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Abstract	
Quantum	Probability	Theory	(QPT)	has	provided	a	novel,	rich	mathematical	framework	for	cognitive	
modelling,	especially	for	situations	which	appear	paradoxical	from	classical	perspectives.	This	work	
concerns	the	dynamical	aspects	of	QPT,	as	relevant	to	cognitive	modelling.	We	aspire	to	shed	light	
on	how	the	mind’s	driving	potentials	(encoded	in	Hamiltonian	and	Lindbladian	operators)	impact	the	
evolution	of	a	mental	state.	Some	existing	QPT	cognitive	models	do	employ	dynamical	aspects		when	
considering	how	a	mental	state	changes	with	time,	but	it	is	often	the	case	that	several	simplifying	
assumptions	are	introduced.	What	kind	of	modelling	flexibility	do	QPT	dynamics	offer	without	any	
simplifying	assumptions	and	is	it	likely	that	such	flexibility	will	be	relevant	in	cognitive	modelling?	
We	consider	a	series	of	nested	QPT	dynamical	models,	constructed	with	a	view	to	accommodate	
results	from	a	simple,	hypothetical	experimental	paradigm	on	decision	making.	We	consider	
Hamiltonians	more	complex	than	the	ones	which	have	traditionally	been	employed	with	a	view	to	
explore	the	putative	explanatory	value	of	this	additional	complexity.	We	then	proceed	to	compare	
simple	models	with	extensions	regarding	both	the	initial	state	(e.g.,	mixed	state	with	a	specific	
orthogonal	decomposition;	a	general	mixed	state)	and	the	dynamics	(by	introducing	Hamiltonians	
which	destroy	the	separability	of	the	initial	structure	and	by	considering	an	open-systems	
extension).	We	illustrate	the	relations	between	these	models	mathematically	and	numerically.		
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1. Introduction		
	
Throughout	the	history	of	psychological	research,	a	key	objective	has	been	to	understand	the	
general	principles	which	guide	decision	making.	Important	advances	have	been	made	and	today	
most	psychologists	would	agree	that	the	principles	of	classical	probability	theory	(CPT)	can	
characterize	human	decision	making	in	many	cases	[1-3].	The	problem	arises	because	in	some	cases	
behavior	seems	persistently	at	odds	with	the	prescription	of	CPT.	Tversky	and	Kahneman	are	best	
known	for	initiating	a	highly	influential	empirical	research	program	identifying	so-called	paradoxes,	
that	is,	decision	results	which	appear	paradoxical	from	the	perspective	of	CPT,	but	several	other	
researchers	have	engaged	with	similar	research	(e.g.,	[4-6],	see	also	[7-9]	).	Such	results	have	led	to	
intense	debate	regarding	the	role	of	CPT	in	psychological	theory,	but	also	more	generally	the	extent	
to	which	we	are	justified	in	considering	human	decision	making	as	rational.	Tversky	and	Kahneman’s	
position	has	been	that	decision	making	is	best	understood	on	the	basis	of	heuristics	and	biases	(see	
the	above	references).	However,	an	alternative	approach	is	to	consider	whether	a	description	of	
behavior	with	a	formal	probabilistic	framework	is	possible,	but	perhaps	CPT	is	too	limited	to	provide	
a	comprehensive	framework	–	either	CPT	needs	to	be	extended	with	additional	probabilistic	
principles	or	a	more	general	probabilistic	framework	should	be	adopted.		
	 Quantum	probability	theory	(QPT)	can	provide	such	an	extension.	We	call	QPT	the	rules	for	
how	to	assign	probabilities	to	events	from	quantum	mechanics,	without	any	of	the	physics.	QPT	is	in	
principle	applicable	in	any	situation	where	there	is	a	need	to	quantify	uncertainty.	However,	
whether	QPT	will	provide	a	suitable	descriptive	framework	clearly	depends	on	whether	the	structure	
of	the	situation	that	requires	modelling	is	consistent	with	the	structure	of	QPT.	The	paradigmatic	
results	which	have	been	offered	as	challenging	the	descriptive	adequacy	of	CPT	in	decision	making	
(and	cognition	generally)	involve	violations	of	the	law	of	total	probability	(𝑃𝑟𝑜𝑏 𝑋 ≠
𝑃𝑟𝑜𝑏 𝑋 ∧ 𝐴 + 𝑃𝑟𝑜𝑏(𝑋 ∧ ~𝐴)),	conjunction	or	disjunction	fallacies	(e.g.,	𝑃𝑟𝑜𝑏 𝐴 ∧ 𝐵 > 𝑃𝑟𝑜𝑏(𝐴)),	
and	order	effects	(e.g.,	𝑃𝑟𝑜𝑏 𝐴 ∧ 𝐵 ≠ 𝑃𝑟𝑜𝑏 𝐵 ∧ 𝐴 ).	QPT	is	particularly	suitable	for	
accommodating	such	results,	because	QPT	is	a	framework	for	probabilistic	assigning	sensitive	to	
context;	changes	in	context	can	lead	to	interference	effects,	which	allow	QPT	to	violate	e.g.	the	law	
of	total	probability	or	commutativity	in	conjunction.	Indeed,	a	number	of	researchers	have	been	
engaged	with	the	exploration	of	QPT	in	psychological	modelling,	for	such	situations	that	are	
problematic	for	CPT	(e.g.,	[10-13]).	Most	of	these	researchers	take	the	view	that	a	complete	picture	
of	decision	making	requires	us	to	invoke	both	CPT	and	QPT	principles,	possibly	the	former	for	better	
practiced,	familiar	situations.		

	 QPT	cognitive	models	have	taken	two	forms.	First,	some	models	have	involved	static	
representations.	The	modeler	aims	to	provide	a	representation	of	the	available	information,	
including	an	assumed	mental	state,	such	that	the	application	of	QPT	rules	leads	to	probabilities	
consistent	with	the	observed	behavior	(e.g.,	[14,	15,		16,	17,	18,	19,	20]).		

Second,	some	models	have	allowed	dynamical	change,	so	that,	for	example,	the	mental	state	
changes	as	a	result	of	the	available	information	and	the	evolution	of	the	mental	state	(and	
corresponding	probabilities)	are	set	up	in	a	way	that	match	the	observed	behavior	(e.g.,	[11,	21,	22,	
23]).	The	difference	between	static	and	dynamical	models	partly	relates	to	modelling	objectives,	
with	dynamical	models	sometimes	presented	as	having	a	greater	process	component,	whereas	static	
models	tend	to	be	focused	on	the	just	representation	and	relevant	computational	principles	(cf.	[24,	
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25]).	The	denomination	‘dynamical’	here	does	not	intend	to	model	any	physical	processes	in	the	
brain	substrate	itself.	Quantum-like	modeling	in	cognition	is	essentially	a	phenomenological	
approach	that	not	only	provides	the	kinematical	evolution	of	states	in	a	person’s	belief	space	but	
also	can	detail	the	various	transfers	of	these	probability	amplitudes.		The	denomination	‘dynamical’	
captures	the	fact	that	in	the	model	the	cognitive	evolution	is	driven	by	parameters	in	the	
Hamiltonian	and	Lindbladian	operators,	which	should	be	psychologically	interpretable	and	of	which	
the	relative	parameter	amplitudes	can	be	used	to	assess	the	importance	of	constituent	transfer	
processes.		

	 The	focus	of	the	present	work	is	cognitive	QPT	dynamical	models.	Notwithstanding	their	
descriptive	success,	it	is	typically	the	case	that	many	simplifying	assumptions	are	made	when	
specifying	the	relevant	dynamical	processes.	How	important	are	such	simplifications	and	what	kind	
of	modelling	assumptions	do	they	entail?	If	one	is	to	allow	QPT	dynamics	in	their	full	complexity,	
what	is	the	ensuing	modelling	flexibility	and	is	it	likely	that	this	flexibility	will	be	relevant	in	cognitive	
modelling?	It	is	worth	bearing	in	mind	that	QPT	is	one	of	the	most	technically	sophisticated	theories	
developed	by	the	human	mind.	As	we	shall	see	in	this	work,	even	for	simple	situations,	QPT	
dynamical	systems	can	provide	an	extremely	rich	structure.		
	

2. Overview	of	some	dynamical	QPT	cognitive	models		
	
In	this	section,	we	will	provide	a	brief	overview	of	the	kind	of	dynamical	QPT	models,	which	have	
been	proposed	in	cognitive	theories.	The	overview	is	not	meant	to	be	comprehensive,	rather	
illustrate	the	kind	of	simplifications	which	are	characteristic	of	all	QPT	cognitive	applications	
involving	dynamics.	This	overview	will	also	serve	to	briefly	introduce	the	main	QPT	concepts,	so	that	
some	of	the	main	ideas	of	the	paper	can	remain	reasonably	accessible	to	non-specialists,	though	we	
will	not	attempt	a	systematic	introduction	to	all	the	technical	concepts	in	the	paper	(for	recent	
tutorials	see	[26,27]).		
	 We	start	with	the	dynamical	model	of	Pothos	and	Busemeyer	[15]	concerning	the	so-called	
disjunction	effect	in	Prisoner’s	Dilemma	(PD;	[28]).	Participants	were	given	a	PD	game,	with	the	twist	
that	in	some	trials	(labelled	as	bonus	trials),	the	opponent’s	action	was	communicated	prior	to	the	
participant’s	action.	When	participants	were	told	that	the	opponent	was	going	to	cooperate	(C),	the	
probability	to	defect	(D)	was	high,	because	that	was	how	the	payoff	matrix	was	arranged.	
Participants	were	also	likely	to	D	when	told	the	opponent	was	going	to	D.	Interestingly,	when	
participants	were	not	given	any	information	about	the	opponent’s	action,	the	probability	to	D,	
𝑃𝑟𝑜𝑏(𝐷),	dropped.	This	result	shows	a	violation	of	the	law	of	total	probability,	since	
𝑃𝑟𝑜𝑏 𝐷	𝑎𝑛𝑑	𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ≠ 𝑃𝑟𝑜𝑏 𝐷	𝑎𝑛𝑑	𝐶 + 𝑃𝑟𝑜𝑏 𝐷	𝑎𝑛𝑑	𝐷 ,	where	in	the	conjunctions	the	first	
premise	is	for	the	participant’s	action	and	the	second	for	the	opponent’s	(note,	for	all	so-called	
violations	of	CPT	principles,	it	is	always	possible	to	create	a	CPT	model	consistent	with	any	finding,	as	
long	as	post	hoc	conditionalizations	are	allowed,	but	we	are	not	considering	such	approaches	
presently).		
	 The		QPT	model	for	this	disjunction	effect	is	based	on	the	idea	that	participants	have	some	
initial	representation	of	the	probabilities	of	defecting	or	cooperating,	assuming	knowledge	of	the	
opponent	cooperating	or	defecting.	This	mental	representation	corresponds	to	the	state	vector	in	
QPT.	Then,	the	information	relevant	to	the	decision	(notably	the	different	payoffs,	but	also	a	process	
of	cognitive	dissonance)	is	taken	into	account	through	an	assumed	thought	process,	which	changed	
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the	mental	state	with	time.	Eventually,	this	dynamical	evolution	was	stopped	and	the	mental	state	
would	be	examined	regarding	the	relative	probabilities	of	defecting	or	cooperating.		
	 The	key	ingredient	in	this	QPT	model	was	the	Hamiltonian	operator.	In	QPT,	evolution	of	a	

system	is	specified	through	Schrödinger’s	equation,	according	to	which		𝑖ℏ ¶
¶:
|𝜓: = 𝐻|𝜓: ,	where	H	

denotes	the	Hamiltonian	operator	and	|𝜓: 	is	the	state	vector,	a	vector	in	multidimensional	complex	
vector	space	(with	some	additional	convergence	properties)	called	Hilbert	space,	which	embodies	all	
the	information	that	is	possible	learn	about	the	state	vector.	More	precisely,		ℂ@	provided	with	a	dot	
product	is	a	finite	dimensional	Hilbert	space.		The	Hamiltonian	operator	is	a	Hermitian	operator	(an	
operator	is	Hermitian	if	it	is	equal	to	the	complex	conjugate	of	its	transpose).	The	constant	ℏ	is	a	
scaling	constant	(in	QPT	it	has	a	specific	meaning,	in	psychological	applications	it	is	often	just	set	to	

1).	The	solution	of	Schrödinger’s	equation	is	|𝜓:A = 𝑒C
D
ℏE(:AC:F)|𝜓:F ,	where	𝑒C

D
ℏE(:AC:F) = 𝑈:AC:F 	is	

a	unitary	operator;	unitary	operators	have	the	property	that	their	conjugate	transpose	is	equal	to	
their	inverse.		

In	this	model	the	overall	Hamiltonian	was	specified	in	ℂH,	but	the	structure	of	this	space	was	
such	that	a	part	was	separable,	in	ℂI ⊕ ℂI,	and	a	part	was	not	separable	(note,	in	physics	it	is	
typically	the	case	that	separability	concerns	ℂI⨂ℂI,	but	the	structure	of	the	problem	we	consider	
lends	itself	better	to	ℂI ⊕ ℂI).	In	fact,	most	QPT	dynamical	cognitive	models	are	specified	so	that	
they	have	a	part	which	is	separable,	that	is	it	can	be	written	as	ℂI ⊕ ℂI,	and	a	part	which	is	not-
separable,	so	that	it	can	only	be	specified	in	ℂH.	There	is	a	reason	why	this	is	the	case:	most	of	the	
current,	interesting	empirical	findings	which	are	driving	the	application	of	QPT	in	cognition	involve	a	
binary	decision.	It	makes	sense	to	model	binary	decisions	in	a	two-dimensional	space	(such	as	ℂI).	
Also,	modelling	in	such	a	separable	way	retains	consistency	with	the	law	of	total	probability,	when	
(binary)	decisions	under	two	conditions	are	involved.	Using	the	PD	example,	suppose	that	there	is	
one	Hamiltonian	which	corresponds	to	the	dynamical	evolution	of	the	mental	state,	given	
knowledge	that	the	opponent	is	cooperating,	𝐻L ,	and	another	one	given	knowledge	that	the	
opponent	is	defecting,	𝐻M.	Suppose	also	that	𝑃M	denotes	the	projector	operator	for	the	
measurement	of	whether	the	opponent	intends	to	D	or	not;	in	QPT	a	projector	applied	onto	a	
mental	state	is	like	a	query	corresponding	to	the	particular	question	represented	by	the	projector.	
Then,	𝑃𝑟𝑜𝑏 𝐷; 𝑘𝑛𝑜𝑤𝑛	𝐷 = |𝑃M ∙ 𝑒CPEQ: ∙ |𝜓M |I	and	𝑃𝑟𝑜𝑏 𝐷; 𝑘𝑛𝑜𝑤𝑛	𝐶 = |𝑃M ∙ 𝑒CPER: ∙ |𝜓L |I,	
where	|𝜓L 	and	|𝜓M 	encode	the	mental	states	depending	on	whether	the	participant	knows	the	
opponent	will	C	or	D.	Crucially,	in	the	unknown	case,	we	could	assume	|𝜓 = |𝜓L ⊕ |𝜓M 	and	𝐻 =
𝐻L ⊕ 𝐻M	where	now	|𝜓 	and	H	are	defined	in	ℂH.	Then,		𝑃𝑟𝑜𝑏 𝐷; 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = |𝑃M ⊕ 𝑃M ∙
𝑒CPER⊕EQ: ∙ |𝜓L ⊕ |𝜓M |I.	But,	𝑒CPER⊕EQ: = 𝑒CPER: ⊕ 𝑒CPEQ:,	an	identity	which	can	be	fairly	
easily	reproduced	using	the	Taylor	expansions	for	each	exponential.	We	can	write	𝑒CPER: ⊕
𝑒CPEQ: = 𝑈L(𝑡) ⊕ 𝑈M(𝑡),	where	𝑈L ,	𝑈M	are	the	relevant	unitary	operators	(which	are	functions	of	
time).	Then,	𝑃𝑟𝑜𝑏 𝐷; 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = |𝑃M ⊕ 𝑃M ∙ 𝑈L(𝑡) ⊕ 𝑈M(𝑡) ∙ |𝜓L ⊕ |𝜓M |I =
|𝑃M ∙ 𝑈L(𝑡) ∙ |𝜓L |I + |𝑃M ∙ 𝑈M(𝑡) ∙ |𝜓M |I = 𝑃𝑟𝑜𝑏 𝐷; 𝑘𝑛𝑜𝑤𝑛	𝐶 + 𝑃𝑟𝑜𝑏 𝐷; 𝑘𝑛𝑜𝑤𝑛	𝐷 .	In	other	
words,	if	the	structure	of	the	Hamiltonian	is	separable,	then	the	law	of	total	probability	has	to	be	
obeyed	by	QPT,	in	the	same	way	as	it	holds	for	CPT.	To	allow	for	violations	of	the	law	of	total	
probability	to	develop,	we	would	need	a	Hamiltonian	along	the	lines	𝑒T⊕UVWPXYZ ≠ 𝑒[\]Y:^P@_ ⊕
𝑒[\]Y:^P@_,	where	each	of	A	and	B	are	defined	in	a	ℂI	space	and	the	Mixer	in	ℂH.		

