

City Research Online

City, University of London Institutional Repository

Citation: Papadopoulos, N., Kyriacou, P. A. & Damianou, C. (2017). Review of Protocols Used in Ultrasound Thrombolysis. Journal of Stroke and Cerebrovascular Diseases, 26(11), pp. 2447-2469. doi: 10.1016/j.jstrokecerebrovasdis.2017.07.032

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/18276/

Link to published version: https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.07.032

Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

 City Research Online:
 http://openaccess.city.ac.uk/
 publications@city.ac.uk

Review Article

Review of Protocols Used in Ultrasound Thrombolysis

Nicos Papadopoulos, PhD,* Panayiotis A. Kyriacou, PhD,* and Christakis Damianou, PhD†

Objectives: This paper focuses on the review of protocols used in thrombolysis studies with ultrasound. *Materials and methods:* Data from peer-review articles were acquired. *Results:* The protocols of several published reports are summarized in 3 tables (in vitro, in vivo, and clinical), providing detailed information concerning clot model, thrombolytic drug, treatment mode, sonication param-eters, evaluation method, thrombolysis outcome, side effects, and conclusions. *Conclusions:* The aim of this review was to give an overview of the different pro-tocols used so far in the field of sonothrombolysis and investigate the impact of several aspects involved on sonothrombolysis outcome. **Key**

Words: Stroke-thrombus-ultrasound-MRI-clot.

Introduction

One of the early investigators who used ultrasound (US) energy to accelerate the fibrinolytic activity of thrombolytic drugs in vitro was Lauer.¹ Later, more in vitro studies have shown that US applications improved thrombolysis induced by thrombolytic agents (sonothrombolysis). The main goal in these in vitro studies was to deduce the optimum ultrasonic parameters to enhance sonothrombolysis (mostly frequency and intensity).² Another major goal was to test the best thrombolytic drug that enhances sonothrombolysis.^{3,4} The knowledge on sonothrombolysis gained in the in vitro studies was translated at a preclinical level by performing experiments in animals. Because in the in vitro experiments no side effects can be extracted, experimentation with animals was imperative. Still the main goal in the animal experiments was to extract the optimum ultrasonic parameters that maximize clot removal.⁵ Additionally, different clot animal models were used which could test the various derived ultrasonic protocols.^{6,7} Progressively, US bubbles were employed which can possibly enhance the efficacy of sonothrombolysis.5 When sufficient data were collected this research was translated into clinical trials.8-10 The main goal in the clinical trials was to establish the safety and efficacy of sonothrombolysis. As was evident from these studies, the efficacy of this method was not very encouraging, therefore its deployment was not that impressive compared with the preclinical studies. Additionally, some side effects reported delayed the full deployment of this method.

This review is divided into 3 categories (in vitro, in vivo, and clinical) and provides a comprehensive compilation of protocols used during sonothrombolysis studies with or without thrombolytic drugs and/or microbubbles (MBs) since 1992. The aim of the review is to provide information regarding (1) the clot model used (human or animal for the in vitro studies and type of occlusion for the animal and clinical studies), (2) the US technique applied such as external or internal (catheter based) and focused or unfocused, (3) the use of flow system (only

From the *Research Centre for Biomedical Engineering, City, University of London, UK; and †Electrical Engineering Department, Cyprus University of Technology, Cyprus.

in vitro), (4) the temperature (only in vitro), (5) the type and concentration of thrombolytic drug used, (6) the treatment mode (US alone, drug alone, US + drug and US + drug + MBs), (7) the sonication parameters applied, such as frequency, intensity or acoustic power or negative pressure, pulse repetition frequency (PRF), duty factor (DF), and treatment time, (8) the evaluation method used to estimate study's outcome, (9) the effect of treatment on clot lysis, and (10) the main conclusions derived.

There is an absence in standardization about the necessary information collected from each study due to different methods/measuring units used by the investigators. For example, the output of US transducer is specified in different units (intensity, acoustic power, negative pressure, etc.), and the treatment's outcome is quantified by different evaluation methods such volume reduction, fibrin degradation products, lytic rate, recanalization rate, etc. Furthermore, in some cases experimental parameters like temperature, PRF and DF are not specified. This lack of standardization makes the comparison among various studies impossible. Additionally, although some impressive results were reported in the in vitro and in the animal studies, the outcomes of the clinical results were not that impressive. This could be attributed to the fact that in some studies, thermal effects were possibly reached, causing acceleration of sonothrombolysis, which, however, eventually produced severe side effects.

Materials and Methods

Published reports on sonothrombolysis that are available in PubMed (www.ncbi.nlm.nih.gov/pubmed) were collected. Information in several aspects of the protocols used in the studies examined were also extracted. In animal studies as well as in clinical trials, the following information was needed: clot model, thrombolytic drug and concentration, treatment mode, MBs administration, frequency, intensity or acoustic power or negative pressure, PRF, DF, treatment time, evaluation method, treatment's outcome, side effects, and main conclusions. In the in vitro compilation, the additional information needed was temperature.

Results

Table 1 lists the in vitro studies, Table 2 lists the in vivo studies, and Table 3 lists the clinical studies. The 3 tables include a comprehensive summary of all the issues involved in sonothrombolysis. These main issues are (1) the clot model used (human, animal, or in vitro), (2) type of occlusion (for animal and clinical models), (3) the coupling technique used (external or internal), (4) US modality (focused or unfocused), (5) the use of flow system (only for the in vitro studies), (7) the type of thrombolytic drug

used, (8) concentration of thrombolytic drug used, (9) treatment mode (US alone, drug alone, US + drug and US + drug + MBs), (10) the applied frequency, (11) the applied intensity or acoustic power or negative pressure, (12) the applied PRF, (13) the applied DF, (14) the treatment time, (15) the evaluation method used to estimate the efficacy of sonothrombolysis, (16) the effect of treatment on clot lysis, and (17) the main conclusions derived.

In the in vitro studies the most common clot model used was the human model (e.g., References 1-3, 12, and 13). In some cases the porcine model was used,^{4,48,54,56-58} the rabbit model,46,53 and the bovine.45,49 The intensity used ranged from .5 W/cm² to 193 W/cm². The frequency used varied from 20 KHz to 2 MHz, whereas in most experiments the frequency used was about 1 MHz. The most typical thrombolytic drug used was the recombinant tissue plasminogen activator (rt-PA). In a few studies the urokinase (UK) was used.21,25,32,36 The concentration of the rt-PA varied from .1 to $100 \,\mu g/mL$. In most of the studies the drug concentration is specified as $\mu g/mL$, and in some studies the IU/mL is specified. The treatment time used varied from .5 minutes to 720 minutes, whereas the majority of the studies used treatment time between 30 and 60 minutes. We have observed that in a few studies the clot temperature was not specified (e.g., References 36, 41, and 45). Based on 1 study,³⁴ it is apparent that temperature plays an important role in sonothrombolysis and should be specified in all in vitro studies.

In the animal studies the most common clot models used were the rabbit model^{5,6,48,64-74,78-80} and the rat model.^{1,7,63,75} In the popular rabbit model the most commonly used artery was the femoral, followed by the middle cerebral artery (MCA) and the carotid. The frequency used varied from 20 kHz to 5.7 MHz, whereas in most experiments the frequency used was about 1 MHz. The most typical thrombolytic drug used was the rt-PA. In a few studies the streptokinase was used.66,70,80 The concentration of the drug varied from .8 to $10 \,\mu g/mL$. Clearly the doses used in animals were much lower than those used in the in vitro models. Most of the studies have evaluated the effect of US alone, thrombolytic drug alone, or the synergy of the 2 (US and drug). In most of the studies the intensity is specified, and in some studies the pressure is specified. The treatment time used varied from 2 minutes to 120 minutes, whereas the majority of the studies used treatment time of 60 minutes. Compared with the in vitro studies, in the animal studies, the additional parameter used was the inclusion of MBs. Several studies71-73,78-80 have shown that MBs may enhance the sonothrombolysis efficiency.

In all the human trials evaluated the clot model used was the MCA. The frequency used varied from 300 kHz to 4 MHz. In all the studies the thrombolytic drug used was the rt-PA. The concentration of the drug was .9 μ g/mL, which seems to be the safe dose used in humans.

				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref
Human	rt-PA	37		Yes							50	Measured volume	33%	1
	(3000 IU/mL)				Yes		1 MHz	1.75 W/cm ² I _{SATA}	Intermittent	50	50	reduction	50%	
				Yes							200		62%	
					Yes		1 MHz	1.75 W/cm ² I _{SATA}	Intermittent	50	200		91% US combined with rt-PA caused a significant enhancement of thrombolysis compared with rt-PA alone.	
Human	rt-PA	37		Yes							60	Measured volume	8%	2
	(1 µg/mL)				Yes		27 kHz	1 W/cm ²	70	10	60	reduction	17%	
					Yes		40 kHz	1 W/cm2	70	10	60		20%	
					Yes		100 kHz	1 W/cm2	70	10	60		15% US in the range of 27 to 100 kHz is effective in accelerating fibrinolysis at intensities and pulsing conditions that minimize the probability of heating and cavitation.	
Human	rt-PA	36		Yes							60	Measured volume	22.7%	11
	(3000 IU/mL)				Yes		2 MHz	1.2 W/cm ²	cw	100	60	reduction	49% (Traveling)	
					Yes		2 MHz	1.2 W/cm ²	cw	100	60		34.8% (Standing)	
					Yes		2 MHz	1.2 W/cm ²	1, 10, 100, 1000	50	60		46.4%, 39.8%, 44%, 34% Intermittent application of a 2-MHz high-frequency US using a traveling wave field would be the most potent application for lysing blood clots. No effect of PRF on clot lysis.	
Human	rt-PA (3000 IU/mL)	37	Yes				1.95 MHz	1.2 W/cm ² I _{SATA}	1	50	60	Measured volume reduction	25.3%	3
				Yes							60		19.9%	
					Yes		1.95 MHz	1.75 W/cm ² I _{SATA}	1	50	60		35.2% US enhances thrombolysis by affecting the distribution of rt-PA within the clot.	
Human	rt-PA	37		Yes							30	Measured lytic rate	.5 μm/min	1
	(3.15 µg/mL)				Yes		120 kHz	.35 MPa	1667	80	30		3.4 μm/min US treatment + rt-PA significantly enhanced the mean lytic rate (580% change), compared with rt-PA treatment alone.	
Human	rt-PA	37		Yes							30	Measured lytic rate	7 μm/min	1
	(3.15 µg/mL)				Yes		120 kHz	.35 MPa	1667	10, 20, 50, 80	30		15, 25, 50, 65 μm/min The lytic efficacy of clots exposed to rt-PA and US increases with increasing DF.	
Porcine	rt-PA	37		Yes							30	Measured volume	12%	4
	(107 µg/mL)				Yes		120 kHz	.35 MPa	1.7 k	80	30	reduction	19.1%	
					Yes		1 MHz	.35 MPa	1.7 k	100	30		25%	
					Yes		1 MHz	.35 MPa	1.7 k	10	30		22% Both 120-kHz and 1-MHz pulsed and c.w. US enhanced rt-PA thrombolysis in a porcine whole blood clot model.	

