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DERIVED EQUIVALENCES FOR SYMMETRIC GROUPS AND
sl2-CATEGORIFICATION

JOSEPH CHUANG AND RAPHAËL ROUQUIER

Abstract. We define and study sl2-categorifications on abelian categories. We show in partic-
ular that there is a self-derived (even homotopy) equivalence categorifying the adjoint action of
the simple reflection. We construct categorifications for blocks of symmetric groups and deduce
that two blocks are splendidly Rickard equivalent whenever they have isomorphic defect groups
and we show that this implies Broué’s abelian defect group conjecture for symmetric groups.
We give similar results for general linear groups over finite fields. The constructions extend to
cyclotomic Hecke algebras. We also construct categorifications for category O of gln(C) and
for rational representations of general linear groups over F̄p, where we deduce that two blocks
corresponding to weights with the same stabilizer under the dot action of the affine Weyl group
have equivalent derived (and homotopy) categories, as conjectured by Rickard.
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1. Introduction

The aim of this paper is to show that two blocks of symmetric groups with isomorphic defect
groups have equivalent derived categories. We deduce in particular that Broué’s abelian defect
group conjecture holds for symmetric groups. We prove similar results for general linear groups
over finite fields and cyclotomic Hecke algebras.

Recall that there is an action of ŝlp on the sum of Grothendieck groups of categories of
kSn-modules, for n ≥ 0, where k is a field of characteristic p. The action of the generators
ei and fi come from exact functors between modules (“i-induction” and “i-restriction”). The
adjoint action of the simple reflections of the affine Weyl group can be categorified as functors
between derived categories, following Rickard. The key point is to show that these functors are
invertible, since two blocks have isomorphic defect groups if and only if they are in the same
affine Weyl group orbit. This involves only an sl2-action and we solve the problem in a more
general framework.

We develop a notion of sl2-categorification on an abelian category. This involves the data of
adjoint exact functors E and F inducing an sl2-action on the Grothendieck group and the data
of endomorphisms X of E and T of E2 satisfying the defining relations of (degenerate) affine
Hecke algebras.

Our main Theorem is a proof that the categorification Θ of the simple reflection is a self-
equivalence at the level of derived (and homotopy) categories. We achieve this in two steps.
First, we show that there is a minimal categorification of string (=simple) modules coming from
certain quotients of (degenerate) affine Hecke algebras : this reduces the proof of invertibility of
Θ to the case of the minimal categorification. There, Θ becomes (up to shift) a self-equivalence
of the abelian category.

Let us now describe in more detail the structure of this article. The first part §3 is devoted to
the study of (degenerate) affine Hecke algebras of type A completed at a maximal ideal corre-
sponding to a totally ramified central character. We construct (in §3.2) explicit decompositions
of tensor products of ideals which we later translate into isomorphisms of functors. In §3.3,
we introduce certain quotients, that turn out to be Morita equivalent to cohomology rings of
Grassmannians. Part §4 recalls elementary results on adjunctions and on representations of
sl2.

Part §5 is devoted to the definition and study of sl2-categorifications. We first define a weak
version (§5.1), with functors E and F satisfying sl2-relations in the Grothendieck group. This
is enough to get filtrations of the category and to introduce a class of objects that control
the abelian category. Then, in §5.2, we introduce the extra data of X and T which give the
genuine sl2-categorifications. This provides actions of (degenerate) affine Hecke algebras on
powers of E and F . This leads immediately to two constructions of divided powers of E and
F . In order to study sl2-categorifications, we introduce in §5.3 “minimal” categorifications of
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the simple sl2-representations, based on the quotients introduced in §3.3. A key construction
(§5.4.2) is a functor from such a minimal categorification to a given categorification, that
allows to reduce part of the study of an arbitrary sl2-categorification to this minimal case,
where explicit computations can be carried out. This corresponds to the decomposition of
the sl2-representation on K0 into a direct sum of irreducible representations. We use this in
§5.5 to prove a categorified version of the relation [e, f ] = h and deduce a construction of
categorifications on the module category of the endomorphism ring of “stable” objects in a
given categorification.

Part §6 is devoted to the categorification of the simple reflection of the Weyl group. In §6.1, we
construct a complex of functors categorifying this reflection, following Rickard. The main result
is Theorem 6.4 in part §6.2, which shows that this complex induces a self-equivalence of the
homotopy and of the derived category. The key step in the proof for the derived category is the
case of a minimal categorification, where we show that the complex has homology concentrated
in one degree (§6.3). The case of the homotopy category is reduced to the derived category
thanks to the constructions of §5.5.

In part §7, we study various examples. We define (in §7.1) sl2-categorifications on represen-
tations of symmetric groups and deduce derived and even splendid Rickard equivalences. We
deduce a proof of Broué’s abelian defect group conjecture for blocks of symmetric groups. We
give similar constructions for cyclotomic Hecke algebras (§7.2) and for general linear groups
over a finite field in the non-defining characteristic case (§7.3) for which we also deduce the
validity of Broué’s abelian defect group conjecture. We also construct sl2-categorifications on
category O for gln (§7.4) and on rational representations of GLn over an algebraically closed
field of characteristic p > 0 (§7.5). This answers in particular the GL case of a conjecture
of Rickard on blocks corresponding to weights with same stabilizers under the dot action of
the affine Weyl group. We also explain similar constructions for q-Schur algebras (§7.6) and
provide morphisms of categorifications relating the previous constructions. A special role is
played by the endomorphism X, which takes various incarnations : the Casimir in the rational
representation case and the Jucys-Murphy elements in the Hecke algebra case. In the case of
the general linear groups over a finite field, our construction seems to be new. Our last section
(§7.7) provides various realizations of minimal categorifications, including one coming from the
geometry of Grassmannian varieties.

Our general approach is inspired by [LLT], [Ar1], [Gr], [GrVa], and [BeFreKho] (cf [Rou3,
§3.3]), and our strategy for proving the invertibility of Θ is reminiscent of [DeLu, CaRi].

In a work in progress, we study the braid relations between the categorifications of the simple
reflections, in the more general framework of categorifications of Kac-Moody algebras and in
relation with Nakajima’s quiver variety constructions.

The first author was supported in this research by the Nuffield Foundation (NAL/00352/G)
and the EPSRC (GR/R91151/01).

2. Notations

Given an algebra A, we denote by Aopp the opposite algebra. We denote by A-mod the
category of finitely generated A-modules. Given an abelian category A, we denote by A-proj
the category of projective objects of A.
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Let C be an additive category. We denote by Comp(C) the category of complexes of objects
of C and by K(C) the corresponding homotopy category.

Given an object M in an abelian category, we denote by soc(M) (resp. hd(M)) the socle
(resp. the head) of M , i.e., the largest semi-simple subobject (resp. quotient) of M , when this
exists.

We denote by K0(A) the Grothendieck group of an exact category A.
Given a functor F , we write sometimes F for the identity endomorphism 1F of F .

3. Affine Hecke algebras

3.1. Definitions. Let k be a field and q ∈ k×. We define a k-algebra Hn = Hn(q).

3.1.1. Non-degenerate case. Assume q 6= 1. The affine Hecke algebra Hn(q) is the k-algebra
with generators

T1, . . . , Tn−1, X
±1
1 , . . . , X±1

n

subject to the relations

(Ti + 1)(Ti − q) = 0

TiTj = TjTi (when |i− j| > 1)

TiTi+1Ti = Ti+1TiTi+1

XiXj = XjXi

XiX
−1
i = X−1

i Xi = 1

XiTj = TjXi (when i− j 6= 0, 1)

TiXiTi = qXi+1.

We denote by Hf
n(q) the subalgebra of Hn(q) generated by T1, . . . , Tn−1. It is the Hecke

algebra of the symmetric group Sn.
Let Pn = k[X±1

1 , . . . , X±1
n ], a subalgebra of Hn(q) of Laurent polynomials. We put also

P[i] = k[X±1
i ].

3.1.2. Degenerate case. Assume q = 1. The degenerate affine Hecke algebra Hn(1) is the k-
algebra with generators

T1, . . . , Tn−1, X1, . . . , Xn

subject to the relations

T 2
i = 1

TiTj = TjTi (when |i− j| > 1)

TiTi+1Ti = Ti+1TiTi+1

XiXj = XjXi

XiTj = TjXi (when i− j 6= 0, 1)

Xi+1Ti = TiXi + 1.

Note that the degenerate affine Hecke algebra is not the specialization of the affine Hecke
algebra.
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We put Pn = k[X1, . . . , Xn], a polynomial subalgebra of Hn(1). We put also P[i] = k[Xi].
The subalgebra Hf

n(1) of Hn(1) generated by T1, . . . , Tn−1 is the group algebra kSn of the
symmetric group.

3.1.3. We put Hn = Hn(q) and Hf
n = Hf

n(q). There is an isomorphism Hn
∼→ Hopp

n , Ti 7→
Ti, Xi 7→ Xi. It allows us to switch between right and left Hn-modules. There is an automor-
phism of Hn defined by Ti 7→ Tn−i, Xi 7→ X̃n−i+1, where X̃i = X−1

i if q 6= 1 and X̃i = −Xi if
q = 1.

We denote by l : Sn → N the length function. We put si = (i, i + 1) ∈ Sn. Given
w = si1 · · · sir a reduced decomposition of an element w ∈ Sn (i.e., r = l(w)), we put Tw =
Tsi1
· · ·Tsir

.

We have Hn = Hf
n ⊗ Pn = Pn ⊗Hf

n .
We have an action of Sn on Pn by permutation of the variables. Given p ∈ Pn, we have [Lu,

Proposition 3.6]

(1) Tip− si(p)Ti =

{
(q − 1)(1−XiX

−1
i+1)

−1(p− si(p)) if q 6= 1

(Xi+1 −Xi)
−1(p− si(p)) if q = 1

Note that (Pn)
Sn ⊂ Z(Hn) (this is actually an equality, a result of Bernstein).

3.1.4. Let 1 (resp. sgn) be the one-dimensional representation of Hf
n given by Tsi

7→ q (resp.
Tsi
7→ −1). Let τ ∈ {1, sgn}. We put

cτn =
∑
w∈Sn

q−l(w)τ(Tw)Tw.

We have cτn ∈ Z(Hf
n). We have c1n =

∑
w∈Sn

Tw and csgnn =
∑

w∈Sn
(−q)−l(w)Tw, and c1nc

sgn
n =

csgn
n c1n = 0 for n ≥ 2.
More generally, given 1 ≤ i ≤ j ≤ n, we denote by S[i,j] the symmetric group on [i, j] =

{i, i+ 1, . . . , j}, we define similarly Hf
[i,j], H[i,j] and we put cτ[i,j] =

∑
w∈S[i,j]

q−l(w)τ(Tw)Tw.

Given I a subset of Sn we put cτI =
∑

w∈I q
−l(w)τ(Tw)Tw. We have

cτn = cτ[Sn/Si]
cτi = cτi c

τ
[Si\Sn]

where [Sn/Si] (resp. [Si \Sn]) is the set of minimal length representatives of right (resp. left)
cosets.

Given M a projective Hf
n -module, then cτnM = {m ∈ M | hm = τ(h)m for all h ∈ Hf

n} and

the multiplication map cτnH
f
n ⊗Hf

n
M

∼→ cτnM is an isomorphism. Given N an Hn-module, then

the canonical map cτnH
f
n ⊗Hf

n
N

∼→ cτnHn ⊗Hn N is an isomorphism.

3.2. Totally ramified central character. We gather here a number of properties of (de-
generate) affine Hecke algebras after completion at a maximally ramified central character.
Compared to classical results, some extra complications arise from the possibility of n! being 0
in k.
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3.2.1. We fix a ∈ k, with a 6= 0 if q 6= 1. We put xi = Xi − a. Let mn be the maximal ideal of
Pn generated by x1, . . . , xn and let nn = (mn)

Sn .
Let em(x1, . . . , xn) =

∑
1≤i1<···<im≤n xi1 · · ·xim ∈ PSn

n be the m-th elementary symmetric

function. Then, xnn =
∑n−1

i=0 (−1)n+i+1xinen−i(x1, . . . , xn). So, xln ∈
⊕n−1

i=0 x
i
nnn for l ≥ n.

Via Galois theory, we deduce that PSn−1
n =

⊕n−1
i=0 x

i
nP

Sn
n . Using that the multiplication map

P
Sj

j ⊗ P[j+1,n]
∼→ P

Sj
n is an isomorphism, we deduce by induction that

(2) PSr
n =

⊕
0≤ai<r+i

xa1
r+1 · · ·xan−r

n PSn
n .

3.2.2. We denote by P̂Sn
n the completion of PSn

n at nn, and we put P̂n = Pn ⊗PSn
n

P̂Sn
n and

Ĥn = Hn⊗PSn
n

P̂Sn
n . The canonical map P̂Sn

n
∼→ P̂Sn

n is an isomorphism, since P̂Sn
n is flat over

PSn
n .

We denote by Nn the category of locally nilpotent Ĥn-modules, i.e., the category of Hn-
modules on which nn acts locally nilpotently : an Hn-module M is in Nn if for every m ∈ M ,
there is i > 0 such that ninm = 0.

We put H̄n = Hn/(Hnnn) and P̄n = Pn/(Pnnn). The multiplication gives an isomorphism

P̄n ⊗Hf
n

∼→ H̄n. The canonical map⊕
0≤ai<i

kxa1
1 · · ·xan

n
∼→ P̄n

is an isomorphism, hence dimk H̄n = (n!)2.
The unique simple object of Nn is [Ka, Theorem 2.2]

Kn = Hn ⊗Pn Pn/mn ' H̄nc
τ
n.

It has dimension n! over k. It follows that the canonical surjective map H̄n → Endk(Kn) is an
isomorphism, hence H̄n is a simple split k-algebra.

Since Kn is a free module over Hf
n , it follows that any object of Nn is free by restriction to

Hf
n . From §3.1.4, we deduce that for any M ∈ Nn, the canonical map cτnHn ⊗Hn M

∼→ cτnM is
an isomorphism.

Remark 3.1. We have excluded the case of the affine Weyl group algebra (the affine Hecke
algebra at q = 1). Indeed, in that case Kn is not simple (when n ≥ 2) and H̄n is not a simple
algebra. When n = 2, we have H̄n ' (k[x]/(x2)) o µ2, where the group µ2 = {±1} acts on x
by multiplication.

3.2.3. Let f : M → N be a morphism of finitely generated P̂Sn
n -modules. Then, f is surjective

if and only if f ⊗P̂Sn
n

P̂Sn
n /n̂n is surjective.

Lemma 3.2. We have isomorphisms

Ĥnc
τ
n ⊗k

n−1⊕
i=0

xink
can−−→
∼

Ĥnc
τ
n ⊗P̂Sn

n
P̂Sn−1
n

mult−−→
∼

Ĥnc
τ
n−1.

Proof. The first isomorphism follows from the decomposition of P̂Sn−1
n in (2).
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Let us now study the second map. Note that both terms are free P̂Sn
n -modules of rank n ·n!,

since Ĥnc
τ
n−1 ' P̂n ⊗ Hf

nc
τ
n−1. Consequently, it suffices to show that the map is surjective.

Thanks to the remark above, it is enough to check surjectivity after applying −⊗P̂Sn
n

P̂Sn
n /n̂n.

Note that the canonical surjective map k[xn]→ PSn−1
n ⊗PSn

n
PSn
n /nn factors through k[xn]/(x

n
n)

(cf §3.2.1). So, we have to show that the multiplication map f : H̄nc
τ
n⊗k[xn]/(xnn)→ H̄nc

τ
n−1 is

surjective. This is a morphism of (H̄n, k[xn]/(x
n
n))-bimodules. The elements cτn, c

τ
nxn, . . . , c

τ
nx

n−1
n

of H̄n are linearly independent, hence the image of f is a faithful (k[xn]/(x
n
n))-module. It follows

that f is injective, since H̄nc
τ
n is a simple H̄n-module. Now, dimk H̄nc

τ
n−1 = n · n!, hence f is

an isomorphism. �

Let M be a kSn-module. We put ΛSnM = M/(
∑

0<i<nM
si). If n! ∈ k×, then ΛSnM is the

largest quotient of M on which Sn acts via the sign character. Note that given a vector space
V , then ΛSn(V ⊗n) = ΛnV .

Proposition 3.3. Let {τ, τ ′} = {1, sgn} and r ≤ n. We have isomorphisms

Ĥnc
τ
n ⊗k

⊕
0≤ai<n−r+i

xa1
n−r+1 · · ·xar

n k
can−−→
∼

Ĥnc
τ
n ⊗P̂Sn

n
P̂

S[1,n−r]
n

mult−−→
∼

Ĥnc
τ
[1,n−r].