The	modelling	approach	of	Pothos	and	Busemeyer	[15]	was	exactly	to	specify	the	dynamics	
in	a	way	that	a	part	was	separable	and	another	part	(the	mixing	element)	was	not	separable.	The	
role	of	the	mixing	element	is	primarily	to	transfer	amplitude	from	one	ℂI	space	to	another,	so	that	
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interference	effects	arise	which	allow	violations	of	the	law	of	total	probability.	Although	we	will	
consider	options	for	mixing	elements	in	this	work,	our	initial	focus	are	the	building	blocks	of	the	
dynamics,	in	this	case	𝐻L ,	𝐻M.	These	are	just	2x2	Hermitian	matrices.	What	are	the	options	for	their	
structure	and	how	do	they	affect	the	state’s	evolution?		

In	general,	for	the	space	of	2x2	complex	Hermitian	matrices,	a	basis	consists	of	the	identity	

matrix	and	the	three	Pauli	matrices,	𝐼 = 1 0
0 1 ,	𝜎X =

0 1
1 0 ,	𝜎d =

0 −𝑖
𝑖 0 ,	𝜎f =

1 0
0 −1 .	

That	is,	any	2x2	complex	Hermitian	matrix	can	be	generated	as	a	linear	combination	of	these	four	
matrices.	Note,	a	common	notation	is	𝐻 = 𝐼 + 𝑛 ∙ 𝜎,	where	the	dot	now	indicates	a	dot	product	and	
𝑛,	𝜎	are	vectors	with	three	components,	𝑛X,	𝑛d	etc.	(𝑛	needs	to	be	normalized).	It	is	a	minor	loss	in	
generality	to	restrict	ourselves	to	traceless		𝐻 = 𝑛 ∙ 𝜎	and	we	shall	do	so	in	this	work	(see	also	
Section	3).	In	practice,	as	noted,	the	Hamiltonians	proposed	in	current	QPT	cognitive	models	have	a	
much	simpler	form.		

Ignoring	any	mixing	elements	for	now,	Pothos	and	Busemeyer	[15]	proposed	for	both	𝐻L 	

and	𝐻M	a	Hamiltonian	of	the	form	𝐻 = F

FghDA

𝜇P 1
1 −𝜇P

,	which	can	be	written	as	𝐻 = j
jVkDA

𝜎X +

kD
jVkDA

𝜎f.	Note,	the	parameter	𝜇P 	was	interpreted	as	the	gain	for	different	actions	(D	or	C).	In	

Trueblood	and	Busemeyer’s	[29]	work	on	order	effects	in	inference,	the	building	block	of	the	

dynamics	was	a	Hamiltonian	of	the	form	𝐻 = F
A
1 1
1 −1 = j

I
𝜎X +

j
I
𝜎f.	Yearsley	and	Pothos	[30]		

follow	this	trend	(of	not	considering	𝜎d)	and	argued	that	in	specifying	a	general	Hamiltonian	for	a	
two	state	system	(any	binary	decision)	in	psychological	modelling,	a	reasonable	choice	is	just	𝐻 =
𝜔𝜎X,	ignoring	both	I	and	two	out	of	the	three	Pauli	spin	matrices.	Atmanspacher	and	Filk	[31]	
developed	a	QPT	model	for	bistable	perception,	that	is	the	shifts	in	interpretation	that	can	occur	
when	an	ambiguous	figure	(such	as	the	Necker	cube)	is	presented.	The	dynamics	in	Atmanspacher	
and	Filk’s	[31]	work	concerned	the	time	development	of	the	perception	process	and	the	Hamiltonian	
they	employed	was	just	𝐻 = 𝜎X.		
	 In	closing	this	section,	we	review	the	two	key	points	so	far.	First,	for	many	of	the	models,	the	
structure	𝐴 ⊕ 𝐵 + 𝑀𝑖𝑥𝑒𝑟,	with	A,	B	Hamiltonians	in	ℂI,	makes	sense,	because	the	model	can	show	
how	the	classical	result	(law	of	total	probability)	can	be	recovered	and	what	exactly	is	the	role	of	the	
quantum	contribution	(the	Mixer),	which	allows	interference	effects	(interference	effects	and	
violations	of	the	law	of	total	probability	are	exactly	the	effects	which	motivate	a	QPT	approach	in	the	
first	place).	In	all	cases	we	reviewed	above,	the	building	block	of	the	dynamics	was	a	simple	binary	
decision	(and	so	a	representation	in	ℂI).	Second,	all	QPT	dynamical	models	have	been	descriptively	
successful,	so	it	does	not	appear	that	any	further	complexity	in	the	Hamiltonian	is	needed.	Indeed,	
these	simple	Hamiltonians	enable	analytical	solutions	for	the	relevant	unitary	operators	and	the	
probabilities	for	the	relevant	actions.	However,	there	is	a	question	of	how	(if	at	all)	any	additional	
complexity	in	the	Hamiltonian	can	serve	any	explanatory	objectives.	The	purpose	of	the	next	section	
is	to	introduce	a	generic	binary	decision	situation	and	illustrate	the	contribution	to	the	dynamics	
from	each	component	of	the	Hamiltonian.		To	clarify,	we	do	not	seek	to	provide	a	specific	model	for	
a	specific	empirical	situation,	but	rather	to	present	the	possible	framework	for	dynamical	modelling	
in	QPT,	for	a	simple,	generic	situation.	We	hope	that	our	presentation	will	help	inform	choices	
regarding	the	development	of	specific	dynamical	models	in	ways	that	appear	less	ad	hoc	as	is	
arguably	the	case	with	some	of	the	current	dynamical	approaches.	
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3. The	impact	of	different	Hamiltonian	components	–	Bloch	representation		
	
Attempting	to	understand	the	impact	of	different	Hamiltonian	choices	on	the	dynamics	by	direct	
inspection	of	analytical	solution	is	often	fruitless;	in	a	subsequent	section,	we	will	explore	some	of	
these	analytical	solutions	and	it	will	become	clear	that	the	algebraic	complexity	quickly	obscures	any	
intuition	(we	will	pursue	though	illustrations	based	on	numerical	analysis).	A	useful	tool	in	this	
context	is	the	Bloch	sphere,	which	is	geometrical	representation	for	the	dynamics	of	a	two	state	
quantum	system.	Pure	states	(the	contrast	with	mixed	states	will	be	explored	later)	correspond	to	
points	in	the	Bloch	sphere	given	by	the	following	identification:	

|𝜓 = cos rA |0 + 𝑒Pssin r
A |1 			

														
				𝜓 =

cos 𝜑 sin 𝜃
sin 𝜑 sin 𝜃
cos 𝜃

	,	

where	|0 = 1
0 	and	|1 = 0

1 	is	a	fixed	computational	basis.	Importantly,	the	unitary	operators	

𝑒CPyz{ I,	𝑒CPy|{ I,	𝑒CPy}{ I	correspond	to	rotations	of	the	state	vector	by	angle	𝜃,	around	rotation	
axes	which	correspond	to	each	of	the	x,	y,	z	axis.	That	is,	in	the	Bloch	sphere	representation,	each	of	
the	Pauli	matrices	corresponds	to	a	rotation	of	the	state	vector	about	a	particular	axis,	but	rotations	
about	an	arbitrary	axis	𝑛 = 𝑎X𝑛X + 𝑎d𝑛d + 𝑎f𝑛f	can	also	be	specified,	which	correspond	to	a	

unitary	operator	𝑈 = 𝑒CP@∙y{ I	(Figure	1a;	note,	𝑛	must	be	normalized).		

Suppose	we	are	modelling	a	binary	decision,	such	that	the	two	relevant	options	are	𝐴 = 1
0 	

and	𝐵 = 0
1 	and	suppose	we	are	interested	in	𝑃𝑟𝑜𝑏T(𝑡)	(it	is	not	necessary	to	explore	𝑃𝑟𝑜𝑏U(𝑡)	

separately	since,	using	CPT	or	QPT	rules,	the	probabilities	for	mutually	exclusive	and	exhaustive	
probabilities	have	to	sum	to	1).	In	the	Bloch	sphere	representation,	the	north	z	direction	

corresponds	to	𝐴 = 1
0 	and	the	south	z	direction	to	𝐵 = 0

1 .	Note	also	that	operator	𝜎f		

corresponds	precisely	to	this	observable	𝜎f = 𝐴 >< 𝐴 − 𝐵 >< 𝐵 	(albeit	with	the	eigenvalues	1	
and	-1	instead	of	0	and	1	as	used	in	the	above	notation	for	ket	vectors).	With	some	algebra,	one	can	

show	that	𝑃𝑟𝑜𝑏 𝐴 = j
I
1 + 𝜓 ⋅ 𝑛f .	This	has	a	nice	graphical	interpretation,	𝑃𝑟𝑜𝑏 𝐴 = 	 cosI {

I
=

	j
I
1 + cos 𝜃 = ZV�

M
= ZVZ⋅��� {

IZ
,	which	in	words	is	the	proportion	of	the	projection	on	the	vertical	

diameter	of	the	vector	𝑢	from	the	South	Pole	to	the	point	on	the	sphere	corresponding	to	the	state	

|𝜓 	(Figure	1b).	As	a	technical	note	of	interest,	the	state	can	be	represented	as	|𝜓 𝜓| = j
I
(𝐼 + 𝜓 ⋅

𝜎)	(note,	𝜓	and	|𝜓 	both	indicate	a	particular	state,	but	𝜓	emphasizes	the	vector	form	of	the	state;	
note	also	that	|𝜓 𝜓|	is	the	representation	of	a	state	as	a	density	matrix	and	we	will	consider	this	
later).	
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Figure	1a.	The	Bloch	sphere	representation,	
illustration	the	dynamical	evolution	(rotation)	
of	a	state	𝜓,	around	a	rotation	axis	𝑛.	

Figure	1b.	Showing	the	length	that	

corresponds	to	𝑃𝑟𝑜𝑏T(𝑡),	𝐴 =
1
0 ,	in	the	

Bloch	sphere	representation	(with	𝑟 = 1).

	 For	a	fixed	state	vector	A,	there	are	Hamiltonians	which	generate	the	same	dynamical	
evolution	of	𝑃𝑟𝑜𝑏T 𝑡 .		It	is	useful	to	briefly	illustrate	this,	since	it	motivates	the	discussion	of	the	

more	general	case.	Let	us	consider	the	situation	when	|𝜓 = 𝐴 = 1
0 .	Then,	𝑃𝑟𝑜𝑏T(𝑡) =

| 𝜓(𝑡) 𝐴 |I,	where	|𝜓(𝑡) = 𝑒CP:@⋅y|𝐴 	and	𝑛 ⋅ 𝜎	is	a	general	Hamiltonian.	Since	|𝜓(𝑡) =
𝑒CP:@⋅y|𝐴 ,	then	𝑃𝑟𝑜𝑏T(𝑡) = | 𝐴 𝑒CP:@⋅y 𝐴 |I.	Now	consider	an	alternative	Hamiltonian,	produced	
by	rotating	𝑛	by	angle	a	about	the	z	axis;	the	new	Hamiltonian	would	be	given	by	𝑛′ ⋅ 𝜎.	The	

corresponding	unitary	operator	is	given	by	𝑛� ⋅ 𝜎 = 𝑒C
D��}
A 𝑛 ⋅ 𝜎𝑒

D��}
A .	Noting	that	𝐶𝑒U𝐶Cj = 𝑒LUL�F 	

(this	identity	is	independent	of	whether	B,	C	commute,	and	can	be	easily	verified	with	a	Taylor	
expansion),	we	have	|𝜓′(𝑡) = 𝑒CP:@�⋅y|𝐴 = 𝑒CP:Y�D��}/A@⋅yYD��}/A|𝐴 .	So,	𝑃𝑟𝑜𝑏T′(𝑡) =
| 𝜓�(𝑡) 𝐴 |I = | 𝐴 𝑒CP�y}/I𝑒CP:@⋅y𝑒P�y}/I 𝐴 |I = | 𝐴 𝑒CP�/I𝑒CP:@⋅y𝑒P�/I 𝐴 |I.	The	last	equality	

employs	the	fact	that		𝜎f	|𝐴 = |𝐴 = 1
0 ,	and	then	the	three	operators	𝑒P�/I,	𝑒CP:@⋅y,	𝑒CP�/I	

commute.	So	we	conclude	𝑃𝑟𝑜𝑏T′(𝑡) = | 𝐴 𝑒CP:@⋅y 𝐴 |I,	exactly	as	before.	In	the	Bloch	
representation	it	corresponds	to	the	same	behavior	of	projection	of	the	evolved	state	vector	on	the	
z-axis,	cf.	Figure	2c	with	2e	and	Figure	2d	with	2f.	Note	that	this	analysis	relies	on	the	particular	
relation	between	the	state	and	the	form	of	considered	Hamiltonians.	In	general,	the	Hamiltonian	will	
have	impact	on	the	dynamics	of	𝑃𝑟𝑜𝑏T(𝑡).			This	is	best	illustrated	with	the	Bloch	sphere,	in	terms	of	
the	effect	of	each	of	𝜎X,	𝜎d,	and	𝜎f	on	the	rotation	of	the	state	vector.		

