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Abstract

We propose a new methodology based on copula functions to estimate CoVaR, the Value-
at-Risk (VaR) of the financial system conditional on an institution being under financial
distress. Our Copula CoVaR approach provides simple, closed-form expressions for vari-
ous definitions of CoVaR for a broad range of copula families and allows the CoVaR of an
institution to have time-varying exposure to its VaR. We extend this approach to estimate
other “co-risk” measures such as Conditional Expected Shortfall (CoES). We focus on a
portfolio of large European banks and examine the existence of common market factors
triggering systemic risk episodes. Further, we analyse the extent to which bank-specific
characteristics such as size, leverage, and equity beta are associated with institutions’ con-
tribution to systemic risk and highlight the importance of liquidity risk at the outset of the
financial crisis in summer 2007. Finally, we investigate the link between macroeconomy
and systemic risk and find that changes in major macroeconomic variables can contribute
significantly to systemic risk.
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1. Introduction

The recent financial crisis has highlighted in the most prominent way the importance of
prudent monitoring and assessment of systemic risk. Systemic risk can be seen as the
adverse consequence, for the financial system and the broader economy, of a financial in-
stitution being in financial distress. The failure of large credit institutions can not only
threaten the stability of the financial system but also have dramatic effects on the real econ-
omy. It is well-documented that conditional correlations between asset returns are much
stronger in periods of financial distress (see e.g. Longin and Solnik (2001); Ang and Chen
(2002); Jondeau and Rockinger (2006); Chollete et al. (2009), among others) and typically
arise from exposure to common shocks, although amplifications of financial shocks are also
associated with balance sheet channels and liquidity spirals (see e.g. Brunnermeier (2009);
Adrian and Shin (2010)). As a result, losses tend to spread across financial institutions
during stress times, amplifying the risk of systemic contagion.

Assessing the level of contribution of the so-called systemically important financial insti-
tutions (SIFIs) to systemic risk and designing a regulatory framework capable of ensuring
financial stability is the foremost objective of international financial regulatory institu-
tions. The Value-at-Risk (VaR), the risk measure most widely used by financial institu-
tions, is not capable of capturing the systemic nature of risk since it focuses on the risk
of an individual institution when viewed in isolation. As a result, there has been a grow-
ing interest in developing alternative risk measures that reflect systemic risk and avoid
the shortcomings of VaR. For instance, Acharya et al. (2017) measure the propensity
of a financial institution to be undercapitalised when the financial system as a whole is
undercapitalised, using the systemic expected shortfall (SES). Greenwood et al. (2015)
compute bank exposures to system-wide deleveraging and evaluate a variety of interven-
tions to reduce the vulnerability of financial institutions to fire sales. Brownlees and Engle
(2012) introduce the SRISK index, the expected capital shortage of a firm conditional on
a substantial market decline, as an alternative measure of systemic risk while, Engle et al.
(2014) develop an econometric approach to measure the systemic risk of European finan-
cial institutions. Billio et al. (2012) propose several econometric measures to capture the
connectedness among financial institutions based on principal components analysis and
Granger-causality networks. An extensive survey of the main quantitative measures of
systemic risk in the literature can be found in Bisias et al. (2012).

An alternative measure of systemic risk is the Conditional Value-at-Risk (CoVaR) of Adrian
and Brunnermeier (2016), which attempts to capture risk spillovers among financial insti-
tutions and has attracted a lot of attention by the regulatory and academic communities,
especially since the 2007 financial crisis. The general framework of CoVaR depends on
the conditional distribution of a random variable Rs,t representing the returns of the en-
tire financial system at time t given that another financial institution i, represented by
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a random variable Ri,t, is in distress. Currently, there are two alternative definitions of
CoVaR in the literature. In the original definition by Adrian and Brunnermeier (2016),
CoVaR is defined as the conditional distribution of Rs,t given that Ri,t = V aRit, while
in the modified definition of CoVaR, proposed by Girardi and Ergün (2013), the condi-
tioning event is Ri,t ≤ V aRit. In other words, the former definition represents the VaR
of the system assuming that institution i is exactly at its VaR level whereas the latter
definition of CoVaR represents the same risk metric assuming that institution i is at most
at its VaR level. The latter definition of CoVaR is arguably very useful. First of all, it
considers more severe distress events for institution i that are further in the tail of the
loss distribution (below V aRit level) in contrast to the highly selective and over-optimistic
scenario Ri,t = V aRit. Moreover, CoVaR estimates based on Ri,t ≤ V aRit can be tested
for statistical accuracy and independence using modified versions of the standard Kupiec
(1995) and Christoffersen (1998) tests, respectively. Finally, and perhaps most impor-
tantly, Mainik and Schaanning (2014) show that conditioning on Ri,t ≤ V aRit has great
advantages for dependence modelling.

Our study builds on the CoVaR methodology described above and uses copula functions
to estimate CoVaR under both definitions. We derive simple closed-form expressions for
a broad range of copula families that allow the modelling of various forms of dependence,
while focusing on extreme co-movements of financial system-institution returns, which is,
in practice, the main concern of all systemic risk measures. Given the distinctive charac-
teristics of copula families, our modelling approach enables the separation of dependence
from marginal distributions providing greater flexibility and eliminating misspecification
biases. A dynamic version of the model is also proposed - one that is capable of incorpo-
rating time-varying correlation into CoVaR calculations. Through counterexamples, we
show that CoVaR measures generated by our modelling approach share the dependence
consistency properties found in Mainik and Schaanning (2014). In addition, we extend the
Copula CoVaR methodology to other “co-risk” measures and derive expressions for Con-
ditional Expected Shortfall (CoES) under both definitions. Furthermore, we show that our
approach can be easily employed by financial regulators as a useful stress testing tool for
assessing the impact of extreme market conditions on the stability of the financial system.2

Focusing on a portfolio of large European banks, we measure the contribution of each
individual bank to systemic risk using both CoVaR and CoES systemic risk metrics. We
show that the ordering of systemically important institutions and the magnitude of the

2We note that, independently from this study, Hakwa et al. (2015) and Bernardi et al. (2017) also
provide expressions for estimating CoVaR using copulas. However, our methodology provides a number
of distinct advantages as it permits the use of time-varying correlations, it allows for the calculation
of alternative measures of systemic risk, such as Co-Expected Shortfall (CoES), and also allows for the
computation of CoVaR as defined both in Adrian and Brunnermeier (2016) and in Girardi and Ergün
(2013).
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corresponding systemic risk measures are affected by the choice of underlying distributions,
but are robust across different systemic risk measures. In a cross-country comparison,
we find that banks from Spain and France have, on average, the highest contribution
to systemic risk. Moreover, we investigate whether common market factors or institution
specific characteristics are important determinants of systemic risk. We show that liquidity
risk is an important determinant of systemic risk contribution. The large impact of funding
liquidity in the pre-crisis period partly explains the “liquidity spirals” that occurred after
the break out of the financial crisis in summer of 2007. Its relative impact has been
reduced in the post-crisis period due to the coordinated intervention of the European
Central Bank (ECB) and the Federal Reserve in the interbank market. We also find
that size and leverage are the most robust determinants of systemic risk contribution
concluding that larger and more leveraged financial institutions can be harmful for the
overall stability of the financial system. Finally, we investigate the link between systemic
risk and macroeconomy and the extent in which changes in key macroeconomic variables
contribute to systemic risk. Intuitively, we find that changes in unemployment, industrial
production, stock market index and GDP contribute significantly to systemic risk.
The rest of the paper is organised as follows: Section 2 formally defines the CoVaR
and CoES measures and presents the Copula CoVaR methodology. Derivation of closed-
form expressions both for CoVaR and CoES systemic risk measures are also presented in
this section. Section 3 describes the data we use in the empirical part of this study and
Section 4 presents the computation of systemic risk measures. Section 5 reports the results
of individual contribution to systemic risk. This section also analyses the determinants
of systemic risk and discusses their implications for the stability of the financial system.
Section 6 concludes.

2. CoVaR Methodology

2.1. Definition of CoVaR

Consider a random variable Ri,t that represents the returns of financial institution i at
time t (i = 1, . . . , N ; t = 1, . . . , T ). The Value-at-Risk (VaR) of the random variable
Ri,t at the confidence level α ∈ (0, 1), V aRiα,t, is defined as the α-quantile of the return
distribution

V aRia,t = F−1
i,t (α), (1)

where F−1
i,t is the generalised inverse distribution function of the return distribution Fi,t,

i.e., F−1
i,t (α) := inf {ri,t ∈ R : Fi,t(ri,t) ≥ α}.3 Equivalently, Equation (1) can also be writ-

3It is common to present downside risk statistics, such as VaR, in positive values. In this paper, we do
not follow this sign convention and instead maintain the original (negative) sign of the conditional quantile
for all downside risk measures reported in the subsequent sections, such as VaR, CoVaR, ∆CoVaR, CoES
and ∆CoES.
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ten as
Pr(Ri,t ≤ V aRia,t) = α. (2)

Two different definitions of Conditional Value-at-Risk (CoVaR) appear in the literature
using different conditioning events. The notation CoV aR=

α,β,t denotes the original def-
inition, introduced by Adrian and Brunnermeier (2016), representing the β-quantile of
the returns of financial system Rs,t conditional on Ri,t = V aRiα,t, while the notation
CoV aRα,β,t denotes the alternative definition, proposed by Girardi and Ergün (2013),
where the conditioning event is Ri,t ≤ V aRiα,t. Formally, CoV aR=

α,β,t and CoV aRα,β,t are
defined as the β-quantiles of the following conditional distributions

Pr(Rs,t ≤ CoV aR=
α,β,t|Ri,t = V aRiα,t) = β, (3)

Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) = β, (4)

where s 6= i. The confidence levels α and β are decided ex-ante by the financial regulator.
Typical values are 1% or 5%. In most studies a common confidence level for α and β is
used, i.e., α = β, however, working with different confidence levels, i.e., α 6= β, is also
possible.

Adrian and Brunnermeier (2016) employ linear quantile regressions to obtain CoV aR=
α,β,t

estimates. The CoV aR=
α,β,t estimates derived from this procedure, however, do not have

a time-varying exposure to institution’s V aRiα,t. On the other hand, Girardi and Ergün
(2013) follow a three-step procedure based on univariate GARCH-type models and the
bivariate DCC model of Engle (2002) to estimate CoV aRα,β,t. As a result, time-varying
correlation is incorporated into their CoV aRα,β,t estimates. Their approach, however,
requires numerical integration which can be computationally intensive and time expensive.
In addition, the specification of the marginal distribution depends on the choice of the
bivariate distribution of Rs,t and Ri,t. In practice, the distributional characteristics of
Rs,t and Ri,t can differ substantially and hence, restricting the marginal specification may
introduce misspecification bias in the computation of CoV aRα,β,t.

2.2. Copula CoVaR Methodology
In this section we show how the Conditional Value-at-Risk (CoVaR) can be estimated
using copula functions. We provide simple analytical expressions for a broad range of
copula families for both CoVaR definitions. In this respect, our Copula CoVaR approach
overcomes the burden of numerical integration and also incorporates the time-varying de-
pendence between Rs,t and Ri,t into the computation of systemic risk measures through
the copula parameter(s). Furthermore, Copula CoVaR approach provides greater flexibil-
ity in the specification of the marginals and the dependence structure (i.e. the marginal
specification is not restricted by the choice of the bivariate copula distribution), elimi-
nating in this way potential misspecification bias in the computation of risk measures.
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This modelling setting also enables the decomposition of systemic risk into three main
components: (a) the dependence structure; (b) the magnitude of dependence and (c) the
marginal series. As a result, we can assess the relevant contribution of any of these three
components to systemic risk.

The joint distribution function of bivariate random variables (Y,X) is

FY X(y, x) = Pr(Y ≤ y,X ≤ x).

The famous theorem of Sklar (1959) gives the connection of marginals and copulas with
the joint distribution. Let FY X represent a bivariate cumulative distribution function with
marginal distributions FY and FX , then there exists a two dimensional copula cumulative
distribution function C on [0, 1]2, such that for all (y, x) ∈ R2 it holds that

FY X(y, x) = C(FY (y), FX(x)).

For continuous FY and FX , C is uniquely determined by

C(u, v) = FY X(F−1
Y (u), F−1

X (v) ),

where random variables u = FY (y) and v = FX(x) (i.e., obtained by the probability in-
tegral transform) are uniformly distributed on [0, 1], while F−1

Y (u) and F−1
X (v) are the

generalised inverse distribution functions of the marginals.

