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Labeled lines for image blur and contrast

Michael J. Morgan

Division of Optometry and Visual Sciences,
City, University of London, London, UK

Max-Planck Institute for Metabolism Research,
Cologne, Germany

It has been suggested that blur and contrast discrimination
thresholds are limited by a common stage of contrast
energy transduction, and that this explains the
characteristic ‘‘dipper’’ functions found for contrast and
blur discrimination. To test this conjecture, thresholds for
discriminating increments from decrements in sharpness/
blur, and similarly for contrast, were measured using the
same chessboard stimuli with the Method of Single Stimuli
(Experiment 1). Using a generic human contrast sensitivity
function (HCSF) to calculate energy, thresholds were
significantly lower for blur than for contrast. They could be
made more similar only by using an implausibly narrow
band-pass version of the HCSF. In separate sessions
(Experiment 2), observers also attempted to discriminate
between blur and contrast changes when they were
randomly interleaved (channel discrimination). Channel
discrimination thresholds were similar to those predicted
from noisy independent channels, consistent with separate
labeled lines for the two channels. Experiment 3 measured
subthreshold summation of contrast and blur signals, in
either energy-add or energy-subtract modes with a two-
alternative forced choice task. Both add and subtract
modes lowered thresholds. Experiment 4 measured
standard T versus C (‘‘dipper’’) functions for blur, and
compared these with T versus C functions when a contrast
cue was added to keep energy constant. The finding of a
‘‘dipper’’ function in the latter case suggests that it does
not arise from a common energy transduction stage.

Introduction

Blur is the informal description of what happens to
an image when it is visibly not in focus. All images from
familiar optical instruments such as cameras and
telescopes are blurred because all of these imaging
devices spread a single point of light, however small,
into a dispersed point spread function in the image.
Contrast is the informal description of the range of
black and white values in the image. Ordinary
observers without optical training are perfectly able to
pick out which of a range of images has the highest
blur, or the highest contrast.

Because blur and contrast are both fundamental
physical properties of images, it is natural to ask how
they are physically and psychophysically related.
Informally again, an interaction between blur and
contrast is indicated by the fact that it is hard to see
whether a very low contrast image is blurred or not.
This could be because both blur and low contrasts
remove high spatial frequencies from the ‘‘window of
visibility’’ (Watson, Ahumada, & Farrell, 1986).
Watson and Ahumada (2011) provide a valuable review
of blur discrimination experiments and find that they
are in broad empirical agreement. However, contrary
to previous modeling efforts, they conclude that
specialized mechanisms are not required and that the
essential features of blur discrimination are fully
accounted for by a visible contrast energy (ViCE)
model, in which two spatial patterns are distinguished
when the contrast energy of their filtered difference
reaches a threshold value. In the ViCE model, intrinsic
blur is represented by the high-frequency limb of the
contrast sensitivity function, but the low-frequency
limb also contributes to the predictions for large
reference blurs, and the model includes masking, which
improves predictions for high-contrast stimuli.

The Watson–Ahumada model is unquestionably an
advance on previous models because it provides a
common metric (visible contrast energy) by means of
which different tasks can be compared. Ideally, energy
thresholds should be the same for contrast and blur
discrimination, but it is clear from the data analyzed by
Watson and Ahumada that those for blur are generally
lower, particularly at low pedestal values. However,
there are no experiments of which we are aware in
which contrast and blur discrimination have been
measured with identical stimuli in the same observers.
Watson and Ahumada were forced to rely on
comparison between different experiments, some of
which attracted their justified disapproval. The main
purpose of the experiments reported in this paper is to
place comparisons of blur and contrast discrimination
on a sound footing, by using identical stimuli,
backgrounds, and procedures in the two cases.
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The ViCE model did not attempt to address the issue
of representation, which was the core of other models
(Georgeson, 1994; Georgeson, May, Freeman, &
Hesse, 2007; Watt & Morgan, 1983; Watt & Morgan,
1985) . It can be conjectured that there are images in
which blur and contrast can be discriminated: in other
words, that there are blurred images that have no
metamers in the contrast domain. Part of the purpose
of the present investigation is to discover the circum-
stances in which such discrimination is possible, and to
see whether it supports the notion of independent
‘‘labeled lines’’ rather than a single channel. The
method was to present the observer with a reference
stimulus and a single test stimulus (method of single
stimuli, MSS) and to require them to press one of four
response buttons, to indicate whether the test was of
higher/lower sharpness/contrast than the reference. The
method is similar to the 2 3 2FC (forced choice)
method of Watson and Robson (1981) and has the
same purpose: to provide evidence for labeled lines near
to detection threshold. However, the methods are
subtly different. Watson and Robson’s method is 2 3
2AFC (2-alternative forced choice); ours is MSS with
four responses. Watson and Robson’s stimuli differed
along a single dimension, such as spatial frequency.
Ours differed putatively in their sensory dimension,
blur versus contrast, although this is moot.

