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Abstract 

This thesis considers pattern formation governed by the two dimensional 

Swift-Hohenberg equation in square and rectangular domains. 

For the square, the dependence of the solution on the size of the square 

relative to the characteristic wavelength of the pattern is investigated for pe

riodic, non-periodic (rigid) and quasi-periodic boundary conditions. Linear 

and weakly nonlinear analysis is used together with numerical computation 

to identify the bifurcation structure of steady-state solutions and to track 

their nonlinear development as a function of the control parameter. Non

linear solutions arising from secondary bifurcations and fold bifurcations are 

also found. Time-dependent computations are also carried out in order to 

investigate stability, and to find certain nonlinear steady states. 

The structure of solutions in the limit where the size of the square is much 

larger than the characteristic wavelength of the pattern is investigated using 

asymptotic methods. 

For the rectangle, the dependence of the solution on the size of the rectan

gle relative to the characteristic wavelength of the pattern is investigated for 

non-periodic (rigid) boundary conditions. Most results are obtained for two 

aspect ratios, 0.75 and 0.5. Linear analysis is used together with numerical 

computations to identify the bifurcation structure of steady-state solutions 

and to track their nonlinear development. Nonlinear solutions arising from 

secondary bifurcations and fold bifurcations are also found, again making use 

of time-dependent calculations where necessary. 

Finally, the structure of solutions in the limit where the size of the rect

angle is much larger than the characteristic wavelength of the pattern is 

investigated using asymptotic methods. 

The results are discussed in relation to patterns observed in physical 

systems such as Rayleigh-Benard convection. 
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Chapter 1 

Introduction 

1.1 Background 

Pattern formation through transition from a homogeneous or structureless 

state to a more complex state is a common occurrence in nature with well 

known examples occurring in fluid dynamics, chemical reactions and biolog

ical systems (see for example Cross and Hohenberg 1993). In laboratory ex

periments designed to understand such transitions, for example in Rayleigh

Benard convection and Taylor-Couette flow (see the book by Koschmieder 

1993), the container walls have a significant impact on the patterns that 

are observed not only in small aspect ratio systems but also in large scale 

systems where the dimensions of the geometry are much greater than the 

characteristic length scale of the instability. 

In the Rayleigh-Benard system, early theoretical work designed to take 

account of the lateral walls of the container includes that by Davis (1967) 

and Catton (1970) who used a 'finite roll' Galerkin approximation to the 

linearized Boussinesq equations to predict that in rectangular planform con

tainers convection begins in the form of rolls parallel to the shorter sides. This 

is consistent with experimental observations in moderately sized planforms 

(Stork and Muller 1972, Buhler, Kirchartz and Oertel 1979, Kirchartz and 

Oertel 1988) and with the long channel limit considered by Davies-Jones 

(1970) although in larger planforms patterns appear to rarely consist of 

straight parallel rolls (Gollub and ~IcCarriar and Steinman 1982). Other 

7 



experiments showing the range of patterns observed in Rayleigh-Benard con

vection include those in square planform containers by Koschmieder (1966), 

those in circular planform containers by Koschmieder (1974) and Croquette, 

Mory and Schosseler (1983), those on externally excited systems by Chen 

and Whitehead (1968) and Croquette and Schosseler (1982) and those on 

pattern dynamics by Croquette (1989). 

For square containers, finite roll Galerkin approximations to the linearized 

system predict an orthogonal combination of "crossed rolls" at onset (Ed

wards 1988) whereas experiments in large planforms often reveal diagonal 

structures (Koschmieder 1966). A possible reason for this discrepancy as 

pointed out by Edwards (1988) is that Galerkin representations based on 

finite roll approximations parallel and perpendicular to the sides of the con

tainer are unlikely to be able to predict diagonal roll structures unless a large 

number of modes is used and this is generally not possible for large three di

mensional domains (Arter and Newell 1988). This is a major drawback to 

the use of Galerkin methods because the preferred modes at onset generally 

do involve diagonal structures. 

A better approach may be to use finite-difference or finite-element meth

ods where no assumptions of the underlying structure of the eigenfunctions 

are involved. Even so one of the difficulties still encountered in such studies 

is the large computing power needed to solve even the linearized system for 

three dimensional domains large enough to contain more than just a few rolls. 

This led Greenside and Coughran (1984) to undertake a numerical study of 

the simpler Swift-Hohenberg system, a two dimensional relaxational model 

(Swift and Hohenberg 1977) designed to contain many of the ingredients of 

the Boussinesq system. This has the non dimensional form 

au 
- = cU - (1 + \72 

}2U - u
3 

at ' (1.1 ) 

where \72 = ~ + ~, x and yare non-dimensional Cartesian coordinates, 

: is a control parameter and u(x, y, t) is a characteristic property of the 

system such as the vertical velocity component. at mid-height in a horizon

tal fluid layer. The control parameter [ is equivalent to the excess of the 

Rayleigh number above its critical value for an infinite layer, where non

trivial solutions of (1.1) first. appear at [ = 0 with characteristic wavelength 
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27r. Greenside and Coughran (1984) carried out a time evolution study of 

(1.1) identifying many interesting patterns in both squares and rectangular 

domains and because of the relatively simple form of the equation it was 

possible to compute patterns over a wide range of domain sizes. Other work 

on the Swift-Hohenberg equation includes that for a rectangular geometry 

by Greenside, Coughran and Schryer (1982) and for a circular geometry by 

l'.Iorris, Bodenschatz, Cannell and Ahlers (1993). 

A major development in the theoretical understanding of Rayleigh-Benard 

convection was the development by Newell and Whitehead (1969) and Segel 

(1969) of multiple scale representations of the solution in large domains. This 

work showed how multiple-scale methods could be used to represent the so

lution as a set of convection rolls modulated by an envelope or amplitude 

function. This allowed a weakly-nonlinear theory to be formulated describ

ing these solutions just beyond the onset of convection. The introduction of 

lateral walls in such systems was studied by Brown and Stewartson (1977, 

1978) for rectangular and circular domains respectively. The effect of lateral 

boundaries in simpler two-dimensional containers was considered by Daniels 

(1977a, 1978) and later papers (Daniels 1981, 1984) studied the stability and 

evolution of the roll pattern. The main effect of the lateral boundary is to 

determine the boundary conditions for the amplitude functions, as also dis

cussed by Cross (1982). This type of representation was used by Daniels and 

Weinstein (1992) to discuss the cross roll structure of the Swift-Hohenberg 

equation near a single lateral boundary and by Daniels and Weinstein (1996) 

to discuss orthogonal roll patterns for the Swift-Hohenberg equation in rect

angular planforms. The structure of grain boundaries in the latter system 

was discussed by Daniels and Lee (1999). Other investigations of large plan

form systems include those by Cross and Newell (1984) and Newell, Passot 

and Souli (1990). More recently Daniels (2000) has used the amplitude for

mulation to describe the weakly-nonlinear structure of the Swift-Hohenberg 

system near onset in an arbitrary two dimensional planform. This "'ork pro

poses that at onset the roll pattern forms along the largest available span of 

the domain. This is of relevance to the present work which is concerned with 

finding solutions of the Swift-Hohenberg equation in square or rectangular 

domains, where the longest spans are the diagonals. 
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1.2 Plan of Study 

The main aim of the present work is to find solutions of the two dimensional 

Swift-Hohenberg equation in square and rectangular domains. In Chapter 

2, the problem is formulated for a square domain 0 ~ x ~ L, 0 ~ y ~ L. 

Thus there are two non-dimensional parameters, the control parameter c 

and the parameter L which determines the size of the domain relative to 

the characteristic wavelength which for an infinite layer is 27f. Unlike the 

study of Greenside and Coughran (1984) the main aim here is to undertake 

a bifurcation analysis allowing the underlying structure and symmetries of 

the system to be identified for a range of values of L and c. The boundary 

conditions are taken to be 

82
1t 81t 

'U = - - 0- = 0 on x = 0, Land y = 0, L, (1.2) 
8q2 8q 

where q is the inward normal to the boundary and 8 in a constant parameter. 

With 0 = ° the conditions are referred to as periodic because they are then 

consistent with periodic solutions of (1.1) in an infinite domain. If 0 is non

zero such solutions are excluded and the conditions are then non-periodic; 

in particular if £5 is infinite 1t and its first derivative vanish on the boundary, 

equivalent to realistic rigid lateral boundaries in the Rayleigh-Benard system. 

l\lost solutions determined here are for the rigid problem but the periodic 

problem (0 = 0) and quasi-periodic problem (0 small) are studied in Sections 

2.3 and 2.5 respectively using weakly-nonlinear theory to provide some useful 

analytical insight. In Section 2.4 a thirteen point finite-difference scheme is 

used to obtain the eigenvalues [ and eigenfunctions 1L of the steady linearized 

version of (1.1) for the rigid problem. Results are obtained for a wide range of 

values of L showing how the symmetry and structure of the preferred pattern 

changes as a function of L. Nonlinear solutions of the rigid problem are first 

found in Section 2.6 using an explicit time dependent finite-difference scheme 

to compute the solutions forward in time to reach steady-state. This reveals a 

wide range of steady-state solution patterns. In order to track these solutions 

and those found in the linear analysis of Section 2.4 into the nonlinear regime 

in Section 2.7 the finite difference scheme of Section 2.4 is extended and 

combined with a Newton iteration to track the nonlinear development of 
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these steady-state solutions for increasing €. Secondary bifurcations and 

nonlinear fold bifurcations are also identified. The results are compared with 

experimental findings for the Rayleigh-Benard system in Section 2.8. 

In Chapter 3 an asymptotic theory is developed for the square domain 

in the limit as L -+ 00 and the results are compared with those of Chapter 

2. The asymptotic theory is based on the analysis of Daniels (2000) but 

modified to allow for the corners of the square. This leads to significant dif

ferences in the scalings involved for the control parameter and length scales. 

The main core expansion is considered in Section 3.3 and uses a multiple 

scale representation of the roll pattern. The core solution must match with 

solutions in the corners of the square which are considered in Section 3.4. 

The leading order core solution is constructed using Fourier transform the

ory in Section 3.5 and linear and weakly nonlinear solutions are determined 

in Sections 3.6 and 3.7 respectively. Section 3.8 discusses further wall regions 

that are needed near the boundary of the square to adjust the solution to 

the rigid boundary conditions. The results are discussed in Section 3.9. 

In Chapter 4 the results of Chapter 2 are extended to the case of the 

rectangular domain although here only the rigid problem is considered. The 

rectangle occupies the domain 0 ~ x ~ L, 0 ~ y ~ M and most results are 

for two particular aspect ratios, M / L = 0.75 and M / L = 0.5. These are 

described in Sections 4.3 and 4.4 respectively. The results are discussed in 

Section 4.5. 

Chapter 5 considers the limit of large rectangular domains where L -+ 00 

and M -+ 00. The asymptotic theory of Chapter 3 is modified in Section 5.3 

to allow for the rectangular geometry and linear and nonlinear solutions are 

obtained in Sections 5.4 and 5.5 respectively. The results are discussed and 

compared with the numerical results of Chapter 4 in Section 5.5. 

Chapter 6 contains a summary of the main results and conclusions along 

with a discussion of possible future avenues of research. 
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Chapter 2 

Pattern Formation in Squares 

2.1 Introduction 

This study investigates convection patterns in a square by finding solutions 

of the two-dimensional Swift-Hohenberg equation subject to various bound

ary conditions. The aim is to gain insight into the nature of patterns at 

the onset of convection and also in the supercritical nonlinear regime. The 

Swift-Hohenberg equation (Swift and Hohenberg 1977) is one of several phe

nomenological models (see, for example, Cross and Hohenberg 1993) which 

provide a simplification of the three-dimensional Rayleigh-B~nard system but 

have many features in common with the latter. 

There have been a number of key studies of pattern formation in finite 

domains, although none of those have studied the square domain in great 

depth. Davis (1967) studied the linear theory for Rayleigh-B~nard convec

tion in a rectangular box heated from below and used a Galerkin method 

based on 'finite roll' solutions to predict that convection would set in as rolls 

parallel to the shorter sides. Some of Davis's findings were confirmed experi

mentally by Stork and Muller (1972) although their observations of patterns 

in moderately-sized rectangular boxes, including square boxes, also produced 

various cellular patterns not predicted by Davis's linear theory. The occur

rence of crossed rolls, a superposition of rolls parallel to both .sides, was 

studied using linear theory by Edwards (1988) who showed that. such pat

terns are preferred to unidirectional rolls in square or near-square boxes. In 
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the square, such solutions allow the four-fold rotational symmetry of the sys

tem to be preserved, and this helped to explain some of the other patterns 

observed by Stork and Muller {1972}. 

These theoretical and experimental studies of the three-dimensional 

Rayleigh-Benard system were limited to boxes accommodating up to about 

six rolls. One of the advantages of studying the Swift-Hohenberg equation 

is that much larger domains can be investigated numerically, as in the st udy 

by Greenside and Coughran (1984). They used a time-dependent scheme to 

study nonlinear pattern evolution for the two-dimensional Swift-Hohellberg 

equation in rectangular domains, including the square, accommodating up 

to about thirty rolls. This identified a wide range of possible stable states 

of the system and although a bifurcation analysis was not carried out the 

relative stability of various nonlinear states was studied using a Lyapunov 

functional. A numerical study of a more complex two-dimensional system in 

rectangular domains has been carried out by Manneville (1983). 

Theoretical studies of orthogonal roll patterns governed by the Swift

Hohenberg equation in large rectangular domains (that is, where many rolls 

can be accommodated) have been carried out by Daniels and Weinstein 

(1996) and Daniels and Lee (1999) using weakly nonlinear theory based on 

multiple-scale and matched asymptotic expansion techniques. These studies 

are limited to solutions composed of roll components parallel and perpendic

ular to the sides of the rectangle and do not include the limiting case of a 

square domain. Similar methods have been used to study patterns governed 

by the Swift-Hohenberg equation in large closed two-dimensional domains of 

arbitrary shape by Daniels (2000). 

The main aim of the present study is to carry out a bifurcation analysis 

of the Swift-Hohenberg equation in a square. Section 2.2 sets out the equa

tion and the various boundary conditions to be considered. In Section 2.3, 

analytical insight is gained by first studying the weakly nonlinear problem 

with periodic lateral boundaries. This is extended to the more realistic case 

of rigid lateral boundary conditions in Section 2.4, where a numerical scheme 

is developed based on finite differences. Qualitative differences between the 

periodic and rigid cases are considered in Section 2.5 by using weakly non

linear theory to study a quasi-periodic system where the periodic conditions 
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are modified to incorporate a small rigid component. The next two sections 

consider the nonlinear system with rigid boundary conditions. Solutions are 

found using a time-dependent scheme in Section 2.6, and a bifurcation analy

sis of nonlinear steady-state solutions is carried out in Section 2.7 by tracking 

solutions using Newton iteration. Results are obtained for a wide range of 

sizes of the square. The results are discussed in Section 2.8. 

2.2 Formulation of the problem 

The Swift-Hohenberg equation is 

8u = EU _ (1 + \72 )2U _ u3 

8t ' 
(2.1 ) 

where t is the non-dimensional time, \7 2 = ~ + ~ where x and yare non

dimensional Cartesian coordinates, E is a control parameter and u(x, y, t) is 

a scalar field. 

The geometry that we are considering is a square 0 ~ x ~ L, 0 ~ y ~ L 

with the equivalent of rigid lateral boundaries so that on the boundary U and 

its derivative normal to the boundary vanish: 

8u 
u = 8q = 0 on x = 0, Land y = 0, L. (2.2) 

Note that here q is used to denote the inward normal direction. 

In order to gain analytical insight we shall also consider the case of pe

riodic boundary conditions where u and its second derivative normal to the 

boundary are equal to zero at the boundary: 

82u 
u = - = 0 on x = 0, Land y = 0, L. 8q2 

(2.3) 

In Section 2.5 we shall consider a combination of the rigid and periodic 

conditions: 

82u 8u 
1£ = - - 6- = 0 on x = 0, Land y = 0, L, (2.4) 

8q2 8q 

which we shall refer to as the quasi-periodic system. Here 8 is a general 

parameter which is zero in the periodic problem and infinity in the rigid 

case. 
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2.3 Analysis of the periodic problem 

In this section we shall consider the Swift-Hohenberg equation with the pe

riodic boundary conditions (2.3). We first describe the analytical solution 

of the linear problem and obtain the eigenvalues c at which steady-state 

linearized solutions exist. We then find the form of weakly nonlinear steady

state solutions near these bifurcation points and examine their stability. 

2.3.1 Linear solution 

Solutions of the linearized Swift-Hohenberg equation 

8u 2 
8t =C1£-(1+V2

) u, (2.5) 

subject to the boundary conditions (2.3) can be expressed in the form 

m7rX n7ry 
u = eO'tsin --sin-

L L ' 
(2.6) 

where m and n are positive integers. Substitution into (2.5) shows that the 

growth rate (J is given by 

(2.7) 

and that steady-state linearized solutions exist for 

(2.8) 

Since (J = C - Cmn, our analysis shows that the trivial solution u = 0 becomes 

unstable to the mode (m, n) defined by 

. m7rX . ?lily 
U = U mn == sm L sm L' (2.9) 

when C > Cmn. Figure 2.1 shows the eigenvalues E'mn plotted as a function of 

L. 

At low values of L the (1,1) mode is preferred (i.e occurs at lowest c) but at 

higher L the preferred mode depends on which steady-state eigenmode (2.9) 

best fits the size of the square. Table 2.1 shows the sequence of bifurcations 

predicted in the case L = 5. 
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m n Cmn 

1 1 0.044281478 

1 2 0.948521881 

2 2 4.658144105 

1 3 8.689771045 

2 3 17.07502964 

1 4 32.61930171 

3 3 37.28464245 

2 4 47.55045122 

3 4 78.66988223 

Table 2.1: Bifurcation sequence for the case L = 5 

Note also that modes (m, n) for which m =I n correspond to the existence 

of repeated eigenvalues C = cmn = Cnm and thus the possibility of solutions 

formed from linear combinations of Umn and its orthogonal rotation U nm . A 

weakly nonlinear analysis is used (below) to identify the actual solutions of 

the nonlinear system in such cases. 

2.3.2 Weakly nonlinear solution 

We now investigate solutions of the nonlinear Swift-Hohenberg system (2.1), 
(2.3) near the bifurcation points (2.8) of the steady state solution. We assume 

an expansion for U in the form 

1 3 
'l.t = t2uo + tUl + t2U2 + ... , (2.10) 

\\'here 

(2.11) 

and 'Ui = Ui (x, y, T). Here T is a slow time scale defined by T = tt and is 

included to allow the stability of weakly nonlinear steady-state solutions to 

be examined. Substitution of (2.10) into (2.1) and (2.3) gives at order t~, 

02uo 
Uo = -- = ° at x = 0, L; oq2 

16 

y = 0, L. 

(2.12) 



This is the linearized steady-state system and so the solution is 

(2.13) 

where 1£11111 is the linear eigenfunction defined by (2.9) and a and b are arbi

trary functions of T. Here we allow for the possibility that m =1= n, so that 

both Umn and Unm are possible eigenstates; in the case where m = n we may 

simply take b = O. We do not consider cases where Emn has the same value 

for different (m, n) combinations, such as (1,7) and (5,5). 

At order E, Ul is found to satisfy the same linearized system as Uo: 

82U I 
ttl = -- = 0 = 0 at x = 0, L; y = 0, L 

8q2 
(2.14) 

and so the solution can be taken to be HI = 0 without loss of generality. 
3 

At order [2, U2 is found to satisfy the system 

82
112 

tt2 = -- = 0 at x = 0, L; y = 0, L. 8q2 

(2.15) 

A consistent solution for U2 requires that the secular terms proportional to 

llmn and 'lLnm on the right-hand side vanish. These can be found by substi

tuting (2.13) into the right-hand side and expanding the nonlinear term into 

products of the form sin TIxsin r where rand s are integers. After some 

algebra, it then follows that, from terms proportional to ttmn , we require 

da 9 3 3 2 o = - - a + -a + -ab 
dT 16 4' 

(2.16) 

and, from the terms proportional to 1Lllm , we require 

db 9 3 3 2 o = - - b + -b + -ba . 
dT 16 4 

(2.17) 

First consider the case of a non-repeated eigenvalue (m = n) where we 

take b = 0 and a satisfies 
da 9 3 - = a - -a. 
dT 16 

(2.18) 

For t > 0 we see that there are three steady state solutions a = as given by 

as = 0 and as = ±~. The local stability of these can be examined by setting 

a = as + AeUT in (2.18) with A small. For as = 0 we obtain (; = 1 confirming 
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that the trivial solution is unstable for t > 0, whilst for as = ± 1 we obtain 

(j = -2, showing that the two nonlinear solutions 

4 1 . rmrx. n7ry 
u I"V ±-(c - c )2sm --sm-

3 mn L L ' 
(2.19) 

are stable. The patterns associated with (2.19) for (m, n) = (1,1), (2,2) and 

(3,3) are shown in Figure 2.2. 

Now consider the case of a repeated eigenvalue (m :j n). In this case there 

are nine steady-state solutions a = as, b = bs of (2.16) and (2.17) consisting 

of the trivial solution as = bs = 0 together with: 

4 
as = ±-

3' 

4 
as = ± y'2I' 

4 
as = ± v'2f' 

bs = 0, 

These correspond to supercritical onset solutions for u of the form 

4 1 m7rX n7ry 
u"" ±-(c - c )2sin --sin-3 mn L L ' 

4 1 n7rX m7ry 
u"" ±-(c - c )2sin -sin--3 mn L L' 

4 1 m7rx. n7ry . n7rX m7ry 
u,....., ± M1(C - cmn)2(sin --sm -L + sm -sin --), 

v21 L L L 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

4 1 • m7rX n7ry n7rX m7ry 
1L ,....., ± M1(C - Cmll) 2 (sm --sin - - sin -sin --). (2.27) 

v21 L L L L 

We can test the local stability of the solutions (2.20)-(2.23) by setting 

a = as + ;lear, b = bs + Bear and linearizing in A and f3 in (2.16) and (2.17) 

to obtain 

(2.28) 

(2.29) 

18 



This yields growth rates ij = -2 and ij = -~ for each of the solutions (2.20) 

and (2.21) which are therefore stable, and growth rates ij = -2 and ij = ~ 
for each of the solutions (2.22) and (2.23), which are therefore unstable. If 

11 = ±(foL fo\t2dxdy)! (2.30) 

is used as a measure of the amplitude of each solution then for (2.24) and 

(2.25), 
. 1 _! 2 2! 2 ! 
l£ rv "2c 2(a s +bs )2 = 3(c-cmn)2 

whereas for (2.26) and (2.27) 

(2.31 ) 

(2.32) 

so that the solutions (2.24) and (2.25) of larger amplitude it are the stable 

ones. 

Finally we consider the nature of the weakly nonlinear patterns associated 

with the solutions (2.24}-(2.27). We ignore the possibility of changing the 

sign of 1£ as this will not affect the patterns observed. We shall refer to the 

four solutions with the plus signs in (2.24}-(2.27) as 1£1, U2, U3, 1£4 respectively. 

There are four cases to consider, as follows: 

(i) m even, n odd 

In this case ttl has OE symmetry, i.e it is odd in x about x = ~L and is 

even in y about y = ~ L. Since 1£2 is obtained from Ul by interchanging x and 

y it is just an oithogonal rotation of Ul and has EO symmetry. Solution U3 is 

unchanged by the transformation x -+ y, y -+ x and is therefore symmetric 

about the diagonal y = x. Its sign is reversed by the transformation L - x --'; 
y, y --'; L - x and it is therefore antisymmetric about the other diagonal, 

y = L - x. Solution 1£4 is antisymmetric about y = x and symmetric about 

y = L - x and is just an orthogonal rotation of U3. Figure 2.3 shows an 

example with m = 2 and n = 1, where Ul and 1£2 are '2-cell parallel' modes 

(i.e consist of 2 cells parallel to one pair of boundaries) and 1£3 and U4 are '2 

cell diagonal' modes. A further example with m = 4 and n = 1 is shown in 

Figure 2.4. 
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(ii) Tn odd, n even 

Interchanging Tn and n in (2.24)-(2.27) is equivalent to swapping Ul and 

U2, has no effect on U3 and reverses the sign of 1t4, so the same patterns occur 

as in (i) except that now Ul has EO symmetry and U2 has OE symmetry. 

(iii) m. odd, n. odd 

In this case Ul and U2 both have EE symmetry. Again U2 is just an 

orthogonal rotation of Ul. Since Ul and U2 both have EE symmetry, any 

linear combination of them also has EE symmetry. Thus both U3 and U.j 

have EE symmetry. In addition, U3 is symmetric about both diagonals y = x, 

y = L - x and 114 is antisymmetric about both diagonals. Figure 2.5 and 

Figure 2.6 show examples with 'In = 3, 11 = 1 and Tn = 5, n = 1. 

Note that U3 and U4 are those combinations of Ul and U2 which, ignor

ing the sign of the solution for 1t4, possess 4-fold rotational and reflectional 

symmetry. 

(iv) Tn even, n even 

In this case ttl and U2 both have 00 symmetry. Again lt2 is just an 

orthogonal rotation of Ul. Since Ul and U2 both have 00 symmetry, any 

linear combination of them also has 00 symmetry. Thus U3 and U4 both 

have 00 symmetry. In addition, as in (iii), U3 is symmetric about both 

diagonals and U4 is antisymmetric about both diagonals. Figure 2.7 shows 

an example with m = 4 and n = 2. Again U3 and U4 are those combinations of 

ttl and U2 which, ignoring the signs of the solutions, possess 4-fold rotational 

and reflectional symmetry. 