There is a commutative diagram

Ĥnc
τ
n ⊗P̂Sn

n
P̂

S[1,n−r]
n

x⊗y 7→xycτ
′

[n−r+1,n]

)) ))TTTTTTTTTTTTTTTTTT

can
����

Ĥnc
τ
n ⊗k

⊕
0≤a1<···<ar<n

xa1
n−r+1 · · ·xar

n k ∼
can

// Ĥnc
τ
n ⊗P̂Sn

n
ΛS[n−r+1,n]P̂

S[1,n−r]
n

∼ // Ĥnc
τ
[1,n−r]c

τ ′

[n−r+1,n]

Proof. The multiplication map Hn ⊗Hn−i
Hn−ic

τ
n−i → Hnc

τ
n−i is an isomorphism (cf §3.1.4). It

follows from Lemma 3.2 that multiplication is an isomorphism

Ĥnc
τ
n−r+1 ⊗

n−r⊕
i=0

xin−r+1k
∼→ Ĥnc

τ
n−r

and the first statement follows by descending induction on r.

The surjectivity of the diagonal map follows from the first statement of the Proposition.
Let p ∈ P̂ si

n . Then, c1[i,i+1]p = pc1[i,i+1]. It follows that cτ[i,i+1]pc
τ ′

[i,i+1] = 0, hence cτnpc
τ ′

[n−r+1,n] = 0

whenever i ≥ n− r+ 1. This shows the factorization property (existence of the dotted arrow).

Note that ΛS[n−r+1,n]P̂Sn−r
n is generated by

⊕
0≤a1<···<ar<n

xa1
n−r+1 · · ·xar

n k as a P̂Sn
n -module

(cf (2)). It follows that we have surjective maps

Ĥnc
τ
n ⊗k

⊕
0≤a1<···<ar<n

xa1
n−r+1 · · ·xar

n k � Ĥnc
τ
n ⊗P̂Sn

n
ΛS[n−r+1,n]P̂Sn−r

n � Ĥnc
τ
n−rc

τ ′

[n−r+1,n].

Now the first and last terms above are free P̂n-modules of rank
(
n
r

)
, hence the maps are iso-

morphisms. �

Lemma 3.4. Let r ≤ n. We have cτrĤnc
τ
n = P̂Sr

n cτn, c
τ
nĤnc

τ
r = cτnP̂

Sr
n and the multiplication

maps cτnĤn ⊗Ĥn
Ĥnc

τ
r

∼→ cτnĤnc
τ
r and cτrĤn ⊗Ĥn

Ĥnc
τ
n

∼→ cτrĤnc
τ
n are isomorphisms.
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Proof. We have an isomorphism P̂n
∼→ Ĥnc

τ
n, p 7→ pcτn. Let h ∈ Ĥn. We have cτnhc

τ
n = pcτn for

some p ∈ P̂n. Since Tic
τ
n = τ(Ti)c

τ
n, it follows that Tipc

τ
n = τ(Ti)pc

τ
n. So, (Tip − si(p)Ti)cτn =

τ(Ti)(p− si(p))cτn, hence p− si(p) = 0, using the formula (1). It follows that cτnĤnc
τ
n ⊆ P̂Sn

n cτn.

By Proposition 3.3, the multiplication map Ĥnc
τ
n ⊗P̂Sn

n
P̂n

∼→ Ĥn is an isomorphism. So,

the multiplication map cτnĤnc
τ
n ⊗P̂Sn

n
P̂n

∼→ cτnĤn is an isomorphism, hence the canonical map

cτnĤnc
τ
n ⊗P̂Sn

n
P̂n

∼→ P̂Sn
n cτn ⊗P̂Sn

n
P̂n is an isomorphism. We deduce that cτnĤnc

τ
n = P̂Sn

n cτn.

Similarly (replacing n by r above), we have cτnP̂
Sr
r cτr = cτnP̂

Sr
r . Since PSr

n = PSr
r P[r+1,n] (cf

§3.2.1), we deduce that

cτnĤnc
τ
r = cτnP̂nc

τ
r = cτnP̂rc

τ
r P̂[r+1,n] = cτnP̂

Sr
r P̂[r+1,n] = cτnP̂

Sr
n .

By Proposition 3.3, cτnĤn ⊗Ĥn
Ĥnc

τ
r is a free P̂Sr

n -module of rank 1. So, the multiplication

map cτnĤn ⊗Ĥn
Ĥnc

τ
r → cτnĤnc

τ
r is a surjective morphism between free P̂Sr

n -modules of rank 1,
hence it is an isomorphism.

The cases where cτr is on the left are similar. �

Proposition 3.5. The functors Hnc
τ
n ⊗PSn

n
− and cτnHn ⊗Hn − are inverse equivalences of

categories between the category of PSn
n -modules that are locally nilpotent for nn and Nn.

Proof. By Proposition 3.3, the multiplication map Ĥnc
τ
n ⊗P̂Sn

n
P̂n

∼→ Ĥn is an isomorphism. It

follows that the morphism of (Ĥn, Ĥn)-bimodules

Ĥnc
τ
n ⊗P̂Sn

n
cτnĤn

∼→ Ĥn, hc⊗ ch′ 7→ hch′

is an isomorphism.
Since P̂Sn

n is commutative, it follows from Lemma 3.4 that the (P̂Sn
n , P̂Sn

n )-bimodules P̂Sn
n

and cτnĤn ⊗Ĥn
Ĥnc

τ
n are isomorphic. �

3.3. Quotients.

3.3.1. We denote by H̄i,n the image of Hi in H̄n for 0 ≤ i ≤ n. Let P̄i,n = Pi/(Pi∩ (Pnnn)). We

have an isomorphism Hf
i ⊗ P̄i,n

mult−−→
∼

H̄i,n.

Since P
S[i+1,n]
n =

⊕
0≤al≤n−l x

a1
1 · · ·x

ai
i P

Sn
n (cf (2)), we deduce that Pi =

⊕
0≤al≤n−l x

a1
1 · · ·x

ai
i ⊕

(nnPi ∩ Pi) and nnPi ∩ Pi = nnPn ∩ Pi, hence the canonical map

(3)
⊕

0≤al≤n−l

xa1
1 · · ·x

ai
i

∼→ P̄i,n

is an isomorphism. We will identify such a monomial xa1
1 · · ·x

ai
i with its image in P̄i,n. Note

that dimk P̄i,n = n!
(n−i)! .

The kernel of the action of PSi
i by right multiplication on H̄i,nc

τ
i is PSi

i ∩nnPn. By Proposition

3.5, we have a Morita equivalence between H̄i,n and Zi,n = PSi
i /(PSi

i ∩ nnPn). Note that
H̄i,nc

τ
i is the unique indecomposable projective H̄i,n-module and dimk H̄i,n = i! dimk H̄i,nc

τ
i . So,

dimk Zi,n = 1
(i!)2

dimk H̄i,n =
(
n
i

)
and Zi,n = Z(H̄i,n).
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We denote by P (r, s) the set of partitions µ = (µ1 ≥ · · · ≥ µr ≥ 0) with µ1 ≤ s. Given
µ ∈ P (r, s), we denote by mµ the corresponding monomial symmetric function

mµ(x1, . . . , xr) =
∑
σ

x
µσ(1)

1 · · ·xµσ(r)
r

where σ runs over left coset representatives of Sr modulo the stabilizer of (µ1, . . . , µr).
The isomorphism (3) shows that the canonical map from

⊕
µ∈P (i,n−i) kmµ(x1, . . . , xi) to P̄i,n

is injective, with image contained in Zi,n. Comparing dimensions, it follows that the canonical
map ⊕

µ∈P (i,n−i)

kmµ(x1, . . . , xi)
∼→ Zi,n

is an isomorphism.
Also, comparing dimensions, one sees that the canonical surjective maps

Pi ⊗PSi
i
Zi,n

∼→ P̄i,n and Hi ⊗PSi
i
Zi,n

∼→ H̄i,n

are isomorphisms.

3.3.2. Let Gi,n be the Grassmannian variety of i-dimensional subspaces of Cn and Gn be the
variety of complete flags in Cn. The canonical morphism p : Gn → Gi,n induces an injective
morphism of algebras p∗ : H∗(Gi,n)→ H∗(Gn) (cohomology is taken with coefficients in k). We
identify Gn with GLn/B, where B is the stabilizer of the standard flag (C(1, 0, . . . , 0) ⊂ · · · ⊂
Cn). Let Lj be the line bundle associated to the character of B given by the j-th diagonal

coefficient. We have an isomorphism P̄n
∼→ H∗(Gn) sending xj to the first Chern class of Lj. It

multiplies degrees by 2. Now, p∗H∗(Gi,n) coincides with the image of PSi
i in P̄n. So, we have

obtained an isomorphism

Zi,n
∼→ H∗(Gi,n).

Since Gi,n is projective, smooth and connected of dimension i(n − i), Poincaré duality says
that the cup product Hj(Gi,n)×H2i(n−i)−j(Gi,n)→ H2i(n−i)(Gi,n) is a perfect pairing. Via the

isomorphism H2i(n−i)(Gi,n)
∼→ k given by the fundamental class, this provides H∗(Gi,n) with a

structure of a symmetric algebra.
Note that the algebra H̄i,n is isomorphic to the ring of i! × i! matrices over H∗(Gi,n) and it

is a symmetric algebra. Up to isomorphism, it is independent of a and q.

3.3.3. Let i ≤ j. We have

H̄j,n = H̄i,n ⊗
⊕

w∈[Si\Sj ]
0≤al≤n−l

kx
ai+1

i+1 · · ·x
aj

j ⊗ kTw

hence H̄j,n is a free H̄i,n-module of rank (n−i)!j!
(n−j)!i! .

Lemma 3.6. The Hi-module cτ[i+1,n]Kn has a simple socle and head.

Proof. By Proposition 3.3, multiplication gives an isomorphism⊕
0≤al<l

xa1
i+1 · · ·xan−i

n ⊗ cτ[i+1,n]H[i+1,n]
∼→ H[i+1,n],
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hence gives an isomorphism of H̄i,n-modules⊕
0≤al<l

xa1
i+1 · · ·xan−i

n ⊗ cτ[i+1,n]H̄n
∼→ H̄n.

Since H̄n is a free H̄i,n-module of rank (n−i)!n!
i!

, it follows that hence cτ[i+1,n]H̄n is a free H̄i,n-

module of rank n!
i!
. We have H̄i,n ' i! ·M as H̄i,n-modules, where M has a simple socle and

head. Since in addition H̄n ' n! · Kn as H̄n-modules, we deduce that cτ[i+1,n]Kn ' M has a
simple socle and head. �

Lemma 3.7. Let r ≤ l ≤ n. We have isomorphisms⊕
0≤ai≤n−i

xa1
1 · · ·x

al−r

l−r k ⊗
⊕

µ∈P (r,n−l)

mµ(xl−r+1, . . . , xl)k ∼
a⊗b7→abcτl

//

∼ a⊗b7→acτn⊗b
��

cτ[l−r+1,l]H̄l,nc
τ
l

H̄l−r,nc
τ
l−r ⊗

⊕
µ∈P (r,n−l)

mµ(xl−r+1, . . . , xl)k cτ[l−r+1,l]H̄l,n ⊗H̄l,n
H̄l,nc

τ
l

∼mult

OO

Proof. Let L =
⊕

µ∈P (r,n−l),0≤ai≤n−imµ(xl−r+1, . . . , xl)x
a1
1 · · ·x

al−r

l−r k.

We have L ∩ nnPn = 0 (cf (3)), hence the canonical map f : L → P
S[l−r+1,l]

l ⊗
P

Sl
l

Zl,n is

injective. Since dimk Zl,n =
(
n
l

)
and P

S[l−r+1,l]

l is a free PSl
l -module of rank l!

r!
, it follows that f

is an isomorphism. Now, we have an isomorphism (Lemma 3.4)

P̂
S[l−r+1,l]

l

∼→ cτ[l−r+1,l]Ĥlc
τ
l , a 7→ acτl .

Consequently, the horizontal map of the Lemma is an isomorphism.
As seen in §3.3.1, the left vertical map is an isomorphism. By Lemma 3.4, the right vertical

map is also an isomorphism. �

4. Reminders

4.1. Adjunctions.

4.1.1. Let C and C ′ be two categories. Let (G,G∨) be an adjoint pair of functors, G : C → C ′ and
G∨ : C ′ → C : this is the data of two morphisms η : IdC → G∨G (the unit) and ε : GG∨ → IdC′
(the counit), such that (ε1G) ◦ (1Gη) = 1G and (1G∨ε) ◦ (η1G∨) = 1G∨ . Here, we have denoted
by 1G the identity map G → G. We have then a canonical isomorphism functorial in X ∈ C
and X ′ ∈ C ′

γG(X,X ′) : Hom(GX,X ′)
∼→ Hom(X,G∨X ′), f 7→ G∨(f) ◦ η(X), ε(X ′) ◦G(f ′)←p f ′.

Note that the data of such a functorial isomorphism provides a structure of adjoint pair.
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4.1.2. Let (H,H∨) be an adjoint pair of functors, with H : C → C ′. Let φ ∈ Hom(G,H). Then,
we define φ∨ : H∨ → G∨ as the composition

φ∨ : H∨ ηG1H∨−−−−→ G∨GH∨ 1G∨φ1H∨−−−−−−→ G∨HH∨ 1G∨εH−−−−→ G∨.

This is the unique map making the following diagram commutative, for any X ∈ C and X ′ ∈ C ′ :

Hom(HX,X ′)
Hom(φ(X),X′)

//

∼γH(X,X′)
��

Hom(GX,X ′)

∼ γG(X,X′)
��

Hom(X,H∨X ′)
Hom(X,φ∨(X′))

// Hom(X,G∨X ′)

We have an isomorphism Hom(G,H)
∼→ Hom(H∨, G∨), φ 7→ φ∨. We obtain in particular

an isomorphism of monoids End(G)
∼→ End(G∨)opp. Given f ∈ End(G), then the following

diagrams commute

G∨G
1G∨f

##HH
HH

HH
HH

H

IdC

η
<<xxxxxxxx

η ""FFFFFFFF G∨G

G∨G
f∨1G

;;vvvvvvvvv

GG∨

ε

##FFFFFFFF

GG∨

f1G∨
;;vvvvvvvvv

1Gf
∨

##HH
HH

HH
HH

H IdC′

GG∨
ε

;;xxxxxxxx

4.1.3. Let now (G1, G
∨
1 ) and (G2, G

∨
2 ) be two pairs of adjoint functors, with G1 : C ′ → C ′′ and

G2 : C → C ′. The composite morphisms

IdC
η2−→ G∨

2G2

1G∨2
η11G2

−−−−−−→ G∨
2G

∨
1G1G2 and G1G2G

∨
2G

∨
1

1G1
ε21G∨1−−−−−−→ G1G

∨
1

ε1−→ IdC

give an adjoint pair (G1G2, G
∨
2G

∨
1 ).

4.1.4. Let F = 0→ F r dr

−→ F r+1 → · · · → F s → 0 be a complex of functors from C to C ′ (with
F i in degree i). This defines a functor Comp(C)→ Comp(C ′) by taking total complexes.

Let (F i, F i∨) be adjoint pairs for r ≤ i ≤ s. Let

F∨ = 0→ F s∨ (ds−1)∨−−−−→ · · · → F r∨ → 0

with F i∨ in degree −i. This complex of functors defines a functor Comp(C ′)→ Comp(C).
There is an adjunction (F, F∨) between functors on categories of complexes, uniquely deter-

mined by the property that given X ∈ C and X ′ ∈ C ′, then γF (X,X ′) : HomComp(C′)(FX,X
′)

∼→
HomComp(C)(X,F

∨X ′) is the restriction of∑
i

γF i(X,X ′) :
⊕
i

HomC′(F
iX,X ′)

∼→
⊕
i

HomC(X,F
i∨X ′).

This extends to the case where F is unbounded, under the assumption that for any X ∈ C,
then F r(X) = 0 for |r| � 0 and for any X ′ ∈ C ′, then F r∨(X ′) = 0 for |r| � 0.
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4.1.5. Assume C and C ′ are abelian categories.
Let c ∈ End(G). We put cG = im(c). We assume the canonical surjection G → cG splits

(i.e., cG = eG for some idempotent e ∈ End(G)). Then, the canonical injection c∨G∨ → G∨

splits as well (indeed, c∨G∨ = e∨G∨).
LetX ∈ C, X ′ ∈ C ′ and φ ∈ Hom(cGX,X ′). There is ψ ∈ Hom(GX,X ′) such that φ = ψ|cGX .

We have a commutative diagram

X
η //

η ##GGGGGGGGG G∨GX
G∨c // G∨GX

G∨ψ // G∨X ′

G∨GX
c∨G

99rrrrrrrrrr

G∨ψ
// G∨X ′

c∨

99sssssssss

It follows that there is a (unique) map γcG(X,X ′) : Hom(cGX,X ′)→ Hom(X, c∨G∨X ′) making
the following diagram commutative

Hom(GX,X ′) ∼
γG(X,X′)

// Hom(X,G∨X ′)

Hom(cGX,X ′)
∼

γcG(X,X′)
//

?�

OO

Hom(X, c∨G∨X ′)
?�

OO

where the vertical maps come from the canonical projection G→ cG and injection c∨G∨ → G∨.
Similarly, one shows there is a (unique) map γ′cG(X,X ′) : Hom(X, c∨G∨X ′)→ Hom(cGX,X ′)

making the following diagram commutative

Hom(GX,X ′) Hom(X,G∨X ′)∼
γG(X,X′)−1

oo

Hom(cGX,X ′)
?�

OO

Hom(X, c∨G∨X ′)
∼

γ′cG(X,X′)
oo

?�

OO

The maps γcG(X,X ′) and γ′cG(X,X ′) are inverse to each other and they provide (cG, c∨G∨)
with the structure of an adjoint pair. If p : G → cG denotes the canonical surjection, then
p∨ : c∨G∨ → G∨ is the canonical injection.