Experiment 1

The purpose of Experiment 1 was to compare blur
and contrast discrimination thresholds in a group of
observers (n ¼ 5) using the same stimuli. The stimuli
(illustrated in Figure 1) were chessboards with a
baseline contrast of 0.5 and Gaussian blur with a space
constant of 5 pixels (6.45 arcmin). Contrast and blur
discrimination were measured in separate blocks of
trials. On each trial the standard was presented first,
followed by the test, and the observer’s task was to
indicate whether the test had greater or lesser contrast
than the standard, or (on blur trials) whether it was
more or less sharp. In current signal detection parlance
this is the MSS, with a reminder; historically it was
called the method of constant stimuli, as used by
Weber, although this term has come to take on a
different meaning of sampling stimulus levels without
replacement.

Apparatus

Stimuli were presented on a Viewsonic PF817 CRT
display (Viewsonic Corp., Brea, CA), with pixel
resolution 1024 3 768 and refresh rate 140 Hz and

mean luminance 33.5 cd/m2. Stimulus presentation was
controlled by the CRS VISAGE system (Cambridge
Research Systems, Rochester, Kent, UK). The display
was viewed in a darkened room at approximately 114
cm so that 1 pixel subtended 1.29 arcmin. The stimulus
was an 8 3 8 squares chessboard of alternating white
and dark squares with side 1.3768 (64 pixels). This was
presented within a hard-edged circular mask so that ;3
3 3 squares were visible. The purpose of the aperture
was to make any edge artifacts invisible when the whole
array was filtered. Outside the circle the screen was a
maximum luminance red (RGB 1,0,0; ;10 cd/m2).
(This was inherited from a previous eye movement
experiment where it was desired to reduce illumination
of background features; in retrospect it would have
been better to have had a mean luminance surround.)
The whole 8 3 8 squares array of squares was blurred
using the MATLAB Image Processing Toolbox ‘‘im-
filter’’ routine, with a Gaussian kernel that blurred the
edges without affecting the peak contrast:

f x; yð Þ ¼ exp ð� x2 þ y2
� �

= ð2r2ÞÞ ð1Þ

Procedure

The psychophysical procedure was a two-interval
MSS with a reference stimulus always presented first
before a variable test. The function of the reference was
to act as a reminder; note that this was not a 2AFC
procedure, where the order of test and reference is

Figure 1. Examples of stimuli used in the experiments. The top

row illustrates the standard in the center and two different test

blurs (values in pixels; 1 pixel¼1.29 arcmin). The bottom row

illustrates the standard in the center and two different test

contrasts, with the same blur in all cases. The circular aperture

is the same as in the actual experiments. The standard had the

same contrast (0.50) and blur (5 arcmin) in both contrast

discrimination and blur discrimination experiments.

Journal of Vision (2017) 17(6):16, 1–11 Morgan 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936277/ on 06/29/2017



randomized. Exposure duration was 1.43 s with a 1.43 s
gap in between standard and test during which the
display circle was at mean luminance. The reference
stimulus for both contrast discrimination and blur
discrimination tasks was a chessboard with contrast ¼
0.5 and blur r¼ 6.45 arcmin. (See Fig. 1 for examples).
Subjects used the left and right pointing arrow keys on
the keyboard to indicate whether the test had less or
more contrast than the standard respectively, or (on
different blocks of trials) the up and down arrow keys
to indicate whether it was ‘‘sharper’’ or ‘‘less sharp’’
than the standard, respectively. Subjects were instruct-
ed before each block whether to make the ‘‘contrast’’ or
the ‘‘sharpness’’ decision.

In ‘‘contrast’’ blocks of trials (64 trials per block)
only the contrast was varied; in ‘‘blur’’ blocks, only the
blur varied. In contrast blocks of trials, contrast
increment/decrement thresholds in chessboard stimuli
(Fig. 1) were measured on a pedestal of 0.5. In blur
blocks, blur increment/decrement thresholds were
measured on a pedestal of r ¼ 6.45 arcmin. Feedback
was given in the form of a large square in the center of
the screen after a correct response and a small square
after an incorrect response. The test stimulus on each
trial was determined by an adaptive probit estimation
procedure (APE; Watt & Andrews, 1981), designed to
present stimuli at 61 standard deviation (s) of the
empirical Gaussian psychometric function. For blur
thresholds the smallest difference between test and
standard was ;0.2 arcmin; for contrast it was ;0.05.
Trials with zero difference were also included, and on
these trials the feedback was determined randomly. The
number of blocks varied between three and eight,
according to subject availability.