2.4 Linear solution of the rigid problem 

The linearized steady-state Swift-Hohenberg equation 

is now considered with rigid boundary conditions 

au 
U = - = 0 on x = 0, Land y = 0, L. aq 

(2.33) 

(2.34) 

The system (2.33) is homogenous and constitutes an eigenvalue problem for 

E with eigenfunction u(x, y). The lowest eigenvalue c defines the onset of 
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convection and the corresponding function u(x, y) determines the pattern of 

convection at onset. Higher eigenvalues E and eigenfunctions u determine 

the onset and nature of higher modes of convection at a given value of L. In 

Section 2.4.1 below a numerical scheme is developed to allow the eigenvalues 

E and corresponding eigenfunctions u(x, y) to be determined. 

2 .4.1 Numerical scheme 

We can solve (2.33) with (2.34) numerically by a finite difference approach. 

Equation (2.33) is discretised on to a uniform grid 

x = ih for i = 0, .. Ai + 1, 

y = jk for j = O, .. N + 1, 

(2.35 ) 

(2.36) 

where hand k are the spatial step lengths in x and y respectively and (M + 
l)h = (N + 1)k = L. We let Ui,j be the numerical approximation to u at grid 

point (i, j) so that (2.33) becomes 

(2.37) 

The spatial derivatives on the right-hand side of (2.37) are approximated 

using a second-order accurate 13-point central difference representation as 

follows. We first expand the right-hand side to get 

{ u + 2uxx + 2uyy + 2uxxyy + U xxxx + U yyyy h,j . (2.38) 

To find approximations to each derivative listed in (2.38) we can use 

Taylor expansions as follows. For a function f(x) of one variable, we have 

( 

I h2 
/I h3 

11/ h4 1/1/ () 

f x ± h) = f(x) ± hf (x) + 2" f (x) ± '6 f (1') + 24 f (x) + .... 2.39 

I 2 /I 4h3 
/II 2h4 111/ () 

f(x±2h) = f(x)±2hf (x)+2h f (x)±3f (1')+3 f (x)+ .... 2.40 

Adding the two expressions in (2.39) and also the two expressions in (2.40) 

and solving simultaneously for J" and J"", gives 

/' (x) = -~[J(x+2h)-16f(x+h)+30f(x)-16f(x-h)+ f(x-2h)]+O(h"). 
12h (2.41) 
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(" (.1') = ~4 [j(X + 2h) - 4f(x + h) + 6f(x) - 4f(x - h) + f(x - 2h)] + 0(h2). 
(2.42) 

It also follows directly from adding the two expressions in (2.39) that 

" 1 2 f (x) = h2 [j(X + h) - 2f(x) + f(x - h)] + O(h ). (2.43) 

Formulae (2.43) and (2.42) provide the following second-order accurate ap

proximations to four of the five derivatives of u(x, y) in (2.38): 

1 2 
{uxxhj= h2(UH1,j-2ui,j+Ui-1,j)+O(h), (2.44) 

1 
{ll yyhj = k2(U i ,j+1 - 2Ui,j + ui.j-d + 0(k2), (2.45) 

{
I 2 

Uxxxxh,j = h4 [Ui+2,j - 4UH1,j + 611 j ,j - 4Ui-1.j + Ui-2,j] + O(h ), (2.46) 

and similarly 

(2.47) 

Note that for the second derivatives we use (2.43) rather than the more 

accurate fourth order approximation (2.41) to maintain a consistent level of 

approximation. It remains to find a second-order accurate numerical approx

imation to the mixed derivative Uxxyy ' To do this, we first use the Taylor 

expansions of u(x ± h, y ± k) and u(x ± h, y =t= k) to give 

ll(x + h, y + k) + ll(x - h, y - k) + u(x + h, y - k) + ll(x - h, y + k) = 

( ) ( 
2 ,2 ( h 

4 
:2 ,2 k4) ( ) 411 X, Y + 2 h uxx + I.; llyy )(x, y) + 6lLxxxx + h k Uxxyy + 61lyyyy X, Y 

+0(h6, h4k2, h2k4, k6) (2.48) 

An approximation to llxxyy can now be obtained by using (2.41) and (2.42) 

to replace all of the other derivatives in (2.48), maintaining the error at the 

order of the sixth power of the step length. From this we obtain 

1 
{UxXYY}i,j = h2k2 [411 i ,j - 2(lli+l,j + 1Li-l.j + lli,j+1 + lli,j-d 

h4 1.;4 
+Ui+1,j+l + lli-1,j-1 + Ui+l,j -1 + Ui-l,j+ d + O( h2

, k2
, k2' h2 )' (2.49) 
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This gives the discretized form of equation (2.37) as 

Di,j = clLi,j, i = 1, .. i'd, j = 1, .. N, (2.50) 

where 

2 2 
Di,j = lLi,j + h2 (lLHI,j - 2Ui,j + Ui-l,j) + k2 (Ui,j+I - 2Ui,j + l£i,j-d 

1 
+-[1L'+2 . - 41L+l . + 61L . - 41L-I . + 1£'-2 .j h4 t ,) t ,J t,} t ,} t ,J 

1 
+ k4 [lLi,j+2 - 4Ui,j+I + 61Li,j - 41Li,j-I + Ui,j-2j 

2 
+ h2k2 [

41Li,j - 2(lLHl,j + lLi-I,j + lLi,j+1 + lLi,j-I) 

+lLHI,j+l + lLi-I,j-1 + lLHI,j-I + lLi-I,j+d. (2.51) 

The equations (2.50) apply at all internal points of the grid; this requires 

evaluation of lLi,j at fictitious points outside the grid where i = -1, i = M +2, 

j = -1 and j = N +2. This is done by using the boundary conditions ~~ = 0 

on x = 0, Land y = 0, L which in discretised form become 

lL-I,j = UI,j, Ui,N+2 = 1Li,N' 

(2.52) 

The values of lLi,j in (2.50) on the boundary are replaced using the condition 

'/.l = 0 on x = 0, Land y = 0, L which gives 

'/.lO,j = lL!vf+I,j = lLi,O = Ui,N+l = O. (2.53) 

Since Di,j is a linear function of the Ui,j'S, equation (2.50) can now be 

expressed in the matrix form 

All = ell, (2.54) 

where 11 is the column vector containing the values of Ui,j at all internal grid 
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points: 

1LM,1 

Ul,2 

U= 
UM,2 

(2.55) 

Hl,N 

HAI,N 

and the NAlxNM matrix A is given by 

D B C 0 0 0 0 0 
B D B C 0 0 0 0 
C B D B C 0 0 0 

0 

0 0 A= 
C 

(2.56) 
0 0 

D B C 0 

0 C B D B C 

0 0 0 C B D B 
0 0 0 0 0 C B D 
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where 

a.j + al + a5 a2 a4 0 0 0 0 ", 

a2 al + a5 a2 a4 0 0 0 
a.j a2 al + a5 a2 a4 0 0 

0 0 0 

D= 0 0 0 0 

0 0 O· '. 0 0 0 

0 a2 a4 

0 a4 a2 al + a5 a2 
0 0 0 0 0 a4 a2 a4 + al + a5 

(2.57) 
" a4 + al 0 0 0 0 a2 a4 

a2 al a2 a4 0 0 0 
a4 a2 al a2 a4 0 0 

0 0 0 

D= 0 0 0 0 (2.58) 

0 0 O· '. 0 0 0 

0 a2 a4 

0 a4 a2 al a2 

0 0 0 0 0 a4 a2 a4 + al 

a3 ao 0 0 0 0 0 
ao a3 ao 0 0 0 0 
0 ao a3 ao 0 0 0 

0 0 0 

B= 0 0 0 0 (2.59) 

0 0 0'· . 0 0 0 

0 0 0 

0 ao a3 a6 

0 0 0 0 0 0 ao a3 
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c= 

o 
o 0 

000 

o 0 0 0 

o 0 

o 
o 0 

o 0 

o 0 

o 

are M xM matrices and 

4 4 6 6 8 
al = 1 - h2 - k2 + h4 + k4 + h2k2 ' 

244 
a2= h2 - h4 - h2k2 ' 

244 
a3 = k2 - k4 - h2k2 ' 

1 
a4 = h4 ' 

1 
as = k4 ' 

2 
a6 = h2k2 ' 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

(2.65) 

(2.66) 

Note that A is a symmetric matrix. The matrix equation (2.54) was solved 

using Mathematica, which computes all of the eigenvalues and eigenvectors 

by the QR method in which A is first balanced and then transformed into 

upper Hessenberg form. 

2.4.2 Accuracy 

Initial calculations were made for fixed L with different step sizes h( = k). 

Table 2.2 shows a comparison of the leading eigenvalues for the case L = 5 

for different grids. The eigenvectors associated with each eigenvalue for these 
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Mode h = k = 0.5 h = k = 0.25 h = k = 0.15625 h = k = 0.125 

1 1.020972753 1.076166636 1.090222056 1.091083918 

2 4.107593799 4.751277379 4.900802877 4.933877698 
3 10.08752594 11.82658277 12.24762645 12.346600 
4 14.31531158 18.21773996 19.17849635 19.407716 

5 14.71007557 18.61901068 19.57322833 19.800523 

6 24.58668899 30.58976291 32.11738626 32.487922 

7 35.78291717 50.66682575 54.58722708 55.546068 

8 45.28573134 57.39985710 60.62084000 61.416953 

9 50.52054596 69.01803175 74.04047113 75.284872 

10 51.24628780 69.96693461 74.97978581 76.216988 

Table 2.2: Leading eigenvalues E for the case L = 5 on various grids 

grids are also in reasonable agreement. For higher values of L and higher 

modes the variation of 1l across the square occurs more rapidly and so it 

can be expected that larger grids will be required to adequately resolve the 

solution. 

2.4.3 Results 

Results were obtained for values of L in the range 4 to 25 and Figures 2.8 and 

2.9 show the eigenvalues E plotted as a function of L. These are'based mostly 

on computations of the eigenvalues at intervals of ~ in L. The lowest eight 

modes are shown. The curves in Figure 2.8 are labelled according to their 

symmetry properties and their order at low values of L, where the patterns 

bear some resemblance with those of the periodic problem. Each branch 

corresponds to an eigensolution u with one of the symmetries described in 

relation to the periodic problem (EE, 00 or OEjEO). Unlike the periodic 

problem, however, only the solutions with OEjEO symmetry, which also 

give rise to diagonal modes, are found to correspond to repeated eigenvalues 

- further discussion of this point is given in Section 2.5 below. As L increases, 

the various branches interweave as a particular mode 'best fits' the size of 

the square. However, unlike the periodic problem (Figure 2.1) where an 
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ever-increasing number of modes assume the position of leading eigenmode 

as L increases, here the most dangerous mode is confined to one of the three 

branches EEl, OEI and 001. The various branches appear to divide into 

distinct groups - branches EEl, OEI and 001 constitute the first group 

and members of the second group include branches EE2, 002 and OE2 

(see Figure 2.8). This behaviour is reminiscent of two-dimensional Rayleigh

Benard solutions in finite cavities with rigid lateral walls, where pairs of 

solutions with odd and even symmetry combine into distinct groups (Drazin 

1975, Daniels 1977b). 

The leading group of modes consists of solutions with EE symmetry, 00 

symmetry and a repeated eigenvalue with OE/EO symmetry. The repeated 

eigenvalue is associated with two distinct patterns so that this group actually 

encompasses four patterns covering the various possible symmetry arrange

ments. vVe now discuss in more detail the patterns corresponding to each of 

the branches EEl, OEI and 001, and how they change as functions of L -

unlike the periodic problem, the pattern is not conserved along each branch 

as L changes. 

Branch EEl has EE symmetry and at low values of L consists of a single

cell or 'one cell' solution. Contours of the eigenfunction u associated with 

this branch at various values of L are shown in Figures 2.10 and 2.11. It is 

the dominant mode for L < 8, for 10.1 < L < 12.7 and then again when L 

reaches 18.9; at large L it continues to interweave with branches OEI and 

001. The pattern changes in an interesting manner as L increases. In the 

region 8.2 < L '< 10.1 (where it is not the dominant mode) it develops four 

new cells in the corners, sitting at both ends of the diagonals. A further set 

of four cells is added when 12.7 < L < 18.9 and it appears that this process 

continues as L increases. A computation for L = 30 (as seen in Figure 2.11) 

shows that the solution is developing into two sets of cells placed along the 

diagonals of the square. 

Branch OEI contains solutions with OE/EO symmetry. Because this 

branch corresponds to a repeated eigenvalue, the eigenvector determined 

by the numerical scheme is non-unique. However, from our analysis of the 

periodic problem, we expect the possible nonlinear solutions to have four 

symmetrical arrangements corresponding to the solutions Ul, U2, U3 and U4 
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defined in Section 3.2. If we assume that 1£1 has EO symmetry then if an 

eigenfunction produced by the numerical scheme is denoted by u(x, y) then 

we can construct 1£1 as 

1£1 (x, y) = u(x, y) + u(L - x, y). (2.67) 

Then solution 1l2, which has OE symmetry, is determined as 

(2.68) 

and is just the orthogonal rotation of 1£1. The diagonal mode 113 can now be 

determined as 

(2.69) 

and is symmetric about the diagonal y = x and antisymmetric about the 

diagonal y = L - x. Finally, 1£4 is determined as 

(2.70) 

and is antisymmetric about the diagonal y = x and symmetric about the 

diagonal y = L - x. Contours of the OE solution 111 and the diagonal 

mode 113 at various values of L along branch OE1 are shown in Figures 2.12 

and 2.13. At low values of L the solution 1£1 is a 2-cell parallel mode and 

113 is a 2-cell diagonal mode, resembling the corresponding solutions of the 

periodic problem (Figure 2.3). The branch OE1 modes are dominant when 

8.2 < L < 10.1, 12.7 < L < 14.4 and then again when 16.8 < L < 18.9. As L 
increases, the diagonal mode 113 gains additional cells and the simplest way 

of interpreting 1£1 is as a superposition of this solution and its orthogonal 

rotation (1l1(X, y) = ~(1£3(X, y) +1£4(X, y))). Thus at large L the solution 111 is 

effectively a combination of cells placed along each diagonal- any resemblance 

to a parallel mode no longer exists. At L = 30, the solution 'l.Ll is visually 

similar to that of branch EEl at L = 30; the main difference is that whereas 

branch EEl has EE symmetry and therefore contains an odd number of cells 

along each diagonal, the OE symmetry of 1£1 implies that it must contain an 

('yen number of cells along each diagonal. 

Branch 001 has 00 symmetry and contours of 'l.L at various values of L 

are shown in Figures 2.14 and 2.15. At low values of L the pattern consists 
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of a '4-cell' solution similar to the (2,2) mode of the periodic problem. This 

branch becomes the dominant mode for 14.4 < L < 16.8. Four new cells 

appear in the corners when L ::::; 14 and at L = 30 the solution consists of 

a combination of 12 cells placed along each diagonal. In this case the 00 
symmetry of the solution implies that there are an even number of cells along 

each diagonal, like the solution 'I.ll of branch OE1, but the solution here differs 

in that there is a saddle-point zero of 1£ at the centre of the square, and the 

cells in the opposite corners are of common sign. 

Figures 2.16, 2.17 and 2.18 show contours of u at various values of Lon 

the branches EE2, EE3 and OE2. There is again an indication that diagonal 

patterns emerge at large values of L, but with dual cells along the diagonals 

rather then single cells. 

2.4.4 Comparison with the periodic problem 

The lack of repeated eigenvalues in the rigid case associated with EE or 00 
modes is a significant difference from the periodic problem, although many of 

the 4-fold symmetric patterns found in the rigid case bear a close resemblance 

to those which occur in the periodic case, especially for low and moderate 

values of L. Tests of the numerical code for the rigid problem described in 

Section 4.1 were carried out with different grid sizes to ascertain whether the 

lack of repeated EE and 00 eigenvalues could be due to the approximations 

inherent in the numerical scheme. However, these tests showed no evidence 

of the convergence of such eigenvalues to common values with increasing grid 
size. 

As a further check, the code was modified to solve the periodic problem 

numerically, to ascertain whether it correctly predicted repeated EE and 

00 eigenvalues in that case. The modifications are straightforward because 

implementation of the boundary condit.ion ~ = 0 in place of ~~ = 0 just 

changes the sign of the four relations (2.52). This in turn is equivalent to 

changing the sign of the terms a4 and a5 which appear in the main diagonals 

of the matrices jj and D given in (2.57) and (2.58). Table 2.3 shows numerical 

results for the leading eigenvalues of the periodic problem at L = 5 obtained 

using step lengths h = k = 0.15625. A comparison with the analytical 
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m n Cmn numerical eigenvalue C 

1 1 0.044281478 0.0465318900453688 

1 2 0.948521881 0.940022406381974 

0.940022406434657 

2 2 4.658144105 4.61643751306343 

1 3 8.689771045 8.53950540848336 

8.53950543374084 

2 3 17.07502964 16.8243396048629 

16.8243396048807 

1 4 32.61930171 31.7016479888962 

3l.7016479889166 

3 3 37.28464245 36.6636113944453 

2 4 47.55045122 46.3760140550676 

46.3760142292442 

3 4 78.66988223 76.7961119894832 

76.7961119894886 

Table 2.3: Eigenvalues for the periodic problem with L = 5 obtained numer

ically and analytically. 

formula (2.8) indicates reasonable agreement given that the numerical scheme 

is second-order accurate. Moreover, the scheme correctly identifies whether 

eigenvalues are repeated to an extremely high level of accuracy. 

2.5 Weakly nonlinear analysis of the quasi

periodic problem 

In Section 2.3 an analysis of the periodic problem showed that there are 

repeated eigenvalues 

_ (m2 + n2)rr2 2 
C = cmn = (1 - £2 ) , 

corresponding to the fact that for mfn 

. mrrx. '1lrry 
tL = tLmn == 8m [Sln L' 
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and u = 1tnm are both eigensolutions of the linearized system. If m is odd and 

n is even (or vice versa) these correspond to two weakly nonlinear solutions 

with EO (or OE) symmetry which also combine to produce two solutions 

with diagonal symmetry. If m and n are both odd (or both even) they corre

spond to two weakly nonlinear solutions with EE (or 00) symmetry which 

also combine to produce two solutions with 4-fold EE (or 00) symmetry. In 

the rigid problem, however, repeated eigenvalues are confined to the modes 

equivalent to (2.72) with EO (or OE) symmetry, and solutions with EE (or 

OO) symmetry bifurcate at different values of c. Thus, for example, branch 

OE1 of the rigid problem (Figures 2.12 and 2.13) is a repeated eigenvalue 

whereas branches EEl, EE2, EE3 and 001 are distinct. In order to gain 

insight into this qualitative difference between the periodic problem and the 

rigid problem, it is proposed in this section to study weakly nonlinear solu

tions of the quasi-periodic system 

~~ = cu - (1 + V 2}2u - u3, (2.73) 

[Pu au 
u = 0, aq2 - 8 aq = 0 on x = O. L; y = 0, L. (2.74) 

Note that here q is used to denote the inward normal direction to the bound

ary and fJ is an arbitrary parameter. The periodic problem corresponds to 

fJ = 0 and the rigid problem corresponds to 8 = 00. Here it will be assumed 

that 8 is small so that analytical progress can be made, and the effect of in

troducing a small component of the rigid boundary condition can be gauged. 

Kote that the system (2.73), (2.74) possesses the same basic symmetry as 

the individual periodic and rigid problems. 

We assume the amplitude for u is of order 8 and pose an expansion of the 

form 

(2.75) 

as 8 -+ 0, with 

(2.76) 

and, in order to discuss stability, we incorporate a slow time scale T. where 

t = 8-2T. Substitution into (2.73)' (2.74) gives, at order 8 

{Puo 
Uo = -2 = ° on I = 0, L; y == 0, L. (2.77) [)q 
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This is just the linearized periodic problem, with solution 

(2.78) 

where a(T) and b(T) are arbitrary amplitudes, Umn is defined by (2.73) and 

Emn by (2.71). Since we are interested specifically in the possibility of re

peated eigenvalues, we shall assume that 'm =I- n. The objective of the anal

ysis is to determine the amplitude equations for a and b by continuing the 

analysis to higher levels of approximation. 

At order 82, lil is found to satisfy 

(2.79) 

with boundary conditions 

UI = 0, 
a2UI oUo 

X = 0, 
ox2 ox 

on (2.80) 

HI = 0, 
a2U1 auo 

x=L, --=-- on 
ax2 ax 

(2.81) 

HI = 0, 
a2Ul ouo 

y = 0, ay2 ay 
on (2.82) 

U1 = 0, 
02UI auo 

y = L. --=-- on 
ay2 ay 

(2.83) 

A solvability condition for this system can be derived by introducing an 

adjoint function 

Uo = CUmn + dunm , (2.84) 

where C and d are arbitrary constants. ~Ilultiplication of (2.79) by uo and 

integration over the square gives 

foL foL uo(l + \12)2uldxdy - co foL foL uouldxdy = 

E'1 foL foL uouodxdy. (2.85) 

Integration by parts on the left-hand side and use of the boundary conditions 

(2.80)-(2.83) then gives 

l LlL 2 2 lL auo aIlo auo auo 
ul((l + \1 ) Uo - E'ouo)dxdy + (-8 '£.)Ix=o + !:l!:llx=ddy 

o 0 0 x vX vI vX 

In 
L ailo Olto auo auo In L In L -+ (-8 -8 !y=o + -8 -8 !y=ddx = El ltolLodx,dy. a y y y y 00 

(2.86) 
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However, since Uo satisfies the same linear equation as un, the first term on 

the left-hand side vanishes and evaluation of the remaining terms using (2.78) 
and (2.84) gives 

Terms proportional to c and d must balance separately on each side, but this 

just fixes 

(2.88) 

and does not determine the amplitudes a and b. Note that if 8 is positive, 

this result indicates that the 'rigid' component of the boundary condition 

has the effect of raising the critical value of E compared to its value for the 

periodic problem. The amplitudes a and b must be found by proceeding to 

the next order in the expansion, but before doing this it is necessary to find 

an explicit solution for U1' 

Since the solution for Ul is forced by that for Uo, it is possible to write 

(2.89) 

and 

(2.90) 

\\'here 
. m1TX . n1Ty 

Umn = Fmn(y)sm L + Fnm(l')sm L' (2.91) 

and, from (2.79), Fmn and Clmn satisfy 

1/1/ m 27l'2 /I m 21T2 ? . n1Ty 
Fmn + 2(1 - -V )Fmn + [(1 - ---v-)- - cO,Fmn = Clmnsm y' (2.92) 

From (2.80)-(2.83) the boundary conditions are 

Frnn = 0, F 
/I _ n1T 

mn - L (y = 0); Fmn = 0, 
/I n+1 n1T 

Fmn = (-1) L (y = L). 

(2.93) 

The solution for Fmn exists provided that Clmn = 4n21T2 L -3 and is given by 

I 

n7l' (coshk~n(Y-~L) ?y-L mry ) 
Fmn=-- 1 + cos-

2Lqmn cosh lk~nL L L 
2 

(2.94) 
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if n is odd, and 

1 

F 
_ n7r ( sinhk~n(Y - ~L) 2y - L n7rY ) 

rnn - -- - 1 + cos --
2 Lqrnn sinh lk1~nL L L 

2 

(2.95) 

if n is even, where 

(2.96) 

and 

(2.97) 

For a given mode (m, 11.), qmn and kmn are positive for low values of Land 

negative for high values of L. For kmn < 0 the solutions (2.94) and (2.95) 

generally remain valid with the hyperbolic functions replaced by the corre

sponding trigonometric functions. It is evident however that the theory must 

be revised to deal with resonant cases for certain discrete negative values of 

kmn and also in the case qmn = 0 corresponding to the minimum points of 

the marginal stability curves in Figure 2.1. The expansions (2.75) and (2.76) 

would need to be modified to treat these special cases but here we focus on 

general values of m, 11. and L. 

Strictly speaking, the solutions (2.94) and (2.95) can also contain an ad

ditional term Asin T where A is an arbitrary constant, but this is just 

equivalent to the fact that Ul can contain an arbitrary multiple of tlQ, corre

sponding to a renormalization of the overall solution. We therefore proceed 

taking A = 0; .it can be confirmed that if A is non-zero, it does not influence 

the amplitude equations for a and b determined below. Note that the value 

of Clmn + [lnm confirms the earlier result (2.88) for [1 given by using the 

solvability condition. Note also the non-trigonometric form of Fmn and the 

asymmetry in T and y which arises from the influence of the 'rigid' component 

of the boundary conditions around the square. 

At order 62 , U2 is found to satisfy 

2 2 3 Ouo 
(1 + \l ) U2 - COU2 = Cl UI + C2UO - Uo - or' 

with boundary conditions 

02'll2 OUI 
-- - - on x=O, ox2 - ox 
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'U2 = 0, 
{J2U2 {JUI 

x=L, (2.100) = on 
{Jx2 {Jx 

lt2 = 0, 
{J2U2 {JU1 

Y = 0, (2.101) = on 
{Jy2 {Jy 

1£2 = 0, 
{J2U2 {JUI 

Y = L. (2.102) --=-- on 
{Jy2 oy 

The solvability condition for this system is found by multiplying (2.98) by 

the adjoint function (2.84) and integrating over the square, giving 

lo
L (ouo OU1 I _ OUo 01£1 I _)d 1L (GUo OUl l _ OUo 01£1 I _ )dr 

~ ~ x-O + ~ ~ x-L Y + G ~ y-O + ~ ~ y-L o ux ux uX uX 0 y uy uy uy 

{L {L_ {L {L_ {L {L_ 3 
= C1 io io uou1dxdy + C2 io io uouodxdy - io io uouodxdy 

{L {L 01£0 
- io io Uo aT dxdy. 