4.1.6. Let C, C ′, D and D′ be four categories, G : C → C ′, G∨ : C ′ → C, H : D → D′ and
H∨ : D′ → D, and (G,G∨) and (H,H∨) be two adjoint pairs. Let F : C → D and F ′ : C ′ → D′
be two fully faithful functors and φ : F ′G

∼→ HF be an isomorphism.
We have isomorphisms

Hom(GG∨, IdC′)
F ′−→
∼

Hom(F ′GG∨, F ′)
Hom(φ−11G∨ ,F

′)−−−−−−−−−−→
∼

Hom(HFG∨, F ′)

γH(FG∨,F ′)−−−−−−−→
∼

Hom(FG∨, H∨F ′)

and let ψ : FG∨ → H∨F ′ denote the image of εG under this sequence of isomorphisms.
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Then, ψ is an isomorphism and we have a commutative diagram

F ′GG∨ 1F εG //

φ1G∨
��

F ′

HFG∨
1Hψ

// HH∨F ′

εH1F ′

OO

4.2. Representations of sl2. We put

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
and h = ef − fe =

(
1 0
0 −1

)
.

We have

s =

(
0 1
−1 0

)
= exp(−f) exp(e) exp(−f)

s−1 =

(
0 −1
1 0

)
= exp(f) exp(−e) exp(f)

We put e+ = e and e− = f .
Let V be a locally finite representation of sl2(Q) (i.e., a direct sum of finite dimensional

representations). Given λ ∈ Z, we denote by Vλ the weight space of V for the weight λ (i.e.,
the λ-eigenspace of h).

For v ∈ V , let h±(v) = max{i|ei±v 6= 0} and d(v) = h+(v) + h−(v) + 1.

Lemma 4.1. Assume V is a direct sum of isomorphic simple sl2(Q)-modules of dimension d.
Let v ∈ Vλ. Then,

• d(v) = d = 1 + 2h±(v)± λ
• e(j)∓ e

(j)
± v =

(
h∓(v)+j

j

)
·
(
h±(v)
j

)
v for 0 ≤ j ≤ h±(v).

Lemma 4.2. Let λ ∈ Z and v ∈ V−λ. Then,

s(v) =

h−(v)∑
r=max(0,−λ)

(−1)r

r!(λ+ r)!
eλ+rf r(v) and s−1(v) =

h+(v)∑
r=max(0,λ)

(−1)r

r!(−λ+ r)!
erf−λ+r(v).

In the following Lemma, we investigate bases of weight vectors with positivity properties.

Lemma 4.3. Let V be a locally finite sl2(Q)-module. Let B be a basis of V consisting of weight
vectors such that

⊕
b∈B Q≥0b is stable under the actions of e+ and e−. Let L± = {b ∈ B|e∓b = 0}

and given r ≥ 0, let V ≤r =
⊕

d(b)≤r Qb.
Then,

(1) Given r ≥ 0, then V ≤r is a submodule of V isomorphic to a sum of modules of dimension
≤ r.

(2) Given b ∈ B, we have e
h±(b)
± b ∈ Q≥0L∓.

(3) Given b ∈ L±, there is αb ∈ Q>0 such that α−1
b e

h±(b)
± b ∈ L∓ and the map b 7→ α−1

b e
h±(b)
± b

is a bijection L±
∼→ L∓.

The following assertions are equivalent:

(i) Given r ≥ 0, then V ≤r is the sum of all the simple submodules of V of dimension ≤ r.
(ii) {ei±b}b∈L±,0≤i≤h±(b) is a basis of V .
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(iii) {ei±b}b∈L±,0≤i≤h±(b) generates V .

Proof. Let b ∈ B. We have eb =
∑

c∈B ucc with uc ≥ 0. We have 0 = eh+(b)eb =
∑

c uce
h+(b)c

and eh+(b)c ∈
⊕

b′∈B Q≥0b
′, hence eh+(b)c = 0 for all c ∈ B such that uc 6= 0. So, h+(c) ≤ h+(b)

for all c ∈ B such that uc 6= 0. Hence, (1) holds.

We have e
h±(b)
± b =

∑
c∈B vcc with vc ≥ 0. Since

∑
c∈B vce±c = 0 and e±c ∈

⊕
b′∈B Q≥0b

′, it
follows that e±c = 0 for all c such that vc 6= 0, hence (2) holds.

Let b ∈ L±. We have e
h±(b)
± b =

∑
c∈B vcc with vc ≥ 0. We have e

h±(b)
∓ e

h±(b)
± b = βb for some

β > 0. So,
∑

c∈B vce
h±(b)
∓ c = βb. It follows that given c ∈ B with vc 6= 0, there is βc ≥ 0 with

e
h±(b)
∓ c = βcb. Since h±(c) = h∓(b), then e

h±(b)
± e

h±(b)
∓ c = βce

h±(b)
± b is a non-zero multiple of c,

and it follows that there is a unique c such that vc 6= 0. This shows (3).

Assume (i). We prove by induction on r that {ei±b}b∈L±,0≤i≤h±(b)<r is a basis of V ≤r (this
is obvious for r = 0). Assume it holds for r = d. The image of {b ∈ B|d(b) = d + 1} in
V ≤d+1/V ≤d is a basis. This module is a multiple of the simple module of dimension d+ 1 and
{b ∈ L±|d(b) = d+ 1} maps to a basis of the lowest (resp. highest) weight space of V ≤d+1/V ≤d

if ± = + (resp. ± = −). It follows that {ei±b}b∈L±,0≤i≤d=h±(b) maps to a basis of V ≤d+1/V ≤d.
By induction, it follows that {ei±b}b∈L±,0≤i≤h±(b)≤d is a basis of V ≤d+1. This proves (ii).

Assume (ii). Let v be a weight vector with weight λ. We have v =
∑

b∈L±,2i=λ±h±(b) ub,ie
i
±b

for some ub,i ∈ Q. Take s maximal such that there is b ∈ L± with h±(b) = s + i and ub,i 6= 0.

Then, es±v =
∑

b∈L±,i=h±b−s ub,ie
h±(b)
± b. Since the e

h±(b)
± b for b ∈ L± are linearly independent,

it follows that es±v 6= 0, hence s ≤ h+(v). So, if d(v) < r, then h±(b) < r for all b such that
ub,i 6= 0. We deduce that (i) holds.

The equivalence of (ii) and (iii) is an elementary fact of representation theory of sl2(Q). �

5. sl2-categorification

5.1. Weak categorifications.

5.1.1. Let A be an artinian and noetherian k-linear abelian category with the property that the
endomorphism ring of any simple object is k (i.e., every object of A is a successive extension
of finitely many simple objects and the endomorphism ring of a simple object is k).

A weak sl2-categorification is the data of an adjoint pair (E,F ) of exact endo-functors of A
such that

• the action of e = [E] and f = [F ] on V = Q ⊗ K0(A) gives a locally finite sl2-
representation
• the classes of the simple objects of A are weight vectors
• F is isomorphic to a left adjoint of E.

We denote by ε : EF → Id and η : Id→ FE the (fixed) counit and unit of the pair (E,F ).
We don’t fix an adjunction between F and E.

Remark 5.1. Assume A = A-mod for a finite dimensional k-algebra A. The requirement that
E and F induce an sl2-action on K0(A) is equivalent to the same condition for K0(A-proj).
Furthermore, the perfect pairing K0(A-proj) × K0(A) → Z, ([P ], [S]) 7→ dimk HomA(P, S)
induces an isomorphism of sl2-modules between K0(A) and the dual of K0(A-proj).
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Remark 5.2. A crucial case of application will be A = A-mod, where A is a symmetric algebra.
In that case, the choice of an adjunction (E,F ) determines an adjunction (F,E).

We put E+ = E and E− = F . By the weight space of an object of A, we will mean the
weight space of its class (whenever this is meaningful).

Note that the opposite category Aopp also carries a weak sl2-categorification.
Fixing an isomorphism between F and a left adjoint to E gives another weak categorification,

obtained by swapping E and F . We call it the dual weak categorification.
The trivial weak sl2-categorification on A is the one given by E = F = 0.

5.1.2. Let A and A′ be two weak sl2-categorifications. A morphism of weak sl2-categorifications
from A′ to A is the data of a functor R : A′ → A and of isomorphisms of functors ζ± : RE ′

±
∼→

E±R such that the following diagram commutes

(4) RF ′ ζ− //

ηRF ′

��

FR

FERF ′
Fζ−1

+ F ′
// FRE ′F ′

FRε′

OO

Note that ζ+ determines ζ−, and conversely (using a commutative diagram equivalent to the
one above).

Lemma 5.3. The commutativity of diagram (4) is equivalent to the commutativity of either of
the following two diagrams

R
Rη′

yyssssssssss
ηR

$$JJJJJJJJJJ

RF ′E ′
ζ−E′

∼ // FRE ′
Fζ+

∼ // FER

R

RE ′F ′

Rε′
99ssssssssss

ζ+F ′

∼ // ERF ′
Eζ−

∼ // EFR

εR

ddJJJJJJJJJJ

Proof. Let us assume diagram (4) is commutative. We have a commutative diagram

R
ηR //

Rη′

��

FER
Fζ−1

+ //

FERη′

��

FRE ′

id

))SSSSSSSSSSSSSSS

FRE′η′

��
RF ′E ′

ηRF ′E′
//

ζ−E′

88FERF ′E ′
Fζ−1

+ F ′E′
// FRE ′F ′E ′

FRε′E′
// FRE ′

This shows the commutativity of the first diagram of the Lemma. The proof of commutativity
of the second diagram is similar.



16 JOSEPH CHUANG AND RAPHAËL ROUQUIER

Let us now assume the first diagram of the Lemma is commutative. We have a commutative
diagram

RF ′ id //

Rη′F ′ &&NNNNNNNNNNN

ηRF ′

��

RF ′ ζ− // FR

RF ′E ′F ′

RF ′ε′

OO

ζ−E′F ′ ''NNNNNNNNNNN

FERF ′
Fζ−1

+ F ′
// FRE ′F ′

FRε′

OO

So, diagram (4) is commutative. The case of the second diagram is similar. �

Note that R induces a morphism of sl2-modules K0(A′-proj)→ K0(A).

Remark 5.4. Let A′ be a full abelian subcategory of A stable under subobjects, quotients,
and stable under E and F . Then, the canonical functor A′ → A is a morphism of weak
sl2-categorifications.

5.1.3. We fix now a weak sl2-categorification on A and we investigate the structure of A.

Proposition 5.5. Let Vλ be a weight space of V . Let Aλ be the full subcategory of A of objects
whose class is in Vλ. Then, A =

⊕
λAλ. So, the class of an indecomposable object of A is a

weight vector.

Proof. Let M be an object of A with exactly two composition factors S1 and S2. Assume S1

and S2 are in different weight spaces. Then, there is ε ∈ {±} and {i, j} = {1, 2} such that

hε(Si) > hε(Sj). Let r = hε(Si). We have Er
εM

∼→ Er
εSi 6= 0, hence all the composition factors

of Er
−εE

r
εM are in the same weight space as Si. Now,

Hom(Er
−εE

r
εM,M) ' Hom(Er

εM,Er
εM) ' Hom(M,Er

−εE
r
εM)

and these spaces are not zero. It follows that M has a non-zero simple quotient and a non-zero
simple submodule in the same weight space as Si. So, Si is both a submodule and a quotient
of M , hence M ' S1 ⊕ S2.

We have shown that Ext1(S, T ) = 0 whenever S and T are simple objects in different weight
spaces. The proposition follows. �

Let B be the set of classes of simple objects of A. This gives a basis of V and we can apply
Lemma 4.3.

We have a categorification of the fact that a locally finite sl2-module is an increasing union
of finite dimensional sl2-modules:

Proposition 5.6. Let M be an object of A. Then, there is a Serre subcategory A′ of A stable
under E and F , containing M and such that K0(A′) is finite dimensional.

Proof. Let I be the set of isomorphism classes of simple objects of A that arise as composition
factors of EiF jM for some i, j. Since K0(A) is a locally finite sl2-module, then EiF jM = 0 for
i, j � 0, hence I is finite. Now, the Serre subcategory A′ generated by the objects of I satisfies
the requirement. �

We have a (weak) generation result for Db(A) :
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Lemma 5.7. Let C ∈ Db(A) such that HomDb(A)(E
iT,C[j]) = 0 for all i ≥ 0, j ∈ Z and T

simple object of A such that FT = 0. Then, C = 0.

Proof. Assume C 6= 0. Take n minimal such that Hn(C) 6= 0 and S simple such that
Hom(S,HnC) 6= 0. Let i = h−(S) and let T be a simple submodule of F iS. Then,

Hom(EiT, S) ' Hom(T, F iS) 6= 0.

So, HomD(A)(E
iT,C[n]) 6= 0 and we are done, since FT = 0. �

There is an obvious analog of Lemma 5.7 using Hom(C[j], F iT ) with ET = 0. Since E is
also a right adjoint of F , there are similar statements with E and F swapped.

Proposition 5.8. Let A′ be an abelian category and G be a complex of exact functors from A
to A′ that have exact right adjoints. We assume that for any M ∈ A (resp. N ∈ A′), then
Gi(M) = 0 (resp. Gi∨(N) = 0) for |i| � 0.

Assume G(EiT ) is acyclic for all i ≥ 0 and T simple object of A such that FT = 0. Then,
G(C) is acyclic for all C ∈ Compb(A).

Proof. Consider the right adjoint complex G∨ to G (cf §4.1.4). We have an isomorphism

HomDb(A)(C,G
∨G(D)) ' HomDb(A′)(G(C), G(D))

for any C,D ∈ Db(A). These spaces vanish for C = EiT as in the Proposition. By Lemma
5.7, they vanish for all C. The case C = D shows that G(D) is 0 in Db(A′). �

Remark 5.9. Let F be the smallest full subcategory of A closed under extensions and direct
summands and containing EiT for all i ≥ 0 and T simple object of A such that FT = 0. Then,
in general, not every projective object of A is in F (cf the case of S3 and p = 3 in §7.1). On
the other hand, if the representation K0(A) is isotypic, then one shows that every object of A
is a quotient of an object of F and in particular the projective objects of A are in F .

Let V ≤d =
∑

b∈B,d(b)≤dQb. Let A≤d be the full Serre subcategory of A of objects whose class

is in V ≤d.
Lemma 4.3(1) gives the following Proposition.

Proposition 5.10. The weak sl2-structure on A restricts to one on A≤d and induces one on
A/A≤d.

So, we have a filtration of A as 0 ⊆ A≤1 ⊆ · · · ⊆ A compatible with the weak sl2-structure.
It induces the filtration 0 ⊆ V ≤1 ⊆ · · · ⊆ V . Some aspects of the study of A can be reduced to
the study of A≤r/A≤r−1. This is particularly interesting when V ≤r/V ≤r−1 is a multiple of the
r-dimensional simple module.

5.1.4. We now investigate simple objects and the effect of E± on them.

Lemma 5.11. Let M be an object of A. Assume that d(S) ≥ r whenever S is a simple subobject
(resp. quotient) of M . Then, d(T ) ≥ r whenever T is a simple subobject (resp. quotient) of
Ei
±M .

Proof. It is enough to consider the case where M lies in a weight space by Proposition 5.5. Let
T be a simple subobject of Ei

±M . Since Hom(Ei
∓T,M) ' Hom(T,Ei

±M) 6= 0, there is S a
simple subobject of M that is a composition factor of Ei

∓T . Hence, d(S) ≤ d(Ei
∓T ) ≤ d(T ).

The proof for quotients is similar. �
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Let Cr be the full subcategory of A≤r with objects M such that whenever S is a simple
submodule or a simple quotient of M , then d(S) = r.

Lemma 5.12. The subcategory Cr is stable under E±.

Proof. It is enough to consider the case where M lies in a single weight space by Proposition
5.5. Let M ∈ Cr lie in a single weight space. Let T be a simple submodule of E±M . By Lemma
5.11, we have d(T ) ≥ r. On the other hand, d(T ) ≤ d(E±M) ≤ d(M). Hence, d(T ) = r.
Similarly, one proves the required property for simple quotients. �

5.2. Categorifications.

5.2.1. An sl2-categorification is a weak sl2-categorification with the extra data of q ∈ k× and
a ∈ k with a 6= 0 if q 6= 1 and of X ∈ End(E) and T ∈ End(E2) such that

• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) in End(E3)
• (T + 1E2) ◦ (T − q1E2) = 0 in End(E2)

• T ◦ (1EX) ◦ T =

{
qX1E if q 6= 1

X1E − T if q = 1
in End(E2)

• X − a is locally nilpotent.