Subjects

Details of the five observers are given in Table 1. One
was the author (MM); the others were unaware of the
purpose of the experiment.

Data analysis and modeling

The psychometric functions relating the probability of
choosing the test as having higher sharpness/contrast
than the standard, as a function of the signed difference
between reference and test, were fit with a two-
parameter cumulative Gaussian to determine their
standard deviation, r and mean, l. Examples are seen in
Figure 4. The r value is taken as a measure of the just-
noticeable difference, or sensory noise; and l as any bias
the observer has towards seeing the second stimulus as
having more/less blur/contrast than the reference.

To transform the data into contrast energy differ-
ences in a similar way to the ViCE model, the stimuli
used in the experiment were each convolved with the
Watson–Ahumada version of the human contrast
sensitivity function (HCSF). The contrast energy of
each test stimulus, obtained by squaring the HCSF-
filtered image and integrating over pixels, was sub-
tracted from that of the standard, to give a signed value
DED, where the subscript indicates the energy–differ-
ence model.

DEDðtÞ ¼
Xn

x¼1

Xn

y¼1
ðI t; x; yð Þ � F x; yð ÞÞ2

�
Xn

x¼1

Xn

y¼1
ðI s; x; yð Þ � F x; yð ÞÞ2 ð2Þ

where I represents an image of n2 pixels, F is the
Watson–Ahumada difference-of-Gaussians filter, t is the
test contrast or blur, and s is the standard contrast or
blur. The psychometric function was then recalculated
using these transformed values instead of the original
units of contrast or blur. The standard deviation of the
function was taken as the threshold or JND, and finally
this JND was transformed into a Weber fraction by
dividing it by the standard contrast energy.

It should be noted that this is not exactly the
transformation used by Watson and Ahumada. Instead
of calculating the energy of the two stimuli separately,
and then taking their difference, they measured the
energy of the difference between the two filtered
stimuli:

DWAðtÞ ¼
Xn

x¼1

Xn

y¼1
ðI t; x; yð Þ �F x; yð Þ� I s;x; yð Þ �F x; yð ÞÞ2

ð3Þ
We prefer our own calculation in the case of our own
stimuli and procedure because the Watson–Ahumada
calculation produces an unsigned value for DWA(t) and
is thus unable to discriminate whether the test (t) is an
increment on the standard or a decrement. However, to
be sure that the methods of calculation did not produce
different results, we also implemented the Watson–
Ahumada calculation, and transformed D into
sgn(t).D, where t was the signed test level of contrast or
blur.

N/symbol Initials Status Sex Age Naive

1 Red MM Author M .65 N

2 Green NN Postgrad F 24 N

3 Blue CC Student M ,18 Y

4 Magenta SA Student M ,18 Y

5 Black ZC Student F ,18 Y

Table 1. Details of the subjects used in the Experiments.
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Results

The results (Figure 2) show that blur thresholds were
lower than those for contrast, when expressed in
equivalent units of visible contrast energy. This
confirms the trend that was already apparent in the
review by Watson and Ahumada. The figure also shows
that they could be made more equal by using a more
strongly-band pass filter, the point-spread function of
which is shown in Figure 3, in comparison with the
almost low-pass filter used by Watson and Ahumada.
Even with the fitted filter, however, blur thresholds
were significantly lower than those for contrast.

Experiment 2

The purpose of Experiment 2 was to measure the
ability of the observers to distinguish changes in blur
and contrast. The stimuli were the same as in
Experiment 1 but contrast trials were randomly

Figure 2. Results of Experiment 1. Top Panel: The contrast and

blur thresholds were transformed into spatially-filtered contrast

energy thresholds between the reference and test using the

method described in the text (DED, Equation 2). These were

divided by the reference energy to transform into Weber

fractions. Subjects are colored with the scheme in Table 1. The

higher cluster shows energy thresholds calculated from the

spatial filter used by Watson and Ahumada. The lower cluster

values are calculated using a filter with an excitatory space

constant that minimizes for each subject the difference

between contrast energy and blur energy thresholds. Bottom

panel: Thresholds were transformed into energies of the

�

Figure 3. The figure shows the cross-section through the center

of the point-spread function for the difference-of-Gaussians

(DOG) filter used by Watson and Ahumada to model to human

contrast sensitivity function (blue) and a DOG filter (red) used

to make contrast and blur discrimination thresholds in

Experiment 1 more equal. For further explanation, see the text.