We	always	consider	𝑃𝑟𝑜𝑏T(𝑡),	𝐴 =
1
0 .	Consider	a	comparison	between		|𝜓 𝑡j =

𝑒CP:F@⋅y|𝜓 𝑡� 	and	|𝜓 𝑡I = 𝑒CP:A@⋅y|𝜓 𝑡� ,	where	𝑡I > 𝑡j.	As	time	increases,	we	can	think	of	𝜓	
as	tracing	the	circumference	of	a	disc	whose	centre	is	𝑛	.	So,	if	|𝜓 𝑡j 	is	set	as	in	Figure	2a,	then	an	
increase	in	t	will	translate	at	first	into	an	increased	𝑃𝑟𝑜𝑏T(𝑡),	followed	by	a	decrease;	eventually	it	
will	return	to	the	initial	value.	If	all	we	are	interested	in	is	changes	in	𝑃𝑟𝑜𝑏T(𝑡)	with	time	(or	some	
other	equivalent	quantity),	then	the	simplest	choice	is	to	consider	the	Hamiltonian		𝐻 = 𝜎d		and	

initial	state	|𝜓 = 𝐴 = 1
0 	as	in	Figure	2b.	In	such	a	case,	the	projection	along	the	z-axis	varies	all	
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the	way	from	+1	to	-1	and	so	𝑃𝑟𝑜𝑏T(𝑡)	varies	from	1	to	0.	The	main	quantum-like	feature	of	such	a	
form	of	dynamics	is	oscillatory	behavior.		
	 What	would	be	the	effect	of	introducing	a	rotation	component	along	the	z-axis,	so	that	the	
Hamiltonian	now	looks	like	𝐻 = 𝑛d𝜎d + 𝑛f𝜎f?	As	the	rotation	axis	moves	in	the	yz	plane	from	the	y-
axis	to	the	z-axis,	the	amplitude	of	the	oscillation	is	reduced	and	the	average	𝑃𝑟𝑜𝑏T(𝑡)	is	increased.	
Therefore,	in	moving	from	a	Hamiltonian	of	the	form	𝐻 = 𝜎d	to	one	of	the	form	𝐻 = 𝑛d𝜎d + 𝑛f𝜎f	
one	basically	increases	the	minimum	possible	value	for	𝑃𝑟𝑜𝑏T(𝑡);	the	greater	𝑛f	relative	to	𝑛d,	the	
higher	the	minimum	possible	value	for	𝑃𝑟𝑜𝑏T(𝑡)	(compare	Figures	2b,	2c	and	2d).	The	impact	of	
introducing	a	𝜎X	component,	so	that	the	Hamiltonian	is	now	of	the	more	general	form	𝐻 = 𝑛X𝜎X +
𝑛d𝜎d + 𝑛f𝜎f	is	subtler	still.	As	indeed	shown	in	Figures	2b,	2c,	2d,	the	critical	factor	affecting	the	
amplitude	of	oscillations	is	the	angle	between	𝑛	and	the	z-axis,	so	that	when	𝑛d ≫ 𝑛X, 𝑛f		(i.e.,	the	
rotation	axis	𝑛	is	approximately	in	the	xz	plane),	one	obtains	𝑚𝑎𝑥 ≈ 1	and	𝑚𝑖𝑛 ≈ 0;	the	frequency	
of	oscillations	depends	on	the	length	of	vector	𝑛.	Comparing	Figure	2c	with	2e	and	Figure	2d	with	2f	
one	can	see	that	rotating	𝑛	towards	the	x-axis	does	not	change	the	overall	amplitude,	though	
specific	aspects	of	the	oscillation	may	change.	Note,	that	the	Bloch	sphere	picture	ignores	the	
irrelevant	overall	phase	of	the	state	vector	and	hence	this	component	in	the	general	Hamiltonian	
may	be	harmlessly	neglected	for	a	single	qubit	simplifying	the	Hamiltonian	to	𝐻 = 𝑛 ⋅ 𝜎.	(As	a	word	
of	caution,	for	more	complex	systems	the	overall	phase	of	a	subsystem	may	lead	to	non-trivial	
interference	effects;	however,	for	the	present	considerations	of	a	single	qubit	we	can	ignore	it).			
	 Overall,	this	section	shows	that	each	possible	component	of	the	Hamiltonian,	𝜎X,	𝜎d,	and	𝜎f,	
can	have	a	very	distinctive	effect	on	the	dynamics	of	the	state	vector	and,	in	a	general	case,	there	is	
no	theoretical	reason	to	exclude	any	components.	Of	course,	in	specific	cases,	it	may	be	that	simpler	
Hamiltonians	are	descriptively	adequate.	In	the	next	sections	we	explore	these	themes	further	and	
illustrate	numerically	the	kind	of	dynamical	curves	produced	by	different	modelling	options.	
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Figure	2a.	For	Hamiltonian	𝐻 = 𝑛 ⋅ 𝜎	the	state	
of	the	system	traces	a	circle	whose	center	is		
𝑛	.	Probability	𝑃𝑟𝑜𝑏T 𝑡 	exhibits	oscillatory	
behavior.	

	
Figure	2b.	A	simple	form	of	dynamics	regarding	
𝑃𝑟𝑜𝑏T(𝑡)	(projection	along	the	z-axis),	where	
𝐻 = 𝜎d.Probability	𝑃𝑟𝑜𝑏T 𝑡 	oscillates	between	
0	and	1.	

	 	
Figure	2c.	Hamiltonian	of	the	form	𝐻 =
𝑛d𝜎d + 𝑛f𝜎f;	rotation	axis	𝑛	in	yz	plane	at	
angle	𝜃	to	z-axis.			

	
Figure	2d.	Hamiltonian	of	the	form	𝐻 = 𝑛d𝜎d +
𝑛f𝜎f;	rotation	axis	𝑛	in	yz	plane	at	angle	𝜃′	to	z-
axis.	

	
Figure	2e.	Hamiltonian	of	the	form	𝐻 =
𝑛X𝜎X + 𝑛d𝜎d + 𝑛f𝜎f;	rotation	axis	𝑛	at	angle	
𝜃	to	z-axis	(i.e.	it	obtains	from	that	in	Figure	2c	

	
Figure	2f.	Hamiltonian	of	the	form	𝐻 = 𝑛X𝜎X +
𝑛d𝜎d + 𝑛f𝜎f;	rotation	axis	𝑛	at	angle	𝜃′	to	z-axis	
(i.e.	it	obtains	from	that	in	Figure	2d	by	rotation	
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by	rotation	about	z-axis).	Note	that	the	
dependence	of		𝑃𝑟𝑜𝑏T 𝑡 	is	the	same	as	in	
case	(c),	for	this	initial	state.			

about	z-axis).	Note	that	the	dependence	of		
𝑃𝑟𝑜𝑏T 𝑡 	is	the	same	as	in	case	(d),	for	this	
initial	state.		

	
Figure	2g.	Probability	𝑃𝑟𝑜𝑏T 𝑡 	in	Figures	2c	
and	2e	oscillates	between	the	maximum	value	
equal	to	1	and	minimal	value	equal	to		j

I
1 +

cos 2𝜃 = 𝑐𝑜𝑠I 𝜃.		

	
Figure	2h.	Probability	𝑃𝑟𝑜𝑏T 𝑡 	in	Figures	2d	
and	2f	oscillates	between	the	maximum	value	
equal	to	1	and	minimal	value	equal	to		j

I
1 +

cos 2𝜃′ = 𝑐𝑜𝑠I 𝜃′.		
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4. A	hierarchy	of	models	for	dynamical	evolution	
	
In	this	section	we	present	a	first	set	of	numerical	illustrations	regarding	the	impact	of	different	

choices	for	the	Hamiltonian	on	𝑃𝑟𝑜𝑏T(𝑡),	𝐴 =
1
0 .	Before	we	do	this,	there	is	a	source	of	

complexity	which	we	have	yet	to	consider,	concerning	the	way	the	state	vector	is	specified.	The	
elementary	way	to	specify	a	state	vector	of	a	two	state	QPT	system	is	as	a	vector	in	a	two-

dimensional	Hilbert	space,	|𝜓 = 𝑎
𝑏 ,	called	a	pure	state,	with	a,	b	in	ℂI.	In	the	context	of	an	

intention	to	create	a	QPT	model	for	a	cognitive	situation,	such	a	pure	state	would	represent	the	
belief	or	mental	state	of	the	average	or	typical	participant	(that	is,	we	assume	that	an	ensemble	of	
participants	can	be	represented	by	a	single	‘typical’	participant,	who	can	characterize	all	individuals,	
approximately	speaking).	In	QPT	terms,	to	employ	a	pure	state	means	that	we	cannot	assert	with	
more	precision	knowledge	of	the	state	the	system	is	in.	However,	QPT	offers	an	alternative	way	to	
represent	information	about	the	state	of	a	system,	using	mixed	states	(represented	by	density	
matrices).		

A	mixed	state	is	meant	to	represent	classical	uncertainty	of	the	particular	(quantum)	state	of	
a		system.	For	example,	suppose	that	the	individuals	in	our	sample	could	be	assumed	to	be	in	one	of	

two	orthogonal	states,	
𝑎
𝑏 	and	

𝑎
𝑏

�
.	Then,	the	state	of	the	system	would	be	written	as	𝑝𝑃 �

�
+

(1 − 𝑝)𝑃 �
�

�,	where	𝑃 �
�
	indicates	the	projector	along	the	

𝑎
𝑏 	ray	and	analogously	for	𝑃 �

�
�.	The	

variable	𝑝	is	analogous	to	a	classical	probability	that	any	particular	individual	will	be	in	state	 𝑎𝑏 .	

Alternatively,	we	could	assume	that	participants	are	in	one	of	two	non-orthogonal	states,	so	that	the	
state	of	the	system	is	𝑝𝑃 �

�
+ (1 − 𝑝)𝑃 �

�
.	In	general,	a	mixed	state	can	be	represented	by	any	

positive,	semi-definite	operator	𝜌,	such	that	𝑡𝑟 𝜌 = 1	and	𝜌� = 𝜌.	For	illustration,	we	show	the	
mixed	state	explicitly	assuming	a	decomposition	into	two	orthogonal	states	in	ℝ	we	have	𝜌 =
𝑎 −𝑏
𝑏 𝑎

𝑝 0
0 1 − 𝑝

𝑎 𝑏
−𝑏 𝑎 =

𝑝𝑎I + 𝑏I(1 − 𝑝) 2𝑝𝑎𝑏 − 𝑎𝑏
2𝑝𝑎𝑏 − 𝑎𝑏 𝑝𝑏I + 𝑎I(1 − 𝑝)

;	the	corresponding	

expression	for	a,	b	in	ℂ	is	
𝑝|𝑎|I + |𝑏|I(1 − 𝑝) 2𝑝𝑅𝑒(𝑎∗𝑏) − 𝑎∗𝑏
2𝑝𝑅𝑒(𝑎∗𝑏) − 𝑎𝑏∗ 𝑝|𝑏|I + |𝑎|I(1 − 𝑝)

,	noting	that	*’s	indicate	the	

complex	conjugates.		
One	can	readily	see	that	the	number	of	parameters	required	to	represent	a	state	rises	as	we	go	from	
a	pure	state	(2	parameters	if	in	ℂ,	1	if	real),	to	a	constrained	(orthogonal)	mixed	state	(3	parameters	
if	in	ℂ,	2	if	real).	For	a	general	mixed	state	with	a	particular	decomposition	into	pure	states	we	need	
to	count	5	parameters,	working	in	ℂ	(3	if	real),	when	two	psychologically	interpretable	component	
states	are	aimed	for.		In	a	population	sample	it	will	not	always	be	possible	to	accommodate	
individual	differences	as	variations	from	a	single	typical	pure	state.	It	is	not	uncommon	for	the	
population	sample	to	have	two	distinct	groupings,	that	can	be	thought	as	opposite	in	some	way,	e.g.,	
risk	seeking	vs	risk	averse	individuals	in	a	gambling	task.	In	such	cases,	it	is	computationally	desirable	
to	represent	the	relevant	mental	state	for	the	DM	task	as	a	mixed	state	of	two	orthogonal	pure	
states.	That	is,	the	mixed	state	reflects	our	classical	uncertainty	of	which	of	two	pure	states	each	
participant	is	in.	The	assumption	of	orthogonality	is	partly	as	well	an	issue	of	keeping	the	total	
number	of	parameters	low.	The	non-orthogonal	mixed	state	is	applicable	when	the	population	
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sample	can	be	divided	into	two	groups	but	cannot	be	considered	as	orthogonal	in	some	meaningful	
way.	For	example,	in	a	gambling	task,	the	population	sample	may	reflect	a	group	of	participants	
particularly	high	in	risk	seeking	and	one	particularly	high	in	reward	sensitivity.	In	such	a	case,	the	two	
groups	are	different,	but	it	would	be	inappropriate	to	consider	them	as	opposite,	since	risk	seeking	
may	partly	reflect	reward	sensitivity.	

One	key	problem	undermining	the	utility	of	mixed	states	in	psychology	is	however	that	their	
decomposition	is	not	unique.	This	degeneracy	reduces	the	number	of	parameters	to	3	if	in	ℂ	(2	if	
real)	and	no	specification	of	the	component	vectors	is	assumed.	If	we	have	grounds	to	assume	that	
our	participant	sample	can	be	represented	by	two	orthogonal	states,	then	a	decomposition	as	above	
can	be	utilized.	However,	unfortunately,	there	are	usually	alternative	decompositions,	involving	
more	pure	states,	which	result	in	the	same	mixed	state.	Therefore,	the	use	of	a	mixed	state	is	better	
seen	a	general	statement	of	the	inhomogeneity	of	a	sample,	rather	than	a	specific	statement	of	
what	is	the	form	of	this	inhomogeneity.	Importantly,	in	using	a	mixed	state,	the	dynamics	remains	of	
the	Schrödinger-type	but	the	outcome	probabilities	can	be	affected	(in	general,	the	maximum	
amplitude	of	oscillations	is	reduced).	Note,	using	the	Bloch	sphere	representation,	pure	states	are	
points	on	the	surface	of	the	sphere,	but	mixed	states	are	situated	within	the	sphere,	with	the	
maximally	uniformed	state	(represented	by	the	identity	matrix	𝐼 2	)	represented	by	the	center	of	
the	sphere.	As	such,	it	can	be	intuitively	seen	that	configurations	within	the	Bloch	sphere	would	in	
general	produce	oscillations	with	a	smaller	max	amplitude,	compare	to	those	on	the	surface	of	the	
Bloch	sphere.	We	finally	remark	that	mixed	states	can	be	used	for	cognitive	experiments	when	the	
participants	sample	is	e.g.	a	mixture	of	two	groups	of	typical	participants	with	non-orthogonal	
mental	states.	Alternatively,	such	states	could	be	employed	if	there	is	just	one	typical	participant	
whose	mental	state	is	itself	a	mixture	of	two	non-orthogonal	choices.	To	fully	describe	these	
situations,	we	would	need	5,	not	3,	parameters,	which	would	encode	not	just	the	mixed	state	per	se,	
but	also	account	for	the	non-orthogonal	decomposition.	As	an	interesting	footnote,	in	physics,	there	
is	a	well-developed	approach	for	distinguishing	between	two	non-orthogonal	states	by	“generalized	
measurement”	through	positive	operator-valued	measures	(POVM).	The	idea	behind	it	is	that	a	
mixed	state	always	corresponds	to	some	larger-dimensional	pure	state,	traced	over	the	extra	
degrees	of	freedom.	These	POVMs	thus	correspond	to	a	projection	measurement	in	a	larger-
dimensional	encompassing	space.	Applications	of	POVMs	in	psychology	are	very	new,	see,	e.g.	
Khrennikov	et	al.	[32]	or	[33].	One	obvious	application	of	POVMs	is	for	violations	of	repeatability,	
because	applying	a	POVM	twice	can	easily	lead	to	a	different	result	(as	opposed	to	regular	projectors	
𝑃	with	their	characteristic	property	𝑃I = 𝑃).	