(2.103) 

All of the integrals involved in this equation can be calculated from the known 

expressions for 1£0, U1 and uo. From terms proportional to c, after extensive 

algebra and for m =1= n, this gives 

(2.104) 

and from terms proportional to d, 

1 2 db 1 2 2 9 3 3 2 
-L -.-+klb+k2a=-Lc2b-L (-b +-ba) 
4 dT 4 64 16 ' 

(2.105) 

where the coefficients on the left-hand side are given by 

(2.106) 

(2.107) 

Here 

(2.108) 
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if m,n are both even or both odd and Omn = 0 if m is even and n is odd (or 

vice versa), 

and 

{ 

mr 2 J IJ 
= I ()_ 2Lq",,,(I-kmntanh2kmnL), 

rmn-Fmn 0 - !! 
7l1r (2 k' 2 coth 1 k 2 L) -2L -L - mn -2 mn , q"ul 

By introducing the scale transformation 

1 
k2 = -L2k 

4 

and a local control parameter f defined by 

(2.109) 

n odd; 
(2.110) 

n even. 

(2.111) 

(2.112) 

the amplitude equations (2.104), (2.105) can be written in the simpler form 

da = Ea _ kb - ~a3 _ ~ab2 
dr 16 4' 

(2.113) 

db = fb _ ka - ~b3 - ~ba2 
dr 16 4' 

(2.114) 

from which the local bifurcation structure and weakly nonlinear development 

can now be deduced. We first discuss steady-state solutions a = Qs, b = bs 

where the left.,.hand sides are set to zero. 

First note that if m is even and n is odd (or vice versa) the coefficient k is 

zero and the equations (2.113), (2.114) are then similar to those discussed in 

the periodic problem in Section 2.3 (cf (2.16), (2.17)). This implies that (to 

within an arbitrary change of sign in u) four steady-state solutions bifurcate 

from E = 0, two of which are pure EO and OE modes (where either a:; = 0 

or bs = 0) and two of which are the diagonal combinations of these modes 

(where either as = bs or as = -bs). Thus inclusion of the 'rigid' component 

of the boundary condition has no qualitative effect on the nature of the 

bifurcation in this case. This is consistent with the fact that in the rigid 

linearized problem (Section 2.4) such modes are still associated with repeated 

eigenvalues c. 
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However, if 'm and n are either both odd or both even, the coefficient k 

is non-zero, being given from (2.106), (2.107) and (2.111) by 

32m2nhr4 
k= ~~~--~~--~~~~--~~--~ 

12(n27[2 + 3m27[2 - 212)(m27[2 + 3n27[2 - 212) 
(2.115) 

In this case the bifurcation points from the trivial solution as = bs = 0 of 

(2.113), (2.114) move to separate locations t = -k and t = k and correspond 

to solutions for which as = -bs and as = bs respectively. The full nonlinear 

solutions of (2.113) and (2.114) are 

4 I 

a = -b = ±-(t + k)2 t>-k 
s s J2I ' (2.116) 

and 

t>k (2.117) 

and are equivalent to the 4-fold symmetric EE or 00 solutions, consistent 

with the occurrence of separate eigenvalues of the linearized rigid problem 

in Section 2.4. Solutions of (2.113), (2.114) for which either as = 0 and 

bs =1= 0 or as =1= 0 and bs = 0, corresponding to a pure mode U nm or U mn , 

are no longer possible, but are replaced by solutions which develop from a 

secondary bifurcation. This can be seen by multiplying (2.113) by bs , (2.114) 

by a~ and subtracting to obtain 

2 2 3 
(as - bs )(k + 16asbs) = O. (2.118) 

The solutions for which bs = ±as have already been discussed, but there are 

also solutions for which 
16k 

bs = --. 
3as 

From (2.113), these are given by 

2V2 2 2 1 1 
as = ±-3-(t±(t - 36k )2)2, 

(2.119) 

(2.120) 

(with bs then determined from (2.119)) and exist for t~6Ikl. These four 

solutions bifurcate from the leading branch of (2.116), (2.117) at t = 61kl 
where lasl = Ibsl = 4(t/3)L As t increases, however, one pair of solutions 

becomes dominated by the as component, so that lasi"-'4d /3, ibsi -+ 0 as 
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E-+OO and the other pair becomes dominated by the bs component, with 

JasJ -+ 0, Jbs Jrv4d /3 as E-+OO. Thus the pure Umn and Unm modes emerge 

on these secondary branches as E-+OO. Note that using the measure (2.30) 

the overall amplitude of the solutions (2.116), (2.117) is 

1 2 2 1 [8 1 

iLrv"20(as + bs )2 = V 2iOE2 , (2.121) 

whereas the overall amplitude of the secondary solutions (2.119), (2.120) is 

slightly larger with 

(2.122) 

Figure 2.19 shows the bifurcation diagram for the case where m = 3, 

'/l = 1 and L = 5, in which case k = 0.07244 in (2.113), (2.114). Solutions for 

11 on the various branches, constructed from (2.78), are shown in Figure 2.20. 

The bifurcation diagram will look qualitatively the same for any value of k 

since k can be removed from the equations (2.113), (2.114) by a rescaling of 

[,a,b and T. Negative values of k are just equivalent to changing the sign of 

one amplitude function relative to the other. 

Finally the local stability of these steady-state solutions can be examined 

using the method described in Section 2.3 for the periodic problem. Writing 

a = as + AeaT , b = bs + BeaT, substituting in (2.113), (2.114) and linearizing 

in .4. and iJ yields the growth rates a from the equations 

_ _ 27 2 3 2 - 3 -
(0' - E: + 16as + '4bs )A + (k + "2asbs)B = 0, (2.123) 

_ _ 27 2 3 2 - 3 -
(0' - E + 16bs + '4as )B + (k + "2asbs)A = O. (2.124) 

Substituting the solutions for as and bs• this shows that only the branch 

(2.117) or (2.118) which bifurcates first ((2.117) if k > 0 or (2.118) if k < 0) 

is stable, and since the maximum growth rate is given by 

2 
a = 7(E - 6JkJ), (2.125) 

this branch loses stability when E reaches the value 61kl. At this point the sec

ondary branches given by (2.119), (2.120) bifurcate and these have maximum 

growth rate 

a- = _~€ + (25 {2 + 24k2)~ 
6 36 ' 

(2.126) 
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\vhich remains negative for t > 61kl. Thus the secondary branches become 

the st.able steady-state solutions of the system. 

2.6 Nonlinear solution of the time dependent 

rigid problem 

The time dependent form of the Swift-Hohenberg equation is a nonlinear 

system in two spat.ial variables and time. This is a non-trivial system and 

cannot be solved in general by analytical means. In this section we describe 

numerical solutions of the system. We will focus on the discretisation of 

the system and the various numerical methods employed, the accuracy and 

stability of the numerical schemes that we derive and finally the results that 

our scheme produces from various initial conditions. 

2.6.1 Numerical scheme 

The simplest approach is to use an explicit forward difference scheme in which 

the SWift-Hohenberg equation (2.1) is replaced by the discretised form 

'U, -u· 
~,J 1,] _ - .. _{(1+~2)2-} .. _-3 6.t - E1L~,J v U I,J Ui,j' (2.127) 

Here Ui,j is the solution at time t + 6.t and position x = ih, y = jk, i = 

0, ... M + 1; j = 0, ... N + 1, where hand k are the step lengths in the x 

and y directions respectively and (M + l)h = (N + l)k = L; ui,j denotes the 

corresponding solution at time t. 

The discretisation of the term (1 + \72) 2U is carried out using central 

differences exactly as in Section 2.4. This yields a scheme with truncation 

errors of order h2 and ).;2 in the spatial derivatives and of order 6.1. in the 

time derivative: 

U·· - U·· 2 
1,) ~,J (1)- (- 2- +- ) 6.t = c - Ui,j - h2 UHl,j - Ui,j Ui-l,j 

2 1 
- k2 (Uj,J+l - 2Ui,j + ui,j-d- h4 (UH2,j - 4Ui+l,j + 6Ui,j - 4Ui-l,j + Ui-2,j) 

-:4 (Ui,j+2 - 4Ui,J+l + 6Ui,j - 4Ui,j-l + Ui,j-2) 
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2 
- h2k2 [

4Ui,j - 2(UHI,j + Ui-l,j + Ui,j+l + ui,j-d 

+UHI,HI + Ui-l,j-l + UHI,j-1 + Uj-l,i+d 

for i = 1, ... !vI; j = 1, ... N. (2.128) 

The equation (2.128) is applied at all internal points; this requires evaluation 

of Ui,j at fictitious points outside the grid where i = -1, i = !vI + 2, j = -1 

or j = N + 2. This is done by using the boundary conditions ~~ = 0 on 

x = 0, Land y = 0, L which in discretised form become 

(2.129) 

Values of Uj,j in (2.128) on the boundaries are replaced using the condition 

11 = 0 on x = 0, Land y = 0, L giving 

(2.130) 

Thus (2.128) provides the solution Ui,j at time t + 6.t at all internal grid 

points, and Ui,j is zero on the boundaries. In this way the solution can be 

computed forwards in time, from a specified initial state 

Uj,j = Ui,j at t = 0, (2.131) 

Several other numerical schemes were also considered as follows. A mod

ified Euler scheme (pseudo predictor/corrector) was developed as a possible 

means of increasing the time step used in the numerical scheme. The scheme 

takes the form 

Uj,j = Uj,j + 6.tf(Ui,j), (2.132) 

U· . = U· . + 6.t (f(u .. ) + f(u .. )) = ~(u . . + u· .) + 6.tf(u .. ) (2.133) t,J t,J 2 t,] t,J 2 t,J t,] I,J 

where f(Ui,j) is the right-hand side of (2.127) and Ui,j is the corrected value 

of the solution at time t + 6.t. 

The Dufort-Frankel leapfrog method was also considered with a view to 

improving stability. This is a three-time-level scheme but for a fourth-order 

equation in two spatial variables is not generally explicit and is therefore 

more difficult to implement than for a second-order equation. 
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The use of a Crank-Nicolson scheme was also considered. This again 

is an implicit scheme which would allow larger time steps to be used and 

would have order tlt2 truncation error in the time derivative. However the 

nonlinearity of the system would necessitate an iterative process at each time 

step. As the main aim is to identify steady-state solutions, it was decided to 

limit the use of implicit schemes to the steady state system (see Section 2.7 

below). 

2.6.2 Accuracy and validation 

We expect that for the fourth order equation (2.127), and provided h = k, 

the forward-difference scheme described above will be stable provided that 

(2.134) 

where K, is a constant. Temporal and spatial errors will be compounded 

and the numerical scheme will quickly become unstable and diverge if this 

condition is not met. 

A number of experiments were carried out to test the validity of (2.134) 

and to estimate a value of K,. These were done for the case L = 1 and 

c: = 2000 using a lOxl0 grid (M = N = 9), a 20x20 grid (M = N = 
19) and a 40x40 grid (M = N = 39). This is a case where the solution 

approaches a non-zero steady-state as t-oo. For the lOxl0 grid using a 

random initial. state Ui,j it was found after numerous runs testing tlt that 

for tlt2::0.0000032 the scheme is unstable, giving an approximation for K, of 

0.032. This was tested by running the numerical scheme using a finer mesh 

(40x40) and again examining the stable area. The solution was found to be 

stable for tlt = 1.289 x 10-8 , in agreement with the criterion tlt'SK,h4 wit.h 

K = 0.032 and h = 0.025. Computations with the 20x20 grid also confirmed 

this criterion. We thus have a suitable estimate of the restriction on tlt for 

a defined mesh resolution to use in the numerical work. Because the Swift

Hohenberg equation is fourth order, extremely small time steps are needed 

to maintain stability in the forward difference scheme. 

The modified Euler scheme (2.132) and (2.133) produced the same steady

state solution at L = 1, c: = 2000 to G decimal places but it was found after 
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Grid size Unum Utrue 

10xlO 38.970028 

20x20 37.339985 36.79663733 

40x40 36.802868 36.65839067 

Table 2.4: Central values of Unum and Utrue, for various grid sizes with L = 1 

and E = 2000. 

some testing that ~t could not be increased to any significant degree in 

comparison to its value for the forward Euler scheme (2.126) and therefore 

the modified scheme was not used further. 

The next set of tests were designed to determine how the steps hand k 

affect the accuracy of the solution. Table 2.4 gives results for L = 1, E = 2000 

on three different grids (M = N = 9, M = N = 19, M = N = 39) showing 

the steady state value of the single cell solution at the centre of the square. 

It also shows the solution predicted using an h2-extrapolation of the results 

based on the formula 

Unum = Utrue + h2 A (2.135) 

where Unum is the numerical solution and A is a constant. Values of Utrue in 

Table 2.4 are calculated using the numerical results for the given grid and 

the grid of doubled step size. This analysis suggests that the results for the 

lOxl0 mesh are up to 5.9 percent in error, for the 20x20 grid the error is 

1.47 percent and for the 40x40 grid the error is only 0.3 percent. Despite the 

large value of E the qualitative nature of the solution is preserved even on a 

10xl0 grid. For more complex patterns it can be expected that finer grids 

will be necessary to adequately resolve the solution. 

2.6.3 Results 

The time-dependent system was used to allow the solution to evolve to non

linear steady-state solutions of the Swift-Hohenberg equation. By computing 

steady-state solutions for a range of values of E, at fixed L, the nonlinear de

velopment from the linear onset solutions identified in Section 2.4 can be 

obtained. 
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It is also possible to examine how the time evolution depends on the initial 

state (2.131) specified at t=O. Results were obtained for several different 

initial states u = U(x, y) at t = 0, including 

. m7rx. 117ry 
U(x, y) = Uosm L sm L' 

with Uo, m and 11 specified and 

U(x, y) = R(i, j) at x = ih, y = jk, 

(2.136) 

(2.137) 

where R( i, j) is taken as a random real value in the range -1 < R < 1 at 

each grid point (i, j). Different initial states can be used, to some extent, to 

generate steady-state solutions of a particular form. This is because solutions 

of (2.1), (2.2) which are initially even or odd in x or y retain that symmetry 

at later times. However, in practice if the steady-state solution is an unstable 

state, truncation errors in the numerical computation destroy the symmetry 

and lead to an asymmetric temporal evolution, with the solution tending 

to a stable steady-state at large time. This means that the present time

dependent method cannot be used to obtain all of the steady-state solutions 

of the system (2.1), (2.2). 

Results were obtained for several different sizes of square and details are 

given here for the cases L = 5, 57r, 30 and 167r. 

(a) L = 5 

Figures 2.21-2.26 show contours of steady-state solutions and time evolution 

graphs for the' case L = 5. These were mostly obtained using lOxl0 and 

20x20 meshes and a time step 6.t of 0.0001. 

Figure 2.21 shows a solution with EE symmetry, which is the solution 

generally achieved using a random initial profile, U(x, y) = R(i, j) or a sym

metric initial profile such as U = x(L - x)y(L - y), indicating that it is a 

stable steady-state. At high values of E the nonlinear solution has a plateau 

form with the main variation in u occurring near the boundaries. The height 

of the plateau is given by u ~ d as E -+ 00, corresponding to a balance 

between the terms EU and u3 in the Swift-Hohenberg equation. Convergence 

to the steady-state solution occurs faster at higher values of E, as can be seen 

from Figure 2.22. 
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The pattern of Figure 2.23 was achieved by using the initial profile U(x, y) = 

sin 7rt sin ~ and h = k = 0.25. The pattern is a 2-cell parallel structure with· 

EO symmetry, and is comparable with the pattern of the linearized solution 

HI for L = 5 of Figure 2.12. It was only possible to track this solution for 

E ~ 60; for E < 60 the solution converged to the one-cell solution of Figure 

2.21. Figure 2.24 shows the evolution with time of the solution (in this case 

the solution at the centre of the square remains zero for all t and so it, defined 

by (2.30), is used as a measure of the amplitude of the solution). For c = 200 

the convergence of the solution to its steady-state form is slower than for the 

one-cell solution of Figure 2.21. 

An initial profile of the form U(x, y) = sin 2lx sin ~ was used to try 

and generate a four-cell 00 solution of the form observed in the linearized 

solution of Figure 2.14. This led to a rather interesting three-cell diagonal 

steady-state solution shown in Figure 2.25. The solution in Figure 2.25 was 

only found for [ ~ 141.5 on a lOxl0 grid. However, several simulations on 

finer grids (20x20 and40x40) were inconclusive as the solution in Figure 2.25 

could not be found on these finer grids. Figure 2.26 shows the time evolution 

to the steady-state solutions of Figure 2.25. In fact the solution almost 

converges to the 00 mode, but then undergoes a second stage of evolution 

to the diagonal mode, which is presumably more stable. The diagonal mode 

appears to be a combination of the one-cell EE mode and the four-cell 00 
mode. 

(b) L = 57r 

Figures 2.27-2.30 show contours of solutions for the case L = 57r. These were 

obtained with a 32x32 grid (h = k = 0.49087) and a time step Dot of 0.00001. 

Random initial conditions were used for most of the computations in this 

subsection and this led to a number of different steady-state patterns, as 

shown in Figures 2.27,2.28 and 2.30. In some cases the steady-state pattern 

found at one value of c was used as an initial state for computations at other 

values of c. 

The 4-cell parallel mode of Figure 2.27 has OE symmetry. This steady

state pattern was first found when performing numerical simulations using 

a random initial state with c = 0.18 and was also readily found at higher 

values of c. The amplitude of the cells increases with Co 
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Figure 2.28 shows a steady-state 5-cell diagonal mode achieved using a 

random init.ial state over a range of values of E. Figure 2.29 shows the pattern 

evolution to steady-state through time for the case where E = 0.3. 

The steady-state contours of Figure 2.30 are the product of simulations 

using an initial profile U(x,y) = IR(i,j)l. This mode was only found for 

E ~ 0.37. It is even about x = ~ L but has no symmetry in the y direction. 

Finally, Figure 2.31 shows a centrosymmetric steady-state pattern found 

at E = 0.S55 and a non-symmetric steady-state pattern found at E = 1.248. 

Similar stable patterns can be found for other reasonably high values of E. 

(c) L = 30 

Figures 2.32-2.34 show contours of steady state solutions for the case L = 30. 

These were all obtained using a 32 x32 mesh and a time step !1t of 0.001. 

Random initial conditions were used for the computations and this led to 

various steady state patterns. 

Figure 2.32 shows steady-state solutions found in the range c = 0.028 to 

E = O.OS. This 12-cell diagonal mode is associated with the linearized solution 

'l.l3 of Figure 2.13 and as E increases the cells spread across the square to fill 

the opposite corners. 

Figure 2.33 shows steady solutions found in the range E = 0.09 to c = 0.14. 

The 12-ceU diagonal mode is still found at c = 0.09 and versions without 

symmetry about the second diagonal are found at higher E. In addition, a 

new centrosymmetric mode is found for c ~ 0.11. 

Figure 2.34 shows steady solutions found in the range E= 0.16 to E = 

0.22. These include non-symmetric diagonal modes (E = 0.18, c = 0.22), 

centrosymmetric modes (E = 0.16, E = 0.17) and a non-symmetric mode 

(E = 0.21). 

(d) L = 16K 

Figures 2.35 and 2.36 show the contours of a steady-state solution and its 

time evolution for the case L = 16ir with c = 0.1. These results were obtained 

with a 96x96 grid (h = k = 0.523599), a time step ~t of 0.001 and a random 

initial profile U(x,y) = R(i,j). 
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2.7 Nonlinear solution of the steady-state rigid 

problem 

Consider the steady-state Swift-Hohenberg equation 

cu - (1 + \i'2)2u - u3 = 0, 

with boundary conditions 

ou 
u = - = 0 on x = 0, Land y = 0, L. oq 

(2.138) 

(2.139) 

In this section we describe a numerical scheme for solving this problem based 

on Newton iteration, and present results for several values of L. 

2.7.1 Numerical scheme 

We discretise the system on to a uniform grid in x and y, as in the solution 

of the linearized system in Section 2.4. The equation (2.136) can then be 

expressed in the form 

F . == cu' . - {(I + \i'2)2U}' . - U· .3 = O. l,} l,} I,} I,} (2.140) 

Since this is a nonlinear system, it can be solved by performing a Newton 

iteration: 
of· 

Fj,j + I: ~8uI,J = 0, 
[,J UU[,J 

(2.141) 

to obtain the Newton increments 8uj,j at each grid point. These are then 

used to produce an improved approximation Uj,j + 8uj,j to the solution. The 

iterative process is continued until all of the Newton increments tend to zero, 

to within some specified tolerance. The advantages of this method over the 

time-dependent scheme of Section 2.6 are that it can find both stable and 

unstable steady-states, it can significantly reduce computation times and it 

allows solutions to be tracked as a function of c in a relatively straightforward 

manner. 

In (2.140), the middle term is discretised in exactly the same way as in 

Section 4.1, so that 
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1 
- h4 [llH2,j - 4UHI,j + 6Ui,j - 4Ui-l,j + Ui-2,j] 

1 
- k4 [Ui,j+2 - 4Ui,j+1 + 6Ui,j - 4Ui,j-1 + Ui,j-2] 

2 
- h2k2 [

4Ui,j - 2( ZlHI,j + Hi-l,j + Ui,j+l + ui,j-d 

+1li+l,j+1 + Ui-l,j-l + Ui+1,j-1 + Ui-l,j+d 

for i = 1, ... M; j = 1, ... N. (2.l42) 

Using the boundary conditions (2.52) and (2.53), this implies that Fi,j is 

defined at all internal grid points. The partial derivatives ~F,.j appearing 
vUI.J 

in (2.141) can now be calculated, and provide the (M N)2 elements of the 

matrix P in the matrix equation 

POU = -F (2.143) 

obtained from (2.141). Here Ou is the column vector of unknowns: 

OUII , 

OU2 I , 

t5UM,1 

t5UI,2 

t5u = (2.144) 

t5Uf..,12 

OUI,N 

t5UM,N 
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F is the column vector 
" 

FI,1 

F2,\ 

FM,l 

F1,2 

F= (2.145) 

FM2 , 

FI,N 

FA/,N 

and P is the matrix 

P = A-cI +Q, (2.146) 

where A is the matrix defined by (2.56)-(2.66). The additional contributions 

arising from the nonlinear term -Ui} in (2.142) are contained in the matrix 
Q, which is defined by 

Q= 

o 
o 0 

000 
o 0 0 0 
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o 
o 

o 
o 
o 
o 

(2.147) 



where 

- 3ui,j 0 0 0 0 0 

-3u~ . ,J 0 0 0 

0 0 

0 

Qj = 

0 

0 0 

0 0 0 -3U~I_l,j 0 

0 0 0 0 0 - 3ulI,j 

(2.148) 

Note that P is a symmetric matrix. 

Two methods were used to solve the matrix equation (2.143). In the first, 

Gauss-Seidel iteration was applied, starting from an initial guess OUi,j = 0 

for all i, j. Although this method worked successfully in a number of simple 

cases and required minimal computer storage, it did not prove to be robust, 

and convergence was generally very slow because of the large number of 

equations involved. The second approach was to use a direct method based 

on Gauss elimination. This proved reliable and was therefore adopted for all 

subsequent calculations. 

The Newton iteration was implemented generally by using the linearized 

solution of Section 2.4 as an initial guess for Ui,j, and, once convergence to 

within a specified tolerance had been achieved, by incrementing the value of 

E and using the previous solution for Ui,j as the next initial guess. For most 

calculations a tolerance of 

!vI N 

LL)uL < 10-3
, (2.149) 

i=lj=l 

was applied to ensure adequate convergence of the Newton iteration. Results 

from the time-dependent calculations of Section 2.6 were used as a check on 

the numerical scheme. 

50 



2.7.2 Accuracy 

Results were tested for accuracy using different step sizes, L = 5 and E = 

1.285 for various grids. These indicated reasonable agreement. Checks were 

also made to ensure that calculations of the nonlinear system were consist.ent 

with the bifurcation points predicted by the linear analysis of Section 2.4. 

2.7.3 Results 

Result.s were obtained for various values of L and are described in detail here 

for the cases L = 5, 57i and 30. A convenient single measure of the amplitude 

of the nonlinear solution is it, as defined in (2.30), and this was computed 

numerically as 
1 

1 AI N 2 

it = ((M + l)(N + 1) ~];1LL) (2.150) 

using the trapezium rule. An alternative measure is to use the value of 1L 
at the centre of the square, but this is not useful for solutions with odd 

symmetry. 

(a) L = 5 

Figure 2.37 shows a bifurcation diagram of steady-state solutions for the 

case L = 5 obtained using a 32x32 mesh (h = k = 0.15625). The leading 

branch bifurcates at E = 1.090, and consists of a solution with EE symmetry, 

consistent with the results of Section 2.4. Figure 2.38 sho\\'s contours of 'U for 

branch EEl of-Figure 2.37 at various values of E. The amplitude it increases 

with E and the pattern remains in the form of a single cell which develops a 

plateau region at the centre when E is large. 