It can be shown (Bouyè and Salmon, 2009), that the conditional probability distribution
Pr(Y ≤ y|X = x) can be expressed in terms of a copula function as

Pr(Y ≤ y|X = x) = ∂C(u, v )
∂v

. (5)

In contrast, the conditional probability distribution Pr(Y ≤ y|X ≤ x) can be expressed
in terms of a copula function as

Pr(Y ≤ y|X ≤ x) = Pr(Y ≤ y,X ≤ x)
Pr(X ≤ x) = C(FY (y), FX(x))

FX(x) = C(u, v)
v

. (6)

The class of Archimedean copulas has recently found wide usage in the economics and
finance literature due to their simple closed-form cumulative distribution functions and
their properties allowing the modelling of the dependence between random variables. 4

4For the various applications of copulas in finance see for example, Kole et al. 2007; Heinen and
Valdesogo 2008; Chollete et al. 2009; Min and Czado 2010; Brechmann et al. 2012; Czado et al. 2012;
Nikoloulopoulos et al. 2012; Brechmann and Czado 2013; Weiß and Scheffer 2015; Scheffer and Weiß 2017,
among others. A review of the literature on copula-based models for economic and financial time series
can be found in Patton (2012).
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Bivariate Archimedean copulas are defined as

C(u, v) = ϕ−1 [ϕ(u) + ϕ(v)] ,

where ϕ : [0, 1] → [0,∞) is a continuous strictly decreasing convex function such that
ϕ(1) = 0 and ϕ−1 is the inverse of ϕ. The function ϕ is called generator function of the
copula C (see Nelsen (2007), for further details).

We begin with the presentation of CoV aR=
α,β,t in terms of Archimedean copulas and

provide general solutions through their corresponding generator functions.5 From the
general result in Equation (5) we have

Pr(Y ≤ y|X = x) = ∂C(u, v)
∂v

= ϕ′(v)
ϕ′
(
C(u, v)

) = ϕ′(v)
ϕ′
(
ϕ−1 [ϕ(u) + ϕ(v)]

) . (7)

Assuming that the above random variables Y and X represent the financial system, Rs,t,
and the returns of institution i, Ri,t, with distribution functions Fs,t and Fi,t, respectively;
the conditional distribution Pr(Rs,t ≤ CoV aR=

α,β,t|Ri,t = V aRiα,t) can be equivalently
expressed in terms of a copula generator function as follows

Pr(Rs,t ≤ CoV aR=
α,β,t|Ri,t = V aRiα,t) = ϕ′(v)

ϕ′
(
ϕ−1 [ϕ(u) + ϕ(v)]

) = β.

Solving for u, under the general condition that ∂/∂v C(u, v) is partially invertible in its
first argument u, we obtain the copula conditional quantile

u= ≡ u = ϕ−1
[
ϕ

(
ϕ
′−1
( 1
β
ϕ′(v)

))
− ϕ(v)

]
. (8)

Applying the probability integral transform in Equation (8), we derive an explicit expres-
sion for CoV aR=

α,β,t for a broad range of Archimedean copula functions, that is

CoV aR=
α,β,t = F−1

s,t

(
ϕ−1

[
ϕ

(
ϕ
′−1
( 1
β
ϕ′
(
Fi,t

(
V aRiα,t

))))
− ϕ

(
Fi,t

(
V aRiα,t

))])
, (9)

where F−1
s,t is the generalised inverse distribution function of Fs,t. From the definition of

VaR it holds that v = Fi,t
(
V aRiα,t

)
= Fi,t

(
F−1
i,t (α)

)
= α. Therefore, the expression for

5We also derive explicit expressions for CoV aR=
α,β,t for the elliptical copula families, i.e., Gaussian and

Student-t copulas. Due to space limitation we do not report the general expressions for those particular
copula families but are available upon request. Unfortunately, there are no explicit solution for CoV aRα,β,t
for these particular copula families and hence numerical integration is required.
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CoV aR=
α,β,t in Equation (9) can be simplified further as follows

CoV aR=
α,β,t = F−1

s,t

(
ϕ−1

[
ϕ

(
ϕ
′−1
( 1
β
ϕ′(α)

))
− ϕ(α)

])
. (10)

Alternatively, an analytical expression can also be given for CoV aRα,β,t for a wide range
of Archimedean copula families. Given the general result in Equation (6), the conditional
distribution Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) can be equivalently written as

Pr(Rs,t ≤ CoV aRα,β,t|Ri,t ≤ V aRiα,t) =
ϕ−1 [ϕ(u)+ ϕ

(
v
)]

v
= β. (11)

Similarly, from the definition of VaR it holds that v = Fi,t
(
V aRiα,t

)
= Fi,t

(
F−1
i,t (α)

)
= α.

Therefore, the expression in Equation (11) can be expressed as

ϕ−1 [ϕ(u)+ ϕ(α)
]

= α · β. (12)

Finally, after solving for u and applying the probability integral transform, under the
general condition that C(u, v) is partially invertible in its first argument u, CoV aRα,β,t
has a general representation for Archimedean copulas, that is

u≤ ≡ u = ϕ−1 [ϕ(α · β)− ϕ(α)
]
, (13)

CoV aRα,β,t = F−1
s,t

(
ϕ−1 [ϕ(α · β)− ϕ(α)

] )
. (14)

The general representation of CoVaR in Equation (10) and in Equation (14) implies a con-
stant correlation between Rs,t and Ri,t. However, it is known that the dependence struc-
ture between financial asset returns is not constant but rather, time-varying (see e.g. Engle
(2002); Patton (2006); Manner and Reznikova (2012), and references therein). Numerous
studies have also indicated that the correlation between financial series tends to be more
pronounced during downturns than during upturns, a stylised feature that should be con-
sidered in the estimation of systemic risk. In this respect, the use of constant correlations
may affect the risk estimates and lead to incorrect inferences. We follow the specifica-
tion proposed by Patton (2006) in order to introduce a dynamic version of the Copula
CoVaR model and hence incorporate time-varying correlation into CoVaR estimation.
Patton (2006) proposed observation-driven copula models, for which the time-varying de-
pendence parameter(s) of a copula is a parametric function of transformed lagged data.
In Appendix A we derive analytical expressions for CoV aR=

α,β,t and CoV aRα,β,t, while in
Appendix B we present the time-varying parameter specification for the Clayton, Frank,
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Gumbel and BB7 copulas, respectively.6 These copula families are very popular in the
literature for modelling the dependence between financial asset returns since they allow
for very flexible dependency structures and can capture various forms of tail dependence.

2.3. Extension to CoES

The CoVaR concept can be easily adopted for other “co-risk” measures. One of them is the
Conditional Expected Shortfall (CoES). We denote by CoES=

α,β,t the expected shortfall of
the financial system conditional on Ri,t = V aRiα,t and similarly by CoESα,β,t the expected
shortfall of the financial system conditional on Ri,t ≤ V aRiα,t. In this respect, CoES
estimates can be easily obtained for both definitions within our framework as follows

CoES=
α,β,t = 1

β

∫ β

0
CoV aR=

α,q,t dq, (15)

CoESα,β,t = 1
β

∫ β

0
CoV aRα,q,t dq, (16)

where CoV aR=
α,q,t = Pr(Rs,t ≤ F−1

s,t (q)|Ri,t = V aRiα,t) and CoV aRα,q,t = Pr(Rs,t ≤
F−1
s,t (q)|Ri,t ≤ V aRiα,t).

2.4. Systemic Risk Contributor and Dependence Consistency

Following Adrian and Brunnermeier (2016), we adopt ∆CoVaR as a measure of institution
i’s contribution to systemic risk and also define by ∆CoV aRα,β,t the difference between
the CoVaR of the financial system conditional on Ri,t ≤ V aRiα,t and the CoVaR of the
financial system conditional on Ri,t ≤ V aRi0.5,t (institution i being at most at its median
state), that is

∆CoV aRα,β,t = CoV aRα,β,t − CoV aR0.5,β,t .

The computation of CoV aR=
0.5,β,t or CoV aR0.5,β,t is straightforward and can be carried

out as in the CoV aR=
α,β,t or CoV aRα,β,t case by simply modifying the stress scenario. We

also employ ∆CoES as a measure of institution i’s contribution to systemic risk where
the contribution is measured in terms of CoES. Therefore, we define

∆CoES=
α,β,t = CoES=

α,β,t − CoES=
0.5,β,t ,

∆CoESα,β,t = CoESα,β,t − CoES0.5,β,t ,

where ∆CoES=
α,β,t denotes the difference between the CoES of the financial system con-

ditional on Ri,t = V aRiα,t and the CoES of the financial system conditional on Ri,t =
V aRi0.5,t, while ∆CoESα,β,t denotes the same risk metric with stress scenarios being

6The ∂/∂v C(u, v) of Gumbel copula is not invertible in its u and hence we cannot derive analytical
expressions for CoV aR=

α,β,t.
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Ri,t ≤ V aRiα,t and Ri,t ≤ V aRi0.5,t, respectively.

To investigate whether the different representations for measuring contribution to systemic
risk, derived within the Copula CoVaR framework, encompass the dependence consistency
properties reported in Mainik and Schaanning (2014), we compare ∆CoV aR estimates for
the bivariate distribution with a Clayton copula.7 Figure 1 presents ∆CoV aR=

α,β,t and
∆CoV aRα,β,t measures as a function of the dependence parameter θ for a Clayton copula
with Student-t marginals with three degrees of freedom at three different confidence levels,
i.e., 1%, 5% and 10%. The behaviour of risk measures in these two models confirms the
results in Mainik and Schaanning (2014). Initially, ∆CoV aR=

α,β,t increases with respect to
the dependence parameter; however, after a certain threshold it counter-intuitively starts
to decrease. In other words, ∆CoV aR=

α,β,t fails to detect dependence when it becomes
more pronounced. On the other hand, ∆CoV aRα,β,t increases with respect to the depen-
dence parameter. Therefore, conditioning on Ri,t ≤ V aRiα,t gives a much more consistent
response to dependence than conditioning on Ri,t = V aRiα,t.

[Insert Figure 1 here]

3. Data

We focus on the STOXX Europe 600 Banks Index that consists of 46 large European banks
from 15 European countries, characterised by a large market capitalisation, international
activity, cross-country exposure and a representative size in the local market. The STOXX
Europe 600 Banks Index is a component of the STOXX Europe 600 Index that represents
large, mid and small capitalisation companies across 18 countries of the European region.
It is the largest, in terms of market capitalisation, sector index of STOXX Europe 600
Index (e748.5 billion as of June, 2013), which indicates the relative importance and size
of the banking sector in Europe. We exclude 4 institutions from the initial sample because
the history of their corresponding datasets is narrow and does not cover the time period
we want to analyse. Therefore, the resulting sample is formed by a total of 42 European
banks, starting on 01/04/2002 and ending on 31/12/2012. This time period provides a
good platform to assess the level of contribution of the systemically important financial
institutions in Europe to systemic risk since it includes a number of significant events (e.g.
the U.S subprime mortgage crisis, the Lehman Brothers collapse, the European sovereign
debt crisis etc.). We assign the Q3 2007 - Q4 2012 as the crisis period because the majority

7We have also compared ∆CoVaR for the bivariate distribution with a Frank copula. The dependence
consistency properties are in line with the results reported for the bivariate distribution with a Clayton
copula. Similar dependence consistency results are obtained when ∆CoES is employed for the same
stochastic models.
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of those events occurred within this period of time.8

Following Adrian and Brunnermeier (2016) and Lòpez-Espinosa et al. (2012), we work with
weekly returns to avoid the non-synchronicity of daily data. Therefore, we obtain weekly
equity adjusted prices - to account for capital operations (i.e., splits, dividends etc.) - from
the Datastream database and generate weekly log returns. There are 562 weekly returns
for each institution in our sample, a list of which can be found in Appendix C. For each
bank, an equally-weighted average of the returns of the remaining banks in the sample is
used as a proxy for the financial system. This way, the resulting system return portfolios
can be considered representative of the European financial system, allowing the study of
possible spillover effects between a stressed institution and the financial system. Moreover,
this approach rules out any spurious correlation that may be induced by banks that are
more heavily represented in the composition of the financial system proxy. For example,
HSBC has a total contribution of 20.5% to the composition of the STOXX Europe 600
Banks Index. As a result, if the corresponding index is used as a proxy for the financial
system, systemic risk estimates generated conditional on HSBC will be severely affected
by the presence and large scale factor of HSBC in the financial system’s portfolio proxy.