Table 1. In vitro protocols used in sonothrombolysis

Clot model Drug US Drug US drug US + drug MBs Freq. Output PRF (Hz) DF Time (min) Evaluation method Main conclusion Ref Human n-PA (10 µg/mL) 37 Yes Yes 120 kHz .35 MPa 1667 50 30 reduction 16% 13% 1667 50 30 reduction 16%					Mode										
 Inframe Inframe	Clot model	Drug			Drug	US + drug	MBs	Freq.	Output	PRF (Hz)				Main conclusion	Ref.
 Markan Markan	Human		37		Yes	Yes		120 kHz	.35 MPa	1667	50			31% 120-kHz US substantially increases the lytic efficacy of rt-PA for	14
Hama R-PA (-5.15 gram) 78 Yes (-ELB) 29 (FE) 90 90	Human		37			Yes		120 kHz	.35 MPa	1667	50	30		71%	15
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Yes	Yes	120 kHz	.35 MPa	1667	50	30		t-ELIP substantially increases the rate of lysis compared with either tPA or	
Fibrin gel r.PA 25 Yes 1 MHz 2 Wcm ² 100 50	Human		37		Yes										16
Fibringal $rePa$ 25 Yes $1 MHz$ $2 Wcn^2$ 100 50 $reparate repertence representation 100 reparate representation 100 $		(.5-3.15 µg/mL)											reduction		
Human r.P.A 37 Yes Yes 1 MHz 4 W/cm ² c.w. 100 240 Measured fiber 65/5 1 Human r.P.PA 37 Yes Yes 1 MHz 4 W/cm ² c.w. 100 240 Measured fiber 66/6 67/7 100 100 240 Resured fiber 66/7 100 100 100 240 Resured fiber 66/7 100 100 100 240 Resured fiber 100 <						Yes		2 MHz	.47 MPa	10.5 k	13	30		rt-PA is more effective than rt-PA alone	
Human r.P.A 37 Yes Yes Adverted C.W. 100 1.5 inclusion and control 20% Human r.P.A 37 Yes Yes 24% Userstanding 27% Userstanding 27% Userstanding 27% Userstanding 27% Userstanding 100	Fibrin gel		25			Yes		1 MHz	2 W/cm ²	100	50			alters binding affinity, and increases maximum binding to polymerized	17
Human Irl A 57 Fest Yes 1 MHz 4 W/cm ² c.w. 100 240 rate 0.5.% Exposure to US increases uptake of rt-PA into clots and also results in deeper penetration. Human rt-PA Yes 1 MHz 4 W/cm ² c.w. 100 240 rate 15.5% Exposure to US increases uptake of rt-PA into clots and also results in deeper penetration. Human rt-PA Yes 300 kHz 0.7 W/cm2 c.w. 100 60 degradation 1669 ng/mL 20 Human (2 µg/mL) Yes 300 kHz 0.7 W/cm2 c.w. 100 60 degradation 1669 ng/mL 20 Human (2 µg/mL) Yes 300 kHz 0.7 W/cm2 c.w. 100 60 degradation 1669 ng/mL 20 Human (2 µg/mL) Yes 1 MHz 4 W/cm ² c.w. 100 60 degradation 1669 ng/mL 20 Human (2 µg/mL) Yes 1 MHz 4 W/cm ² c.w. 100 60 degradation 1690 ng/mL 20 Human (2 µg/mL) Yes 1 MHz 4 W/cm ² c.w. 100 60 modules also cegradation of fibrin, allowing a quantitative measurement of clot lysis. A high correlation was observed between the FDP-DDD produced with the rate of clot wight. FDP-DDD PDPODeepeduce with the rate of clot wight. 21 Human UK 37 Yes Yes 1 MHz 2.5 W/cm ² c.w. 100 60 Reaured volume (100 clot) wigh	Fibrin gel			Yes				1 MHz	4 W/cm ²	c.w.	100	15	density Measured fiber	<27% US exposure causes reversible disaggregation of uncross-linked fibrin fibers into smaller fibers, an effect that may alter flow resistance and create additional binding sites for fibrinolytic components, improving fibrinolytic	18
Human rt-PA Yes 60 Measured fibrin 957 ng/nL 20 (2 μg/mL) Yes 300 kHz .07 W/cm2 c.w. 100 60 degradation 1669 ng/mL 20 Yes 10 Hz .4 W/cm2 c.w. 100 60 degradation 1669 ng/mL 20 Yes 1 MHz .4 W/cm2 c.w. 100 60 degradation 1669 ng/mL 1727 ng/mL The combination of drug and US leads to degradation of fibrin, allowing a quantitative measurement of the enhancement of clot lysis. A high correlation was observed between the FDP-DD produced with the rate of decrease in clot weight. FDP-DD produced with the rate of decrease in clot weight. 21 Human UK 37 Yes Yes 1 MHz 2.5 W/cm2 c.w. 100 60 Measured volume 18,7% 21 flow (400 U/mL) Yes Yes 1 MHz 2.5 W/cm2 c.w. 100 60 reduction 52.5% c.w. US at 1 MHz and an intensity of 2.5 W/cm2 accelerates urokinase-induced thrombolysis and 21	Human	rt-PA	37		Yes							240	Measured uptake		19
Human Iverv 100 Measured model 106 measured model 107 mg/mL 107 mg/mL 107 mg/mL 107 mg/mL 100 measured model 107 mg/mL 100 measured model 107 mg/mL 100 measured model 100 measured 100 meas		(.1 µg/mL)				Yes		1 MHz	4 W/cm ²	c.w.	100	240	rate	of rt-PA into clots and also results in	
Yes1 MHz.4 W/cm²c.w.10060product, D-dimer (FDP-DD)1727 ng/mL The combination of drug and US leads to degradation of fibrin, allowing a quantitative measurement of to correlation was observed between the FDP-DD produced with the rate of decrease in clot weight.HumanUK37Yes60Measured volume18.7%21flow system(400 U/mL)Yes1 MHz2.5 W/cm²c.w.10060reduction18.7%21urckinase-induced thrombolysis and	Human				Yes							60		957 ng/mL	20
Human UK 37 Yes 60 Measured volume 10. 10 10 10 10 10 10 10 10 10 10 10 10 10		(2 µg/mL)				Yes		300 kHz		c.w.	100		U	1669 ng/mL	
filming or by the second of th						Yes		1 MHz	.4 W/cm ²	c.w.	100			and US leads to degradation of fibrin, allowing a quantitative measurement of the enhancement of clot lysis. A high correlation was observed between the FDP-DD produced with the rate of decrease in clot weight.	
system intensity of 2.5 W/cm2 accelerates urokinase-induced thrombolysis and			37		Yes										21
		(400 U/mL)				Yes		1 MHz	2.5 W/cm ²	c.w.	100	60	reduction	intensity of 2.5 W/cm2 accelerates urokinase-induced thrombolysis and	

Table 1. (continued)

							18	able 1. (contin	uea)					
				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref.
Human	SK	37		Yes							65	Measured	100%	22
	(5000 U/mL)				Yes		170 kHz	.5 W/cm ² (I _{SATA})	c.w.	100	34	reperfusion rate	100%	
				Yes							39		100%	
					Yes		1 MHz	1 W/cm ² (I _{SATA})	C.W.	100	20		100% US exposure of a type and intensity that may be transmitted transthoracically accelerates the thrombolytic process (for both frequencies used).	
Human	rt-PA	37	Yes				1 MHz	60 W	1	10	30	Measured volume	33%	23
HIFU	(10 µg/mL)			Yes							30	reduction	53.1%	
					Yes		1 MHz	60 W	1	10	30		63.2% The rate of tPA-mediated thrombolysis can be enhanced by using pulsed HIFU exposure.	
Human	rt-PA	37		Yes							60	Measured volume	12.8%	24
	(1.0 μg/mL)				Yes		1 MHz	1, 2, 4, 8 W/cm ²	c.w.	100	60	reduction	18%, 19.3%, 22.8%, 58.7% US at 1 MHz potentiates enzymatic fibrinolysis by a nonthermal mechanism. Thrombolysis efficiency increases with intensity.	
Human	UK (200, 2000,	Room	Yes				1 MHz	2.2 W/cm ²	n/s	n/s	30	Measured volume	18%	25
	5000 µg/mL)			Yes							30	reduction	19%, 44%, 50%	
					Yes		1 MHz	2.2 W/cm ²	n/s	n/s	30		41%, 55%, 61%	
	SK (50, 250,		Yes				1 MHz	2.2 W/cm ²	n/s	n/s	30		26%	
	2000 µg/mL)			Yes							30		37%, 50%, 62%	
					Yes		1 MHz	2.2 W/cm ²	n/s	n/s	30		45%, 61%, 73% The use of external US has the potential to increase both efficacy and rate of thrombolysis. Thrombolysis efficiency increases with drug dose. Thrombolytic activity of SK more effective than UK.	
Human	rt-PA	37		Yes							60	Measured volume	23%	26
	(1.0 µg/mL)				Yes		2.2 MHz	.5, 1, 2, 4,	n/s	n/s	60	reduction	31%, 40%, 48%, 69%, 88% US	
Human	rt-PA	37		Yes				8 W/cm ²			25	Measured volume	accelerates enzymatic fibrinolysis by increasing transport of reactants through a cavitation-related mechanism. Thrombolysis efficiency increases with intensity. 7.24%	27
	(66.7 µg/mL)				Yes		.5 MHz	8 W/cm ²	c.w.	100	25	reduction	26.7% US waves accelerate rt-PA-	
					100			5			20		induced thrombolysis and reperfusion.	

