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This paper underpins the use of white-light interferometers for a range of measurement applications and analyses 

and compares two methods for suppressing the subsidiary fringes in white-light correlograms using a two-

wavelength light source.  One of the methods adds the intensities of the two wavelength components and the 

other multiplies them and the peak intensity difference between the central fringe and the subsidiary fringes is 

investigated. A mathematical expression for a rapid estimation of the optimum wavelength difference between 

the two wavelengths is given for suppressing the subsidiary fringes. The effects of the intensities of the two 

wavelength components have also been investigated. 
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1. Introduction 
White-light interferometric (WLI) sensors have been 

investigated by many researchers over a number of years for 

a wide range of applications, which include thickness gauges 

[1], optical fiber displacement sensors [2], surface profilers 

and topography and surface shape measurement [3 - 8], 

object shape [9] and microscopy [10].  They remain an 

important and topical area of advanced sensor research [11].  

One of the advantages of such WLI sensors is that they can 

avoid the phase ambiguity by distinguishing the central 

fringe of the correlograms. Light-emitting diodes (LEDs) are 

energy efficient, light in weight, and low in cost when 

compared to conventional light sources and thus are well 

suited to use in white-light interferometry, especially for ‘in-

the-field’ applications.  However, a key issue is that the 

central fringe of a correlogram illuminated by a LED may 

not be easily distinguished by comparing the peak intensities 

of the interference fringes, especially when noise is present.  

Larkin has developed the efficient algorithms for the 

detection of the envelope of white-light correlograms [12], 

which may help to distinguish the central fringe. Two-

wavelength methods can also be used to enhance the central 

fringe of the low coherence correlograms [13 - 17]. With a 

two-wavelength light source, a beat fringe pattern is 

generated in the correlogram and hence the subsidiary 

fringes are suppressed. 

There are two familiar types of two-wavelength methods. 

One of them is to add the intensities of the two wavelength 

components [13 - 15, 17], and the other is to multiply them 

[16].  The fringe patterns produced by adding may be termed 

‘added correlograms’ and those produced by multiplying as 

‘multiplied correlograms’. 

As shown in the upper part of Fig. 1, depending on the 

two wavelengths used, the second largest fringe in an added 

correlogram or a multiplied correlogram can either be the 

first subsidiary fringe or the largest fringe in the first 

subsidiary fringe packet.  In order to suppress the subsidiary 

fringes, the normalized peak intensity difference between the 

central fringe and the first subsidiary fringe (NPID1), and 

the normalized peak intensity difference between the central 

fringe and the largest fringe in the first subsidiary fringe 

packet (NPID2) will be examined.  A mathematical 

expression will then be given for a rapid estimation of the 

optimum wavelength difference for suppressing the 

subsidiary fringes when the coherence length and the shorter 

wavelength are given.   The effects of the intensities of the 

wavelength components on the NPID1 and NPID2 of the 

correlograms will also be examined.   

This paper is divided into eight sections. Section 2 

describes the added correlogram and the multiplied 

correlogram theoretically, and establishes a mathematical 

relationship between the two types of the correlograms. 

Section 3 compares the added correlogram and the 

multiplied correlogram, and analyzes the arithmetic 

difference between them. Section 4 derives expressions for 

NPID1 of the added correlogram and that of multiplied 

correlogram.  Section 5 derives expressions for NPID2 of 

added correlogram and that of multiplied correlogram. 

Section 6 gives an expression for the rapid estimation of the 

optimum wavelength difference for suppressing the 

subsidiary fringes. Finally, Section 7 looks at the effects of 

the intensities of the wavelength components on NPID1 and 

NPID2 of the correlograms when the intensity ratio of the 

two wavelength components varies from 0.1 to 10 and 

Section 8 summarizes the achievements of the work and how 

it can be applied to create better optical fiber sensors for a 

wide range of measurands to meet the needs of industry. 

2. Added correlogram and multiplied correlogram 
When a Michelson interferometer is illuminated by a low 

coherence source, such as light from a LED, its output 

correlogram can be given by 
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where a represents the amplitude of the central fringe of the 

correlogram, λ represents the central wavelength of the light 

source, x represents the optical path difference (OPD) of the 

interferometer, and l represents the coherence length of the 

light source. 