4. Copula CoVaR Estimation

The computation of CoVaR or CoES requires the estimation of the parameter(s) of the
marginal densities and the copula function that captures the dependence between Rs,t

and Ri,t. Assume a vector of system and institution returns Rt = (Rs,t, Ri,t)′, (t =
1, . . . , T ; i = 1, . . . , N) where s 6= i. Given that a copula function and the marginals
are continuous, their joint probability density function can be expressed in terms of the
copula density function, c(·, · ; θt), and the univariate marginal densities, fs,t(Rs,t;φs) and
fi,t(Ri,t;φi), as follows

f(Rs,t, Ri,t) = c(ut, vt ; θt) · fs,t(Rs,t ;φs) · fi,t(Ri,t ;φi), (17)

where θt denotes the copula parameter while φs and φi denote the parameters for the
system’s and institution i’s marginal distributions, respectively. In the above expression
ut = FRs,t(Rs,t ;φs) and vt = FRi,t(Ri,t ;φi) are the uniformly transformed marginal series.
The log-likelihood function of Equation (17) is given by

L(θt, φs, φi) =
T∑
t=1

[log c(ut, vt ; θt) + log fs,t(Rs,t ;φs) + log fi,t(Ri,t ;φi)] . (18)

8We believe that it is not a trivial task to distinguish between the 2007-2008 Global financial crisis and
the ensuing Euro-crisis as a number of significant, interrelated events took place during the intervening
period of time. Thus, we follow the timeline suggested by Alter and Schüer (2012) and extend it to cover
the period up to Q4 2012, which corresponds to the end of the sample examined here.
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The marginal densities fs,t(Rs,t; φs) and fi,t(Ri,t ;φi) can be conditional densities and
the series Rs,t and Ri,t are usually modelled by a GARCH-type model, whose residu-
als are treated as i.i.d random variables. Under this setting, full maximum likelihood
estimates (MLE) can be obtained by maximising Equation (18) with respect to the pa-
rameters (θt, φs, φi). In general, the full MLE estimation would be our first choice due
to the well-known optimality properties of maximum likelihood. However, the Inference
Functions for Margins (IFM) method is usually preferred to full MLE due to its com-
putational tractability and comparable efficiency. The IFM method (see Joe (1997), for
further details) is a multi-step optimisation technique. It divides the parameter vector
into separate parameters for each marginal distribution and parameters for the copula
model. Therefore, one may break up the optimisation problem into two parts. In this
study we adopt the IFM method to estimate the parameters of the marginal distributions
and copula function and subsequently obtain CoVaR and CoES estimates.

It is well-documented, since the pioneering works of Mandelbrot (1967) and Fama (1965),
that asset return distributions are skewed and fat-tailed. Moreover, the volatility of asset
returns is not constant; it is mean-reverting and tends to cluster. Another important
stylised characteristic of asset returns volatility is that a large negative price shock in-
creases volatility much more than a positive price shock of the same magnitude, which is
also known as “leverage-effect”. To address these features we assume that the returns of
the financial system and of institution i at time t, Rt = (Rs,t, Ri,t)′, follow an AR(1)-GJR-
GARCH(1,1) model of Glosten et al. (1993). Therefore for j ≡ s, i and time t = 1, . . . , T
we estimate

Rj,t = µj,t + εj,t = φj,0 + φj,1Rj,t−1 + σj,tzj,t , (19)

σ2
j,t = ωj + αjσ

2
j,t−1 + βjε

2
j,t−1 + ξjIt−1ε

2
j,t−1 , (20)

where It−1 is an indicator function equal to 1 if εj,t−1 < 0, and 0 otherwise. We assume
that the distribution of the innovations zj,t is a white noise process with zero mean, unit
variance and a distribution function given by Fzj ,t. To allow for asymmetry in the marginal
distributions, we assume that the distribution of the innovations follows the skewed-t dis-
tribution, as introduced in Fernández and Steel (1998). For comparison, we also estimate
the time-series models in Equation (19) and in Equation (20) based on the assumption of
normal distributed innovations. We denote the cumulative distribution functions of the
financial system and institution i’s innovations by ut ≡ Fzs,t(zs,t) and vt ≡ Fzi,t(zi,t), re-
spectively. The dependence parameter is then estimated by maximising the log-likelihood
function in Equation (18), conditional on the estimated parameters of the marginal series.

In this respect, CoVaR estimates can be obtained by evaluating the analytical expressions
derived in section 2.2. Note that the conditional quantiles implied by Equation (8) and
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in Equation (13) correspond to the conditional quantiles of innovations. To obtain time-
varying CoVaR measures, we rescale CoV aR=

α,β,t or CoV aRα,β,t estimates with the fitted
conditional mean µs,t and standard deviation σs,t of Rs,t, obtained from estimated models
in Equation (19) and in Equation (20), that is

CoV aR=
α,β,t = µs,t + σs,t F

−1
zs,t(u

=
t ),

CoV aRα,β,t = µs,t + σs,t F
−1
zs,t(u

≤
t ),

where F−1
zs,t is the generalised inverse of the financial system’s innovation distribution func-

tion and u=
t and u≤t are the conditional quantiles of the general solutions in Equation (8)

and in Equation (13), respectively.9 Also note that the conditional quantiles in Equa-
tion (8) and in Equation (13) correspond to a static model (i.e., θ is constant). However,
the dynamic version of the model (i.e., θt is time-varying) implies that conditional quan-
tiles also have time-varying exposure to dependence. Therefore, we use the subscript t in
u=
t and u≤t to distinguish between the dynamic and static model.

5. Results

5.1. Computing CoVaR and CoES measures

In this section we present results based on the representation of CoVaR by Girardi and
Ergün (2013). As discussed earlier, under this definition CoVaR is dependent consistent
measure of systemic risk, and can be statistically evaluated, providing a distinctive op-
portunity to assess the statistical adequacy of systemic risk models. In our search for the
copula model that can sufficiently describe the dependence between financial system and
institution returns, we consider four alternative copula functional forms: Clayton, Frank,
Gumbel and BB7. We are interested in positive dependence between the variables, as is
modeled by each of the listed copulas, but also in different types of tail dependence. For
example, the Clayton copula only allows for negative tail dependence and would hence
fit best if negative changes in financial system and institution returns are more highly
correlated than positive changes. In contrast, the Gumbel copula only allows for positive
tail dependence, while the Frank copula does not allow for tail dependence. Finally, the
BB7 copula allows for asymmetric upper and lower tail dependence. In practice, CoVaR
focuses on the joint tail distribution of the financial system-institution pair returns and
thus tail dependence is a rather important concept for CoVaR computation.

We estimate dynamic CoV aRα,β,t and CoESα,β,t measures for each institution i. We
employ two alternative distributional assumptions for the marginal series: Gaussian and

9To obtain time-varying CoES measures, the same process as in the computation of CoVaR is followed,
however, the copula conditional quantiles u=

t and u≤
t are obtained from the corresponding expressions

in Equation (15) and in Equation (16), respectively.
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Skewed-t. The selection of the best-fitting copula model for each system-institution pair
is based on the Akaike Information Criterion (AIC) (Akaike, 1974).10 All risk mea-
sures (V aRiα,t, CoV aRα,β,t, CoESα,β,t) are computed at the same confidence level, i.e.,
α = β = 5%. We also evaluate CoV aRα,β,t estimates for statistical accuracy and inde-
pendence using modified versions of the standard Kupiec (1995) and Christoffersen (1998)
tests (see Girardi and Ergün (2013), for further details on the implementation of the
modified tests). Figure 2 shows time-series average V aRiα,t, CoV aRα,β,t and CoESα,β,t

measures, while Figure 3 shows time-varying average Kendall’s τ correlations implied by
the estimated bivariate copula families, across all financial system-institution pairs with
skewed-t marginals. The light blue shaded area in the graphs corresponds to Q3 2007 -
Q4 2012 crisis period. It is clear that CoV aRα,β,t and CoESα,β,t estimates are higher in
absolute value during this period. This is partly due to the increasing correlation between
financial system-institution returns as shown in Figure 3.

[Insert Figures 2 and 3 here]

Nevertheless, the time-varying correlation results cannot fully support the empirical find-
ings in Longin and Solnik (2001) and Ang and Chen (2002), indicating that conditional
correlations between financial asset returns are much stronger in downturns than in up-
turns. The time-varying Kendall’s τ correlations are slightly more pronounced during the
crisis period than in the pre-crisis period for most of the pairs; the average value being
0.44 in the pre-crisis period and 0.47 in the crisis period for all pairs under consideration.
Figures 2 and 3 indicate also the importance of consistency of systemic risk measures with
respect to dependence, particularly during crisis periods. It is clear from the two graphs
that high values of Kendall’s τ correlations are associated with higher, in absolute value,
systemic risk estimates. Therefore, a systemic risk measure that provides an inconsistent
response to dependence may fail to detect systemic risk when it is more pronounced, i.e.,
during periods of financial distress, and thus lead financial system regulators to make in-
appropriate policy decisions..

Figure 4 displays a cross-section plot of an institution’s average V aRiα,t and its contribu-
tion to systemic risk, measured by average ∆CoV aRα,β,t. We note that there is a weak
relationship between the institution’s V aRiα,t and its ∆CoV aRα,β,t in the cross-section.
Similar findings are also reported in Adrian and Brunnermeier (2016) and Girardi and
Ergün (2013) leading to the conclusion that regulating the risk of financial institutions in
isolation, through institutions’ VaR, might not be the optimal policy for protecting the

10The Bayesian Information Criterion (BIC) of Schwarz (1978) was also employed in the selection
procedure for the best-fitting copula model; however, the results remained almost unaffected since both
criteria selected the same copula families for the majority of the pairs analysed.
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financial sector against systemic risk. Figure 5 plots the time-series average of V aRiα,t
and ∆CoV aRα,β,t over time. It is evident that V aRiα,t and ∆CoV aRα,β,t measures have
a strong relationship in the time series.

[Insert Figures 4 and 5 here]

Adrian and Brunnermeier (2016) report the same strong relationship, while Girardi and
Ergün (2013) confirm a weak relationship between these two risk measures in the time
series. Given our findings, we conclude that the association between these two measures
over time is primarily determined by the different definitions of ∆CoVaR and not by the
different CoVaR definitions.11

5.2. Systemic risk contribution

Table 1 ranks the contribution of each individual bank to overall systemic risk, as mea-
sured by the time-series average of ∆CoV aRα,β,t and ∆CoESα,β,t estimates, under the
assumption of Gaussian and skewed-t marginals, respectively. Table 1 also displays the
selected copula functions and the average value of Kendall’s τ correlation coefficients im-
plied by the estimated copula parameters of each financial system-institution pair. The
Frank copula is the most preferred functional form for describing the dependence between
financial system and institution returns and the Gumbel copula is the second most popular
choice under the assumption of Gaussian marginals. In contrast, the BB7 copula is the
most popular functional form for modelling the dependence under the skewed-t marginals
assumption, while the Frank copula is the second most favoured choice. The Clayton cop-
ula has not been selected for any of the pairs analysed under both marginal assumptions.
It is clear from Table 1 that the distribution assumptions in the marginals affect the se-
lection of the best-fitting copula and hence the overall CoV aRα,β,t and CoESα,β,t results.
Therefore, particular attention should be paid when specifying marginals since the use of
inappropriate marginals not only introduces biases directly but also affects systemic risk
measures indirectly, through copula parameter estimation or copula misspecification.

[Insert Table 1 here]

The average ∆CoV aRα,β,t and ∆CoESα,β,t estimates with skewed-t marginals are much

11This conclusion results from estimating CoVaR under both stress scenarios Ri,t = V aRiα,t and Ri,t ≤
V aRiα,t and employing different ∆CoVaR definitions for three copula models: Clayton, Gumbel and Frank.
Numerical integration is used to estimate CoVaR when explicit expressions are not available in our Copula
CoVaR framework. The weak relationship between ∆CoVaR and VaR in the time series is supported only
when the definition of ∆CoVaR used is that of Girardi and Ergün (2013), regardless of different CoVaR
definitions.
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higher in absolute value than those generated under the assumption of Gaussian marginals.
The size differences in systemic risk measures, however, result not only from the alterna-
tive marginal assumptions but also from the characteristics of the copula functions that
model the dependence for each pair. The dominant copula function when assuming Gaus-
sian marginals is Frank, while BB7 is the most popular copula family under skewed-t
marginals. As explained, the Frank copula does not imply tail dependence, while the
BB7 copula allows for asymmetric tail dependence. In this regard, the general depen-
dence structure, and especially the dependence structure in extremes, affects substantially
the computation of CoV aRα,β,t and CoESα,β,t. This is also confirmed by the implied
Kendall’s τ estimates reported in Table 1. It is clear from Table 1 that for those copula
families that do not imply lower tail dependence, such as the Frank or the Gumbel copula
family, the average ∆CoV aRα,β,t and ∆CoESα,β,t estimates are primarily driven by the
degree of dependence.