Table 1. (continued)

				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref
Human	rt-PA	37		Yes							60, 120	Measured volume	13%, 37%	28
	(1 µg/mL)				Yes		40 kHz	.25 W/cm ²	C.W.	100	60, 120	reduction	39%, 93%	
					Yes		40 kHz	.75, 1, 1.5 W/cm ²	C.W.	100	60		58%, 75%, 77% 40-kHz US significantly accelerates enzymatic fibrinolysis with excellent tissue penetration and minimal heating. Thrombolysis efficiency increases with intensity.	
Human	rt-PA	37		Yes							60	Measured volume	23.8%	29
	(3000 U/mL)				Yes		1 MHz	1.2 W/cm ²	c.w.	100	60	reduction	34.8 (Standing)	
				Yes							60		11.3%	
					Yes		2 MHz	1.2 W/cm ²	c.w.	100	60		24.5% (Traveling) Traveling US waves enhanced thrombolysis (116.8%), which is significantly more than standing US waves did (46%).	
Human	rt-PA	37	Yes				20 kHz	.35 W/cm ²	c.w.	100	10	Measured volume	41.8%	30
	(3 µg/mL)			Yes							20	reduction	49.1%	
					Yes		20 kHz	.35 W/cm ²	c.w.	100	10		65.8% The use of low-frequency US alone has the potential to induce thrombolysis. Combination of US with rt-PA is superior to either treatment alone.	
Human	rt-PA	37		Yes							30	Measured volume	15.6%	31
	(3.15 µg/mL)			Yes + Epf.							30	reduction	28%	
					Yes		120 kHz	.18 MPa	1667	80	30		44.4%	
					Yes + Epf.		120 kHz	.18 MPa	1667	80	30		30.3% Although the addition of eptifibatide enhances the lytic efficacy of rt-PA alone, the efficacy of US and rt-PA is greater than that of combined US, rt-PA, and eptifibatide exposure.	
Human	UK	37		Yes							720	Measured volume	43%	32
	(2 mg/mL)				Yes		211.5 kHz	.25 W/cm ²	c.w.	100	720	reduction	61% Low-frequency US transmits well through human temporal bone and enhances thrombolysis.	
Human	rt-PA	37	Yes				33.3 kHz	.5 W/cm ²	n/s	n/s	60, 180	Measured volume	39.96%, 44.09%	33
through	(100 µg/mL)		Yes				71.4 kHz	3.4 W/cm ²	n/s	n/s	60, 180	reduction	32.24%, 35.17%	
skull				Yes							60, 180		46.55%, 56.27%	
					Yes		33.3 kHz	.5 W/cm ²	n/s	n/s	60, 180		51.04%, 67.89%	
					Yes		71.4 kHz	3.4 W/cm ²	n/s	n/s	60, 180		46.23%, 60.47% Transcranial application of US can shorten the recanalization time of intracerebral vessel occlusion by increasing rt-PA- mediated thrombolysis. Thrombolysis efficiency increases with time.	

Table 1. (continued)

				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	R
Human	rt-PA (3.15 μg/mL)	33, 37	Yes	Yes			120 kHz	3.2 W/cm ²	1667	80	30 30	Measured volume reduction	7.5%, 7.2% 8.6%, 12.4%	3
					Yes		120 kHz	3.2 W/cm ²	1667	80	30		21.2%, 22.7% The efficacy of US enhanced thrombolysis decreases at temperatures below the body baseline temperature of 37°C.	
Human	rt-PA	37	Yes				1.8 MHz	1.6 MI	n/s	n/s	60	Measured volume	41% 70.8%	3
through	(10 µg/mL)			Yes							60	reduction	78.7%	
temporal bone					Yes		1.8 MHz	1.6 MI	n/s	n/s	60		Diagnostic transcranial US with rt-PA, enhances thrombolysis.	
Human		n/s	Yes				220 kHz	111 W/cm ²	2.5	50	.5	Measured volume	76.1% (Flow)	
through skull HIFU flow system		n/s	Yes				220 kHz	111 W/cm ²	2.5	50	.5	reduction	29.9% (No flow) Trans-skull HIFU for immediate clot lysis without the need of further drugs and disregarding individual skull bone characteristics is feasible.	
Human	UK	37		Yes							60	Measured volume	40.6%	
	(1200 IU)				Yes		48 kHz	5-6 kPa	n/s	n/s	60	reduction after	59.2%	
				Yes							60, 120	incubation	8.9%, 46.7%	
					Yes		225 kHz	30 mW/cm ²	n/s	n/s	60, 120		37.3%, 61.1% US energy enhanced fibrinolysis with UK, especially in the early phase of lysis. Thrombolysis efficiency increases with time and decreases with frequency.	
Bovine	rt-PA	37		Yes							29.3	Measured	100%	
through skull flow	(100 µg/mL)	37			Yes		1 MHz	.35 W/ cm ² (I _{SPTP})	16 k	41.6	17.1	recanalization rate	100%	
system					Yes		185 kHz	1.27 W/cm2 (I _{SPTP})	c.w.	100	14.1		100% Transcranial application of low frequency, c.w. US may accelerate reperfusion and shorten the recanalization time.	
Bovine	rt-PA	37		Yes							30	Measured	30%	
through skull flow system	(100 µg/mL)				Yes		1 MHz	.35 W/cm ² (I _{SPTP})	16,000	41.6	30	recanalization rate	90%-100% Transcranial application of 1 MHz US may accelerate reperfusion and recanalization rate of occluded intracerebral vessels.	
Human through skull HIFU flow system		24	Yes				220 kHz	13.7, 27.4, 54.8, 136.8 W/cm ² (I _{SPTA})	.5, 5, 50, 500	5, 10, 20, 50	.5	Measured volume reduction	10.3%-27.2% 17.1%-42.9% 30%-59.6% 48.7%-59.2% Using transcranial HIFU, significant thrombolysis can be achieved within seconds and without the use of lytic drugs. Longer DF in combination with longer p.w. seems to have the highest potential to optimize clot lysis efficacy.	

Table 1. (continued)

			Mode										
Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref.
	n/s	Yes Yes				550 kHz 535 and 565 kHz	200 W 110 W	3.7 3.7	10 10	5 5	Measured volume reduction	80% 80% The power needed to achieve 80% of thrombolysis with a monofrequency excitation is reduced by half with a bifrequency excitation.	41
rt-PA (60 kU/mL)	37		Yes	Yes		2 MHz	.179 W/cm ²	n/s	n/s	60 60	Measured volume reduction	36.7% 40.8%	42
				Yes		2 MHz TCD	.457 W/cm ²	n/s	n/s	60		40.4% Although clot lysis rate after 1-h treatment with rt-PA alone was significant, a slight increase of weight loss was detected under the application of US + drug.	
	37	Yes				230 kHz	1000 W	1000	10	.5	Measured volume reduction	82% After sonication, the clot was	43
	37	Yes				220 kHz	29.71- 193.24 W/cm ² (I _{SPTA})	2.5	50	.5	Measured volume reduction	4.55%-74.83% Transcranial sonothrombolysis could be achieved within seconds in the absence of rt-PA and without producing relevant clot fragmentation, using acoustic output powers of <400 W.	44
	n/s	Yes				500 kHz	$I_{SPTA} > 35 \text{ W/}$ cm ²	200	4	4	Measured volume reduction	91% External HIFU thrombolysis for periods of ≤5 min appears to be a safe and effective method to induce	45
	Room	Yes				1.51 MHz	185 W	1	.1	.33	Measured volume reduction	99.2% HIFU thrombolysis is feasible as a means of restoring partial blood flow in thrombus occluded arteries in the	46
rt-PA (10 μg/mL)	37	Yes				1 MHz	4 W/cm ² (I _{SATA})	c.w.	100	60	Measured volume reduction	6.8% at 0 atm	47
			Yes							60		21.8% at 0 atm	
				Yes		1 MHz	4 W/cm ² (I _{SATA})	c.w.	100	60		39.3% at 0 atm US is ineffective in increasing fibrinolysis without a fibrinolytic agent present. An 80% increase in clot lysis occurs when US and agent are both present (no overpressure).	
rt-PA	37		Yes							30	Measured volume	13%	48
(107 µg/mL)				Yes		120 kHz	.15 MPa	1667	80	30	reduction	13.7% (<sc)< td=""><td></td></sc)<>	
				Yes Yes		120 kHz 120 kHz	.24 MPa .36 MPa	1667 1667	80 80	30 30		26% (SC) 20.7% (SC + IC) Significant enhancement of thrombolysis correlates with presence of cavitation. Stable cavitation appears to play a more important role in the enhancement of thrombolysis.	
	п-РА (60 kU/mL) п-РА (10 µg/mL)	Drug (°С) n/s n/s rt-PA 37 (60 kU/mL) 37 37 37 л/s л/s п/s Room rt-PA 37 гл-РА 37 л/з 37	Drug (°С) alone n/s Yes rt-PA 37 (60 kU/mL) 37 37 Yes 37 Yes 37 Yes 37 Yes n/s Yes n/s Yes rt-PA 37 Yes Nom rt-PA 37 Yes Yes rt-PA 37 Yes 37	Тетр. (°C) US alone Drug alone n/s Yes Yes	DrugTemp. (°C)US aloneDrug aloneUS + drugn/sYes Yesn/sYes YesYes Yesa7Yes YesYes37YesYes37YesYesn/sYesYesn/sYesYesrt-PA (10 µg/mL)37Yesrt-PA (107 µg/mL)37Yes37YesYesrt-PA (107 µg/mL)37Yes	Drug Temp. (°C) US alone Drug alone US + drug MBs n/s Yes Yes	Drug Temp. (°C) US alone Drug alone US + drug US + drug MBs Freq. n/s Yes Yes Yes Yes 550 kHz 555 kHz 555 kHz 555 kHz rt-PA (60 kU/mL) 37 Yes Yes Yes 2 MHz TCD 37 Yes 230 kHz 20 kHz 37 Yes 230 kHz 20 kHz 37 Yes 200 kHz 200 kHz 37 Yes 1.51 MHz 1.51 MHz rt-PA (10 µg/mL) 37 Yes 1.01 MHz rt-PA (107 µg/mL) 37 Yes Yes 1.01 MHz	Drug Temp. US alone Drug alone US + drug MBs Freq. Output n/s Yes Yes S50 kHz Yes 200 W S55 kHz 200 W S55 kHz 10 W rt-PA (60 kU/mL) 37 Yes Yes 2 MHz Yes .179 W/cm ² 37 Yes Yes 20 kHz .179 W/cm ² 37 Yes Yes 200 kHz .199 W/cm ² 37 Yes Yes 200 kHz .199 W/cm ² 37 Yes Yes 200 kHz .971- 193.24 W/cm ² n/s Yes Image .151 MHz .185 W n/s Yes Yes .151 MHz .185 W rt-PA (10 µg/mL) 37 Yes Yes .151 MHz .4 W/cm ² (lssrab rt-PA (10 µg/mL) 37 Yes Yes .151 MHz .4 W/cm ² (lssrab rt-PA (10 µg/mL) 37 Yes Yes .120 kHz .15 MPa .120 kHz .15 MPa	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Terp US Dong US + drug MBs Tree Output PRF (Rz) DF Time Featuration n's Yes Yes S50 kHz 200 W 3.7 10 5 Measured volume n's Yes Yes Yes 200 W 3.7 10 5 Measured volume n's PA Yes Yes Yes 21 Hz .179 Wcm ² n/s n/s 60 Measured volume (60 kU/mL) Yes Yes Yes 20 KHz .179 Wcm ² n/s n/s 60 Measured volume nobul 37 Yes Yes 20 KHz 100 W 1000 10 5 Measured volume nobul N's Yes Yes 20 KHz 1000 W 1000 10 5 Measured volume nobul n's Yes Yes 151 HHz 1897a > 35W 200 4 4 Measured volume n'theigendal Yes Y	Image US Base US Base US Base Display Display <thdisplay< th=""> Display <thd< td=""></thd<></thdisplay<>