 
difference between the filtered test and threshold stimuli, using

the Watson–Ahumada method (DWA, Equation 3). In both

panels the error bars are 95% confidence intervals calculated by

parametric bootstrapping.
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interleaved with blur-varying trials. Observers used the
left and right pointing arrow keys on the keyboard to
indicate whether the test was more or less sharp than
the standard, and the up and down arrow keys to
indicate whether it was of higher or lower contrast.
This response mapping meant that both ‘‘right’’ and
‘‘up’’ corresponded with a ‘‘more’’ decision. Only one
key press per trial was permitted. Thus, if observers
thought that the test was both sharper and of higher
contrast than the reference, they had to decide which of
the two differences was the greater. Because Experi-
ment 1 had given a good idea of the thresholds for the
individual tasks, the adaptive APE procedure was
changed to eight fixed stimulus levels, which were
sampled randomly without replacement until each had
been presented eight times in the course of a session of
128 trials (64 for blur and 64 for contrast). The range of
test levels (which did not include zero) was tailored for
each observer to span approximately 62 JND as
determined from Experiment 1. Feedback continued to
be used, but a color was added to the square to indicate
whether the correct channel (blur or contrast) had been
identified. Note that it is possible for the observer to be
‘‘correct’’ for channel and ‘‘wrong’’ for the sign of the
change and vice versa.

Subjects, apparatus, and procedure

Except for the differences noted above, Experiments
1 and 2 were the same. Subjects NN, CC, MM, and SA
ran seven, seven, five, and nine blocks of 128 trials
each, respectively. ZS could not be tested for more than
one block, but her data were qualitatively similar to
those of the other observers.

Modeling

The model observer has independent channels for
blur and contrast, each of which has a signed response.
Each channel has additive Gaussian noise, which is
scaled by the threshold (r) in that channel to have unit
variance. The signal is scaled by the same amount to
become a z-value. The distribution of signals in each
channel also has a constant mean offset (l).

In Experiment 1 (blocked trials of contrast and blur)
the observer is assumed to consult only the relevant

Figure 4. The figure shows the psychometric data from four

observers (CC, NN, MM, SA) in Experiments 1 and 2, and the fit

of models described in the text. Error bars represent Bayes-

credible, 95% binomial confidence intervals (Nicholson, 1985)

using code supplied by A. B. Watson. Explanation: The units on

the x axis are z-values. Each large panel shows the results for a

single observer, with initials in the top left hand corner. For each

observer the first row shows data from Experiment 1, with blur

results on the left and contrast on the right. The ordinate is the

probability of choosing the test as having higher sharpness/

contrast than the standard. The abscissa is the difference in blur

or contrast between standard and test. Note that positive

values for blur trials mean that the test was sharper than the

standard. The second row shows the equivalent data from

Experiment 2. The third row shows data from Experiment 2

from trials when the observer made errors in the channel

identification task. Row 4 shows equivalent data when the

channel identification response was correct. Row 5 shows the

probability of a correct channel identification response. Blue

curves are the fit of the five-parameter model described in the

�

 
text, in which sign choice and channel choice depend on the

same signals. Red curves are the fits of a nine-parameter model

described in the text, in which choice of sign and choice of

channel are made from independent signals. Note that both

kinds of fit are fits to all the data, not just to the individual

psychometric functions in each box.
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channel during the block. The psychometric functions
relating the probability of choosing the test as having
higher sharpness/contrast than the standard, as a
function of the signed difference between reference and
test, were fit with a two-parameter cumulative Gaussian
to determine their deviations, rcon, rblur and means,
lcon, lblur. However, values for these parameters were
fit not only using the data from the blocked trials of
Experiment 1 but also using the data from the mixed
condition of Experiment 2, in the manner we now
describe.

In Experiment 2, the model observer chooses the sign
of the signal and chooses between the two channels on
the basis of their scalar values on that trial. In the first
stage the model observer determines whether the sum
of the outputs of the two channels is greater or smaller
than zero. (This is equivalent to choosing the sign of the
output of the channel with the larger absolute output).
Next, the model observer selects which channel to
choose (blur vs. contrast) on the basis of the magnitude
of the difference in absolute values between the two
channels, with an additive response bias. There are five
parameters in the model: the variance and mean of the
noise in each of two channels, and the bias for channel
choice.