The stronger the dependence between financial system-institution returns the higher the
average values of ∆CoV aRα,β,t and ∆CoESα,β,t. In contrast, when the dependence be-
tween the financial system and an institution’s returns is modelled by an asymmetric BB7
copula, the average ∆CoV aRα,β,t and ∆CoESα,β,t estimates are not monotonic functions
of Kendall’s τ correlation estimates but their values are also affected by the degree of
tail dependence. Figure 6 shows the average time-varying upper (λU ) and lower (λL)
tail dependence indices estimated from those pairs modelled by a BB7 copula under the
assumption of skewed-t marginals. There is clear evidence of asymmetric tail dependence.

[Insert Figure 6 here]

The average value of upper and lower tail dependence indices is 0.45 and 0.50, respec-
tively, leading to the conclusion that joint negative extremes occur more often than joint
positive extremes. To investigate further the impact of asymmetries on the tails in the
computation of systemic risk metrics, we compute non-parametric (N-P) estimates (an
average of non-parametric estimates in Dobrić and Schmid (2005)) for upper (λU ) and
lower (λL) tail dependence coefficients and sample Kendall’s τ correlation coefficients for
each financial system-institution pair of standardised residuals, obtained from the fit of
the univariate time-series models in section 5. Table 2 reports average ∆CoV aRα,β,t, non-
parametric Kendall’s τ correlation estimates and non-parametric tail dependence indices
for each pair. It is not surprising that banks having high coefficients of lower tail depen-
dence appear among the most systemic financial institutions, indicating in this way the
importance of asymmetries in systemic risk modelling.

[Insert Table 2 here]
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The ranking of the systemically important financial institutions in Table 1 varies signifi-
cantly across different marginal distributional assumptions but is more consistent across
different systemic risk measures within the same marginal distributional assumptions. For
example, Santander bank is ranked as the 2nd most systemic financial institution according
to its average contribution to systemic risk, measured by ∆CoV aRα,β,t, under the assump-
tion of Gaussian marginals, while it is ranked in the 7th place when skewed-t marginals
are assumed instead. Moreover, BNP Paribas is ranked as the 3rd most systemic bank
based on its average ∆CoESα,β,t measure under normality, but under the assumption of
skewed-t marginals it is ranked in the 26th place. Nevertheless, the hierarchy of systemic
banks across ∆CoV aRα,β,t and ∆CoESα,β,t does not differ significantly under the same
marginal distribution assumptions, implying that qualitative results depend more on the
underlying distribution assumptions in the marginals and dependence structure and less
on the systemic risk measures per se.12

From the ranking results in Table 1 and the market capitalisation values of financial insti-
tutions reported in Table 9 in Appendix C, it can also be shown that banks which are large
in size with strong cross-country exposure and international activity appear among the
most systemic financial institutions under both distribution assumptions. For instance,
banks such as BBVA, UBS, Deutsche Bank, Credit Suisse or BNP Paribas, are placed
among those institutions. Table 3 displays a cross-country comparison of systemic risk
contribution measured by the average ∆CoV aRα,β,t and ∆CoESα,β,t of financial firms
belonging to the same country. Financial institutions from France and Spain appear to
be the most systemic ones according to their average ∆CoV aRα,β,t and ∆CoESα,β,t es-
timates under Gaussian and skewed-t marginal distribution assumptions, respectively. In
contrast, banks from Portugal, Ireland or Greece are classified among the least systemic
financial institutions in our sample.

One may regard this classification as an economic paradox, since banks that belong to
those national economies that have suffered the most from the European sovereign debt
crisis - and the market value of whose corresponding share prices has declined signifi-
cantly during the crisis - appear among the least systemic financial institutions in the
cross-country comparison. However, banks from these particular countries are typical
commercial banks with substantial presence in the local market but limited international
activity and cross-country exposure. Therefore, the implied correlation and, more impor-

12We also estimated ∆CoV aRα,β,t measures using market-capitalisation weighted returns as oppose to
equally-weighted returns. The magnitude of ∆CoV aRα,β,t measures was not substantially different from
equally-weighted return ∆CoV aRα,β,t measures; however, as expected, the ordering of systemic institutions
was moderately different. Due to space limitation we do not report these results but are available from
the authors upon request.
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tantly, the dependence in extreme events between these banks and the financial system is
typically reduced generating in this way lower in absolute value systemic risk estimates.
This is also confirmed by the fact that the Frank copula which does not allow for tail
dependence is the preferred copula functional form for most of these particular pairs.

[Insert Table 3 here]

These findings should not be regarded as a weakness of the CoVaR model but rather as
a merit. According to Brunnermeier et al. (2009), a systemic risk measure should be able
to identify the risk to the system by individually “systemically important” institutions,
which are highly interconnected and large enough to cause negative spill over effects on
others, as well as by small institutions that are “systemic” when acting as parts of a herd.
In this respect, the relative size and the interconnectedness of each particular financial in-
stitution are factors that should be considered in systemic risk measurement. The CoVaR
methodology implicitly incorporates institution size and interconnectedness into systemic
risk estimation through correlation and dependence on extreme events. In our study, the
financial system is represented by components of the STOXX Europe 600 Banks Index,
which includes the largest banks in terms of market capitalisation in Europe. It is a port-
folio of 42 financial institutions from 15 different European countries. The majority of and
the largest in size among these financial institutions come from countries such as Germany,
France, Spain, Italy and Great Britain. Therefore, the implied dependence between each
of these particular institutions and the financial system is, by construction, stronger due to
within-country dependence (e.g increased commonalities for institution returns from same
country) and the dependence that arises from their large size and dominant position in the
European market. This may partly explain why banks from these particular countries are
listed among the most systemic financial institutions in our study. The results in Table 4
support this argument. Table 4 reports average sample Kendall’s τ and non-parametric
upper (λU ) and lower (λL) tail dependence estimates for each country. It is evident that
Kendall’s τ correlations and non-parametric tail dependence coefficients are much stronger
for these particular countries, implying a stronger dependence and dependence in the tails
of the joint distribution and consequently higher, on average, systemic risk estimates.

[Insert Table 4 here]

5.3. Backtesting and Stress testing CoVaR
A well-specified risk model should satisfy the appropriate theoretical statistical proper-
ties. Therefore, the proportion of exceedances should approximately equal the confidence
level, while the exceedances should not occur in clusters but independently. Table 5 re-
ports the average p-values from the modified Kupiec (1995) and Christoffersen (1998)
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statistical tests for the unconditional coverage, independence and conditional coverage of
CoV aRα,β,t estimates under both Gaussian and skewed-t distribution assumptions com-
puted at α = β = 5% level.

[Insert Table 5 here]

The null hypotheses of unconditional and conditional coverage are rejected at the 5% level
of significance under the Gaussian assumption. On the other hand, the null hypotheses
cannot be rejected at conventional significance levels under the assumption of skewed-t
marginals. Thus, it seems that a combination of copula functions - that allow for asym-
metries in the tails - with asymmetric marginals is a better candidate for systemic risk
modeling. Our test results are in line with the CoVaR backtesting results in Girardi and
Ergün (2013) and the results in the VaR literature that reject the underlying assump-
tion of normality in favour of alternative distributions which allow for asymmetries. We
also compare the Copula ∆CoV aR estimates to those calculated using the methodology
of Girardi and Ergün (2013) using both Normal and Student-t models. The approach
of Girardi and Ergün is preferred for comparison purposes as it is analytically tractable
and enables direct comparisons with our Copula CoVaR methodology. We compare the
performance of the models graphically, in Figure 7, and statistically using the modified
conditional coverage and independence tests, reported in Panel B of Table 5.

[Insert Figure 7 here]

As shown in Figure 7, ∆CoV aR estimates show strong dependence, the correlation be-
tween Copula and Girardi and Ergün ∆CoV aR being 99.97% for the Normal and 99.95%
for non-normal models. Consistent with the copula estimates, the Student-t ∆CoV aR
estimates in Girardi and Ergün pass the conditional and unconditional coverage tests thus
providing, nominally at least, similar performance to that of the copula model. However,
visual comparison of the estimates indicates that the Copula model provides consistently
lower (in absolute terms) values thus leading to more efficient estimates and allocation
of capital. This empirical feature, along with the superior analytical tractability of the
Copula CoVaR, indicate the superiority of the proposed method.

Stress testing exercises are also useful for financial regulators to gauge the potential impli-
cations of extreme market conditions for the stability of the financial system as a whole.
Before the outset of the financial crisis, financial stability stress tests were largely focused
on the implications of system-wide macroeconomic shocks and rarely considered idiosyn-
cratic shocks such as the failure of a single large firm. Recently, there has been a growing
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interest in such systemic stress testing exercises by central banks and financial regulators.
Our modelling framework can be easily employed as part of the tool-kit for financial sta-
bility assessment. Stress testing exercises under this framework can simulate scenarios
that are absent from historical data or are more likely to occur than historical observation
suggests, as well as simulate shocks that reflect permanent structural breaks or temporal
dependence breakdowns.

Figure 8 displays a scenario analysis example for HSBC and demonstrates its influence on
systemic risk as measured by CoV aRα,β,t under certain scenarios. In particular, Figure 8
plots the implied CoV aRα,β,t measures generated by the Clayton, Gumbel, Frank and
BB7 copulas for β = 0.01 to 0.80, α = 0.05 and the dependence parameter(s) estimated
for each particular copula family assuming skewed-t marginals.13 Therefore, the discrep-
ancies in CoV aRα,β,t measures are due to the employment of different copula models and
do not arise from marginal specifications. The implied CoV aRα,β,t results in Figure 8
have an appealing interpretation. For instance, we are 99% confident, given that HSBC
is at most at its 95% VaR level, that the financial system will not experience a distress
event worse than −16.84% according to the Clayton copula. For the same confidence
level, CoV aRα,β,t estimates implied by the Gumbel, Frank and BB7 copulas are −15.08%,
−13.56% and −16.74%, respectively.14

[Insert Figure 8 here]

Given the unique ability of copula functions to enable the separation of dependence from
marginal distributions, we are able to quantify the potential effects on the stability of the
financial system of risks associated with marginal distribution assumptions or risks related
to the dependence structure. For example, a scenario that implies a structural break in
the correlation between the financial system and an institution’s returns can be analysed
by modifying the level of Kendall’s τ parameter, while a change in the dependence struc-
ture can be studied through alternative copula functional forms. Similarly, a scenario that
implies high volatility or severe equity price declines can be examined through alternative
marginal specifications. Complex stress test exercises that combine all the above scenar-
ios can also be analysed simultaneously, thus providing a powerful tool for systemic risk
assessment.

13We could also set the parameters for the Clayton, Gumbel and Frank copulas to a pre-specified value
such as the Kendall’s τ sample correlation coefficient because there is a one-to-one relationship between
these particular one-parameter copula families and Kendall’s τ . Such a relationship, however, does not
exist for the two-parameter BB7 copula. To maintain the consistency of the implied systemic risk estimates,
we use the estimated parameter(s) for each particular copula family instead.

14Similar stress testing exercises can also be obtained using CoESα,β,t as a measure of systemic risk.
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Figure 8 also provides a distinct graphical way to illustrate the importance of tail de-
pendence in systemic risk computation and facilitate the interpretation of the results in
Tables 1 and 3. We note in Figure 8 that the Clayton and BB7 copulas, which allow for
lower tail dependence, produce much larger in absolute value CoV aRα,β,t measures com-
pared to the corresponding measures generated by the Frank or Gumbel copulas, which
do not allow for lower tail dependence. As already explained, the average ∆CoV aRα,β,t or
∆CoESα,β,t measures reported in Tables 1 and 3 do not differ in size only due to alterna-
tive distribution assumptions in marginals but also due to the different characteristics of
the alternative copula functional forms employed. Therefore, copula misspecification may
critically affect the systemic risk estimates and therefore dependence modelling should
proceed with caution.