 Table 1. (continued)

Haman n-PA 79 Ya					Mode										
addig 100 g/ml.J Ya Y	ot model	Drug				US + drug	MBs	Freq.	Output	PRF (Hz)				Main conclusion	Ref.
Hama (06 µm/L)Ya <thy< td=""><td>theter be flow</td><td></td><td>37</td><td></td><td>Yes</td><td>Yes</td><td></td><td>1.7 MHz</td><td></td><td>30</td><td>8.5</td><td></td><td></td><td></td><td>49</td></thy<>	theter be flow		37		Yes	Yes		1.7 MHz		30	8.5				49
Index in the second						Yes		1.7 MHz		40	4	10		46.1% Thrombolysis efficiency increases with intensity.	
Bovine r.PA (1000 IU/mL) 37 Yes	ıman		37	Yes	Yes		Yes	120 kHz	.32 MPa	1667	80				50
Bonne r.PA 37 Yes Yes Soft Hz 7 Wen ² e.w. 10 Measard volume 25% Homo Yes Yes Soft Hz 7 Wen ² e.w. 100 Measard volume 24% Yes Yes Soft Hz 7 Wen ² e.w. 100 1 Measard volume 24% Yes Yes Yes Soft Hz 7 Wen ² e.w. 100 1 Measard volume 24% Yes Yes Yes Yes Yes New 100 1 Measard volume 25% Yes Yes Yes Yes Yes New New<						Yes		120 kHz	.32 MPa	1667	80	30		16.0%	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Yes	Yes	120 kHz	.32 MPa	1667	80	30		26.2% MBs administration further increases the effect of US on rt-PA induced thrombolysis.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ovine		37	Yes	Yes		Yes	500 kHz	.7 W/cm ²	C.W.	100	-			49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						Yes		500 kHz	.7 W/cm ²	c.w.	100				
Human Cather (500 IU/mL)ref A (500 IU/mL)37YesYes1,7 MHz (1,0 %)4,9 W(m2 (1,7 MHz)n/s<							Yes							29.2% MBs have slightly accelerated the thrombolytic effect of rt-PA.	
YesY			37	Yes			Yes	1.7 MHz		n/s	n/s	30			51
 New Park Park Park Park Park Park Park Park	be				Yes							30		7.68%	
Human rt-PA 37 Yes 2 MHz 2 MHz 455 mV/cm ² 5000 n/s 30 Measured volume 6.1% system Yes Yes Yes 2 MHz 455 mV/cm ² 5000 n/s 30 10.9% Ispra 5000 n/s						Yes		1.7 MHz		n/s	n/s	30		11.10%	
flow (20 µg/L) system Yes Yes Yes 455 mW/cm ² 5000 n/s 30 10.9% system Yes 2 MHz 455 mW/cm ² 5000 n/s 30 13.1% reduction Yes 2 MHz 455 mW/cm ² 5000 n/s 30 13.1% reduction 1gr/a 1gr/a 1gr/a 100 30 Measured volume 30.7% The application of MBs accelerate lysis of clots expose investor set of the investor s						Yes	Yes	1.7 MHz		n/s	n/s	30		14.41% SC plays an important role in MB-enhanced US accelerated rt-PA- mediated thrombolysis.	
Yes 2 MHz 455 mW/cm ² 455 mW/cm ² 1877A 5000 5000 n/s 30 30.7% The application of Ms accelerate lysis of clots expose low-intensity US with rt-PA. Rabbit 25 Yes Yes Yes 1 MHz .1 W/cm ² 100 20 30 Measured volume reduction 18% Yes Yes Yes 3 MHz .2 W/cm ² 100 20 30 Measured volume reduction 18% Porcine rt-PA 37 Yes Yes Yes Yes 2 W/cm ² 100 20 30 Measured volume reduction 18% Porcine rt-PA 37 Yes Yes Yes Yes 30 Yes 30 Measured volume 29			37	Yes				2 MHz		5000	n/s	30		6.1%	52
Yes Yes Yes 2 MHz Af5 mW/cm ² 455 mW/cm ² 1977 500 n/s 30 Source was presented by a constraint of the sector of the s	stem			Yes			Yes			5000	n/s	30		10.9%	
Ispra accelerates lysis of clots expose low-intensity US with rt-PA. Rabbit 25 Yes Yes 1 MHz .1 W/cm ² 100 20 30 Measured volume reduction 18% Yes Yes 3 MHz 2 W/cm ² 100 20 30 Measured volume reduction 18% Porcine rt-PA 37 Yes Yes 3 MHz 2 W/cm ² 100 20 30 Measured volume reduction 18% So Measured volume Jum MBs (.1 W/cm2) than with MBs (2.0 W/cm2). Jum MBs (.1 W/cm2) 100 20 30 Measured volume 20%						Yes		2 MHz		5000	n/s	30		13.1%	
(3 µm) reduction Yes 3 MHz 2 W/cm ² 100 20 30 18% Somothorybigs efficiency (1 µm) 100 20 30 18% Somothorybigs efficiency Porcine rt-PA 37 Yes 100 20 30 Measured volume 20% Control						Yes	Yes	2 MHz	I _{SPTA}	5000	n/s	30		30.7% The application of MBs strongly accelerates lysis of clots exposed to low-intensity US with rt-PA.	
(1 μm) achieved at 20-fold lower intensitie 3 μm MBs (.1 W/cm2) than with MBs (2.0 W/cm2). Porcine rt-PA 37 Yes 30 Measured volume 29%	bbit		25	Yes				1 MHz	.1 W/cm ²	100	20	30		18%	53
				Yes				3 MHz	2 W/cm ²	100	20	30			
flow $(71 \mu g/mL)$ Vec Vec 120 kHz 44 MDe ew 100 20 reduction 24%			37												54
		(7.1 µg/mL)			Yes		Yes	120 kHz	.44 MPa	c.w.	100	30	reduction	34%	
of MBs enhances rt-PA thromb	stem					Yes	Yes	120 kHz	.44 MPa	c.w.	100	30		83% (SC) SC nucleated by an infusion of MBs enhances rt-PA thrombolysis without apparent treatment-related damage	

Table 1. (continued)

Table 1.	(continued)	
----------	-------------	--

				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref.
Human flow	rt-PA (3 μg/mL)	37		Yes							60	Measured clot diameter loss	6.6 µm/min	55
system	rt-PA (.3 µg/mL)				Yes	Yes	1.6 MHz	600 kPa	.33	33	60		5.9 µm/min The combination of US, MB, and a low dose of rt-PA (.3 µg/ mL) is as effective for thrombolysis as is a high dose of rt-PA (3 µg/mL) alone.	
Porcine	rt-PA	37		Yes							30	Measured volume	25.6%	56
flow system	(3 µg/mL)				Yes	Yes	1 MHz	1 MPa	.2	.002	30	reduction	55.7% The US + MB + rt-PA treatment showed dramatically higher lytic efficacy than rt-PA treatment alone.	
Porcine	rt-PA	37	Yes			Yes	1 MHz	1.5 MPa	.34	.17	20	Measured lytic	6 mm Hg	57
Flow system	(1 µg/mL)				Yes	Yes	1 MHz	1 MPa	.34	.17	20	efficacy In terms of pressure change (thrombotic occlusion = 40 mm Hg)	2 mm Hg Similar lytic efficacy was achieved at 1.5 MPa without rt-PA as was at 1.0 MPa with rt-PA.	
Porcine			Yes			Yes	1.6 MHz	.2 (MI)	n/s	n/s	10	Measured volume	54% (20 µs PD)	58
flow system			Yes			Yes	1.6 MHz	.2 (MI)	n/s	n/s	10	reduction	33% (5 µs PD) Slightly prolonging the pulse duration (PD) on a diagnostic transducer improves the degree of sonothrombolysis that can be achieved without fibrinolytic agents at a lower MI.	
Human	rt-PA	37.3		Yes							10	Measured lytic rate	.8%-2%/min	59
flow	(.32-3.15 µg/mL)				Yes		120 kHz	.44 MPa	Inter.	62.5	30		.8%-2%/min	
system					Yes	Yes	120 kHz	.44 MPa	Inter.	62.5	30		2-5%.5%/min MBs administration significantly enhanced lytic rate. Both SC and radiation force are mechanistically responsible for the process of clot lysis.	
Human	rt-PA	37		Yes							60	Measured fibrin	51.7%	60
flow system	(3 µg/mL)				Yes	Yes	1 MHz	528 mW/cm ² I _{SPTA}	.8	40	60	degradation product (FDP)	53.2% (SC)	
					Yes	Yes	1 MHz	323 mW/cm ² I _{SPTA}	.8	8	60		57.2% (SC + IC)	
					Yes	Yes	1 MHz	3 mW/cm ² I _{SPTA}	.8	.08	60		50.9% (SC + IC)	
					Yes	Yes	1 MHz	45 mW/cm ² I _{SPTA}	.8	.08	60		66.3% (IC) Both SC and IC, resulting from the US–MB interaction, increased the efficacy of rt-PA with respect to fibrin degradation.	

				Mode										
Clot model	Drug	Temp. (°C)	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Ref
Porcine	rt-PA	37	Yes			Yes	1 MHz	20 W	100	10	30	Measured volume	31%	61
FUS flow	(3.5 µg/mL)			Yes							30	reduction	45%	
system					Yes		1 MHz	20 W	100	10	30		56.2%	
					Yes	Yes	1 MHz	20 W	100	10	30		69.5% MBs administration further enhanced the beneficial effect of FUS on TNK-tPA mediated thrombolysis.	
Human	rt-PA	37		Yes							30	Measured volume	29.2%	62
flow	(7 µg/mL)				Yes		.6 MHz	60 W	100	10	30	reduction	45.8%	
system					Yes		1 MHz	20-60 W	100	10	30		39%-62.5%	
					Yes	Yes	1 MHz	60 W	100	10	30		87.5%	
													1 MHz FUS frequency is associated with enhanced thrombolysis compared with that of .6 MHz. An increased linear relationship between acoustic power and thrombolysis efficacy was exhibited. The combination of MBs + FUS strongly enhanced the thrombolytic efficacy of TNK-tPA.	

 Table 1. (continued)

Abbreviations: Abib, abciximab immunobubbles; c.w., continuous wave; DF, duty factor; ELIP, echogenic liposomes; Epf., eptifibatide; Freq., frequency; FUS, focused ultrasound; HIFU, highintensity focused ultrasound; IA, intrarterial; IV, intravenous; MBs, microbubbles; MCA, middle cerebral artery; mt-PA, monteplase tissue plasminogen activator; n/s, not specified; Nsib, nonspecific immunobubbles; PRF, pulse repetition frequency; p.w., pulsed wave; Ref., references; rt-PA, recombinant tissue plasminogen activator; sICH; symptomatic intracranial hemorrhage; SK, streptokinase; TCD, transcranial Doppler; TCCD, transcranial color-coded duplex; Temp., temperature; TNK-tPA, tenecteplase tissue plasminogen activator; UK, urokinase; US, ultrasound.