The model was used to compute the probability at
each signal level of making each of the four possible
decisions (þ1, þ0, �1, �0), whereþ1 codes for the
decision that the signal is positive and in the channel
containing the signal and�0 is the decision that sign is
negative and the signal is in the wrong channel. These
probabilities were determined by a simulation over
10,000 trials. On each trial the scalar value of the
channel containing the signal (V1) was sampled from a
Gaussian pdf with unit variance and a mean offset of
(r + l1) where s is the signal value in units of blur or
contrast, l1 is the mean offset (bias) in that channel
also in units of blur or contrast and r1 is the standard
deviation of noise in that channel. The scalar value of
the other channel (V2) is similarly sampled from a
Gaussian pdf with unit variance and a mean offset of
(l2)/r2. The model observer makes aþve response if:

(i) V1þ V2 . 0

And selects the channel containing the signal if:

(ii) (abs(V1)) � abs(V2) þ bias) . 0

If both these conditions are satisfied, the decision is
coded þ1, and so on for the other three possible
decisions.

The simulation can easily be implemented in six lines
of MATLAB code. An example of the predictions of
the model is as follows:

r = 1; r1 � r2 = 1; l1 = 0.1; l2 ¼ 0; Bias ¼ 0.2
p of þ1 decision ¼ 0.1318

p of þ0 decision ¼ 0.6555
p of -1 decision ¼ 0.0857
p of -0 decision ¼ 0.1270

In a nine-parameter version of the model, the observer
has access to two further channels, specified by
parameters r3, r4, l3, l4. that are used exclusively for
making the decision whether the test differs from the
standard in contrast or blur. This may seem a bit like
buying a dog and doing your own barking, when two
independent channels already exist for determining
whether the test is higher or lower in contrast/blur than
the standard. However, it allows for the possibility that
the two kinds of decision are completely independent.
A specific prediction of the nine-parameter model is
that the probability of correctly deciding higher/lower
is the same on trials when the observer is correct/
incorrect in choosing contrast versus blur. This is not
true in the five-parameter model. The nine-parameter
model was easily simulated in exactly the same way as
the five-parameter version, except that the two random
variables were resampled after one decision and before
the other.

On each trial the negative log likelihood of the
observer’s response was computed from the predicted
probability p and the results were added over all n
trials:

L ¼
Xn

i¼1
�ðlogðpiÞÞ ð4Þ

The quantity L was then minimized with the MATLAB
fminsearch routine.

An important difference from the model previously
described by Raphael and Morgan (2016) for mixed
trials of varying texture size and density should be
noted. Raphael and Morgan incorporated a response
bias for channel choice in their model, but this was
done before the decision was made for sign, instead of
subsequently as in the present version of the model.
The consequence for Raphael and Morgan is that the
conditional probability of a positive response given an
incorrect choice of channel had to be independent of
signal strength. This did not agree with the data for
some subjects, who showed clear evidence for sign
discrimination even on such trials. In the present
version of the model, this is allowed because there will
be trials when the channel containing the signal has the
correct sign, and has the largest absolute value, but is
not chosen in the second (channel choice) stage because
of the response bias.

Results

Results for the four main observers in the experiment
are shown in Figure 4. Results for the fifth observer
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(ZS) , who was unable to complete more than one block
of trials in Experiment 2 were qualitatively similar and
are shown in the Supplementary Material. The top two
rows of the figure show that observers could success-
fully distinguish increments from decrements relative to
the standard both for blur and contrast; and this was
true both in the single block conditions (row 1) and
when blur and contrast conditions were interleaved
(row 2). The bottom row (row 5) shows that observers
could also distinguish whether the test differed from the
standard in contrast or in blur. Moreover, they could
do so about as well as the model predicts from two
independent, noisy channels, scaled by the standard
deviation of the noise in the channel (blue curve). The
bottom row also shows that the success rate was not the
same for blur and contrast, because observers had
preferences for one or the other. This is accounted for
by the bias parameter in the model fit.

Rows 3 and 4 of the Figure show increment/
decrement performance on trials when the channel
choice (blur vs. contrast) was incorrect (row 3) and
correct (row 4). Not surprisingly, performance in the
former case is inferior to the second, indicating a
common source of noise for the two choices, but it was
not at chance in all cases, indicating that observers had
some information about the direction of the cue even
when they were mistaken about its origin. There was a
significant correlation in most cases between the
probability of a ‘‘sharper’’ response and an increase in
contrast, and between a ‘‘high contrast’’ response and
an increase in sharpness. These correlations are shown
in the panels of row 3 in Figure 4. A likelihood ratio
test (Hoel, Port, & Stone, 1971) comparing a two-
parameter linear fit to the data in row 3 with a one-
parameter linear fit of unit slope showed a significantly
(p , 0.05) better fit in all cases except for MM (blur
trials) and SA (blur trials).