The second and third branches both bifurcate at E = 4.901 where there is a 

repeated eigenvalue of the linearized system. Figure 2.39 shows the nonlinear 

solution with larger amplitude, branch D1, which is a 2-cell diagonal mode. 

Again as E increases the pattern remains the same in symmetry and general 

appearance and the amplitude it increases. Figure 2.40 shows the other 

solution which bifurcates at E = 4.901 which is a 2-cell parallel mode with 

OE symmetry (branch OE1). The nonlinear results obtained here confirm 

the existence of the diagonal and OE modes predicted in the linear analysis of 
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Section 2.4 although it is interesting to note that, in contrast to thE: periodic 

problem, it is the diagonal mode here which has a larger amplitude. 

The fourth branch bifurcates at c = 12.248 and has 00 symmetry. Figure 

2.41 shows contours of 1£ on this branch (branch 001) at various values of c. 

Again the pattern does not change with increasing c, and the amplitude 

it increases. This branch was also computed by solving the problem on 

the quarter domain 0 ~ x ~ ~L, 0 ~ y ~ ~L with boundary conditions 

1£ = f# = 0 applied on the internal edges x = ~ Land y = ~ L. Since these 

are equivalent to periodic boundary conditions, the modifications needed 

to the numerical scheme are similar to those mentioned in Section 2.4. The 

results were useful in providing an additional check on the numerical scheme. 

The fifth and sixth branches (EE2 and EE3) bifurcate at [ = 19.178 

and [ = 19.573 respectively. These two branches are solutions with EE 
symmetry and are consistent with the patterns predicted by the linearized 

analysis of Section 2.4. Again as c is increased the patterns remain the same 

in symmetry and general appearance and the amplitudes increase. Contours 

are shown in Figures 2.42 and 2.43. 

(b) L = 5-rr 

The nonlinear results of this section are for the case L = 5-rr and were obtained 

mainly with a 32x32 mesh (h = k = 0.49087). Figure 2.44 shows a bifurcation 

diagram of steady-state solutions that were found. We first discuss solutions 

that bifurcate from the trivial solution 1£ = O. 

The first branch, branch 001 of Figure 2.44, has 00 symmetry and 

bifurcates at c = 0.107, consistent with the linear numerical results of Section 

2.4. Figure 2.45 shows the contours of this solution for increasing c. The 

amplitude increases and the pattern retains the same form as c increases. 

The second branch bifurcates at e = 0.116 and is also a non-repeated root 

of the linear system. Figure 2.46 shows this nonlinear solution (branch EEl 
of Figure 2.44) which has EE symmetry and is basically a 9-cell structure 

similar t.o the (3,3) mode of the periodic problem. 

The third and fourth branches of Figure 2.44 bifurcate at e = 0.119 where 

there is a repeated eigenvalue of the linear system. Figure 2.47 ~hows the 

contours of u for the solution with diagonal symmetry (branch Dl). which is 

consistent with the 6-celllinearizecl form of U3 predicted in Section 2.4. The 
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other solution predicted by the linear analysis, which has OE symmetry is 

shown in Figure 2.48. 

The fifth and sixth branches both bifurcate at c = 0.1434, and again 

are solutions arising from a repeated OE mode of the linearized system. 

Figure 2.49 shows contours of 'l.l on branch OE2 which has OE symmetry 

and is associated with the solution til of the linearized system. This pattern 

is somewhat like the (3,2) mode of the periodic problem. The branch of 

solutions 02 with diagonal symmetry, is shown in Figure 2.50. 

The seventh branch 002 has 00 symmetry and contours of u are shown 

in Figure 2.5l. 

We now discuss nonlinear solutions which do not bifurcate from the trivial 

solution, taking them in order of their appearance as c increases. The exis

tence of such modes is indicated by reference to the time-dependent analysis 

of Section 2.6 because many of the solutions found there do not have patterns 

which identify with any of the seven branches listed above. These nonlinear 

modes were located by using the steady-state solutions found in Section 2.6 

as initial guesses in the Newton scheme. In each case the entire branch of 

steady-state solutions could then be tracked by incrementing the value of c 

backwards and forwards from its initial value. 

The first solution to arise nonlinearly is a secondary bifurcation from the 

primary mode 001 which appears at ~ = 0.1345. This solution has diagonal 

symmetry and is the 5-cell diagonal mode of Figure 2.28. It is designated Osl 

(0 for 'diagonal', S for 'secondary') in Figure 2.44. Its amplitude u is larger 

than that of the primary mode 001 from which it bifurcates, explaining 

why it is seen in the time-dependent calculations. Contour plots are shown 

in Figure 2.52 and demonstrate how the diagonal pattern evolves by breaking 

the symmetry of the 00 pattern. 

Another solution to arise nonlinearly is a fold bifurcation at c = 0.1707. 

This has OE symmetry and its upper branch OE~l (F for 'fold', U for 

'upper') is the stable 4-cell parallel mode reported in the time-dependent 

calculations of Figure 2.27. The lower branch OE~l also consists of 4 cells 

but these become less 'parallel' as c increases. Patterns on the upper branch 

are shown in Figure 2.53 and on the lower branch in Figure 2.54. The solu

tions were found by starting from a point on the upper branch and tracking 
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backwards in c until the vertex of the fold bifurcation was eventually located 

(using extremely small steps in c) at c = 0.1707; for lower values of c the 

solution converged to mode 001. In order to track the solution down past 

the vertex and on to t.he lower branch, the solution at each grid point was 

regarded as a function of il, allowing a linear extrapolation to be used to 

provide an initial guess for the Newton iteration at the first point on the 

lower branch. Thereafter, the solution could be tracked forwards in c, ini

tially using extremely small steps. Figure 2.55 shows the solution in the 

neighbourhood of the vertex. 

Another solution to arise nonlinearly is a secondary bifurcation from the 

mode EEl which appears at c = 0.336. This solution has even symmetry in 

one direction only and is therefore designat.ed Es 1 in Figure 2.44. It is the 

mode reported in the time-dependent calculations of Figure 2.30. Contour 

plots are shown in Figure 2.56 and demonstrate how the pattern evolves from 

the EE pattern by breaking the symmetry in one direction. 

Finally, another nonlinear solution appears as a fold bifurcation at c = 

0.6318. This has centrosymmetry and contour plots on its upper and lower 

branches (designated C~l and C~l) are shown in Figures 2.57 and 2.58 

respectively. This is the mode reported in the left-hand contour plot of Figure 

2.31 in the time-dependent calculations. The patterns on the two branches 

differ very little, although slight differences are discernible when c reaches 

0.854. The solution was tracked around the vertex using the same method 

as for branch OEF1; Figure 2.59 shows the solution in the neighbourhood of 

the vertex. 

It is almost inevitable that other nonlinear solutions appear through sec

ondary bifurcations and fold bifurcations within the range of c shown in 

Figure 2.44. However, those described here are likely to be of greatest signif

icance as they give rise to solutions, some of which, from the time-dependent 

analysis, are stable states. The results of Figure 2.44 show that the am

plitudes it of the various stable modes are extremely close, explaining why 

the diagonal, parallel and centrosymmetric modes are all observable in the 

time-dependent calculations. In fact the leading linear onset solution, which 

is an 00 mode, has largest amplitude only for a. very restricted range of c 

(0.107 < c < 0.13); thereafter, solutions containing longer, more coherent 
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cells (diagonal, parallel or curved) are preferred states of the system. 

(c) L = 30 

A less comprehensive set of results is reported in this section for the case 

L = 30, obtained using a 32x32 grid (h = k = 0.9375). Figure 2.60 shows 

a bifurcation diagram of steady-state solutions that were found. Again solu

tions that bifurcate from the trivial solution u = 0 are discussed first. 

The first two branches bifurcate at c = 0.0255 and correspond to a re

peated eigenvalue of the linear system. One of those branches has OE sym

metry (associated with the onset solution Ul shown in Figure 2.13) and the 

other has diagonal symmetry (associated with the onset solution U3 shown 

in Figure 2.13). Only the diagonal mode D1, which from the time-dependent 

calculations shown in Figure 2.32 is expected to be stable, is shown in Figure 

2.60. Contour plots on this branch are shown in Figure 2.6l. The solution 

consists of 12 cells and as c increases there is tendency for these to spread 

laterally to fill the square. 

The third branch EEl bifurcates at c = 0.0258, consistent with the eigen

value of the linear system shown in Figure 2.11, and at onset consists of 11 

cells on each diagonal. Contour plots for this branch are shown in Figure 

2.62. As c increases the outer cells spread laterally to fill the corners and the 

central region becomes dominated by square cells formed by the interaction 

of the two diagonal sets; this solution was not observed in the time-dependent 

calculations and may not be stable. 

The fourth branch, 001, bifurcates at c = 0.026, consistent with the 

eigenvalue of the linear system shown in Figure 2.15, and at onset consists of 

10 cells on each diagonal, separated by a central saddle point. Contour plots 

for this branch are shown in Figure 2.63. As c increases, the central region 

again becomes dominated by square cells. 

Two nonlinear solutions, which do not bifurcate from the trivial solution 

u = 0, were also located. The first of these, EEF1, appears as a fold bifur

cation at c = 0.0455 and on the upper branch (EE~l) consists of a 9-cell 

parallel mode, as shown in Figure 2.64. This solution was found in the time

dependent calculations of Figure 2.34 at c = 0.19, suggesting that it is stable. 

On the lower branch (EE~l) the parallel structure becomes less well-ordered 

as c increases, as shown in the contour plots of Figure 2.65, and the solution 
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is likely to be unstable. 

A second fold bifurcation (C F 1) was located at c = 0.0666 and is a cen

trosymmetric mode of the type observed in the time-dependent calculations 

of Figure 2.33 at c = 0.11 and c = 0.13. Contour plots on the upper branch 

(C~l) are shown in Figure 2.66 and on the lower branch (C~l) in Figure 

2.67. 

These two fold bifurcations are similar to those observed in the case L = 

57r, suggesting that they are a generic feature of convection patterns in square 

cavities. 

2.8 Discussion 

Pattern formation in a square has been investigated by solving the two

dimensional Swift-Hohenberg equation analytically and numerically for pe

riodic, quasi-periodic and rigid boundary conditions. One of the aims of the 

study has been to establish the preferred structure and orientation of the 

pattern, especially in cases where the square is sufficiently large for many 

cells to be accommodated. In this section we give a summary of the main 

results. 

For periodic boundary conditions the results of Section 2.3 show that 

solutions onset in the form of parallel-cell solutions (i.e. cells with bound

aries parallel to the sides of the square) with EE, 00, OE (or EO) symmetry. 

Apart from the parallel-cell solutions that already have 4-fold rotational sym

metry, all of the other modes appear at repeated eigenvalues of c which, in 

the OE/EO case, gives rise to further onset solutions with diagonal sym

metry and, in the EE or 00 case, give rise to further onset solutions with 

4-fold rotational symmetry. However, a weakly nonlinear analysis shows that 

these non-parallel solutions are all unstable, having lower amplitude than the 

corresponding modes that bifurcate at the same value of [. As the size of 

the square (measured by the non-dimensional parameter L) increases the 

most dangerous mode continually changes so that on average the parallel on

set pattern contains an increasingly large number of cell boundaries in both 

directions, the specific number depending on the precise value of L. 

For the rigid problem, the linear theory of Section 2.4 again reveals so-
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lutions with EE, 00, OE (or EO) symmetry. Like the periodic case, the 

OEjEO modes appear at repeated eigenvalues of E, giving rise to further 

onset solutions with diagonal symmetry, the existence of which is confirmed 

by nonlinear computations in Section 2.7. In the rigid case, however, these 

diagonal solutions can have larger amplitude than the corresponding OE or 

EO solution. Also in contrast to the periodic case there are in general no 

repeated eigenvalues with EE or 00 symmetry - in the rigid problem all EE 

and 00 modes appear with 4-fold rotational symmetry at distinct eigenval

ues. In Section 2.5 this qualitative difference is investigated by studying a 

quasi-periodic system containing a small element of the rigid boundary con

dition. This confirms that the influence of the rigid condition is to render the 

repeated 00 and EE eigenvalues of the linearized periodic system distinct 

and instead the corresponding parallel modes of the periodic problem emerge 

as a secondary bifurcation of the primary mode. 

Another important difference between the rigid and periodic systems is 

that in the rigid case the most dangerous mode of the linearized system 

does not continually change as L increases. Instead there is a competition 

between just three modes, one with EE symmetry, one with 00 symmetry 

and one with OEjEO or diagonal (0) symmetry. These modes interweave 

as L changes and the pattern best 'fits' the square, so that each becomes the 

most dangerous mode for particular intervals of L. The pattern associated 

with each mode also changes as L changes, facilitating the incorporation of 

additional cells as L increases. This leads to patterns at large values of L 

that consist of cells along, and with axes orthogonal to, the diagonals of the 

square. For the EE, 00 and OE/EO modes the cells are positioned along 

both diagonals whereas for the diagonal mode 0 they are positioned along 

one diagonal. These results are consistent with the idea that in large plan

form systems with rigid boundaries, roll patterns occupy the region spanning 

points of the boundary of maximum separation. 

The results for the linearized rigid problem not only emphasize the preva

lence of diagonal structures but also the notable lack of parallel-cell solutions. 

The existence of nonlinear parallel modes and other modes is, however, con

firmed by the time-dependent calculations presented in Section 2.6. These 

show that as E increases a whole range of nonlinear stable steady states can 
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in fact be found, including diagonal modes, parallel modes, modes with cen

trosymmetry and modes with no symmetry. The question of analyzing the 

nonlinear bifurcation structure of these modes is addressed in Section 2.7. 

For relatively low values of L (e.g. L = 5) and moderate values of c this 

structure is reasonably straightforward and the results confirm the existence 

of supercritical nonlinear branches of solutions which bifurcate from the lin

earized eigenvalues and have EE, 00, OE/EO or D symmetry. 

As L increases, more modes fit into the square at low values of c and the 

complexity of the bifurcation structure is evident from results obtained for 

L = 57r and L = 30. These indicate that in addition to the modes stem

ming from the linear eigenvalues there are other important nonlinear modes 

that arise through secondary bifurcations and fold bifurcations. In the case 

L = 30 the primary solution is a diagonal mode and in the case L = 57r, 

where the primary mode is an 00 solution with 4-fold symmetry, it rapidly 

gives way to a diagonal mode through a secondary bifurcation. In both cases, 

at higher c, a parallel mode and then a centrosymmetric mode enter through 

fold bifurcations, with the time-dependent calculations indicating that the 

upper branches of these modes are stable. Other stable states were also 

found, consistent with the idea of complex patterns evolving through sym

metry breaking. The various nonlinear patterns reflect a preference for long 

coherent cells (either straight or curved) thereby minimizing cell boundaries 

within the interior of the domain. At the boundaries of the domain, the 

preference is for cells to approach orthogonally, avoiding extended areas of 

weak convection there. 

A more comprehensive set of nonlinear solutions is needed in order to 

identify all the generic features of the bifurcation diagram for general values 

of L. Hmvever, it is conjectured that diagonal modes with an even number 

of cells generally bifurcate from the trivial solution at an OE eigenvalue 

and that diagonal modes with an odd number of cells generally appear as 

secondary bifurcations through a nonlinear interaction between EE and 00 

modes. Parallel and centrosymmetric modes with an odd or even number of 

cells generally appear through fold bifurcations. Further work is needed to 

confirm these ideas and to carry out a stability analysis of nonlinear solutions. 
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Figure 2.1: The first ten branches of the eigenvalues Cmn as functions of L. 
Branches are labelled (m,n). 
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Figure 2.2: Contour plots of Lhe solut.ions (2.19) for (m, n)=(l, 1). (2 ,2), 
(3,3). 
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Figure 2.3: Contour plots for m = 2 ancl n = 1 of solutions 1£1,1£2 , 1£3 and 
U·I · 
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Figure 2.4: Contour plots for m = 4 and n = 1 of solu tions U [ , U 2, U3 and 
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U3 and . lS '/.Ll, U2 , - 1 of solutlOi - 3 and n -for m -. Contour plot.s Figure 2.5. 
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Figure 2.6: Contour plots for m = 5 and n = 1 of solutions 1tl, 1[2 , 1L3 and 

1l4· 
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Figure 2.7: Cont our plots for m = 4 and 11 = 2 of solutions 'Ul , 'U2 , 'U3 and 

1Ll· 
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Figure 2.8: The first eight branches of the eigenvalues E as functions of L 

obtained using a 20x20 grid. 
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Figure 2.9: The first eight branches of the eigenvalues c as functions of L in 

the region 15 < L < 20 obtained using a 40x40 grid. 
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Figure 2.10: Seqllence of pntterns on brallch EEl for L = 5, 8, 11 , 12 , 14 , 16 . 
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Figure 2.11: Sequence of patterns on branch EEl for L = 18,20.30. 
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La l 2 

Figure 2.12: Sequence of patterns on branch OE1 for L = 5, 10, 12. The OE 

solutiOll III is shown on the left and the diagOlwl solution U3 on the right. 
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Figure 2. 13: Spquenc:e of patterns all branch OE1 for L = 16, 20, 30. The 

OE solution 'U\ i~ shown on the left and the diagonal solu tion 'U3 on the right. 



Lal:! 

Figure 2.14: Seqllence of patterns on branch 001 for L = 5, 8, 10, 12 , 14, 

18. 
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Figure 2.15: Sequence of patterns on branch 001 for L = 20 , 30. 
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Figure 2.1G : Sequence of pM.terns on brallch EE2 for L = 5, 9, 12, 16, 20. 
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Figure 2.17: Sequence of patterns on branch EE3 for L = 5, 9, 12. 20. 
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Lz 16 

Figme 2.18: Sequellce of pat.terns on branch OE2 for L = 9, 12 , 16. The OE 

solutiOll II I is showll on the left and the diagonal solutioll U3 on the right. 

76 



1'\ 

U 

6 

2.5 

2 

1.5 

1 

0.5 

o 1 2 3 4 

Figure 2.19: Bifurcation diagram for the case m = 3, n = 1, L = 5 where 

k = 0.07244. Branch (1) corresponds to the solutions a s = -bs , branch 

(2) corresponds to the solu t ions as = bs and branch (3) corresponds to the 

solutions given by (2.119), (2 .120) . 
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Figure 2.20: Contours of It on the \"Cnious branches of Figure 2.l9. The 

patterns on branch (3) are shown for various values of E, whereas those on 

branches (1) and (2) are independent. of E. 
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Figure 2.21: Contours of steady-state solutions 1L for L = 5, obtained with 

an ini tial state U(x , y) = :r(L - x)y(L - V). 
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Figure 2.22: Time evolution of two steady-state solutions of the type shown 

in Figure 2.2l. 
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Figure 2.23: Contours of steady-state solutions H for L = 5, obtained with 

an initial state U(x, y) = sin CrZ) sin e?). 
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Figure 2.24: Time evolut ion of the steady-state solutions shown in Figure 

2.23. 
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Figure 2.25: Contoms of st.eady-state solutions II for L = 5, obtained with 

an initial st.ate U (.r , y) = sin e~I) sin (~) . 
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Figure 2.26: Time evolution of two of the steady-state solutions shown in 
Figure 2.25 . 
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Figure 2.27: Contours of steady-state solutions lL for L = 5IT, obtained with 

an initial state U(x,y) = R(i,j). 
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Figure 2.28: Contours of steady-state solutions 11 for L = 5IT, obtained with 

an initial state U(.T, y) = R(i, j). 
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Figure 2.29: COlltOur::; of '1t at. various times I ill the e\'Ollltioll leading to the 

steady-state so lution for E = 0.30 shO\\'ll ill figure 2.28 . 
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Figure 2.30: Contours of steady-state solutions 11 for L = 57r, obtained with 

an initial state U( :r,y) = IR(i ,j )l. 
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Figure 2.31: Contours of steady-state solutions u for L = 51f, obtained with 

an ini t ial state U( x, y) = R(i,j). 
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Figure 2.32: Contours of steady-state solu tions 11 for L = 30, obtained with 
an initial state U(.r, y) = R(i, j). 
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Figure 2.33: Cont.oms of ::Heady-state solutions ?L for L = 30, obtained with 

an initial state U(.r,y) = R(i,j). 
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Figure 2.34: Contours of st.eady-state solutions u for L == 30, obtained with 

an initial staLe U(:t:,y) = R(i,j). 
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Figure 2.35: Cont.ours of a steady-stat.e sol1.\t ion lL for L = 16n and c = 0.1 , 

obt.ained with an initial state U (J.:, y) = R( i . j). 
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Figure 2.36: Time evolution of the st.eady-st.ate solution shown in Figure 

2.35. 
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Figure 2.37: Bifurcation diagram for the case L = 5. 
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Figure 2.38: COlltOur plots of solutions 1L on branch EEl for increasing [ and 

L = 5. 
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Figure 2.39: Contour plot.s of solu tions U 0 11 brallch 01 for increasing [ and 
L = 5. 
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Figure 2."10: COlltour plots of solutions It Oil brallch OEI for increasing E and 
L = 5. 
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Figure 2.41: Contour plots of solutions 1L on branch 001 for increasing E and 

L = 5. 

99 



..:<19 . 197 

.: .. 1 9 . 897 

Figure 2.-i2: Contour plot.s of solutions 'It 0 11 branch EE2 for increasing E and 
L = 5. 
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Figure 2.-l3: Contour plots of solutiolls '(L OIl branch EE3 for ilH.: reasing c and 
L = 5. 
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Figure 2.44: Bifurcation diagram for the case L = 57r. 
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Figure 2.45: COlltOur plots of solutions U 0 11 brallch 001 for increasing c and 
L = 57r. 
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Figure 2AG: Contour plots of solutions II 0 11 branch EEl for increasing [ and 
L = 5iT . 
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Figure 2.4 7: Cont our plots of solutions 'U all brallch 01 for increasing [ anel 
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Figure 2.50: Cont.our plots of solutions 'U on branch 0 2 for increasing [ and 
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Figure 2.5-1: Cont.our plots of solution::.; U 0 11 brallch OE~- l for increasing E 

and L = 57T. 
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Figure 2.55: The fold bifurcation of branch OEFI near E = 0.170. 
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Figure 2.56: COil tour plots of solutions u on branch Esl for increasing E and 
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Figure 2.59: The fold bifurcation of branch CF 1 near c = 0.6318 . 
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Figure 2.60: Bifurcation diagram for the case L = 30. 

118 



.... o. o:!5os 
... . 0 .0 4 5050 

,;-0.0555252 
c: .0 . 06S51S 

c: - O. 0661 
(_0.0111)5 2 

Figure 2.61: Contour plots of solutions 'U on branch 01 for increasing c and 
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Figure 2.62: COlltOur plots of solutions II on branch EEl for illcreasing E and 
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Figure 2.63: Contour plot.s of solutions 1£ on branch 001 for increasing E and 

L = 30. 
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Figure 2.64 : Cont.our plots of solutions 1l on branch EE~ l for increasing c 

and L = 30. 
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Figure 2.65: Contour plots of solutions 1.l on branch EE~l for increasing c 

and L = 30. 
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Figure 2.66: Contour plots of solutions u on branch C~l for increasing [ and 

L = 30. 
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Figure 2.67: Contour plots of solutions u on branch C~l for increasing E and 
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Chapter 3 

Pattern Formation in Large 

Squares 

3.1 Introduction 

Pattern formation in a square with sides of length L has been investigated 

by solving the 2D Swift-Hohenberg equation numerically for rigid boundary 

conditions . One of the aims of this study has been to establish the preferred 

structure and orientation of the pattern, especially in the cases where the 

square is sufficiently large for many cells to be accommodated. This chapter 

will investigate the idea that in large planform systems with rigid boundaries, 

roll patterns can occupy the region spanning points of the boundary of max

imum separation, in other words with axes orthogonal to the diagonals of 

the square. This type of pattern has already been observed in the numerical 

solutions for the square in Chapter 2 and appears to be the leading mode of 

convection as L ~ 00. 

This study will attempt to gain insight by making use of asymptotic meth

ods, based on the assumptions that the lateral dimensions of the container 

are much larger than the characteristic wavelength of convection and that 

the solution is weakly nonlinear. Since we are considering large squares in 

which many cells can be accommodated, a solution near onset is sought in 

terms of an envelope function which modulates the amplitude and phase of 

a set of rolls with axes perpendicular to the diagonal. The problem is for-
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mulated in Section 3.2 and the equation for the envelope function is derived 

in Section 3.3. The boundary conditions for this function are determined by 

considering corner regions in Section 3.4, where the solution adjusts to the 

wall conditions. In Section 3.5 a Fourier transform method together with a 

solvability condition leads to a closed system for the transform of the enve

lope function. Solutions of this system are found in Sections 3.6 and 3.7. 

Further properties of the asymptotic structure of the solution in the corners 

are investigated analytically in Section 3.8 and show how reflection at the 

walls generates a local cross-roll structure. The results are summarized in 

Section 3.9 

3.2 Formulation of the problem 

The Swift-Hohenberg equation is 

au ') 2 3 
- = EU - (1 + \7-) 1t - 1t at ' (3.l ) 

where t is the non-dimensional time \72 = {)02, + ofJ22 where x and yare non-, x' y 

dimensional Cartesian coordinates, E is a control parameter and u(x, y, t) is a 

scalar field. The domain is a square with sides of length L and the conditions 

au 
U=- =0 aq (3.2) 

on the boundary where q is used to denote the inward normal direction to 

the boundary. 