When two low coherence sources of different colors are 

used to illuminate the Michelson interferometer, the 

correlograms of the two wavelength components can be 

expressed respectively as 
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where 1  and 2  represent the central wavelengths, 01I  

and 02I  represent the average intensities of the wavelength 

components. 

By multiplying Eq. (2a) and Eq. (2b), the multiplied 

correlogram can be written as 
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represents the added correlogram, and 
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represents the arithmetic difference between the added 

correlogram and the multiplied correlogram.  

The added correlogram can be rewritten as 
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and the arithmetic difference )(xId  can be rewritten as 
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where 02012 IIA is the amplitude of the central fringe of 

the added correlogram, )/(2 2121  a  is the 

average wavelength, and 2121 /  m  is the 

modulation wavelength. When the two wavelengths used are 

0.78µm and 0.67 µm, the average wavelength is 

approximately 0.72µm and the modulation wavelength is 

approximately 4.75 µm. 

It should be noted that Eq. (4a) represents the added 

correlograms when the intensities of the wavelength 

components are equal. 

Eq. (4b) shows that the arithmetic difference consists of 

two oscillating terms. One of these oscillates at the 

modulation wavelength ( m ) and the other oscillates at a 

half of the average wavelength ( 2/a ). 

3. Comparision between the added correlogram 

and the multiplied correlogram  
Fig. 1 plots the added correlogram (given by Eq.(4a)), the 

multiplied correlogram (given by Eq.(3)), and the arithmetic 

difference between them, when the amplitude A is unity. 

In the upper part of Fig. 1, the envelopes of the 

correlograms are modulated by the beat effect generated by 

the two wavelength components. The beat effect suppresses 

the subsidiary fringes. 

In the upper part of Fig. 1, we also find the subsidiary 

fringes in the multiplied correlogram are smaller than those 

in the added correlogram. 

There are two sinusoidal oscillations that can be seen in 

the graph in the lower part of Fig. 1. The faster oscillation 

has a wavelength of about 0.36 µm, which is a half of the 

average wavelength. The slower oscillation has a 

wavelength of about 4.7 µm, which is the same as the 

modulation wavelength. This is consistent with the 

theoretical result given by Eq. (4b) where the two oscillating 

terms are present.  

From Fig. 1, it can also be seen that the central fringe of 

the arithmetic difference is about a quarter of the size of the 

central fringe in the added correlogram. This is consistent 

with the theoretical results given by Eq. (4a) and Eq. (4b), 

where the number 4 can be seen in the denominator in 

Eq.(4b). 

By examining the graph in the lower part of Fig. 1, the 

arithmetic difference has been maximized at the quadrature 

positions of the correlograms, and minimized when the 

correlograms reach the extreme values. 
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Fig. 1. The added correlogram aI  (upper graph in upper part), the 

multiplied correlogram mI  (lower graph in upper part), and the 

difference dI  (graph in lower part). Coherence length: 7.0 µm; 

two wavelengths: 0.78µm and 0.67 µm. 

4. Estimation of NPID1 
From Eqs. (3), (4a) and (4b), the peak intensity of the first 

subsidiary fringe of added correlogram can be given by 

)]cos(])(exp[1[)( 2

m

aa
aa

l
AI




  ,             (5a) 

and the peak intensity of the first subsidiary fringe of 

multiplied correlogram can be estimated by 
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If the effect of the coherence envelope is neglected, the 

NPID1 of added correlogram can be estimated by 
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and that of multiplied correlogram can be estimated by 
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By comparing Eq.(6a) with Eq. (6b), it is clear that, for a 

given pair of wavelengths, the NPID1 of the multiplied 

correlogram is greater than that of the added correlogram. 

It should be noted that Eq. (6a) can be used for 

estimating the NPID1 of added correlogram when the 

average intensities of the wavelength components are equal. 