Let A and A′ be two sl2-categorifications. A morphism of sl2-categorifications from A′ to A
is a morphism of weak sl2-categorifications (R, ζ+, ζ−) such that a′ = a, q′ = q and the following
diagrams commute

(5) RE ′ ζ+

∼
//

RX′

��

ER

XR
��

RE ′
ζ+

∼ // ER

RE ′E ′ ζ+E
′

∼
//

RT ′

��

ERE ′ Eζ+

∼
// EER

TR
��

RE ′E ′
ζ+E′

∼ // ERE ′
Eζ+

∼ // EER

5.2.2. We define a morphism γn : Hn → End(En) by

Ti 7→ 1En−i−1T1Ei−1 and Xi 7→ 1En−iX1Ei−1 .

With our assumptions, the Hn-module End(En) (given by left multiplication) is in Nn.
Let τ ∈ {1, sgn}. We put E(τ,n) = Encτn, the image of cτn : En → En. Note that the canonical

map En ⊗Hn Hnc
τ
n

∼→ E(τ,n) is an isomorphism (cf §3.2.2).
In the context of symmetric groups, the following Lemma is due to Puig. It is an immediate

consequence of Proposition 3.5.

Lemma 5.13. The canonical map E(τ,n) ⊗PSn
n

cτnHn
∼→ En is an isomorphism. In particular,

En ' n! · E(τ,n) and the functor E(τ,n) is a direct summand of En.

We denote by E(n) one of the two isomorphic functors E(1,n), E(sgn,n).

Using the adjoint pair (E,F ), we obtain a morphism Hn → End(F n)opp and the definitions
and results above have counterparts for E replaced by F (cf §4.1.2).

We obtain a structure of sl2-categorification on the dual as follows. Put X̃ = X−1 when
q 6= 1 (resp. X̃ = −X when q = 1). We choose an adjoint pair (F,E). Using this adjoint
pair, the endomorphisms X̃ of E and T of E2 provide endomorphisms of F and F 2. We take
these as the defining endomorphisms for the dual categorification. We define “a” for the dual
categorification as the inverse (resp. the opposite) of a for the original categorification.
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Remark 5.14. The scalar a can be shifted : given α ∈ k× when q 6= 1 (resp. α ∈ k when
q = 1), then we can define a new categorification by replacing X by αX (resp. by X + α1E).
This changes a into αa (resp. α+ a). So, the scalar a can always be adjusted to 1 (resp. to 0).

Remark 5.15. Assume V is a multiple of the simple 2-dimensional sl2-module. Then, a
weak sl2-categorification consists in the data of A−1 and A1 together with inverse equivalences
E : A−1

∼→ A1 and F : A1
∼→ A−1. An sl2-categorification is the additional data of q, a and

X ∈ End(E) ' Z(A1) with X − a nilpotent.

Remark 5.16. As soon as V contains a copy of a simple sl2-module of dimension 3 or more,
then a and q are determined by X and T .

Example 5.17. Take for V the three dimensional irreducible representation of sl2. Let A−2 =
A2 = k and A0 = k[x]/x2. We put Ai = Ai-mod. On A−2, define E to be induction A−2 → A0.
On A0, E is restriction A0 → A2 and F is restriction A0 → A−2. On A2, then F is induction
A2 → A0.

k
Ind // k[x]/x2

Res
oo

Res //
k

Ind
oo

Let q = 1 and a = 0. Let X be the multiplication by x on Res : A0 → A2 and multiplication
by −x on Ind : A−2 → A0. Let T ∈ Endk(k[x]/x

2) be the automorphism swapping 1 and
x. This is an sl2-categorification of the adjoint representation of sl2. The corresponding weak
categorification was constructed in [HueKho].

Remark 5.18. Take for V the three dimensional irreducible representation of sl2. Let A−2 =
A2 = k[x]/x2 and A0 = k. We put Ai = Ai-mod. On A−2, then E is restriction A−2 → A0.
On A0, E is induction A0 → A2 and F is induction A0 → A−2. On A2, then F is restriction
A2 → A0.

k[x]/x2
Res //

k
Ind

oo
Ind // k[x]/x2

Res
oo

This is a weak sl2-categorification but not an sl2-categorification, since E2 : A−2 → A2 is
(k[x]/x2)⊗k −, which is an indecomposable functor.

Remark 5.19. Let A−2 = k, A0 = k × k and A−2 = k. We define E and F as the restriction
and induction functors in the same way as in Example 5.17. Then, V is the direct sum of
a 3-dimensional simple representation and a 1-dimensional representation. Assume there is
X ∈ End(E) and T ∈ End(E2) giving an sl2-categorification. We have End(E2) = Endk(k

2)
and X1E = 1EX = a1E2 . But the quotient of H2(q) by the relation X1 = X2 = a is zero ! So,
we have a contradiction (note here it is crucial to exclude the affine Hecke algebra at q = 1).
So, this is a weak sl2-categorification but not an sl2-categorification (note that we still have
E2 ' E ⊕ E).

5.3. Minimal categorification. We introduce here a categorification of the (finite dimen-
sional) simple sl2-modules.

We fix q ∈ k× and a ∈ k with a 6= 0 if q 6= 1. Let n ≥ 0 and Bi = H̄i,n for 0 ≤ i ≤ n.

We put A(n)λ = B(λ+n)/2-mod and A(n) =
⊕

iBi-mod. We put E =
⊕

i<n Ind
Bi+1

Bi
and

F =
⊕

i>0 ResBi
Bi−1

. Note that the functors Ind
Bi+1

Bi
= Bi+1 ⊗Bi

− and Res
Bi+1

Bi
= Bi+1 ⊗Bi+1

−
are left and right adjoint.
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We have EF (Bi) ' Bi⊗Bi−1
Bi ' i(n− i+1)Bi and FE(Bi) ' Bi+1 ' (i+1)(n− i)Bi as left

Bi-modules (cf §3.3.3). So, (ef − fe)([Bi]) = (2i−n)[Bi]. Now, Q⊗K0(A(n)λ) = Q[B(λ+n)/2],
hence ef − fe acts on K0(A(n)λ) by λ. It follows that e and f induce an action of sl2 on
K0(A(n)), hence we have a weak sl2-categorification.

The image of Xi+1 in Bi+1 gives an endomorphism of Ind
Bi+1

Bi
by right multiplication on Bi+1.

Taking the sum over all i, we get an endomorphism X of E. Similarly, the image of Ti+1 in

Bi+2 gives an endomorphism of Ind
Bi+2

Bi
and taking the sum over all i, we get an endomorphism

T of E2.
This provides an sl2-categorification. The representation on K0(A(n)) is the simple (n+ 1)-

dimensional sl2-module.

5.4. Link with affine Hecke algebras.

5.4.1. The following Proposition generalizes and strengthens results of Kleshchev [Kl1, Kl2]
in the symmetric groups setting and of Grojnowski and Vazirani [GrVa] in the context of
cyclotomic Hecke algebras (cf §7.1 and §7.2).

Proposition 5.20. Let S be a simple object of A, let n = h+(S) and i ≤ n.

(a) E(n)S is simple.
(b) The socle and head of E(i)S are isomorphic to a simple object S ′ of A. We have iso-

morphisms of (A, Hi)-bimodules: socEiS ' hdEiS ' S ′ ⊗Ki.
(c) The morphism γi(S) : Hi → End(EiS) factors through H̄i,n and induces an isomorphism

H̄i,n
∼→ End(EiS).

Hi

can

}}{{
{{

{{
{{ γi(S)

$$IIIIIIIIII

H̄i,n ∼
// End(EiS)

(d) We have [E(i)S]−
(
n
i

)
[S ′] ∈ V ≤d(S′)−1.

The corresponding statements with E replaced by F and h+(S) by h−(S) hold as well.

Proof. • Let us assume (a) holds. We will show that (b), (c), and (d) follow.
We have EnS ' n! ·S ′′ for some S ′′ simple. So, we have EnS ' S ′′⊗R as (A, Hn)-bimodules,

where R is a right Hn-module in Nn. Since dimR = dimKn, it follows that R ' Kn.
We have En−i socE(i)S ⊂ En−iE(i)S ' S ′′ ⊗ Knc

1
i . Since S ′′ ⊗ Knc

1
i has a simple socle

(Lemma 3.6), it follows that En−i socE(i)S is an indecomposable (A, Hn−i)-bimodule. If S ′ is
a non-zero summand of socE(i)S, then En−iS ′ 6= 0 (Lemma 5.12). So, S ′ = socE(i)S is simple.
We have socEiS ' S ′ ⊗ R for some Hi-module R in Ni. Since dimR = i!, it follows that
R ' Ki. The proof for the head is similar.

The dimension of End(E(i)S) is at most the multiplicity p of S ′ as a composition factor of
E(i)S. Since E(n−i)S ′ 6= 0, it follows that the dimension of End(E(i)S) is at most the number of
composition factors of E(n−i)E(i)S. We have E(n−i)E(i)S '

(
n
i

)
· S ′′. So, dim End(E(i)S) ≤

(
n
i

)
and dim End(EiS) ≤ (i!)2

(
n
i

)
= dim H̄i,n.

Since ker γn(S) is a proper ideal of Hn, we have ker γn(S) ⊂ nnHn. We have ker γi(S) ⊂
Hi ∩ ker γn(S) ⊂ Hi ∩ (nnHn). So, the canonical map Hi → H̄i,n factors through a surjective

map: im γi(S) � H̄i,n. We deduce that γi(S) is surjective and H̄i,n
∼→ End(EiS). So, (c) holds.
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We deduce also that p =
(
n
i

)
and that if L is a composition factor of E(i)S with E(n−i)L 6= 0,

then L ' S ′. So, (d) holds. Since the simple object hdE(i)S is not killed by E(n−i) (Lemma
5.12), we deduce that hdE(i)S ' S ′. We have now shown (b).

• Let us show that (a) (hence (b), (c), and (d)) holds when FS = 0. By Lemma 4.3 (3), we
have [E(n)S] = r[S ′] for some simple object S ′ and r ≥ 1 integer. Since [F (n)E(n)S] = [S], we
have r = 1, so (a) holds.

• Let us now show (a) in general. Let L be a simple quotient of F (r)S, where r = h−(S).
Since Hom(S,E(r)L) ' Hom(F (r)S, L) 6= 0, we deduce that S is isomorphic to a submodule
of E(r)L. Since FL = 0, we know by (a) that E(n)E(r)L '

(
n+r
r

)
S ′ for some simple object

S ′. So, E(n)S ' mS ′ for some positive integer m. We have Hom(E(n)S, S ′) ' Hom(S, F (n)S ′).
Since ES ′ = 0, we deduce that socF (n)S ′ is simple (we use (b) in its “F” version). So,
dim Hom(S, F (n)S ′) ≤ 1, hence m = 1 and (a) holds. �

Corollary 5.21. The sl2(Q)-module V ≤d is the sum of the simple submodules of V of dimension
≤ d.

Proof. Let S be a simple object of A with r = h−(S). By Proposition 5.20 (a), S ′ = F (r)S is
simple. We deduce that S ' socE(r)S ′ by adjunction. Now, Proposition 5.20 (d) shows that

[E(r)S ′]−
(
d(S)
r

)
[S] ∈ V ≤d(S)−1.

We deduce by induction on r that {[ErS ′]} generates V , where S ′ runs over the isomorphism
classes of simple objects killed by F and 0 ≤ r ≤ h+(S ′). The Corollary follows from Lemma
4.3, (iii)=⇒(i). �

Remark 5.22. Let S be a simple object of A and i ≤ h+(S). The action of Zi,n = Z(H̄i,n) on
EiS restricts to an action on E(i)S. Since EiS is a faithful right H̄i,n-module, it follows from
Proposition 3.5 that E(i)S is a faithful Zi,n-module. Now, dim EndA(E(i)S) = 1

(i!)2
dim H̄i,n =

dimZi,n, hence the morphism Zi,n → EndA(E(i)S) is an isomorphism.

Let us now continue with the following crucial Lemma whose proof uses some of the ideas of
the proof of Proposition 5.20.

Lemma 5.23. Let U be a simple object of A such that FU = 0. Let n = h+(U), i < n, and
Bi = H̄i,n. The composition of η(EiU)⊗ 1 : EiU ⊗Bi

Bi+1 → FEi+1U ⊗Bi
Bi+1 with the action

map FEi+1U ⊗Bi
Bi+1 → FEi+1U is an isomorphism

EiU ⊗Bi
Bi+1

∼→ FEi+1U.

Proof. By Proposition 3.5, it is enough to prove that the map becomes an isomorphism after
applying − ⊗Bi+1

Bi+1c
1
i+1. By (3), we have Bi+1c

1
i+1 =

⊕n−i−1
a=0 P̄i,nx

a
i+1c

1
i+1. Consider the

composition

φ = g ◦ (f ⊗ 1) : E(i)U ⊗
n−i−1⊕
a=0

kxa → FE(i+1)U

where f : E(i)U
η(E(i)U)−−−−−→ FEE(i)U

1F c
1
[Si\Si+1]

U

−−−−−−−−→ FE(i+1)U and g : FE(i+1)U ⊗
⊕n−i−1

a=0 kxa →
FE(i+1)U is given by the action on F . We have to prove that φ is an isomorphism. We
have [FE(i+1)U ] = (n − i)[E(i)U ], hence it suffices to prove that φ is injective. In order to
do that, one may restrict φ to a map between the socles of the objects (viewed in A). Let
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φa : socE(i)U → FE(i+1)U be the restriction of φ to the socle of E(i)U ⊗ kxa. Since soc(E(i)U)
is simple (Proposition 5.20), the problem is to prove that the maps φa for 0 ≤ a ≤ n − i − 1
are linearly independent. By adjunction, it is equivalent to prove that the maps

ψa : E socE(i)U
xa1

soc E(i)U−−−−−−−→ E socE(i)U
c1
[Si\Si+1]

U

−−−−−−−→ E(i+1)U

are linearly independent.

We have socEi+1U ' S ⊗ Ki+1 as (A, Hi+1)-bimodules, where S = socE(i+1)U is simple
(Proposition 5.20). Consider the right (k[xi+1]⊗Hi)-submodule L′ = HomA(S, soc(E socEiU)))

of L = HomA(S, socEi+1U). We have Hi+1 = (Hi ⊗ P[i+1])H
f
i+1, hence L = L′Hf

i+1 since L is

a simple right Hi+1-module. So, L′c1i+1 = Lc1i+1, hence soc(E socEiU))c1i+1 = socE(i+1)U . In

particular, the map E socE(i)U
c1
[Si+1/Si]

U

−−−−−−−→ E(i+1)U is injective, since E socE(i)U has a simple
socle by Proposition 5.20.

So, we are left with proving that the maps E socE(i)U
Xa1

soc E(i)U−−−−−−−→ E socE(i)U are linearly
independent, i.e., that the restriction of γ1(S

′) : H1 → EndA(ES ′) to
⊕n−i−1

a=0 kXa
1 is injective,

where S ′ = socE(i)U . Let I be the kernel of γn−i(S
′) : Hn−i → EndA(En−iS ′). Then, as in

the proof of Proposition 5.20, we have I ⊂ nn−iHn−i. So, ker γ1 ⊂ H1 ∩ nn−iHn−i, hence the
canonical map

⊕n−i−1
a=0 kXa

1 → EndA(En−iS ′) is injective (cf (3)) and we are done. �

5.4.2. We fix U a simple object of A such that FU = 0. Let n = h+(U). We put Bi = H̄i,n for
0 ≤ i ≤ n.

The canonical isomorphisms of functors

E(EiU ⊗Bi
−)

∼→ Ei+1U ⊗Bi
− ∼→ Ei+1U ⊗Bi+1

Bi+1 ⊗Bi
−

make the following diagram commutative

Bi+1-mod
Ei+1U⊗Bi+1

−
// A

Bi-mod
EiU⊗Bi

−
//

Bi+1⊗Bi
−

OO

A

E

OO

The canonical isomorphism of functors from Lemma 5.23

EiU ⊗Bi
Bi+1 ⊗Bi+1

− ∼→ F (Ei+1U ⊗Bi+1
−)

make the following diagram commutative

Bi+1-mod
Ei+1U⊗Bi+1

−
//

Bi+1⊗Bi+1
−

��

A
F

��
Bi-mod

EiU⊗Bi
−

// A

Theorem 5.24. The construction above is a morphism of sl2-categorifications RU : A(n)→ A.

Proof. The commutativity of diagram (4) follows from the very definition of ζ− given by Lemma
5.23. The commutativity of the diagram (5) is obvious. �
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Remark 5.25. Let In be the set of isomorphism classes of simple objects U of A such that
FU = 0 and h+(U) = n. We have a morphism of sl2-categorifications∑

n,U∈In

RU :
⊕
n,U∈In

A(n)→ A

that is not an equivalence in general but that induces an isomorphism⊕
n,U∈In

Q⊗K0(A(n)-proj)
∼→ Q⊗K0(A)

giving a canonical decomposition of Q ⊗ K0(A) into simple summands. In that sense, the
categorifications A(n) are minimal.

The following Proposition is clear.

Proposition 5.26. Assume Q ⊗K0(A) is a simple sl2-module of dimension n + 1. Let U be
the unique simple object of A with FU = 0.

Then, RU : A(n)→ A is an equivalence of categories if and only if U is projective.

Note that a categorification corresponding to an isotypic representation needs not be isomor-
phic to a sum of minimal categorifications (take for example a trivial sl2-representation).