	 Regarding	our	illustration,	for	simple	Hamiltonians	it	is	possible	to	produce	analytical	
solutions	using	the	identity	𝑒 CPE�: = cos 𝜔𝑡 𝐼 − 𝑖𝑠𝑖𝑛 𝜔𝑡 𝑛 ⋅ 𝜎,	where	𝑛 ⋅ 𝜎 = 𝑛X𝜎X + 𝑛d𝜎d +
𝑛X𝜎f	.	These	correspond	to	the	famous	Rabi	oscillation	expressions,	where	𝜔	is	the	Rabi	frequency,	
which	we	consider	as	a	scaling	constant	(for	time,	or	whichever	other	quantity	t	corresponds	to)	and	
I	is	the	identity	matrix.	In	its	more	general	form,	when	𝑋I = (1 + ℎI)𝛪,	the	unitary	propagator	can	
be	shown	to	satisfy	

𝑒CP:  = cos( 1 + ℎI𝑡)	𝛪 − 𝑖
sin( 1 + ℎI 𝑡)

1 + ℎI
𝑋	

with	h	another	constant	which	we	shall	relate	to	mixing	strength	in	ℂH	in	the	next	section.	Table	1	
shows	the	unitary	propagator	for	simple	Pauli	matrix	based	Hamiltonians	and	gives	the	

corresponding	outcome	probabilities	for	state	𝐴 = 1
0 	starting	from	initial	vector	

𝑎
𝑏 	in	ℝI,	with	
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𝑏 = 	± 1 − 𝑎I.	The	outcome	probabilities	for	state	A	over	time	are	obtained	using	the	QPT	
standard	expression	𝑃𝑟𝑜𝑏T 𝑡 = |𝑃T𝑈(𝑡)|𝜓� |I,	where	𝑃T	is	the	projector	over	the	A	eigenstate.	We	
notice	that	the	outcome	probabilities	𝑃𝑟𝑜𝑏T(𝑡)	are	periodic	functions	with	periodicity	𝜋	in	most	
cases.	Moreover,	we	notice	that	by	itself	the	Pauli	matrix	𝜎f	does	not	engender	a	time	dynamics,	
indeed	one	can	easily	see	that	the	diagonal	structure	of	the	Pauli	matrix	𝜎f	only	produces	a	trivial	
phase	to	the	state	over	time.	
	
	
	

Hamiltonian	 Unitary	time	propagator,	𝑒CPE: 	 𝑃𝑟𝑜𝑏T(𝑡)	

𝜎X	 cos 𝑡 −𝑖 sin 𝑡
−𝑖 sin 𝑡 cos 𝑡 	 𝑎I cosI 𝑡 + 	 1 − 𝑎I sinI 𝑡	

𝜎d	 cos 𝑡 − sin 𝑡
sin 𝑡 cos 𝑡 	 𝑎I cosI 𝑡 + 	 1 − 𝑎I sinI 𝑡 ∓ 2	𝑎 1 − 𝑎I cos 𝑡 sin 𝑡	

𝜎f	 cos 𝑡 − 𝑖 sin 𝑡 0
0 cos 𝑡	 + 𝑖 sin 𝑡	 	

𝑎I	

𝜇 ⋅ 𝜎f
+ 1 − 𝜇I ⋅ 𝜎X	

cos 𝑡 − 𝑖 ⋅ 𝜇 ⋅ sin 𝑡 −𝑖 sin 𝑡 1 − 𝜇I

−𝑖 sin 𝑡 	 1 − 𝜇I cos 𝑡	 + 𝑖 ⋅ 𝜇 ⋅ sin 𝑡	
	

𝑎I cosI 𝑡 + (𝜇I𝑎I + 1 − 𝜇I 1 − 𝑎I

± 2	𝑎𝜇 1 − 𝑎I 1 − 𝜇I) sinI 𝑡	
𝜇 ⋅ 𝜎f
+ 1 − 𝜇I ⋅ 𝜎d	

cos 𝑡 − 𝑖 ⋅ 𝜇 ⋅ sin 𝑡 − sin 𝑡 1 − 𝜇I

sin 𝑡 1 − 𝜇I cos 𝑡 + 𝑖 ⋅ 𝜇 ⋅ sin 𝑡
	

𝑎I cosI 𝑡 + 𝜇I𝑎I + 1 − 𝜇I 1 − 𝑎I sinI 𝑡

∓ 2	𝑎 1 − 𝑎I 1 − 𝜇I cos 𝑡 sin 𝑡	
𝜇 ⋅ 𝜎X
+ 1 − 𝜇I ⋅ 𝜎d	

cos 𝑡 −𝑖 sin 𝑡 (𝜇 − 𝑖 1 − 𝜇I)
−𝑖 sin 𝑡 (𝜇 + 𝑖 1 − 𝜇I) cos 𝑡

	
𝑎I cosI 𝑡 + 	 1 − 𝑎I sinI 𝑡

∓ 2	𝑎 1 − 𝑎I 1 − 𝜇I cos 𝑡 sin 𝑡	
𝜇	 ⋅ 𝜎X + 𝜈 ⋅ 	𝜎d
+	 1 − 𝜇I − 𝜈I
⋅ 	𝜎f	

cos 𝑡 − 𝑖 ⋅ 	 1 − 𝜇I − 𝜈I ⋅ sin 𝑡 −𝑖 ⋅ (𝜇 − 𝑖	𝜈) ⋅ sin 𝑡
−𝑖 ⋅ (𝜇 + 𝑖	𝜈	) ⋅ sin 𝑡 cos 𝑡 + 𝑖	 ⋅ 1 − 𝜇I − 𝜈I ⋅ sin 𝑡

	
𝑎I	

∓2	𝑎 1 − 𝑎I𝜈 cos 𝑡 sin 𝑡	
+	((𝜇I + 𝜈I) 1 − 2𝑎I

± 2	𝑎𝜇 1 − 𝑎I 1 − 𝜇I − 𝜈I	) sinI 𝑡	

	

	
Table	1.	Hamiltonians	expressed	with	Pauli	matrices,	with	their	respective	time	propagators	(𝜔 = 1)	and	outcome	

probabilities	for	pure	state	initial	vector	
𝑎

± 1 − 𝑎I 	in	ℝI.		

	
The	reason	why	we	have	assumed	a	pure	state	in	ℝI	for	Table	1	is	that	this	is	indeed	the	

most	common	approach	in	QPT	cognitive	models,	as	a	simplifying	assumption.	A	pure,	real	starting	
state	is	not	a	theoretical	requirement	and	particular	data	sets	or	theoretical	considerations	may	
motivate	the	need	to	adopt	a	more	general	representation	for	the	initial	state	(as	above).	Still,	even	
for	a	pure,	real	starting	state,	the	complexity	of	the	expressions	in	Table	1	quickly	increases	with	
more	complex	Hamiltonians.	A	pertinent	question	is	this:	assuming	a	modelling	objective	
corresponding	to	a	binary	observable	(which	is	reasonably	common	in	cognitive	models	and	
otherwise),	what	would	a	modeler	gain	by	considering	these	more	complex	Hamiltonians?	Is	there	
any	particular	reason	to	consider	a	single	Pauli	spin	matrix	-	apart	from	𝜎f	which	leads	to	flat	
dynamics?	We	provide	a	series	of	illustrative	graphs,	for	the	restricted	case	represented	in	Table	1.		

	 The	first	point	is	that	if	we	are	concerned	just	with	projection	along	𝐴 = 1
0 	and	adopt	the	

simplest	possible	Hamiltonian	(corresponding	to	just	a	single	Pauli	matrix),	then	choice	of	
Hamiltonian	informs	the	maximum	amplitude	of	the	oscillations,	as	can	be	seen	in	Figure	3,	

employing	an	initial	state	
𝑎
𝑏 = . 6

. 8 .	Note	that,	as	pointed	out	above	too,		the	Hamiltonian	based	

on	𝜎f	does	not	produce	any	evolution,	while	the	Hamiltonian	based	on	𝜎d	reaches	maximum	values	
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of	0	and	1	at	𝑡 = j
I
𝐴𝑟𝑐𝑡𝑎𝑛 I� jC�A

jCI�A
− ¨	©

I
.	The	evolution	of	𝑃𝑟𝑜𝑏T 𝑡 	when	the	Hamiltonian	is	just	

𝜎X	attains	a	maximum	value	of	1 − 𝑎I	at		𝑡 = 𝜋/2		when		𝑎 < 1/ 2	(if	𝑎 > 1/ 2	this	will	be	a	
minimum	instead).	One	should	notice	that	it	is	necessary	to	vary	the	initial	state	in	order	to	see	
these	differences	in	dynamical	evolution	from	these	three	Hamiltonians.	Should	one	only	choose	an	

uniformed	initial	state,	
1/ 2
1/ 2

,	then	there	is	no	change	in	the	temporal	evolution	of	both	𝜎X	and	

𝜎f.	
	
	

	

	
	
Figure	3.	The	change	of	𝑃𝑟𝑜𝑏T 𝑡 	over	time,	where	𝐴 = 1

0 ,	when	the	initial	state	is	 . 6. 8 .		

	
	 An	important	question	for	modellers	is	whether	the	state	should	be	modelled	as	a	pure	state	
or	a	mixed	state.	We	have	already	seen	that	this	choice	translates	to	a	difference	in	the	number	of	
free	parameters	required	to	specify	the	initial	state	(and	associated	assumptions	regarding	the	
homogeneity	of	the	ensemble	of	systems	used	for	data	collection;	in	psychology	studies	this	
ensemble	would	typically	correspond	to	a	population	sample).	Does	the	dynamical	evolution	change	
in	consistent	ways	as	we	move	from	pure	states	to	mixed	states?	We	noted	above	that,	in	general,	
mixed	states	lead	to	dampened	oscillations	and	this	point	is	illustrated	in	Figure	4,	where	we	
compare	pure	state	evolution	with	orthogonal	mixture	evolution	and	‘general’	mixture	evolution.	
For	the	orthogonal	mixture	an	ad	hoc	value	of	𝑝 = 1/3	has	been	adopted	and	the	time	dependence	
shows	the	expected	dampened	oscillation.	One	can	verify	that	giving	equal	classical	weights	𝑝 = .5		
to	the	two	orthogonal	components	will	also	extinguish	all	temporal	dependence	for	a	𝜎X			
Hamiltonian	similarly	as	for	general	mixtures	with	𝜎fHamiltonian.	For	the	general	mixture	a	classical	
weight	of	𝑝 = 1/3	was	also	adopted	and	the	second	component	was	set	to	(-.8,.6).		
	 Appendix	1	shows	time	evolution	when	two	Pauli	matrices	are	combined	to	create	a	
Hamiltonian.	When	combining	Pauli	matrices	the	resulting	time	evolution	does	not	retain	the	
distinctive	features	of	dynamics	that	are	characteristic	of	each	separate	Pauli	component.	This	
indistinctive	temporal		behaviour	can	be	observed	in	the	𝜎X-𝜎d	composition	and	the	𝜎d-𝜎f	
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composition.	In	the	𝜎X-𝜎f	composition	however	the	time	of	extrema		𝑡 = 𝜋/2		of	the	pure	𝜎X	case	is	
retained.	The	overall	similarity	of	the	combined	two-Pauli	case	Hamiltonians	is	due	to	the	fact	that	in	
such	combinations	there	will	always	be	a	counter-diagonal	Pauli	matrix	(either	σX	or	σ).	In	the	next	
section	we	will	study	this	‘mixing’	behavior	by	counter-diagonal	elements	in	the	extended	dynamical	
model	for	bi-variate	paradigms.		
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The	final	issue	concerns	the	extent	to	which	considering	the	most	general	ℂI	Hamiltonian,	involving	
components	from	all	three	Pauli	matrices	can	modify	temporal	dynamics.	With	our	previous	
observation	the	triple	Pauli	combination	will	not	add	essential	features	to	the	temporal	behaviour	of	
the	probability	outcome	of	A,	since	the	counter-diagonal	position	in	the	Hamiltonian	was	already	
covered	by	double	Pauli	combinations	(see	Figure	5).			

	

	

	

Figure	5.	Outcome	probability	for	state	A	based	on	Hamiltonian	dynamics	due	to	combined	𝜎X + 𝜎d+	𝜎f.	For	initial	pure	

state	
𝑎

1 − 𝑎I ,		orthogonal	mixed		state	with	weight	1/3	for		
𝑎

1 − 𝑎I 	and	2/3	for	 − 1 − 𝑎I
𝑎

	and,		initial	general	

mixed		state	with	weight	1/3	for		
𝑎

1 − 𝑎I 	and	2/3	for		 −0.80.6 .	For	𝑎I = 0	to	1	in	steps	of	0	.2	(i=0	to	5).	

In	Figure	6	we	juxtapose	the	temporal	behavior	of	the	outcome	probability	for	the	equiponderate	
Hamiltonian	𝐻 = 1/ 3 𝜎X + 𝜎d+	𝜎f 	evolving	into	each	of	the	three	single	Pauli	matrices	separately.		

	

	

	

Figure	6.	Outcome	probability	for	state	A	based	on	a	Hamiltonian	dynamics	due	to	combined	𝜎X + 𝜎d+	𝜎f	and	stepwise	
transition	to	single	𝜎X,	𝜎d	𝑎𝑛𝑑	𝜎f		for	𝜇I	=	0	to	1	and	𝜈I = 0	to	1	in	steps	of	0	.2	(i=0	to	5).	For	initial	pure	state	(.6,.8).		

While	setting	real-valued	initial	vectors	is	a	typical	simplifying	assumption	in	cognitive	modelling,	the	
following	reasoning	is	valid	for	all	types	of	initial	vector.	By	their	make-up,	we	observe	that	the	
mixing	of	vector	components	can	be	achieved	by	either	combining		σXor	σdwith	σf.	Therefore	when	
both	are	used	together	without	σf,	no	mixing	of	the	components	takes	place	anymore,	but	only	
component	swapping	occurs.	Swapping		dynamics	causes	 𝑎, 𝑏 → 𝑏, 𝑎 ,		while	mixing	dynamics	
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causes	 𝑎, 𝑏 → 𝑐𝑠𝑡 ∙ 𝑎 + 𝑐𝑠𝑡 ∙ 	𝑏, 𝑐𝑠𝑡 ∙ 	𝑏 + 𝑐𝑠𝑡 ∙ 	𝑎 .	This	effect	is	clear	in	Figure	7	where	we	
parametrised	the	Hamiltonian	to	evolve	from	equiponderate	composition	to	σd + σf,	σX + σf	and	
σX + σd	composition.	Using	a	contrasted	initial	vector	(	 . 05, . 95)	we	observe	that	both	the	xz	and	
yz	Hamiltonians	lead	to	component	mixing	(smaller	oscillation	amplitude)	while	the	xy	Hamiltonian	
swaps	the	probability	mass	(large	oscillation	amplitude).	
	

	

Figure	7.	Outcome	probability	for	state	A	based	on	a	Hamiltonian	dynamics	due	to	combined	𝜎X + 𝜎d+	𝜎f	and	stepwise	
transition	to		𝜎d + 𝜎f,	𝜎X + 𝜎f	𝑎𝑛𝑑	𝜎X + 𝜎d	by	letting		𝜇I	=	0	to	1	and	𝜈I = 0	to	1	in	steps	of	0.2	(i=0	to	5).	For	initial	pure	
state	( . 05)	, . 95	).		
	