5. Estimation of NPID2 
In a two-wavelength correlogram, the second largest fringe 

may not be the first subsidiary fringe. From Fig. 1, it can be 

seen that the second largest fringe in a two-wavelength 

correlogram can either be the first subsidiary fringe or the 

largest fringe in the first subsidiary fringe packet. Which 

fringe is the second largest in a two-wavelength correlogram 

depends on the two wavelengths that are used for 

illumination. 

From Eq. (4a), the NPID2 of added correlogram can be 

estimated by 
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Similarly, from Eqs. (3), (4a) and (4b), NPID2 of 

multiplied correlogram can be estimated by 
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Eq. (7a) can be written as 
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and Eq. (7b) can be written as 
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The details needed to derive Eq. (8b) can be found in the 

Appendix. By comparing Eq.(8a) with Eq. (8b), it is clear 

that, for a given pair of wavelengths, the NPID2 of the 

multiplied correlogram is greater than that of the added 

correlogram. 

It should be noted that Eq. (8a) can be used for 

estimating the NPID2 of added correlogram when the 

average intensities of the wavelength components are equal. 

6. Optimum wavelength difference 
In order to estimate the optimum wavelength difference, it is 

useful to further simplify Eqs. (6) and Eqs. (8). 

When am   , Eq. (6a) and Eq. (6b) can be written 

respectively as 
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In order to proceed with the analysis, Eqs (8) can be 

expanded into a power series and only the first term is kept. 

Then Eq.(8a) can be approximated by 
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and Eq. (8b) can be approximated by 
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Eqs. (9) indicate that, for a given pair of wavelengths, the 

NPID1 of the multiplied correlogram is about two times the 

NPID1 of the added correlogram.  Further, Eqs. (10) indicate 

that, for a given pair of wavelengths, the NPID2 of the 

multiplied correlogram is about two times the NPID2 of the 

added correlogram. 

Eqs. (9) and Eqs. (10) show the effects of the wavelength 

difference on NPID1 and NPID2 of the two-wavelength 

correlograms. Eqs. (9) show that NPID1 increases as the 

wavelength difference increases, whereas Eqs. (10) indicate 

that NPID2 decreases as the wavelength difference 

increases.  This suggests that there should be an optimum 

wavelength difference at which NPID1 be equal to NPID2 

and therefore the peak-intensity difference between the 

central fringe and the second largest fringe be maximized. 

For the added correlogram, the optimum wavelength 

difference can be obtained by letting Eq. (9a) be equal to 

Eq.(10a). For the multiplied correlogram, the optimum 

wavelength difference can be obtained by letting Eq.(9b) be 

equal to Eq.(10b). These lead to the same equation that can 

be written as 
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where 012  OP  is the optimum wavelength 

difference. 

Eq. (11a) can be used to determine the optimum 

wavelength difference OP  for both added correlogram and 

that of multiplied correlogram. 

Since OP  12 , Eq. (11a) can be written as 
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Since 01  OP , we have 
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and therefore the third term in right hand side of Eq. (11b) is 

negligible. Then the following can be stated 

1
3
1

2
3

2
2








OPOP

l
 .                                      (13) 

The right hand side of Eq. (13) can be approximated by a 

constant. Therefore, the optimum wavelength difference can 

be calculated by 

l
OP

1
1

6.0 
  ,                                              (14) 

where 1  is the shorter wavelength and l the coherence 

length. The number 0.6 used in the above was determined by 

trial and error. The criterion to determine the number is 

whether the NPID1 is close to the NPID2 in the generated 

correlogram with the calculated OP . 

Eq. (14) can be used for the rapid estimation of the 

optimum wavelength difference for suppressing the 

subsidiary fringes. 

Figs. 2 show examples of the correlograms with the 

optimum wavelength difference given by Eq. (14).  It can be 

seen from the figures that the peak intensity of the first 

subsidiary fringe is about the same as that of the largest 

fringe in the first subsidiary fringe packet, and therefore 

NPID1 NPID2.  The figures also show that, with the 

wavelength difference given by Eq. (14), the subsidiary 

fringes in the correlograms are satisfactorily suppressed. 
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Fig. 2. Added correlogram (upper graph) and multiplied 

correlogram (lower graph) (a) when l = 7.0 µm, 1 = 0.70 µm and 

OP = 0.17µm (b) when l = 10 µm, 1 = 0.50 µm and 

OP =0.087µm (c) when l = 15 µm, 1 = 1.5 µm and 

OP =0.37µm. 