5.5. Decomposition of [E,F ].

5.5.1. Let σ : EF → FE be given as the composition

EF
η1EF−−−→ FEEF

1FT1F−−−−→ FEEF
1FEε−−−→ FE.

The following gives the categorification of the relation [e, f ] = h.

Theorem 5.27. Let λ ≥ 0. Then, we have isomorphisms

σ +
λ−1∑
j=0

(1FX
j) ◦ η : EF IdA−λ

⊕ Id
L
λ

A−λ

∼→ FE IdA−λ

and

σ +
λ−1∑
j=0

ε ◦ (Xj1F ) : EF IdAλ

∼→ FE IdAλ
⊕ Id

L
λ

Aλ
.

Proof. By Proposition 5.8, it is enough to check that the maps are isomorphisms after evaluating
the functors at EiU , where i ≥ 0 and U is a simple object of A−λ−2i (resp. of Aλ−2i) such
that FU = 0. Thanks to Lemma 5.3 and Theorem 5.24, we can do this with A replaced by a
minimal categorification A(n) and this is the content of Proposition 5.31 below. �

In the case of cyclotomic Hecke algebras, Vazirani [Va] had shown that the values of the
functors on simple objects are isomorphic.

Corollary 5.28. The functors E and F induce an action of sl2 on the Grothendieck group of
A, viewed as an additive category.



24 JOSEPH CHUANG AND RAPHAËL ROUQUIER

5.5.2. We put γ =

{
(q − 1)a if q 6= 1

1 if q = 1

and mij(c) =


∑

j≤d1<···<di−j−c≤i−1 Td1 · · ·Tdi−j−c
if c < i− j

1 if c = i− j
0 if c > i− j.

Lemma 5.29. Let j < i and c ≥ 0. We have

TjTj+1 · · ·Ti−1x
c
i = γcmij(c) (mod miHi).

In particular, TjTj+1 · · ·Ti−1x
c
i ∈ miHi if c > i− j.

Proof. By (1), we have

Ti−1x
c
i − xci−1Ti−1 =

{
(q − 1)(xi + a)(xc−1

i−1 + xc−2
i−1xi + · · ·+ xc−1

i ) if q 6= 1

xc−1
i−1 + xc−2

i−1xi + · · ·+ xc−1
i if q = 1.

Hence

TjTj+1 · · ·Ti−1x
c
i = TjTj+1 · · ·Ti−2x

c
i−1Ti−1 + γTjTj+1 · · ·Ti−2x

c−1
i−1 (mod miHi).

Since mij(c) = mi−1,j(c− 1) +mi−1,j(c)Ti−1, the Lemma follows by induction. �

Lemma 5.30. Let j ≤ i, c ≥ 1 and e = inf(c− 1, i− j). Then, we have

TjTj+1 · · ·Tixci − TjTj+1 · · ·Ti−1x
c
i+1Ti =

α
(
γexc−e−1

i+1 mij(e) + γe−1xc−ei+1mij(e− 1) + · · ·+ xc−1
i+1mij(0)

)
(mod miHi+1)

where α =

{
(1− q)(xi+1 + a) if q 6= 1

−1 if q = 1.

Proof. We have

TjTj+1 · · ·Tixci − TjTj+1 · · ·Ti−1x
c
i+1Ti = αTj · · ·Ti−1(x

c−1
i + · · ·+ xc−1

i+1)

and the result follows from Lemma 5.29. �

The following is a Mackey decomposition for the algebras Bi = H̄i,n.

Proposition 5.31. Let i ≤ n/2. Then, we have an isomorphism of (Bi, Bi)-bimodules

Bi ⊗Bi−1
Bi ⊕B⊕n−2i

i
∼→ Bi+1

(b⊗ b′, b1, . . . , bn−2i) 7→ bTib
′ +

n−2i∑
j=1

bjX
j−1
i+1 .

Let now i ≥ n/2. Then, we have an isomorphism of (Bi, Bi)-bimodules

Bi ⊗Bi−1
Bi

∼→ Bi+1 ⊕B⊕2i−n
i

b⊗ b′ 7→ (bTib
′, bb′, bXib

′, . . . , bX2i−n−1
i b′).
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Proof. Let us consider the first map. We know already that both sides are free Bi-modules of
the same rank (cf §5.3), hence it is enough to show surjectivity.

Let M = (Pi/mi) ⊗Pi
Bi+1. This is a right Bi-module quotient of Bi+1. Let L be the right

Bi-submodule of M generated by BiTi+
∑n−2i−1

j=0 Xj
i+1k. The first isomorphism will follow from

the proof that M = L. From now on, all elements are viewed in M .

We have

xn−ii+1 =
n−i−1∑
j=0

(−1)n−i−1+jxji+1en−i−j(xi+1, . . . , xn).

Given r ≥ 2 and j ≤ n− i− 1, we have

en−i−j(xr, . . . , xn) = en−i−j(xr−1, xr, . . . , xn)− xr−1en−i−j−1(xr, . . . , xn).

Since en−i−j(x1, . . . , xn) = 0, it follows that en−i−j(xi+1, . . . , xn) = 0. So, we have xn−ii+1 = 0.

Take 1 ≤ r ≤ i. Then, r ≤ n− i and we have (Lemma 5.30)

Ti−r+1Ti−r+2 · · ·Tixn−ii =

xn−ii+1Ti−r+1 · · ·Ti + α
(
γr−1xn−i−ri+1 + γr−2xn−i−r+1

i+1 mi,i−r+1(r − 2) + · · ·+ xn−i−1
i+1 mi,i−r+1(0)

)
.

So,

Ti−r+1Ti−r+2 · · ·Tixn−ii + αγr−1xn−i−ri+1 ∈
∑
j≥0

xn−i−r+1+j
i+1 Hi.

Since xn−ii+1 = 0, we deduce by induction on r that xn−i−ri+1 ∈ L for 1 ≤ r ≤ i. So, xai+1 ∈ L for all
a ≥ 0. We deduce from Lemma 5.30 that xai+1Tj · · ·Ti ∈ L for all 1 ≤ j ≤ i and a ≥ 0. Since

Bi+1 =
⊕

0≤a≤n−i−1,w∈[Si+1/Si]
P̄i,nx

a
i+1TwH

f
i (cf §3.3.1), we obtain finally M = L and we are

done.

Let us now consider the second isomorphism. Let us fix an adjunction (F,E) with unit η′

and counit ε′ and consider the dual categorification A′ of A(n). We denote by X ′ and T ′ its

defining endomorphisms. Define σ′ : FE
η′FE−−−→ EFFE

ET ′E−−−→ EFFE
EFε′−−−→ EF .

Let G = FE and H = EF . There is an adjoint pair (EF,EF ) with counit εH : EFEF
Eε′F−−−→

EF
ε−→ Id and an adjoint pair (FE, FE) with unit ηG : Id

η−→ FE
Fη′E−−−→ FEFE. Consider the

canonical isomorphism

ζ : Hom(FE,EF ) = Hom(G,H)
∼→ Hom(H∨, G∨)

∼→ Hom(EF, FE)
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corresponding to these adjunctions. The commutativity of the following diagram shows that
ζ(σ′) = σ.

EF

ηEF

��
FEEF

Fη′EEF //

Fη′EEF

))SSSSSSSSSSSSSSS

FEEF

##HHHHHHHHHHHHHHHHHHHHHH FEFEEF
FEη′FEEF // FEEFFEEF

FEET ′EEF

**VVVVVVVVVVVVVVVVVV

FEFEEF
FEη′FEEF //

FEε′EF
��

FEEFFEEF
FTFFEEF //

FEEFε′EF
��

FEEFFEEF

FEEFε′EF
��

FEEF
FEη′EF //

FEEF **UUUUUUUUUUUUUUUUUU FEEFEF

FEEε′F
��

FEEFEF

FEEε′F
��

FEEF
FTF

// FEEF

FEε
��

FE

Similarly, using the canonical adjoint pair (Id, Id), we get a canonical isomorphism

ζ ′ : Hom(Id, EF ) = Hom(Id, H)
∼→ Hom(H∨, Id)

∼→ Hom(EF, Id).

We have ζ ′((1E(X̃ ′)j) ◦ η′) = ε ◦ (Xj1F ).
We have shown that the adjoint to

σ +
λ−1∑
j=0

ε ◦ (Xj1F ) : EF IdAλ

∼→ FE IdAλ
⊕ Id

L
λ

Aλ

is

σ′ +
λ−1∑
j=0

(1F ′(X̃
′)j) ◦ η′ : E ′F ′ IdA′−λ

⊕ Id
L
λ

A′−λ
→ F ′E ′ IdA′−λ

.

One checks easily that the first map of the Proposition remains an isomorphism if Xi+1 is
replaced by X̃i+1. Since the categorification A′ is isomorphic to A(n), this shows that the map

σ′ +
∑λ−1

j=0 (1F ′(X̃
′)j) ◦ η′ is an isomorphism, hence σ +

∑λ−1
j=0 ε ◦ (Xj1F ) is an isomorphism as

well. �

5.5.3. Let us fix a family {Mλ ∈ Aλ}λ. Let Mλ be the full subcategory of Aλ whose objects
are finite direct sums of direct summands of Mλ. We assume thatM =

⊕
λMλ is stable under

E and F .
Let A′λ = EndA(Mλ), A′λ = A′λ-mod and A′ =

⊕
λA′λ. We put

E ′ =
⊕
λ

HomA(Mλ+2, EMλ)⊗A′λ − : A′ → A′

and F ′ =
⊕
λ

HomA(Mλ−2, FMλ)⊗A′λ − : A′ → A′.



DERIVED EQUIVALENCES FOR SYMMETRIC GROUPS AND sl2-CATEGORIFICATION 27

We have HomA(Mλ+2, EMλ) ' HomA(FMλ+2,Mλ) and FMλ+2 ∈ Mλ. It follows that
HomA(Mλ+2, EMλ) is a projective right A′λ-module, so E ′ is an exact functor. Similarly, F ′ is
an exact functor. Also, they send projectives to projectives.

Consider the functor R =
⊕

λMλ⊗A′λ− : A′ → A. Its restriction to A′-proj is an equivalence

A′-proj
∼→M. So, the functor G 7→ RG from the category of exact functors A′ → A′ sending

projectives to projectives to the category of functors A′ → A is fully faithful.

The canonical map

Mλ+2 ⊗A′λ+2
HomA(Mλ+2, EMλ)

∼→ EMλ, m⊗ f 7→ f(m)

is an isomorphism, since EMλ ∈Mλ+2. The induced map

Mλ+2⊗A′λ+2
HomA(Mλ+2, EMλ)⊗A′λ U

∼→ E(Mλ⊗A′λ U), m⊗ f ⊗ u 7→ E(m′ 7→ m′⊗ u)(f(m))

for U ∈ A′λ-mod is an isomorphism, since it is an isomorphism for U = A′λ.

We obtain an isomorphism RE ′ ∼→ ER and we construct similarly an isomorphism RF ′ ∼→
FR.

Let X ′ (resp. T ′) be the inverse image of X idR (resp. T idR) via the canonical isomor-

phisms End(E ′)
∼→ End(RE ′)

∼→ End(ER) (resp. End(E
′2)

∼→ End(RE
′2)

∼→ End(ERE ′)
∼→

End(E2R)).
Proceeding similarly, the adjoint pair (E,F ) gives an adjoint pair (E ′, F ′) and the functor

F ′ is isomorphic to a left adjoint of E ′.

Theorem 5.32. The data above defines an sl2-categorification on A′ and a morphism of sl2-
categorifications A′ → A.

Proof. The sl2-relations in K0(A′-proj) hold thanks to Theorem 5.27 applied to the restriction
of functors to M. The local finiteness follows from the case of A. The commutativity of
the diagrams of Lemma 5.3 follows immediately from the construction of the adjoint pair
(E ′, F ′). This shows that A′ is a weak categorification and that R defines a morphism of weak
categorifications.

By construction, this weak categorification is a categorification and the morphism of weak
categorifications is actually a morphism of categorifications. �

Corollary 5.33. Let M ∈ A. Then, there exists a finite dimensional algebra A, an sl2-
categorification on A-mod and a morphism of sl2-categorifications R : A-mod → A such that
M is a direct summand of R(A).

Proof. Let N =
⊕

i,j≥0E
iF jM , a finite sum. Let Nλ be the projection of N on Aλ. Now,

we can apply the constructions and results above, the stability being provided by Corollary
5.28. �

6. Categorification of the reflection

6.1. Rickard’s complexes. Let λ ∈ Z. We construct a complex of functors

Θλ : Comp(A−λ)→ Comp(Aλ),
following Rickard [Ri1] (originally, for blocks of symmetric groups).

We denote by (Θλ)
−r the restriction of E(sgn,λ+r)F (1,r) to A−λ for r, λ + r ≥ 0 and we put

(Θλ)
−r = 0 otherwise.
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Consider the map

f : Eλ+rF r = Eλ+r−1EFF r−1 1
Eλ+r−1ε1Fr−1−−−−−−−−−→ Eλ+r−1F r−1.

We have E(sgn,λ+r) = Eλ+rcsgn
[Sλ+r/S[2,λ+r]]

csgn[2,λ+r] ⊆ E(sgn,λ+r−1)E and similarly F (1,r) ⊆ FF (1,r−1),

hence f restricts to a map

d−r : E(sgn,λ+r)F (1,r) → E(sgn,λ+r−1)F (1,r−1).

We put

Θλ = · · · → (Θλ)
−i d−i

−−→ (Θλ)
−i+1 → · · · .

Lemma 6.1. Θλ is a complex. The map [Θλ] : V−λ = K0(A−λ)→ Vλ = K0(Aλ) coincides with
the action of s.

Proof. The map d1−rd−r is the restriction of 1Eλ+r−2ε21F r−2 , where ε2 : EEFF
1Eε1F−−−−→ EF

ε−→ Id.
Since csgn

λ+r = csgn
[Sλ+r/S2]c

sgn
2 and c1r = c12c

1
[S2\Sr], it follows that

E(sgn,λ+r)F (1,r) ⊆ Eλ+r−2E(sgn,2)F (1,2)F r−2.

So, in order to prove that d1−rd−r = 0, it is enough to show that the composition

E2F 2 csgn2 c12−−−→ E2F 2 ε2−→ Id

vanishes, where csgn
2 acts on E2 and c12 acts on F 2. This composition is equal to the composition

E2F 2
(csgn2 c12)1F2−−−−−−→ E2F 2 ε2−→ Id, where csgn2 c12 acts now on E2. We are done, since csgn2 c12 = 0.

The last statement is given by Lemma 4.2. �

Remark 6.2. Let M ∈ A−λ. Let l = max{r ≥ 0|F rM 6= 0}, a finite integer. Then,
(Θλ)

−i(M) = 0 when i 6∈ [max(0,−λ), l].

6.2. Derived equivalence from the simple reflection. Let Θ =
⊕

λ Θλ.
The following Lemma follows easily from Lemma 5.3.

Lemma 6.3. Let R : A′ → A be a morphism of sl2-categorifications. Then, there is an
isomorphism of complexes of functors ΘR

∼→ RΘ′.

We can now state our main Theorem (whose proof will be deduced from Theorem 6.6 below)

Theorem 6.4. The complex of functors Θ induces a self-equivalence of Kb(A) and of Db(A)

and induces by restriction equivalences Kb(A−λ)
∼→ Kb(Aλ) and Db(A−λ)

∼→ Db(Aλ). Further-
more, [Θ] = s.

Remark 6.5. In the context of symmetric groups, the invertibility of Θλ when the complex
has only one (resp. two) non-zero term is due to Scopes [Sco] (resp. Rickard [Ri1]).

Proof of Theorem 6.4. Since E and F have right adjoints, there is a complex of functors Θ∨
λ

that gives a right adjoint to Θλ (cf §4.1.4). Let ε : ΘλΘ
∨
λ → Id be the counit of adjunction and

Z its cone. So, Z is a complex of exact functors A−λ → Aλ.
Pick U ∈ A with FU = 0 and EiU ∈ A−λ and put n = h+(U). The fully faithful functor

RU : Kb(A(n)-proj)→ Kb(A) commutes with Θλ (Lemma 6.3), hence commutes with Θ∨
λ and

with Z (cf §4.1.6). By Theorem 6.6, we have Z(EiU) = 0. Now, Proposition 5.8 shows that
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Z(M) = 0 in Db(A−λ) for all M ∈ Db(A−λ). So, ε is an isomorphism in Db(A−λ). One shows
similarly that Θλ has a left inverse in Db(A−λ).

Let us now prove that ε is still an isomorphism inKb(A−λ). LetM ∈ Compb(A−λ). By Corol-
lary 5.33, there is a finite dimensional k-algebra A, an sl2-categorification on A′ = A-mod and a
morphism of sl2-categorifications R : A′ → A such that the terms of M are direct summands of
R(A). The functor R induces a fully faithful triangulated functor R′ : Kb(A′-proj) → Kb(A).