5. Violations	of	the	law	of	total	probability	in	dynamical	models	
	
Section	4	was	intended	to	illustrate	the	temporal	evolution	that	is	possible	with	basic	Hamiltonian	
dynamics	and	the	range	of	technical	modifications	available	for	cognitive	modelling.	As	noted,	most	
QPT	cognitive	models	are	built	using	ℂI	components,	that	is	components	corresponding	to	a	choice	
involving	two	alternatives.	We	note	that	in	the	literature	Hamiltonian	driven	cognitive	models	with	
an	odd	dimension	𝑛	e.g.,	𝑛 = 3	[34],	or	with	not	Pauli-based	Hamiltonians,	𝑛 = 5	[21]	and	𝑛 = 8	
[35]	have	been	proposed.	
	 A	main	source	of	interest	for	QPT	dynamical	models	is	how	a	separable	ℂI	structure	
consistent	with	the	law	of	total	probability	can	be	extended	to	produce	interference	effects	which	
allow	deviations	from	the	law	of	total	probability.	The	essential	idea	is	that	as	long	as	the	dynamics	
have	a	separable	structure	of	the	form	𝐻j ⊕ 𝐻I	(where	each	of	𝐻j,	𝐻I	act	on	separate	ℂI	spaces)	,	
then	whatever	the	specific	form	for	the	evolution	of	the	composite	state	vector	|𝜓j ⊕ |𝜓I ,	the	
resulting	probabilities	will	obey	the	law	of	total	probability.	But,	like	Markovian	dynamics,		QPT	
dynamics	on	the	composite	system	allows	extensions	of	the	form	𝐻j ⊕ 𝐻I + 𝐻WPX.	In	QPT	𝐻WPXYZ 	
acts	on	ℂH,	and	can	result	in	evolved	state	vectors	not	of	the	form	|𝜓j ⊕ |𝜓I 	and	which	violate	the	
law	of	total	probability.	What	are	possible	forms	for	𝐻WPXYZ 	and	what	kind	of	dynamics	are	
produced?		
	 We	proceed	in	this	discussion	in	the	context	of	a	generic	decision	framework,	which	can	
easily	be	adapted	to	more	specific	situations	-	including	the	Prisoner	Dilemma	paradigm	of	Pothos	
and	Busemeyer	[15].	Example	framework:	Imagine	a	gambling	task	with	sequential	steps.	The	
gamble	is	organized	such	that	if	you	are	on	a	winning	streak	your	payoff	for	the	gamble	on	the	next	
step	is	determined	by	one	bank	roll	function,	while	if	you	are	on	a	losing	streak	your	payoff	for	the	
gamble	is	determined	by	another	bank	roll	function.	The	experimental	paradigm	thus	has	two	
distinct	and	non-overlapping	conditions:	win	and	lose.	The	decision	makers	are	asked	to	decide	
whether	to	proceed	with	the	next	step	in	the	sequence,	given	knowledge	that	they	have	either	been	
in	a	winning	streak,	or	a	losing	streak,	or	the	outcome	of	previous	steps	is	left	unknown.	The	
experimental	paradigm	thus	involves	a	binary	decision;		stop	or	continue.	Classically,	the	
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probabilities	to	stop	or	continue	in	the	last	‘unknown’	condition	would	be	given	by	the	law	of	total	
probability	on	probabilities	to	stop	or	continue	from	each	of	the	corresponding	known	win	and	
known	lose	conditions.	In	an	analogous	QPT	model	the	Hamiltonian	would	be	𝐻µP@ ⊕ 𝐻¶\[Y.	A	more	
elaborate	QPT	model	would	however	allow	for	violations	of	the	law	of	total	probability	and	utilize	a	
Hamiltonian	of	the	form	𝐻µP@ ⊕ 𝐻¶\[Y + 𝐻WPX.		
	 We	consider	next	what	is	a	simple	form	of	𝐻WPX,	such	that	the	Hamiltonian	can	produce	
violations	of	the	law	of	total	probability,	while	still	allowing	for	analytical	solutions	for	the	
probabilities.	The	latter	is	clearly	not	a	cognitive	modeling	requirement,	but	it	facilitates	the	
discussion	of	the	temporal	behavior	of	the	outcome	probabilities.	

Recall,	we	pointed	out	that	a	simple	class	of	analytically	expressible	propagators	follow	the	
identity	

𝑒CP:  = cos( 1 + ℎI𝑡)	Ι − 𝑖
sin	( 1 + ℎI 𝑡)

1 + ℎI
𝑋,	

	when	𝑋	satisfies,		𝑋I = (1 + ℎI)𝛪.	While	in	the	simple	ℂI	space	Hamiltonians	corresponding	to	any	
combination	of	the	Pauli	matrices	will	readily	satisfy	this	condition,	this	is	not	the	case	for	general	
Hamiltonians	with	a	mixing	component	in	ℂH	space.	We	recall	that	in	general	𝐻WPX	can	be	any	
Hermitian	matrix	operating	in	the	2x2	off-diagonal	space,	but	the	Pauli-based	version	will	allow	
analytical	expression.		We	can	write	such	a	Pauli-based	general	Hamiltonian	as	𝐻 =
𝑛µP@ ⋅ 𝜎 𝑛]PX ⋅ 𝜎
𝑛]PX ⋅ 𝜎 𝑛¶\[Y ⋅ 𝜎

.		Where	we	have	normalization	conditions	on	the	weighing	vector	for	the	

Hamiltonian	composition	in	both	subspaces	of	win	and	lose		𝑛µP@ ⋅ 𝑛µP@ = 1 = 	𝑛¶\[Y ⋅ 𝑛¶\[Y.		
Notice,	we	do	not	assume	normalization	of	𝑛]PX,	as	its	norm	will	be	defining	for	the	strength	of	the	
mixing	dynamics.	For	simple	calculational	notation	it	is	convenient	to	employ	Feynman’s	slash	

notation,	so	that	the	Hamiltonian	can	be	rewritten	as	𝐻 = 	 𝑤 ℎ
ℎ 𝑙 ,	where	𝑤	is	short	hand	for	𝑛µ ⋅

𝜎,	and	𝑙	stands	for	𝑛¶ ⋅ 𝜎,		finally	ℎ = 𝑛]PX ⋅ 𝜎.	Using	this	slash	notation	and	following	Pauli	matrix	
algebra	we	have	𝑎. 𝑏 = 𝑛� ⋅ 𝑛�𝐼 + 𝑖	𝑛�×𝑛� ⋅ 𝜎,	where	in	the	above	equation	and	for	these	
computations,	the	dot	indicates	the	vector	dot	product	and	the	cross	the	vector	cross	product.	We	
can	now	express	the	condition	for	when	we	would	be	able	to	use	the	simple	analytical	expression	for	
the	time	propagator	for	a	Pauli	matrix	based	Hamiltonian.		

Noting	that	𝐻I = 1 + ℎI 𝑤 ⋅ ℎ + ℎ ⋅ 𝑙
ℎ ⋅ 𝑤 + 𝑙 ⋅ ℎ 1 + ℎI

,	we	will	now	require	this	expression	to	be	of	

the	form	(1 + ℎI)𝛪H:	

𝐻I = (1 + ℎI)
𝐼

1
1 + ℎI

ℎ ⋅ 𝑤 + 𝑙 𝐼 + 𝑖	ℎ×(𝑙 − 𝑤) ⋅ 𝜎

1
1 + ℎI

ℎ ⋅ 𝑤 + 𝑙 𝐼 − 𝑖	ℎ×(𝑙 − 𝑤) ⋅ 𝜎 𝐼
	

where	we	have	used	𝑏. 𝑎 = 𝑛� ⋅ 𝑛�𝐼 + 𝑖	𝑛�×𝑛� ⋅ 𝜎 = 	𝑛� ⋅ 𝑛�𝐼 − 𝑖	𝑛�×𝑛� ⋅ 𝜎 = (𝑎. 𝑏)�		and	self-
adjointness	of	the	Pauli	matrices.	We	therefore	have	to	meet	the	following	two	conditions:		

ℎ ⋅ 𝑤 + 𝑙 = 0,	
ℎ× 𝑙 − 𝑤 = 0,	

or	explicitly	
𝑛]PX ⋅ 𝑛µP@ + 𝑛¶\[Y = 0,	
𝑛]PX× 𝑛¶\[Y − 𝑛µP@ = 0.	

Thus	𝑛]PX	should	be	orthogonal	to	the	sum	of	𝑛µP@	and	𝑛¶\[Y,	and	parallel	to	their	difference.	This	is	
satisfied	by		𝑛]PX = 𝑚	 𝑛¶\[Y − 𝑛µP@ ,	where	𝑚	is	a	free	parameter.		And	thus	

ℎI = 	𝑛]PXI = 2𝑚I	 1 − 𝑛¶\[Y ⋅ 𝑛µP@ 	
This	final	expression	allows	us	to	finally	write	the	required	mixing	Hamiltonian	as:	
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𝐻]PX = 𝑚	 𝑙 − 𝑤 =
ℎ

2 1 − 𝑛¶\[Y. 𝑛µP@
𝑛¶\[Y − 𝑛µP@ ⋅ 𝜎	

Notice	that	ℎ	is	a	mixing	variable	dependent	on	the	free	parameter	𝑚	and	the	relative	orientation	of	𝑛¶\[Y 	
and	𝑛µP@.	One	retrieves	the	non-mixing	case	by	taking	the	limit		ℎ → 0.	
The	end	result	𝐻]PX	has	a	simple	psychological	expression.		The	degree	of	mixing		–	and	thus	interference	–	
in	the	dynamics	of	the	unknown	condition	could	be	reduced	either	by	diminishing	the	free	parameter	𝑚	
but	also	implicitly	by	narrowing	the	difference	between	𝑛¶\[Y 	and	𝑛µP@	.	This	is	an	interesting	aspect	of	this	
particular	dynamical	construction	based	on	Pauli	matrices.	Recall	𝑛¶\[Y 	characterizes	the	cognitive	dynamics	
in	a	losing	streak	and	𝑛µP@	in	the	winning	streak.	This	structure	for	the	dynamics	suggests	that	interference	
–	and	thus	the	degree	of	non-classicality	–		increases	when	there	is	a	greater	discrepancy	in	the	dynamics	
for	the	two	known	conditions.	On	the	other	hand	experimental	paradigms	may	be	such	that	the	disjunctive	
–	or	‘unknown’	–		condition	may	lead	to	a	cognitive	shift	in	the	belief	state	of	the	decision	maker	even	if	the	
dynamics	in	both	subspaces	are	almost	identical	because,	she	deems	the	condition	of	one	subspace	more	
probable	than	the	other.	This	latter	situation	should	then	be	captured	by	increasing	the	free	parameter	𝑚	
when	fitting	with	experimental	data.	Finally,	we	note	that	besides	monitoring	the	strength	of	the	mixing,	ℎ	
also	modifies	the	temporal	rate	at	which	the	dynamics	evolves,	with	higher	values	of	ℎ	leading	to	relatively	
faster	progression	of	the	unitary	operator.	

Given	this	simplified	dynamics,	𝑃𝑟𝑜𝑏T(𝑡)	can	now	be	computed	analytically	for	a	range	of	
Pauli-based	Hamiltonians	in	ℂH	space	as	well.	The	corresponding	expressions	can	be	complicated	for	
the	general	case,	nevertheless	we	think	there	is	merit	in	producing	them,	for	reference	purposes	and	
for	transparency	regarding	the	classical	and	non-classical	terms	(and	indeed	the	extent	to	which	they	
can	be	separated)	in	𝑃𝑟𝑜𝑏T(𝑡).	The	expression	of	𝑃𝑟𝑜𝑏T(𝑡)	for	an	initial	general	mixture	and	its	
analytical	calculation	is	relayed	to	the	Appendix.	We	will	only	discuss	the	pure	state	expression	in	
more	detail	here,	but	will	still	provide	the	formalism	for	the	mixed	states	as	well.	

In	order	to	facilitate	interpretation,	we	choose	the	basis	corresponding	to	the	condition	–	i.e.	
𝑤	(win)	or	𝑙	(lose)	–	and	the	decision	which	is	taken	–	i.e.	𝑐(continue)	or	𝑠(stop),	leading		to	a	
representation	 𝜓�µ		𝜓[µ	𝜓�¶	𝜓[¶	 �	of	the	belief	state.		

Now,	for	example,	in	the	𝑤	space	(in	the	space	concerning	the	dynamics	when	a	participant	
knows	she	has	been	winning),	we	could	have	a	mixed	state	composed	of	two	pure	states,	
corresponding	to	each	of	the	two	participant	groups	(recall,	in	this	picture	we	are	assuming	that	the	
population	sample	is	best	described	by	two	distinct	groups;	clearly	this	would	be	an	approximation	
in	some	cases).	The	pure	states	appearing	in	the	general	mixed	state	will	be	parameterized	
respectively	by	𝑝�µ	(probability	to	choose	𝑐	given	condition	𝑤)	and	𝑝′[µ	(probability	to	choose	𝑠	
given	condition	𝑤).	Note,	the	accent	indicates	quantities	belonging	to	the	second	group	(out	of	two).	
The	respective	weight	of	both	distinctly	featured	subgroups	in	the	decision	maker	sample	is	again	
denoted	by	𝑝	and	1 − 𝑝.	

W	states:		a	linear	combination	of	 𝑝�µ		 1 − 𝑝�µ	0	0	
�
	and	 − 1 − 𝑝′[µ		 𝑝′[µ	0	0	

�
.	

So,	the	above	two	pure	states	capture	the	two	(assumed)	groups	the	mixed	state	is	composed	of.	
Note,	a	more	intuitive	notation	for	the	W	states	might	be	something	like	

𝑝�µj		 1 − 𝑝�µj	0	0	
�
	and	 − 𝑝�µI		 1 − 𝑝�µI	0	0	

�
,	indicating	that	we	have	two	groups	of	

participants,	with	different	tendency	to	continue	playing.	However,	it	is	algebraically	more	
convenient	to	express	one	group	of	participants	in	terms	of	the	probability	to	continue	and	the	
other	in	terms	of	the	probability	to	stop.	Notice	that	when	𝑝′[µ =	𝑝�µ	,	the	two	distinct	groups	of	
decision	makers	assumed	in	the	population	sample	are	represented	by	orthogonal	belief	states.	
As	long	as	the	reader	remembers	that	cw	is	the	index	for	group1	and	sw’	for	group2,	then	the	
algebra	should	be	straightforward.		
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Similarly	we	define,	in	the	𝑙	space,	𝑝�¶ 	(probability	to	choose	𝑐	given	condition	𝑙)	and	𝑝′[¶ 	
(probability	to	choose	𝑠	given	condition	𝑙).	

L	states:	a	linear	combination	of		 0	0	 𝑝�¶		 1 − 𝑝�¶	
�
	and	 0	0	 − 1 − 𝑝′[¶		 𝑝′[¶		

�
.			

	 In	the	disjunctive	condition	the	decision	maker	has	no	information	on	the	condition	and	will	
attribute	a	weight	𝑝µ	to	believing	𝑤	to	be	the	condition	(or	weight		1 − 𝑝µ	for	possibility	that	𝑙	is	
the	condition).	The	initial	belief	state	of	the	decision	maker	is	then	a	superposition	 𝑝µ		times	the	𝑤	

state	and	 1 − 𝑝µ	times	the	𝑙	state.	We	choose	square	roots	with	plus	sign	ignoring	possible	
phase	difference	in	order	to	keep	things	as	simple	as	possible.	We	suppose	a	similar	
predisposition	to	occur	in	the	second	subgroup	but	then	parametrized	by	𝑝′µ.	