 

Figs. 2 also show that the optimum wavelength 

differences given by Eq. (14) are good for suppressing 

subsidiary fringes for both the added correlogram and the 

multiplied correlogram. The reason for this is that Eq. (14) is 

derived from Eq.(11a), that is for both the added 

correlogram and the multiplied correlogram. 
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Fig. 3. PD21 of correlograms versus the shorter wavelength when 

the coherence length is 5 µm, 10 µm, and 15 µm. The correlograms 

are generated with the optimum wavelength difference given by 

Eq. (14). 

In order to examine the usefulness of Eq. (14), the 

percentage difference between NPID2 and NPID1 is defined 

as 

1NPID

1NPID2NPID
PD21


 .                                          (15) 

For the optimum suppressing of the subsidiary fringes, 

the smaller the absolute value of PD21, the better. When 

PD21 is equal to zero, the peak-intensity difference between 

the central fringe and the second largest fringe is maximized. 

Fig. 3 shows PD21s of simulated correlograms with the 

optimum wavelength difference given by Eq. (14). The 

simulation results show that the absolute values of PD21s of 

the correlograms are less than 20% when the shorter 

wavelength varies from 0.50 µm to 1.50 µm and the 

coherence length varies from 5.0 µm to 15 µm.  In the 

computer simulation carried out, PD21s are calculated by 

determining the peak intensity of the first subsidiary fringe 

and that of the first subsidiary fringe packet. 

It should be noted that graphs in Fig. 3 are from added 

correlograms. Almost exactly the same graphs have been 

plotted with multiplied correlograms, (which for brevity are 

not included in the paper).  The simulation results show that 

Eq.(14) can be used for estimating the optimum wavelength 

difference for both added and multiplied correlograms. 

7. Effects of the intensities of the two wavelength 

components 
Previous researchers appear to have overlooked the effects 

of the intensities of the two wavelength components [9 - 13]. 

In practical WLI sensors, it is clear that the intensities of the 

two wavelength components may vary in use for 

measurement applications. Hence, it is necessary to 

investigate the effects of the intensities on NPID1 and 

NPID2 of the two-wavelength correlograms. 

The intensity ratio 0102 / IIR   is defined as the 

average intensity of the longer wavelength over that of the 

shorter wavelength. 

From Eq. (2a) and Eq. (2b), the normalized added 

correlograms can be expressed as 
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Also from Eq. (2a) and Eq. (2b), the normalized 

multiplied correlograms can be expressed as 
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From Eq. (16b), it is clear that the normalized multiplied 

correlograms are independent of the intensity ratio. 

Therefore, NPID1 and NPID2 of the multiplied correlogram 

are independent of the intensity ratio. 

Graphs given as Fig. 4 shows the normalized added 

correlograms given by Eq. (16a) when the intensity ratio R is 

0.1, 0.3, and 0.8 respectively. It can be seen from the graphs 

that the beat effect varies with the intensity ratio. 
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Fig. 4. The added correlograms given by Eq. (16a) when the 

intensity ratio is 0.1, 0.3, and 0.8 respectively. Coherence length: 

7.0 µm; two wavelengths: 0.78 µm and 0.67 µm. 

 

NPID1 of the simulated added correlogram and the 

multiplied correlogram is determined when the intensity 

ratio varies.  The simulation results are displayed in Fig. 5(a) 

when the logarithm of the intensity ratio varies from –1 to 1 

and so the intensity ratio varies from 0.1 to 10. 

Fig. 5(a) shows the NPID1 of the multiplied 

correlograms is independent of the intensity ratio, whereas 

the NPID1 of the added correlograms is maximized when 

the intensity ratio is about unity. 