The mostly positive slopes of the conditional
probability data in row 3 of Figure 4 are consistent with
observers confusing high contrast with high ‘‘sharp-
ness’’ (low blur). To some extent these positive slopes
are explained by the model incorporating channel bias
(blue curves), which also tend to have positive slopes.
However, it should be emphasized that the sign of the
slope is arbitrary as far as the model is concerned, and
the slopes would have been negative if we had
associated high-contrast responses with high blur,
rather than high sharpness. The direction of the effect
thus implicates a perceptual effect, consistent with the
bias described by May and Georgeson (2007) to see
sharper edges as of higher contrast. We shall return to
this point in the discussion.

An alternative to the model with two independent
channels, accounting for choice of both sign and
channel, is one in which choices of sign are made
independently of channel. For example, choice of sign

could be based on a common contrast energy signal,
whereas the choice of channel could depend on a
separate mechanism with a higher threshold. This
model was tested against the data with a nine-
parameter model the same as the 5 parameter except
for two further channels used only in the channel-
choice stage. These each had independent values of l
and r from the channels used in the sign discrimination
stage, hence the four further parameters. The fits,
shown in red in Figure 4 were evidently worse than
those of the five-parameter fits, despite the greater
number of parameters. The superiority of the five-
parameter fit was born out by the X2 values of a
likelihood ratio test [109.37**, 44.99***, 67.02***,
107.74***, and 4.64 (NS)]. Only in observer ZS was the
difference not significant, presumably due to the
paucity of data in Experiment 2. The failure of the nine-
parameter model is explained by its predicting complete
independence of the sign and channel choice. Thus the
conditional probability of a correct sign choice should
be the same given a correct rather than an incorrect
channel choice. The data in rows 3 and 4 show that this
is clearly not the case.

In most respects, these data are similar to those
described by Raphael and Morgan (2016) for discrim-
ination between changes in dot density and dot
number. There is a particularly close analogy between
the two sets of experiments, since both density and
number affect contrast energy, despite which observers
can discriminate between them.

Experiment 3

The purpose of Experiment 3 was to investigate
summation between contrast and blur cues. Unlike
Experiments 1 and 2, a 2AFC procedure was used, with
a standard stimulus (blur¼ 6.45 arcmin; contrast¼ 0.5)
and a test stimulus that had a blur increment DB. The
order of presentation was randomized and the task was
to choose the sharper stimulus (the standard). In the
baseline condition the contrast of the standard and test
stimuli were the same. In the blurþ contrast condition
a contrast increment DC equal to half the JND
(established in Experiment 2) was added to the test.
Note that this would have reduced the energy difference
between test and standard. In the blur–contrast
condition a contrast increment DC equal to half the
JND (established in Experiment 2) was subtracted from
the test. Note that this would have increased the energy
difference between test and standard.

Two observers from Experiments 1 and 2 (MM and
NN) performed the experiment. The APE procedure
was used, as in Experiment 1.
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Results

The results in Figure 5 show summation in both
observers, in that thresholds were lowered by the
contrast cue irrespective of whether it was an
increment (þ) or a decrement (�). In detail, however,
the two observers were different. MM showed
significant lowering of threshold relative to baseline in
both the add (þ) condition X2 ¼ 5.22*) and the
subtract (–) condition (X2 ¼ 6.24*) , which did not
themselves differ X2 ¼ 0.085 NS). NN showed no
significant lowering of threshold relative to baseline in
theþ condition (X2¼ 1.61 NS) but a significant effect
in the � condition (X2 ¼ 19.63**); and the þ and �
conditions were different (X2 ¼ 14.76**). Thus the
data for MM give no support for the energy model
and are compatible with independent channels for
contrast and blur. The data for NN give qualified
support for energy, in that blur increments appeared
to be reinforced by contrast decrements. Even in this
observer, contrast increments failed to support the
energy prediction that they should increase thresholds
for blur increments; in fact, the change was in the
opposite direction, albeit nonsignificantly. A possible
reason for the difference between observers is that
MM knew, but NN did not, that the test could be
different from the reference both in blur and in
contrast. The instruction was to choose the standard,
that is, the sharper stimulus. Seeing a stimulus that
was of higher contrast on some trials, NN may have
been deceived into thinking that it was also less

blurred, and thus made an error. This is pure
speculation.