Unknown	states:	combination	of	 𝑝µ 𝑝�µ		 𝑝µ 1 − 𝑝�µ		 1 − 𝑝µ 𝑝�¶		 1 − 𝑝µ 1 − 𝑝�¶
�
	

and	 − 𝑝�µ 1 − 𝑝�[µ			 𝑝
�
µ	 𝑝

�
[µ 		− 1 − 𝑝�µ 1 − 𝑝�[¶		 1 − 𝑝′µ 𝑝′[¶

�
.	

We	proceed	in	ℂH	as	in	ℂI	(Section	4).	The	initial	mixed	state	is	obtained	by	weighing	the	
respective	projectors	for	both	participant	groups;	𝜌 (0) = 𝑝𝑃  + (1 − 𝑝)𝑃′ 	,	where	𝑋can	be	any	of	
𝑤,	𝑙	or	𝑢	(note,	unknown	state	is	produced	as	a	combination	of	the	w	and	l	states,	as	above,	we	just	
indicate	here	where	the	projectors	for	the	mixed	state	should	come	from).  	

The	Schrödinger	evolution	for	the	density	operator	implies		𝜌  𝑡 = 𝑒CPE:𝜌  0 𝑒VPE:	and	
the	outcome	probability	of	obtaining	a	“continue”	decision	–	i.e.	probability	to	decide	to	𝑐	–		under	
condition	𝑋		is	obtained	by	taking	the	trace		𝑃𝑟𝑜𝑏T 𝑡 = 𝑡𝑟 𝑃T		𝜌 𝑡 𝑃T	 ,	with	projector		𝑃T		now	
equal	to	the	matrix	𝐷𝑖𝑎𝑔 1	0	1	0 .	Note	that	this	is	the	same	as	taking	the	partial	trace	of	𝜌 𝑡 	over	
the	second	index	(w	or	l)	and	then	applying	the	two-dimensional	projector	𝑃T	of	section	4.	In	the	
Appendix	we	provide	some	details	of	the	calculation	of	𝑃𝑟𝑜𝑏T 𝑡 	given	the	mixed	initial	state	in	the	
𝑢	condition.	From	this	expression	all	simpler	cases	can	be	derived.		

We	discuss	now	the	outcome	probability	to	continue	in	the	𝑢	condition	for	an	initial	pure	
state.	A	priori	in	the	𝑢	condition	one	expects	the	presence	of	distinct	terms	stemming	from	the	𝑤	
condition	and	from	the	𝑙	condition,	augmented	with	a	third	type	of	terms	stemming	from	the	mixing.	
This	anticipated	subdivision	is	however	only	partially	realized	(see	equation	below),	since	all	the	
trigonometric	functions	in	the	𝑢	condition	show	an	accelerated	temporal	behavior	by	a	factor	
1 + ℎI	to	the		time	variable	𝑡	in	the	these	functions.	Therefore	only	if	no	mixing	occurs	in	the	

‘unknown’	condition	–	either	through	vanishing	𝑚	or	coincidence	of	the	𝑛 	vectors	-		do	the	terms	
appropriate	to	the	distinct	𝑤	and	𝑙	cases	add	up	in	the	unknown	cases	regarding	the	probability	to	
continue.	If	mixing	takes	place,	then	it	is	also	the	case	that	these	dedicated	𝑤	and	𝑙	terms	will	be	
affected,	in	terms	of	accelerated	time	development.	In	any	case,	one	can	attempt	to	subdivide	the	
expression	for	𝑃𝑟𝑜𝑏T 𝑡 	into	three	main	summands;	one	with	pre-factor	𝑝µ	indicating	it	is	the	𝑤-
contribution	(i.e.,	the	contribution	from	the	known	win	dynamics),	one	term	with	pre-factor	1 −
𝑝µindicating	it	is	the	𝑙-contribution	and	finally	an	interference	term	preceded	by	the	factor	
𝑝µ 1 − 𝑝µ		exclusively	produced	by	the	mixing	dynamics.	One	should	however	notice	that	both	in	

the	𝑙	and	𝑤-parts,	the	sinI	( 1 + ℎI 𝑡)	terms	have	factors	that	depend	purely	on	second	order	
𝑛Wcomponents	(recall,	M	stands	for	mixer).	These	terms	in	the	𝑤-contribution	result	from	
probability	amplitude	transfer	from	the	𝑙-subspace	to	the	𝑤-subspace	and	vice	versa	as	determined	
by	the	mixing	Hamiltonian	(analogously	for	the	𝑙-contribution).	
	



22	
	

𝑃T 𝑡 = 𝒑𝒘 cosI 1 + ℎI𝑡 	𝑝�µ

+
1

1 + ℎI
sinI	( 1 + ℎI 𝑡) 𝑛×f

I𝑝�µ + 2	𝑛×X	𝑛×f 𝑝�µ 1 − 𝑝�µ

+ 1 − 𝑝�µ 𝑛×X	I + 𝑛×d	I

+ 𝑛WfI𝑝�µ + 2	𝑛WX	𝑛Wf 𝑝�µ 1 − 𝑝�µ + 1 − 𝑝�µ 𝑛WX	I + 𝑛Wd	I

−
1

1 + ℎI
2 sin 1 + ℎI	𝑡 cos 1 + ℎI𝑡 		𝑛×d	 𝑝�µ 1 − 𝑝�µ

+	 𝟏 − 𝒑𝒘 cosI 1 + ℎI𝑡 	𝑝�¶

+
1

1 + ℎI
sinI	( 1 + ℎI 𝑡) [𝑛Wf

I𝑝�¶ + 2	𝑛WX	𝑛Wf 𝑝�¶ 1 − 𝑝�¶ + (1 − 𝑝�¶)(𝑛WX	I

+ 𝑛Wd	I)] + 𝑛ÛfI𝑝�¶ + 2	𝑛ÛX	𝑛Ûf 𝑝�¶ 1 − 𝑝�¶ + 1 − 𝑝�¶ 𝑛ÛX	I + 𝑛Ûd	I

−
1

1 + ℎI
2 sin 1 + ℎI	𝑡 cos 1 + ℎI𝑡 	𝑛Ûd	 𝑝�¶ 1 − 𝑝�¶

+ 𝒑𝒘 𝟏 − 𝒑𝒘
1

1 + ℎI
sinI	( 1 + ℎI 𝑡) 		2[𝑛Wf𝑛×f 𝑝�¶ 𝑝�µ

+ 𝑛WX𝑛×f 1 − 𝑝�¶ 𝑝�µ + 𝑛Wf𝑛×X 𝑝�¶ 1 − 𝑝�µ
+ 𝑛WX𝑛×X + 𝑛Wd𝑛×d 1 − 𝑝�¶ 1 − 𝑝�µ]

+ 	2 𝑛Wf𝑛Ûf 𝑝�µ 𝑝�¶ + 𝑛WX𝑛Ûf 1 − 𝑝�µ 𝑝�¶ + 𝑛Wf𝑛ÛX 𝑝�µ 1 − 𝑝�¶
+ 𝑛WX𝑛ÛX + 𝑛Wd𝑛Ûd 1 − 𝑝�µ 1 − 𝑝�¶

−
1

1 + ℎI
2sin 1 + ℎI	𝑡 cos 1 + ℎI𝑡 𝑛Wd 	 𝑝�µ 1 − 𝑝�¶ 	

+ 		 𝑝�¶ 1 − 𝑝�µ	 																																																																																				

In	Figure	8	the	effect	of	increasing	the	mixing	parameter	𝑚	is	shown	for	a	𝑢-state	defined	by		
𝑝µ = .6,	𝑝�µ = .7	and		𝑝�¶ = .1	,	and	its	subspace	𝑤-dynamics	and	𝑙-dynamics	are	defined	by	the	

Hamiltonian	vectors	𝑤 = . 9, 0, 1 	,	𝑙 = −.5, 0, 1 	(where	their	normalized	expression	is	𝑛  =
𝑋/|𝑋|).	This	corresponds	to	a	belief	state	which	slightly	biases	the	𝑤-state	over	the	𝑙-state,	and	
which	reflects	a	preference	to	decide	𝑐	in	the	𝑤-condition	while	avoiding	the	𝑐	decision	in	the	𝑙-
condition.	The	Hamiltonian	subspace	dynamics	express	a	similar	bias	for	𝑐	when	𝑤	through	our	
specific	choice	of	𝑤	,	and	aversion	for	𝑐	when	𝑙	through	our	specific	choice	of	𝑙.			
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Figure	8.	Outcome	probability	to	continue	based	
on	Hamiltonian	dynamics	with	Pauli	matrix	

combination	𝑤 = . 9, 0, 1 	in	𝑤-space	and	𝑙 =
−.5, 0, 1 	in	𝑙-space,	and	with	an	initial	pure	
state	in	𝑢-condition	specified	by	𝑝µ = .6,	𝑝�µ =
.7	and		𝑝�¶ = .1.	The	mixing	parameter	is	varied,	
𝑚	 = 0	to	1	in	steps	of	0.2	(i=0	to	5).	

	

	

	

For	higher	values	of	the	mixing	parameter	𝑚,	the	oscillation	frequency	of	
𝑃𝑟𝑜𝑏T 𝑡 	increases	and	in	this	case	depresses	the	probability	for	decision	𝑐	in	the	𝑢-condition.	When	
no	mixing	occurs	(𝑚 = 0)	the	probability	𝑃𝑟𝑜𝑏T 𝑡 	corresponds	to	the	classically	weighed	sum	of	
probabilities	for	decision	𝑐	in	the	respective	conditions	of	𝑤	and	𝑙.			

With	the	Hamiltonian	scheme	we	can	easily	evaluate	the	degree	of	violation	of	the	law	of	
classical	total	probability,	as	a	function	of	the	mixing	strength.	The	classical	total	probability	to	
decide	for	𝑐	at	time	𝑡		consists	of	adding	the	probability	for	the	decision	to	happen	in	the	two	
mutually	exclusive	conditions	𝑤	and	𝑙,	where	we	weigh	each	condition	with	its	probability	to	occur,	
respectively	𝑝µ	and	𝑝¶:	

𝑃Ý\:,T 𝑡 = 	 𝑝µ	𝑃T|µ 𝑡 + 𝑝¶	𝑃T|¶ 𝑡 	

where	we	have	rendered	explicit	the	conditional	𝑤	and	𝑙	in	the	index	of	𝑃T.	Any	quantum	violation	
of	the	law	of	classical	total	probability	can	be	observed	by	comparing	𝑃Ý\:,T 𝑡 	to	𝑃T|Þ 𝑡 ,	where	we	
recall	𝑢	indicates	the	unknown	condition.		

The	violation	of	the	classical	total	probability	can	be	expressed	using	the	‘unpacking		factor’	
by	Tversky	and	Koehler	[7]	which	is	the	idea	of	unpacking	an	event	into	subevents	with	disjoint	
probabilities.	The	factor	needs	to	be	assessed	relative	to	1	

𝑈𝐹 𝑡 =
𝑃Ý\:,T 𝑡
𝑃T|Þ 𝑡

=
𝑝µ	𝑃T|µ 𝑡 + 𝑝¶	𝑃T|¶ 𝑡

𝑃T|Þ 𝑡
	

This	quantity	will	be	larger	than	1	for	destructive	interference	of	beliefs	under	conditions	‘𝑤	OR	𝑙’	
and	smaller	than	1	in	the	case	of	constructive	interference	of	beliefs	under	‘𝑤	OR	𝑙’.	Both	regimes	
are	covered	by	the	present	Hamiltonian	scheme.	For	the	mutually	exclusive	conditions	𝑤	and	𝑙,	the	
disjunction	fallacy	is	of	the	fully	subadditive	type	in	Figure	9	with	𝑝µ = 0.6	and	occasionally	of		
superadditive	type	in	Figure	10	with	𝑝µ = 0.1.	
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Figure 9.	Evolution	of	the	
unpacking	factor	over	time	
showing	destructive	
interference	for	Hamiltonian	
dynamics	with	Pauli	matrix 
superposition	𝑤 = . 9, 0, 1 	

in	𝑤-space	and	𝑙 =
−.5, 0, 1 	in	𝑙-space,	and	
with	an	initial	pure	state	in	
𝑢-condition	specified	by	
𝑝µ = .6,	𝑝�µ = .7	and		𝑝�¶ =
.1.	The	mixing	parameter	is	
varied,	𝑚	 = 0	to	1	in	steps	
of	0.2	(i=0	to	5).	

	

	

	

	

Figure	10.	Evolution	of	the	
unpacking	factor	over	time	
showing	both	destructive	and	
constructive	interference for	
Hamiltonian	dynamics	with	
Pauli	matrix superposition	
𝑤 = . 9, 0, 1 	in	𝑤-space	and	
𝑙 = −.5, 0, 1 	in	𝑙-space,	and	
with	an	initial	pure	state	in	𝑢-
condition	specified	by	𝑝µ =
.1,	𝑝�µ = .7	and		𝑝�¶ = .1.	
The	mixing	parameter	is	
varied,	𝑚	 = 0	to	1	in	steps	of	
0.2	(i=0	to	5).	

 

 

In	the	next	section	the	dynamical	scheme	is	expanded	to	take	into	account	damping	through	
Lindblad	evolution.	
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6.		Dynamics	of	an	open	quantum	system		
	
The	Schrödinger	equation	represents	by	far	the	most	common	approach	to	dynamics	in	cognitive	
modelling	(for	exceptions	see	e.g.	[36,	37]).	A	distinctive	characteristic	of	such	dynamics	is	their	
imperative	periodicity	and,	for	some	cases	at	least,	this	periodicity	will	be	the	main	theoretical	
motivation	for	employing	such	dynamics	in	the	first	place	(as	well	as	the	potential	for	violations	of	
the	law	of	total	probability,	as	discussed).	Empirically,	however,	there	may	be	cases	when	a	strict	
requirement	for	periodicity	is	undesirable	(even	when	there	are	other	reasons	motivating	a	QPT	
approach).	Additionally,	Schrödinger	dynamics	entail	an	assumption	that	the	system	under	
consideration	is	isolated	from	its	environment.	Psychologically,	such	an	assumption	may	be	
occasionally	tenable,	e.g.,	when	a	participant	is	immersed	in	a	psychological	task,	that	is	being	
performed	in	relative	isolation	to	the	participants’	beliefs	and	general	knowledge	(of	course,	even	if	
common,	such	an	assumption	is	hardly	trivial,	cf.	[38]).	Equally,	it	is	simple	to	think	of	situations	
when	cognitive	processing	in	a	psychological	task	cannot	be	considered	isolated,	e.g.,	when	a	
participant	is	asked	to	reflect	on	what	her	answers	on	a	task	mean	for	her	personally.	