5.4. Systemic risk determinants

In this section, we investigate the main drivers of systemic risk in the European bank-
ing system. The analysis is split into three main parts. In the first part, we investigate
whether there are common market factors explaining an institution’s contribution to sys-
temic risk and seek to understand how this relationship is altered in the face of changes
in the market environment. We also investigate how and in which direction these factors
affect systemic risk. As explained, systemic risk measures can be decomposed within the
Copula CoVaR framework due to the unique ability of copula functions to enable the
separation of dependence from marginal distributions. Thus, CoVaR is an increasing non-
linear function of the correlation between the financial system and institution i and of
the financial system’s volatility. This separation allows us to assess the impact of market
factors on these variables and analyse their importance for the stability of the financial
system.

Therefore, the dependent variables in our formal empirical work are ∆CoV aRα,β,t, Kendall’s
τ correlations and the financial system’s volatility σs estimates, obtained in section 5.1.15
For each set of the dependent variables yi,t we run the following panel regression model

yi,t = β0 + β1 V ix t−1 + β2 Liquidity t−1 + β3 ∆Euribor t−1 + β4 ∆Slope t−1 + β5 ∆Credit t−1

+ β6 S&P t−1 + β7 Icrisis V ix t−1 + β8 Icrisis Liquidity t−1 + β9 Icrisis ∆Euribor t−1

+ β10 Icrisis ∆Slope t−1 + β11 Icrisis ∆Credit t−1 + β12 Icrisis S&P t−1 + εi,t , (21)

where yi,t denotes the set of ∆CoV aRiα,β,t, Kendall’s τ it and financial system’s volatility
σis,t estimates for each financial institution i and week t. The Icrisis represents dummy

15All results are based on skewed-t marginal distribution assumptions. We also analysed the same
relationships based on the results from Gaussian marginals. Moreover, we employed ∆CoESα,β,t as an
alternative measure of an institution’s contribution to systemic risk. The qualitative results, however,
remained unchanged.
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variables that take the value of zero in the pre-crisis period and the value of one in the
period we designate as the crisis period.16 In addition, the right-hand side of Equation (21)
includes the following market variables:

(i) Vix, which is a proxy for the implied volatility in the stock market reported by the
Chicago Board Options Exchange (CBOE).

(ii) Liquidity, which is a short term “liquidity spread” defined as the difference between
the three-month interbank offered rate and the three-month repo rate. This spread is
a common proxy for short-term funding liquidity risk. We use the three-month Euri-
bor rate and the three-month Eurepo rate, both reported by the European Banking
Federation (EBF).

(iii) ∆Euribor, which is the change in the three-month Euribor rate.

(iv) ∆Slope, which is the change in the slope of the yield curve, measured by the spread
between the German ten-year government bond yield and the German three-month
Bubill rate.

(v) ∆Credit, which is the change in the credit spread between the ten-year Moody’s
seasoned BAA-rated corporate bond and the German ten-year government bond.

(vi) S&P, which is the S&P 500 Composite Index returns and used as a proxy for equity
market returns.

The data have been obtained from Bloomberg and are sampled weekly. Table 6 reports
bank fixed-effect panel regression estimates for ∆CoV aRα,β,t, Kendall’s τ and the finan-
cial’s system volatility σs estimates on the above lagged market variables. Across both
sub-periods, the lagged values of the Vix, Liquidity and ∆Euribor variables appear highly
significant in explaining the variation in ∆CoV aRα,β,t at conventional significance levels.

In particular, higher lagged values of implied market volatility are associated with more
negative ∆CoV aRα,β,t measures in the pre-crisis period. In contrast, the impact of lagged
S&P Return, ∆Spread and ∆Slope variables on ∆CoV aRα,β,t does not appear statistically
significant in this period (∆Slope is significant only at 10% level).

16As an additional robustness test, we separate the 2007-2008 global financial crisis from the more
recent Euro-crisis. In particular, following Acharya et al. (2017), we define July 2007 - December 2008
as the period of the global financial crisis. Further, we consider two separate sub-periods for the Euro-
crisis. Firstly, the period December 2009 - May 2010 which corresponds to Stage 6 in Alter and Schüer
(2012). Secondly, the period December 2009 - 9 September 2012 which covers the period up to the official
announcement of the outright monetary transactions (OMT) program by the European Central Bank,
the importance of which in bringing an end to the Eurozone crisis is highlighted in Saka et al. (2015).
Therefore, crisis dummy variables were used only for these two sub-periods (i.e. July 2007 - December
2008 and December 2009 - May 2010 or December 2009 - 9 September 2010). The results in both cases
were qualitatively similar to those presented in Table 6.
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[Insert Table 6 here]

The results in Table 6 also highlight the importance of funding liquidity in systemic risk
contribution. Banks typically raise short-term funding in the unsecured interbank market
or through over-the-counter collateralised repurchase agreements (repos). In times of un-
certainty, banks charge higher rates for unsecured loans and thus interbank offered rates
increase. The spread between the Euribor and the Eurepo rate measures the difference
in interest rates between short-term fundings of different risk. As Figure 9 shows, this
spread had shrunk to historical low levels during the pre-crisis period but it began to surge
upward during the crisis period. The positive impact of funding liquidity on ∆CoV aRα,β,t
in the pre-crisis period is confirmed by the results in Table 6. The coefficient of Liquidity
in this period is negative and rather significant in magnitude. On average, a 1% increase
in Liquidity, which indicates a worsening of funding liquidity, contributes almost 13.7% to
systemic risk as measured by ∆CoV aRα,β,t.

[Insert Figure 9 here]

The results are in line with a large number of theoretical and empirical research papers
that associate market declines with liquidity dry-ups to explain the triggering of systemic
episodes (see e.g. Brunnermeier (2009); Adrian and Shin (2010); Brunnermeier and Ped-
ersen (2009); Hameed et al. (2010), and references therein). The burst of the crisis in the
summer of the 2007, caused two “liquidity spirals”. Financial institutions’ capital eroded
due to the initial decline in asset prices and the increase in the wholesale funding cost.
Consequently, both events triggered fire-sales, pushing asset prices further down, and in-
creased the uncertainty in the interbank lending market. As a result, European banks that
relied excessively on short-term funding were particularly exposed to a dry-up in liquidity.
In this respect, the large size of the pre-crisis liquidity spread coefficient estimate partly
explains why the sudden dry-up in liquidity had such a severe impact on the stability of
the financial system.

The regression results in Table 6 for the ∆Euribor variable are also of great interest. As
explained, the Euribor rate represents the unsecured rate at which a large panel of Eu-
ropean banks borrow funds from one another. An increase in short-term rates implies a
higher borrowing cost for banks. In this respect, banks relying on short-term funding are
more vulnerable to liquidity risk. The pre-crisis coefficient estimate of the change in the
three-month Euribor rate variable indicates the positive relation between changes in the
short-term rates and systemic risk contribution. On average, an increase by 1% in the
change of the three-month Euribor rate adds an additional 3.7% to ∆CoV aRα,β,t.
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In contrast, the signs of almost all estimated coefficients have switched in the crisis pe-
riod indicating an asymmetric response of market factors to systemic risk in these sub-
periods. In particular, the coefficient estimates of the Liquidity and ∆Euribor variables
have switched from negative in the pre-crisis period to positive in the crisis period. One
of the main reasons behind this behaviour is the coordinated intervention of central banks
in both the United States and Europe in response to the freezing up of the interbank
market. To alleviate the liquidity crunch, the European Central Bank (ECB) and the
Federal Reserve (Fed) reduced the interest rates at which financial institutions borrow
from them; they also expanded their balance sheets by broadening the type of collateral
that banks could use, and increased the maturity of their loans to the banks (see Gian-
none et al. (2012), for further details). Figure 10 shows average CoV aRα,β,t estimates
and a timeline of key events and measures taken by the European Central Bank (ECB)
to provide liquidity and restore financial stability over the recent financial crisis. We note
in Figure 10 that the highest CoV aRα,β,t measures (in absolute value) are reported after
the Lehman Brothers collapse in September 2008. Figure 10 also depicts the action taken
by the European Central Bank (ECB) in response to the liquidity crunch and the overall
financial market turmoil. It can be shown that the systemic risk measures returned to
lower levels (in absolute value) while the initial liquidity dry-up in the interbank market
calmed down and the short-term interbank rates returned to lower levels, as Figure 9 and
Figure 11 display, respectively.

[Insert Figures 10, 11 here]

The overall increase in systemic risk during the crisis period, however, is not only driven by
the solvency problems of several Euro-area financial institutions, but also by the sovereign
debt crisis of a large number of Eurozone member countries. As Figure 10 suggests, sys-
temic risk estimates reached their highest levels after the collapse of Lehman Brothers
in September 2008; however, high values are also associated with the inability of sev-
eral countries in the Euro-zone to repay or refinance their government debt without the
assistance of third parties. As Shambaugh (2012) points out, the euro area faced three
interdependent crises, that is, a sovereign debt crisis, a banking crisis and a growth and
competitiveness crisis. In this respect, the problems of undercapitalised banks and high
sovereign debt are mutually reinforcing, and both are amplified by slow and unequally
distributed - among euro area member countries. - growth Therefore, our regression re-
sults and the asymmetric response of market factors on systemic risk should be viewed in
conjunction with the overall characteristics of the crisis in the Eurozone.

It is also of great interest to investigate the effect of market factors on Kendall’s τ corre-
lation estimates and the financial system’s volatility σs estimates. Kendall’s τ correlation
estimates are asymmetrically related to lagged values of the Vix and Liquidity variables,
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although the magnitude of the asymmetries is not large. Interestingly, liquidity shocks
(the widening of liquidity spread) reduce Kendall’s τ correlation in the pre-crisis period,
while having a positive impact on it in the crisis period. A widening in ∆Credit also
suggests a decrease in Kendall’s τ correlation in both periods. The above market factors
also appear significant in explaining the financial system’s volatility and demonstrate the
same asymmetric behaviour. In the pre-crisis period, an increase in the Vix, Liquidity
or ∆Credit variables increases the financial system’s volatility and as a consequence the
level of systemic risk, while the impact of these factors on the financial system’s volatility
is the opposite in the post-crisis period. The ∆Euribor variable is also asymmetrically
related to the financial system’s volatility; however, the degree of asymmetry is pretty
high between these sub-periods, with the regression coefficients changing from 3.453 to
-5.494. This substantial asymmetric response also highlights the impact of the European
Central Bank’s (ECB) intervention in the interbank market.

In the post-crisis period, an increase in the change of the three-month Euribor rate coun-
terintuitively, suggests a reduction in the financial system’s volatility. However, as shown
in Figures 10 and 11, the action taken by the European Central Bank (ECB) during the
crisis period eventually reduced the level of short-term interest rates and, thus, distorted
the positive pre-crisis relationship between the change in short-term rates and the finan-
cial system’s volatility. From the results in Table 5, it can also be seen that the impact of
funding liquidity is primarily transmitted on ∆CoV aRα,β,t through the financial system’s
volatility and not through Kendall’s τ correlation. In other words, the sudden dry-up
of liquidity in the pre-crisis period reduced the level of correlation among financial insti-
tutions but considerably increased the volatility of the financial system. This can also
be confirmed by comparing the estimated coefficients of the Liquidity variable with the
estimated coefficients of the ∆CoV aRα,β,t and the financial system’s volatility variables,
which are almost identical in absolute value.

In the second part of our analysis, we investigate how individual characteristics of financial
institutions contribute to systemic risk. In this regard, we employ panel regressions and
regress quarterly-aggregated ∆CoV aRα,β,t measures on a set of institution-specific vari-
ables. In particular, we consider the following panel regression model with fixed effects:

∆CoV aRiα,β,t = β0 + β1 V aR
i
α,t−k + β2 MtBi,t−k + β3 Sizei,t−k + β4 Leveragei,t−k

+ β5 Betai,t−1 + β6 V oli,t−k + εi,t. (22)

where ∆CoV aRiα,β,t represents the quarterly-aggregated ∆CoV aR measures for institu-
tion i computed from the first stage as described in Section 5.1. In addition, we use the
following set of quarterly bank-specific characteristics:

(i) V aRiα,t−k defined as the quarterly-aggregated VaR measures for bank i at quarter
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t−k, calculated by averaging the corresponding weekly measures within each quarter.

(ii) MtBi,t−k defined as the ratio of the market to book value of total equity for bank i
at quarter t− k and used as a proxy for growth opportunities.

(iii) Sizei,t−k defined as the log of book value of total equity for bank i at quarter t− k.

(iv) Leveragei,t−k defined as the ratio of the total assets to book value of total equity for
bank i at quarter t− k and used as a proxy for the solvency of the bank.

(v) Betai,t−k is the equity market beta for bank i at quarter t−k, calculated from weekly
equity return data within each quarter.