The derived category case of the Theorem shows that ε′ is an isomorphism in Kb(A′−λ-proj)
∼→

Db(A′−λ). As above, we deduce that ε is an isomorphism in the image of R′, hence ε(M) is
an isomorphism in Kb(A−λ). One proceeds similarly to show that Θλ has a left inverse in
Kb(A−λ). �

6.3. Equivalences for the minimal categorification.

Theorem 6.6. Let n ≥ 0 and A = A(n) be the minimal categorification. Fix λ ≥ 0 and
let l = n−λ

2
. The homology of the complex of functors Θλ is concentrated in degree −l and

H−lΘλ : A−λ
∼→ Aλ is an equivalence.

Proof. In order to show that the homology of Θλ is concentrated in degree −l, it suffices to
show that Θλ(Blc

1
l ) is homotopy equivalent to a complex concentrated in degree −l, since Blc

1
l

is a progenerator for Bl-mod. This is equivalent to the property that H∗(C) = 0 for ∗ 6= −l,
where C = csgn

n−lH̄n−l⊗Bn−l
Θλ(Blc

1
l ), since csgnn−lH̄n−l is the unique simple right Bn−l-module and

C−r = 0 for r > l.

We have

C−r = csgn
n−lH̄n−l ⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l] ⊗Bl−r

c1[l−r+1,l]Bl ⊗Bl
Blc

1
l .

Lemma 3.7 gives an isomorphism

C−r ∼→ csgn
n−lH̄n−l ⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l]c

1
[1,l−r] ⊗k

⊕
µ∈P (r,n−l)

mµ(xl−r+1, . . . , xl)k.

Proposition 3.3 and Lemma 3.4 give isomorphisms⊕
0≤a1<···<al−r<n−l

xa1
1 · · ·x

al−r

l−r k
∼−−→

can
ΛSl−r(P

S[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k)

ΛSl−r(P
S[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k)
∼→ csgnn−lH̄n−l ⊗Bn−l

Bn−lc
sgn
[l−r+1,n−l]c

1
[1,l−r]

y 7→ csgnn−ly

and these induce isomorphisms E−r ∼−−→
φ−r

D−r ∼−−→
ψ−r

C−r, where

E−r =
⊕

0≤a1<···<al−r<n−l

xa1
1 · · ·x

al−r

l−r k ⊗
⊕

µ∈P (r,n−l)

mµ(xl−r+1, . . . , xl)k

and D−r = ΛSl−r(P
S[l−r+1,n−l]

n−l ⊗
P

Sn−l
n−l

k)⊗
⊕

µ∈P (r,n−l)

mµ(xl−r+1, . . . , xl)k
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Let µ ∈ P (r, n− l) and 0 ≤ a1 < · · · < al−r < n− l. Given a positive integer b, we write b ≺ µ
when b appears in µ and we denote then by µ\b the partition obtained from µ by removing one
instance of b. We have mµ(xl−r+1, . . . , xl) =

∑
b≺µ x

b
l−r+1mµ\b(xl−r+2, . . . , xl). It follows that

d−rC ψ−r(xa1
1 · · ·x

al−r

l−r ⊗mµ) = ψ−r+1

(∑
b≺µ

xa1
1 · · ·x

al−r

l−r x
b
l−r+1 ⊗mµ\b

)
.

Assume b = n − l. Since xn−ll−r+1 ∈ nn−lPn−l, it follows that xa1
1 · · ·x

al−r

l−r x
b
l−r+1 is 0 in

ΛSl−r+1(P
S[l−r+2,n−l]

n−l ⊗
P

Sn−l
n−l

k). One gets the same conclusion when b ∈ {a1, . . . , al−r}.
So,

d−rC ψ−rφ−r(xa1
1 · · ·x

al−r

l−r ⊗mµ) = ψ−r+1φ−r+1

 ∑
b≺µ,b6∈{a1,...,al−r,n−l}

sgn(σb)x
a′1
1 · · ·x

a′l−r+1

l−r+1 ⊗mµ\b


where σb ∈ Sl−r+1 is the permutation such that, putting al−r+1 = b and a′j = aσb(j), we have
a′1 < a′2 < · · · < a′l−r+1.

Let L = kn−l, with canonical basis {ei}1≤i≤n−l. The Koszul complex K of L is a bigraded
k-vector space given by Kp,q = ΛpL⊗ SqL, with a differential of bidegree (−1, 1) given by

(ea1 · · · eap)⊗ x 7→
p∑
i=1

(−1)i+p+1(ea1 · · · eai−1
eai+1

· · · eap)⊗ eai
x.

Its dual Homk(K, k) is isomorphic to J defined as follows. We put Jp,q = Λp(L∗) ⊗ Sq(L∗).
Let {fi} be the dual basis of L∗ and fµ = fµ(1) · · · fµ(q) ∈ Sq(L∗) for µ ∈ P (q, n− l). Then, the
differential dJ : Jp,q → Jp+1,q−1 is given by

(fa1 · · · fap)⊗ fµ 7→
∑

b≺µ,a1<···<ai<b<ai+1<···<ap

(−1)i+p(fa1 · · · fai
fbfai+1

· · · fap)⊗ fµ\b.

The homology of J is concentrated in bidegree (0, 0) and isomorphic to k. Note that J•,q

is a graded right Λ(L∗)-module, with action given by right multiplication. This provides J
with the structure of a complex of free graded Λ(L∗)-modules (the degree −q term is J•,q),
hence of free graded k[fn−l]/(f

2
n−l)-modules by restriction. So, the (−q)-th homology group

of J ⊗k[fn−l]/(f
2
n−l)

k is a one-dimensional graded k-vector space which is in degree q. The

complexes of vector spaces J ⊗k[fn−l]/(f
2
n−l)

k and Jfn−l are isomorphic, with a shift by one

in the grading. The complex Jfn−l decomposes as the direct sum (over i) of the complexes⊕
q Λi−q(L∗)fn−l⊗Sq(L∗) and the cohomology of such a complex is concentrated in degree −i.
We have an isomorphism

E−r ∼→ (Λl−rL∗)fn−l ⊗ SrL∗ ⊆ J l−r+1,r, xa1
1 · · ·x

al−r

l−r ⊗mµ 7→ (fa1 · · · fal−r
fn−l)⊗ fµ.

This induces an isomorphism between E and the the subcomplex
⊕

r(Λ
l−rL∗)fn−l ⊗ SrL∗ of

J l+∗+1,−∗. It follows that the homology of E is concentrated in degree −l.
The complex of functors Θ−λ is given by tensor product by a bounded complex of (Bn−l, Bl)-

bimodules which are projective as Bn−l-modules and as Bl-modules. The homology of that
complex is concentrated in the lowest degree where the complex has a non zero component,
hence the homology M is still projective as a Bn−l-module and as a Bl-module. Lemma 6.1
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shows that M ⊗Bl
− sends the unique simple Bl-module to the unique simple Bn−l-module. By

Morita theory, M induces an equivalence. �

7. Examples

In this section §7, the field k will always be assumed to be big enough so that the simple
modules considered are absolutely simple.

In most of our examples, sl2-categorifications are constructed in families, using the following
recipe. We start with left and right adjoint functors Ê and F̂ on an abelian category A, together
with X ∈ End(Ê) and T ∈ End(Ê2) satisfying the defining relations of (possibly degenerate)
affine Hecke algebras. We obtain for each a ∈ k (with a 6= 0 if q 6= 1) an sl2-categorification on

A given by E = Ea and F = Fa, the generalised a-eigenspaces of X acting on Ê and F̂ . While
we need to check in each example that E and F do indeed give an action of sl2 on K0(A), it is
automatic that X and T restrict to endomorphisms of E and E2 with the desired properties.
That T restricts is a consequence of the identity (a special case of (1))

T1(X2 − a)N − (X1 − a)NT1

=

{
(q − 1)X2[(X1 − a)N−1 + (X1 − a)N−2(X2 − a) + · · ·+ (X2 − a)N−1] if q 6= 1

(X1 − a)N−1 + (X1 − a)N−2(X2 − a) + · · ·+ (X2 − a)N−1 if q = 1.

in H2(q).

7.1. Symmetric groups.

7.1.1. Let p be a prime number and k = Fp. The quotient of Hn(1) by the ideal generated
by X1 is the group algebra kSn. The images of Ti and Xi in kSn are si = (i, i + 1) and the
Jucys-Murphy element Li = (1, i) + (2, i) + · · ·+ (i− 1, i).

Let a ∈ k. Given M a kSn-module, we denote by Fa,n(M) the generalized a-eigenspace

of Xn. This is a kSn−1-module. We have a decomposition ReskSn
kSn−1

=
⊕

a∈k Fa,n. There is

a corresponding decomposition IndkSn
kSn−1

=
⊕

a∈k Ea,n, where Ea,n is left and right adjoint to

Fa,n. We put Ea =
⊕

n≥1Ea,n and Fa =
⊕

n≥1 Fa,n.

Recall the following classical result [LLT].

Theorem 7.1. The functors Ea and Fa for a ∈ Fp give rise to an action of the affine Lie

algebra ŝlp on
⊕

n≥0K0(kSn-mod).
The decomposition of K0(kSn-mod) in blocks coincides with its decomposition in weight

spaces.
Two blocks of symmetric groups have the same weight if and only if they are in the same

orbit under the adjoint action of the affine Weyl group.

In particular for each a ∈ Fp the functors Ea and Fa give a weak sl2-categorification on
A =

⊕
n≥0 kSn-mod.

We denote by X the endomorphism of Ea given on Ea,n by right multiplication by Ln
(on the (kSn, kSn−1)-bimodule kSn). We denote by T the endomorphism of E2

a given on
Ea,nEa,n−1 by right multiplication by sn−1 (on the (kSn, kSn−2)-bimodule kSn). This gives an
sl2-categorification on A (here, q = 1).
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7.1.2. Let G and H be two finite groups. Let R = k or Z(p). Let A (resp. B) be a block of
RG (resp. RH). We say that A and B are splendidly Rickard equivalent if there is a bounded
complex C of finitely generated (A⊗Bopp)-modules which are direct summands of permutation
modules such that C⊗BC∗ ' A in Kb(A⊗Aopp) and C∗⊗AC ' B in Kb(B⊗Bopp) (one usually
puts some condition on the vertices of the modules involved, but this is actually automatic, as
explained in [Rou5]).

Theorem 7.2. Let R = k or Z(p). Let A and B be two blocks of symmetric groups over R with
isomorphic defect groups. Then, A and B are splendidly Rickard equivalent (in particular, they
are derived equivalent).

Proof. Two blocks of symmetric groups over k have isomorphic defect groups if and only if
they have equal weights (cf §7.1.3 below). By Theorem 7.1, there is a sequence of blocks
A0 = A,A1, . . . , Ar = B such that Aj is the image of Aj−1 by some simple reflection σaj

of
the affine Weyl group. By Theorem 6.4, the complex of functors Θ associated with a = aj
induces a self-equivalence of Kb(A). It restricts to a splendid Rickard equivalence between Aj
and Aj+1. By composing these equivalences, we obtain a splendid Rickard equivalence between
A and B (note that the composition of splendid equivalences can easily be seen to be splendid,
cf eg [Rou2, Lemma 2.6]).

The constructions of E and F lift uniquely to Z(p) : Ind
Z(p)Sn

Z(p)Sn−1
=
⊕

a∈k Ẽa, Res
Z(p)Sn

Z(p)Sn−1
=⊕

a∈k F̃a, where Ẽa⊗Z(p)
k = Ea, where F̃a⊗Z(p)

k = Fa and Ẽa and F̃a are left and right adjoint.

We denote by T̃ the endomorphism of Ẽ2
a given on Ẽa,nẼa,n−1 by the action of sn−1.

The construction of Θ in §6.1 lifts to a complex Θ̃ of functors on Ã =
⊕

n≥0 Z(p)Sn-mod.

By [Ri3, end of proof of Theorem 5.2], the lift Θ̃ of Θ is a splendid self Rickard equivalence of
Db(Ã) and we conclude as before. �

Remark 7.3. The equivalence depends on the choice of a sequence of simple reflections whose
product sends one block to the other. If, as expected, the categorifications of the simple
reflections give rise to a braid group action on the derived category of

⊕
n≥0 kSn-mod, then

one can choose the canonical lifting of the affine Weyl group element in the braid group to get
a canonical equivalence.

Remark 7.4. Theorem 7.2 gives isomorphisms between Grothendieck groups of the blocks
(taken over Q) satisfying certain arithmetical properties (perfect isometries or even isotypies).
These arithmetical properties were shown already by Enguehard [En].

Remark 7.5. Two blocks of symmetric groups over k have isomorphic defect groups if and
only if they have the same number of simple modules, up to the exception of blocks of weights
0 and 1 for p = 2 — note that a block of weight 0 is simple whereas a block of weight 1 is
not simple, so two such blocks are not derived equivalent. So, one can restate Theorem 7.2 as
follows :

Let A and B be two blocks of symmetric groups over k. Then, A and B are derived equivalent
if and only if they have isomorphic defect groups. Assume A and B are not simple if p = 2.
Then, A and B are derived equivalent if and only if rankK0(A) = rankK0(B).

We can now deduce a proof of Broué’s abelian defect group conjecture for blocks of symmetric
groups :
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Theorem 7.6. Let A be a block of a symmetric group G over Z(p), D a defect group and B the
corresponding block of NG(D). If D is abelian, then A and B are splendidly Rickard equivalent.

Proof. By [ChKe], there is a block A′ of a symmetric group which is splendidly Morita equivalent
to the principal block of Z(p)(Sp oSw), where w is the weight of A. We have a splendid Rickard
equivalence between the principal block of Z(p)Sp and Z(p)N , where N is the normalizer of
a Sylow p-subgroup of Sp by [Rou2, Theorem 1.1]. By [Ma, Theorem 4.3] (cf also [Rou2,
Lemma 2.8] for the Rickard/derived equivalence part), we deduce a splendid Rickard equivalence
between the principal blocks of Z(p)(Sp oSw) and Z(p)(N oSw). Now, we have an isomorphism
B ' Z(p)(N oSw)⊗B0, where B0 is a matrix algebra over Z(p), hence there is a splendid Morita
equivalence between B and Z(p)(N oSw). So, we obtain a splendid Rickard equivalence between
B and A′.

By Theorem 7.2, we have a splendid Rickard equivalence between A and A′ and the Theorem
follows. �

Remark 7.7. The existence of an isotypy between A and B in Theorem 7.6 was known by
[Rou1].

7.1.3. Let us analyze more precisely the categorification.
Given λ a partition of m, we denote by |λ| = m the size of λ. Let κ be a p-core and n

an integer such that p|(n − |κ|) and n ≥ |κ|. We denote by bκ,n the corresponding block of
kSn (the irreducible characters of that block are associated to the partitions having κ as their

p-core). The integer n−|κ|
p

is the weight of the block (this notion of weight is not to be confused

with the weights relative to Lie algebra actions).
Let λ be a partition with p-core κ and λ′ a partition obtained from λ by adding an a-node.

Then, the p-core of λ′ depends only on κ and a and we denote it by ea(κ). Similarly, we define
fa(κ) by removing an a-node.

We will freely identify a functor M ⊗− with the bimodule M . We have

(6) Ea,n+1 =
⊕
κ

bea(κ),n+1kSn+1bκ,n

where κ runs over the p-cores such that |κ| ≤ n, |κ| ≡ n (mod p) and |ea(κ)| ≤ n+ 1.

Let bκ−r,l, bκ−r+2,l+1, . . . , bκr,l+r be a chain of blocks with |fa(κ−r)| > l− 1, |ea(κr)| > l+ r+1
and fa(κj) = κj−2.

Put ni = l + (i− r)/2 and Bi = kSni
bκi,ni

for −r ≤ i ≤ r and i ≡ r (mod 2).
Let A =

⊕
iBi-mod. The action of E = Ea and F = Fa on K0(A) gives a representation of

sl2. This gives an sl2-categorification (here, q = 1).
The complex of functors Θ restricts to a splendid Rickard equivalence between Bi and B−i.

Let us recall some results of the local block theory of symmetric groups (cf [Pu1] or [Br, §2]).
Let P be a p-subgroup of Sn. Up to conjugacy, we can assume [1, n]P = [nP + 1, n] for some

integer nP (we call such a P a standard p-subgroup). Then, CSn(P ) = H × S[nP +1,n] where
H = CSnP

(P ). The algebra kH has a unique block.

Given G a finite group and P a p-subgroup of G, we denote by brP : (kG)P → kCG(P ) the
Brauer morphism (restriction of the morphism of k-vector spaces kG → kCG(P ) which is the
identity on CG(P ) and 0 on G − CG(P )). We denote by BrP : kG-mod → kCG(P )-mod the
Brauer functor given by M 7→MP/(

∑
Q<P TrPQM

Q), where TrPQ(x) =
∑

g∈P/Q g(x).



34 JOSEPH CHUANG AND RAPHAËL ROUQUIER

We will use the following result of Puig and Marichal

Theorem 7.8. We have

brP (bκ,n) =

{
1⊗ bκ,n−nP

if n−nP−|κ|
p

∈ Z≥0

0 otherwise.

Note in particular that a standard p-subgroup P is a defect group of bκ,n if and only if P is
a Sylow p-subgroup of Sn−|κ|. In particular, two blocks of symmetric groups have isomorphic
defect groups if and only if they have equal weights.