Experiment 4

In the final experiment we measured the full DB/B
‘‘dipper’’ function with a 2AFC procedure, both when
the test and pedestal stimuli had the same contrast
(0.5), and when the test was given a contrast increment
above 0.5 to compensate for the decreased contrast
energy caused by the increment in blur. The blur
discrimination function (DB vs. B) in two observers
(NN and MM) was determined with added contrast to
the test, so that the blur and contrast increments were
equal in terms of threshold units (z scores). These z
values were determined in a preliminary experiment
where (a) the DB/B function was measured with a fixed
contrast of 0.5 and (b) the DC/B function was
determined with a fixed pedestal contrast of 0.5. Thus,
every decrease in energy due to a blur increase was
compensated by an increase in energy due to contrast.
The compensation was carried out using z-scores rather
than ViCE, because we have already established in
Experiment 1 that ViCE is not a good predictor of the
relative detectability of blur and contrast.

Results (Figure 6) showed a clear ‘‘dipper’’ function
for blur (Hamerly & Dvorak, 1981; Watt & Morgan,
1983; for other references see Watson & Ahumada,
2011) both with and without contrast energy equaliza-
tion. Thresholds were slightly lower when contrast
equalization was added, consistent with the results of
the ‘‘add’’ condition of Experiment 3.

Figure 5. The figure shows the results of Experiment 3 in

participants MM (left) and NN (right). The vertical axis shows

blur-increment thresholds DB. In the baseline condition (0) the

contrast of the standard and test stimuli were the same. For

explanation of the ‘‘Add’’ and ‘‘Subtract’’ conditions, see the

text. The vertical bars show 95% confidence intervals estab-

lished by bootstrapping.

Figure 6. Results of Experiment 4, in which the threshold for

detecting an increase in blur in the test was measured in a 2AFC

design as a function of the pedestal blur, present in both

reference and test stimuli. The red symbols show thresholds

when the contrast of test and reference stimuli was the same;

the green symbols show thresholds when a contrast increment

was added to the test stimuli so as to counteract the decrease

in contrast energy due to added blur.
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General discussion

These experiments were designed to test whether
there are separate labeled lines for contrast and blur
discrimination. Previous results had told us that both
the amount of contrast and the amount of blur in a
pattern could be sensed. The question is whether there
are two mechanisms or only one. Our results decisively
show that there are two mechanisms, particularly the
finding that observers can report whether a change in
energy is due to a change in contrast or a change in
blur. Experiments on the ‘‘dipper’’ (T vs. C) function
for blur discrimination have also shown that the dipper
survives even when blur has no effect on energy,
showing that blur is not just a special case of energy
discrimination,

The Watson–Ahumada ViCE model of contrast and
blur discrimination is unquestionably an advance on
previous models, because it provides a common metric
(visible contrast energy) by means of which different
tasks can be compared. Before claiming the existence of
a special mechanism for a discrimination, simpler
possibilities such as energy discrimination should
indeed be investigated. For example, we (Morgan &
MacLeod, 2014) were inspired by the ViCE model to
investigate the case of ‘‘numerosity discrimination,’’
and to test the possibility that it is a special case of
texture discrimination, based upon energy differences.
Morgan, Raphael, Tibber, and Dakin (2014) showed
that a mechanism for energy discrimination supple-
mented with contrast gain control could easily outper-
form the human observer in a variety of relative
numerosity tasks, even with irrelevant differences in
blur and contrast between the textures being compared.

However, the ViCE model does not claim that all
pattern discriminations are carried out by contrast
energy alone. We do not discriminate two faces because
they have different contrast energy (Morgan, Ross, &
Hayes, 1991; Oppenheim & Lim, 1981), and even if in
special cases we did, the discrimination would probably
survive random contrast perturbation. This is known to
be the case in a variety of simple pattern discrimination
tasks (Morgan, 1991; Westheimer, 1979). Morgan and
Regan (1987) showed that spatial interval acuity was
little affected by random contrast perturbation of one of
the two bars in a spatial interval discrimination task.
The inference from many experiments of this kind on
pattern acuity, with the possible exception of vernier
acuity with closely abutting bars (Morgan & Regan,
1987; Parker & Hawken, 1985) is that the critical
variable is the distribution of contrast energy over space,
not the integrated contrast energy over the pattern.