(vi) V oli,t−k is the equity return volatility for bank i at quarter t − k, calculated from
weekly equity return data within each quarter.

The balance-sheet data for each individual bank are obtained from Worldscope database.
Table 7 reports results from panel regressions, after controlling for bank fixed-effects and,
additionally, allowing for bank and time clustered errors. We report results from three
different specifications based on the forecast horizon of explanatory variables: one quar-
ter, one year and two years. Across forecast periods, Size and Leverage appear to be the
most robust determinants of systemic risk. The estimated coefficient of the Size variable
is negative and highly significant, suggesting that bigger institutions contribute more to
systemic risk than smaller institutions.

[Insert Table 7 here]

These findings support the empirical results in Section 5.2. Some of the largest banks
in our sample are placed among the most systemic financial institutions based on their
average ∆CoVaR or ∆CoES measures as reported in Table 1. Furthermore, Leverage is
negative and significant across all forecasting horizons. As explained, Leverage is used as
a proxy for the solvency of the financial institution. The negative coefficient estimates
of Leverage across all forecasting horizons imply that highly leveraged banks contribute
more to systemic risk than low leveraged banks. In addition, the VaR of each financial
institution and equity return volatility are statistically significant at the one quarter hori-
zon, whereas equity beta is statistically significant at the two year horizon. Overall, our
results in Table 7 are in line with other studies. Similar to Acharya et al. (2017), Adrian
and Brunnermeier (2016) and Girardi and Ergün (2013), we find that size, leverage and
equity beta are important determinants of systemic risk. However, we found no statistical
support for the hypothesis that the market to book value of total equity ratio is important
in explaining institutions’ contribution to systemic risk.
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In the third part of our analysis, we attempt to shed some light into how major macroeco-
nomic variables contribute to systemic risk. As a result, we employ panel regressions and
regress quarterly-aggregated ∆CoV aRα,β,t measures on major country-specific macroeco-
nomic variables. In particular, we consider the following panel regression model with fixed
effects:

∆CoV aRic,α,β,t = β0 + β1 ∆Unemploymentc,t−k + β2 Inflationc,t−k + β3 ∆Sharec,t−k

+ β4 ∆IndustrialProductionc,t−k + β5 ∆Ratesc,t−1 + β6 GDPGrowthc,t−k

+ β7 ∆CurrentAccountc,t−k + β8 ∆Debt/GDPc,t−k + εic,t. (23)

where ∆CoV aRic,α,β,t represents the quarterly-aggregated ∆CoV aR measures for institu-
tion i at its country of domicile c computed from the first stage as described in Section 5.1.
In addition, we use the following set of quarterly macro-economic characteristics:

(i) ∆Unemploymentc,t−k is the change in harmonised unemployment rate for country
c at quarter t− k.

(ii) Inflationc,t−k is the percentage change of consumer price index for country c at
quarter t− k.

(iii) ∆Sharec,t−k is the growth rate of stock market index for country c at quarter t− k.

(iv) ∆IndustrialProductionc,t−k is the growth rate of industrial production for country
c at quarter t− k.

(v) ∆Ratesc,t−1 is the change in long-term (i.e. 10-year maturity) sovereign yields for
country c at quarter t− k.

(vi) GDPGrowthc,t−k is the GDP growth rate for country c at quarter t− k.

(vii) ∆CurrentAccountc,t−k is the change in current account (as % of GDP) for country
c at quarter t− k.

(viii) ∆Debt/GDPc,t−k is the change in debt to GDP ratio for country c at quarter t− k.

The macroeconomic data for each country are obtained from OECD’s statistics database.17

Table 8 reports results from panel regressions, after controlling for bank fixed-effects and,
additionally, allowing for bank and time clustered errors. We report results from three
different specifications based on the forecast horizon of explanatory variables: one quarter,
one year and two years.

[Insert Table 8 here]

17For more details see http://stats.oecd.org
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Regression results show that an increase in unemployment rate, a decrease in the domestic
stock market index, a decrease in industrial production and a decrease in GDP growth,
contribute to an increase in the systemic risk next quarter, at the 5% level. Nevertheless,
all macroeconomic variables in the analysis are statistically insignificant at 5% for the one
and two year horizons.

To our knowledge, there are only a few studies that investigate the link between the
macroeconomy and systemic risk, as measured by CoVaR. For example, Lòpez-Espinosa
et al. (2012) use macroeconomic variables related to the business cycle, namely, unem-
ployment and interest rates, as control variables in their baseline regression model but
do not investigate the extent to which major macroeconomic variables can contribute to
systemic risk. The link between systemic risk and macroeconomy has been considered
by Nicolo et al. (2011), who use a dynamic factor model to model quarterly time series of
macroeconomic indicators of financial and real activity and obtain forecasts of systemic
real risk and systemic financial risk. More recently, Buch et al. (2014) analyse the link
between banks and the macroeconomy. In particular, the authors investigate how macroe-
conomic shocks are transmitted to individual banks. In contrast, Giglio et al. (2016) use
a large set of systemic risk measures to examine how a buildup of systemic risk in the
financial sector increases systemic risk in the real economy and show that systemic risk
measures contain useful information regarding the probability of future macroeconomic
downturns. Overall, the results from the regression analysis in Table 8 contribute to the
literature that investigates the link between systemic risk and macroeconomy. The analy-
sis indicates that movements in certain macroeconomic variables such as unemployment,
industrial production, GDP and share index contribute significantly to systemic risk as
measured by our Copula ∆CoV aR estimates.

6. Summary

During the 2007-2008 financial crisis, losses were spread out rapidly across financial in-
stitutions, thus affecting the entire financial system. According to Adrian and Brunner-
meier (2016), these spillovers were realisations of systemic risk – the risk that the distress
of an individual institution, or a group of institutions, will induce financial instability
on a broader scale. To capture these spillover effects, Adrian and Brunnermeier (2016)
proposed the Conditional Value-at-Risk (CoVaR). This new measure of systemic risk, at-
tracted quickly the attention of the academic and regulatory communities.

In this study, we propose a new methodology for estimating CoVaR, based on copula
functions. The proposed methodology circumvents some of the limitations in estimation
of the original CoV aR model. In particular, the proposed Copula CoVaR methodology
provides simple, explicit expressions for a broad range of copula families, while allow-
ing the CoVaR of an institution to have time-varying exposure to its VaR. Further, this
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methodology is extended to estimate other systemic risk measures, such as the Conditional
Expected Shortfall (CoES).

Given the properties of copula functions that enable the separation of dependence from
marginal distributions, the model provides a distinct way for quantifying how shocks in
the conditional volatilities or dependence structure of financial institutions’ assets can af-
fect systemic risk. The Copula CoVaR methodology can also facilitate stress testing and
sensitivity analysis and thus inform regulators for potential threats to the stability of the
financial system. Under certain conditions, the model can be also extended to incorpo-
rate additional conditioning scenarios and thus study how a group of financial institutions
being in distress, can affect financial stability. Therefore, the proposed Copula CoVaR
methodology also has great advantages for systemic risk measurement with significant
policy implications.

We focus on a portfolio of large European banks and estimate CoVaR and CoES measures.
We illustrate the importance of taking asymmetries into account and highlight the threats
to accurate systemic risk measurement posed by misspecification biases in the marginals
or the dependence model. We also investigate whether there are common market factors
explaining an institution’s contribution to systemic risk. In principle, lagged values of
the implied market volatility, of funding liquidity, of credit spread and of the change in
the three month Euribor rate are significant in explaining ∆CoVaR. They also appear
important in explaining the correlation between the financial system and each institution,
as well as the financial system’s volatility. The asymmetric behaviour of market factors
across the pre-crisis and crisis periods, is partly attributed to the coordinated intervention
of central banks in response to the financial crisis.

Finally, we investigate the impact of bank-specific and major macroeconomic factors on
systemic risk. Across all alternative model specifications considered, size and leverage
appears to be most robust bank-specific determinants of systemic risk, implying that bigger
and highly leveraged financial institutions can generate large systemic risk externalities.
In addition, we find that changes in certain macroeconomic variables such as an increase in
unemployment rate, a decrease in the domestic stock market index, a decrease in industrial
production and a decrease in GDP growth, contribute to an increase in the systemic risk
next quarter.
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Figure 2: This figure shows time-series average values of weekly V aRiα,t, CoV aRα,β,t and CoESα,β,t measures

across all financial system-institution pairs. All risk measures are generated under the assumption of skewed-t
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implied by BB7 copulas under the assumption of skewed-t marginals. All risk measures are computed at α = β = 5%
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Figure 8: This figure shows the implied CoV aRα,β,t estimates of the financial system conditional on HSBC returns

generated by the Clayton, Gumbel, Frank and BB7 copulas with skewed-t marginals across different quantile levels
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Figure 9: This figure shows the short-term Liquidity Spread between the 3-month Euribor rate and 3-month

Eurepo rate measured in basis points. The light blue shaded area corresponds to Q3 2007 - Q4 2012 crisis period.
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Figure 10: This figure shows average CoV aRα,β,t estimates, key events (in red) and measures taken by the

European Central Bank (ECB) to provide liquidity to the interbank market and restore financial stability. The

light blue shaded area corresponds to Q3 2007 - Q4 2012 crisis period. Source of timeline events: European Central
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List of tables

Table 1: This table ranks the average contribution to systemic risk for each individual institution.

∆CoVaR results

Normal Marginals Skewed-t Marginals
Bank Copula ∆CoVaR τ Bank Copula ∆CoVaR τ

BBVA Gumbel -2.741 0.62 POP BB7 -5.127 0.46
SCH Gumbel -2.709 0.61 DBK BB7 -5.122 0.55
BNP Gumbel -2.691 0.60 UBSN BB7 -5.114 0.53
CRDA Gumbel -2.585 0.57 CSGN BB7 -5.086 0.51
UCG Gumbel -2.524 0.55 CRDA BB7 -5.078 0.53
SEA Gumbel -2.488 0.54 SEA BB7 -5.073 0.50
NDA Gumbel -2.476 0.54 SCH BB7 -5.049 0.56
BARC Gumbel -2.450 0.54 BBVA BB7 -5.041 0.57
LLOY Gumbel -2.334 0.50 LLOY BB7 -5.039 0.46
SGE Frank -1.934 0.64 UCG BB7 -5.033 0.50
DBK Frank -1.883 0.63 BSAB BB7 -5.031 0.38
KB Frank -1.802 0.60 NDA BB7 -5.027 0.50
UBSN Frank -1.798 0.60 SVK BB7 -5.011 0.41
CSGN Frank -1.798 0.59 BP BB7 -5.009 0.47
CBK Frank -1.713 0.57 KB BB7 -5.000 0.52
ISP Frank -1.704 0.56 CBK BB7 -4.999 0.49
BMPS Frank -1.664 0.55 DNB BB7 -4.971 0.38
KNF Frank -1.660 0.53 DAB BB7 -4.956 0.38
MB Frank -1.652 0.56 BARC BB7 -4.951 0.48
RBS Frank -1.645 0.54 SYD BB7 -4.932 0.33
POP Frank -1.594 0.53 JYS BB7 -4.832 0.34
PMI Frank -1.587 0.53 ETE BB7 -4.766 0.35
HSBA Frank -1.580 0.52 BPSO BB7 -4.624 0.29
BP Frank -1.575 0.53 BCV BB7 -4.244 0.27
SWED Frank -1.526 0.50 SGE Frank -2.862 0.62
STAN Frank -1.492 0.50 BNP Frank -2.728 0.61
ERS Frank -1.464 0.50 ISP Frank -2.474 0.53
SVK Frank -1.455 0.48 BMPS Frank -2.420 0.53
DAB Frank -1.383 0.46 MB Frank -2.382 0.54
BSAB Frank -1.357 0.45 KNF Frank -2.368 0.50
POH Frank -1.321 0.45 RBS Frank -2.330 0.51
BKIR Frank -1.315 0.44 PMI Frank -2.300 0.51
DNB Frank -1.305 0.44 HSBA Frank -2.249 0.51
BES Frank -1.274 0.42 SWED Frank -2.187 0.48
JYS Frank -1.260 0.39 STAN Frank -2.115 0.48
SYD Frank -1.227 0.41 ERS Frank -2.084 0.47
ETE Frank -1.217 0.40 BKIR Frank -1.821 0.41
BCP Frank -1.212 0.40 POH Frank -1.820 0.42
BPE Frank -1.081 0.37 BES Frank -1.725 0.39
BPSO Frank -1.016 0.34 BCP Frank -1.646 0.37
BCV Frank -1.011 0.33 BPE Frank -1.386 0.33
VATN Frank -0.813 0.28 VATN Frank -0.953 0.23