So, we deduce from (6) and Theorem 7.8 :

Lemma 7.9. We have an isomorphism of ((kH ⊗ kSn−nP +i), (kH ⊗ kSn−nP−1))-bimodules

Br∆P (Ea,n+i · · ·Ea,n+1Ea,n)
∼→ kH ⊗ Ea,n−nP +i · · ·Ea,n−nP +1Ea,n−nP

.

For i = 1, it is compatible with the action of T .
Let P be a non-trivial standard p-subgroup of Sn−i

. If brP (bκi,ni
) is not 0, then

Br∆P
(bκ−i,n−i

Θbκi,ni
) ' kH ⊗ bκ−i,n−i−nP

Θbκi,ni−nP
.

Note that this Lemma permits to deduce a proof of the Rickard equivalence in Theorem 7.2
from that of the derived equivalence, by induction on the size of the defect group : By induction,
bκ−i,n−i−nP

Θbκi,ni−nP
induces a Rickard equivalence. Now, Θ induces a derived equivalence, so,

it follows from Theorem 7.10 below that Θ induces a Rickard equivalence between Bi and B−i.

If a splendid complex induces local derived equivalences, then it induces a Rickard equivalence
[Rou4, Theorem 5.6] (in a more general version, but whose proof extends with no modification) :

Theorem 7.10. Let G be a finite group, b a block of kG and D a defect group of b. We assume
b is of principal type, i.e., brD(b) is a block of kCG(D). Let H be a subgroup of G containing
D and controlling the fusion of p-subgroups of D. Let c be the block of kH corresponding to b.

Let C be a bounded complex of (kGb, kHc)-bimodules. We assume C is splendid, i.e., the
components M of C are direct summands of modules IndG×H

◦

∆D N , where N is a permutation
∆D-module.

Assume

• Br∆P (C) induces a Rickard equivalence between kCG(P ) brP (b) and kCH(P ) brP (c) for
P a non trivial p-subgroup of D and
• C induces a derived equivalence between kGb and kHc.

Then, C induces a Rickard equivalence between kGb and kHc.

7.2. Cyclotomic Hecke algebras.

7.2.1. We consider here the non-degenerate case q 6= 1. We fix v1, . . . , vd ∈ k×.
We denote by Hn = Hn(v, q) the quotient of Hn(q) by the ideal generated by (X1 −

v1) · · · (X1 − vd). This is the Hecke algebra of the complex reflection group G(d, 1, n) (cf e.g.
[Ar2, §13.1]).

The algebra Hn is free over k with basis {Xa1
1 · · ·Xan

n Tw}0≤ai<d,w∈Sn [ArKo]. In particular
Hn−1 embeds as a subalgebra of Hn, and Hn is free as a left and as a right Hn−1-module, for
the multiplication action. The algebra Hn is symmetric [MalMat].
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7.2.2. Let a ∈ k×. Given M an Hn-module, we denote by Fa,nM the generalized a-eigenspace
of Xn. This is an Hn−1-module. We have a decomposition ResHn

Hn−1
=
⊕

a∈k× Fa,n. There is

a corresponding decomposition IndHn
Hn−1

=
⊕

a∈k× Ea,n, where Ea,n is left and right adjoint to

Fa,n. We put Ea =
⊕

n≥1Ea,n and Fa =
⊕

n≥1 Fa,n.

Now fix a ∈ k×. The functors E = Ea and F = Fa give an action of sl2 on
⊕

n≥0K0(Hn-mod)
in which the classes of simple modules are weight vectors [Ar2, Theorem 12.5] (only the case
where each parameter if a power of q is considered there, but the proof extends immediately
to our more general setting). We obtain an sl2-categorification on

⊕
n≥0Hn-mod, where the

endomorphism X of E is given on Ea,n by right multiplication by Xn, and the endomorphism
T of E2 is given on Ea,nEa,n−1 by right multiplication by Tn−1.

Remark 7.11. Let e be the multiplicative order of q in k×. Fix a0 ∈ k× and let I = {qma0 |
m ∈ Z}. Then the functors Ea and Fa for a ∈ I define an action of ŝle on

⊕
n≥0K0(Hn-mod).

7.2.3. Consider here the case d = 1. Then, Hn = Hn(1, q) is the Hecke algebra of Sn. Let e be
the multiplicative order of q in k. We have a notion of weight of a block as in §7.1.1, replacing
p by e in the definitions.

We obtain a q-analog of Theorem 7.2:

Theorem 7.12. Assume d = 1. Let A be a block of Hn and B a block of Hm. Then, A and B
are derived equivalent if and only they are Rickard equivalent if and only if they have the same
weight.

Remark 7.13. All of the constructions and results of §7.2 hold for degenerate cyclotomic
Hecke algebras as well, under the assumption that they are symmetric algebras (which should
be provable along the lines of [MalMat]). Note that these algebras are known to be self-injective
[Kl3, Corollary 7.7.4].

7.3. General linear groups over a finite field.

7.3.1. Let q be a prime power, n ≥ 0 and Gn = GLn(q). We assume that k has characteristic
` > 0 and 6̀ |q(q − 1). Let An = kGnbn be the sum of the unipotent blocks of kGn.

Given H a finite group, we put eH = 1
|H|
∑

h∈H h. We denote by tg the transpose of a matrix
g.

We denote by Vn the subgroup of upper triangular matrices of Gn with diagonal coefficients
1 and whose off-diagonal coefficients vanish outside the n-th column. We denote by Dn the
subgroup of Gn of diagonal matrices with diagonal entries 1 except the (n, n)-th one.

Vn =


1 ∗

. . .
...

1 ∗
1

 , Dn =


1

. . .
1
∗


Let i ≤ n. We view Gi as a subgroup of Gn via the first i coordinates.

We put

Ei,n = kGne(Vno···oVi+1)o(Di+1×···×Dn) ⊗kGi
− : Ai-mod→ An-mod

and Fi,n = e(Vno···oVi+1)o(Di+1×···×Dn)kGn ⊗kGn − : An-mod→ Ai-mod .
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These functors are canonically left and right adjoint. Furthermore, there are canonical isomor-
phisms Ej,n ◦ Ei,j

∼→ Ei,n and Fi,j ◦ Fj,n
∼→ Fi,n for i ≤ j ≤ n.

Let A =
⊕

n≥0An-mod, E =
⊕

n≥0En,n+1 and F =
⊕

n≥0 Fn,n+1.

We denote by T the endomorphism of E given on En−2,n by right multiplication by

T̂n−1 = qeVnVn−1Dn−1Dn(n− 1, n)eVnVn−1Dn−1Dn .

We denote by X the endomorphism of E2 given on En−1,n by right multiplication by

X̂n = qn−1eVnDnetVneVnDn .

Lemma 7.14. We have

(1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E), (T + 1E2) ◦ (T − q1E2) = 0

and T ◦ (1EX) ◦ T = qX1E.

Proof. The first statements involving only T ’s are the classical results of Iwahori.
Let U be the subgroup of Gn with diagonal coefficients 1 and whose off-diagonal coefficients

vanish except the (n, n− 1)-th. We have

T̂n−1X̂n−1T̂n−1 = qneVnVn−1Dn−1DneU(n− 1, n)etVn−1(n− 1, n)eUeVn−1VnDn−1Dn

= qneVnVn−1Dn−1DnetVneVnVn−1Dn−1Dn = qeVn−1Dn−1X̂neVn−1Dn−1

and this induces the same endomorphism of En−2,n as qX̂n. �

Lemma 7.14 shows that we have a morphism Hn(q)→ End(E0,n) = EndkGn(kGn/Bn) which
sends Ti to the endomorphism given by right multiplication by qeBn(i− 1, i)eBn and X1 to the
identity, where Bn is the subgroup of Gn of upper triangular matrices (cf § 5.2.2). The classical
result of Iwahori states that the restriction of this morphism to Hf

n is an isomorphism. This
gives us a surjective morphism p : Hn → Hf

n whose restriction to Hf
n is the identity. Since X1

maps to 1 in End(E0,n) and the quotient of Hn by X1−1 is isomorphic to Hf
n , it follows that p is

the canonical map Hn → Hf
n . In particular, the image of Xi is (up to an affine transformation)

a Jucys-Murphy element :

p(Xi) = q1−iTi−1 · · ·T1T1 · · ·Ti−1 = 1 + q1−i(q − 1)
(
T(1,i) + qT(2,i) + · · ·+ qi−2T(i−1,i)

)
.

We put Rn = HomkGn(kGneBn ,−) = eBnkGn ⊗kGn − : An-mod→ Hf
n -mod. The multiplica-

tion maps
eBi

kGi ⊗kGi
eVn···Vi+1Dn···Di+1

kGn → eBnkGn

and
eBnkGneBn ⊗eBi

kGieBi
eBi

kGi → eBnkGneVn···Vi+1Dn···Di+1

are isomorphisms. They induce isomorphisms of functors

RiFi,n
∼→ ResH

f
n

Hf
i

Rn and IndH
f
n

Hf
i

Ri
∼→ RnEi,n.

Remark 7.15. The constructions carried out here make sense more generally for finite groups
with a BN-pair and for arbitrary standard parabolic subgroups, the transpose operation corre-
sponding to passing from the unipotent radical of a parabolic subgroup to the unipotent radical
of the opposite parabolic subgroup. This produces a very general kind of “Jucys-Murphy ele-
ment” in Hecke algebras of finite Weyl groups. In type B or C, we should recover the usual
Jucys-Murphy elements.
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Given a ∈ k×, let Ea be the generalized a-eigenspace of X acting on E.

Lemma 7.16. The action of [Ea] and [Fa] on
⊕

n≥0K0(An-mod) gives a representation of sl2.
Furthermore, the classes of simple objects are weight vectors.

Proof. Let O be a complete discrete valuation ring with field of fractions K and residue field
k. We consider the setting above where k is replaced by K. The functor HomKGn(KGneBn ,−)
induces an isomorphism from the Grothendieck group Ln of the category of unipotent repre-
sentations of KGn to the Grothendieck group of the category of representations of the Hecke
algebra of type Sn with parameter q over K. This isomorphism is compatible with the ac-
tions of Ea and Fa. It follows from §7.2.2 that Ea and Fa give a representation of sl2 on⊕

n≥0 Ln and the class of a simple unipotent representation of KGn is a weight vector. Now,
the decomposition map Ln → K0(An) is an isomorphism [Jam, Theorem 16.7] and the result
follows. �

So, we have constructed an sl2-categorification on
⊕

n≥0An-mod and a morphism of sl2-

categorifications
⊕

n≥0An-mod→
⊕

n≥0H
f
n -mod.

Remark 7.17. Note that we deduce from this that the blocks of An correspond to the blocks
of Hf

n .

7.3.2. We assume here only that 6̀ |q. Let O be the ring of integers of a finite extension of Q`

and k be the residue field of O.
Let us recall [FoSri] that the `-blocks of GLn(q) are parametrized by pairs ((s), (B1, . . . , Br))

where s is a conjugacy class of semi-simple `′-elements of GLn(q) and Bi is a block of Hni
(qdi),

where CGLn(q)(s) = GLn1(q
d1)× · · ·×GLnr(q

dr). Let wi be the ei-weight of the block Bi, where
ei is the multiplicative order of qdi in k×. We define the weight of the block as the family
{(wi, di)}1≤i≤r.

Theorem 7.18. Let R = k or O. Two blocks of general linear groups over R with same weights
are splendidly Rickard equivalent.

Proof. The results on the local block theory of symmetric groups generalize to unipotent blocks
of general linear groups [Br, §3] and we conclude as in the proof of Theorem 7.2 that the
Theorem holds for unipotent blocks.

By [BoRou2], a block of a general linear group is splendidly Rickard equivalent to a unipotent
block of a product GLn1(q

d1) × · · · × GLnr(q
dr) ([BoRou1, Théorème B] already provides a

complex with homology only in one degree inducing a Morita equivalence). Such a block is
splendidly Rickard equivalent to the principal block of GLe1w1(q

d1)× · · · × GLerwr(q
dr) by the

unipotent case of the Theorem. �

Remark 7.19. Assume l|(q − 1). Then, kGLn(q) has a unique unipotent block, the principal
block. The number of simple modules for such a block is the number of partitions of n.
Consequently, a unipotent block of GLn(q) is not derived equivalent to a unipotent block of
GLm(q) when n 6= m.

Theorem 7.20. Let A be a block of a general linear group G over R = k or O, let D be a defect
group and B the corresponding block of NG(D). If D is abelian, then A and B are splendidly
Rickard equivalent.
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Proof. By the result of [BoRou2] stated above, we may assume that A is a unipotent block.
Then we proceed as in the proof of Theorem 7.6, using the fact that there is a unipotent block of
a general linear group with defect group isomorphic to D that is splendidly Morita equivalent
to the principal block of R(GLe(q) o Sw) for some w ≥ 0, where e is the order of q in k×

[Pu2, Mi, Tu]. �

7.4. Category O.

7.4.1. We construct here sl2-categorifications on category O of gln. In particular we show
that the weak sl2-categorification on singular blocks given by Bernstein, Frenkel and Khovanov
[BeFreKho] is an sl2-categorification.

We denote by h the Cartan subalgebra of diagonal matrices and n the nilpotent algebra of
strictly upper trangular matrices of the complex Lie algebra g = gln. We denote by O the BGG
category of finitely generated U(g)-modules that are diagonalisable for h and locally nilpotent
for U(n).

Let {eij} be the standard basis of g, and let ε1, . . . , εn be the basis of h∗ dual to e11, . . . , enn.
For each λ ∈ h∗ we denote by λ1, . . . , λn the coefficients of λ with respect to ε1, . . . , εn. We
write λ→a µ if there exists j such that λj − j+1 = a− 1, µj − j+1 = a and λi = µi for i 6= j.

For each λ ∈ h∗ let M(λ) be the Verma module with highest weight λ and let L(λ) be its
unique irreducible quotient. Recall that M(λ) = U(g) ⊗U(b) Cλ, where b is the subalgebra
of upper-triangular matrices and Cλ is the one-dimensional b-module on which eii acts as
multiplication by λi.

Let Θ be the set of maximal ideals of the center Z of U(g). For each θ ∈ Θ denote by Oθ the
full subcategory of O consisting of modules annihilated by some power of θ. The category O
splits as a direct sum of the subcategories Oθ. Let prθ : O → O denote the projection onto Oθ.
Each Verma module belongs to some Oθ, and M(λ) and M(µ) belong to the same subcategory
if and only if λ and µ are in the same orbit in the dot action of the Weyl group of g on h∗,
i.e., if and only if (λ1, λ2 − 1, . . . , λn − n+ 1) and (µ1, µ2 − 1, . . . , µn − n+ 1) are in the same
Sn-orbit. We write θ →a θ

′ if there exist λ, µ ∈ h∗ such that M(λ) ∈ Oθ, M(µ) ∈ Oθ′ and
λ→a µ.

Let V be the natural n-dimensional representation of g. The functor V ⊗ − : O → O
decomposes as a direct sum

⊕
a∈CEa, where

Ea =
⊕
θ,θ′∈Θ
θ→aθ′

prθ′ ◦(V ⊗−) ◦ prθ .

Each summand Ea has a left and right adjoint

Fa =
⊕
θ,θ′∈Θ
θ→aθ′

prθ ◦(V ∗ ⊗−) ◦ prθ′ .

Let λ ∈ h∗. We have V ⊗M(λ) = V ⊗ (U(g)⊗U(b) Cλ) ' U(g)⊗U(b) (V ⊗Cλ), and therefore
V ⊗M(λ) has a filtration with quotients isomorphic to the modules M(λ + εi), i = 1, . . . , n.
Similarly V ∗ ⊗ M(λ) has a filtration with quotients isomorphic to the modules M(λ − εi),
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i = 1, . . . , n. It follows that

[EaM(λ)] =
∑
µ∈h∗

λ→aµ

[M(µ)], [FaM(λ)] =
∑
µ∈h∗

µ→aλ

[M(µ)]

in K0(O). Hence

[EaFaM(λ)]− [FaEaM(λ)] = cλ,a[M(λ)],

where cλ,a = #{i | λi − i + 1 = a} −#{i | λi − i + 1 = a − 1}. Because the classes of Verma
modules are a basis for K0(O), we deduce that for each a ∈ C the functors Ea and Fa give a
weak sl2-categorification on O in which the simple module L(λ) has weight cλ,a.

7.4.2. Given M a g-module, we have an action map g⊗M →M . Let XM ∈ Endg(V ⊗M) be
the corresponding adjoint map. This defines an endomorphism X of the functor V ⊗ −. We
have XM(v ⊗m) = Ω(v ⊗m) where Ω =

∑n
i,j=1 eij ⊗ eji ∈ g⊗ g.

Define TM ∈ Endg(V ⊗V ⊗M) by TM(v⊗v′⊗m) = v′⊗v⊗m. This defines an endomorphism
T of the functor V ⊗ V ⊗−.

Lemma 7.21. We have the following equality in Endg(V ⊗ V ⊗M):

TM ◦ (1V ⊗XM) = XV⊗M ◦ TM − 1V⊗V⊗M .

