [server_type] [char] (8) NULL ,

 Appendix A

 156

 [sql_error_code] [int] NULL ,

 [sql_state] [varchar] (128) NULL ,

 [Description] [varchar] (4096) NULL

) ON [PRIMARY]

GO

	1. Introduction
	1.1. Motivations and Aims
	1.2. Summary of Work
	1.3. Thesis Outline

	2. Concepts and Background
	2.1. Fault Tolerance via Diverse Redundancy
	2.2. Database Definitions
	2.2.1. Transactions
	2.2.2. Isolation Levels
	2.2.3. Concurrency Control and Correctness Criteria
	Snapshot Isolation

	2.2.4. Liveness

	2.3. Database Replication
	2.3.1. ROWAA-Based Replication
	2.3.2. Correctness in Replicated Databases
	2.3.3. Conflicts and Deadlocks
	2.3.4. Transaction Atomicity

	2.4. TPC-C – an On-Line Transaction Processing Benchmark

	3. Architecture of DivRep Middleware
	3.1. DivRep – Replication with Diverse Database Servers
	3.1.1. Dependable Replication Algorithm (DRA)
	Managing DML Operations
	Managing Transaction Boundary Operations

	3.1.2. DRA Optimisations
	3.1.3. Distributed Deadlock Avoidance

	3.2. Correctness of DRA
	3.2.1. Safety
	Safety of DRA using 1-copy-SI
	Safety of DRA using CSI

	3.2.2. Liveness

	3.3. Hybrid Approach of DivRep
	3.4. Discussion
	3.4.1. Comparing DivRep to Other Replication Techniques
	3.4.2. Possible Changes to DivRep

	4. Experimental Evaluation of DivRep Performance
	4.1. Test Harness
	4.2. Preliminary Experiments – Systematic Differences in the Performance of Diverse Servers
	4.3. When Diverse Redundancy Performs Better than Non-Diverse Redundancy
	4.3.1. Confidence in the Results
	4.3.2. Performance Comparison of Different DBMS Configurations

	4.4. Performance Implications of Improving Dependability
	4.4.1. SI-Rep Simulation
	4.4.2. DivRep vs. a ROWA-Based Replication (SimSI-Rep)
	Experimental Setup and Results
	Discussion of the Results

	4.4.3. Discussion of DivRep vs. SimSI-Rep Comparison
	4.4.4. User-Centric Analysis

	4.5. Minimising Replication Overhead Using Priority Mechanisms
	4.5.1. The Problem
	4.5.2. The Solution
	4.5.3. Discussion
	4.5.4. Related Work

	5. Uncertainty-Explicit Assessment of DivRep Components
	5.1. Motivation for Using Uncertainty-Explicit Assessment
	5.2. Bayesian Approach to Assessment of a Single Attribute
	5.3. A Model for Assessment of 2 Non-Independent Attributes
	5.4. A Numerical Example
	5.4.1. Prior Distributions
	5.4.2. Observations
	5.4.3. Posteriors

	5.5. Discussion and Related Work

	6. Related Work
	6.1. A Multitude of Database Replication Solutions
	6.2. Load Balancing and Adaptability
	6.3. Consistency Guarantees

	7. Conclusions
	7.1. Research Assessment
	7.2. Future Directions

	Bibliography
	Appendix A
	Database Schema of the Log Database