It is convenient in this chapter to choose the origin of the coordinates 

x,y at the centre of the square, with the x axis directed along one of the 

diagonals, as shown in Figure 3.1. A parameter l is introduced such t.hat the 

diagonal is defined by -l :S x :S l, y = 0 and then L = V2l. 
This chapter is concerned with an asymptotic description of the solution 

for 'U as l --t 00, focusing on the structure of the leading modes of convection 

as the control parameter E increases. Figure 3.1 shows the main regions of 

t.he proposed solution structure. A core region of widt.h y '" d lies along 

the diagonal and contains rolls with axes in the y direction. At each end of 

the core region are corner regions of size x ± l '" d and y "" d and within 
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these further adjustments occur in wall regions on a length scale of order one 

normal to the boundaries of the square. 

The main ingredients of the structure proposed here are based on the 

weakly nonlinear theory developed by Daniels (2000) for the onset of con

vection in arbitrarily-shaped domains. In that theory the boundary of the 

domain is assumed to be smooth and the convection pattern forms along the 

diameter of the domain, the straight line of maximum length spanning the 

domain. At t he ends of the diameter the boundary is described locally by 

the equations 

(3.3) 

,,·here the parameters c± are a measure of the local curvature of the boundary. 

This leads to the onset of convection when [ reaches a critical value 

1T2 0 
E= [2 +13 + ... , I -+ 00, (3.4) 

with the parameter 6 depending on c± . The leading term in (3.4) represents 

the fact that the presence of the boundaries, distance 21 apart, giYes rise to 

an increase in the critical value of [ relative to its value ([=0) for an infinite 

layer. The correction term involving t5 is the additional increase in ~ needed 

to a llo\\' for inward curvature of the boundaries at each end of the diameter. 

In the limit of large boundary curvature (c± -+ 00) Daniels (2000) showed 

tha t , at onset, 6 '"" c± and that the lateral extent of the rolls in the y direction 

is of order 1 ~ and independent of c±. Although this theory cannot be applied 

directly to the case of a square because of the non-smooth nature of the 

boundary, it can be used to estimate the likely effect on (3.4). In the case 

of t he square, x =F I and yare of comparable magnitudes near the corners. 

With y '"" d it follows from (3.3) that if x =F 1 '"" d also then c± tv d. Since 

6 '"" c± as c± -+ 00 it follows that for the square it can be expected that the 

onset of convection will occur when 6 '"" I ~ and so we set 

1T2 01 
[=r+d (3.5) 

where 61 is an order one parameter. A further implication is that the mag

nitude of u in t.he core region is of order (E-7~)~ rv l -~ . The expansion of 

the solution in the core region is considered next . 

128 



3.3 Core expansion 

A solut ion ill the core region is assumed in the form 

where lL i = lLi(X, X, Y, T) are fun ctions of x and the scaled variables X = x/I, 

Y = y/d and T = t/l ~ . These are chosen to accommodate a modulat ion 

of the roll pattern along the diagonal (-1 < X < 1), the decay of the roll 

pattern on the lateral scale y I'V d corresponding to -00 < Y < 00 and the 

temporal evolution of the weakly nonlinear solution near onset. Justification 

for the precise scalings in I will become clear in due course. The expansion 

(3.6) is substituted into the governing equation (3.3) with the cont rol pa

rameter € expressed in the form (3 .5), leading to a series of problems for 

lLo , 1L\ , ... . 

At order 1- ~ , Uo is found to satisfy the equation 

04'tLO 021Lo 
L(uo) == OX4 +2 OX2 +uo =0 (3.7) 

and the relevant solution is 

(3 .8) 

where Ao is a complex ampli tude function and * denotes complex conjugate. 

This solution represents a set of rolls with axes orthogonal to the diagonal 

whose am plitude and phase are modulated by the function Ao· 

At order 1- *, UI is found to satisfy the equation L( 'tLI) = 0 and the 

relevant solut ion is 

(3 .9) 

where At is a further complex amplitude function . 
9 

At order 1- 4 , 'l.L2 is found to satisfy the equation 

L( )__ O·IUO 02uo 02uo 841Lo 
'l.L2 - 48x38X 4 ox oX -2 oY2 -2 ox28y2' 

(3 .10) 

From (3 .8), the terms on the right-hand side sum to zero, so that 

(3.11) 
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where A2 is a further complex amplitude function. 

At order 1- ¥ , U3 is found to satisfy 

(flU I 82
uI 82

uI 84
uI 

L(1l3)= -4 8.r38X 4 8x8X -2 8y2 -2 8x28Y2 
(3 .12) 

and again the right-hand side terms sum to zero, giving 

u3=A3(X, Y , T) eix + A3 * (X , Y, T) e- ix , (3 .13) 

\\'here A3 is a fur ther complex amplitude function . 
13 

At order l- -;r , lL.[ is found to sa tisfy 

84u') 82u') 82th 84'Lh 
L(u4)= -4 8x38~X. -4 8x8X -2 8Y; -2 8x28¥2 

7f2 _ 84uo _ 84uo _ 8-luo _?8
2
uO (3 14) 

+ Uo 68x28X2 4 8x8X 8Y2 8Y4 ~ 8X2 . . 

A bounded solu tion for U4 requires that the terms on the right-hand side 

(which are proportional to e±ix ) sum to zero, and substitution for uo from 

(3.8) and U2 from (3.ll) shows that Ao satisfies the equation 

( 8 i 82 
2 2 

4 8X - 2 8Y2) AO+7f Ao=O. (3.15) 

The assumed scaling for y '" d ensures that the Y deri vatives appear in this 

equat ion along with the X derivatives, essential in allowing a solution for Ao 

that decays as Y ~ ± oo. This solution will be considered in Section 3.5. 
15 

At order l- -;r, U;:, is found to satisfy 

L('LL-)-- 84U
3 _ 82u3 _ EPU3 _? 841L3 

o - 48x38X 48x8X 2oY 2 - 8x2 8Y2 

84 84 8.1 82 
? 6 HI 4 HI HI UI 

+7f-
U
I- 8x28X2 - 8x8X8Y2 - 8Y·1 -2 8X2 

- 3 8uo 
+Ol l LO-UO - 8T . (3. 16) 

A bounded solution for U5 requires that the terms proportional to e±i~' on t he 

right-hand side sum to zero; substitution from (3.8) ,(3.9) and (3.13) shows 

t hat A I satisfies the equation 

( 8 i 8
2 

'2 I 2 DAo \2 (3 17) 
4 8X -28Y2) .4 1+7f .4 1= 8T -01Ao+3Ao\Ao . . 

The scalings in (3 .5), (3.6) and of the time t ensure that the terms in Ao 

ill\"olving 0[, nonlinear effects and the time c.lerin,t ive appear on the right.

hand s ide of (3.17). The solution of (3 .17) is considered in Section 3:5. 
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3.4 Corner regions 
1 

The corner region near x=-l is defined by \Y\ ::; X_ < 00 where y=I'iY and 

x=-l+d X _. Since the scale in x is much larger than the critical wavelength 

of the roll pattern, this corner region contains many rolls and the solution 

must. match with that in the core region as X_ ---t 00. In the core region 

it will be assumed that the leading order amplitude function Ao approaches 

zero as X ---t ± 1 so that 

Ao(±l, Y, T)=O. (3 .18) 

This is consistent with the usual behaviour in finite domains with rigid lateral 

boundaries (Daniels 1977a) and is needed to ensure that the wall conditions 

(3.2) can be satisfied (see Section 3.8 below). This implies that as X ---t -1 

the core amplitude function has the behaviour 

8Ao 
An '" (X + 1) 8 X ( -1, Y, T) , (3.19) 

giving rise to a solution in the corner region of the form 

(3.20) 

as l ---t 00. 

The required solution for ltn can be found by an expansion procedure 

similar to that of Section 3.3 but allowing for the new scaling of X_in place 

of X . Since the analysis is essentially the same but with X_in place of X , 

it can be inferred that the required solution for '!.La is 

(3 .21) 

where the amplitude equation equivalent to (3.15) is dominated by the X_ 

derivative, giving 
a2A-
8X~ =0. 

:Matching with (3.19) requires that 

_ aAo 
An '" X - -a ' ( -1, Y, T) as X _ ---t 00 

X 
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and the other boundary condition for Ao is that it vanishes on the boundary 

of the square, so that 

Ao=O on X _=\Y\, -00 < Y < 00. (3.24) 

This is necessary to allow the solution to adjust to the wall conditions (3.2) 

in the wall regions, to be considered in Section 3.8. From (3.22) - (3.24) the 

solution for Ao is 
_ aAo 

AD =()C-\Y!) ax (-1 , Y, T). (3.25) 
I 

The corner region at x=l is defined by -00 < X + ~ -!Y! where x=I+12 X + 

and the solution there is 

(3.26) 

as I -> 00 , where 

(3.27) 

and 

+ ( ! ! aAo (328) Ao = X++ y) ax (1 , Y,T). . 

Matching between the corner solutions (3.25), (3.28) and the core solution 

now implies that the core amplitude function Al must satisfy the boundary 

conditions 
aAo 

A1(±1, Y, T)= ± !y! ax (±1, Y, T). (3.29) 

If the core functions ~ (± 1, Y, T) are smooth functions of Y that are non

zero at Y = 0, it follows that the corner solutions (3 .25) and (3 .28) have a 

discontinuous gradient in Y across Y = O. This is a consequence of the lack 

of Y derivatives in the governing equation (3.22) and can be expecteel to be 

smootheel out on a smaller lateral scale y rv l ~ within each corner region, 

where the y deri\·atives in the governing equations become significant. The 

details of the solution in this region are not considered here. 

3.5 Fourier transform theory 

From the results of Sections 3.3 and 3.4 a local onset of convection requires 

a solution of 

(3 .30) 
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for which Ao=O at X = ±1 and Ao ----1 0 as Y ----1 ±oo. Such solutions can 

conveniently be represented using a Fourier transform in Y, 

Ao(X,w, T)= i: Ao(X, Y, T)e iwY dY (3 .31) 

and it follows from (3.30) that Ao satisfies 

a . 2 
- - ( ~w )? - 2 -
L(Ao) == 4 ax +2 -AO+7I Ao=O (3.32) 

so that 
- iw2 X 7T .X. 

Ao=a(w, T) e--2- cos( 2) (3 .33) 

where a(w, T) is an arbitrary function of T and the transform variable w. A 

single Fourier component of frequency w would correspond to a roll whose axis 

lies at an angle w / d to the y direction . The function a must be determined 

by considering the problem for Al which consists of the equation 

together with the boundary conditions given by (3.29) and the requirement 

that Al - 0 as Y ----1 ±oo. It follows that the transform AI(X ,W,T) of Al 

must satisfy 

(3.35) 

where R is the transform of the right-hand side of (3.34), together with 

(3.36) 

where D± are the transforms of the right-hand sides of (3.29). 

The adjoint function for Ao is el"'~x cos(11';) and so the problem for AI 
has a solution only if the solvability condition 

LII He iw~X cos(: )dX =27T(D+e i~2 + D_e _i~2) (3 .37) 

is satisfied. Given that AD is known in terms of a(w, T) , this is an equation 

for the unknown function a(w, T): 

(3.38) 
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where 

J
l iw2X 7r X 

Io(w, T)= Ho(X,w, T) e- 2- cos(-)dX, 
-1 2 

(3.39) 

Ho(X,w, T)= I: Ao\Ao\2eiwY dY, (3.40) 

Ao(X, Y, T) co~ q. J oo a(w, T)'e- iW~X -iwY dw 
7r - 00 

(3.41) 

and 
- j oo aAo . Y 
D±(w, T)= ± - 00 IY\ aX (±1, Y, T) e

tW 

dY (3.42) 

where 
aAo 1 j oo iw2 . y' -(±1 Y T)= :r: - a(w T)e'f T - 1w dw aX " T 4 -00' . 

(3.43) 

The system (3.38) - (3.43) admits solutions of the form 

a(w, T )=r(w, T) eiB (3.44) 

where 7' is real and the phase e is constant. In this case 

and r is the solution of the system 

(3.46) 

where 

j l iw2x 7r X 
I(w, T)= H(X , w, T)e-2- cos( -)dX 

-1 2 
(3.47) 

H(X,w, T)= L: AJAJ2eiwY dY (3.48) 

rrX 
cos - Joo iw2 X . 

A(X, Y, T) 2 2 r(w, T) e--2--
twY dw 

7r - 00 

(3 .49) 

and 

D(w , T)= - L: \Y\F(Y, T)eiwY elY (3.50) 

where 

F(Y, T )=~ L: r(w, T) e i~2 -iwY dw. (3.51) 

Solutions are required for which 

.,. -t 0 as w -t ±oo. (3.52) 
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The value of the phase constant e is arbitrary but is expected to be deter

mined at higher order in the expansion of the solution for u as l --+ 00 (see, 

for example, Daniels 1978) with e = 0 corresponding to solutions for Uo even 

in x, and e = ~ corresponding to solutions for tLo odd in x. 

The system (3.46) - (3.52) has real solutions r that are even or odd 

functions of w, the nonlinear term I appearing in (3.46) being real in this 

case. This follows because if r(w, T) = r( -w, T) then A is even in Y and 

its real and imaginary parts are even and odd in X respectively, whilst if 

r(w, T) = -r( -w, T) then A is odd in Y and its real and imaginary parts are 

odd and even in X respectively. In either case it then follows that the real 

and imaginary parts of H are even and odd in X respectively and thence that 

the imaginary part of I is zero. Solutions of the steady linearised version of 

(3.46) are found in Section 3.6 and of the full nonlinear system in Section 

3.7. 

3.6 Linear Solution 

In this section solutions of the steady linearised version of (3.46), 

(3.53) 

are found subject to the boundary conditions (3.52). This is an eigenvalue 

problem for (h, with the lowest value of 01 and the corresponding eigenfunc

tion r = r(w) defining the onset of convection. 

3.6.1 Solution method 

Solutions of (3.53) were found using a Fourier series representation 

where 

00 

r=Lrn sin mrw 
n=1 

1 
W=2(1 + tanhw), 0 < ~ < l. 

(3.54) 

(3.55) 

This ensures the smooth decay of the eigenfunction r to zero as w --+ ±oo 

(that is, as w --+ 1 and w --+ 0). 
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From (3.51), 
00 

F=2:>nFn(Y) 
n=l 

where Fn = Fnr + iFni and 

1 Joo u} w2 

Fnr=- (cos - coswY + sin - sinwY) sin mfwdw, 
4 -00 2 2 

1 Joo w
2 

w
2 

Fni=- (sin - coswY - cos - sinwY) sin mrwdw 
4 -00 2 2 

and then (3.50) gives 
00 

D=I>nDn(w) 
n=l 

where Dn = Dnr + iDni and 

Dnr= - L: \Y\(FnrcoswY - FnisinwY)dY, 

Dni= - J: \Y\(Fni coswY + Fnr sinwY)dy' 

Equation (3.53) is now decomposed into individual modes as 

00 

81rm + 41T I>nbmn=O (m = 1,2, ... ) 
n=l 

where 
rl w2 w2 

bmn =2 J
o 

(Dnr cos 2 + Dni sin 2) sin m1l"wdw 

or, in matrix form, 
81 (B + -I)r=O 
411" 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

where B is the matrix with elements bmn , I is the identity matrix and r is 

the column vector with elements T m' 

From (3.57) and (3.58), Fnr and Fni are even in Y for odd values of n 

and odd in Y for even values of n. It follows from (3.60) and (3.61) that Dnr 

and Dni are even in w for odd values of n and odd in w for even values of 

n. Thus bmn = 0 when n is odd and m is even, and when m is odd and n 

is even. It follows that one set of eigensolutions is obtained with r n = 0 for 

even n, corresponding to eigenfunctions r{w) that are even functions of w, 

and another set with Tn = 0 for odd n, corresponding to eigenfunctions r(w) 

that are odd functions of w. 
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3.6.2 Results 

The matrix eigenvalue problem (3.64) was solved using a standard Math

ematica routine. The system was truncated to N modes and the matrix 

elements bmn calculated using Simpson's rule in the integrals (3.57), (3.58), 

(3.60), (3.61) and (3.63). For the integrations in w the integrals were trans

formed to the variable wand the domain 0 ~ w ~ 1 subdivided into equal 

intervals. The integrands oscillate rapidly as w ~ 0 and w ~ 1 and the 

integrations were performed from w = E to w = 1 - f with the parameter E 

chosen sufficiently small (typically € = 0.01) to provide an accurate evalua

tion; the integrands are bounded as w ~ 0 and w ~ 1 and so contributions 

to the integrals from the neighbourhood of w = 0 and w = 1 are small. The 

integration over Y in (3.60) and (3.61) was performed typically with a step 

size ~Y = 0.1 and various outer boundaries Y = ±Yoo with Yoo ranging from 

10 to 80. The integrations in w were performed with the same number of 

steps as those in Y. Results were obtained for a range of truncation levels 

up to N = 28, at which point reasonable convergence was achieved. 

Table 3.1 shows the dependence of the leading eigenvalue 81 on the trunca

tion level and the outer boundary Yoo' Results for the first six eigenvalues 81 

and the corresponding eigenvectors r obtained for a truncation level N = 28 

and outer boundary Yoo = 80 are shown in Table 3.2. The leading eigenvalue 

is calculated to be 81 = 15.5 to three significant figures. The leading eigen

function r(w) is constructed from (3.54) and the real and imaginary parts 

of the correspo~ding amplitude function A(X, Y) calculated from (3.49) are 

shO\vn in Figure 3.2. Figure 3.3 shows the solution for Uo calculated from 

(3.8) in the case where L is taken as 30 and () = O. The corresponding results 

for the second eigenvalue 81 = 31.5 are shown in Figures 3.4 and 3.5. 

3.6.3 Comparison with numerical results 

The asymptotic results obtained here can be compared with the linearised 

solutions of the Swift-Hohenberg equation reported in Section 2.4. Setting 

I = L /..j2 in (3.5). the present asymptotic theory predicts linear solutions at 

L~oo (3.65 ) 
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N Yoo = 10 Yoo = 20 Yoo = 40 Yoo = 80 
2 19.2215 19.2224 
4 16.8609 16.8604 16.8614 
6 16.0670 16.0954 16.0973 
8 1S.7127 IS.7709 1S.7741 
10 IS.6183 IS.6226 
12 15.5421 15.5495 
14 15.5048 15.5152 
16 15.5009 15.5091 
18 15.4969 15.5061 
20 IS.4982 15.5082 
22 15.5015 15.5123 
24 15.5066 15.5171 
26 15.5097 15.5216 
28 15.5154 15.5254 

Table 3.1: Dependence of the leading eigenvalue 81 on the outer boundary 
y 00 and the truncation level N for L1 Y = 0.1. 

01 15.5254 41.1787 67.5581 01 31.4948 S3.5543 82.3752 
1'1 -0.7918 0.1126 -0.0008 1'2 -0.5651 -0.0000 0.0083 
1'3 -0.4317 -0.3644 -0.0180 1'4 -0.4711 -0.0357 -0.1317 
1'5 -0.2911 -0.4247 0.1850 1'6 -0.3860 0.2505 . 0.4552 
1'7 -0.2102 -0.4089 -0.4860 1'8 -0.3177 -0.4846 -0.1082 
1'9 -0.1567 -0.3720 0.0473 1'10 -0.2628 -0.0680 -0.3789 
I'll -0.1189 -0.3297 0.3766 '7'12 -0.2179 0.3219 -0.3238 
r13 -0.0909 -0.2874 0.3464 1'14 -0.1806 0.3752 -0.1266 
1'15 -0.0696 -0.2472 0.1364 1'16 -0.1492 0.2039 0.0820 
"'17 -0.0530 -0.2096 -0.0948 1'18 -0.1224 -0.0300 0.2400 
1'19 -0.0399 -0.1747 -0.2650 1'20 -0.0992 -0.2227 0.3294 

Table 3.2: The leading six eigenvalues and the first ten non-zero elements 

of the corresponding eigenvectors obtained with LlY == 0.1, Yoo = 80 and a 
truncation level N = 28. 
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and these are shown in Figure 3.6 for the first two eigenvalues 81 listed in Ta

ble 3.2, along with the linearised solutions of the Swift-Hohenberg equation 

displayed in Figure 2.8. These indicate good agreement. The leading eigen

value 61 = 15.5 is associated with the first group of branches; the distinction 

between the different modes (EE, 00 and EO /OE/D) identified in Section 

2.3 corresponds to the possibility of selecting the phase as e = 0 or e = ~ and 

is expected to give rise to the next correction to € in (3.65) which is likely to 

be a term of order L -3 (cf Daniels 1978). The value of this correction term 

is expected to be different for each of the three symmetries (EE, 00 and 

EO/OE/D), providing the three distinct curves. 

The diagonal pattern predicted by the asymptotic theory is consistent 

with that observed in the Swift-Hohenberg calculations. The single diagonal 

mode corresponds to the mode 01 observed in Figure 2.13. Superposition of 

the asymptotic structure along one diagonal with a similar structure along 

the other diagonal of the square gives rise to the OE,EO,OO and EE modes 

observed in Figures 2.11- 2.15. Although the asymptotic theory is nonlinear, 

such a superposition is permissable because the two diagonal structures only 

interact with each other where they intersect at the centre of the square. 

Because this interaction occurs over a short length scale (x and y of order 
1 

l'i) it does not affect the leading order solution - the pattern observed in 

this central region is therefore just the linear superposition of the two sets of 

orthogonal rolls. 

The second eigenvalue 81 = 3l.5 is associated with the second group of 

branches; here' the amplitude function is odd in Y and so sets of double cells 

are predicted along the diagonals. 

3.7 Nonlinear solution 

In this section solutions of the full nonlinear version of (3.46), 

8r iw2 . 2 

-=81r + 27r(De- T + D*eT }-31 
8T 

are found subject to the boundary conditions (3.24). 
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3.7.1 Solution method 

The Fourier series representation 

with 

00 

'1'= L Tn sin n7rw 
71=1 

1 
w="2(1 + tanhw), 0 < w < 1 

(3.67) 

(3.68) 

was again used but now with Tn = 'rn(T) functions of the time T. Provided 

r is an even or odd function of w the nonlinear term J is real and can be 

expressed as a Fourier series 

00 

J(w, T) = Lcnsin n7rW (3.69) 
n=1 

where the coefficients Cn = Cn(T) are given by 

Cn=210
1 

J(w, T)sin n7rwdw, (3.70) 

Equation (3.66) therefore gives a system of ordinary differential equations: 

m = 1,2 ... (3.71) 

to be solved for the individual modesT m' These equations are coupled 

through both the linear terms involving the coefficients bmn calculated in 

Section 3.6 and the nonlinear terms Cm given by (3.70) where J must be 

calculated in terms of 'I'm, m = 1,2, ... using (3.18) - (3.20). 

An Euler forward difference scheme was used to solve (3.71), so that the 

solution at time T = (j + 1)~T is obtained in terms of that at time T = j~T 
from the formulae 

00 

r m,j+l = 'I'm,j + ~T[61Tm,j + 47r LTn,jbmn - 3em,j], m = 1,2 ... , (3.72) 
n=1 

where ~T is the time step. The solution is allowed to evolve in time until a 

steady state is attained. The linearised solution of Section 3.6 with a suitably 

chosen amplitude was used to provide an initial state at T = 0, starting with 

a value of 61 somewhat greater than the critical value identified in Section 3.6. 
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Once a steady state was achieved the value of 81 was incremented and the new 

steady-state values of r m used as the initial state for the next computation. 

The various integrations involved in (3.70) and (3.18) - (3.20) were per

formed using Simpson's rule and results were tested for accuracy using dif

ferent step sizes in X, Y, wand T, and different outer boundaries ± Y 00 for the 

integration in Y. Results were also obtained for various truncation levels N 

in the Fourier representation. 

3.7.2 Results 

Figure 3.7 shows a plot of the steady state solution for r at w = 0 as a function 

of 81 for the leading mode that bifurcates at 01 = 15.5. This was obtained 

using a truncation level N = 10 and with 20 steps in X and 100 steps in wand 

Y in the integration formulae with Yoo = 5. A time step /::"r = 0.005 was used 

and convergence to a steady-state solution was achieved typically to within 

an error of 0.005 in the value of r when T = 1, although this time increased 

significantly in the neighbourhood of the bifurcation point, 81 = 15.5. Plots 

of the steady-state solution for the real and imaginary parts of A at 01 = 23 

constructed from (3.49) are shown in Figure 3.8. As (h increases the solution 

increases in amplitude and spreads outwards from the diagonal. Figure 3.9 

shows the steady-state solutions for Uo constructed from (3.8) at 81 = 18 and 

81 = 45 in the case when L is taken as 30 and e = o. Here it is seen that the 

curvature of the roll pattern decreases as 01 increases. 

3.8 Wall regions 

In this section it is confirmed that the assumptions made in Sections 3.3 and 

3.4 concerning the behaviour of the core and the corner region solutions are 

consistent with satisfaction of the wall conditions (3.2). 