Fig. 5(a) also shows that the NPID1 of the multiplied 

correlograms is about twice the maximum NPID1 of the 

added correlograms. This is consistent with the results given 

by Eq. (6a) and Eq. (6b). Eq.(6a) gives a NPID1 of 0.11 for 

the added correlograms and Eq.(6b) gives a NPID1 of 0.22 

for the multiplied correlograms when the two wavelengths 
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are 0.67 µm and 0.78 µm, these being important 

wavelengths available from common, inexpensive LEDs.  
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Fig. 5. (a) NPID1 varying with the logarithm of the intensity ratio 

(b) NPID2 varying with the logarithm of the intensity ratio. 

Coherence length: 7.0µm; two wavelengths: 0.78 µm and 0.67 µm. 

 

The lower graph in Fig. 5(a) also indicates that the 

NPID1 of the added correlograms peaks when the intensity 

ratio is slightly greater than unity.  In other words, the 

NPID1 of the added correlograms is maximized when the 

intensity of the longer wavelength is slightly greater than 

that of the shorter wavelength. This can be explained by the 

fact that the average wavelength of added correlogram 

increases as the intensity ratio increases and the amplitude of 

the first subsidiary fringes decreases as the average 

wavelength increases. 

NPID2 of the simulated added correlogram and the 

multiplied correlogram is determined when the intensity 

ratio varies. The simulation results are displayed in Fig. 5(b) 

when the logarithm of the intensity ratio varies from –1 to 1 

and so the intensity ratio varies from 0.1 to 10. 

Fig. 5(b) shows the NPID2 of the multiplied 

correlograms is independent of the intensity ratio, whereas 

the NPID2 of the added correlograms is maximized when 

the intensity ratio is about one. 

Fig. 5(b) shows that the NPID2 of the multiplied 

correlograms is about twice the maximum NPID2 of the 

added correlograms. This is consistent with the results given 

by Eq. (8a) and Eq. (8b). Eq.(8a) gives a NPID2 of 0.37 for 

the added correlograms and Eq.(8b) gives a NPID2 of 0.67 

for the multiplied correlograms when the coherence length is 

7 µm and the two wavelengths are 0.67 µm and 0.78 µm. 

8. Conclusions and relevance to creating better 

optical fiber sensors 
Two methods for suppressing subsidiary fringes in white-

light interferometry with two-wavelength light source have 

been analyzed and compared. Mathematical expressions 

have been given for estimating NPID1 and NPID2 of added 

and multiplied correlograms. 

A mathematical expression (Eq. (14)) has also been 

given for a rapid estimation of the optimum wavelength 

difference between the two wavelengths for suppressing the 

subsidiary fringes in added and multiplied correlograms. For 

the correlograms with the wavelength difference given by 

Eq.(14), the PD21s have been shown to be less than 20 

percent when the shorter wavelength varies from 0.50 µm to 

1.5 µm and the coherence length varies from 5.0 µm to 

15µm. 

The normalized multiplied correlograms are independent 

of the intensities of the wavelength components, whereas the 

beat effect in the added correlograms is maximized when the 

intensities of the wavelength components are about equal. 

For a given pair of wavelengths, the NPID1 of the 

multiplied correlogram is about two times the maximum 

NPID1 of the added correlogram and the NPID2 of the 

multiplied correlogram is about two times the maximum 

NPID2 of the added correlogram. 

These outcomes are important in the development of 

better optical fiber sensors using white light interferometry 

as the basis of the measurement.  As discussed in the 

Introduction, the technique is widely applied to important 

measurements for industrial applications which include the 

more conventional displacement, temperature and pressure 

as well as surface topography and object shape [1 – 12], for 

example.  Although a long established field, it remains very 

active and the techniques discussed have real relevance in 

better fringe identification – and thus in more precise 

measurand determination.  Coupled to the use of a two 

wavelength approach, where these wavelengths can be 

supplied by readily available, inexpensive LEDs, the 

technique can be applied widely across these various 

applications domains discussed [18] and thus contribute to 

enhanced measurement results in what remains an active 

area of optical fiber sensor research.    
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Appendix 
Eq. (7b) can be written as 
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Then, the NPID2 of multiplied correlogram can be 

expressed as 
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Fig. 2 (a) 
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Fig. 2 (b) 
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Fig. 2 (c) 
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Fig. 3  
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Fig. 4  
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Fig. 5 (a)  
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Fig. 5 (b)  
 
 