Various	contexts	of	decision	making	include	mood,	physical	and	emotional	condition	of	the	
participant,	interaction	with	other	people’s	opinions,	interference	with	other	(probably,	latent)	tasks	
of	the	participant.	These	contexts	can	be	interpreted	as	environment.	The	significance	of	
environment	in	mental	processing	can	be	so	large	that	it	solely	defines	the	final	result,	regardless	of	
inherent	motivations	of	the	participant	(described	by	the	Hamiltonian).	For	example,	a	relatively	
unimportant	choice	faced	in	an	extremely	noisy	environment	(e.g.,	under	the	pressure	of	more	vital	
tasks)	can	be	easily	imagined	to	be	made	randomly,	with	equal	probability	of	any	option.	This	
uniform	mixture	of	possible	opinions	would	correspond	to	a	classical	mental	state,	given	by	a	
normalized	identity	matrix.	 Other	examples	for	such	open	system	modeling	occur	in	
political	science,	in	the	complex	dynamics	of	election	campaigns	where	potential	voters	are	
submerged	in	a	high	intensity	information	flow	from	various	external	sources	[39,40],	or	they	occur	
in	connectionist	approaches	describing	the	decision-maker	embedded	in	her	surrounding	
environment	[41].	

	 In	this	paper	we	consider	one	particular	form	of	open	quantum	system	equation,	namely,	
the	Lindblad	equation.	This	is	motivated,	first	of	all,	by	the	simplicity	of	the	equation	itself	(it	
basically	has	one	parameter,	G)	and	the	interpretation	(the	greater	the	parameter	G	the	stronger	is	
the	coupling	to	the	environment).	Namely,	the	Markovian	approximation,	used	in	the	derivation	of	
this	equation,	corresponds	to	the	possibility	to	neglect	the	impact	of	the	of	long-term	memory	of	the	
problem	in	question	in	comparison	to	the	whole	environment.		
	 In	QPT,	if	a	quantum	system	is	assumed	to	interact	with	a	classical	environment,	then	the	
Lindblad	equation	must	be	employed,	which	can	be	seen	as	a	modification	to	the	Schrödinger	
equation.	The	idea	is	that	our	quantum	state	is	coupled	to	numerous	other,	also	quantum,	states,	
comprising	the	(classical)	environment.	The	total	dynamics	of	this	huge	system	(represented	by	a	
tensor	product	of	the	quantum	system	of	interest	and	the	many-dimensional	environment)	is	also	
governed	by	a	Hamiltonian,	and	the	dynamics	of	our	system	are	extracted	by	taking	a	trace	over	all	
environmental	degrees	of	freedom.			
	 The	general	form	of	the	Lindblad	equation	is	[42,	43]:	

𝜌 = −𝑖 𝐻, 𝜌 + Γá
á

𝐶á𝜌𝐶á
� −

1
2
𝜌𝐶á

�𝐶á −
1
2
𝐶á
�𝐶á𝜌 	

where	the	Planck	constant	is	set	to	one,	𝐶á 	are	arbitrary	operators	and	the	constants	Γá 	are	positive	
and	interpreted	as	inverse	relaxation	times	(the	higher	the	value	of	these	constants,	the	faster	the	
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extinction	of	oscillatory	behavior).	The	𝐶á 	are	called	`collapse	operators’	or	`quantum	jump	
operators’.	Note,	the	solution	of	the	above	equation	𝜌(𝑡)	remains	a	positive	density	matrix	with	
trace	1	if	started	with	such	𝜌(0)	(so	this	general	form	of	dynamics	preserves	trace	in	the	same	way	
as	Schrödinger	dynamics	does).	A	simple	form	(with	one	non-zero	j),	which	will	be	used	in	all	
subsequent	considerations,	can	be	given	as		
	

𝜌 = −𝑖 𝐻, 𝜌 − Γ 𝐽f, 𝐽f, 𝜌 	
	

The	key	aspect	of	the	Lindblad	equation	is	that,	whereas	the	standard	Schrödinger	equation	
produces	incessant	periodic	oscillations	in	all	probabilities	for	all	observables	(unless	the	state	is	an	
eigenvector	of	H),	the	Lindblad	equation	eventually	produces	a	𝜌(𝑡)	with	only	diagonal	non-zero	
terms	(for	the	part	of	𝜌(𝑡)	that	it	affects).	Indeed,	this	exactly	corresponds	to	a	statement	that	
diagonal	density	matrix	𝜌 𝑡 	is	a	classical	mixture	of	eigenstates.	In	other	words,	for	such	a	𝜌	all	
quantum	structure	has	been	lost	and	any	residual	uncertainty	simply	corresponds	to	classical	
uncertainty	(of	which	particular	state	the	system	is	in).	This	process	of	extinguishing	quantum	
structure	is	called	decoherence.	It	can	be	seen	more	clearly	in	the	Lindblad	form	how	the	size	of	Γ	
determines	the	strength	of	decoherence,	which	can	be	thought	of	as	the	strength	of	the	interaction	
with	the	environment.	
	 When	physicists	talk	about	decoherence	of	a	quantum	system,	this	means	losing	coherence,	
that	is,	loosely	speaking,	the	degree	of	quantum	structure,	which	can	be	quantified	as	follows.	In	a	
pure	state,	the	degree	of	purity	of	the	state	is	maximal	and	decoherence	is	zero	(note,	the	higher	the	
decoherence	of	a	system,	the	more	classical	it	will	be).	In	a	totally	classical	state,	purity	is	minimal,	
and	decoherence	maximal.	One	interpretation	of	decoherence	in	decision	making	may	be	that	it	is	a	
measurement	without	an	actual	measurement	procedure,	but	rather	by	means	of	interaction	with	
the	environment.	The	classical	stable	state	to	which	the	dynamics	converges	may	be	interpreted	as	
the	final	opinion	of	the	decision	maker.		The	main	problem	with	this	interpretation	is	that	very	often	
this	asymptotic	stable	state	would	be	a	uniform	mixture,	that	is	expressing	total	classical	uncertainty	
or	complete	personal	indifference.	That	is,		the	question	of	the	time	of	measurement	remains	open	
for	many	open	system	approaches,	as	is	the	case	in	the	standard	unitary	evolution	approach.	
Even	though	interpretations	of	decoherence	(and	open	quantum	systems	in	general)	in	psychology	
have	yet	to	be	established,	we	present	here	for	completeness	a	basic	approach	to	its	quantification.	

One	measure	of	decoherence	is	
jCÝZ ãA ä

äCj
,	where	N	is	the	space	dimension.	This	measure	is	0	(the	

minimum)	when	the	state	is	pure	and	one	(the	maximum)	for	a	density	matrix	𝜌	with	equal	
(diagonal)	elements	1/N.	Note,	1 − 𝑇𝑟(𝜌I)	can	be	easily	seen	(remembering	that	trace	is	basis	
independent)	to	be	0	when	the	state	is	pure	and	to	attain	its	maximum	value	only	for	a	density	
matrix	𝜌	with	diagonal	elements	equal	to	1/N.	In	any	basis,	the	maximally	mixed	state	𝜌	is	the		
identity	matrix	𝐼	multiplied	by	1/N.	So,	the	diagonal	elements	of	𝜌I	are	1/𝑁I,	and	𝑇𝑟 𝜌I = 𝑁 ⋅
j
äA

= j
ä
.		Such	a	maximally	mixed	state		j

ä
𝐼	is	always	a	(stable)	solution	to	our	Lindblad	equation,	

because	𝐼	commutes	with	any	operator	-	in	particular,	with	𝐻and	𝐽f,	and	very	often	it	is	the	only	
stable	solution	(see	below	for	an	exception).	In	general,	we	can	represent	any	density	matrix	𝜌 =
	j
ä
𝐼 + µ	,	where	µ		is		a	(not	positive)	traceless	matrix.	Then,	𝑇𝑟 𝜌I = 	𝑇𝑟 j

äA
𝐼	 + 	𝑇𝑟 µI ,	and	we	

can	see	that	the	decoherence	1 − 𝑇𝑟 µI ä
äCj

,	is	maximal		only	if	µ	is	zero.		
	 Note	𝐽f	is	the	same	observable	for	an	arbitrary	dimensional	Hilbert	space	as	𝜎f/2	is	for	a	
two-dimensional	one.	That	is,	𝐽f	is	a	z-axis	spin	operator.	Generally	speaking,	if	we	employ	in	the	
Lindblad	equation	𝐽f,	we	end	up	asymptotically	with	a	𝜌	which	is	diagonal	in	the	𝐽f	basis,	i.e.,	the	
basis	in	which	𝐽f	is	also	diagonal	(if	we	employed	another	operator	instead	of	𝐽f,	then	we	could	also	
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end	up	with	a	diagonal	𝜌).	This	is	what	is	meant	by	saying	that	the	system	𝜌	has	become	classical.	
Still,	it	may	so	happen	that	some	degrees	of	freedom	are	decoherence-free	[44].	As	long	as	we	are	
interested	in	the	𝐽f	observable,	it	is	natural	to	employ	𝐽f.	Computing	explicitly	the	Lindblad	term	for	

the	simple	ℂIcase,	we	have	 0 𝜌jI
𝜌Ij 0 ,	which	again	illustrates	(to	a	first	approximation)	how	the	

differential	equation	for	𝜌	includes	terms	producing	a	gradient	towards	0	for	the	off-diagonal	terms.	
For	a	four	dimensional	system	(ℂI⨁ℂI,	which	has	been	much	of	the	focus	of	this	paper,	or	the	non-
separable	version),	we	can	specify		𝐽f	in	the	Lindblad	equation	as	𝐽f = 𝜎f⨁𝜎f =
𝐷𝑖𝑎𝑔(	j

I
		Cj
I
			j
I
		Cj
I
	).	Then,	the	last	term	in	the	Lindblad	equation	would	be	

−𝑖Γ[𝐽f, [𝐽f, 𝜌 𝑡 ]] = −𝑖Γ

0 𝜌jI
𝜌Ij 0

0 𝜌jH
𝜌Ié 0

0 𝜌éI
𝜌Hj 0

0 𝜌éH
𝜌Hé 0

.		

Non-diagonal	zeros	indicate	absence	of	decoherence	between	the	first	(cw)	and	the	third	(cl)	basis	
vector,	as	well	as	between	the	second	(sw)	and	the	fourth	(sl).	But	note	that	a	general	diagonal	𝐽f	
would	still	preserve	the	direct	sum	structure,	assuming	the	Hamiltonian	part	was	separable.	
	 Note,	our	case	is	an	unusual	one,	because	we	deal	with	a	direct	sum	Hamiltonian,	with	a	
mixing	term.	If	there	were	no	mixing	term,	the	two	subspaces	would	be	evolving	independently.	For	
example,	if	the	initial	state	was	in	the	“winning”	subspace,	it	would	remain	there.	It	may	decohere	to	
the	mixed	state	(|𝑐𝑤 𝑐𝑤| + 	 |𝑠𝑤 𝑠𝑤|)/2,	which	looks	exactly	as	if	maximally	mixed	for	the	ℂI	
case,	but	which	is	not	totally	mixed	for	our		ℂH	case	(because	the	basis	states		of	the	“lose”	subspace	
are	missing	in	this	mixture	and	the	measure	of	decoherence	is	4/3(1-2/4)=.66	).		Moreover,	if	we	
imagine	decoherence	affecting	only	one	of	the	subspaces,	e.g.		𝐽f = 𝜎f⨁0,	this	would	mean	that	the		
“losing”	subspace	is	decoherence-free.	Starting	with	a	pure	state	in	a	“losing”	subspace,	we	would	
remain	in	the	“losing”	subspace	(oscillating	incessantly	if	the	initial	state	was	not	an	eigenstate)	and	
preserve	the	purity,	with	the	measure	of	decoherence		remaining	zero.		
	 Moving	back	to	our	concrete	form	of	Hamiltonian,	we	note	that	for	the	ℂH	Hamiltonian	with	
the	mixing	term	as	described	in	Section	5,	and	with	parameters	𝑛µ = (0, 0.8, 0.6),	𝑛¶ = (0.8, 0.6, 0)	
and		m=1	there	exists	a	non-trivial	(not	𝐼/4)	stable	state	solution		

𝜌(∞) = 0.1
3 0
0 3

−1 0
0 −1

−1 0
0 −1

2 0
0 2

	

which	commutes	both	with	𝐽f	and	𝐻,	 𝐽f, 𝜌 = 0	,	 𝐻, 𝜌 = 0.	Obviously,	these	two	commutation	
relations	are	sufficient	for	the	solution	𝜌	to	be	time-independent.	It	was	possible	to	find	such	a	
solution	in	our	case,	because	both	𝐻	and	𝐽f	are	degenerate	(note	that	𝐻I	and	𝐽fI	are	proportional	to	
𝐼).	In	order	for	non-trivial	𝜌  to	be	diagonalizable	together	with	𝐻,	and	with	𝐽f,	it	needs	to	have	the	
same	eigenvectors	as	𝐻,	and	𝐽f.	While	our	𝐻	and	𝐽f	do	not	commute,	they	are	not	diagonalizable	in	
one	same	basis,	and	if	at	least	one	of	them	were	not	degenerate,	this	would	imply	that	no	𝜌	(other	
than	𝐼/4	)	could	commute	with	both	of	them.	This	could	easily	happen	if	we	relax	some	conditions.	
Consider,	for	example,	another	natural	form	of	𝐻]PX	which	would	just		be	the	identity	matrix	𝐼I,	
mixing	|𝑐𝑤 	and	|𝑐𝑙 	as	well	as	|𝑠𝑤 	and	|𝑠𝑙 .	Then,	the	ℂH	Hamiltonian	would	have	four	distinct	
eigenvalues,	± 2 ± 𝑔,	where	we	denoted			𝑔I = 2	 1 + 𝑛¶\[Y ⋅ 𝑛µP@ , and	none	of	the	eigenvectors	
is	an	eigenvector	of	𝐽f,	hence	the	only	stable	mixed	state	is	𝐼/4.			
	 As	it	is	the	case	with	𝐻	and	𝐽f	considered	throughout	the	paper,	we	can	see	directly	from	the	
form	of	𝐽f	that	it	has	invariant	subspaces	𝑆𝑝𝑎𝑛(|𝑐𝑤 	, |𝑐𝑙 )	and		𝑆𝑝𝑎𝑛(|𝑠𝑤 	, |𝑠𝑙 )	and	it	is	easily	
seen	that	𝐻	must	be	degenerate	from	the	fact	that	𝐻I	is	proportional	to	𝐼	(	in	effect	𝜆P

I = (1 + ℎI),	
following	section	5,	thus	all	𝜆P

I	are	identical	for	all	four	𝑖,	which	leaves	only	two	values	for	the	four	
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eigenvalues	𝜆P 	of	the	Hamiltonian).		Indeed,	𝐻	also	has	two	twice	degenerate	eigenvalues,	which	
allows	for	a	choice	of	eigenvectors	such	that	they	would	also	be	eigenvectors	of	𝜌.	
For	this	stationary		state	𝜌,	we	can	either	directly	calculate	the	measure	of	decoherence	to		be	.9333,	
or	represent	𝜌(∞) = 	 j

H
𝐼 + µ(∞)	, where	µ is	a	traceless	operator	responsible	for	pertaining	of	

coherence 		

𝜇(∞) = 0.1
0.5 0
0 0.5

−1 0
0 −1

−1 0
0 −1

−0.5 0
0 −0.5

	

and	calculate	 1 − 𝑇𝑟 𝜌I ä
äCj

	=	1 − 𝑇𝑟 µI ä
äCj

	=	1-4·0.12·(0.52+(-1)2)	·4/3=.933.	For	other	values	
of	parameters	the	situation	is	similar.		
													For	a	more	general	picture,	we	may	look	for	a	stable	state	solution	satisfying	commutative	
relations	[𝐻, 𝜌] = 	0,	and		 𝐽f, 𝜌 = 0	(note	that	[𝐽f, 𝐽f, 𝜌 ] = 0	if	and	only	if	 𝐽f, 𝜌 = 0).	From	the	
commutation	relation	 𝐽f, 𝜌 = 0	we	obtain	the	form	of	the	solution		

𝜌(∞) =

𝜌jj 0
0 𝜌II

𝜌jé 0
0 𝜌IH

𝜌jé 0
0 𝜌IH

𝜌éé 0
0 𝜌HH

	

with	the	condition	that	all	elements	are	real	numbers.	Plugging	this	form	into	the	equation	[𝐻, 𝜌] =
	0,	we	obtain	the	following	one-parametric	solution	(𝑚	is	fixed	as	mixing	strength)		:	

	

𝜌(∞) = î
H
+ 𝜇 𝑐,∞ = î

H
+ 𝑐

1 0 −2𝑚 0
0 1 0 −2𝑚)

−2𝑚 0 −1 0
0 −2𝑚 0 −1

,	

where	𝑐	is	a	real	number,	0 ≤ 𝑐 ≤ 1/2.	Note	that	the	solution	is	independent	of		𝑛µ	and	𝑛¶,	but	the	
parameter	𝑐	depends	on	the	difference		𝜌jj(0) + 𝜌II(0) − (𝜌éé(0) + 𝜌HH(0)) − 2𝑚(𝜌jé(0) +
𝜌éj(0) + 𝜌IH(0) + 𝜌HI(0)).		The	solution	𝜌(∞)	has	two	eigenvalues:	

1
4
± 𝑐 1 + 4mI,	

which	must	be	between	zero	and	one.	This	means	that	𝑐	must	satisfy		

|𝑐| ≤
1

4 1 + 4mI
.	