∆CoES results

Normal Marginals Skewed-t Marginals
Bank Copula ∆CoES τ Bank Copula ∆CoES τ

BBVA Gumbel -2.549 0.62 POP BB7 -5.236 0.46
SCH Gumbel -2.522 0.61 DBK BB7 -5.227 0.55
BNP Gumbel -2.507 0.60 UBSN BB7 -5.226 0.53
CRDA Gumbel -2.417 0.57 CSGN BB7 -5.186 0.51
UCG Gumbel -2.365 0.55 CRDA BB7 -5.181 0.53
SEA Gumbel -2.336 0.54 LLOY BB7 -5.178 0.46
NDA Gumbel -2.326 0.54 BSAB BB7 -5.168 0.38
BARC Gumbel -2.302 0.54 SEA BB7 -5.160 0.50
LLOY Gumbel -2.203 0.50 SVK BB7 -5.155 0.41
SGE Frank -1.746 0.64 SCH BB7 -5.125 0.56
DBK Frank -1.700 0.63 UCG BB7 -5.124 0.50
KB Frank -1.626 0.60 BP BB7 -5.123 0.47
UBSN Frank -1.623 0.60 DNB BB7 -5.121 0.38
CSGN Frank -1.622 0.59 NDA BB7 -5.118 0.50
CBK Frank -1.545 0.57 DAB BB7 -5.111 0.38
ISP Frank -1.537 0.56 BBVA BB7 -5.110 0.57
BMPS Frank -1.500 0.55 BARC BB7 -5.085 0.48
KNF Frank -1.497 0.53 CBK BB7 -5.078 0.49
MB Frank -1.490 0.56 KB BB7 -5.075 0.52
RBS Frank -1.483 0.54 SYD BB7 -5.073 0.33
POP Frank -1.437 0.53 JYS BB7 -5.033 0.34
PMI Frank -1.430 0.53 BPSO BB7 -4.888 0.29
HSBA Frank -1.424 0.52 ETE BB7 -4.887 0.35
BP Frank -1.419 0.53 BCV BB7 -4.582 0.27
SWED Frank -1.374 0.50 SGE Frank -2.910 0.62
STAN Frank -1.343 0.50 BNP Frank -2.769 0.61
ERS Frank -1.318 0.50 ISP Frank -2.507 0.53
SVK Frank -1.310 0.48 BMPS Frank -2.460 0.53
DAB Frank -1.244 0.46 MB Frank -2.422 0.54
BSAB Frank -1.220 0.45 KNF Frank -2.405 0.50
POH Frank -1.188 0.45 RBS Frank -2.354 0.51
BKIR Frank -1.183 0.44 PMI Frank -2.335 0.51
DNB Frank -1.173 0.44 HSBA Frank -2.285 0.51
BES Frank -1.145 0.42 SWED Frank -2.216 0.48
JYS Frank -1.132 0.39 STAN Frank -2.144 0.48
SYD Frank -1.102 0.41 ERS Frank -2.118 0.47
ETE Frank -1.093 0.40 BKIR Frank -1.845 0.41
BCP Frank -1.088 0.40 POH Frank -1.840 0.42
BPE Frank -0.969 0.37 BES Frank -1.744 0.39
BPSO Frank -0.910 0.34 BCP Frank -1.659 0.37
BCV Frank -0.905 0.33 BPE Frank -1.399 0.33
VATN Frank -0.726 0.28 VATN Frank -0.953 0.23

This table reports average ∆CoV aRα,β,t, ∆CoESα,β,t and implied Kendall’s τ estimates along with the selected copula families of each

financial system-institution pair in our sample under two marginals specifications: Normal and Skewed-t. All risk measures are computed

at α = β = 5% level.
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Table 2: Dependence and tail dependence estimates.

Bank ∆CoVaR τ λL λU

POP -5.127 0.51 0.46 0.24
DBK -5.122 0.62 0.65 0.42
UBSN -5.114 0.57 0.59 0.44
CSGN -5.086 0.56 0.49 0.41
CRDA -5.078 0.57 0.46 0.54
SEA -5.073 0.54 0.62 0.40
SCH -5.049 0.61 0.59 0.44
BBVA -5.041 0.63 0.62 0.53
LLOY -5.039 0.50 0.41 0.42
UCG -5.033 0.56 0.48 0.28
BSAB -5.031 0.43 0.42 0.24
NDA -5.027 0.54 0.48 0.51
SVK -5.011 0.47 0.30 0.34
BP -5.009 0.51 0.55 0.29
KB -5.000 0.57 0.56 0.33
CBK -4.999 0.55 0.57 0.24
DNB -4.971 0.42 0.45 0.21
DAB -4.956 0.43 0.38 0.26
BARC -4.951 0.54 0.54 0.43
SYD -4.932 0.37 0.34 0.16
JYS -4.832 0.37 0.31 0.27
ETE -4.766 0.38 0.34 0.23
BPSO -4.624 0.31 0.30 0.11
BCV -4.244 0.28 0.19 0.21
SGE -2.862 0.63 0.60 0.50
BNP -2.728 0.61 0.44 0.52
ISP -2.474 0.53 0.42 0.33
BMPS -2.420 0.54 0.50 0.24
MB -2.382 0.53 0.36 0.19
KNF -2.368 0.50 0.37 0.26
RBS -2.330 0.51 0.47 0.41
PMI -2.300 0.51 0.50 0.24
HSBA -2.249 0.51 0.33 0.32
SWED -2.187 0.48 0.46 0.31
STAN -2.115 0.48 0.36 0.23
ERS -2.084 0.47 0.38 0.26
BKIR -1.821 0.41 0.29 0.15
POH -1.820 0.42 0.20 0.22
BES -1.725 0.38 0.25 0.18
BCP -1.646 0.37 0.41 0.00
BPE -1.386 0.33 0.13 0.17
VATN -0.953 0.24 0.17 0.12

This table reports average ∆CoV aRα,β,t, non-parametric Kendall’s τ

correlation estimates and non-parametric upper (λU ) and lower (λL)

tail dependence estimates (an average of non-parametric estimates in Do-

brić and Schmid (2005)) of each financial system-institution pair in our

sample. ∆CoV aRα,β,t estimates are obtained under the assumption of

skewed-t marginals. All risk measures are computed at α = β = 5%

level.
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Table 3: This table ranks the average contribution to systemic risk by country.

∆CoVaR results

Normal Marginals Skewed-t Marginals

Country ∆CoVaR Country ∆CoVaR

France -0.0222 Spain -0.0506
Spain -0.0210 Germany -0.0505
Sweden -0.0199 Belgium -0.0499
Great Britain -0.0190 Norway -0.0497
Belgium -0.0180 Denmark -0.0490
Germany -0.0180 Greece -0.0476
Italy -0.0160 Sweden -0.0432
Austria -0.0146 Swiss -0.0384
Swiss -0.0136 Great Britain -0.0333
Finland -0.0132 France -0.0326
Ireland -0.0132 Italy -0.0320
Norway -0.0131 Austria -0.0208
Denmark -0.0129 Ireland -0.0182
Portugal -0.0124 Finland -0.0182
Greece -0.0122 Portugal -0.0168

∆CoES results

Normal Marginals Skewed-t Marginals

Country ∆CoES Country ∆CoES

France -0.0204 Spain -0.0516
Spain -0.0193 Germany -0.0515
Sweden -0.0184 Norway -0.0512
Great Britain -0.0175 Belgium -0.0507
Belgium -0.0163 Denmark -0.0507
Germany -0.0162 Greece -0.0489
Italy -0.0145 Sweden -0.0441
Austria -0.0132 Swiss -0.0399
Swiss -0.0122 Great Britain -0.0341
Finland -0.0119 France -0.0332
Ireland -0.0118 Italy -0.0328
Norway -0.0117 Austria -0.0212
Denmark -0.0116 Ireland -0.0185
Portugal -0.0112 Finland -0.0184
Greece -0.0109 Portugal -0.0170

This table reports average ∆CoV aRα,β,t and ∆CoESα,β,t estimates for each country in our sample under

two marginal specifications: Normal and Skewed-t. All risk measures are computed at α = β = 5% level.

Table 4: Dependence and tail dependence estimates by country.

Country τ λL λU

Germany 0.58 0.61 0.33
Belgium 0.57 0.56 0.33
Spain 0.54 0.52 0.37
France 0.58 0.47 0.46
Sweden 0.51 0.46 0.39
Norway 0.42 0.45 0.21
Great Britain 0.51 0.42 0.36
Italy 0.48 0.41 0.23
Austria 0.47 0.38 0.26
Swiss 0.41 0.36 0.30
Greece 0.38 0.34 0.23
Denmark 0.39 0.34 0.23
Portugal 0.38 0.33 0.09
Ireland 0.41 0.29 0.15
Finland 0.42 0.20 0.22

This table reports average non-parametric Kendall’s τ correlation es-

timates and non-parametric upper (λU ) and lower (λL) tail depen-

dence estimates (an average of non-parametric estimates in Dobrić

and Schmid (2005)) for each country in our sample.
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Table 5: Statistical test results: Copula CoVaR vs Girardi and Ergün CoVaR

Panel A: Copula CoV aRα,β,t

Test Normal Marginals Skewed-t Marginals

Unconditional coverage 0.0206 0.3633
Independence 0.5649 0.8802
Conditional coverage 0.0286 0.5410

Panel B: Girardi and Ergün CoV aRα,β,t

Test Normal Marginals Student-t Marginals

Unconditional coverage 0.0387 0.5283
Independence 0.8529 0.9842
Conditional coverage 0.0855 0.7738

This table reports average p-values of statistical tests for unconditional coverage, independence and

conditional coverage for ∆CoV aR estimates as defined by the copula model (Panel A) and in Girardi

and Ergün (2013) (Panel B). All risk estimates are computed at α = β = 5% level.
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Table 6: Panel regression results.

Variables ∆CoVaR Kendall’s τ Volatility σs

Vix t−1 −0.149∗∗∗ 0.004∗∗∗ 0.140∗∗∗

Liquidity t−1 −13.739∗∗∗ −0.313∗∗∗ 13.997∗∗∗

∆Euribor t−1 −3.691∗∗∗ 0.057 3.453∗∗∗

∆Slope t−1 0.658∗ −0.024 −0.607∗

∆Credit t−1 −0.089 −0.027∗∗∗ 0.101
S&P t−1 −0.021 0.001 0.019
Vix t−1 · Icrisis 0.044∗∗∗ −0.003∗∗∗ −0.044∗∗∗

Liquidity t−1 · Icrisis 11.866∗∗∗ 0.337∗∗∗ −12.234∗∗∗

∆Euribor t−1 · Icrisis 5.951∗∗∗ −0.035 −5.494∗∗

∆Slope t−1 · Icrisis −0.301 0.017 0.276
∆Credit t−1 · Icrisis −0.932∗∗∗ −0.014∗∗∗ 0.947∗∗∗

S&P t−1 · Icrisis 0.032 −0.002 −0.029
Adj. R2 0.770 0.219 0.876

This table displays results from bank fixed-effects panel data methodology (within

estimator). The columns ∆CoVaR, Kendall’s τ and Volatility report estimated

coefficients from regressions of weekly ∆CoV aRα,β,t measures, Kendall’s τ cor-

relation estimates and the financial system’s volatility σs estimates on the same

lagged values of market variables: Vix, Liquidity, ∆Euribor, ∆Slope, ∆Credit and

S&P. The Icrisis is a crisis dummy that takes the value of 0 for the Q2 2002 -

Q2 2007 pre-crisis period and 1 for the Q3 2007 - Q4 2012 crisis period. Esti-

mated coefficients for spreads, yield changes, Vix and market returns correspond

to percent changes. The results are based on weekly data from Q2 2002 - Q4

2012. All ∆CoV aRα,β,t measures are estimated at 5% level. Kendall’s τ correla-

tions are obtained after transforming the time-varying copula parameters for each

financial system-institution i pair to theoretical Kendall’s τ values. The financial

system’s volatility σs estimates are obtained by a univariate asymmetric AR(1)-

GJR-GARCH(1,1) model for each financial system portfolio. Following Thompson

(2011), we compute standard errors that cluster by both firm and time. ∗∗∗ denotes

significant at 1%, ∗∗ denotes significant at 5% and ∗ denotes significant at 10%.
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Table 7: Determinants of systemic risk - Individual institution characteristics.