			Mode											
Clot model	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ref.
Rat	rt-PA (1 mg)		Yes							50, 200	Measured volume	2%0, 30%		1
Jugular vein				Yes		1 MHz	1.75 W/cm ²	Intermittent	50	50, 200	reduction	41%, 55%		
occlusion	rt-PA (2 mg)		Yes							50, 200		28%, 40%		
				Yes		1 MHz	1.75 W/cm ²	Intermittent	50	50, 200		45%, 50% Intermittent US administered during a 200-min period showed a trend toward enhancement of rt-PA-induced fibrinolysis without causing thermal changes or inducing tissue damage. Thrombolysis efficiency increased with drug dose.		
Rat MCA stroke	rt-PA (10 mg/kg)		Yes							60	Measured relative infarct	34%	18% ICH	63
	rt-PA (5 mg/kg)			Yes		25.6 kHz	.6 W/cm ²	n/s	20	60	volume reduction	51%		
	rt-PA (10 mg/kg)			Yes		25.6 kHz	.6 W/cm ²	n/s	20	60		68% US treatment in addition to rt-PA is more effective than single rt-PA treatment in reducing infarct volume and safe with regard to bleeding. Thrombolysis efficiency increased with drug dose.	20% ICH	
Rabbit		Yes				1.5 MHz	255 W	1	.1	.33	Measured	0% (0/3)		64
Embolic		Yes				1.5 MHz	415 W	1	.1	.33	reperfusion rate	50% (2/4)		
stroke HIFU		Yes				1.5 MHz	550 W	1	.1	.33	-	70% (5/7) HIFU, as a stand-alone method, can cause effective thrombolysis and does not damage the targeted vessels.	20% ICH	
Rabbit		Yes			Yes	1.5 MHz	88-137 W	1	.1	.33	Measured	78% (7/9)	22% ICH	65
MCA Stroke HIFU		Yes			Yes	1.5 MHz	88 W	10	.1	.33	recanalization rate	50% (1/2) Droplets reduce the IC threshold and enable IC-mediated clot lysis to occur at lower power levels.		
Rabbit		Yes				1.51 MHz	185 W	1	.1	.33	Measured flow	0% (0/5)		48
Femoral artery		Yes				1.51 MHz	215 W	1	.1	.33	restoration rate	50% (1/2)		
occlusion HIFU		Yes				1.51 MHz	300 W	1	.1	.33		63% (5/8) HIFU thrombolysis is feasible as a means of restoring partial blood flow in thrombus-occluded arteries in the absence of thrombolytic agents. Increased power resulted in increased	13% ICH	

Table 2. In vivo protocols used in sonothrombolysis

(continued on next page)

flow restoration rate.

			Mode											
Clot model	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ref
Rabbit	SK			Yes		37 kHz	160 W	91	n/s	15	Measured	40% (6/15)		66
lliofemoral	(25000 U/kg)			Yes		37 kHz	160 W	91	n/s	30	recanalization rate	67% (10/15)		
artery				Yes		37 kHz	160 W	91	n/s	45		87% (13/15)		
occlusion				Yes		37 kHz	160 W	91	n/s	60		100% (15/15)		
												Transcutaneous concentrated US which significantly enhances streptokinase induced thrombolysis in vivo can be delivered without concomitant tissue damage. Recanalization rate increases with treatment time.		
Rabbit		Yes				37 kHz	160 W	91	n/s	60	Measured	0% (0/5)		6
liofemoral		105			Yes	37 kHz	160 W	91	n/s	60	recanalization rate	0% (0/10)		
rtery		Yes			Yes	37 kHz	160 W	91	n/s	15		30% (3/10)		
occlusion		Yes			Yes	37 kHz	160 W	91	n/s	30		50% (5/10)		
		Yes			Yes	37 kHz	160 W	91	n/s	45		70% (7/10)		
		Yes			Yes	37 kHz	160 W	91	n/s	60		100% (10/10)		
												In vivo arterial clot dissolution can be achieved with IV MBs and transcutaneous US. Recanalization rate increased with treatment time.		
Rabbit	rt-PA	Yes				1 MHz	40 W	1	5	15	Measured relative	90%		1
Aarginal ear	(1 mg/kg)		Yes							15	clot size at 5 h post	78%		
ein occlusion HFU				Yes		1 MHz	40 W	1	5	15	treatment	4% rt-PA-mediated thrombolysis can be significantly enhanced when combined with noninvasive pulsed-HIFU exposures.		
abbit	SK		Yes							120	Measured volume	13% (2/15)		
Femoral artery peeclusion	(15,000 U/ kg) bolus followed by an infusion of 15,000 U/			Yes		1 MHz	2 W/cm ²	c.w.		120	reduction	53% (9/17) Externally applied, low-intensity US can significantly enhance thrombolysis in a rabbit arterial model.		
Rabbit Femoral artery	kg/h. rt-PA (200 μg/	Yes			Empty ELIP	5.7 MHz	1.25 MPa	5 k	n/s	2	Measured recanalization rate	27%		6
cclusion	5 mg of		Yes		rt-PA					2	at 15 min post	60%		
	lipid)		105	Yes	ELIP	5.7 MHz	1.25 MPa	5 k	n/s	2	treatment	100%		
	1 7			168	rt-PA ELIP	3.7 МП Z	1.23 MPa	JK	11/8	2		Doppler US treatment enhances the thrombolytic effect of rt-PA loaded ELIP, resulting in earlier and more complete recanalization rates.		

 Table 2. (continued)

							Table	2. (continued	()					
			Mode	:										
Clot model	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ref.
Rat rt-PA MCA stroke (1.2 mg/ animal)	(1.2 mg/		Yes							32	Measured volume reduction	45% (9/20)		7
	,			Yes		490 kHz	.8 W/cm ²	c.w.	100	32		76.2% (16/21) Low-frequency transcranial US under appropriate conditions could be an effective and safe method of treatment for ischemic stroke.		
Rabbit Femoral artery occlusion	mt-PA (1.2 mg/ animal)		Yes							32	Measured recanalization rate	16.7% (2/12)		69
				Yes		490 kHz	.13 W/cm ²	c.w.	100	32		66.7% (6/9) Low-frequency and low-intensity transcranial US enhanced thrombolysis by mt-PA.		
Rabbit	SK	Yes				40 kHz	.75 W/cm ²	c.w.	100	120	Measured	<7%		70
Femoral artery	(15,000 U/ kg) as bolus		Yes							120	reperfusion rate	7%		
occlusion	followed by an infusion of 15,000 U/ kg/h			Yes		40 kHz	.75 W/cm ²	c.w.	100	120		83% 40-kHz US at low intensity markedly accelerates fibrinolysis and also improves tissue perfusion and reverses acidosis, effects that would be beneficial in treatment of acute thrombosis.		
Rabbit	rt-PA (1.mg/		Yes							120	Measured	100%		71
MCA stroke HIFU	ml/kg)			Yes	Yes	1 MHz	20 W/cm ² (I _{SATA})	10	10	70	recanalization rate	100% HIFU in combination with rt-PA dissolved clots.		
Rabbit MCA stroke HIFU	rt-PA (1.mg/ ml/kg)			Yes	Yes	1 MHz	20 W/cm ² (I _{SATA})	10	10	70	Measured recanalization rate	100% Therapeutic US in synergy with rt-PA dissolve clots.		72
Rabbit Hindlimb		Yes			Yes	1 MHz	.031 W/cm ² (I _{SATA})	.33	.17	10	Measured recanalization rate	67%		73
occlusion		Yes			Yes	1 MHz	.031 W/cm ² (I _{SATA})	.33	.17	20		100% Long-pulse-length US with MBs has a therapeutic effect on microvascular perfusion.		
Rabbit	rt-PA		Yes							74	Measured initial	15%-50%		74
Femoral artery occlusion	(30 µg/kg/ min)			Yes		1 MHz	6.3 W/cm ² I _{SPTA}	c.w.	100	33	reflow	15%-50% Although time to initial reflow was shortened by US, it was associated with less reperfusion and more reocclusion		

 Table 2. (continued)

(continued on next page)

in this model.

			Mode											
Clot model	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ref.
Rat	rt-PA	Yes				1-3 MHz	1.7 (MI)	n/s	n/s	60	Measured	40%		75
MCA stroke	(10 mg/kg)	Yes			Yes	1-3 MHz	1.7 (MI)	n/s	n/s	60	recanalization rate	59%		
			Yes							60		77%		
				Yes		1-3 MHz	1.7 (MI)	n/s	n/s	60		88%		
				Yes	Yes	1-3 MHz	1.7 (MI)	n/s	n/s	60		96% Recanalization rate with rt-PA alone is better than US alone. Recanalization rate significantly increased with the combination of US + drug. Recanalization rate increased even more when US was combined with		
												rt-PA + MBs.		
Rat		Yes				2 MHz	1.56 MPa	150	5	30	Measured plasma	1.70 µg/mL		76
Carotid artery occlusion		Yes			Yes (Nsib)	2 MHz	1.56 MPa	150	5	30	D-dimer concentrations	2.31 µg/mL		
		Yes			Yes (Abib)	2 MHz	1.56 MPa	150	5	30		3.91 μg/mL US in combination with abciximab immunobubbles (Abib) induces thrombolysis without lytic agents that is superior to insonation of non-specific immunobubbles (Nsib).		
Rabbit Embolic stroke	rt-PA (.8-0.9 mg/ kg)	Yes				1 MHz	.8 W/cm ² (I _{SATA})	100	20	60	Measured infarct volume	1%	56% ICH	77
Silone				Yes		1 MHz	.8 W/cm ² (I _{SATA})	100	20	60		.13%	61% ICH	
		Yes			Yes	1 MHz	.8 W/cm ² (I _{SATA})	100	20	60		.2%	19% ICH	
				Yes	Yes	1 MHz	.8 W/cm ² (I _{SATA})	100	20	60		.09% The ability of MBs to reduce rt-PA requirements may lead to lower rates of hemorrhage in human stroke treatment.	26% ICH	
Rabbit	rt-PA		Yes							60	Measured infarct	2.2%	45% ICH	78
Embolic	(.9 mg/kg)			Yes		1 MHz	.8 W/cm ²	n/s	20	60	volume	1.7%	50% ICH	
stroke		Yes			Yes	1 MHz	.8 W/cm ²	n/s	20	60		.8% Sonothrombolysis without rt-PA using MBs is effective in decreasing infarct volumes.	36% ICH	

 Table 2. (continued)

Clot model			Mode											
	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side	Ref.
	Ū.			Ũ		1	1.							
Rabbit	rt-PA	Yes				1 MHz	.8 W/cm ²	n/s	20	60	Measured infarct	.97%	56% ICH	79
Embolic	(.9 mg/kg)		Yes							60	volume	.14%	48% ICH	
troke				Yes		1 MHz	.8 W/cm ²	n/s	20	60		.15%	73% ICH	
		Yes			Yes	1 MHz	.8 W/cm ²	n/s	20	60		.20%	19% ICH	
				Yes	Yes	1 MHz	.8 W/cm ²	n/s	20	60		.10%	36% ICH	
												Treatment with MB + US following embolization decreased the incidence of ICH and efficacy was similar to tPA in reducing infarct volume.		
labbit	SK	Yes				20 kHz	1.5 W/cm ²	n/s	n/s	60	Measured patency	0% (0/6)		80
liofemoral	(25,000 U/		Yes							60	rate	6% (1/17)		
rtery	kg))			Yes		37 kHz	160 W	n/s	n/s	60		100% (15/15)		
cclusion				Yes	Yes	20 kHz	1.5 W/cm ²	n/s	n/s	60		87% (13/15)		
		Yes			Yes	20 kHz	1.5 W/cm ²	n/s	n/s	60		76% (13/17)		
		Yes			Yes	37 kHz	160 W	n/s	n/s	60		Noninvasive transcutaneous US can greatly enhance the effect of clot dissolution with thrombolytic drugs and/or MBs.		