First, recall that in the corner region near x = -I the solution is given by 

(3.73) 

as I -t 00, where 

(3.74) 
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and 

Aii = (X - -I Y I) j (Y, T). (3.75) 

where we introduce 
BAa 

j(Y, T)= BX (-1, Y, T). (3.76) 

Then 

j(Y, T)=e iO F(Y, T) (3.77) 

where e is the arbitrary phase constant and F is the function defined in 

(3.51). Plots of the real and imaginary parts of the steady-state solution for 

F for various values of 01 on the leading branch of solutions computed in 

Section 3.7 are shown in Figure 3.10. 
As X _ ---> IYI the amplitude function AD approaches zero and the solution 

for 1t undergoes a further adjustment within wall regions whose width is 

comparable with that of individual rolls. The proposed structure is shown 

in Figure 3.1. In order to describe the solution within the wall regions it is 

convenient to introduce the new coordinates ~ and T} aligned with the walls, 

defined by 
T}+~ 

x+l =--y'2' 
(3.78) 

Wall region la (see Figure 3.1) then occupies the domain 0 $ T} < 00, 0 $ 

€ < CXJ where € = ~/l1/2. The solution there is 

- [-9/4 - (c. t ) u- U ."ry,.,.T + ... (3.79) 

as [ ---> 00 where u satisfies the linearised version of the Swift-Hohenberg 

equation 
(3.80) 

with \72 = tb + ~. Matching with the incident x-roll pattern given by 

(3.73)-(3.75) requires that 

ft '" J217[J(-~/V2,T)ei(-I+~) + r(-~/J2,T)e-i(-I+~)],T} ---> DC (3.81) 

and the wall conditions (3.2) require that 

_ ail 
u = - = 0 on 17 = o. aT] 
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Satisfaction of the wall conditions requires the generation of a reflected 

(y-roll) component and a solution for ii can be found in the form 

U = (a + b"7)ei
(7t) + (a* + b*"7)e-i(7t) + (c + dI7)ei(7i) + (c* + d*TJ)e-

i
(7t) 

(3.83) 

where a, b, c and d are complex functions of T and € to be determined. From 

(3.81) it follows that 

b = v'2f( -Dv'2, T)e- i1 , d = 0 (3.84) 

and then from (3.82), 

a + c* = 0, b + ~(a - c*) = o. (3.85 ) 

Thus 

and the solution for it, is 

it = (i + J2TJ)fei(-l+~) + (-i + v0.TJ)j*ei(I-~) + ij*ei(I+7f) - ife- i (I+7!) 

(3.87) 

where f = f(-DJ2,T). 
A similar solution can be found in wall region lb, which occupies the 

domain 0 ~ ~ ~ 00, 0 ~ ij ~ 00 where ij = TJ/l 1
/ 2 . Here 

- l-9/4 - (t - ) '1.L - '1.L .."TJ,TJ,T + ... (3.88) 

as I -; 00 where u again satisfies (3.80). Matching with the incident x-roll 

pattern requires that 

and the wall conditions (3.2) require that 

- aii 0 
'1.L= - = on ~ = o. 

a~ 
(3.90) 

The relevant solution is 

u = (i + J20fei(-I+~) + (-i+ J20J*ei (I-7j-) + irei(l+~) - ife-i(l+~). 
(3.91) 
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where f = fU]1 /2, T). 
The last two terms in (3.87) and (3.91) represent the generation of a y-roll 

component, a result of the reflection of the incident x-roll pattern at the edges 

of the square. This y-roll component emerges into the main corner region I 

where, together with the finite parts of the x-roll component in (3.87) and 

(3.91), generates a term of order [-9/4 in the expansion (3.73): 

1-7/4 - [-9/4-
1£ = 1£0 + 1£1 + ... (3.92) 

as I -; 00. The solution for 1£1 therefore contains both x and y-roll compo

nents associated with complex amplitude functions Al and B1 respectively: 

1£1 = A1(X_, Y, T)eix+Al*(X_, Y, T)e-ix+B1(X_, Y, T)eiY+Bl*(X_, Y, T)e- iy . 
(3.93) 

The amplitude equations for Al and BI can be derived in the usual way, 

allowing for the /1/2 length scales associated with X and Y, to obtain 

and 

82Al _ 83Ao 
oX~ - oX_oy2 

(3.94) 

(3.95) 

The component Al is just a small correction to the x-roll pattern in the 

corner region but Bl represents the leading-order y-roll component. Bound

ary conditions for Bl are provided by matching with (3.87) and (3.91) at 

Y = -X_ and Y = X_, respectively. Since € = .j2x_ at Y = -X_ and 

ij = ..J2x_ at Y = X_, this gives 

(3.96) 

and 

Bl = -if(X-, T)e- il at Y = X_. (3.97) 

Thus the required solution of (3.95) is 

(3.98) 

where 
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(3.100) 

The solution for Bl decays at the inner edge of the corner region because 

f(X-, T) and J( -X_, T) tend to zero(exponentially) as X_ ~ 00. Thus the 

y-roll component identified here is confined to the corner region and has no 

impact on the core expansion. A similar solution can be derived for corner 

region II at the opposite end of the diagonal. It is observed from (3.99) that 

Q is generally singular as X _ -+ 0 so that the solution for HI has a term 

proportional to Y / X_as X _ -+ O. This is consistent with the existence of an 

inner corner region TJ ""' € '" 1 formed by the junction of the two wall regions; 

the details of the solution in this region are not considered here. 

For the leading branch of solutions, where the steady-state form of f = 

eiO F is an even function of Y (with F as shown in Figure 3.10) it follows 

that Q = iQi is purely imaginary and f3 = f3r is purely real in (3.99) (3.100). 

Thus the y-roll component in the corner region has the form 

(3.101) 

and is thus an even function of y. The structure obtained here confirms that 

the assumptions made in Sections 3.3 and 3.4 concerning the behaviour of 

the core and corner region solutions are consistent with satisfaction of the 

wall conditions (3.2). The rigid boundaries of the square require that the 

core and corner-region amplitude functions tend to zero as the edges of the 

square are approached, where the motion is weak. The other main effect of 

the corners is to generate a cross-roll component within a distance of order 

11/2 of the corner although this is weaker, by order 1-1/2, than the main roll 

pattern there. 

3.9 Discussion 

In this chapter the question of whether the onset of convection in a square 

domain takes the form of a local solution concentrated along the diagonals 

has been investigated. A Fourier transform technique is used to derive a 

closed system governing disturbances which to a first approximation take 

the form of rolls with axes aligned perpendicular to the diagonals. These 
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axes extend a distance of order [1/2 which is small compared with the size [ 

of the square. The structure is similar to that proposed by Daniels (2000) 

for the case of an arbitrary domain with a smooth boundary except that 

here the corners of the square must be taken into account. A local structure 

has been found that allows the solution to adjust via a main corner region 

discussed in Section 3.4 and wall regions discussed in Section 3.8 to the full 

boundary conditions at the walls. An interesting feature of this structure 

is the generation of a weak cross-roll pattern perpendicular to the main roll 

pattern. 

The asymptotic structure discussed here focuses on one diagonal of the 

square but because of the local nature of the solution, solutions correspond

ing to rolls along both diagonals can just be constructed by superposition. 

Because the two patterns overlap only on a short [1/2 x [1/2 length scale at 

the centre of the square, to leading order they have no effect upon each other 

at least within the weakly nonlinear regime considered here. 

The predicted critical value of [ given by (3.65) compares well with the 

numerical results of Section 2.4 for large L. The leading order asymptotic 

theory described here does not distinguish between solutions with EE,OO, 

OE or D symmetry. It is envisaged that this group of branches in Figure 

2.8 has the same critical value of [ to the order given in (3.65) but that the 

EE,OO and OE/D symmetries will be distinguished by different higher order 

terms in the expansion (3.65). It is beyond the scope of the present work to 

carry out the necessary analysis to find these higher order terms. 
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CORE x 

Figure 3.1: Schematic diagram of the asymptotic structure for large L, show

ing the diagonal from x = -l to x = l and the core region of width order 
[1/2. 
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figure 3.2: Contours of the real and imagillary pcHts of the amplitude func

tion A(X, Y) in the domain -1 < X < 1. -5 < r < 5 for the leading mode 

at onset (6 1 = 15.5). 
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figure 3.3: Contours of Uo for the leading eigenfunction construcred from 

(3.8) with L = 30 alld () = 0 in the domain -1 < X < 1, -5 < Y < 5. 
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Figure 3.4: Contours of the real and imaginary parts of the amplitucle func

tion A(X, Y) in the domain -1 < X < 1, -5 < Y < 5 for the second mode 

at onset. (6\ = 31.5). 
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Figure 3.5: COntours of lio for t. he second eigellfunction constructed from 

(3.8) wi t. h L = 30 alld e = 0 ill the domain -1 < X < 1. -5 < Y < 5. 
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Figure 3.6: Comparison of the asymptotic theory (dashed curves) wi th the 

numerical resul ts for the two leading eigenvalues . 
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Figure 3.7: '1'(0) versus 61 for the leading branch of solutions. 
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fi gure 3.8: Colltom :::i of the real and imaginary parts of t he ampli t.ud~ func

tion .-\(.\" . Y) in the dOll\ain -1 < X < 1, - .5 < Y < 5 for the leading modEt 

,1\ Sl = 23. 
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Figure 3.9: COlltours of HO for 61 = 18,45 on the leading solution branch 

constructed from (3.8) with L = 30 anel e = 0 ill the domain -1 < X < 
1, -5 < Y < 5. 
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Figure 3.10: Real and imaginary parts of F(Y) for the leading solution branch 

at 61 = 17, 21 , 25 ,40,50 , 60. 
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Chapter 4 

Convection Patterns in 

Rectangles 

4.1 Introduction 

In this chapter the numerical investigation of the rigid problem of Chapter 

2 is extended to the case of a rectangular geometry 0 :::; x :::; L,O :::; y :::; M. 

Detailed results are obtained for two aspect ratios M / L = 0.75 and M / L = 

0.5 and are described in Sections 4.3 and 4.4 respectively. One of the main 

objectives is to see whether onset now occurs in the form of rolls parallel to 

the shorter side as in the Galerkin calculations for the equivalent Rayleigh

Benard problem by Davis (1967) and Catton (1970). Such patterns are also 

predicted for moderately large planforms (containing up to about 6 rolls) by 

experiments such as those of Stork and Ivluller (1972), Buhler, Kirchartz and 

Oertel (1979) and Kirchartz and Oertel (1988) . However for large planforms 

(L -7 00, M -7 00) the asymptotic theory of Daniels (2000) suggests that 

at onset rolls may form along the diagonals of the rectangle indicating a 

possible transition between parallel roll solutions and this more complicated 

roll structure as Land M become large. The asymptotic theory of Daniels 

(2000) does not allow for corners and so is not immediately applicable to the 

case of a rectangle; modifications to the theory similar to those of Chapter 3 

to allow for this are considered in Chapter 5. 
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4.2 Formulation of the problem 

The Swift-Hohenberg equation is 

Ch.i ')2 3 
- = EU - (1 + \1-) U - u at ' ( 4.1) 

where t is the non-dimensional time, \7 2 = ::2 + ~ where x and yare non

dimensional Cartesian coordinates, E is a control parameter and u(x , y, t) is 

a scalar field. 

The geometry that we are considering is a rectangle 0 s:; x' s:; L, 0 s:; y s:; 
AI with the equivalent of rigid lateral boundaries so that on the boundary 1i 

and its derivative normal to the boundary vanish: 

au 
'tL = - = 0 on x = 0 Land y = O. M. aq , (4.2) 

Kote that here q is used to denote the inward normal direction. 

4.3 Results for aspect ratio 0.75 

In this section results are described for the case AI / L = 0.75. 

4.3.1 Linear solution 

Results were obtained for values of M in the range 6 to 30 using the method 

described in detail in Section 2.4 and grids of 32 x 24. Figure 4.1 shows 

the eigenvalues E plotted as a function of M for the first seven modes. The 

curves in Figure 4.1 are labelled according to their symmetry properties and 

their order at low values of L. Each branch corresponds to an eigensolution 

II with EE, 00, OE or EO symmetry. Unlike the square problem, there 

are no repeated eigenvalues for solutions with EO and OE symmetry and 

diagonal modes are absent. As L increases , the various branches of Figure 4.1 

interweave as a particular mode 'best fits' the size of the rectangle. It appears 

that in the rectangular geometry the most dangerous mode is confined to 

one of two branches EEl or OE1 for moderate L. At larger L, the various 

branches appear to divide into distinct groups - branches EEl, O'E1, E01 

158 



and 001 constitute the first group and members of the second group include 

branches EE2, OE2, 002 and E02. This behaviour is similar to that found 

for the square problem of Chapter 2. 

We now investigate in more detail the patterns corresponding to each of 

the leading branches specified above, and how they evolve as functions of 

M. Branch EE 1 has EE symmetry and at low values of M consists of a 

single cell. Contours of the eigenfunction 1L associated with this branch at 

\'arious values M are shown in Figures 4.2 and 4.3. It is the dominant mode 

for 1\1 < 6.48, for 8.4 < M < 10.1 and then again when M reaches 12.48; 

at large M it continues to interweave with branches OE1, E01 and 00l. 

The pattern changes in an interesting manner as M increases; in the region 

6.48 < AI < 8.16 (where it is not the leading mode) it develops two new cells 

parallel to the shorter side. In the region 10.24 < M < 12.24 it develops four 

new cells in the corners which eventually join up at M ~ 12 .36 to form two 

rolls placed parallel to the shorter sides of the rectangle and hence the EE 1 

mode becomes a (5,1) roll structure. A computation for !vI = 30 (Figure 4.3) 

shows that the EEl mode has developed into a roll solution consisting of two 

main components concentrated along the diagonals of the rectangle. 

Branch OE1 contains solutions with OE symmetry, and contours of the 

solution at various values of M along branch OE1 are shown in Figures 

4.4 and 4.5. At low values of M the solution is a 2 - roll parallel mode 

resembling the solution of Section 2.4 for the square with L = 5. The OE1 

mode is dominant for 6.48 < M < 8.4, 10.32 < M < 12.48 and then again for 

14 .64 < M < 15.36. As M increases, the (2 ,1) OE1 mode gains additional 

cells in all four corners which in the region 8.88 < M < 9.84 join up to give a 

(-i,1) parallel mode at M ~ 9.92. It repeats this process of adding new cells 

in corners in the region 12.48 < M < 13.92 (it is not the dominant mode 

here) and as a result develops an additional two parallel rolls at AI ~ 12.08 

to become a (6,1) mode. At large M, a diagonal structure emerges similar 

to that of the EEl mode. 

Branch E01, which has EO symmetry, is shown in Figures 4.6 and 4.7. 

It is not the leading mode in the region 6 < M < 15.12 but reaches the rank 

of second-most dominant solution at M ~ 15.12. At low values of M it is 

\'ery similar in structure to branch OE1 , being a 2-cell (1,2) parallel mode 
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in the region 6 < M < 8.4. As we increase M, we gradually observe the 

formation of four new cells in the corners of the rectangle and by M ~ 9.84 

we can describe the pattern to be a typical (3 ,2 ) structure. At M ~ 13.8, 

the pattern on branch E01 has again gradually evolved and is now a (5,2) 

mode. At large L it develops a diagonal structure. 

Branch 001 has 00 symmetry and contours of u at various values of 

M are shown in Figures 4.8 and 4.9. At low values of M the pattern is 

reminiscent of the (2,2) mode seen in the L = 5 square (Section 2.4). Unlike 

in the square mode, 001 does not become the dominant mode for moderate 

M. In the region 10.32 < M < 1l. 76 it develops new cells in the corners, 

sitting at both ends of the diagonals to become a (4,2) mode. When M = 

15.12, branch 001 has again grown an extra four new cells and is seen to be 

a (6 ,2) solution. For large M it develops a diagonal structure. 

The next group of branches also contains solutions with EE, EO , OE and 

00 symmetry. Figures 4.10, 4.11 and 4.12 show contours of u at various 

values of M on the branches EE2, E02 and OE2. 

Branch EE2 has EE symmetry and is shown in Figure 4.10. In the region 

6 < AI < 7.2, we can describe the pattern on branch EE2 to be a typical 

(3 ,1) mode similar to the solution of branch EEl of Figure 4.2. As we in

crease M past M = 7.2, we can find most interestingly that the outer rolls 

are growing whilst pinching the middle roll. The outer rolls continue to grow 

until they manage to merge hence completely annihilating the middle roll. 

Two new cells, parallel to the longer sides, appear at the top ·and bottom of 

the rectangle a'nd the pattern on branch EE2 for M ~ 9.12 can be described 

as a (1,3) parallel roll structure. In the region 12 < M < 15.12, the solu

tion on branch EE2 loses its appearance as a typical parallel roll pattern by 

developing six new cells. 

Branch E02 has EO symmetry and contours of u are shown in Figure 

·u 1. For low !II , we can describe the pattern as a (3,2) solution reminiscent 

of the patterns seen on branch E01 of Figures 4.6 and 4.7. As we increase M 

\\'e find the solution on branch E02 goes through a similar metamorphosis 

as described above for branch EE2, in that the outer cells grow and force the 

middle cells to decay. This results in the solution that can be described as a 

(1,2) parallel roll solution for M ~ 10.8. In the region of 10.8 < M < 12.96, 
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the pattern develops two new cells parallel to the longest sides and thus 

branch E02 has become a (1 ,4) parallel roll solut ion. The pattern develops 

a further four new cells in the region 12.96 < !vI < 15.12 and hence loses its 

parallel roll structure. 

Branch OE2 has OE symmetry and solutions are shown in Figure 4.12. 

Again for low 1'\1£ the pattern on branch OE2 can be described as a (4 ,1) 

parallel roll solution but changes appearance as M increases in the same 

manner as branches EE2 and E02. 

4.3.2 Nonlinear time-dependent solutions 

The method described in detail in Section 2.6.1 was used to compute the 

time evolution of the system for M = 15.12 and M = 30. 

(a) 1'1'1 = 15.12 

Figures 4.13 - 4.19 show contours of steady-state solutions for the case M = 
15.12. These were mostly obtained using a 32 x 24 mesh and a time step 

6t of 0.005 with h = k = 0.63. Figures 4.13 and 4.14 show contours of u 

with OE symmetry, which is the solution generally achieved using a random 

initia l profile, U(:r, y) = R(i, j) in the region 0.077 < c < 0.09, indicating 

that it is a stable steady-state. This pattern is a 6-cell parallel structure and 

is comparable with the pattern of the linearized solution 'l.L for M = 15.12 of 

Figure 4.5. For c > 0.09, the solution would eit her converge to branch OE1 

or alternatively jump to another mode which is described nex~. 

Figures 4.15 and 4.16 show contours of a rather interesting steady-state 

solution. This solution has cent rosymmetry and is a 6-cell mode; it is not 

direct ly associated with the linearized solutions of Section 4.3 .1. 

The patterns of Figure 4.17 were achieved by using the initial profile 

U(x, y)= sin tlx sin Pi. The solution has EE symmetry and is a 5-cell parallel 

mode. This particular initial profile was chosen in order to establish whether 

a 7-cell parallel mode with EE symmetry exists nonlinearly (the invest igation 

of Section 4.3.1 did not yield a 7-cell parallel linear mode wi th EE symmetry 

for M = 15 .12). Instead we obtained the 5-cell mode which is comparable 

with t he pattern of the linearized solution u for M = 15.12 of Figure 4.3. 

Having not found a 7-cell para llel mode for [ < 0.9, we tried the same initial 
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profile in the region E > 2.1. 

Figure 4.18 shows a steady-state with EE symmetry achieved by using 

the initial profile U(x,y)=sin 7~X sin~ in the region 2.1 < E < 2.185. It is 

predominantly a 5-roll mode where the first and fifth rolls are pinched towards 

the corners by small centrally placed cells. This solution is not comparable 

to any of the linearized solutions of Section 4.3 .1. 

It was finally established in the region 2.19 < E < 2.5 using the initial 

profile U(x, y)= sin 7~x sin ~ that there exists a 7-roll parallel mode with EE 

symmetry. The contours of this solution are shown in Figure 4.19. 

Figures 4.20-4.22 show several other steady-state solutions with some or 

no symmetry achieved using a random initial profile U(x,y) = R(i,j) in the 

region 0.2 < E < 2.085 . 

(b) L = 40 

Figures 4.23-4.25 show contours of solutions for the case l'vI = 30. These were 

obtained using a 40 x 30 grid (h = k = l) and a time step 6.t of 0.03. Random 

initial conditions were used for all computations in this subsection and this 

led to three different steady-state patterns. In some cases the steady-state 

pattern found at one value of E was used as an initial state for computations 

at other values of E . Figure 4.23 shows a steady-state pattern at E = 0.017 

t.hat is comparable with the contours of the linearized solution of Figure 

4..5. This pattern was not found at higher values of E using a random initial 

state. Figure 4.24 shows steady solutions for a 13-cell parallel mode with 

EE symmetry found in the range 0.022 < E < 0.135. In addition a 14-cell 

centrosymmetric mode is presented in Figure 4.25. The solutions shown in 

Figures 4.24 and 4.25 are not directly comparable with the linear onset modes 

of Section 4.3.l. 

4.3.3 Nonlinear steady-state solutions 

The method described in detail in Section 2.7.1 was used to track steady

state solutions of the system for M = 15.12 and M = 30. 

(a) 1\1 = 15.12 

Figure 4.26 shows a bifurcation diagram of steady-state solutions for the 

case M = 15.12 using a 32 x 24 mesh with h = k = 0.63. The leading 
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branch bifurcates at E = 0.078 and consists of a solution with OE symmetry, 

consistent with the results of Section 4.3.1. Figure 4.27 shows contours of 

1£ for the leading branch OE1 of Figure 4.26 at various values of E. The 

amplitude it defi ned as 

( 
1 L M ) 1/2 

iL = LM 10 10 1L
2
dxdy (4.3) 

increases with E, and the pattern expands to fill the rectangle as E is increased, 

result.ing in six well-formed rolls at large E. This is consistent with the t ime

dependent results of Figures 4.13 and 4.14. The second branch bifurcates at 

E = 0.0837 and has EO symmetry. Figure 4.28 shows contours of 1£ on this 

branch at various values of E. This is a (5 ,2) mode. Again as E increases 

the pattern remains the same in general appearance and the amplitude it 

increases. The third branch , branch EEl of Figure 4.26, has EE symmetry 

and bifurcates at ~ = 0.0845 , also consistent with the result s of Section 4.3.1. 

Contours are shown in Figure 4.29 . This is the (5 ,1) mode obtained in the 

time-dependent results of Figure 4.l7. As E increases the cells seem to fit 

the rectangle better by losing their curvature and straightening so that the 

axes of the rolls are parallel to the shorter sides of the rect.angle. The fourth 

branch bifurcates at E = 0.0905 and has 00 symmetry. Figure 4.30 shows 

contours of u on this branch at various values of E. This is essentially a (6,2) 

mode . As E increases the cells near the shorter sides adopt an "L" shape 

so that they are perpendicular to both sides of the rectangle. The fifth , 

sixth and seventh branches (OE2 , EE2 and 002) bifurcate at E = 0.109, 

E = 0.117 and 'c = 0.124 respectively, consistent with the linear analysis of 

Section 4.3. 1. Contours of u are shown in Figures 4.31,4.32 and 4.33. 

We now discuss nonlinear solutions which do not bifurcate from the trivial 

solution. The first nonlinear mode was located by using the steady-state 

solu t ion found in Section 4.3.2 (Figure 4.l4) as the initial guess in the Newton 

iteration scheme. The entire branch of steady-state solutions could be tracked 

by increment ing the value of E backwards and forwards from its initial value. 

This branch is a secondary bifurcation from the primary mode OE1 which 

appears at c = 0.0885 and has centrosymmet.ry. Its amplitude '1.£ is larger 

than that of the primary mode OEl from which it bifurcates , explaining 

why it is so prominent in the time-dependent calculations. Contour plots are 
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shown in Figures 4.34 and 4.35 and demonstrate how the centrosymmetric 

pattern evolves by breaking the symmetry of the OE pattern. The solution is 

designated Cs1 (C for 'centrosymmetric', S for 'secondary ' ) in Figure 4.26. 

Another solution appears as a fold bifurcation at E = 1.249. This has EE 

symmetry and contours of its upper and lower branches , designated EE~1 
and EE~2 (F for ' fold', U for ' upper', L for ' lower ' ), are shown in Figures 

4.36 and 4.38 respectively. This is the pattern represented in the contour plot 

of Figure 4.18 in the time-dependent calculations. The patterns on the upper 

and lower branches differ very little although slight differences are discernible 

in that the small cells adjacent to the short sides have larger amplitude on the 

upper branch for comparable E. The solutions were found by starting from 

a point on the upper branch and tracking backwards in E until the vertex of 

the fold bifurcation was eventually located (using extremely small steps in E) 

at E = 1.249; for lower values of E the solution converged to mode EEL In 

order to track the solution down past the vertex and onto the lower branch , 

the solution at each grid point was regarded as a function of it, allowing a 

linear extrapolation to be used to provide an initial guess for the Newton 

iteration at the first point on the lower branch. Thereafter, the solution 

could be tracked forwards in E:, initially using extremely small steps. 

Another solution to arise nonlinearly is a fold bifurcation at E = 2.186. 

This has EE symmetry and its upper branch, EE~2 is the stable 7-cell parallel 

mode reported in the time-dependent calculations of Figure 4.l9. The lower 

branch EE~2 also consists of seven cells. Patterns on the upper branch are 

shown in Figure 4.38 and on the lower branch in Figure 4.39. The solution 

was tracked around the vertex using the same extrapolation method as for 

branches EEFl. 