We	notice	that	the	larger	the	mixing	parameter	𝑚,	the	more	narrow	is	the	range	of	possible	values	
for	𝑐.		

Till	now,	we	did	not	discuss	what	initial	state	will	converge	to	what	stable	state.	Obviously,	if	we	
start	with	a	uniform	mixture	𝐼/4	 𝑐 = 0 ,	or	any	other	stable	state	with	𝑐 > 0,	we	are	bound	to	stay	
in	this	initial	state,	since	it	is	stationary.	Suppose	that	a	particular	initial	state		𝜌(0)		stabilizes	to	a	
particular	𝜌(∞) = 𝐼/4 + 𝜇(𝑐,∞)	(with	some	concrete	𝑐).	Since	the	Lindblad	equation	is	linear	in	the	
density	matrix	𝜌,	the	linear	combination	of	its	solutions	are	also	solutions.	If	we	consider	now	a	
weighted	mixture	of	𝜌(0)		and		𝐼/4	,	𝜌(𝑎, 0) = 	𝑎𝜌 0 + 1 − 𝑎 𝐼/4,		with	the	weight	0 < 𝑎 < 1,	
the	resulting	stable	state	would	be	the	mixture		𝜌 𝑎,∞ = 𝑎𝜌 ∞ + jC� î

H
= 𝐼/4 + 𝜇(𝑎𝑐,∞).	So,	

the	effect	of	adding	a	uniform	mixture	to	an	initial	state	results	in	a	decrease	of	the	non-trivial	part	
of	the	solution,	𝜇,	which	gets	multiplied	by	the	factor	𝑎.	From	an	interpretive	point	of	view	this	
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sustains	the	idea	that	a	group	of	participants	with	a	fraction	1 − 𝑎	of	indifferent	deciders	will	
proportionally	diminish	the	belief	difference	of	the	whole	group.	

If	we	consider	the	initial	state	to	be	a	mixture	of	two		states,	with	respective	weights	𝑎	and	1 − 𝑎,	
the	stable	state	would	have	the	non-trivial	term	𝑎𝜇 𝑐j,∞ + (1 − 𝑎)𝜇(𝑐I,∞),	which	is	
proportionally		weighing	the	outcomes	we	have	for	each	of	the	states	separately.	

To	obtain	a	connection	between	the	parameter	𝑐	and	the	initial	state	𝜌 0 ,		we	note	that	there	is	a	
basis	in	which:	(1)	our	general	stable	state	solution	is	diagonal;	(2)	𝐽f	remains	diagonal;	and	(3)	the	
Hamiltonian	H	is	block-diagonal.	This	means	that	we	have	independent	evolution	of	certain	initial	
states	initially	prepared	in	one	or	the	other	two-dimensional	subspace.	Roughly	speaking,	we	have	a	
situation	opposite	to	having	two	decoherence-free	subspaces	(no	decoherence	within	a	subspace	
but	decoherence	between	the	subspaces):	namely,	in	our	case	we	have	two	subspaces	which,	
individually,	always	decohere	completely,	but	there	is	no	interaction	(and	no	decoherence)	between	
these	two	subspaces.	So,	if	the	initial	state	belonged	exclusively	to	one	of	the	subspaces,	it	remains	
there	and	tends	to	the	stable	state	𝜌 ∞ = 𝐷𝑖𝑎𝑔(1/2	1/2	0	0)	in	the	basis	described	in	this	
paragraph,	which	has	66%	decoherence	(minimal	possible).	The	resulting	expression	for	the	
parameter	𝑐	is:					

c	 =
𝜌jj(0) + 𝜌II(0) − (𝜌éé(0) + 𝜌HH(0)) − 2𝑚(𝜌jé(0) + 𝜌éj(0) + 𝜌IH(0) + 𝜌HI(0))

4(1 + 4𝑚I)
.	

The	measure	of	decoherence	is	 1 − 𝑇𝑟 𝜌I H
é
= 1 − jð

é
𝑐I(1 + 4𝑚I) ≥ 2/3.	If	we	want	less	

decoherence,	we	can	increase	𝑚	(which	defines	the	initial	Hamiltonian)	or	c	(which	is	defined	from	
the	initial	state).		
	 Figure	11	illustrates	how	decoherence	grows	with	time,	depending	on	the	strength	of	the	
Lindblad	term.	Starting	with	the	initial	state	𝜌 0 = 𝐷𝑖𝑎𝑔(0	0	0	1),	we	looked	at	decoherence	
across	a	range	of	the	Γ parameter	(0,	0.5,	1,	1.5,	2),	numerically	solving	the	Lindblad	equation.	Figure	
11	plots	the	evolution	of	the	elements		𝜌jj 𝑡 ,	𝜌II 𝑡 ,	𝜌éé 𝑡 ,	𝜌HH 𝑡 ,	 𝜌HI 𝑡 	and	the	decoherence	
measure	as	described	above.	One	can	see	that	the	decoherence	measure	grows	from	zero	to	.933,	
more	steeply	when	Γ is	greater. For	Γ = 0,	decoherence	is	always	zero,	and	the	oscillating	pattern	
repeats	forever.	For	other	values	of	Γ	we	observe	diagonalization	(but	not	complete!)	of	the	density	
matrix,	attested,	in	particular,	by	quenching	of	the	non-diagonal	element	|r42(t)|.		
	 Moreover,	Figure	11	demonstrates	efficient	mixing	between	all	four	basic	states,	starting	
from	a	pure	state	(0	0	0	1).	This	mixing	is	due	to	the	mixing	part	of	the	Hamiltonian,	𝐻]PX.	If	𝐻]PX	
were	set	to	zero,	the	oscillations	would	be	observed	just	between	𝜌HH 𝑡 and	𝜌éé 𝑡 ,		leaving	𝜌jj 𝑡 	
and	𝜌II 𝑡 	constant	zero.	
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Figure	11.	Dynamics	of	the	density	matrix	under	decoherence.	Curves	are	numbered	(0	1	2	3	4)	as	
corresponds	to	G parameter	(0,	0.5,	1,	1.5,	2).	
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7.	Concluding	comments		
	

The	richness	of	dynamical	options	in	QPT	cannot	be	comprehensively	covered	in	a	brief	paper	and	
there	are	textbooks	better	suited	for	an	in	depth	presentation.	Here,	we	aimed	to	focus	on	
situations	which	have	been	of	interest	to	cognitive	scientists,	notably	corresponding	to	binary	
decisions.	We	used	the	eigenstates	of	the	Pauli	𝜎f	matrix	to	correspond	to	the	outcomes	of	a	binary	
decision	of	psychological	interest.	Then,	we	have	a	series	of	key	questions:	what	are	meaningful	
options	for	specifying	a	general	Hamiltonian	for	the	evolution	of	a	corresponding	state?	How	should	
the	state	be	represented	in	the	first	place?	In	what	way	could	we	extend	the	dynamics	so	that	a	
more	realistic	picture	for	the	influences	on	the	mental	state	are	provided?		
 Regarding	the	first	question,	the	Bloch	sphere	presentation	was	meant	to	illustrate	that	the	
evolution	of	states	induced	by	Hamiltonians	can	be	given	geometric	interpretation.	In	particular,	we	
have	argued	that	for	the	initial	state	|0>		evolution	of	probabilities	𝑃𝑟𝑜𝑏T(𝑡)	depends	only	on	the	
the	polar	angle	of	the	vector	n	defined	by	the	Hamiltonian	𝐻 = 𝑛 ∙ 𝜎.	In	view	of	the	fact	that	main	
features	of	the	probabilistic	behaviour	are	insensitive	to	the	particular	distribution	of	weights	
between	𝜎Xand		𝜎done	may	simplify	the	picture	by	considering	only	𝜎fand		𝜎dcomponent	in	the	
Hamiltonian.	Regarding	𝜎X + 𝜎f	and	𝜎d + 𝜎f	the	resulting	Hamiltonian	mixes	amplitudes	across	the	
state,	that	is,	it	combines	amplitude	in	each	slot	of	the	mental	state	with	amplitude	from	other	slots.	
However,	𝜎X + 𝜎d	merely	swaps	amplitude	from	one	slot	to	another.	Noting	that	each	Pauli	matrix	
in	the	Hamiltonian	introduces	a	free	parameter,	it	seems	an	appropriately	parsimonious	approach	to	
not	introduce	a	third	Pauli	matrix	in	the	specification	of	the	Hamiltonian	in	the	first	instance.	
Relatedly,	we	simplified	the	specification	of	the	Hamiltonian,	by	not	including	the	identity	matrix	as	
it	only	affects	an	overall	phase	in	the	mental	state.	Again,	the	Bloch	sphere	presentation	illustrates	
why	this	is	not	necessary	in	simple	cases,	but	note	that	this	would	play	a	role,	e.g.,	in	the	case	of	
superpositions	in	the	unknown-case	in	ℂH.		
	 The	mental	state	representation	itself	is	not	a	simple	problem:	when	there	is	an	assumption	
that	inhomogeneity	in	the	population	sample	may	affect	outcome	probability	behavior,	then	a	
density	matrix	approach	should	be	employed,	even	if	particular	decompositions	of	the	density	
matrix	cannot	be	assumed.	In	this	work,	and	unlike	the	standard	approach	in	physics,	we	have	
motivated	two	approaches	in	specifying	a	mixed	state,	either	as	a	mixture	of	two	orthogonal	pure	
states	or	two	non-orthogonal	pure	states	(to	capture	an	insight	of	two-cluster	structure	in	the	
population).	While	this	may	appear	an	intuitive	approach	in	psychology,	please	bear	in	mind	the	
cautionary	notes	regarding	parameters	and	the	non-uniqueness	of	density	state	decomposition.	
From	the	point	of	view	of	modelling	in	psychology,	the	transition	between	these	different	
approaches	to	mental	state	representation	can	be	operationally	determined,	in	terms	of	the	
complexity	of	the	data	set	and	the	additional	parameters	that	are	needed	in	the	different	cases.	
Readers	should	also	be	aware	that	a	seemingly	innocuous	increase	of	the	complexity	of	the	mental	
state	–	by	mixing	-	can	translate	to	much	greater	complexity	regarding	probabilities,	compared	to	
the	situation	of	dealing	with	pure	states.		
	 We	have	devised	a	novel	Hamiltonian	mixing	scheme	in	ℂH	that	allows	an	analytical	
expression	of	the	outcome	probability.	We	were	able	to	specify	𝐻]PX	in	such	a	way	that	mixing	will	
diminish	with	a	greater	similarity	of	the	dynamics	in	the	two	‘known	condition’	subspaces;	this	can	
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plausibly	be	endowed	with	psychological	meaning,	in	particular	situations.	Additionally,	it	may	be	
the	case	that	mixing	can	be	theoretically	motivated	even	in	cases	of	almost	identical	subspace	
dynamics;	this	can	be	achieved	through	increasing	the	free	parameter	𝑚.	
	 One	of	the	main	motivations	in	adopting	modelling	with	QPT	over	CPT	is	the	former’s	
possibility	to	formally	express	the	violation	of	the	classical	law	of	total	probability	in	various	
experimental	paradigms	(e.g.,	Pothos	&	Busemeyer,	2009).	Comparing	the	total	probability	𝑃Ý\:,T 𝑡 	
to	𝑃T|Þ 𝑡 ,	which	can	reflect	a	result	from	quantum	interference,	we	observed	the	law’s	violation	in	
the	unpacking		factor,	and	displayed	both	subadditive	and	superadditive	regimes.	It	is	this	problem	
which	motivated	the	use	of	direct	sum	space	structure	in	many	QPT	cognitive	dynamical	models,	
instead	of	the	more	common	tensor	structures.	Here,	we	saw	how	we	can	specify	a	simple	mixer,	
which	has	a	powerful	interpretation	regarding	the	transition	from	consistency	with	the	law	of	total	
probability	to	violations	of	the	law	of	total	probability.	Readers	should	again	be	cautioned	regarding	
the	algebraic	complexity	of	such	directions,	especially	when	the	mental	states	are	represented	with	
mixed	operators.	Of	course,	one	can	always	employ	numerical	methods	to	address	any	such	
problems.		 	

Finally	we	addressed	the	issue	of	the	time	periodicity	in	conventional	–	Schrödinger	type	–	
quantum-like	modelling,	and	provided	an	interpretative	framework	to	extend	such	dynamics.		
Unitary	dynamics	assumes	that	participants	adopt	a	task	in	isolation.	Such	an	assumption	may	be	
warranted	in	some	cases	(e.g.,	when	an	experimenter	takes	great	care	to	ensure	that	participants	
approach	a	task	regardless	of	any	other	knowledge	or	biases	might	have),	but	this	will	clearly	not	be	
a	general	assumption.	An	area	of	quantum	cognition	which	has	received	little	attention	concerns	the	
transition	from	unitary	to	open-system	dynamics,	whereby	the	latter	can	be	understood	as	decision	
situations	which	take	place	in	the	broader	context	of	a	participant’s	knowledge	and	experience.	
Importantly,	this	distinction	has	empirical	traction,	in	the	simple	sense	that	unitary	dynamics	are	
perpetually	oscillating,	whereas	open-system	dynamics	stabilize	to	a	particular	state.	We	have	
shown	how	open-system	Lindblad	dynamics	can	be	simply	implemented	for	the	dynamical	system	of	
interest	and	illustrated	the	diminishing	of	oscillatory	behavior	in	the	dynamics.		
	 In	conclusion,	QPT	provides	a	rich	set	of	technical	tools	for	dynamics.	Current	work	in	
quantum	cognition	has	only	employed	a	small	subset	of	these	tools.	It	is	hoped	that	this	paper	will	
facilitate	the	adoption	of	more	complex	dynamical	tools	and	so	open	the	doors	for	richer	empirical	
predictions.	
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