Abib, abciximab immunobubbles; c.w., continuous wave; DF, duty factor; ELIP, echogenic liposomes; Freq., frequency; HIFU, high-intensity focused ultrasound; IV, intravenous; MBs, microbubbles; MCA, middle cerebral artery; mt-PA, monteplase tissue plasminogen activator; Nsib, nonspecific immunobubbles; n/s, not specified; PRF, pulse repetition frequency; Ref., references; rt-PA, recombinant tissue plasminogen activator; SK, streptokinase; US, ultrasound.

 Table 2. (continued)

							1							
Clot model			Mode											
	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ret
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)			Yes (TCD)	Yes	2 MHz	n/s	n/s	n/s	120	Measured complete and partial recanalization rate	50% (6/12) 33% (4/12) MBs reached and permeated beyond occlusions with no increase in sICH suggesting the feasibility of further studies	0% sICH 0% sICH	81
Stroke patients MCA occlusion		Yes (TCD)				2 MHz	n/s	n/s	n/s	60	Measured complete recanalization rate	30% (4/12) Sonothrombolysis using 2 probes and bilateral monitoring is safe but not more effective than standard sonothrombolysis.	0% sICH	82
Stroke patients MCA occlusion		Yes (TCCD)				2 MHz	415 mW/cm ² (I _{SPTA})	n/s	n/s	30	Measured partial recanalization rate	83% (5/6) High rate of early partial recanalization during continuous exposure to 2-MHz US without rt-PA.	0% sICH	83
Stroke patients	rt-PA		Yes							120	Measured complete	24% (9/36)	5.5% sICH	8
MCA occlusion	(.9 mg/kg)			Yes (TCD)		2 MHz	n/s	n/s	n/s	120	recanalization rate	41% (15/37)	2.7% sICH	
				Yes (TCD)	Yes	2 MHz	n/s	n/s	n/s	120		55% (21/38) MBs administration induces further acceleration of US-enhanced thrombolysis.	2.6% sICH	
Stroke patients	rt-PA			Yes (TCCD)		2 MHz	189 mW/cm ²	n/s	n/s	60	Measured complete	53% (8/15)	7% sICH	8
MCA occlusion	(.9 mg/kg)			Yes (TCCD)	Yes	2 MHz	189 mW/cm ²	n/s	n/s	60	recanalization rate	64% (7/11) MBs enhanced TCCD monitored rt-PA thrombolysis lead to a greater immediate clinical improvement.	9% sICH	
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)		Yes							60	Measured complete and partial	21.4% (3/14—complete) 0% (0/14—partial)	7% sICH	8
				Yes (TCCD)		2-4 MHz	179 mW/cm ²	n/s	n/s	60	recanalization rate	27.3% (3/11—complete) 18.2% (2/11—artial) Transcranial TCCD with rt-PA showed a higher grade of recanalization compared with rt-PA alone.	36% sICH	
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)		Yes							120	Measured complete recanalization rate	30% (19/63)	5% sICH	9
				Yes (TCD)		2 MHz	750 mW/cm ²	n/s	n/s	120		49% (31/63) Continuous TCD augments rt-PA- induced arterial recanalization.	5% sICH	
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)			Yes (TCD)		2 MHz	n/s	n/s	n/s	120	Measured complete recanalization rate	36% (20/55) Complete recanalization within 2 h after rt-PA bolus is a feasible goal for thrombolysis given with TCD monitoring.	6% sICH	86

Table 3. Clinical protocols used in sonothrombolysis

Clot model	Drug	US alone	Drug alone	US + drug	MBs	Freq.	Output	PRF (Hz)	DF (%)	Time (min)	Evaluation method	Main conclusion	Side effects	Ref.
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)		Yes							60	Measured complete and partial	11.1% (2/18—complete) 11.1% (2/18—partial)	5.6% sICH	10
				Yes (TCCD)		1.8 MHz	179 mW/cm ²	n/s	n/s	60	recanalization rate	15.8% (3/19—complete) 42.1% (8/19—partial) Transcranial US in combination with rt-PA accelerates recanalization in MCA occlusion, compared with rt-PA alone	15.8%sICH	
Stroke patients	rt-PA		Yes							90	Measured	50% (6/12)	0% sICH	87
MCA occlusion	(.9 mg/kg)			Yes		300 kHz	700 mW/cm ² (I _{SPTA})	100	5	90	recanalization rate (both complete and partial)	29% (4/14) Low frequency US combined with rt- PA showed an increased rate of sICH.	36% sICH	
Stroke patients Proximal	rt-PA (.9 mg/kg)		Yes							90	Measured complete and partial	33% (4/12—complete) 25% (3/12—partial)	0% sICH	88
intracranial occlusion				Yes (TCD)	Yes (1.4 mL)	2 MHz	n/s	n/s	100	90	recanalization rate	67% (8/12—complete) 17% (2/12—partial)	0% sICH	
				Yes (TCD)	Yes (2.8 mL)	2 MHz	n/s	n/s	100	90		45% (5/11—complete) 0% (0/11—partial) MBs can be safely combined with systemic rt-PA and US at a dose of 1.4 mL.	27% sICH	
Stroke patients MCA occlusion	rt-PA (.9 mg/kg)	Yes (TCCD)				2-4 MHz	208 W/cm ² (I _{SPPA})	5 k	.7	45	Measured complete and partial	97% (36/37—complete) 0% (0/37—partial)	2.7% sICH	89
			Yes							45	recanalization rate	67% (10/15—complete) 7% (1/15—partial)	6.6% sICH	
				Yes (TCCD)		2-4 MHz	208 W/cm ² (I _{SPPA})	5 k	.7	45		80% (12/15—complete) 7% (1/15—partial) Recanalization rate of continuous TCCD monitoring of MCA occlusion in combination with rt-PA was lower compared with that of TCCD monitoring alone.	6.6% sICH	
Stroke patients MCA occlusion Catheter type	rt-PA (60 mg IV + 22 mg IA infusion)		Yes	Yes		1.7 MHz	n/s	n/s	n/s	120 120	Measured recanalization rate (both complete and partial)	56% (33/59) 73% (24/33) EKOS micro-infusion catheter is a reasonable and easy-to-use tool for re- opening occluded intracranial arteries. Additionally, the delivery of intra- arterial rt-PA or other thrombolytic drugs via a standard micro-catheter remains an excellent option.	6.6% sICH 9.9% sICH	90

Table 3. (continued)

DF, duty factor; Freq., frequency; IA, intrarterial; IV, intravenous; MBs, microbubbles; MCA, middle cerebral artery; n/s, not specified; PRF, pulse repetition frequency; Ref., references; rt-PA, recombinant tissue plasminogen activator; sICH; symptomatic intracranial hemorrhage; TCD, transcranial Doppler; TCCD, transcranial color-coded duplex; US, ultrasound.

The treatment time used varied from 30 minutes to 10 minutes. In the animal and human studies, there was no need to specify the temperature. It is assumed that the specie of interest had the physiological temperature. In the human trials the modality used was the synergy of US and thrombolytic drugs. In some cases,^{8,84,85,88} the synergy with MBs was used.

Discussion

The current study compiled various aspects associated with the protocols examined (in vitro, in vivo, and clinical) that are used in sonothrombolysis. The review protocols are summarized in tables providing all necessary data in terms of clot model, treatment mode, sonication parameters, evaluation method, sonothrombolysis efficacy, and side effects. In addition, the main conclusions derived from each study are presented as well. This study could be useful for future researchers in this area because they can easily find the US parameters used during sonothrombolysis. Additionally, they can make comparison among the various protocols used and the animal models used.

Although the mechanisms behind sonothrombolysis are not very clear, it is evidenced that exposure to US increases the uptake and depth of penetration of thrombolytics into clots,¹⁹ causes additional binding sites due to reversible disaggregation of fibrin fibers,¹⁸ and increases the binding of thrombolytic agents to fibrin.¹⁷

The influence of temperature on clot lysis was only investigated in vitro. In most of the experimental studies, the temperature during sonication was kept constant at 37° C, which sufficiently explains that clot lysis occurred through nonthermal mechanisms. In a few in vitro studies, the temperature at the target was not specified. Temperature played an important role on clot lysis because sonothrombolysis efficacy decreased at temperatures below the body baseline temperature of 37° C.³⁴ Therefore, it will be useful in the future, for all the in vitro studies to be conducted at 37° C.

In the animal studies the most common clot models used were the rabbit model (e.g., References 66-74). In the popular rabbit model, the most commonly used artery was the femoral, followed by the MCA and the carotid. The femoral model is used mostly because this artery is easily accessible. The MCA is widely used because of its relevance to brain stroke.

Different thrombolytic drugs such as UK, streptokinase, alteplase (rt-PA), and tenecteplase tissue plasminogen activator (TNK-tPA) in various concentrations have been investigated. Studies had shown that the synergy of US and any of these drugs could accelerate the thrombolytic activity of any thrombolytic used and that the extent of sonothrombolysis depended on the drug's concentration.^{25,59} The most common thrombolytic drug used by the researchers was rt-PA, because it is the only thrombolytic treatment approved for acute ischemic stroke. Although rt-PA was administered in various concentrations between .1 and 300 μ g/mL, the majority of the above-mentioned studies were conducted using 3.15 μ g/mL rt-PA, which is the average concentration of the drug detected in human blood.

The current review shows that the thrombolytic efficacy of drug alone is better than that of US alone.^{23,30,35} Therefore, we assume that US energy as a stand-alone method for clot lysis is not effective and should be applied in synergy with thrombolytic drugs to enhance sonothrombolysis. However, a few studies43,44,46 demonstrated that using US alone (in the absence of thrombolytic drug), could achieve almost complete clot lysis within seconds. Taking into consideration the very high level of acoustic power used in their studies as well as the temperature elevation at the target that was not specified in their results, we suspect that most likely the protocols applied were under the influence of thermal mechanisms of sonothrombolysis. This suspicion was supported by the results of many other researchers, 23,30,35 who exhibited reduced thrombolytic efficacy using US alone, although prolonged exposure times were used in their studies.