There will be a number of other nonlinear solutions appearing through 

secondary and fold bifurcations within the range of c used for Figure 4.26. 

However, those described here are likely to be of greatest significance as they 

give rise to solut.ions some of which, from the time dependent analysis , are 

stable states. Figure 4.26 shows that the amplitudes it of the various stable 

modes are extremely close, explaining why the parallel and centrosymmetric 

modes are all observable in the time dependent calculations. In fact the 

leading linear mode, which is an OE solution , has largest amplit.ude only 
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for a very restricted range of [ (0 .078 < [ < 0.088) ; thereafter solutions 

containing larger , more coherent cells (diagonal , parallel or curved) are the 

preferred states of the system. 

(b) hI = 30 

A set of results is reported in this subsection for the case of M = 30, obtained 

using a 40 x 30 grid (h = k = 1) . Figure 4.40 shows a bifurcation diagram of 

steady-state solutions that were found . The solutions that bifurcate in the 

linear regime are discussed first. The first branch bifurcates at [ = 0.01696 

and corresponds to a mode with OE symmetry (associated with the onset 

solution u shown in Figure 4.5). This pattern is also comparable to that 

found in the time dependent calculations, Figure 4.23. Contour plots of this 

branch are shown in Figure 4.4l. The solution consists of ten curved rolls but 

with main components distributed along the diagonals and the central region 

forming three distinct sets of cells, the outer two of which form arcs relative 

to the larger sides . The second branch , 001 , bifurcates at [=0.016997 and at 

onset consists of two arcs of twelve cells (see Figure 4.9). It was not possible 

to find nonlinear solutions for this branch using the Newton iteration scheme 

as the solution would always converge to branch E01. This may be due to the 

fact that branches E01 and 001 onset very close to each other. The third 

branch, E01, bifurcates very close to the second branch at c = 0.017008 

consistent with the linear analysis of Section 4.3.1. At onset the pattern 

consists of two arcs of eleven small cells. Contour plots for this branch are 

shown in Figure 4.42. The fourth branch , EEl , bifurcates at [ = 0.01724 

and at onset consists of a pattern similar to that of branch OEL Contour 

plots for this branch are shown in Figure 4.43. Branches E01 , 001 and EEl 

were not observed in the time dependent calculations and may not be stable, 

except possibly for a very small range of E close to onset. 

Two nonlinea r solutions which do not bifurcate from the trivial solution 

H = 0 were also located. The first of these, Cs1 , consists of a centrosym

metric mode of the type observed in the time dependent calculations (Figure 

4.25). This branch does not appear as a fold bifurcation but as a secondary 

bifurcation from the primary mode OE1 at c = 0.01715. Its amplitude it is 

larger than that of the primary mode OE 1, explaining why this stable mode 

is seen in the time dependent calculations. Contours of u are shown in Fig-
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ures 4.44 and 4.45 describing its interesting metamorphosis from branch OE1 

into a diagonally dominant mode. The second nonlinear solution , EEFl, is 

a fold bifurcation at E = 0.0194 and consists of a 13-roll parallel solution as 

shown in Figures 4.46 and 4.47. This solution was found first in the time 

dependent calculations (Figure 4.24, E = 0.037) suggesting that it is stable. 

On the lower branch (EE~l) the parallel rolls become curved as E increases, 

as shown in the contour plots of Figure 4.47 , and the solution is likely to be 

unstable. 

4.4 Results for aspect ratio 0.5 

An extensive set of results was also obtained for the case M / L = 0.5. These 

revealed bifurcation structures similar to those of the case M / L = 0.75 and 

some of the main results are shown in Figures 4.48-4.66. Figure 4.48 shows 

the first seven branches of the eigenvalue E as a function of M. Interweaving 

again occurs along with the grouping together of the leading eigenfunctions 

of each type of symmetry (EEl , OEI, 001 , E01) as AI increases. This 

process , leading again to diagonal structures at large M , now occurs over a 

larger range of M because with M / L = 0.5 there is less room for the diagonal 

cell distributions to fit into the rectangle than with M / L = 0.75. However 

for sufficiently large M the same structure emerges. Figures 4.49-4.52 show 

sequences of patterns on each of the four leading branches . At moderate 

mlues of M rolls roughly parallel to the shorter side of the rectangle are the 

preferred pattern. 

Figures 4.53-4.59 show nonlinear steady-state patterns obtained at vari

ous values of E as a result of time-dependent computations from a random 

initial state with M = 10. These include EE and OE states (Figures 4.53 , 

4.54) , centrosymmetric states (Figure 4.55), solutions even in one dimension 

only (Figures 4.56) and solutions with no symmetry (Figures 4.57-4.59). Cor

responding results for M = 30 include an EE steady stat.e shown in Figure 

4.60 and a centrosymmetric steady state shown in Figure 4.61 . Figures 4.62-

-1.66 show nonlinear steady-state solutions tracked using the Newton iteration 

code. A bifurcation diagram showing the leading EE, OE and 00 modes for 

the case M = 10 is shown in Figure 4.62 and two fold bifurcations associated 
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with centrosymmetric modes (C F1) and (C F2) are shown in Figures 4.63 and 

4.64 . A bifurcation diagram for the case !vI = 30 is shown in Figure 4.65 and 

contour plots for the leading mode OE1 and the centrosymmetric mode Cs 1 

\vhich is a secondary bifurcation from OE1 are shown in Figure 4.66. 

4.5 Discussion 

The steady-state structure and time-evolution of solutions of the Swift Ho

henberg equation in a rectangular domain 0 :::; x :::; L , 0 :::; y :::; !vI with rigid 

boundary conditions have been investigated. Results have been obtained for 

a range of values of L and !vI focusing on two aspect ratios MIL = 0.75 and 

!\IlL = 0.5. 

As far as the linearized eigensolutions are concerned the main difference 

from the four-fold symmetric case of the square is that solutions now arise 

with the four distinct symmetries EE, 00, OE and EO. The critical values c 

for these solutions interweave as functions of !vI forming into groups of four 

as M --t 00. At low and moderate values of M the preferred patterns are 

typically parallel roll solutions consistent with the original theoretical pre

dictions for the Rayleigh-Benard system by Davis (1967) and Catton (1970) 

and with experiments such as those by Stork and Muller (1972) and others. 

At large !vI the preferred linear patterns develop into the more complex 

diagonal structures of the type already discussed for the square domain. How

ever as E increases above critical this quickly gives way to a more diagonally 

dominant centrosymmetric structure typically via a secondary bifurcation of 

t.he type illustrated in Figures 4.45 and 4.66. This centrosymmetric pattern 

dominated by one diagonal is consistent with the type of steady-state solu

tions found by Greenside and Coughran (1984, figure 10) in a large planform 

rectangular domain. 

For more moderate values of !vI, roll patterns parallel to the shorter sides 

tend to be one of the preferred states and may develop as nonlinear solutions 

either from the linear eigensolutions of the system or as fold bifurcations at 

supercritical values of c. As c increases , strongly aligned parallel roll states 

with differing numbers of rolls become available and these can also be subject 

to cross-roll effects near the shorter ends. Stable centrosymmetric solutions 
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also occur as [ increases at moderate values of M as do more complex asym

metric patterns. In general the preference is for coherent roll structures (as 

opposed to individual cells) with straight rolls parallel to the shorter sides 

particularly prevalent for moderately sized planforms and diagonally oriented 

curved roll structures prevalent for large planforms . An asymptotic analysis 

for large planform rectangular domains is undertaken in the next chapter. 
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1.2 
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0.8 

0.4 

0.2 

8 10 12 14 

Figure 4.1: The first seven branches of the eigenvalues [ as functions of A1 

fu r M / L = 0.75 obtained using a 32 x 24 grid. 
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L %9.92. M%7. 44 L ~ l O .24 .N %- . 68 

fi gure -1.2 : Sequellce of patterns on brallch EEl for .\1 

G. G.2-1 , GAS, 7.2 , T.-H. 7.G8. 
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L ~ 1 2. 48.~1:9.36 

L ~16.6 4 .H ~ 12. 48 
L ~ 18 .5 6 . ~1 ~ 13.92 

L ~20. 1 6 .M ; 1 5 . 12 

figure 4.3: Sequence of patterns on branch EEl for !Ii 
9.3G. 12, 12.48, 13.92, 15.12, 30 . 
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L d2, 16 .M :>, 12 

Figlll'e -1.-1 : Sequence of pattel'lls on branch OE1 for M 
G. G.9G, 8.88. 9.12, 9,6,10.32, 
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L = 15.68.~1 = 1l.76 L d6.64. Md2.48 

L= lB.24 .~1 = 13 .68 
L =19.52.fl = l-l.64 

L =20. 16 .M = l S.12 

figure 4.5: Sequence of patt.erns on branch OE1 for ,\! = 

11.76, 12,48, 13.68. 14 .64 , 15.12 , 30. 
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L: 8,M : 6 L: 9 . 6 , M: 7 .2 

L =l2. 48 , M: 9 . 3 6 L : ll . 44 ,~I : :O.08 

L : l-l.4,M: 10.8 L:l5 .68 ,M :l l. 76 

Figurl~ -l. G: Sequence of patt.erns on b nUl ch E01 for :\/ = 

G. 7.2 , 9.3G, 10.08. 10.8, 11.7G. 
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L o16.32,M o 12 .24 Lo 17.28,M o 12.96 

L o 17 . 92 ,M o l3 .44 
L o19.84,M o14.8 8 

Lo20.16,M o lS.12 

figure 4.7: Sequence of patterns on brrlIlCh E01 for 1\1 

12.24, 12.9G , 13,44, 14 .88, 15.12,30, 
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L ~ 8,M = 6 L = lO.24,M ~ 7.68 

L=14.4,M=l O.B L = 1 5.36,M ~ 1 1 .52 

figure 4.8: Sequence of patterns 0 11 branch 001 for !\1 _ 
G, 7.G8, 8.-1 , ] 0.08, 10.8, 11.52, 
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Ld8.88.M ; 14.16 L; 1 9.84.M ; 14.89 

L ; 20 .16 .M ; l S.12 

Figur<; -l .9: Sequence of patterns on branch 001 for M 
12, 13.4 .. 1. 14.16.1 -1.88 , 15. 12, 30. 
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L , 12. 8 ,M ,9 . 6 

L ' 14.4,~I ' lO . 8 Ld6,M , 12 

L - ! 7.6, M, 13 .2 
L, 20.16 , ~1 ' 15 . 12 

figure 4.10: Sequellce of patterns 011 brallch EE2 for ,\1 
G. 9.G , 10.8, 12, 13.2. 15.12. 
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L: 8 .M : 6 L:l2.8.M : 9 .6 

L: 14.4. M= 10 . 8 L_ 1S .3 6 .H - 11.S2 

Ld 7.6. M= 13 .2 L = 20. 16 • M: 15 . 12 

Figure 4.11: Sequence of patterns on brandt E02 for J\/ = 
G. g.G, 10.8, 11.52. 13.2 , 15.l2. 
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L=8 . M=6 

L=14 . 4 . H=l O.8 

L= 17 . 6 • M= 13 . 2 
L=20 . 16 .M =: S. 12 

Figure ~1.l2: Sequence of patterns 0 11 branch OE2 for M = 

G. 9.6, 10.8, 12 , 13.2.15.12. 
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Figure ,-1.1 3: COllt OurS of steady-state solut ions II for Af 15. 12 obLnilled 

\\'ith all iui tial state U(.r ,y) = R(i , j ). 

181 



€ = 1. 76 
€= 2. 1 85 

Figure 4.14: Contours of steady-state solutions 1L for /vJ = 15.12 obtained 
with an initial state U(x, y) = R(i, j). 
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€= O.143 € =O. 1 93 

€= O.33 €= O.525 

Figme 4.15: COlltours of steady-state so lu tion::; u for M = 15.12 obtained 
\\'itb all illitia l s late V( :r, y) = R(i,j). 
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E= O.72 
E =1.695 

E= 2 . 18 

Figure 4.16: COlltours of st.eady-state solutions u for AI = 15.12 obtained 
wit.h an initial slate U(x , y) = R(i,j). 
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E= O,19 €= O,2 7 

€= 0, 3 €= 0 , 5 

E =0,6 < ; 0 ,9 

r igure -1.1 7: COllt ours of steady-state solut iolls II for M 15, 12obtailled 
\\'itlt a ll initial state U(x 1/ ) = sin 7rrx sin Tr y 

1 . L [\f' 
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E= 2.11 E= 2.155 

E= 2.17 €= 2.17 

f igure 4. 18: Contours of steady-state solutions'll fol' i\J 15.12 obtained 
wit h all illi tial state U(1.', V) = sin 7l" sin ~j . 
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€ =2.2 E=2.25 

fi gure 4.19: Cont.ours of steady-state solu tions lL for M 15.12 obt.ained 

\\'ith an initial stale U(J:,y) = sin ell') sin ~1f. 
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£ =1. 045 

£= 1 .24 

rigure 4.20: COntours of steady-state solutions 11 for iH = 15.12 obtailled 

"'ilh all ini t ial stc1tC U(x .!J ) = R(i,j) . 
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E~ 1 . 3 07 E~ 1 .4 3S 

E~ 1.5 e =1.565 

Figure 4.21: COlltOurS of sl eady-state solu tions lL for AI 15.12 obtained 

with all illitial slal e U(.r , !J) = R(i,j). 
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€= 1. 82 5 € =1.95 5 

£= 2.02 €= 2 .095 

Figure 4.22: Contours of steady-state solutiollS II for AI 1.5.12 obtained 

with an init ial stat e U(x, y) = R(i,j). 

190 



E=O.017 

Figure 4.23: Contours of st.eady-statl' solution II for M = 30 obtaincd with 
all ini t ial st.ate U(.I" ,y) = R('i,j). 
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E =O. OJ? 
E, O.OS7 

E =0.072 
E=0.082 

E= 0 .1 2 7 
E= 0.132 

Figllre 4.24: Cont.ours of steady-state solutions Ii for !vI = 30 obtained with 
nil initiC1 1 stat.e U(x, y) = R(i, j). 
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E~ O.022 ~~ 0.0 ) 2 

€~ 0.042 EoO.0 62 

E~0. 1)5 

figure 4.2[): COll tol\l'S of steady-state solutiolls II for AI = JU olJt a ill t'd with 

all initial state U(:l' ,y) = R(i ,j) . 
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16 V3 D. 

25 

20 

15 

10 

5 

OEl· 

E 

0.5 1 1.5 2 

Figure 4.26: Bifurcation diagram for the case M = 15.12. 
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" 

€= O.077 5 €=O. 08 

€= 3 . 0 €=7 . 61 

Figure 4.27: ContoUl's of 1t on branch OE1 for increasing E with 1\1 = 15.12 . 
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E=0.0837 
E=O.l 

E= 0 .13 3 E= 2 . 365 

E= 4.505 E= 6 . 33 

figure 4.28: COlltours of 'It on branch EOl for increasing E wit h M= 15 .12. 
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£:0 .0844 £: 0.1186 

E: O.1396 £: 0.37 

£: 1 . 0 

Figure -1.29 : COlltOurS of II on branch EEl for increasing; with l\! = 15.12. 
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E=l. S 

ed. 82 l 

Figure 4.30: Contour of II on branch 001 for increasing [ with l\] = 15.12. 
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E= 0.1088 E=0 . 118 

E= 0.137 E=0. 155 

E=O .166 

Figure 4.31: Contours of U 011 branch OE2 for increasiIlg : wit.h i\/ .= 15.l2. 
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E= O.1168 E= O.125 

E= O.14 E= O.174 

figure 4.32: Contours of'lL on branch EE2 for increasing [ with M = 15.12. 
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€: O. 1 2 4S 

€:O . 17 6 €: O. 196 

f' igure 4.33: Contours of 'II on branch 002 for increasing [ wi th M = 15.12 . 
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€= O. 097 € : O. l 06 

€= O. l1 € : O.l075 

€ : O .11 3 

Figure 4.34: Contours of "It on branch Cs 1 for increasing E wi th Ai = 15.12. 
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E=O. 77 5 

E= l . OlS E= 3.145 

figure 4.35: Cont.ours of 'U on branch Cs 1 for increasing c wit.h M = 15.12. 
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E= 2. 186522 
.=2. 186 6 

. =2.19 
.=2 .607 

.= 4 .01 
. =5 . 01 

Figure 4.36: Contours of u on branch EE~l for increasing [ wit.h !vi = 15.12. 
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€; 2.186625 
€=2 .1 9 

€ =2.60 8 
€ =4 .0 1 

€= 5.01 €= 1.) 

Figure 4.37: COl\t.ours of u on branch EE~l for increasing [ with A! = 15.12. 
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E = I.2494 Ed.9 > 

E= 3.07 E =4. 67 

E::; S . 7 

Figure 4.38: Contolll'S of 11 on branch EE~2 fOt' increasing ~ with !If = 15.12. 
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<= 1.2495 E =l . 9 9: 

E= 3.075 E= 4 .67: 

E= 5 . 715 

f'igure 4.39: Contours of 1t all branch EE~2 for increasing E with i\J = 15.12. 
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20 {3 u 

1 r 

I 
i 

0.8 

0.6 

0.4 

0.2 

0. 017 0.0175 0.018 0.0185 0.019 0.0195 0.02 0.0205 

Figure 4.40: Bifurcation diagram for the case M = 30. 
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E~ O.0 1 696 E~ O.018 

E~ O . 019 E= O.02 

E~ O.021 t =O.021 9 

Figure 4.41: COlltOurS of It 011 branch OE1 for illcreasing ~ with M = 30. 
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€= 0.0170 1 E =0 . 01856 

E= 0.0192 

Figure 4.42: Cont.our::; of 'U on branch EOl for increasing c with Al = 30. 
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£< 0 . 0 1724 E::: O . 01791j 

E<0. 018219 E <0.0189 S1 

E <0 . 0199 

Figure 4.43: Coutours of 'lL on branch EEl for increasillg E with M = 30. 
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€~0 .017 095 €= 0.01 712 5 

€= 0.017135 E= 0 .017145 

E= 0.017155 
€· 0.01718 

Figure 4.44: COllt.OurS of It on branch Cs 1 for illCl'easing : with Al = 30. 
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€; O.0171 9 €;O .0172 

€; O. Ol72 2 E ; O.0175 5 

Figure 4.45: Contours of 1t on branch Csl for increasing [ with j\f = 30. 
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Figure 4.46: Contours of 1L on branch EE~ l for increasing E with i\I = 30. 
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E =0 . 01940 6 1S E: 0. 01 95 

E = 0.02 
E= 0 . 021 5 

f.igure 4.47: Contours of u on branch EE~ 1 for increasing [ with i\J = 30. 
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E 

2.5 

2 

1.5 

1 

0.5 

6 7 8 9 

Figure 4.48: The first seven branches of the eigenvalues E as functions of M 

for AI/ L = 0.5 obtained using a 40x20 grid. 
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Figure 4.49: Sequence of pattertls 011 branch EEl for (top to bottom) M = 
10,20, 30. 
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Figure 4.50: Sequence of patterns 0 11 branch OEI for (top to bottom) !VI = 
10, 20,30. 
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Figure 4 .. 51: Sequellce of pa t te rns Oll branch 001 for (top to bottom) M = 
10,20,30. 
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Figure 4.52 : Sequellce of patt erns on branch E01 for (top to bottom) M = 
10, 20, 30. 
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Figure 4.53: COllt our~ of EE steady state solu t iolls for 't/, for i\J = 10 obtained 

with an ini tial state U(:r.y) = R(i , j) at (top to bottom) E = 0.108,0.6.2.8. 
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Figure 4.54: Contours of OE steady stat.e solutions for 'U for M = 10 obtained 

with an ini tial stat.e U(x. y) = R(i. j) at. E = 0.1 5, 1.6. 
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Figure 4.55: Contours of centrosymmet ric steady state solutions for u 

for M = 10 obtained with an initial state U(x, y) = R(i,j) at c = 
0.8,2.3,3.2,0.9,1.-1. 
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Figure 4.56: Contours of steady state solutions for 1L even in x for tv! = 10 

obtained with an initial state U(x , y) = R(i .j) at € = l.8 (top) and 3.1 

(bottom) . 
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Figure 4.57: Contours of non-symmetric steady srclte solutions for 1L for M = 

10 obtained with an initial state U(.1", Y) = R(i . j) at (top to bottom) E = 
1.0,1.1,3.4. 
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Figure 4.58: Contours non-symmetric s\.ead,· stat e solutions [or u for M = 10 

obtained with an initial st.ate U(x, y) = R(i . j) at (top to bottom) c = 

1.3,1.5,1.7. 
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Figure 4.59: Contours of non-symmet. ric steady state solutions for 11 for M = 

10 obtained with an initial staLe U(.r, y) = R(i.j) at (top to bottom) E = 

2.6,3.0,3 .3. 
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Figure 4.60: C Ollt OurS of EE steaciy Slate solu tions for 1L for M = 30 

obtained wi th an initial state U(.l'. !)) = R(i .j) at (t op to bottom) E = 

0.00811 ,0.1 , 0.15. 
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Figure 4.61: Contours of centrosYlIlllletric steady' state solutions for 1t for 

M = 30 obtained with all initial stat.e U( x, y) == R(i , j) at (top to bottom) 

E = 0.01211 ,0.09111 ,0.1811. 
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Figure 4.62: Bifurcation diagram for the case !vI = 10. 
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Figure 4.63: Fold bifurcation of the first centrosymmetric mode CFl (the 

mode shown in Figure 4.55) for M = 10 near c = 0.786. 
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Figure 4.64: Fold bifurcation of the second centrosymmetric mode CF 2 (the 

mode shown in figure 4.55) for M = 10 near [ = 0.807. 

232 



1 

0.8 

0.6 

0.4 EE 

0.0085 0.009 0.0095 0.010.0105 

Figure 4.65: Part.ial bifurcation diagram for the case M = 30. 
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Chapter 5 

Pattern Formation in Large 

Rectangles 

5.1 Introduction 

This chapter adapts the theory and methodology described in Chapter 3 

for the square to the case of a rectangle with sides of length Land M. 

We consider a solution in the regions spanning points of the boundary of 

maximum separation in the form of sets of rolls with axes perpendicular to 

the diagonals. The problem is formulated in Section 5.2 and the theory is 

developed in Section 5.3. Linear results are presented in Section 5.4 and 

nonlinear results in Section 5.5. The results are summarised in Section 5.6. 

5.2 Formulation of the problem 

The Swift-Hohenberg equation is 

au 
- = cu - (1 + V 2 )2U - 1£3 at ' (5.1) 

where t is the non-dimensional time, \72 = ~ + ~ where x and yare non

dimensional Cartesian coordinates, c is a control parameter and u(x, y, t) is 

a scalar field. The domain is a rectangle with sides of length L and Ai and 

the conditions au 
1l= aq = 0 (5.2) 
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on the boundary, where q is used to denote the inward normal direction to 

the boundary. 

The origin of coordinates x and y is chosen to be at the centre of the 

rectangle with the x-axis directed along one of the diagonals. A parameter 1 

is introduced such that the diagonal is defined by -l ~ x ~ l, y = O. Unlike 

the square, the diagonal does not split the corners into two equal angles. As 

a result we introduce the angle Q where tan Q = M / Land L = 2[ cos Q, as 

shown in Figure 5.1. As in the case of the square it is expected that the onset 

of convection is associated with finite values of the parameter 51 where 

71"2 51 
C:=[2+ [5/2' (5.3) 

5.3 Theory 

The asymptotic structure of the solution as I --+ 00 closely follows that 

developed for the square in Chapter 3. The core solution in the region 

-1 ~ X ~ 1, -00 ~ Y ~ 00, where x = [X and y = ll/2y, is again 

expanded in the form (3.6) for times t = [5/27 and an identical analysis to 

that of Section 3.3 leads to the same equations for the amplitude functions 

Ao and AI: 

(5.4) 

(5.5) 

(5.6) 

As in the case of the square, the amplitude function Ao satisfies 

Ao(±I, Y, 7)=0. (5.7) 

Corner region I near x = -[ is defined by - X_cot Q ~ Y ~ X_tan Q, 

X_ ~ 0, where x = -l + [1/2 X_, and the solution there is given by (3.20) 

and (3.21) where the amplitude function AD satisfies 

a2Ao 
ax: =0 
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and the boundary conditions 

_ BAo 
Ao rv X - BX ( -1, Y, T) as X_ ~ 00 (5.9) 

and 

An=O on Y= - X_ cot a and Y = X_ tana, X_ 2: O. (5.10) 

Thus the solution for An is now given by 

_ aAo 
AD =(X_-Y cot a) ax (-I,Y,T), Y > 0 (5.11) 

_ BAD 
AD =(X_+ Y tan a) ax (-1, Y, T), Y < 0 (5.12) 

Similarly, corner region II near x = l is defined by X + tan a ~ Y ~ 

-X+ cot a, X+ ~ 0, where x = l + [1/2 X+, and the solution there is given by 

(3.22) and (3.28) where the amplitude function At satisfies 

and the boundary conditions 

a2At 
ax~ =0 

A+ BAo( 
o rv X+ ax 1, Y, T) 

and 

(5.13) 

as X+ ~-oo (5.14) 

At=O on Y=X+tana, and Y=-X+cota, X+~O. (5.15) 

Thus the solution for At is now given by 

Y > 0, (5.16) 

Y < O. (5.17) 

Matching between the corner solutions and the core solution now implies 

that the core amplitude function Ai must satisfy the boundary conditions 

A ( _ Y ) = { - Y cot Q %19- ( -1, Y, T), Y > 0 
1 1, ,T ~, 

Ytana: ax (-I,},T),Y < 0 
(5.18) 
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( ) 
_ { Y tan a: ~ (1, Y, T), Y > 0 

Al 1,Y,T - 8A 
-Ycota:W(1,Y,T),Y < O. 