Variable 1-Quarter 1-Year 2-Year

VaR t−k −0.213 49∗∗ 0.128 39∗ 0.004 43
MtB t−k 0.000 03 −0.010 95∗ −0.015 09∗∗

Size t−k −0.015 66∗∗∗ −0.040 46∗∗∗ −0.038 94∗∗∗

Leverage t−k −0.000 74∗∗∗ −0.001 28∗∗∗ −0.000 76∗∗∗

Beta t−k 0.008 47 −0.004 08 −0.015 95∗∗∗

Volatility t−k −1.834 96∗∗∗ 0.436 13∗ 0.341 99
Adj. R2 0.440 0.288 0.325

This table displays results from the bank fixed-effects panel regression methodol-

ogy (within estimator). The columns report estimated coefficients from regressions

of lagged quarterly bank-specific data on quarterly aggregated ∆CoV aRα,β,t mea-

sures. The column 1-Quarter correspond to results based on lagged variables equal

to one-quarter, while columns 1-Year and 2-Year corresponds to results based on

lagged variables equal to one year and two years, respectively. The results are

based on quarterly data from Q2 2002 - Q4 2012.All ∆CoV aRα,β,t measures are

estimated at 5% level. Following Thompson (2011), we compute standard errors

that cluster by both firm and time. ∗∗∗ denotes significant at 1%, ∗∗ denotes

significant at 5% and ∗ denotes significant at 10%.

Table 8: Determinants of systemic risk - Macroeconomic characteristics.

Variable 1-Quarter 1-Year 2-Year

∆Unemploymentt−k −0.007 73∗∗ 0.002 44 0.005 16
Inflationt−k −0.003 09 −0.006 52 0.005 66
∆Sharet−k 0.001 36∗∗∗ 0.000 52 −0.000 43
∆IndustrialProductiont−k 0.001 57∗∗ −0.000 60 −0.001 01
∆Ratest−k 0.003 25 −0.006 44 −0.017 82
GDPGrowtht−k 0.003 97∗∗ 0.002 51 0.001 92
∆CurrentAccountt−k 0.000 47 0.000 46 0.000 52
∆Debt/GDPt−k 0.000 04 0.000 29 −0.000 14
AdjR2 0.467 0.044 0.059

Bank fixed-effects panel regressions (within estimator). The columns report estimated coefficients

from regressions of lagged quarterly macroeconomic data on quarterly aggregated ∆CoV aRα,β,t
measures. The column 1-Quarter, 1-Year and 2-Year correspond to results based on values lagged

by one quarter, one year and two years, respectively. The results are based on quarterly data from

Q2 2002 - Q4 2012.All ∆CoV aRα,β,t measures are estimated at 5% level. Following Thompson

(2011), we compute standard errors that cluster by both firm and time. ∗∗∗ denotes significant

at 1%, ∗∗ denotes significant at 5% and ∗ denotes significant at 10%.
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Appendix
A. CoVaR derivation for Archimedean copulas

A.1. Clayton Copula

The Clayton copula is a member of the Archimedean copula family with dependence
parameter θ ∈ (0,∞) and generator function ϕ = (u−θ−1)

θ . The perfect dependence
is observed at θ → ∞ whereas θ → 0 implies independence. Clayton copula allows
for modelling positive dependence and asymmetric (lower only) tail dependence. The
distribution function is given by

C(u, v ; θ) = (u−θ + v−θ − 1)−
1
θ .

Following the notation introduced in section 2.2, an explicit expression for CoV aR=
α,β,t for

the Clayton copula can be derived, that is

∂C(u, v)
∂v

=
(
1 + uθ

(
v−θ − 1

))−(1+θ)
θ = β. (24)

Solving for u and applying the probability integral transform, CoV aR=
α,β,t is obtained as

follows

u= ≡ u =
(
1 + v−θ ·

(
β
− θ

1+θ − 1
))−1

θ ,

CoV aR=
α,β,t = F−1

s,t

((
1 + α−θ ·

(
β
− θ

1+θ − 1
))−1

θ
)
. (25)

Alternatively, using the general expression in equation Equation (11) an explicit expression
for CoV aRα,β,t for the Clayton copula can be given as follows

C(u, v)
v

= β,

(
u−θ + v−θ − 1

)−1
θ = v · β.

Thus, solving for u and applying the probability integral transform, CoV aRα,β,t can be
obtained in a closed-form expression, that is

u≤ ≡ u =
(
1 +

(
v · β

)−θ − v−θ)−1
θ ,

CoV aRα,β,t = F−1
s,t

((
1 + (α · β)−θ − α−θ

)−1
θ
)
. (26)
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A.2. Frank Copula
This copula is also a member of the Archimedean copula family with dependence parameter
θ ∈ (−∞,∞)\{0} and generator function ϕ = − ln

(
e−δu−1
e−δ−1

)
. Frank copula allows for both

positive and negative dependence structures, however, it does not imply tail dependence.
The distribution function is given by

C(u, v ; δ) = −1
δ

ln
( 1

1− e−δ
[
(1− e−δ)− (1− e−δu)(1− e−δv)

] )
.

An analytical expression for CoV aR=
α,β,t for this copula family can be derived as

CoV aR=
α,β,t = F−1

s,t

(
− 1
δ

ln
(
1− (1− e−δ) ·

[
1 + e−δα ·

(
β−1 − 1

)]−1 ))
. (27)

In contrast, an explicit expression for CoV aRα,β,t for the Frank copula is given as follows

CoV aRα,β,t = F−1
s,t

(
− 1
δ

ln
[
1− (1− e−δ)− (1− e−δ)(e−δβα)

(1− e−δα)

])
. (28)

A.3. Gumbel Copula
The Gumbel copula with dependence parameter θ ∈ [1,∞] and generator function ϕ(t) =
(−log t)θ belongs also to the Archimedean copula family. Gumbel copula captures only
positive dependence while it allows for asymmetric (upper only) tail dependence. For
θ = 1, Gumbel copula implies independence while the perfect positive dependence is
observed as θ →∞. The distribution function is given by

C(u, v ; θ) = exp
(
−
(
(−log u)θ + (−log v)θ

)1
θ
)
.

Unfortunately, the ∂/∂v C(u, v) of Gumbel copula is not partial invertible in its first
argument u and hence we cannot derive an analytical expression for CoV aR=

α,β,t. However,
an analytical expression for CoV aRα,β,t can be given as follows

CoV aRα,β,t = F−1
s,t

(
exp

(
−
[(
− log(α · β)

)θ − (− log α
)θ]1

θ
))

. (29)

A.4. BB7 Copula
The BB7 copula, known as Joe-Clayton copula, is a two-parametric Archimedean copula
family with θ ≥ 1 and δ > 0. This copula family captures positive dependence while it
allows also for asymmetric upper and lower tail dependence. In particular, the δ parameter
measures lower tail dependence and the θ parameter measures upper tail dependence.
Moreover, the Joe copula is the limiting case of BB7 for δ → 0 whereas for θ = 0 one
obtains the Clayton copula. The distribution function for this copula family is given by

C(u, v ; θ, δ) = 1−
(
1−

[(
1− (1− u)θ

)−δ +
(
1− (1− v)θ

)−δ − 1
]−1

δ
)1
θ .
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Analytical expressions for CoV aR=
α,β,t and CoV aRα,β,t can be obtain from the general

solutions in equations Equation (10) and Equation (14) respectively, with

ϕ(v ; θ, δ) = [1− (1− v)−θ]−δ − 1,

ϕ−1(v ; θ, δ) = 1− [1− (1 + v)−1/δ]1/θ,

ϕ
′(v ; θ, δ) = −[1− (1− v)θ]−δ−1δ[−(1− v)θθ/(−1 + v)].

B. Dynamic Copula CoVaR

For the Clayton and Gumbel copulas the following parametric representation is proposed

θt = Λ1
(
ω + β · θt−1 + α · 1

10

10∑
j=1
|ut−j · vt−j |

)
,

where Λ1(x) is an appropriate transformation to ensure the parameter always remains in
its domain: exp(x) for Clayton copula and (exp(x) + 1) for the Gumbel. On the other
hand, the parameter δ of Frank copula is defined in [−∞,∞]\{0} at all times. Thus, we
employ the following evolution equation for this particular copula family

δt = ω + β · δt−1 + α · 1
10

10∑
j=1
|ut−j · vt−j |,

where the evolution of δt is constrained to ensure that remains in its domain. For the
two-parametric Archimedean BB7 copula a similar parametric representation for each tail
dependence coefficient is considered. The BB7 copula is constructed by taking a particular
Laplace transformation of Clayton’s copula. The BB7 copula distribution is given by

C(u, v ; θ, δ) = 1−
(
1−

[(
1− (1− u)θ

)−δ +
(
1− (1− v)θ

)−δ − 1
]−1

δ
)1
θ ,

where θ = 1/ log2(2− τU ), δ = −1/ log2(τL) and τU , τL ∈ (0, 1). Therefore, the following
evolution equations can be considered for the BB7 copula

τUt = Λ2
(
ωU + βU · τUt−1 + αU ·

1
10

10∑
j=1
|ut−j · vt−j |

)
,

τLt = Λ2
(
ωL + βL · τLt−1 + αL ·

1
10

10∑
j=1
|ut−j · vt−j |

)
,

where Λ2(x) ≡ (1 + exp(−x))−1 is the logistic transformation, used to keep τU and τL in
(0, 1) at all times.
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C. European financial institutions

Table 9: List of European financial institutions

Bank Datastream tickers Country Weight (%) MCap (e Bil.)

HSBC HSBA Great Britain 20.44 142.65
BCO SANTANDER SCH Spain 7.33 51.17
UBS UBSN Swiss 6.60 46.08
BNP PARIBAS BNP France 6.17 43.09
BARCLAYS BARC Great Britain 5.37 37.50
BCO BILBAO VIZCAYA ARGENTARIA BBVA Spain 4.95 34.56
STANDARD CHARTERED STAN Great Britain 4.64 32.38
DEUTSCHE BANK DBK Germany 4.43 30.92
LLOYDS BANKING GRP LLOY Great Britain 4.34 30.28
CREDIT SUISSE GRP CSGN Swiss 4.32 30.12
NORDEA BANK NDA Sweden 3.14 21.89
GRP SOCIETE GENERALE SGE France 3.00 20.92
UNICREDIT UCG Italy 2.82 19.69
INTESA SANPAOLO ISP Italy 2.44 17.00
SWEDBANK SWED Sweden 2.28 15.88
SVENSKA HANDELSBANKEN A SVK Sweden 2.11 14.69
SKANDINAVISKA ENSKILDA BK A SEA Sweden 1.59 11.07
DNB DNB Norway 1.49 10.38
DANSKE BANK DAB Denmark 1.21 8.41
CREDIT AGRICOLE CRDA France 1.02 7.15
ROYAL BANK OF SCOTLAND GRP RBS Great Britain 1.00 6.95
COMMERZBANK CBK Germany 0.89 6.21
KBC GRP KB Belgium 0.88 6.13
ERSTE GROUP BANK ERS Austria 0.86 6.00
BCO POPULAR ESPANOL POP Spain 0.56 3.93
BCO SABADELL BSAB Spain 0.55 3.85
NATIXIS KNF France 0.40 2.77
BANK OF IRELAND BKIR Ireland 0.37 2.55
POHJOLA BANK POH Finland 0.33 2.27
MEDIOBANCA MB Italy 0.32 2.23
JYSKE BANK JYS Denmark 0.29 2.03
BCO POPOLARE BP Italy 0.24 1.65
BCA POPOLARE EMILIA ROMAGNA BPE Italy 0.23 1.63
BCA MONTE DEI PASCHI DI SIENA BMPS Italy 0.20 1.43
BCO ESPIRITO SANTO BES Portugal 0.20 1.38
BCO COMERCIAL PORTUGUES BCP Portugal 0.19 1.31
NATIONAL BANK OF GREECE ETE Greece 0.18 1.29
BCA POPOLARE DI SONDRIO BPSO Italy 0.17 1.21
SYDBANK SYD Denmark 0.17 1.17
BCA POPOLARE DI MILANO PMI Italy 0.15 1.07
BANQUE CANTONALE VAUDOISE BCV Swiss 0.15 1.05
VALIANT VATN Swiss 0.15 1.03

This table lists the 42 out of 46 in total banks from 15 European countries belonging to STOXX 600 Banks Index

and corresponding Datastream tickers, Market Capitalisation values and relative STOXX 600 Banks Index weights

as of June, 2013. Source: STOXX Limited (www.stoxx.com).
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