Some other studies focused their research on the effect of traveling versus standing acoustic waves on clot lysis, demonstrating that traveling acoustic waves enhanced sonothrombolysis significantly more than standing waves did.^{11,29} It is evident that researchers in this area should report whether standing waves are eliminated irrespective of the model used (in vitro, animal, or human).

It is well known that US frequency, as well as acoustic intensity, exerts a major effect on clot lysis. US frequencies ranged from 20 kHz to 5.0 MHz and intensities (either low or high) were employed for sonothrombolysis studies. A number of studies indicated that lower US frequencies (in the kilohertz range), are more efficient in sonothrombolysis over higher frequencies (in the MHz range) because they exhibited improved tissue penetration and greater acceleration in fibrinolysis.^{16,37,38} Considering that some other studies showed that sonothrombolysis efficacy increases as the level of acoustic intensity increases,^{24,26,28} it is reasonable to come to the conclusion that the thrombolytic efficacy of US waves is directly dependent on acoustic intensity and inversely dependent on frequency.

There was enough evidence from in vitro,⁵⁰ animal,⁷⁵ and clinical⁸⁴ studies indicating that the administration of MBs further enhanced the effect of US on enzymatic thrombolysis induced by thrombolytic agents. The findings of this review demonstrate that the boosting effect of MBs in clot dissolution correlated with the presence of cavitation mechanisms and most specifically with stable cavitation, which appeared to play a more important role in MB-mediated sonothrombolysis.^{48,51,54} However, a study performed by Molina et al⁸⁸ showed that there is a safe

limit on the administered dose of MBs, which should not be exceeded because it is associated with an increased risk of symptomatic intracranial hemorrhage (sICH) rate. Therefore, it is recommended that MBs should be administered in combination with rt-PA at low doses (1.4 mL) to enhance sonothrombolysis and avoid unnecessary adverse health effects, such as sICH.

Animal studies, as well as clinical trials, have shown that the most common side effect of sonothrombolysis was sICH. Apart from the use of high dose of MBs, the application of low-frequency US might have increased the rate of sICH. The TRanscranial low-frequency sonothrombolysis in Brain Ischemia (TRUMBI) clinical trial,⁸⁷ which was designed to treat stroke patients with transcranial 300 kHz US plus rt-PA, was ended prematurely due to a significant increase in sICH rate. Since then, low-frequency US has not been available for therapeutic purposes in clinical trials. Additionally, our investigation showed that the risk of sICH rate increases with the concentration of thrombolytic drug⁶³ and the level of acoustic intensity.^{64,65}

The effect of time is very critical on sonothrombolysis efficacy because early recanalization is the key to therapeutic success in the treatment of vascular thrombosis. In this review, the exposure times reported in the in vitro studies varied from .5 to 240 minutes. In the animal studies, the treatment times reported ranged from .5 to 120 minutes, whereas in the clinical trials, the continuous monitoring of the patients was between 30 and 120 minutes. Several studies^{1,33} showed that most of the clot mass was removed within the first 60 minutes of treatment and beyond that time the efficacy of thrombolytic treatment was decreased significantly. This phenomenon was possibly caused by the concentration of the thrombolytic drug in the blood after 60 minutes of treatment, which decreased dramatically, leading to a significant reduction on enzymatic fibrinolysis rate. Therefore, at least for in vitro or animal studies, 60 minutes of treatment must be a sufficient exposure time and should not be exceeded. The long treatment time required to remove clots using sonothrombolysis prohibits the use of this method for large occluded volumes. Perhaps, the physicians will attempt to treat critical clots, thus saving as much tissue as possible, given the long treatment time needed. To treat larger occluded volumes, a multi-element transducer technology is needed.

It is evident that the long treatment time needed (30-90 minutes) to dissolve a small amount of clot imposes a limitation of the wider use of sonothrombolysis. Because the time allowed to deliver the therapy is between 3 and 6 hours, the long treatment time needed limits the wide use of sonothrombolysis.

The analysis of the protocols used in the studies evaluated revealed that there is a lack of standardization in the recording of the ultrasonic dose. Some studies reported acoustic pressure, some other studies reported power, and some reported intensity. The most common protocol used in clinical trials so far for the treatment of patients with acute ischemic stroke due to occlusion of the MCA was the continuous monitoring of the patients with high-frequency (2 MHz) low-intensity (<750 mW/cm²) diagnostic transcranial US in combination with rt-PA.^{83,85} Using this protocol, higher recanalization rates were exhibited compared with those with rt-PA alone.

Acknowledgment: This work was supported by a starting grant of professor Christakis Damianou at Cyprus University of Technology.

References

- 1. Lauer CG, Burge R, Tang DB, et al. Effect of ultrasound on tissue-type plasminogen activator-induced thrombolysis. Circulation 1992;86:1257-1264.
- 2. Suchkova V, Carstensen EL, Francis CW. Ultrasound enhancement of fibrinolysis at frequencies of 27 to 100 kHz. Ultrasound Med Biol 2002;28:377-382.
- 3. Devcic-Kuhar B, Pfaffenberger S, Gherardini L, et al. Ultrasound affects distribution of plasminogen and tissue-type plasminogen activator in whole blood clots in vitro. Thromb Haemost 2004;92:980-985.
- 4. Holland CK, Vaidya SS, Datta S, et al. Ultrasoundenhanced tissue plasminogen activator thrombolysis in an in vitro porcine clot model. Thromb Res 2008;121:663-673.
- 5. Stone MJ, Frenkel V, Dromi S, et al. Pulsed-high intensity focused ultrasound enhanced tPA mediated thrombolysis in a novel in vivo clot model, a pilot study. Thromb Res 2007;121:193-202.
- 6. Riggs PN, Francis CW, Bartos SR, et al. Ultrasound enhancement of rabbit femoral artery thrombolysis. Cardiovasc Surg 1997;5:201-207.
- 7. Saguchi T, Onoue H, Urashima M, et al. Effective and safe conditions of low-frequency transcranial ultrasonic thrombolysis for acute ischemic stroke: neurologic and histologic evaluation in a rat middle cerebral artery stroke model. Stroke 2008;39:1007-1011.
- 8. Eggers J, Koch B, Meyer K, et al. Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol 2003;53:797-800.
- 9. Alexandrov AV, Molina CA, Grotta JC, et al. Ultrasoundenhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 2004;351:2170-2178.
- Eggers J, König IR, Koch B, et al. Sonothrombolysis with transcranial color-coded sonography and recombinant tissue-type plasminogen activator in acute middle cerebral artery main stem occlusion: results from a randomized study. Stroke 2008;39:1470-1475.
- 11. Pfaffenberger S, Devcic-Kuhar B, El-Rabadi K, et al. 2 MHz ultrasound enhances t-PA-mediated thrombolysis: comparison of continuous versus pulsed ultrasound and standing versus travelling acoustic waves. Thromb Haemost 2003;89:583-589.
- 12. Cheng JY, Shaw GJ, Holland CK. In vitro microscopic imaging of enhanced thrombolysis with 120-kHz ultrasound in a human clot model. Acoust Res Lett Online 2005;6:25.
- **13.** Meunier JM, Holland CK, Lindsell CJ, et al. Duty cycle dependence of ultrasound enhanced thrombolysis in a

human clot model. Ultrasound Med Biol 2007;33:576-583.

- 14. Shaw GJ, Meunier JM, Lindsell CJ, et al. Tissue plasminogen activator concentration dependence of 120 kHz ultrasound-enhanced thrombolysis. Ultrasound Med Biol 2008;34:1783-1792.
- 15. Shaw GJ, Meunier JM, Huang S-L, et al. Ultrasoundenhanced thrombolysis with tPA-loaded echogenic liposomes. Thromb Res 2009;124:306-310.
- Meunier JM, Holland CK, Porter TM, et al. Combination treatment with rt-PA is more effective than rt-PA alone in an in vitro human clot model. Curr Neurovasc Res 2011;8:305-312.
- 17. Siddiqi F, Odrljin TM, Fay PJ, et al. Binding of tissueplasminogen activator to fibrin: effect of ultrasound. Blood 1998;91:2019-2025.
- Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost 1997;78:1063-1068.
- **19.** Francis CW, Blinc A, Lee S, et al. Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 1995;21:419-424.
- 20. Kimura M, Iijima S, Kobayashi K, et al. Evaluation of the thrombolytic effect of tissue-type plasminogen activator with ultrasonic irradiation: in vitro experiment involving assay of the fibrin degradation products from the clot. Biol Pharm Bull 1994;17:126-130.
- 21. Harpaz D, Chen X, Francis CW, et al. Ultrasound accelerates urokinase-induced thrombolysis and reperfusion. Am Heart J 1994;127:1211-1219.
- 22. Olsson SB, Johansson B, Nilsson AM, et al. Enhancement of thrombolysis by ultrasound. Ultrasound Med Biol 1994;20:375-382.
- 23. Frenkel V, Oberoi J, Stone MJ, et al. Pulsed high-intensity focused ultrasound enhances thrombolysis in an in vitro model. Radiology 2006;239:86-93.
- 24. Francis CW, Onundarson PT, Carstensen EL, et al. Enhancement of fibrinolysis in vitro by ultrasound. J Clin Invest 1992;90:2063-2068.
- 25. Luo H, Steffen W, Cercek B, et al. Enhancement of thrombolysis by external ultrasound. Am Heart J 1993;125:1564-1569.
- 26. Blinc A, Francis CW, Trudnowski JL, et al. Characterization of ultrasound-potentiated fibrinolysis in vitro. Blood 1993;81:2636-2643.
- Harpaz D, Chen X, Francis CW, et al. Ultrasound enhancement of thrombolysis and reperfusion in vitro. J Am Coll Cardiol 1993;21:1507-1511.
- Suchkova V, Siddiqi FN, Carstensen EL, et al. Enhancement of fibrinolysis with 40-kHz ultrasound. Circulation 1998;98:1030-1035.
- 29. Devcic-Kuhar B, Pfaffenberger S, Gröschl M, et al. In vitro thrombolysis enhanced by standing and travelling ultrasound wave fields. Ultrasound Med Biol 2002;28:1181-1187.
- Nedelmann M, Eicke BM, Lierke EG, et al. Low-frequency ultrasound induces nonenzymatic thrombolysis in vitro. J Ultrasound Med 2002;21:649-656.
- **31.** Meunier JM, Holland CK, Pancioli AM, et al. Effect of low frequency ultrasound on combined rt-PA and eptifibatide thrombolysis in human clots. Thromb Res 2009;123:528-536.
- 32. Akiyama M, Ishibashi T, Yamada T, et al. Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. Neurosurgery 1998;43:828-832.
- 33. Behrens S, Daffertshofer M, Spiegel D, et al. Lowfrequency, low-intensity ultrasound accelerates

thrombolysis through the skull. Ultrasound Med Biol 1999;25:269-273.