(5.19) 

As in the case of the square, the Fourier transform of the leading-order 

core amplitude function Ao is given by 

- iw2 X 71" .. :'( 
Ao=a(w, T)e--2- cos( 2) (5.20) 

and the solvability condition for the Fourier transform of the second ampli

tude function Al leads to the same result (3.37) except that the transform 

functions D± defined by 

(5.21 ) 

must now be determined from (5.18) and (5.19). This leads to the equation 

for the unknown function a(w, T): 

(5.22) 

where 
(5.23) 

(5.24) 

cos 7rX Joo . 2 
Ao(X, Y, T)= 2 a(w, T)e-¥-iW}°dw 

271" -00 

(5.25) 

and 

- ( ('X) a Ao . }O JO 8 Ao . y 
D+ w, T)= io Y tan a: aX (1, Y, T)e'W dY - -0(; Y cot a: 8X (1, Y, T)e'W dY 

(5.26) 
- {'YJ a Ao ., JO a Ao . }' 
D_(w, T)=- io Y cot a: aX (-1, Y, T)e'w} dY + -:>0 Y tan a: aX (-1, Y, T)e'W dY 

(5.27) 

where 
aAo 1 foo iw

2 
.}' 

aX (±1, Y, T)= =f"4 -00 a(w, T)e=fT-'w du). (5.28) 

The system (5.22) - (5.28) is the same as that for the square except that 

the angle Q: now appears in the forms of th in (5.26) and (5.27). When 

(1 = 71" /4 these forms reduce to those for the square given by (3.42). 
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As in the case of the square, the system (5.22) - (5.28) admits solutions 

of the form 

a(w, T)=r(W, T)e iO (5.29) 

where 'r is real and the phase e is constant. In this case 

and T is the solution of the system 

(5.31) 

"'here 

/

1 ;..,2 X liX 
J(w, T)= -1 H(X, w, T)e-2- cos( 2 )dX (5.32) 

H(X,w, T)= r: AIAI 2eiwY dY (5.33) 

A(X, Y, T)= co;!f /00 T(W, T)e- i"~X -i""Y dw 
Ii -00 (5.34) 

and 

D(w, T)= /0 (Y tan o:)F(Y, T)eiwY dY _ roo (Y cot o:)F(Y, T)eiwY dY (5.35) -00 h 
\\'here 

F(Y, T)=~ /00 r(w, T)e i~2 -i .• N dw. 
4 -00 

Solutions are required for which 

r -+ 0 as w - ±oo. 

(5.36) 

(5.37) 

The value of the phase constant 8 is arbitrary but, as in the case of the 

square, is expected to be determined at higher order in the expansion of the 

solution for u as l -+ 00. 

For solutions determined by (5.29)-(5.37) it follows from (5.34) that the 

amplitude function A satisfies 

A(X, Y, T) = A*( -X, -Y, T). (5.38) 

This is equivalent to solutions that are centrosymmetric. so that, for ex

ample, if 8 = 0 then uo(x, X, Y, T) = uo( -x, -X, - Y, T) and if e = %, 
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ll0(X, X, Y, T) = -UO( -x, -x, -Y, T). This just reflects the fact that the 

geometry of the rectangle is centrosymmetric relative to its diago~als. Odd 

or even symmetries in x and y, as in the case of the square, are excluded (in 

general) for the rectangle because its geometry is not symmetric relative to 

the diagonals. 

A further consequence of (5.38) is that 

H(X, w, T) = H*( -X, w, T). (5.39) 

and from this it follows from (5.32) that I is real. Thus all of the terms in 

(5.31) are real and solutions can be found describing the onset of convection 

and its weakly nonlinear development. These are considered in the next two 

sections. 

5.4 Linear solution 

The system (5.31) - (5.36) is identical to that for the square except for the 

definition of D(w, T) in (5.35). Thus solutions of the steady linearised version 

of (5.30), 

(5.40) 

can be obtained using the same method as that described in Section 3.6.1 

except that D is now defined in terms of 0: by (5.35). 

5.4.1 Solution method 

Solutions for 
00 

r= I> n sin n7rW (5.41) 
n=l 

where 
1 

w="2(l + tanh w), 0 < w < 1. (5.42) 

are no longer even or odd functions of wand so all of the Fourier coefficients 

1"1/ are non-zero. These are determined from the system 

00 

01'rm + 47r I)nbmn=O (m = 1. 2, ... ) (5.43) 
n=l 
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.. 
where 

10
1 W2 W 2 

bmn=2 (Dnr cos - + Dni sin -) sin m7fwdw 
o 2 2 

(5.44) 

and 

fo t X
' ~) I'""~ DII1' = Y tan o:(Fnr coswY -Fni sinwY)dY - Y cot 0: (Fnr coswY -Fni 8mw} (1 

-00 0 
(5.45) 

Dni= fO Y tan 0: (Fni coswY +Fnr sinwY)dY -Ix Y cot o:(Fni coswl' +Fnr sinw}" )dL 
-00 0 

(5.46) 

Here Dnr and Dni are the real and imaginary parts of the Fourier coefficients 

Dn arising in the representation 

00 

D = '2:TnDn(W) (5.47) 
n=1 

and Fnr and Fni are defined, as in the case of the square, by (3.57) and (3.58). 

In matrix form, (5.43) is 
b1 (B + -I)r=O 
47f 

(5.48) 

where B is the matrix with elements bmn , I is the identity matrix and r is 

the column vector with elements Tm. 

5.4.2 Results 

The matrix eigenvalue problem (5.48) was solved using a standard r.1athe

matica routine in the same way as outlined in Section 3.6.2. The integrals 

involved in the calculation of bmn were evaluated using Simpson's rule, with 

those in w transformed to the variable W. The integration over Y in (5.45) 

and (5.46) was performed typically with a step size of ~Y = 0.1 and various 

outer boundaries Y = ±Y 00 with Y 00 ranging from 10 to 80. The integrations 

in w were performed with the same number of steps as those in Y. Results 

were obtained for truncation levels up to N = 10. 

Results for the first six eigenvalues b1 and the corresponding eigenvectors 

l' obtained for a truncation level N = 10 and outer boundary Y?C = 20 are 

shown in Tables 5.1 and 5.2 for 0: = 0.644(36.9°) and 0: = 1i /6. The first 

corresponds to the aspect ratio AI / L == 0.75 studied in Chapter 4. Figure 

5.2 shows the leading eigenvalue b1 for a range of values of 0:. Note that a 
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81 15.4165 33.8769 50.19907 68.3098 93.5224 115.436 

7'1 0.7925 0.1844 -0.1350 -0.0346 0.0285 -0.0037 

'1'2 0.1765 -0.6672 -0.2469 0.3072 0.0508 0.0711 

1'3 0.4347 -0.0863 0.6130 0.1946 -0.4531 0.0648 

'1'4 0.1348 -0.5168 -0.0446 -0.4955 -0.1420 -0.5505 

'1'5 0.2782 -0.1069 0.5641 0.0661 0.5003 -0.1121 

"'6 0.0969 -0.3742 0.0121 -0.5781 -0.0447 0.3873 

'1'7 0.1773 -0.0856 0.4097 0.0107 0.6054 -0.0439 

"'8 0.0652 -0.2529 0.0210 -0.4564 -0.0031 0.5963 

'1'9 0.0986 -0.0524 0.2370 -0.0037 0.3903 -0.0055 

'rIO 0.0369 -0.1442 0.0136 -0.2721 0.0022 0.4093 

Table 5.1: First six eigenvalues and eigenvectors for Q: = 0.644. 

slight dip in the curve occurs with a minimum at a ~ 7r /3, but generally 

the critical value of 81 increases as the angle Q: decreases to zero because 

the edges of the rectangle nearest to the diagonal become more restrictive. 

Eigenvalues and eigenvectors for the case of the square, a = 7r / 4, are in good 

agreement with those obtained in Chapter 3. 

The leading eigenfunction T(W) with a = 0.644 constructed from (5.41) 

and the real and imaginary parts of the corresponding amplitude function 

A(X, Y) calculated from (5.34) are shown in Figure 5.3. The corresponding 

results for a =. 7r /6 are shown in Figure 5.4. Figures 5.5 and 5.6 show the 

solution for Uo calculated from (5.6) in the case where 1 is taken as 20 and 

e = 0 for a = 0.644 and Q: = 7r /6 respectively. 

5.4.3 Comparison with numerical results 

The asymptotic results obtained here can be compared with the linearised 

solutions of the Swift-Hohenberg equation reported in Section 4.2. Setting 

I = ~seca in (5.3), Figure 5.7 shows the first two eigenvalues 81 for a = 
0.644 listed in Table 5.1 along with the linearised solutions of the Swift

Hohenberg equation for M / L = 0.75 displayed in Figure 4.1. These indicate 

good agreement. It should be noted that in the case of the rectangle there are 
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81 15.0994 36.8888 56.5410 76.5044 104.194 128.431 

'1'1 -0.7156 -0.3151 0.0810 0.0551 -0.0237 0.0063 

'1'2 -0.2807 0.5875 0.4182 -0.2429 -0.0873 -0.0631 

'1'3 -0.4338 0.1398 -0.5620 -0.3403 0.4136 -0.1141 

'1'4 -0.2196 0.4970 0.0660 0.4772 0.2543 0.5208 

'1'5 -0.2903 0.1801 -0.5347 -0.1142 -0.4931 0.2019 

'1'6 -0.1599 0.3737 -0.0320 0.5596 0.0802 -0.3855 

'1'7 -0.1898 0.1459 -0.3947 -0.0165 -0.5977 0.0792 

'rs -0.1081 0.2568 -0.0449 0.4444 0.0053 -0.5920 

'1'9 -0.1071 0.0898 -0.2298 0.0081 -0.3863 0.0098 

"'10 -0.0613 0.1468 -0.0286 0.2655 -0.0041 -0.4069 

Table 5.2: First six eigenvalues and eigenvectors for a = 7T /6. 

four distinct modes (EE, 00, EO and OE) that form each group of branches 

in the linearised solutions of Figure 4.1. These all correspond to patterns with 

sets of rolls along both diagonals, as observed in results for M = 30 in Figures 

-1:.3,4.5,4.7 and 4.9. Unlike the case of the square, the modes EO and OE do 

not generally coincide and so there is no linearised solution consisting of rolls 

along only one diagonal (that is, a diagonal mode D). Thus it is expected 

that the asymptotic structure described in this chapter will represent a truly 

linear solution for general large l only when the structure occurs along both 

diagonals. Th~ solution for a single diagonal will. nevertheless, correspond to 

a weakly nonlinear combination of the EO and OE modes that will produce 

a diagonal mode. In the asymptotic theory, these issues can only be resolved 

by taking the asymptotic expansion to higher order in l. 

5.5 Nonlinear solution 

5.5.1 Solution Method 

Solutions of the full nonlinear version of (5.31), 

(5.49) 
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• 
subject to the boundary conditions (5.37) were obtained using the same 

method as that described for the square in Section 3.7. This leads to the 

system 

(5.50) 

to be solved for the individual modes r m, where 

00 

[(w, T) = I:Cnsin mrw. (5.51) 
n=l 

The coefficients en are calculated in the same manner as that described 

for the square in Section 3.7 and the coefficients bmn are those given by 

(.5.44) in the linear analysis of Section 5.4. The linearised solution with 

a suitably chosen amplitude was used to provide an initial state at T = 

o and the solution allowed to evolve to its steady-state form at a slightly 

supercritical value of 61. Further steady-state solutions were then computed 

by incrementing 61 and using the previous solution as the initial state. 

5.5.2 Results 

Figure 5.8 shows a plot of the steady-state solution for r at w = 0 as a function 

of 81 for the leading mode in the case Q = 0.644 where the bifurcation occurs 

at 81 = 15.417. This was obtained using a truncation level N = 10 and 

with 20 steps in X and 100 steps in wand Y in the integration formulae. A 

time step 6.T ~ 0.0035 was used and convergence to a steady-state solution 

\\"as achieved typically to within an error of 0.0005 in the value of 'T' when 

T = 1, although this time increased significantly in the neighbourhood of the 

bifurcation point. Table 5.3 shows the steady-state values of r n for several 

\'alues of 81. Plots of the steady-state solution for the real and imaginary 

parts of A at 61 = 22.5 are shown in Figure 5.9 and the corresponding 

contours of Uo calculated from (5.6) in the case when l is taken as 20 and 

(} = 0 in Figure 5.lD. As 81 increases the solution increases in amplitude 

and spreads outwards from the diagonal; the curvature of the roll pattern 

decreases. Corresponding results for the case Q = 11'/6 are shown in Figures 

5.11 and 5.12 and in Table 5.4. 
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61 25 30 35 
1'1 6.9926 8.7118 10.1595 
1'2 1.5253 2.2729 3.1966 
1'3 1.2272 1.4362 1.5732 
1'4 0.5510 0.7799 1.0315 
1'5 0.4199 0.4558 0.4552 
1'6 0.2512 0.3404 0.4260 
1'7 0.1645 0.1618 0.1398 
'1'8 0.1210 0.1573 0.1862 
1'9 0.0586 0.0496 0.0318 

7'10 0.0521 0.0649 0.0721 

Table 5.3: Steady-state values of l' n for the leading solution branch at several 
values of 61 with a: = 0.644. 

61 25 30 35 
1'1 6.5336 7.8601 8.7981 
1'2 2.4338 3.3973 4.4477 
1'3 1.5760 1.9898 2.4156 
1'4 0.9516 1.2994 1.6679 
1'5 0.6386 0.8031 0.9789 
'1'6 0.4543 0.6066 0.7610 
ri 0.2878 0.3562 0.4297 
1'8 0.2255 0.2941 0.3597 
1'9 0.1182 0.1428 0.1691 

1'10 0.0990 0.1257 0.1491 

Table 5.4: Steady-state values of r n for the leading solution branch at several 
values of 61 with a: = 7r /6. 
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5.6 Discussion 

The present chapter shows that the asymptotic theory of Chapter 3 can be 

extended to the case of a rectangular domain in a relatively straightforward 

manner. The solutions in the core region and corner regions are similar to 

those for the square domain except that the rectangular geometry implies 

that the end conditions for the amplitude functions Al are now asymmetric. 

leading to solutions for the leading order amplitude function Ao that are 

centrosymmetric relative to the diagonal of the rectangle. The values of 

01 at onset for the case AIl L = 0.75 give critical values of c that are in 

good agreement with the numerical results for the leading groups of branches 

as M ---+ 00 in Figure 4.1 and the associated roll patterns are consistent 

with those of the numerical results of Chapter 4 at large values M. The 

dependence of 01 on a = tan- 1 (MIL) shown in Figure 5.2 is consistent with 

the results of Chapter 3 when a = 7r I 4 and also predicts that 01 ---+ 00 as 

0: ---+ O. This is consistent with the fact that if M « L the closeness of the 

walls at y = 0 and y = M begins to have a significant impact on the critical 

value of c which must rise above the value 7r2 I l2 when M is finite and the 

geometry is essentially that of a narrow channel. 

It is envisaged that wall regions equivalent to those of Section 3.8 for 

the square domain exist in order to adjust the solution to the full bound

ary conditions at the walls of the rectangle. Although these have not been 

considered in the present chapter it is expected that they will result in the 

main incident x-roll component (Aoe iX ) in each corner being reflected from 

the boundary at an equal angle, generating a weak roll component B within 

each corner region where the roll axes are at angle 20: to the axes of the main 

roll component (i.e to the y direction in Figure 5.1). In the case of the square 

domain we have a = 7r / 4 and the roll axes of the reflected component Bare 

then orthogonal to those of the main x-roll component. 
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Figure 5.1: Schematic diagram of the rectangular domain, showing the diag

onal from x = -l to x = l and the core region of width order ll/2. 
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Figure 5.2: The leading eigenvalue 01 as a function of Q 
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Figure 5.3: Contours of the real and imaginary parts of the amplitude func

tion A('\" , Y) ill the domaill -1 < X < 1, - 5 < Y < 5 for the leading 

eigen funct ion with (\ = 0.644 
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Figure 0. --1: Cont.ours of the real and imaginary pcuts of t.he ampli tude func

tion A(X. Y) in the dOl1lain -1 < X < 1, -5 < Y < 5 for the leading 
eigenfullCl iOIl wiLh Q = 7r / 6 
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Pig Ure 5 5, COni 0 lir, of Un for t he leading eigenfli ne I, ion constn!e 1 cd from 
i j,G) lVith I ~ 20 and & ~ 0 in the dOJnain -1 < X < I , -5 < )' < 5 for () =::: 0.6-1-1 . 
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Figure 5.6: Contours of ILO for the leading eigenfunction constructed from 

(5 .6) with I = 20 and e = 0 in the domain -1 < X < 1. -5 < Y < 5 for 
n=7f/6. 
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Figure 5.7: Comparison of the asymptotic theory (dashed curves) with the 

numerical results for the two leading eigenvalues with II'! / L = 0.75 (0: = 
0.644). 
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Figure 5.8: r(O) versus 61 for the leading branch of solutions with 0: = 0.644. 
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Figure 5.9: Cont.ours of the real and imaginary pi:1rts of the amplitude func

tion .4(..\ , Y) ill the domain -1 < X < 1, - 5 < Y < 5 for the leading 

eigenfullction with (} = O.G-l4 and 01 = 22 .. ~ . 
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figure 5.10: Cont.ours of lto for 61 = 22.5 on t.he leading solu tion branch 

constructed from (5 .6) with l = 20 and () = 0 in the clomain -1 < X < 
1. -5 < Y < 5 for Q = 0.644. 
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Figure 5.11: r(O) versus 61 for the leading branch of solutions with a: = 7r/6. 
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Figure 5. 12: Contours of the real al\e1 ilW.lgimu y parts of the ampli tude 

functioll A(X, Y ) in t. he domain -1 < X < L -5 < Y < 5 for the leading 

eigenfunc l iOl\ wi t. h C\. = Ti /6 and 61 = 22.5. 
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Figure 5.13: Contours of Uo for 6J = 22.5 all the leading solu tion branch 

constructed from (5.6) with l = 20 and () = 0 in the domain -1 < X < 
1. -5 < Y < 5 for a = 7i /6. 
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Chapter 6 

Summary and conclusions 

In Chapter 2, the bifurcation structure of steady-state solutions of the Swift

Hohenberg equation in square domains has been studied using a combination 

of weakly nonlinear analysis and computation. For periodic boundary condi

tions the bifurcation structure can be deduced analytically and introduction 

of a small rigid (non-periodic) component reveals some significant qualitative 

differences in the more realistic non-periodic case. For rigid boundary con

ditions solutions onset either as OE modes at repeated eigenvalues in which 

case there is also an associated diagonal mode with an even number of cells or 

as four fold symmetric EE or 00 modes at single eigenvalues. For low values 

of L the single cell EE mode is the most dangerous but as L increases the 

leading modes of each type compete with one another so that ~he symmetry 

that occurs first depends on the precise value of L as shown in Figure 2.8. 

At large values of L the modes interweave forming distinct groups containing 

each type of symmetry. 

Beyond the linear bifurcation points the complexity of nonlinear solu

tions becomes apparent, arising either from symmetry breaking secondary 

bifurcations or through new nonlinear fold bifurcations. Stable solutions oc

curring in this way include modes with an odd number of cells, modes with 

symmetry in one direction only, parallel modes and centrosymmetric modes. 

The ordering of these modes depends on the domain size L and even for a 

moderate value of L such as 571' the situation is extremely complex. The 

solutions shown in Figures 2.37, 2.44 and 2.60 are just a subset of the modes 
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that arise at moderate values of c. For high values of L many modes fit into 

the domain even at low values of c and the bifurcation structure becomes 

more difficult to compute. 

An interesting feature of the leading rigid eigenfunction at large L is that 

the cells form along the diagonals of the square, either both diagonals in 

the case of the EE, 00 or OE modes or one diagonal in the case of the D 

mode. For the EE and 00 modes there are an odd number of cells along each 

diagonal whereas for the OE modes there are an even number of cells along 

the diagonals. For the EE, 00 and OE modes the central part of the pattern 

is more complicated but is essentially a local superposition of the two sets 

of cells along each diagonal. This diagonal structure is intimately related to 

the non-periodic nature of the homogeneous boundary conditions and is not 

observed in the periodic problem. As c increases and nonlinear effects set in 

patterns containing square cells or cross-rolls tend to be unstable. This is 

because for the Swift-Hohenberg system, like the Rayleigh-Benard system, 

square cells are unstable to rolls in an infinite layer. Thus at large L if the 

linear onset pattern is one containing cross-rolls at the centre (EE or 00) it 

subsequently loses stability to a diagonal mode via a secondary bifurcation. 

On the other hand, if the onset pattern is OE, the corresponding diagonal 

mode D sets in immediately. 

The intricate structure revealed here for large values of L would be diffi

cult to compute for the Rayleigh-Benard system because of the considerable 

computing power needed to simulate multiple-cell solutions in three dimen

sions. However it is expected that the same symmetry arguments will apply 

and hence that similar patterns will be observed. For moderate L. patterns 

similar to those of Figure 2.10 have been observed in a square planform con

tainer by Stork and Muller (1972, figure 6g). For larger L, diagonal structures 

have been observed in shallow square planform containers by Koschmieder 

(1966, figure 13) and although these bear quite a close resemblance to those 

of the EEl mode in Figure 2.62 some caution is necessary in making definite 

comparisons. One possibility is that the container size used in the experi

ment corresponds to the case where the onset mode has EE symmetry and 

that this mode remains sufficiently stable to be observed in the experiment: 

However the observed motion appears to be strongly nonlinear making it 
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surprising that there was no evidence of a purely diagonal mode of the kind 

shown in Figure 2.61. The motion observed in the experiment may corre

spond to a secondary or fold bifurcation at higher c in the Swift-Hohenberg 

model or it may be that experimental conditions (for example the poorly 

conducting glass lid used to observe the flow) were such as to favour square 

cell convection (see for example Hoyle 1995). Experiments focusing on the 

weak motion near onset are needed in order to test the main predictions of 

the present work for large aspect ratio systems. 

In Chapter 3, the diagonal structure of solutions in square domains as 

L ~ 00 has been confirmed by a multiple scale matched asymptotic analysis, 

making use of the fact that the length scale of the domain is much greater 

than the length scale of individual rolls. The results appear to confirm both 

the behaviour of the eigenvalues c of the linearised system and the overall 

structure of the weakly-nonlinear solutions in the limit as L ~ 00. 

In Chapter 4 the numerical results for the rigid problem are extended 

to the case of rectangular domains. Here the main difference from the case 

of the square domain is that diagonal modes cannot onset as linear eigen

solutions and the repeated OE/EO /D modes of the square are replaced by 

distinct OE and EO modes at different eigenvalues. The results here gen

erally confirm the prevalence of roll patterns parallel to the shorter sides of 

the rectangle for moderately sized planforms. However for planforms whose 

dimensions L, M are large in both directions local structures confined to the 

diagonals of the rectangle are preferred near onset. Beyond onset these so

lutions change 'into more coherent roll patterns typically by means of the 

structure along one diagonal strengthening relative to the other and leading 

to centrosymmetric curved roll patterns of the type computed numerically by 

Greenside and Coughran (1984, figure 10) and observed in Rayleigh-Benard 

experiments (see Cross and Hohenberg 1993). Although straight roll patterns 

parallel to the sides of the rectangle remain possible steady-state solutions 

in large planforms they do not constitute the leading eigenfunctions, offering 

a possible explanation of why such simple patterns tend not to be observed 

in experiments in large planform rectangular domains. 

In Chapter 5 the asymptotic analysis of Chapter 3 is extended to the 

case of the rectangular domain and it is confirmed that, near onset, solutions 
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exist consistent with a localised roll structure confined to the diagonals of the 

rectangle. The analysis determines the dependence of the critical eigenvalue 

E on the aspect ratio of the rectangle (!vI / L = tan Q:) in the limit as !vI ~ 00 

and L ~ 00 and this appears to agree well with the numerical results of 

Chapter 4. 

An advantage of studying the Swift-Hohenberg equation is that it is suf

ficiently simple to allow numerical solutions to be computed for a wide range 

of domain sizes in a relatively straightforward manner and without the need 

for extensive computing power. This has allowed various key features of the 

system, including the role of rigid (no slip) boundaries, to be identified and 

compared with asymptotic solutions. Possible future avenues of research in

clude the extension of the present work to more realistic physical systems 

such as the Darcy-Benard system (governing convection in a porous medium 

heated from below) and the Rayleigh-Benard system. Because of the close 

connection between the weakly nonlinear form of the Swift-Hohenberg equa

tion and that of the Darcy-Benard and Rayleigh-Benard systems it seems 

possible that many features of the present study will carryover to these 

more realistic systems. 

Other possible extensions of the present work would be to carry out a for

mal stability analysis of the numerous solution branches identified here and 

to relate the findings to values of the Lyapunov functional defined by Green

side and Coughran (1984). This was not possible within the time limitations 

of the present study but may help to distinguish the relative importance 

of the various parallel, diagonal, centrosymmetric and asymmetric modes of 

convection that can arise. 
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