Blur discrimination is an interesting case, which
could be considered a priori either as a pattern acuity
task, or as a contrast discrimination. Watt and Morgan
(1983) proposed that edge-blur discrimination is a

special case of spatial interval discrimination, in which
the cue is the spatial separation between stationary
points in the second spatial derivative of the blurred
edge. The ‘‘dipper’’ function for blur was explained by
the existence of ‘‘intrinsic blur’’ from optical and neural
blurring. Watson and Ahumada (2011) criticized the
notion of ‘‘intrinsic blur’’ in this context, but also point
out that it is not very different from the HCSF in their
own model. Blur in the Watt and Morgan model is
calculated as the spatial variance of the points on the
edge compared with a perfectly sharp template. A
difference DB between them produces a larger differ-
ence in total variance between them when it exceeds the
intrinsic blur because of the addition of variances under
convolution. The same reasoning explains the dipper
function found for spatial variance discrimination in
regularly spaced dot patterns (Morgan, Chubb, &
Solomon, 2008).

The question remains whether blur discrimination
has a spatial component or not. Our own results agree
with Watson and Ahumada’s review in showing that
blur discrimination thresholds are lower than those for
contrast discrimination when expressed as contrast
energy thresholds. This leads to the conclusion that
integrated contrast energy cannot be the correct metric
for both tasks. A difference in blur between two
patterns can be detected without any difference in
integrated contrast energy. This is demonstrably the
case in Experiment 4, where contrast energy was made
invariant with blur by a suitable covariation of
contrast, and where a dipper function was still found.

We also found that differences in blur could be
discriminated from differences in contrast about as well
as would be predicted from two independent labeled
lines, having the same intrinsic noise that limits their
individual discrimination thresholds (Watson & Rob-
son, 1981). An exception is that when observers made a
mistake in identifying the channel (blur vs. contrast)
they were above chance at identifying its direction
(increment vs. decrement). In other words, increases in
sharpness were confused with increases in contrast and
vice versa, exactly as predicted by an energy model.
However, the energy model predicts that this confusion
would be complete, whereas in fact it is rare. A
confusion between contrast and blur has also been
described by May and Georgeson (2007), who found
that sharper edges look higher in contrast. This finding
may well account for the finding, in Experiment 2, of
above-chance sharpness increment/decrement perfor-
mance on trials when the channel choice was incorrect:
If the test stimulus is sharper than the reference, then it
would look higher in contrast, which could lead the
subject to sometimes report that it is higher in contrast,
rather than higher in sharpness.

May and Georgeson explained their findings by
taking a formal model of edge processing (Georgeson
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et al., 2007), and adding a simple, physiologically
plausible, process that could play a role in noise
reduction. This could explain why sharper edges look
higher in contrast but it does not explain the reciprocal
effect we found: that high contrast edges look sharper.
May and Georgeson (2007) reported that reducing the
contrast caused edges to look sharper (see also
Georgeson, 1994).

This finding would actually predict that, as contrast
got low, the observer would be more likely to
misperceive it as an increase in sharpness, unlike the
effect in Experiment 2. However, the effect of contrast
on perceived blur reported by May and Georgeson only
kicks in substantially at low contrasts and high blurs,
so perhaps the contrast in the current experiments was
too high and the blur too low for this effect to be seen.
In the midrange of contrast that we used (;0.5)
increases in sharpness may cause increases in apparent
contrast, and increases in contrast may cause increases
in apparent sharpness.

In Experiment 3 we found no clear evidence for a
difference in energy-subtract and energy-add modes.
This differs from the results reported by Morgan and
MacLeod (2014) for summation of numerosity and
contrast signals. Second-order sinusoidal gratings
composed of visually-resolved dots were modulated
either in contrast, in numerosity, or in both. The
observer had to distinguish horizontal from vertical
modulation. Threshold modulation depths were dra-
matically higher when contrast and numerosity were
modulated in counterphase (from the standpoint of
energy) than when they were modulated in phase. The
energy model appears to have strong support from
these results (see also Morgan et al., 2014), but not
from the results reported here for contrast and blur.

We do not deny that contrast energy discrimination
may be a rapid and effective heuristic for detecting
when the blur of a pattern has changed. Something
similar to it works for some kinds of automatic focus in
digital cameras, and it may well have evolved in the
visual system. Our own method permitted detailed
inspection of the pattern edges, and it may have been
this that turned the discrimination into a spatial pattern
discrimination task. Further work is required to
determine the different conditions under which blur
discrimination is performed in the pattern discrimina-
tion versus the contrast energy domains.

Keywords: contrast, blur, labeled lines
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