- 34. Shaw GJ, Bavani N, Dhamija A, et al. Effect of mild hypothermia on the thrombolytic efficacy of 120 kHz ultrasound enhanced thrombolysis in an in-vitro human clot model. Thromb Res 2006;117:603-608.
- Eggers J, Ossadnik S, Seidel G. Enhanced clot dissolution in vitro by 1.8-MHz pulsed ultrasound. Ultrasound Med Biol 2009;35:523-526.
- Hölscher T, Fisher D, Raman R. Noninvasive transcranial clot lysis using high intensity focused ultrasound. J Neurol Neurophysiol 2011;01:1-6.
- Tachibana K. Enhancement of fibrinolysis with ultrasound energy. J Vasc Interv Radiol 1992;3:299-303.
- Behrens S, Spengos K, Daffertshofer M, et al. Transcranial ultrasound-improved thrombolysis: Diagnostic vs. therapeutic ultrasound. Ultrasound Med Biol 2001;27:1683-1689.
- **39**. Spengos K, Behrens S, Daffertshofer M, et al. Acceleration of thrombolysis with ultrasound through the cranium in a flow model. Ultrasound Med Biol 2000;26:889-895.
- 40. Hölscher T, Raman R, Fisher DJ, et al. Effects of varying duty cycle and pulse width on high-intensity focused ultrasound (HIFU)-induced transcranial thrombolysis. J Ther ultrasound 2013;1:18.
- Saletes I, Bruno G, Auboiroux V, et al. In vitro demonstration of focused ultrasound thrombolysis using bifrequency excitation. Biomed Res Int 2014;2014.
- 42. Roessler FC, Teichert A, Ohlrich M, et al. Development of a new clot formation protocol for standardized in vitro investigations of sonothrombolysis. J Neurosci Methods 2014;237:26-32.
- 43. Durst C, Monteith S, Sheehan J, et al. Optimal imaging of in vitro clot sonothrombolysis by MR-guided focused ultrasound. J Neuroimaging 2013;23:187-191.
- 44. Ahadi G, Welch CS, Grimm MJ, et al. Transcranial sonothrombolysis using high-intensity focused ultrasound: impact of increasing output power on clot fragmentation. J Ther Ultrasound 2013;1:22.
- Rosenschein U, Furman V, Kerner E, et al. Ultrasound imaging-guided noninvasive ultrasound thrombolysis: preclinical results. Circulation 2000;102:238-245.
- Wright C, Hynynen K, Goertz D. In vitro and in vivo high-intensity focused ultrasound thrombolysis. Invest Radiol 2012;47:217-225.
- Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol 2000;26:1153-1160.
- Datta S, Coussios CC, McAdory LE, et al. Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 2006;32:1257-1267.
- Zenitani T, Suzuki R, Maruyama K, et al. Accelerating effects of ultrasonic thrombolysis with bubble liposomes. J Med Ultrason 2008;35:5-10.
- Datta S, Coussios CC, Ammi AY, et al. Ultrasoundenhanced thrombolysis using Definity® as a cavitation nucleation agent. Ultrasound Med Biol 2008;34:1421-1433.
- Prokop AF, Soltani A, Roy RA. Cavitational mechanisms in ultrasound-accelerated fibrinolysis. Ultrasound Med Biol 2007;33:924-933.
- 52. Cintas P, Nguyen F, Boneu B, et al. Enhancement of enzymatic fibrinolysis with 2-MHz ultrasound and microbubbles. J Thromb Haemost 2004;2:1163-1166.
- Borrelli MJ, O'Brien WD, Hamilton E, et al. Influences of microbubble diameter and ultrasonic parameters on in vitro sonothrombolysis efficacy. J Vasc Interv Radiol 2012;23:1677-1684.

- 54. Hitchcock KE, Ivancevich NM, Haworth KJ, et al. Ultrasound-enhanced rt-PA thrombolysis in an ex vivo porcine carotid artery model. Ultrasound Med Biol 2011;37:1240-1251.
- 55. Bohren Y, Gaud E, Arditi M, et al., In vitro sonothrombolysis of human blood clots with BR38 microbubbles, in AIP Conference Proceedings, vol. 1503, pp. 244-249, 2012.
- 56. Kim JS, Leeman JE, Kagemann L, et al. Volumetric quantification of in vitro sonothrombolysis with microbubbles using high-resolution optical coherence tomography. J Biomed Opt 2012;17:070502.
- 57. Leeman JE, Kim JS, Yu FTH, et al. Effect of acoustic conditions on microbubble-mediated microvascular sonothrombolysis. Ultrasound Med Biol 2012;38:1589-1598.
- 58. Wu J, Xie F, Kumar T, et al. Improved sonothrombolysis from a modified diagnostic transducer delivering impulses containing a longer pulse duration. Ultrasound Med Biol 2014;40:1545-1553.
- 59. Bader KB, Gruber MJ, Holland CK. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. Ultrasound Med Biol 2015;41:187-196.
- 60. Petit B, Bohren Y, Gaud E, et al. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. Ultrasound Med Biol 2015;41:1402-1410.
- Papadopoulos N, Damianou C. In vitro evaluation of focused ultrasound-enhanced TNK-tissue plasminogen activator-mediated thrombolysis. J Stroke Cerebrovasc Dis 2016;16:1052-3057.
- 62. Papadopoulos N, Yiallouras C, Damianou C. The enhancing effect of focused ultrasound on TNK-tissue plasminogen activator-induced thrombolysis using an in vitro circulating flow model. J Stroke Cerebrovasc Dis 2016;25:2891-2899.
- 63. Daffertshofer M, Huang Z, Fatar M, et al. Efficacy of sonothrombolysis in a rat model of embolic ischemic stroke. Neurosci Lett 2004;361:115-119.
- 64. Burgess A, Huang Y, Waspe AC, et al. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLoS ONE 2012;7: e42311.
- 65. Pajek D, Burgess A, Huang Y, et al. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. Ultrasound Med Biol 2014;40:2151-2161.
- 66. Huai L, Birnbaum Y, Fishbein MC, et al. Enhancement of thrombolysis in vivo without skin and soft tissue damage by transcutaneous ultrasound. Thromb Res 1998;89:171-177.
- 67. Birnbaum Y, Luo H, Nagai T, et al. Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 1998;97:130-134.
- 68. Laing ST, Moody M, Smulevitz B, et al. Ultrasoundenhanced thrombolytic effect of tissue plasminogen activator-loaded echogenic liposomes in an in vivo rabbit aorta thrombus model—brief report. Arterioscler Thromb Vasc Biol 2011;31:1357-1359.
- 69. Ishibashi T, Akiyama M, Onoue H, et al. Can transcranial ultrasonication increase recanalization flow with tissue plasminogen activator? Stroke 2002;33:1399-1404.
- 70. Suchkova VN, Baggs RB, Francis CW. Effect of 40-kHz ultrasound on acute thrombotic ischemia in a rabbit femoral artery thrombosis model: enhancement of

thrombolysis and improvement in capillary muscle perfusion. Circulation 2000;101:2296-2301.

- Damianou C, Hadjisavvas V, Mylonas N, et al. MRIguided sonothrombolysis of rabbit carotid artery. J Stroke Cerebrovasc Dis 2014;23.
- Damianou C, Mylonas N, Ioannides K. Sonothromblysis in combination with thrombolytic drugs in a rabbit model using MRI-guidance. Engineering 2013;5:352-356.
- 73. Pacella JJ, Brands J, Schnatz FG, et al. Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study. Ultrasound Med Biol 2015;41:456-464.
- Kornowski R, Meltzer RS, Chernine A, et al. Does external ultrasound accelerate thrombolysis? Results from a rabbit model. Circulation 1994;89:339-344.
- Nedelmann M, Ritschel N, Doenges S, et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cereb Blood Flow Metab 2010;30:1712-1720.
- 76. Alonso A, Dempfle CE, Della Martina A, et al. In vivo clot lysis of human thrombus with intravenous abciximab immunobubbles and ultrasound. Thromb Res 2009;124:70-74.
- 77. Brown AT, Flores R, Hamilton E, et al. Microbubbles improve sonothrombolysis in vitro and decrease hemorrhage in vivo in a rabbit stroke model. Invest Radiol 2011;46:202-207.
- 78. Culp WC, Flores R, Brown AT, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke 2011;42:2280-2285.
- 79. Flores R, Hennings LJ, Lowery JD, et al. Microbubbleaugmented ultrasound sonothrombolysis decreases intracranial hemorrhage in a rabbit model of acute ischemic stroke. Invest Radiol 2011;46:419-424.
- **80.** Siegel RJ, Atar S, Fishbein MC, et al. Noninvasive transcutaneous low frequency ultrasound enhances thrombolysis in peripheral and coronary arteries. Echocardiography 2001;18:247-257.
- Alexandrov AV, Mikulik R, Ribo M, et al. A pilot randomized clinical safety study of sonothrombolysis augmentation with ultrasound-activated perflutren-lipid microspheres for acute ischemic stroke. Stroke 2008;39:1464-1469.
- Bardon P, Kuliha M, Herzig R, et al. Safety and efficacy of sonothrombolysis using bilateral TCD monitoring by diagnostic 2 MHz probes—a pilot study. Biomed. Pap 2014;158:233-237.
- 83. Cintas P, Le Traon AP, Larrue V. High rate of recanalization of middle cerebral artery occlusion during 2-MHz transcranial color-coded Doppler continuous monitoring without thrombolytic drug. Stroke 2002;33:626-628.
- 84. Molina CA, Ribo M, Rubiera M, et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 2006;37:425-429.
- 85. Perren F, Loulidi J, Poglia D, et al. Microbubble potentiated transcranial duplex ultrasound enhances IV thrombolysis in acute stroke. J Thromb Thrombolysis 2008;25:219-223.
- Alexandrov AV, Demchuk AM, Burgin WS, et al. Ultrasound-enhanced thrombolysis for acute ischemic stroke: phase I. Findings of the CLOTBUST trial. J Neuroimaging 2004;14:113-117.

- **87.** Daffertshofer M, Gass A, Ringleb P, et al. Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 2005;36:1441-1446.
- Molina CA, Barreto AD, Tsivgoulis G, et al. Transcranial ultrasound in clinical sonothrombolysis (TUCSON) trial. Ann Neurol 2009;66:28-38.
- **89.** Skoloudik D, Bar M, Skoda O, et al. Safety and efficacy of the sonographic acceleration of the middle cerebral artery recanalization: results of the pilot thrombotripsy study. Ultrasound Med Biol 2008;34:1775-1782.
- 90. IMS II Trial Investigators. The interventional management of stroke (IMS) II study. Stroke 2007;38:2127-2135.