Proof. We have

XV⊗MTM(v ⊗ v′ ⊗m) =
n∑

i,j=1

eijv
′ ⊗ eji(v ⊗m)

=
n∑

i,j=1

eijv
′ ⊗ ejiv ⊗m+

n∑
i,j=1

eijv
′ ⊗ v ⊗ ejim

= v ⊗ v′ ⊗m+ TM(1V ⊗XM)(v ⊗ v′ ⊗m).

�

The lemma implies that for each l we can define a morphism Hl(1) → Endg(V
⊗l ⊗M) by

Ti 7→ 1⊗l−i−1
V ⊗TV ⊗i−1⊗M and Xi 7→ 1⊗l−iV ⊗XV ⊗i−1⊗M . Jon Brundan has pointed out to us that

this coincides up to shift (cf Remark 5.14) with an action described by Arakawa and Suzuki
[ArSu, §2.2].

7.4.3. We shall now show that X and T restrict to give endomorphisms of the functors Ea and
E2
a which define sl2-categorifications on O. In view of Lemma 7.21, it suffices to identify Ea as

the generalised a-eigenspace of X acting on V ⊗−.
To this end we observe that Ω = 1

2
(δ(C) − C ⊗ 1 − 1 ⊗ C), where C =

∑n
i,j=1 eijeji ∈ Z

is the Casimir element and δ : U(g) → U(g) ⊗ U(g) is the comultiplication. Furthermore
C =

∑n
i=1 e

2
ii +

∑
1≤i<j≤n(eii − ejj) +

∑
1≤i<j≤n ejieij acts on the Verma module M(λ) as

multiplication by bλ =
∑n

i=1 λ
2
i +
∑

1≤i<j≤n(λi−λj). It follows that Ω stabilizes any g-submodule

of V ⊗M(λ) = L(ε1) ⊗M(λ) and that the induced action on any subquotient isomorphic to
M(λ+εi) is as multiplication by 1

2
(bλ+εi

−bε1−bλ) = λi−i+1. Since V ⊗M(λ) =
⊕

a∈CEaM(λ),
this identifies EaM(λ) as the generalised a-eigenspace ofXM(λ). We deduce that for anyM ∈ O,
the generalized a-eigenspace of XM is EaM .
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Remark 7.22. The canonical adjunction between V ⊗− and V ∗⊗− is given by the canonical
maps η : C → V ∗ ⊗ V and ε : V ⊗ V ∗ → C, v ⊗ ξ 7→ ξ(v). Let XM ∈ Endg(V

∗ ⊗M) and
TM ∈ Endg(V

∗ ⊗ V ∗ ⊗M) be the induced endomorphisms (cf §4.1.2). Then XM(ϕ ⊗ m) =
(−Ω− n)(ϕ⊗m) and TM(ϕ⊗ ϕ′ ⊗m) = ϕ′ ⊗ ϕ⊗m.

7.5. Rational representations.

7.5.1. The construction of sl2-categorifications in §7.4 works, more or less in the same way, on
the category G-mod of finite-dimensional rational representations of G = GLn(k), where k is
an algebraically closed field of characteristic p > 0.

Denote by X the character group of the subgroup of diagonal matrices in G. We identify
X with Zn via the isomorphism sending (λ1, . . . , λn) ∈ Zn to λ =

∑
i λiεi ∈ X , where εi

is defined by εi(diag(t1, . . . , tn)) = ti. This identifies the set X+ of dominant weights with
{(λ1, . . . , λn) ∈ Zn | λ1 ≥ . . . ≥ λn}. For each λ ∈ X+, let L(λ) be the unique simple G-module
with highest weight λ.

Let B be the Borel subgroup of upper triangular matrices in G. For each λ ∈ X , the cohomol-
ogy groups H i(λ) of the associated line bundle on G/B are objects of G-mod. The alternating
sums χ(λ) =

∑
i≥0 ch(H i(λ)) ∈ Z[X ] span the image of the embedding ch : K0(G-mod) →

Z[X ].
The Weyl group W = Sn of G acts on X = Zn by place permutations. This extends

to an action of the affine Weyl group Wp generated by W together with the translations by
pεi−pεi+1, 1 ≤ i ≤ n−1. Let Y be the group of permutations of Z generated by d, σ0, . . . , σp−1,
where md = m+ 1 and

mσa =


m+ 1 if m ≡ a− 1 (mod p)

m− 1 if m ≡ a (mod p)

m otherwise.

The action of Wp on X = Zn commutes with the diagonal action of Y .

Lemma 7.23. Two elements λ, µ ∈ X have the same stabilizer in Wp if and only if they are
in the same Y -orbit.

Proof. Both conditions are equivalent to the following: for all i, j, and r, we have λi− λj = pr
if and only if µi − µj = pr. �

We shall use the corresponding ‘dot actions’ obtained by conjugating by the translation by
ρ = (0,−1, . . . ,−n+ 1) ∈ X :

w · λ = w(λ+ ρ)− ρ, λ · y = (λ+ ρ)y − ρ.

Let Θ be the set of orbits of the dot action of Wp on X . For each θ ∈ Θ, let Mθ be
the full subcategory of G-mod consisting of modules whose composition factors are all of the
form L(λ) for λ ∈ θ. The Linkage Principle [CaLu] implies that G-mod decomposes as a
direct sum G-mod =

⊕
θ∈ΘMθ. Let prθ : G-mod → G-mod denote the projection onto

Mθ. Given λ, µ ∈ X and a ∈ 0, . . . , p− 1, we write λ →a µ if there exists j such that
(λj − j+1)+1 = µj − j+1 ≡ a (mod p) and λi = µi for i 6= j. Note that λ→a µ implies that
w · λ →a w · µ for all w ∈ Wp. For θ, θ′ ∈ Θ, we write θ →a θ

′ if there exist λ ∈ θ and µ ∈ θ′
such that λ→a µ.
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Let V be the natural n-dimensional representation of G. The left and right adjoint func-
tors V ⊗ − : G-mod → G-mod and V ∗ ⊗ − : G-mod → G-mod decompose as direct sums⊕

0≤a≤p−1Ea and
⊕

0≤a≤p−1 Fa, where Ea and Fa are sums of translation functors, defined in
the same way as in §7.4. The functors Ea and Fa have been studied extensively by Brundan
and Kleshchev [BrKl].

Let ea and fa be the maps on characters induced by Ea and Fa. For each λ ∈ X , we have
(eg using [Jan, Proposition 7.8])

(7) eaχ(λ) =
∑
µ∈X
λ→aµ

χ(µ), faχ(λ) =
∑
µ∈X
µ→aλ

χ(µ)

in Z[X ]. Hence
eafaχ(λ)− faeaχ(λ) = cλ,aχ(λ),

where cλ,a = #{i | λi − i + 1 ≡ a (mod p)} −#{i | λi − i + 1 ≡ a − 1 (mod p)}. We deduce
that for each a ∈ {0, . . . , p−1} the functors Ea and Fa give a weak sl2-categorification in which
the simple module L(λ) has weight cλ,a.

7.5.2. These weak sl2-categorifications can be improved to sl2-categorifications using the same
procedure as in the characteristic zero case §7.4. We first define endomorphisms X of V ⊗− and
T of V ⊗V ⊗−. Note that to define X, we first pass from G-modules to modules over Lie(G) =
gln(k). One small modification to the argument is required when p=2: in order to identify Ea
with the generalized a-eigenspace of X, we write Ω = −δ(Z2)+1⊗Z2+Z2⊗1+Z1⊗Z1− n(n+1)

2
,

where Z1 =
∑

1≤i≤n eii and Z2 =
∑

1≤i<j≤n(eii−i)(ejj−j)−
∑

1≤i<j≤n ejieij are central elements

of Dist(G) (cf [CaLu, §2.2]).
By composing the derived (and homotopy) equivalences arising from these sl2-categorifications

on G-mod, we obtain many equivalences.

Theorem 7.24. Let λ and µ be any two weights in X with the same stabilizer under the dot
action of Wp. Then there are equivalences

Kb(MWp·λ)
∼→ Kb(MWp·µ) and Db(MWp·λ)

∼→ Db(MWp·µ)

that induce the map
χ(w · λ) 7→ χ(w · µ)

on characters.

Remark 7.25. Rickard conjectured the existence of such equivalences for any connected re-
ductive group having a simply-connected derived subgroup and whose root system has Coxeter
number h < p [Ri2, Conjecture 4.1]. He proved the truth of his conjecture in the case of trivial
stabilizers (under the weaker assumption h ≤ p). We do not place any restriction on p in
Theorem 7.24.

Proof. By Lemma 7.23 we may assume that µ = λ · y where y ∈ {d, σ0, . . . , σp−1}. If µ = λ · d,
then we have an equivalence L(1, . . . , 1) ⊗ − : MWp·λ

∼→ MWp·µ, given by tensoring with the
determinant representation, that induces the desired map on characters.

Suppose that µ = λ · σa. Using the sl2-categorification on G-mod provided by E = Ea and
F = Fa, we obtain a self-equivalence Θ of Kb(G-mod) and of Db(G-mod) such that [Θ] = s



42 JOSEPH CHUANG AND RAPHAËL ROUQUIER

(Theorem 6.4). We define an sl2-module U =
⊕

i∈Z Zui by eui = ui+1 for i ≡ a−1 (mod p) and
eui = 0 otherwise, and fui = ui−1 for i ≡ a (mod p) and fui = 0 otherwise. Then sui = ui+1 if
i ≡ a− 1 (mod p), sui = −ui−1 if i ≡ a (mod p), and sui = ui otherwise. Thus on the tensor
power U⊗n we have suν = (−1)h−(ν)uνσa , where uν = uν1 ⊗ · · · ⊗ uνn and h−(ν) = #{i | νi ≡ a
(mod p)}.

By (7) we have a homomorphism of sl2-modules U⊗n → K0(G-mod), uν+ρ 7→ χ(ν). It follows
that sχ(ν) = (−1)h−(ν+ρ)χ(ν ·σa). Hence sχ(w ·λ) = (−1)h−χ(w ·µ), where h− = h−(w ·λ+ρ) =

h−(λ + ρ). We conclude that Θ[−h−] restricts to equivalences Kb(MWp·λ)
∼→ Kb(MWp·µ) and

Db(MWp·λ)
∼→ Db(MWp·µ) that induce the desired map on characters. �

7.6. q-Schur algebras. We explain in this part how to obtain sl2-categorifications, and hence
derived equivalences, for q-Schur algebras.

Let q ∈ k×. Let Yn =
⊕

λ IndH
f
n

Hf
λ

k, where λ = (λ1 ≥ · · · ≥ λr) runs over the partitions of n

and Hf
λ =

⊕
w∈S[1,λ1]×···×S[n−λr+1,n]

Twk is the corresponding parabolic subalgebra of Hf
n and k

corresponds to the representation 1. We define the q-Schur algebra Sn = EndHf
n
(Yn).

Let Yn be the full subcategory of Hf
n -mod whose objects are direct sums of direct summands

of Yn (“q-Young modules”) and let Y =
⊕

n≥0 Yn. Mackey’s formula shows that Y is stable

under E and F . For each of the sl2-categorifications on
⊕

n≥0H
f
n -mod constructed in §7.2

we deduce from Theorem 5.32 an sl2-categorification on
⊕

n≥0 Sn-mod and a morphism of sl2-

categorifications
⊕

n≥0 Sn-mod→
⊕

n≥0H
f
n -mod. This provides a version of Theorem 7.12 for

q-Schur algebras.

Remark 7.26. We go back to the setting of §7.3 (in particular, q is a prime power). The
canonical map An → EndHfopp

n
(kGneBn)opp is surjective and its image S ′n is Morita equiva-

lent to Sn (“double centralizer Theorem”, cf [Ta]). This gives by restriction a fully faith-

ful functor Sn-mod
∼→ S ′n-mod → An-mod. Since E(kGneBn) ' kGn+1eBn+1 , it follows

that
⊕

n≥0 Sn-mod is stable under E. Mackey’s formula shows that it is also stable un-
der F . This gives a morphism of weak sl2-categorifications

⊕
n≥0 Sn-mod →

⊕
n≥0An-mod

and the composition with the morphism
⊕

n≥0An-mod →
⊕

n≥0H
f
n -mod of §7.3.1 is isomor-

phic to the morphism
⊕

n≥0 Sn-mod →
⊕

n≥0H
f
n -mod constructed above. One deduces that⊕

n≥0 Sn-mod→
⊕

n≥0An-mod is actually a morphism of sl2-categorifications.
Note also that we get another proof of Lemma 7.16 using the fact that the canonical map

K0(Sn-mod)
∼→ K0(An-mod) is an isomorphism.

Remark 7.27. The interested reader will extend the results of §7.5 to the quantum case and
show that the categorification of q-Schur algebras can be realized as a subcategorification of
the quantum group case.

7.7. Realizations of minimal categorifications.

7.7.1. We now show that the minimal categorification of §5.3 is a special case of the categori-
fication on representations of blocks of cyclotomic Hecke algebras.

Fix a ∈ k× and put v = (v1, . . . , vn) = (a, . . . , a). Then Hi = Hi(q, v) is the quotient of Hi

by the ideal generated by xn1 (where x1 = X1−a). The kernel of the action of Hi on the simple
module Ki = Hi⊗Pi

Pi/mi contains xn1 if and only if i ≤ n (cf §3.2.1); let Ai be the block of Hi
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containing Ki for 0 ≤ i ≤ n. A finitely generated Hi-module M is in Ai if and only if ni acts
nilpotently on M (equivalently mi acts nilpotently on M), and Ki is the unique simple module
in Ai.

We have FM = 0 for M ∈ A0-mod and FM = ResHi
Hi−1

M ∈ Ai−1-mod for M ∈ Ai-mod and
0 < i ≤ n.

Likewise EM = 0 for M ∈ An-mod. Let M ∈ Ai-mod with 0 ≤ i < n. Consider N a simple
Hi+1-quotient of EM . We have Hom(EM,N) ' Hom(M,FN) 6= 0. In particular, FN has a
non-zero Hi-submodule M ′ on which x1, . . . , xi act nilpotently. Let M ′′ be the (k[xi+1]⊗Hi)-
submodule of FN generated by M ′. Then, x1, . . . , xi+1 act nilpotently on M ′′. Now, N is
a simple Hi+1-module, hence it is generated by M ′′ as a Hi+1-module, so x1, . . . , xi+1 act
nilpotently on N . We deduce that they act nilpotently on EM as well. So, EM ∈ Ai+1-mod.

So A =
⊕

iAi-mod is an sl2-categorification and Q ⊗ K0(A) is a simple sl2-module of
dimension n+ 1. Let U = K0 = k, the simple (projective) module for A0 = k. The morphism
of sl2-categorifications RU : A(n)→ A is an equivalence (Proposition 5.26). In particular H̄i,n

and Ai are isomorphic, as each has an i!-dimensional simple module.

7.7.2. We explained in §3.3.2 that H̄i,n is Morita equivalent to its center, which is isomorphic to
the cohomology of certain Grasmmannian varieties. We sketch here a realization of the minimal
categorification in that setting. We consider only the case q = 1; the case q 6= 1 can be dealt
with similarly, replacing cohomology by Gm-equivariant K-theory.

Let Gi,j be the variety of pairs (V1, V2) of subspaces of Cn with V1 ⊂ V2, dimV1 = i and
dimV2 = j. We put Ai = H∗(Gi). The (Ai+1, Ai)-bimodule H∗(Gi,i+1) defines by tensor
product a functor Ei : Ai-mod → Ai+1-mod and switching sides, a left and right adjoint
Fi : Ai+1-mod→ Ai-mod. Let E =

⊕
Ei and F =

⊕
Fi. This gives a weak sl2-categorification

that has been considered by Khovanov as a way of categorifying irreducible sl2-representations.
It is a special case of the construction of irreducible finite dimensional representations of sln
due to Ginzburg [Gi].

We denote by X the endomorphism of E given on H∗(Gi,i+1) by cup product by c1(Li+1).
We have a P1-fibration π : Gi,i+1 ×Gi+1

Gi+1,i+2 → Gi,i+2 given by first and last projection. It
induces a structure of H∗(Gi,i+2)-module on H∗(Gi,i+1 ×Gi+1

Gi+1,i+2) = H∗(Gi,i+1) ⊗H∗(Gi+1)

H∗(Gi+1,i+2). There is a unique endomorphism T of H∗(Gi,i+2)-module on H∗(Gi,i+1 ×Gi+1

Gi+1,i+2) satisfying T (c1(Li+1)) = c1(Li+2) − 1. This provides us with an endomorphism of
Ei+1Ei and taking the sum over all i, we get an endomorphism T of E2. One checks easily that
this gives an sl2-categorification (with a = 0) that is isomorphic to the minimal categorification.

The functor E(1,r) : Ai-mod→ Ai+r-mod is isomorphic to the functor given by the bimodule
H∗(Gi,i+r).

Take i ≤ n/2 and let us now consider Θ[−i], restricted to a functor Db(H∗(Gi)-mod)
∼→

Db(H∗(Gn−i)-mod). It is probably isomorphic to the functor given by the cohomology of the
subvariety {(V, V ′)|V ∩ V ′ = 0} of Gi × Gn−i, the usual kernel for the Grassmannian duality
(cf eg [KaScha, Exercice III.15]).
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